1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * WQ: wq->mutex protected. 131 * 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * MD: wq_mayday_lock protected. 135 */ 136 137 /* struct worker is defined in workqueue_internal.h */ 138 139 struct worker_pool { 140 spinlock_t lock; /* the pool lock */ 141 int cpu; /* I: the associated cpu */ 142 int node; /* I: the associated node ID */ 143 int id; /* I: pool ID */ 144 unsigned int flags; /* X: flags */ 145 146 struct list_head worklist; /* L: list of pending works */ 147 int nr_workers; /* L: total number of workers */ 148 149 /* nr_idle includes the ones off idle_list for rebinding */ 150 int nr_idle; /* L: currently idle ones */ 151 152 struct list_head idle_list; /* X: list of idle workers */ 153 struct timer_list idle_timer; /* L: worker idle timeout */ 154 struct timer_list mayday_timer; /* L: SOS timer for workers */ 155 156 /* a workers is either on busy_hash or idle_list, or the manager */ 157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 158 /* L: hash of busy workers */ 159 160 /* see manage_workers() for details on the two manager mutexes */ 161 struct mutex manager_arb; /* manager arbitration */ 162 struct mutex attach_mutex; /* attach/detach exclusion */ 163 struct list_head workers; /* A: attached workers */ 164 struct completion *detach_completion; /* all workers detached */ 165 166 struct ida worker_ida; /* worker IDs for task name */ 167 168 struct workqueue_attrs *attrs; /* I: worker attributes */ 169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 170 int refcnt; /* PL: refcnt for unbound pools */ 171 172 /* 173 * The current concurrency level. As it's likely to be accessed 174 * from other CPUs during try_to_wake_up(), put it in a separate 175 * cacheline. 176 */ 177 atomic_t nr_running ____cacheline_aligned_in_smp; 178 179 /* 180 * Destruction of pool is sched-RCU protected to allow dereferences 181 * from get_work_pool(). 182 */ 183 struct rcu_head rcu; 184 } ____cacheline_aligned_in_smp; 185 186 /* 187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 188 * of work_struct->data are used for flags and the remaining high bits 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the 190 * number of flag bits. 191 */ 192 struct pool_workqueue { 193 struct worker_pool *pool; /* I: the associated pool */ 194 struct workqueue_struct *wq; /* I: the owning workqueue */ 195 int work_color; /* L: current color */ 196 int flush_color; /* L: flushing color */ 197 int refcnt; /* L: reference count */ 198 int nr_in_flight[WORK_NR_COLORS]; 199 /* L: nr of in_flight works */ 200 int nr_active; /* L: nr of active works */ 201 int max_active; /* L: max active works */ 202 struct list_head delayed_works; /* L: delayed works */ 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 204 struct list_head mayday_node; /* MD: node on wq->maydays */ 205 206 /* 207 * Release of unbound pwq is punted to system_wq. See put_pwq() 208 * and pwq_unbound_release_workfn() for details. pool_workqueue 209 * itself is also sched-RCU protected so that the first pwq can be 210 * determined without grabbing wq->mutex. 211 */ 212 struct work_struct unbound_release_work; 213 struct rcu_head rcu; 214 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 215 216 /* 217 * Structure used to wait for workqueue flush. 218 */ 219 struct wq_flusher { 220 struct list_head list; /* WQ: list of flushers */ 221 int flush_color; /* WQ: flush color waiting for */ 222 struct completion done; /* flush completion */ 223 }; 224 225 struct wq_device; 226 227 /* 228 * The externally visible workqueue. It relays the issued work items to 229 * the appropriate worker_pool through its pool_workqueues. 230 */ 231 struct workqueue_struct { 232 struct list_head pwqs; /* WR: all pwqs of this wq */ 233 struct list_head list; /* PL: list of all workqueues */ 234 235 struct mutex mutex; /* protects this wq */ 236 int work_color; /* WQ: current work color */ 237 int flush_color; /* WQ: current flush color */ 238 atomic_t nr_pwqs_to_flush; /* flush in progress */ 239 struct wq_flusher *first_flusher; /* WQ: first flusher */ 240 struct list_head flusher_queue; /* WQ: flush waiters */ 241 struct list_head flusher_overflow; /* WQ: flush overflow list */ 242 243 struct list_head maydays; /* MD: pwqs requesting rescue */ 244 struct worker *rescuer; /* I: rescue worker */ 245 246 int nr_drainers; /* WQ: drain in progress */ 247 int saved_max_active; /* WQ: saved pwq max_active */ 248 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 251 252 #ifdef CONFIG_SYSFS 253 struct wq_device *wq_dev; /* I: for sysfs interface */ 254 #endif 255 #ifdef CONFIG_LOCKDEP 256 struct lockdep_map lockdep_map; 257 #endif 258 char name[WQ_NAME_LEN]; /* I: workqueue name */ 259 260 /* hot fields used during command issue, aligned to cacheline */ 261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 264 }; 265 266 static struct kmem_cache *pwq_cache; 267 268 static cpumask_var_t *wq_numa_possible_cpumask; 269 /* possible CPUs of each node */ 270 271 static bool wq_disable_numa; 272 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 273 274 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 275 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 276 static bool wq_power_efficient = true; 277 #else 278 static bool wq_power_efficient; 279 #endif 280 281 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 282 283 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 284 285 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 286 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 287 288 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 289 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 290 291 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 292 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 293 294 /* the per-cpu worker pools */ 295 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 296 cpu_worker_pools); 297 298 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 299 300 /* PL: hash of all unbound pools keyed by pool->attrs */ 301 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 302 303 /* I: attributes used when instantiating standard unbound pools on demand */ 304 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 305 306 /* I: attributes used when instantiating ordered pools on demand */ 307 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 308 309 struct workqueue_struct *system_wq __read_mostly; 310 EXPORT_SYMBOL(system_wq); 311 struct workqueue_struct *system_highpri_wq __read_mostly; 312 EXPORT_SYMBOL_GPL(system_highpri_wq); 313 struct workqueue_struct *system_long_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_long_wq); 315 struct workqueue_struct *system_unbound_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_unbound_wq); 317 struct workqueue_struct *system_freezable_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_freezable_wq); 319 struct workqueue_struct *system_power_efficient_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 321 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 323 324 static int worker_thread(void *__worker); 325 static void copy_workqueue_attrs(struct workqueue_attrs *to, 326 const struct workqueue_attrs *from); 327 328 #define CREATE_TRACE_POINTS 329 #include <trace/events/workqueue.h> 330 331 #define assert_rcu_or_pool_mutex() \ 332 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 333 lockdep_is_held(&wq_pool_mutex), \ 334 "sched RCU or wq_pool_mutex should be held") 335 336 #define assert_rcu_or_wq_mutex(wq) \ 337 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 338 lockdep_is_held(&wq->mutex), \ 339 "sched RCU or wq->mutex should be held") 340 341 #define for_each_cpu_worker_pool(pool, cpu) \ 342 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 343 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 344 (pool)++) 345 346 /** 347 * for_each_pool - iterate through all worker_pools in the system 348 * @pool: iteration cursor 349 * @pi: integer used for iteration 350 * 351 * This must be called either with wq_pool_mutex held or sched RCU read 352 * locked. If the pool needs to be used beyond the locking in effect, the 353 * caller is responsible for guaranteeing that the pool stays online. 354 * 355 * The if/else clause exists only for the lockdep assertion and can be 356 * ignored. 357 */ 358 #define for_each_pool(pool, pi) \ 359 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 360 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 361 else 362 363 /** 364 * for_each_pool_worker - iterate through all workers of a worker_pool 365 * @worker: iteration cursor 366 * @pool: worker_pool to iterate workers of 367 * 368 * This must be called with @pool->attach_mutex. 369 * 370 * The if/else clause exists only for the lockdep assertion and can be 371 * ignored. 372 */ 373 #define for_each_pool_worker(worker, pool) \ 374 list_for_each_entry((worker), &(pool)->workers, node) \ 375 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 376 else 377 378 /** 379 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 380 * @pwq: iteration cursor 381 * @wq: the target workqueue 382 * 383 * This must be called either with wq->mutex held or sched RCU read locked. 384 * If the pwq needs to be used beyond the locking in effect, the caller is 385 * responsible for guaranteeing that the pwq stays online. 386 * 387 * The if/else clause exists only for the lockdep assertion and can be 388 * ignored. 389 */ 390 #define for_each_pwq(pwq, wq) \ 391 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 392 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 393 else 394 395 #ifdef CONFIG_DEBUG_OBJECTS_WORK 396 397 static struct debug_obj_descr work_debug_descr; 398 399 static void *work_debug_hint(void *addr) 400 { 401 return ((struct work_struct *) addr)->func; 402 } 403 404 /* 405 * fixup_init is called when: 406 * - an active object is initialized 407 */ 408 static int work_fixup_init(void *addr, enum debug_obj_state state) 409 { 410 struct work_struct *work = addr; 411 412 switch (state) { 413 case ODEBUG_STATE_ACTIVE: 414 cancel_work_sync(work); 415 debug_object_init(work, &work_debug_descr); 416 return 1; 417 default: 418 return 0; 419 } 420 } 421 422 /* 423 * fixup_activate is called when: 424 * - an active object is activated 425 * - an unknown object is activated (might be a statically initialized object) 426 */ 427 static int work_fixup_activate(void *addr, enum debug_obj_state state) 428 { 429 struct work_struct *work = addr; 430 431 switch (state) { 432 433 case ODEBUG_STATE_NOTAVAILABLE: 434 /* 435 * This is not really a fixup. The work struct was 436 * statically initialized. We just make sure that it 437 * is tracked in the object tracker. 438 */ 439 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 440 debug_object_init(work, &work_debug_descr); 441 debug_object_activate(work, &work_debug_descr); 442 return 0; 443 } 444 WARN_ON_ONCE(1); 445 return 0; 446 447 case ODEBUG_STATE_ACTIVE: 448 WARN_ON(1); 449 450 default: 451 return 0; 452 } 453 } 454 455 /* 456 * fixup_free is called when: 457 * - an active object is freed 458 */ 459 static int work_fixup_free(void *addr, enum debug_obj_state state) 460 { 461 struct work_struct *work = addr; 462 463 switch (state) { 464 case ODEBUG_STATE_ACTIVE: 465 cancel_work_sync(work); 466 debug_object_free(work, &work_debug_descr); 467 return 1; 468 default: 469 return 0; 470 } 471 } 472 473 static struct debug_obj_descr work_debug_descr = { 474 .name = "work_struct", 475 .debug_hint = work_debug_hint, 476 .fixup_init = work_fixup_init, 477 .fixup_activate = work_fixup_activate, 478 .fixup_free = work_fixup_free, 479 }; 480 481 static inline void debug_work_activate(struct work_struct *work) 482 { 483 debug_object_activate(work, &work_debug_descr); 484 } 485 486 static inline void debug_work_deactivate(struct work_struct *work) 487 { 488 debug_object_deactivate(work, &work_debug_descr); 489 } 490 491 void __init_work(struct work_struct *work, int onstack) 492 { 493 if (onstack) 494 debug_object_init_on_stack(work, &work_debug_descr); 495 else 496 debug_object_init(work, &work_debug_descr); 497 } 498 EXPORT_SYMBOL_GPL(__init_work); 499 500 void destroy_work_on_stack(struct work_struct *work) 501 { 502 debug_object_free(work, &work_debug_descr); 503 } 504 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 505 506 void destroy_delayed_work_on_stack(struct delayed_work *work) 507 { 508 destroy_timer_on_stack(&work->timer); 509 debug_object_free(&work->work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 512 513 #else 514 static inline void debug_work_activate(struct work_struct *work) { } 515 static inline void debug_work_deactivate(struct work_struct *work) { } 516 #endif 517 518 /** 519 * worker_pool_assign_id - allocate ID and assing it to @pool 520 * @pool: the pool pointer of interest 521 * 522 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 523 * successfully, -errno on failure. 524 */ 525 static int worker_pool_assign_id(struct worker_pool *pool) 526 { 527 int ret; 528 529 lockdep_assert_held(&wq_pool_mutex); 530 531 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 532 GFP_KERNEL); 533 if (ret >= 0) { 534 pool->id = ret; 535 return 0; 536 } 537 return ret; 538 } 539 540 /** 541 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 542 * @wq: the target workqueue 543 * @node: the node ID 544 * 545 * This must be called either with pwq_lock held or sched RCU read locked. 546 * If the pwq needs to be used beyond the locking in effect, the caller is 547 * responsible for guaranteeing that the pwq stays online. 548 * 549 * Return: The unbound pool_workqueue for @node. 550 */ 551 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 552 int node) 553 { 554 assert_rcu_or_wq_mutex(wq); 555 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 556 } 557 558 static unsigned int work_color_to_flags(int color) 559 { 560 return color << WORK_STRUCT_COLOR_SHIFT; 561 } 562 563 static int get_work_color(struct work_struct *work) 564 { 565 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 566 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 567 } 568 569 static int work_next_color(int color) 570 { 571 return (color + 1) % WORK_NR_COLORS; 572 } 573 574 /* 575 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 576 * contain the pointer to the queued pwq. Once execution starts, the flag 577 * is cleared and the high bits contain OFFQ flags and pool ID. 578 * 579 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 580 * and clear_work_data() can be used to set the pwq, pool or clear 581 * work->data. These functions should only be called while the work is 582 * owned - ie. while the PENDING bit is set. 583 * 584 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 585 * corresponding to a work. Pool is available once the work has been 586 * queued anywhere after initialization until it is sync canceled. pwq is 587 * available only while the work item is queued. 588 * 589 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 590 * canceled. While being canceled, a work item may have its PENDING set 591 * but stay off timer and worklist for arbitrarily long and nobody should 592 * try to steal the PENDING bit. 593 */ 594 static inline void set_work_data(struct work_struct *work, unsigned long data, 595 unsigned long flags) 596 { 597 WARN_ON_ONCE(!work_pending(work)); 598 atomic_long_set(&work->data, data | flags | work_static(work)); 599 } 600 601 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 602 unsigned long extra_flags) 603 { 604 set_work_data(work, (unsigned long)pwq, 605 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 606 } 607 608 static void set_work_pool_and_keep_pending(struct work_struct *work, 609 int pool_id) 610 { 611 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 612 WORK_STRUCT_PENDING); 613 } 614 615 static void set_work_pool_and_clear_pending(struct work_struct *work, 616 int pool_id) 617 { 618 /* 619 * The following wmb is paired with the implied mb in 620 * test_and_set_bit(PENDING) and ensures all updates to @work made 621 * here are visible to and precede any updates by the next PENDING 622 * owner. 623 */ 624 smp_wmb(); 625 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 626 } 627 628 static void clear_work_data(struct work_struct *work) 629 { 630 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 631 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 632 } 633 634 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 635 { 636 unsigned long data = atomic_long_read(&work->data); 637 638 if (data & WORK_STRUCT_PWQ) 639 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 640 else 641 return NULL; 642 } 643 644 /** 645 * get_work_pool - return the worker_pool a given work was associated with 646 * @work: the work item of interest 647 * 648 * Pools are created and destroyed under wq_pool_mutex, and allows read 649 * access under sched-RCU read lock. As such, this function should be 650 * called under wq_pool_mutex or with preemption disabled. 651 * 652 * All fields of the returned pool are accessible as long as the above 653 * mentioned locking is in effect. If the returned pool needs to be used 654 * beyond the critical section, the caller is responsible for ensuring the 655 * returned pool is and stays online. 656 * 657 * Return: The worker_pool @work was last associated with. %NULL if none. 658 */ 659 static struct worker_pool *get_work_pool(struct work_struct *work) 660 { 661 unsigned long data = atomic_long_read(&work->data); 662 int pool_id; 663 664 assert_rcu_or_pool_mutex(); 665 666 if (data & WORK_STRUCT_PWQ) 667 return ((struct pool_workqueue *) 668 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 669 670 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 671 if (pool_id == WORK_OFFQ_POOL_NONE) 672 return NULL; 673 674 return idr_find(&worker_pool_idr, pool_id); 675 } 676 677 /** 678 * get_work_pool_id - return the worker pool ID a given work is associated with 679 * @work: the work item of interest 680 * 681 * Return: The worker_pool ID @work was last associated with. 682 * %WORK_OFFQ_POOL_NONE if none. 683 */ 684 static int get_work_pool_id(struct work_struct *work) 685 { 686 unsigned long data = atomic_long_read(&work->data); 687 688 if (data & WORK_STRUCT_PWQ) 689 return ((struct pool_workqueue *) 690 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 691 692 return data >> WORK_OFFQ_POOL_SHIFT; 693 } 694 695 static void mark_work_canceling(struct work_struct *work) 696 { 697 unsigned long pool_id = get_work_pool_id(work); 698 699 pool_id <<= WORK_OFFQ_POOL_SHIFT; 700 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 701 } 702 703 static bool work_is_canceling(struct work_struct *work) 704 { 705 unsigned long data = atomic_long_read(&work->data); 706 707 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 708 } 709 710 /* 711 * Policy functions. These define the policies on how the global worker 712 * pools are managed. Unless noted otherwise, these functions assume that 713 * they're being called with pool->lock held. 714 */ 715 716 static bool __need_more_worker(struct worker_pool *pool) 717 { 718 return !atomic_read(&pool->nr_running); 719 } 720 721 /* 722 * Need to wake up a worker? Called from anything but currently 723 * running workers. 724 * 725 * Note that, because unbound workers never contribute to nr_running, this 726 * function will always return %true for unbound pools as long as the 727 * worklist isn't empty. 728 */ 729 static bool need_more_worker(struct worker_pool *pool) 730 { 731 return !list_empty(&pool->worklist) && __need_more_worker(pool); 732 } 733 734 /* Can I start working? Called from busy but !running workers. */ 735 static bool may_start_working(struct worker_pool *pool) 736 { 737 return pool->nr_idle; 738 } 739 740 /* Do I need to keep working? Called from currently running workers. */ 741 static bool keep_working(struct worker_pool *pool) 742 { 743 return !list_empty(&pool->worklist) && 744 atomic_read(&pool->nr_running) <= 1; 745 } 746 747 /* Do we need a new worker? Called from manager. */ 748 static bool need_to_create_worker(struct worker_pool *pool) 749 { 750 return need_more_worker(pool) && !may_start_working(pool); 751 } 752 753 /* Do we have too many workers and should some go away? */ 754 static bool too_many_workers(struct worker_pool *pool) 755 { 756 bool managing = mutex_is_locked(&pool->manager_arb); 757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 758 int nr_busy = pool->nr_workers - nr_idle; 759 760 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 761 } 762 763 /* 764 * Wake up functions. 765 */ 766 767 /* Return the first idle worker. Safe with preemption disabled */ 768 static struct worker *first_idle_worker(struct worker_pool *pool) 769 { 770 if (unlikely(list_empty(&pool->idle_list))) 771 return NULL; 772 773 return list_first_entry(&pool->idle_list, struct worker, entry); 774 } 775 776 /** 777 * wake_up_worker - wake up an idle worker 778 * @pool: worker pool to wake worker from 779 * 780 * Wake up the first idle worker of @pool. 781 * 782 * CONTEXT: 783 * spin_lock_irq(pool->lock). 784 */ 785 static void wake_up_worker(struct worker_pool *pool) 786 { 787 struct worker *worker = first_idle_worker(pool); 788 789 if (likely(worker)) 790 wake_up_process(worker->task); 791 } 792 793 /** 794 * wq_worker_waking_up - a worker is waking up 795 * @task: task waking up 796 * @cpu: CPU @task is waking up to 797 * 798 * This function is called during try_to_wake_up() when a worker is 799 * being awoken. 800 * 801 * CONTEXT: 802 * spin_lock_irq(rq->lock) 803 */ 804 void wq_worker_waking_up(struct task_struct *task, int cpu) 805 { 806 struct worker *worker = kthread_data(task); 807 808 if (!(worker->flags & WORKER_NOT_RUNNING)) { 809 WARN_ON_ONCE(worker->pool->cpu != cpu); 810 atomic_inc(&worker->pool->nr_running); 811 } 812 } 813 814 /** 815 * wq_worker_sleeping - a worker is going to sleep 816 * @task: task going to sleep 817 * @cpu: CPU in question, must be the current CPU number 818 * 819 * This function is called during schedule() when a busy worker is 820 * going to sleep. Worker on the same cpu can be woken up by 821 * returning pointer to its task. 822 * 823 * CONTEXT: 824 * spin_lock_irq(rq->lock) 825 * 826 * Return: 827 * Worker task on @cpu to wake up, %NULL if none. 828 */ 829 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 830 { 831 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 832 struct worker_pool *pool; 833 834 /* 835 * Rescuers, which may not have all the fields set up like normal 836 * workers, also reach here, let's not access anything before 837 * checking NOT_RUNNING. 838 */ 839 if (worker->flags & WORKER_NOT_RUNNING) 840 return NULL; 841 842 pool = worker->pool; 843 844 /* this can only happen on the local cpu */ 845 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 846 return NULL; 847 848 /* 849 * The counterpart of the following dec_and_test, implied mb, 850 * worklist not empty test sequence is in insert_work(). 851 * Please read comment there. 852 * 853 * NOT_RUNNING is clear. This means that we're bound to and 854 * running on the local cpu w/ rq lock held and preemption 855 * disabled, which in turn means that none else could be 856 * manipulating idle_list, so dereferencing idle_list without pool 857 * lock is safe. 858 */ 859 if (atomic_dec_and_test(&pool->nr_running) && 860 !list_empty(&pool->worklist)) 861 to_wakeup = first_idle_worker(pool); 862 return to_wakeup ? to_wakeup->task : NULL; 863 } 864 865 /** 866 * worker_set_flags - set worker flags and adjust nr_running accordingly 867 * @worker: self 868 * @flags: flags to set 869 * 870 * Set @flags in @worker->flags and adjust nr_running accordingly. 871 * 872 * CONTEXT: 873 * spin_lock_irq(pool->lock) 874 */ 875 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 876 { 877 struct worker_pool *pool = worker->pool; 878 879 WARN_ON_ONCE(worker->task != current); 880 881 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 882 if ((flags & WORKER_NOT_RUNNING) && 883 !(worker->flags & WORKER_NOT_RUNNING)) { 884 atomic_dec(&pool->nr_running); 885 } 886 887 worker->flags |= flags; 888 } 889 890 /** 891 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 892 * @worker: self 893 * @flags: flags to clear 894 * 895 * Clear @flags in @worker->flags and adjust nr_running accordingly. 896 * 897 * CONTEXT: 898 * spin_lock_irq(pool->lock) 899 */ 900 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 901 { 902 struct worker_pool *pool = worker->pool; 903 unsigned int oflags = worker->flags; 904 905 WARN_ON_ONCE(worker->task != current); 906 907 worker->flags &= ~flags; 908 909 /* 910 * If transitioning out of NOT_RUNNING, increment nr_running. Note 911 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 912 * of multiple flags, not a single flag. 913 */ 914 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 915 if (!(worker->flags & WORKER_NOT_RUNNING)) 916 atomic_inc(&pool->nr_running); 917 } 918 919 /** 920 * find_worker_executing_work - find worker which is executing a work 921 * @pool: pool of interest 922 * @work: work to find worker for 923 * 924 * Find a worker which is executing @work on @pool by searching 925 * @pool->busy_hash which is keyed by the address of @work. For a worker 926 * to match, its current execution should match the address of @work and 927 * its work function. This is to avoid unwanted dependency between 928 * unrelated work executions through a work item being recycled while still 929 * being executed. 930 * 931 * This is a bit tricky. A work item may be freed once its execution 932 * starts and nothing prevents the freed area from being recycled for 933 * another work item. If the same work item address ends up being reused 934 * before the original execution finishes, workqueue will identify the 935 * recycled work item as currently executing and make it wait until the 936 * current execution finishes, introducing an unwanted dependency. 937 * 938 * This function checks the work item address and work function to avoid 939 * false positives. Note that this isn't complete as one may construct a 940 * work function which can introduce dependency onto itself through a 941 * recycled work item. Well, if somebody wants to shoot oneself in the 942 * foot that badly, there's only so much we can do, and if such deadlock 943 * actually occurs, it should be easy to locate the culprit work function. 944 * 945 * CONTEXT: 946 * spin_lock_irq(pool->lock). 947 * 948 * Return: 949 * Pointer to worker which is executing @work if found, %NULL 950 * otherwise. 951 */ 952 static struct worker *find_worker_executing_work(struct worker_pool *pool, 953 struct work_struct *work) 954 { 955 struct worker *worker; 956 957 hash_for_each_possible(pool->busy_hash, worker, hentry, 958 (unsigned long)work) 959 if (worker->current_work == work && 960 worker->current_func == work->func) 961 return worker; 962 963 return NULL; 964 } 965 966 /** 967 * move_linked_works - move linked works to a list 968 * @work: start of series of works to be scheduled 969 * @head: target list to append @work to 970 * @nextp: out paramter for nested worklist walking 971 * 972 * Schedule linked works starting from @work to @head. Work series to 973 * be scheduled starts at @work and includes any consecutive work with 974 * WORK_STRUCT_LINKED set in its predecessor. 975 * 976 * If @nextp is not NULL, it's updated to point to the next work of 977 * the last scheduled work. This allows move_linked_works() to be 978 * nested inside outer list_for_each_entry_safe(). 979 * 980 * CONTEXT: 981 * spin_lock_irq(pool->lock). 982 */ 983 static void move_linked_works(struct work_struct *work, struct list_head *head, 984 struct work_struct **nextp) 985 { 986 struct work_struct *n; 987 988 /* 989 * Linked worklist will always end before the end of the list, 990 * use NULL for list head. 991 */ 992 list_for_each_entry_safe_from(work, n, NULL, entry) { 993 list_move_tail(&work->entry, head); 994 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 995 break; 996 } 997 998 /* 999 * If we're already inside safe list traversal and have moved 1000 * multiple works to the scheduled queue, the next position 1001 * needs to be updated. 1002 */ 1003 if (nextp) 1004 *nextp = n; 1005 } 1006 1007 /** 1008 * get_pwq - get an extra reference on the specified pool_workqueue 1009 * @pwq: pool_workqueue to get 1010 * 1011 * Obtain an extra reference on @pwq. The caller should guarantee that 1012 * @pwq has positive refcnt and be holding the matching pool->lock. 1013 */ 1014 static void get_pwq(struct pool_workqueue *pwq) 1015 { 1016 lockdep_assert_held(&pwq->pool->lock); 1017 WARN_ON_ONCE(pwq->refcnt <= 0); 1018 pwq->refcnt++; 1019 } 1020 1021 /** 1022 * put_pwq - put a pool_workqueue reference 1023 * @pwq: pool_workqueue to put 1024 * 1025 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1026 * destruction. The caller should be holding the matching pool->lock. 1027 */ 1028 static void put_pwq(struct pool_workqueue *pwq) 1029 { 1030 lockdep_assert_held(&pwq->pool->lock); 1031 if (likely(--pwq->refcnt)) 1032 return; 1033 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1034 return; 1035 /* 1036 * @pwq can't be released under pool->lock, bounce to 1037 * pwq_unbound_release_workfn(). This never recurses on the same 1038 * pool->lock as this path is taken only for unbound workqueues and 1039 * the release work item is scheduled on a per-cpu workqueue. To 1040 * avoid lockdep warning, unbound pool->locks are given lockdep 1041 * subclass of 1 in get_unbound_pool(). 1042 */ 1043 schedule_work(&pwq->unbound_release_work); 1044 } 1045 1046 /** 1047 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1048 * @pwq: pool_workqueue to put (can be %NULL) 1049 * 1050 * put_pwq() with locking. This function also allows %NULL @pwq. 1051 */ 1052 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1053 { 1054 if (pwq) { 1055 /* 1056 * As both pwqs and pools are sched-RCU protected, the 1057 * following lock operations are safe. 1058 */ 1059 spin_lock_irq(&pwq->pool->lock); 1060 put_pwq(pwq); 1061 spin_unlock_irq(&pwq->pool->lock); 1062 } 1063 } 1064 1065 static void pwq_activate_delayed_work(struct work_struct *work) 1066 { 1067 struct pool_workqueue *pwq = get_work_pwq(work); 1068 1069 trace_workqueue_activate_work(work); 1070 move_linked_works(work, &pwq->pool->worklist, NULL); 1071 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1072 pwq->nr_active++; 1073 } 1074 1075 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1076 { 1077 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1078 struct work_struct, entry); 1079 1080 pwq_activate_delayed_work(work); 1081 } 1082 1083 /** 1084 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1085 * @pwq: pwq of interest 1086 * @color: color of work which left the queue 1087 * 1088 * A work either has completed or is removed from pending queue, 1089 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1090 * 1091 * CONTEXT: 1092 * spin_lock_irq(pool->lock). 1093 */ 1094 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1095 { 1096 /* uncolored work items don't participate in flushing or nr_active */ 1097 if (color == WORK_NO_COLOR) 1098 goto out_put; 1099 1100 pwq->nr_in_flight[color]--; 1101 1102 pwq->nr_active--; 1103 if (!list_empty(&pwq->delayed_works)) { 1104 /* one down, submit a delayed one */ 1105 if (pwq->nr_active < pwq->max_active) 1106 pwq_activate_first_delayed(pwq); 1107 } 1108 1109 /* is flush in progress and are we at the flushing tip? */ 1110 if (likely(pwq->flush_color != color)) 1111 goto out_put; 1112 1113 /* are there still in-flight works? */ 1114 if (pwq->nr_in_flight[color]) 1115 goto out_put; 1116 1117 /* this pwq is done, clear flush_color */ 1118 pwq->flush_color = -1; 1119 1120 /* 1121 * If this was the last pwq, wake up the first flusher. It 1122 * will handle the rest. 1123 */ 1124 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1125 complete(&pwq->wq->first_flusher->done); 1126 out_put: 1127 put_pwq(pwq); 1128 } 1129 1130 /** 1131 * try_to_grab_pending - steal work item from worklist and disable irq 1132 * @work: work item to steal 1133 * @is_dwork: @work is a delayed_work 1134 * @flags: place to store irq state 1135 * 1136 * Try to grab PENDING bit of @work. This function can handle @work in any 1137 * stable state - idle, on timer or on worklist. 1138 * 1139 * Return: 1140 * 1 if @work was pending and we successfully stole PENDING 1141 * 0 if @work was idle and we claimed PENDING 1142 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1143 * -ENOENT if someone else is canceling @work, this state may persist 1144 * for arbitrarily long 1145 * 1146 * Note: 1147 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1148 * interrupted while holding PENDING and @work off queue, irq must be 1149 * disabled on entry. This, combined with delayed_work->timer being 1150 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1151 * 1152 * On successful return, >= 0, irq is disabled and the caller is 1153 * responsible for releasing it using local_irq_restore(*@flags). 1154 * 1155 * This function is safe to call from any context including IRQ handler. 1156 */ 1157 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1158 unsigned long *flags) 1159 { 1160 struct worker_pool *pool; 1161 struct pool_workqueue *pwq; 1162 1163 local_irq_save(*flags); 1164 1165 /* try to steal the timer if it exists */ 1166 if (is_dwork) { 1167 struct delayed_work *dwork = to_delayed_work(work); 1168 1169 /* 1170 * dwork->timer is irqsafe. If del_timer() fails, it's 1171 * guaranteed that the timer is not queued anywhere and not 1172 * running on the local CPU. 1173 */ 1174 if (likely(del_timer(&dwork->timer))) 1175 return 1; 1176 } 1177 1178 /* try to claim PENDING the normal way */ 1179 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1180 return 0; 1181 1182 /* 1183 * The queueing is in progress, or it is already queued. Try to 1184 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1185 */ 1186 pool = get_work_pool(work); 1187 if (!pool) 1188 goto fail; 1189 1190 spin_lock(&pool->lock); 1191 /* 1192 * work->data is guaranteed to point to pwq only while the work 1193 * item is queued on pwq->wq, and both updating work->data to point 1194 * to pwq on queueing and to pool on dequeueing are done under 1195 * pwq->pool->lock. This in turn guarantees that, if work->data 1196 * points to pwq which is associated with a locked pool, the work 1197 * item is currently queued on that pool. 1198 */ 1199 pwq = get_work_pwq(work); 1200 if (pwq && pwq->pool == pool) { 1201 debug_work_deactivate(work); 1202 1203 /* 1204 * A delayed work item cannot be grabbed directly because 1205 * it might have linked NO_COLOR work items which, if left 1206 * on the delayed_list, will confuse pwq->nr_active 1207 * management later on and cause stall. Make sure the work 1208 * item is activated before grabbing. 1209 */ 1210 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1211 pwq_activate_delayed_work(work); 1212 1213 list_del_init(&work->entry); 1214 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1215 1216 /* work->data points to pwq iff queued, point to pool */ 1217 set_work_pool_and_keep_pending(work, pool->id); 1218 1219 spin_unlock(&pool->lock); 1220 return 1; 1221 } 1222 spin_unlock(&pool->lock); 1223 fail: 1224 local_irq_restore(*flags); 1225 if (work_is_canceling(work)) 1226 return -ENOENT; 1227 cpu_relax(); 1228 return -EAGAIN; 1229 } 1230 1231 /** 1232 * insert_work - insert a work into a pool 1233 * @pwq: pwq @work belongs to 1234 * @work: work to insert 1235 * @head: insertion point 1236 * @extra_flags: extra WORK_STRUCT_* flags to set 1237 * 1238 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1239 * work_struct flags. 1240 * 1241 * CONTEXT: 1242 * spin_lock_irq(pool->lock). 1243 */ 1244 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1245 struct list_head *head, unsigned int extra_flags) 1246 { 1247 struct worker_pool *pool = pwq->pool; 1248 1249 /* we own @work, set data and link */ 1250 set_work_pwq(work, pwq, extra_flags); 1251 list_add_tail(&work->entry, head); 1252 get_pwq(pwq); 1253 1254 /* 1255 * Ensure either wq_worker_sleeping() sees the above 1256 * list_add_tail() or we see zero nr_running to avoid workers lying 1257 * around lazily while there are works to be processed. 1258 */ 1259 smp_mb(); 1260 1261 if (__need_more_worker(pool)) 1262 wake_up_worker(pool); 1263 } 1264 1265 /* 1266 * Test whether @work is being queued from another work executing on the 1267 * same workqueue. 1268 */ 1269 static bool is_chained_work(struct workqueue_struct *wq) 1270 { 1271 struct worker *worker; 1272 1273 worker = current_wq_worker(); 1274 /* 1275 * Return %true iff I'm a worker execuing a work item on @wq. If 1276 * I'm @worker, it's safe to dereference it without locking. 1277 */ 1278 return worker && worker->current_pwq->wq == wq; 1279 } 1280 1281 static void __queue_work(int cpu, struct workqueue_struct *wq, 1282 struct work_struct *work) 1283 { 1284 struct pool_workqueue *pwq; 1285 struct worker_pool *last_pool; 1286 struct list_head *worklist; 1287 unsigned int work_flags; 1288 unsigned int req_cpu = cpu; 1289 1290 /* 1291 * While a work item is PENDING && off queue, a task trying to 1292 * steal the PENDING will busy-loop waiting for it to either get 1293 * queued or lose PENDING. Grabbing PENDING and queueing should 1294 * happen with IRQ disabled. 1295 */ 1296 WARN_ON_ONCE(!irqs_disabled()); 1297 1298 debug_work_activate(work); 1299 1300 /* if draining, only works from the same workqueue are allowed */ 1301 if (unlikely(wq->flags & __WQ_DRAINING) && 1302 WARN_ON_ONCE(!is_chained_work(wq))) 1303 return; 1304 retry: 1305 if (req_cpu == WORK_CPU_UNBOUND) 1306 cpu = raw_smp_processor_id(); 1307 1308 /* pwq which will be used unless @work is executing elsewhere */ 1309 if (!(wq->flags & WQ_UNBOUND)) 1310 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1311 else 1312 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1313 1314 /* 1315 * If @work was previously on a different pool, it might still be 1316 * running there, in which case the work needs to be queued on that 1317 * pool to guarantee non-reentrancy. 1318 */ 1319 last_pool = get_work_pool(work); 1320 if (last_pool && last_pool != pwq->pool) { 1321 struct worker *worker; 1322 1323 spin_lock(&last_pool->lock); 1324 1325 worker = find_worker_executing_work(last_pool, work); 1326 1327 if (worker && worker->current_pwq->wq == wq) { 1328 pwq = worker->current_pwq; 1329 } else { 1330 /* meh... not running there, queue here */ 1331 spin_unlock(&last_pool->lock); 1332 spin_lock(&pwq->pool->lock); 1333 } 1334 } else { 1335 spin_lock(&pwq->pool->lock); 1336 } 1337 1338 /* 1339 * pwq is determined and locked. For unbound pools, we could have 1340 * raced with pwq release and it could already be dead. If its 1341 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1342 * without another pwq replacing it in the numa_pwq_tbl or while 1343 * work items are executing on it, so the retrying is guaranteed to 1344 * make forward-progress. 1345 */ 1346 if (unlikely(!pwq->refcnt)) { 1347 if (wq->flags & WQ_UNBOUND) { 1348 spin_unlock(&pwq->pool->lock); 1349 cpu_relax(); 1350 goto retry; 1351 } 1352 /* oops */ 1353 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1354 wq->name, cpu); 1355 } 1356 1357 /* pwq determined, queue */ 1358 trace_workqueue_queue_work(req_cpu, pwq, work); 1359 1360 if (WARN_ON(!list_empty(&work->entry))) { 1361 spin_unlock(&pwq->pool->lock); 1362 return; 1363 } 1364 1365 pwq->nr_in_flight[pwq->work_color]++; 1366 work_flags = work_color_to_flags(pwq->work_color); 1367 1368 if (likely(pwq->nr_active < pwq->max_active)) { 1369 trace_workqueue_activate_work(work); 1370 pwq->nr_active++; 1371 worklist = &pwq->pool->worklist; 1372 } else { 1373 work_flags |= WORK_STRUCT_DELAYED; 1374 worklist = &pwq->delayed_works; 1375 } 1376 1377 insert_work(pwq, work, worklist, work_flags); 1378 1379 spin_unlock(&pwq->pool->lock); 1380 } 1381 1382 /** 1383 * queue_work_on - queue work on specific cpu 1384 * @cpu: CPU number to execute work on 1385 * @wq: workqueue to use 1386 * @work: work to queue 1387 * 1388 * We queue the work to a specific CPU, the caller must ensure it 1389 * can't go away. 1390 * 1391 * Return: %false if @work was already on a queue, %true otherwise. 1392 */ 1393 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1394 struct work_struct *work) 1395 { 1396 bool ret = false; 1397 unsigned long flags; 1398 1399 local_irq_save(flags); 1400 1401 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1402 __queue_work(cpu, wq, work); 1403 ret = true; 1404 } 1405 1406 local_irq_restore(flags); 1407 return ret; 1408 } 1409 EXPORT_SYMBOL(queue_work_on); 1410 1411 void delayed_work_timer_fn(unsigned long __data) 1412 { 1413 struct delayed_work *dwork = (struct delayed_work *)__data; 1414 1415 /* should have been called from irqsafe timer with irq already off */ 1416 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1417 } 1418 EXPORT_SYMBOL(delayed_work_timer_fn); 1419 1420 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1421 struct delayed_work *dwork, unsigned long delay) 1422 { 1423 struct timer_list *timer = &dwork->timer; 1424 struct work_struct *work = &dwork->work; 1425 1426 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1427 timer->data != (unsigned long)dwork); 1428 WARN_ON_ONCE(timer_pending(timer)); 1429 WARN_ON_ONCE(!list_empty(&work->entry)); 1430 1431 /* 1432 * If @delay is 0, queue @dwork->work immediately. This is for 1433 * both optimization and correctness. The earliest @timer can 1434 * expire is on the closest next tick and delayed_work users depend 1435 * on that there's no such delay when @delay is 0. 1436 */ 1437 if (!delay) { 1438 __queue_work(cpu, wq, &dwork->work); 1439 return; 1440 } 1441 1442 timer_stats_timer_set_start_info(&dwork->timer); 1443 1444 dwork->wq = wq; 1445 dwork->cpu = cpu; 1446 timer->expires = jiffies + delay; 1447 1448 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1449 add_timer_on(timer, cpu); 1450 else 1451 add_timer(timer); 1452 } 1453 1454 /** 1455 * queue_delayed_work_on - queue work on specific CPU after delay 1456 * @cpu: CPU number to execute work on 1457 * @wq: workqueue to use 1458 * @dwork: work to queue 1459 * @delay: number of jiffies to wait before queueing 1460 * 1461 * Return: %false if @work was already on a queue, %true otherwise. If 1462 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1463 * execution. 1464 */ 1465 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1466 struct delayed_work *dwork, unsigned long delay) 1467 { 1468 struct work_struct *work = &dwork->work; 1469 bool ret = false; 1470 unsigned long flags; 1471 1472 /* read the comment in __queue_work() */ 1473 local_irq_save(flags); 1474 1475 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1476 __queue_delayed_work(cpu, wq, dwork, delay); 1477 ret = true; 1478 } 1479 1480 local_irq_restore(flags); 1481 return ret; 1482 } 1483 EXPORT_SYMBOL(queue_delayed_work_on); 1484 1485 /** 1486 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1487 * @cpu: CPU number to execute work on 1488 * @wq: workqueue to use 1489 * @dwork: work to queue 1490 * @delay: number of jiffies to wait before queueing 1491 * 1492 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1493 * modify @dwork's timer so that it expires after @delay. If @delay is 1494 * zero, @work is guaranteed to be scheduled immediately regardless of its 1495 * current state. 1496 * 1497 * Return: %false if @dwork was idle and queued, %true if @dwork was 1498 * pending and its timer was modified. 1499 * 1500 * This function is safe to call from any context including IRQ handler. 1501 * See try_to_grab_pending() for details. 1502 */ 1503 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1504 struct delayed_work *dwork, unsigned long delay) 1505 { 1506 unsigned long flags; 1507 int ret; 1508 1509 do { 1510 ret = try_to_grab_pending(&dwork->work, true, &flags); 1511 } while (unlikely(ret == -EAGAIN)); 1512 1513 if (likely(ret >= 0)) { 1514 __queue_delayed_work(cpu, wq, dwork, delay); 1515 local_irq_restore(flags); 1516 } 1517 1518 /* -ENOENT from try_to_grab_pending() becomes %true */ 1519 return ret; 1520 } 1521 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1522 1523 /** 1524 * worker_enter_idle - enter idle state 1525 * @worker: worker which is entering idle state 1526 * 1527 * @worker is entering idle state. Update stats and idle timer if 1528 * necessary. 1529 * 1530 * LOCKING: 1531 * spin_lock_irq(pool->lock). 1532 */ 1533 static void worker_enter_idle(struct worker *worker) 1534 { 1535 struct worker_pool *pool = worker->pool; 1536 1537 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1538 WARN_ON_ONCE(!list_empty(&worker->entry) && 1539 (worker->hentry.next || worker->hentry.pprev))) 1540 return; 1541 1542 /* can't use worker_set_flags(), also called from create_worker() */ 1543 worker->flags |= WORKER_IDLE; 1544 pool->nr_idle++; 1545 worker->last_active = jiffies; 1546 1547 /* idle_list is LIFO */ 1548 list_add(&worker->entry, &pool->idle_list); 1549 1550 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1551 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1552 1553 /* 1554 * Sanity check nr_running. Because wq_unbind_fn() releases 1555 * pool->lock between setting %WORKER_UNBOUND and zapping 1556 * nr_running, the warning may trigger spuriously. Check iff 1557 * unbind is not in progress. 1558 */ 1559 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1560 pool->nr_workers == pool->nr_idle && 1561 atomic_read(&pool->nr_running)); 1562 } 1563 1564 /** 1565 * worker_leave_idle - leave idle state 1566 * @worker: worker which is leaving idle state 1567 * 1568 * @worker is leaving idle state. Update stats. 1569 * 1570 * LOCKING: 1571 * spin_lock_irq(pool->lock). 1572 */ 1573 static void worker_leave_idle(struct worker *worker) 1574 { 1575 struct worker_pool *pool = worker->pool; 1576 1577 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1578 return; 1579 worker_clr_flags(worker, WORKER_IDLE); 1580 pool->nr_idle--; 1581 list_del_init(&worker->entry); 1582 } 1583 1584 static struct worker *alloc_worker(int node) 1585 { 1586 struct worker *worker; 1587 1588 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1589 if (worker) { 1590 INIT_LIST_HEAD(&worker->entry); 1591 INIT_LIST_HEAD(&worker->scheduled); 1592 INIT_LIST_HEAD(&worker->node); 1593 /* on creation a worker is in !idle && prep state */ 1594 worker->flags = WORKER_PREP; 1595 } 1596 return worker; 1597 } 1598 1599 /** 1600 * worker_attach_to_pool() - attach a worker to a pool 1601 * @worker: worker to be attached 1602 * @pool: the target pool 1603 * 1604 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1605 * cpu-binding of @worker are kept coordinated with the pool across 1606 * cpu-[un]hotplugs. 1607 */ 1608 static void worker_attach_to_pool(struct worker *worker, 1609 struct worker_pool *pool) 1610 { 1611 mutex_lock(&pool->attach_mutex); 1612 1613 /* 1614 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1615 * online CPUs. It'll be re-applied when any of the CPUs come up. 1616 */ 1617 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1618 1619 /* 1620 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1621 * stable across this function. See the comments above the 1622 * flag definition for details. 1623 */ 1624 if (pool->flags & POOL_DISASSOCIATED) 1625 worker->flags |= WORKER_UNBOUND; 1626 1627 list_add_tail(&worker->node, &pool->workers); 1628 1629 mutex_unlock(&pool->attach_mutex); 1630 } 1631 1632 /** 1633 * worker_detach_from_pool() - detach a worker from its pool 1634 * @worker: worker which is attached to its pool 1635 * @pool: the pool @worker is attached to 1636 * 1637 * Undo the attaching which had been done in worker_attach_to_pool(). The 1638 * caller worker shouldn't access to the pool after detached except it has 1639 * other reference to the pool. 1640 */ 1641 static void worker_detach_from_pool(struct worker *worker, 1642 struct worker_pool *pool) 1643 { 1644 struct completion *detach_completion = NULL; 1645 1646 mutex_lock(&pool->attach_mutex); 1647 list_del(&worker->node); 1648 if (list_empty(&pool->workers)) 1649 detach_completion = pool->detach_completion; 1650 mutex_unlock(&pool->attach_mutex); 1651 1652 /* clear leftover flags without pool->lock after it is detached */ 1653 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1654 1655 if (detach_completion) 1656 complete(detach_completion); 1657 } 1658 1659 /** 1660 * create_worker - create a new workqueue worker 1661 * @pool: pool the new worker will belong to 1662 * 1663 * Create and start a new worker which is attached to @pool. 1664 * 1665 * CONTEXT: 1666 * Might sleep. Does GFP_KERNEL allocations. 1667 * 1668 * Return: 1669 * Pointer to the newly created worker. 1670 */ 1671 static struct worker *create_worker(struct worker_pool *pool) 1672 { 1673 struct worker *worker = NULL; 1674 int id = -1; 1675 char id_buf[16]; 1676 1677 /* ID is needed to determine kthread name */ 1678 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1679 if (id < 0) 1680 goto fail; 1681 1682 worker = alloc_worker(pool->node); 1683 if (!worker) 1684 goto fail; 1685 1686 worker->pool = pool; 1687 worker->id = id; 1688 1689 if (pool->cpu >= 0) 1690 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1691 pool->attrs->nice < 0 ? "H" : ""); 1692 else 1693 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1694 1695 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1696 "kworker/%s", id_buf); 1697 if (IS_ERR(worker->task)) 1698 goto fail; 1699 1700 set_user_nice(worker->task, pool->attrs->nice); 1701 1702 /* prevent userland from meddling with cpumask of workqueue workers */ 1703 worker->task->flags |= PF_NO_SETAFFINITY; 1704 1705 /* successful, attach the worker to the pool */ 1706 worker_attach_to_pool(worker, pool); 1707 1708 /* start the newly created worker */ 1709 spin_lock_irq(&pool->lock); 1710 worker->pool->nr_workers++; 1711 worker_enter_idle(worker); 1712 wake_up_process(worker->task); 1713 spin_unlock_irq(&pool->lock); 1714 1715 return worker; 1716 1717 fail: 1718 if (id >= 0) 1719 ida_simple_remove(&pool->worker_ida, id); 1720 kfree(worker); 1721 return NULL; 1722 } 1723 1724 /** 1725 * destroy_worker - destroy a workqueue worker 1726 * @worker: worker to be destroyed 1727 * 1728 * Destroy @worker and adjust @pool stats accordingly. The worker should 1729 * be idle. 1730 * 1731 * CONTEXT: 1732 * spin_lock_irq(pool->lock). 1733 */ 1734 static void destroy_worker(struct worker *worker) 1735 { 1736 struct worker_pool *pool = worker->pool; 1737 1738 lockdep_assert_held(&pool->lock); 1739 1740 /* sanity check frenzy */ 1741 if (WARN_ON(worker->current_work) || 1742 WARN_ON(!list_empty(&worker->scheduled)) || 1743 WARN_ON(!(worker->flags & WORKER_IDLE))) 1744 return; 1745 1746 pool->nr_workers--; 1747 pool->nr_idle--; 1748 1749 list_del_init(&worker->entry); 1750 worker->flags |= WORKER_DIE; 1751 wake_up_process(worker->task); 1752 } 1753 1754 static void idle_worker_timeout(unsigned long __pool) 1755 { 1756 struct worker_pool *pool = (void *)__pool; 1757 1758 spin_lock_irq(&pool->lock); 1759 1760 while (too_many_workers(pool)) { 1761 struct worker *worker; 1762 unsigned long expires; 1763 1764 /* idle_list is kept in LIFO order, check the last one */ 1765 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1766 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1767 1768 if (time_before(jiffies, expires)) { 1769 mod_timer(&pool->idle_timer, expires); 1770 break; 1771 } 1772 1773 destroy_worker(worker); 1774 } 1775 1776 spin_unlock_irq(&pool->lock); 1777 } 1778 1779 static void send_mayday(struct work_struct *work) 1780 { 1781 struct pool_workqueue *pwq = get_work_pwq(work); 1782 struct workqueue_struct *wq = pwq->wq; 1783 1784 lockdep_assert_held(&wq_mayday_lock); 1785 1786 if (!wq->rescuer) 1787 return; 1788 1789 /* mayday mayday mayday */ 1790 if (list_empty(&pwq->mayday_node)) { 1791 /* 1792 * If @pwq is for an unbound wq, its base ref may be put at 1793 * any time due to an attribute change. Pin @pwq until the 1794 * rescuer is done with it. 1795 */ 1796 get_pwq(pwq); 1797 list_add_tail(&pwq->mayday_node, &wq->maydays); 1798 wake_up_process(wq->rescuer->task); 1799 } 1800 } 1801 1802 static void pool_mayday_timeout(unsigned long __pool) 1803 { 1804 struct worker_pool *pool = (void *)__pool; 1805 struct work_struct *work; 1806 1807 spin_lock_irq(&pool->lock); 1808 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1809 1810 if (need_to_create_worker(pool)) { 1811 /* 1812 * We've been trying to create a new worker but 1813 * haven't been successful. We might be hitting an 1814 * allocation deadlock. Send distress signals to 1815 * rescuers. 1816 */ 1817 list_for_each_entry(work, &pool->worklist, entry) 1818 send_mayday(work); 1819 } 1820 1821 spin_unlock(&wq_mayday_lock); 1822 spin_unlock_irq(&pool->lock); 1823 1824 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1825 } 1826 1827 /** 1828 * maybe_create_worker - create a new worker if necessary 1829 * @pool: pool to create a new worker for 1830 * 1831 * Create a new worker for @pool if necessary. @pool is guaranteed to 1832 * have at least one idle worker on return from this function. If 1833 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1834 * sent to all rescuers with works scheduled on @pool to resolve 1835 * possible allocation deadlock. 1836 * 1837 * On return, need_to_create_worker() is guaranteed to be %false and 1838 * may_start_working() %true. 1839 * 1840 * LOCKING: 1841 * spin_lock_irq(pool->lock) which may be released and regrabbed 1842 * multiple times. Does GFP_KERNEL allocations. Called only from 1843 * manager. 1844 */ 1845 static void maybe_create_worker(struct worker_pool *pool) 1846 __releases(&pool->lock) 1847 __acquires(&pool->lock) 1848 { 1849 restart: 1850 spin_unlock_irq(&pool->lock); 1851 1852 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1853 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1854 1855 while (true) { 1856 if (create_worker(pool) || !need_to_create_worker(pool)) 1857 break; 1858 1859 schedule_timeout_interruptible(CREATE_COOLDOWN); 1860 1861 if (!need_to_create_worker(pool)) 1862 break; 1863 } 1864 1865 del_timer_sync(&pool->mayday_timer); 1866 spin_lock_irq(&pool->lock); 1867 /* 1868 * This is necessary even after a new worker was just successfully 1869 * created as @pool->lock was dropped and the new worker might have 1870 * already become busy. 1871 */ 1872 if (need_to_create_worker(pool)) 1873 goto restart; 1874 } 1875 1876 /** 1877 * manage_workers - manage worker pool 1878 * @worker: self 1879 * 1880 * Assume the manager role and manage the worker pool @worker belongs 1881 * to. At any given time, there can be only zero or one manager per 1882 * pool. The exclusion is handled automatically by this function. 1883 * 1884 * The caller can safely start processing works on false return. On 1885 * true return, it's guaranteed that need_to_create_worker() is false 1886 * and may_start_working() is true. 1887 * 1888 * CONTEXT: 1889 * spin_lock_irq(pool->lock) which may be released and regrabbed 1890 * multiple times. Does GFP_KERNEL allocations. 1891 * 1892 * Return: 1893 * %false if the pool doesn't need management and the caller can safely 1894 * start processing works, %true if management function was performed and 1895 * the conditions that the caller verified before calling the function may 1896 * no longer be true. 1897 */ 1898 static bool manage_workers(struct worker *worker) 1899 { 1900 struct worker_pool *pool = worker->pool; 1901 1902 /* 1903 * Anyone who successfully grabs manager_arb wins the arbitration 1904 * and becomes the manager. mutex_trylock() on pool->manager_arb 1905 * failure while holding pool->lock reliably indicates that someone 1906 * else is managing the pool and the worker which failed trylock 1907 * can proceed to executing work items. This means that anyone 1908 * grabbing manager_arb is responsible for actually performing 1909 * manager duties. If manager_arb is grabbed and released without 1910 * actual management, the pool may stall indefinitely. 1911 */ 1912 if (!mutex_trylock(&pool->manager_arb)) 1913 return false; 1914 1915 maybe_create_worker(pool); 1916 1917 mutex_unlock(&pool->manager_arb); 1918 return true; 1919 } 1920 1921 /** 1922 * process_one_work - process single work 1923 * @worker: self 1924 * @work: work to process 1925 * 1926 * Process @work. This function contains all the logics necessary to 1927 * process a single work including synchronization against and 1928 * interaction with other workers on the same cpu, queueing and 1929 * flushing. As long as context requirement is met, any worker can 1930 * call this function to process a work. 1931 * 1932 * CONTEXT: 1933 * spin_lock_irq(pool->lock) which is released and regrabbed. 1934 */ 1935 static void process_one_work(struct worker *worker, struct work_struct *work) 1936 __releases(&pool->lock) 1937 __acquires(&pool->lock) 1938 { 1939 struct pool_workqueue *pwq = get_work_pwq(work); 1940 struct worker_pool *pool = worker->pool; 1941 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 1942 int work_color; 1943 struct worker *collision; 1944 #ifdef CONFIG_LOCKDEP 1945 /* 1946 * It is permissible to free the struct work_struct from 1947 * inside the function that is called from it, this we need to 1948 * take into account for lockdep too. To avoid bogus "held 1949 * lock freed" warnings as well as problems when looking into 1950 * work->lockdep_map, make a copy and use that here. 1951 */ 1952 struct lockdep_map lockdep_map; 1953 1954 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 1955 #endif 1956 /* ensure we're on the correct CPU */ 1957 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1958 raw_smp_processor_id() != pool->cpu); 1959 1960 /* 1961 * A single work shouldn't be executed concurrently by 1962 * multiple workers on a single cpu. Check whether anyone is 1963 * already processing the work. If so, defer the work to the 1964 * currently executing one. 1965 */ 1966 collision = find_worker_executing_work(pool, work); 1967 if (unlikely(collision)) { 1968 move_linked_works(work, &collision->scheduled, NULL); 1969 return; 1970 } 1971 1972 /* claim and dequeue */ 1973 debug_work_deactivate(work); 1974 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 1975 worker->current_work = work; 1976 worker->current_func = work->func; 1977 worker->current_pwq = pwq; 1978 work_color = get_work_color(work); 1979 1980 list_del_init(&work->entry); 1981 1982 /* 1983 * CPU intensive works don't participate in concurrency management. 1984 * They're the scheduler's responsibility. This takes @worker out 1985 * of concurrency management and the next code block will chain 1986 * execution of the pending work items. 1987 */ 1988 if (unlikely(cpu_intensive)) 1989 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1990 1991 /* 1992 * Wake up another worker if necessary. The condition is always 1993 * false for normal per-cpu workers since nr_running would always 1994 * be >= 1 at this point. This is used to chain execution of the 1995 * pending work items for WORKER_NOT_RUNNING workers such as the 1996 * UNBOUND and CPU_INTENSIVE ones. 1997 */ 1998 if (need_more_worker(pool)) 1999 wake_up_worker(pool); 2000 2001 /* 2002 * Record the last pool and clear PENDING which should be the last 2003 * update to @work. Also, do this inside @pool->lock so that 2004 * PENDING and queued state changes happen together while IRQ is 2005 * disabled. 2006 */ 2007 set_work_pool_and_clear_pending(work, pool->id); 2008 2009 spin_unlock_irq(&pool->lock); 2010 2011 lock_map_acquire_read(&pwq->wq->lockdep_map); 2012 lock_map_acquire(&lockdep_map); 2013 trace_workqueue_execute_start(work); 2014 worker->current_func(work); 2015 /* 2016 * While we must be careful to not use "work" after this, the trace 2017 * point will only record its address. 2018 */ 2019 trace_workqueue_execute_end(work); 2020 lock_map_release(&lockdep_map); 2021 lock_map_release(&pwq->wq->lockdep_map); 2022 2023 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2024 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2025 " last function: %pf\n", 2026 current->comm, preempt_count(), task_pid_nr(current), 2027 worker->current_func); 2028 debug_show_held_locks(current); 2029 dump_stack(); 2030 } 2031 2032 /* 2033 * The following prevents a kworker from hogging CPU on !PREEMPT 2034 * kernels, where a requeueing work item waiting for something to 2035 * happen could deadlock with stop_machine as such work item could 2036 * indefinitely requeue itself while all other CPUs are trapped in 2037 * stop_machine. At the same time, report a quiescent RCU state so 2038 * the same condition doesn't freeze RCU. 2039 */ 2040 cond_resched_rcu_qs(); 2041 2042 spin_lock_irq(&pool->lock); 2043 2044 /* clear cpu intensive status */ 2045 if (unlikely(cpu_intensive)) 2046 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2047 2048 /* we're done with it, release */ 2049 hash_del(&worker->hentry); 2050 worker->current_work = NULL; 2051 worker->current_func = NULL; 2052 worker->current_pwq = NULL; 2053 worker->desc_valid = false; 2054 pwq_dec_nr_in_flight(pwq, work_color); 2055 } 2056 2057 /** 2058 * process_scheduled_works - process scheduled works 2059 * @worker: self 2060 * 2061 * Process all scheduled works. Please note that the scheduled list 2062 * may change while processing a work, so this function repeatedly 2063 * fetches a work from the top and executes it. 2064 * 2065 * CONTEXT: 2066 * spin_lock_irq(pool->lock) which may be released and regrabbed 2067 * multiple times. 2068 */ 2069 static void process_scheduled_works(struct worker *worker) 2070 { 2071 while (!list_empty(&worker->scheduled)) { 2072 struct work_struct *work = list_first_entry(&worker->scheduled, 2073 struct work_struct, entry); 2074 process_one_work(worker, work); 2075 } 2076 } 2077 2078 /** 2079 * worker_thread - the worker thread function 2080 * @__worker: self 2081 * 2082 * The worker thread function. All workers belong to a worker_pool - 2083 * either a per-cpu one or dynamic unbound one. These workers process all 2084 * work items regardless of their specific target workqueue. The only 2085 * exception is work items which belong to workqueues with a rescuer which 2086 * will be explained in rescuer_thread(). 2087 * 2088 * Return: 0 2089 */ 2090 static int worker_thread(void *__worker) 2091 { 2092 struct worker *worker = __worker; 2093 struct worker_pool *pool = worker->pool; 2094 2095 /* tell the scheduler that this is a workqueue worker */ 2096 worker->task->flags |= PF_WQ_WORKER; 2097 woke_up: 2098 spin_lock_irq(&pool->lock); 2099 2100 /* am I supposed to die? */ 2101 if (unlikely(worker->flags & WORKER_DIE)) { 2102 spin_unlock_irq(&pool->lock); 2103 WARN_ON_ONCE(!list_empty(&worker->entry)); 2104 worker->task->flags &= ~PF_WQ_WORKER; 2105 2106 set_task_comm(worker->task, "kworker/dying"); 2107 ida_simple_remove(&pool->worker_ida, worker->id); 2108 worker_detach_from_pool(worker, pool); 2109 kfree(worker); 2110 return 0; 2111 } 2112 2113 worker_leave_idle(worker); 2114 recheck: 2115 /* no more worker necessary? */ 2116 if (!need_more_worker(pool)) 2117 goto sleep; 2118 2119 /* do we need to manage? */ 2120 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2121 goto recheck; 2122 2123 /* 2124 * ->scheduled list can only be filled while a worker is 2125 * preparing to process a work or actually processing it. 2126 * Make sure nobody diddled with it while I was sleeping. 2127 */ 2128 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2129 2130 /* 2131 * Finish PREP stage. We're guaranteed to have at least one idle 2132 * worker or that someone else has already assumed the manager 2133 * role. This is where @worker starts participating in concurrency 2134 * management if applicable and concurrency management is restored 2135 * after being rebound. See rebind_workers() for details. 2136 */ 2137 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2138 2139 do { 2140 struct work_struct *work = 2141 list_first_entry(&pool->worklist, 2142 struct work_struct, entry); 2143 2144 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2145 /* optimization path, not strictly necessary */ 2146 process_one_work(worker, work); 2147 if (unlikely(!list_empty(&worker->scheduled))) 2148 process_scheduled_works(worker); 2149 } else { 2150 move_linked_works(work, &worker->scheduled, NULL); 2151 process_scheduled_works(worker); 2152 } 2153 } while (keep_working(pool)); 2154 2155 worker_set_flags(worker, WORKER_PREP); 2156 sleep: 2157 /* 2158 * pool->lock is held and there's no work to process and no need to 2159 * manage, sleep. Workers are woken up only while holding 2160 * pool->lock or from local cpu, so setting the current state 2161 * before releasing pool->lock is enough to prevent losing any 2162 * event. 2163 */ 2164 worker_enter_idle(worker); 2165 __set_current_state(TASK_INTERRUPTIBLE); 2166 spin_unlock_irq(&pool->lock); 2167 schedule(); 2168 goto woke_up; 2169 } 2170 2171 /** 2172 * rescuer_thread - the rescuer thread function 2173 * @__rescuer: self 2174 * 2175 * Workqueue rescuer thread function. There's one rescuer for each 2176 * workqueue which has WQ_MEM_RECLAIM set. 2177 * 2178 * Regular work processing on a pool may block trying to create a new 2179 * worker which uses GFP_KERNEL allocation which has slight chance of 2180 * developing into deadlock if some works currently on the same queue 2181 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2182 * the problem rescuer solves. 2183 * 2184 * When such condition is possible, the pool summons rescuers of all 2185 * workqueues which have works queued on the pool and let them process 2186 * those works so that forward progress can be guaranteed. 2187 * 2188 * This should happen rarely. 2189 * 2190 * Return: 0 2191 */ 2192 static int rescuer_thread(void *__rescuer) 2193 { 2194 struct worker *rescuer = __rescuer; 2195 struct workqueue_struct *wq = rescuer->rescue_wq; 2196 struct list_head *scheduled = &rescuer->scheduled; 2197 bool should_stop; 2198 2199 set_user_nice(current, RESCUER_NICE_LEVEL); 2200 2201 /* 2202 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2203 * doesn't participate in concurrency management. 2204 */ 2205 rescuer->task->flags |= PF_WQ_WORKER; 2206 repeat: 2207 set_current_state(TASK_INTERRUPTIBLE); 2208 2209 /* 2210 * By the time the rescuer is requested to stop, the workqueue 2211 * shouldn't have any work pending, but @wq->maydays may still have 2212 * pwq(s) queued. This can happen by non-rescuer workers consuming 2213 * all the work items before the rescuer got to them. Go through 2214 * @wq->maydays processing before acting on should_stop so that the 2215 * list is always empty on exit. 2216 */ 2217 should_stop = kthread_should_stop(); 2218 2219 /* see whether any pwq is asking for help */ 2220 spin_lock_irq(&wq_mayday_lock); 2221 2222 while (!list_empty(&wq->maydays)) { 2223 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2224 struct pool_workqueue, mayday_node); 2225 struct worker_pool *pool = pwq->pool; 2226 struct work_struct *work, *n; 2227 2228 __set_current_state(TASK_RUNNING); 2229 list_del_init(&pwq->mayday_node); 2230 2231 spin_unlock_irq(&wq_mayday_lock); 2232 2233 worker_attach_to_pool(rescuer, pool); 2234 2235 spin_lock_irq(&pool->lock); 2236 rescuer->pool = pool; 2237 2238 /* 2239 * Slurp in all works issued via this workqueue and 2240 * process'em. 2241 */ 2242 WARN_ON_ONCE(!list_empty(scheduled)); 2243 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2244 if (get_work_pwq(work) == pwq) 2245 move_linked_works(work, scheduled, &n); 2246 2247 if (!list_empty(scheduled)) { 2248 process_scheduled_works(rescuer); 2249 2250 /* 2251 * The above execution of rescued work items could 2252 * have created more to rescue through 2253 * pwq_activate_first_delayed() or chained 2254 * queueing. Let's put @pwq back on mayday list so 2255 * that such back-to-back work items, which may be 2256 * being used to relieve memory pressure, don't 2257 * incur MAYDAY_INTERVAL delay inbetween. 2258 */ 2259 if (need_to_create_worker(pool)) { 2260 spin_lock(&wq_mayday_lock); 2261 get_pwq(pwq); 2262 list_move_tail(&pwq->mayday_node, &wq->maydays); 2263 spin_unlock(&wq_mayday_lock); 2264 } 2265 } 2266 2267 /* 2268 * Put the reference grabbed by send_mayday(). @pool won't 2269 * go away while we're still attached to it. 2270 */ 2271 put_pwq(pwq); 2272 2273 /* 2274 * Leave this pool. If need_more_worker() is %true, notify a 2275 * regular worker; otherwise, we end up with 0 concurrency 2276 * and stalling the execution. 2277 */ 2278 if (need_more_worker(pool)) 2279 wake_up_worker(pool); 2280 2281 rescuer->pool = NULL; 2282 spin_unlock_irq(&pool->lock); 2283 2284 worker_detach_from_pool(rescuer, pool); 2285 2286 spin_lock_irq(&wq_mayday_lock); 2287 } 2288 2289 spin_unlock_irq(&wq_mayday_lock); 2290 2291 if (should_stop) { 2292 __set_current_state(TASK_RUNNING); 2293 rescuer->task->flags &= ~PF_WQ_WORKER; 2294 return 0; 2295 } 2296 2297 /* rescuers should never participate in concurrency management */ 2298 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2299 schedule(); 2300 goto repeat; 2301 } 2302 2303 struct wq_barrier { 2304 struct work_struct work; 2305 struct completion done; 2306 }; 2307 2308 static void wq_barrier_func(struct work_struct *work) 2309 { 2310 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2311 complete(&barr->done); 2312 } 2313 2314 /** 2315 * insert_wq_barrier - insert a barrier work 2316 * @pwq: pwq to insert barrier into 2317 * @barr: wq_barrier to insert 2318 * @target: target work to attach @barr to 2319 * @worker: worker currently executing @target, NULL if @target is not executing 2320 * 2321 * @barr is linked to @target such that @barr is completed only after 2322 * @target finishes execution. Please note that the ordering 2323 * guarantee is observed only with respect to @target and on the local 2324 * cpu. 2325 * 2326 * Currently, a queued barrier can't be canceled. This is because 2327 * try_to_grab_pending() can't determine whether the work to be 2328 * grabbed is at the head of the queue and thus can't clear LINKED 2329 * flag of the previous work while there must be a valid next work 2330 * after a work with LINKED flag set. 2331 * 2332 * Note that when @worker is non-NULL, @target may be modified 2333 * underneath us, so we can't reliably determine pwq from @target. 2334 * 2335 * CONTEXT: 2336 * spin_lock_irq(pool->lock). 2337 */ 2338 static void insert_wq_barrier(struct pool_workqueue *pwq, 2339 struct wq_barrier *barr, 2340 struct work_struct *target, struct worker *worker) 2341 { 2342 struct list_head *head; 2343 unsigned int linked = 0; 2344 2345 /* 2346 * debugobject calls are safe here even with pool->lock locked 2347 * as we know for sure that this will not trigger any of the 2348 * checks and call back into the fixup functions where we 2349 * might deadlock. 2350 */ 2351 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2352 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2353 init_completion(&barr->done); 2354 2355 /* 2356 * If @target is currently being executed, schedule the 2357 * barrier to the worker; otherwise, put it after @target. 2358 */ 2359 if (worker) 2360 head = worker->scheduled.next; 2361 else { 2362 unsigned long *bits = work_data_bits(target); 2363 2364 head = target->entry.next; 2365 /* there can already be other linked works, inherit and set */ 2366 linked = *bits & WORK_STRUCT_LINKED; 2367 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2368 } 2369 2370 debug_work_activate(&barr->work); 2371 insert_work(pwq, &barr->work, head, 2372 work_color_to_flags(WORK_NO_COLOR) | linked); 2373 } 2374 2375 /** 2376 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2377 * @wq: workqueue being flushed 2378 * @flush_color: new flush color, < 0 for no-op 2379 * @work_color: new work color, < 0 for no-op 2380 * 2381 * Prepare pwqs for workqueue flushing. 2382 * 2383 * If @flush_color is non-negative, flush_color on all pwqs should be 2384 * -1. If no pwq has in-flight commands at the specified color, all 2385 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2386 * has in flight commands, its pwq->flush_color is set to 2387 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2388 * wakeup logic is armed and %true is returned. 2389 * 2390 * The caller should have initialized @wq->first_flusher prior to 2391 * calling this function with non-negative @flush_color. If 2392 * @flush_color is negative, no flush color update is done and %false 2393 * is returned. 2394 * 2395 * If @work_color is non-negative, all pwqs should have the same 2396 * work_color which is previous to @work_color and all will be 2397 * advanced to @work_color. 2398 * 2399 * CONTEXT: 2400 * mutex_lock(wq->mutex). 2401 * 2402 * Return: 2403 * %true if @flush_color >= 0 and there's something to flush. %false 2404 * otherwise. 2405 */ 2406 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2407 int flush_color, int work_color) 2408 { 2409 bool wait = false; 2410 struct pool_workqueue *pwq; 2411 2412 if (flush_color >= 0) { 2413 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2414 atomic_set(&wq->nr_pwqs_to_flush, 1); 2415 } 2416 2417 for_each_pwq(pwq, wq) { 2418 struct worker_pool *pool = pwq->pool; 2419 2420 spin_lock_irq(&pool->lock); 2421 2422 if (flush_color >= 0) { 2423 WARN_ON_ONCE(pwq->flush_color != -1); 2424 2425 if (pwq->nr_in_flight[flush_color]) { 2426 pwq->flush_color = flush_color; 2427 atomic_inc(&wq->nr_pwqs_to_flush); 2428 wait = true; 2429 } 2430 } 2431 2432 if (work_color >= 0) { 2433 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2434 pwq->work_color = work_color; 2435 } 2436 2437 spin_unlock_irq(&pool->lock); 2438 } 2439 2440 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2441 complete(&wq->first_flusher->done); 2442 2443 return wait; 2444 } 2445 2446 /** 2447 * flush_workqueue - ensure that any scheduled work has run to completion. 2448 * @wq: workqueue to flush 2449 * 2450 * This function sleeps until all work items which were queued on entry 2451 * have finished execution, but it is not livelocked by new incoming ones. 2452 */ 2453 void flush_workqueue(struct workqueue_struct *wq) 2454 { 2455 struct wq_flusher this_flusher = { 2456 .list = LIST_HEAD_INIT(this_flusher.list), 2457 .flush_color = -1, 2458 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2459 }; 2460 int next_color; 2461 2462 lock_map_acquire(&wq->lockdep_map); 2463 lock_map_release(&wq->lockdep_map); 2464 2465 mutex_lock(&wq->mutex); 2466 2467 /* 2468 * Start-to-wait phase 2469 */ 2470 next_color = work_next_color(wq->work_color); 2471 2472 if (next_color != wq->flush_color) { 2473 /* 2474 * Color space is not full. The current work_color 2475 * becomes our flush_color and work_color is advanced 2476 * by one. 2477 */ 2478 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2479 this_flusher.flush_color = wq->work_color; 2480 wq->work_color = next_color; 2481 2482 if (!wq->first_flusher) { 2483 /* no flush in progress, become the first flusher */ 2484 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2485 2486 wq->first_flusher = &this_flusher; 2487 2488 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2489 wq->work_color)) { 2490 /* nothing to flush, done */ 2491 wq->flush_color = next_color; 2492 wq->first_flusher = NULL; 2493 goto out_unlock; 2494 } 2495 } else { 2496 /* wait in queue */ 2497 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2498 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2499 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2500 } 2501 } else { 2502 /* 2503 * Oops, color space is full, wait on overflow queue. 2504 * The next flush completion will assign us 2505 * flush_color and transfer to flusher_queue. 2506 */ 2507 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2508 } 2509 2510 mutex_unlock(&wq->mutex); 2511 2512 wait_for_completion(&this_flusher.done); 2513 2514 /* 2515 * Wake-up-and-cascade phase 2516 * 2517 * First flushers are responsible for cascading flushes and 2518 * handling overflow. Non-first flushers can simply return. 2519 */ 2520 if (wq->first_flusher != &this_flusher) 2521 return; 2522 2523 mutex_lock(&wq->mutex); 2524 2525 /* we might have raced, check again with mutex held */ 2526 if (wq->first_flusher != &this_flusher) 2527 goto out_unlock; 2528 2529 wq->first_flusher = NULL; 2530 2531 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2532 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2533 2534 while (true) { 2535 struct wq_flusher *next, *tmp; 2536 2537 /* complete all the flushers sharing the current flush color */ 2538 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2539 if (next->flush_color != wq->flush_color) 2540 break; 2541 list_del_init(&next->list); 2542 complete(&next->done); 2543 } 2544 2545 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2546 wq->flush_color != work_next_color(wq->work_color)); 2547 2548 /* this flush_color is finished, advance by one */ 2549 wq->flush_color = work_next_color(wq->flush_color); 2550 2551 /* one color has been freed, handle overflow queue */ 2552 if (!list_empty(&wq->flusher_overflow)) { 2553 /* 2554 * Assign the same color to all overflowed 2555 * flushers, advance work_color and append to 2556 * flusher_queue. This is the start-to-wait 2557 * phase for these overflowed flushers. 2558 */ 2559 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2560 tmp->flush_color = wq->work_color; 2561 2562 wq->work_color = work_next_color(wq->work_color); 2563 2564 list_splice_tail_init(&wq->flusher_overflow, 2565 &wq->flusher_queue); 2566 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2567 } 2568 2569 if (list_empty(&wq->flusher_queue)) { 2570 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2571 break; 2572 } 2573 2574 /* 2575 * Need to flush more colors. Make the next flusher 2576 * the new first flusher and arm pwqs. 2577 */ 2578 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2579 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2580 2581 list_del_init(&next->list); 2582 wq->first_flusher = next; 2583 2584 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2585 break; 2586 2587 /* 2588 * Meh... this color is already done, clear first 2589 * flusher and repeat cascading. 2590 */ 2591 wq->first_flusher = NULL; 2592 } 2593 2594 out_unlock: 2595 mutex_unlock(&wq->mutex); 2596 } 2597 EXPORT_SYMBOL_GPL(flush_workqueue); 2598 2599 /** 2600 * drain_workqueue - drain a workqueue 2601 * @wq: workqueue to drain 2602 * 2603 * Wait until the workqueue becomes empty. While draining is in progress, 2604 * only chain queueing is allowed. IOW, only currently pending or running 2605 * work items on @wq can queue further work items on it. @wq is flushed 2606 * repeatedly until it becomes empty. The number of flushing is detemined 2607 * by the depth of chaining and should be relatively short. Whine if it 2608 * takes too long. 2609 */ 2610 void drain_workqueue(struct workqueue_struct *wq) 2611 { 2612 unsigned int flush_cnt = 0; 2613 struct pool_workqueue *pwq; 2614 2615 /* 2616 * __queue_work() needs to test whether there are drainers, is much 2617 * hotter than drain_workqueue() and already looks at @wq->flags. 2618 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2619 */ 2620 mutex_lock(&wq->mutex); 2621 if (!wq->nr_drainers++) 2622 wq->flags |= __WQ_DRAINING; 2623 mutex_unlock(&wq->mutex); 2624 reflush: 2625 flush_workqueue(wq); 2626 2627 mutex_lock(&wq->mutex); 2628 2629 for_each_pwq(pwq, wq) { 2630 bool drained; 2631 2632 spin_lock_irq(&pwq->pool->lock); 2633 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2634 spin_unlock_irq(&pwq->pool->lock); 2635 2636 if (drained) 2637 continue; 2638 2639 if (++flush_cnt == 10 || 2640 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2641 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2642 wq->name, flush_cnt); 2643 2644 mutex_unlock(&wq->mutex); 2645 goto reflush; 2646 } 2647 2648 if (!--wq->nr_drainers) 2649 wq->flags &= ~__WQ_DRAINING; 2650 mutex_unlock(&wq->mutex); 2651 } 2652 EXPORT_SYMBOL_GPL(drain_workqueue); 2653 2654 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2655 { 2656 struct worker *worker = NULL; 2657 struct worker_pool *pool; 2658 struct pool_workqueue *pwq; 2659 2660 might_sleep(); 2661 2662 local_irq_disable(); 2663 pool = get_work_pool(work); 2664 if (!pool) { 2665 local_irq_enable(); 2666 return false; 2667 } 2668 2669 spin_lock(&pool->lock); 2670 /* see the comment in try_to_grab_pending() with the same code */ 2671 pwq = get_work_pwq(work); 2672 if (pwq) { 2673 if (unlikely(pwq->pool != pool)) 2674 goto already_gone; 2675 } else { 2676 worker = find_worker_executing_work(pool, work); 2677 if (!worker) 2678 goto already_gone; 2679 pwq = worker->current_pwq; 2680 } 2681 2682 insert_wq_barrier(pwq, barr, work, worker); 2683 spin_unlock_irq(&pool->lock); 2684 2685 /* 2686 * If @max_active is 1 or rescuer is in use, flushing another work 2687 * item on the same workqueue may lead to deadlock. Make sure the 2688 * flusher is not running on the same workqueue by verifying write 2689 * access. 2690 */ 2691 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2692 lock_map_acquire(&pwq->wq->lockdep_map); 2693 else 2694 lock_map_acquire_read(&pwq->wq->lockdep_map); 2695 lock_map_release(&pwq->wq->lockdep_map); 2696 2697 return true; 2698 already_gone: 2699 spin_unlock_irq(&pool->lock); 2700 return false; 2701 } 2702 2703 /** 2704 * flush_work - wait for a work to finish executing the last queueing instance 2705 * @work: the work to flush 2706 * 2707 * Wait until @work has finished execution. @work is guaranteed to be idle 2708 * on return if it hasn't been requeued since flush started. 2709 * 2710 * Return: 2711 * %true if flush_work() waited for the work to finish execution, 2712 * %false if it was already idle. 2713 */ 2714 bool flush_work(struct work_struct *work) 2715 { 2716 struct wq_barrier barr; 2717 2718 lock_map_acquire(&work->lockdep_map); 2719 lock_map_release(&work->lockdep_map); 2720 2721 if (start_flush_work(work, &barr)) { 2722 wait_for_completion(&barr.done); 2723 destroy_work_on_stack(&barr.work); 2724 return true; 2725 } else { 2726 return false; 2727 } 2728 } 2729 EXPORT_SYMBOL_GPL(flush_work); 2730 2731 struct cwt_wait { 2732 wait_queue_t wait; 2733 struct work_struct *work; 2734 }; 2735 2736 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2737 { 2738 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2739 2740 if (cwait->work != key) 2741 return 0; 2742 return autoremove_wake_function(wait, mode, sync, key); 2743 } 2744 2745 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2746 { 2747 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2748 unsigned long flags; 2749 int ret; 2750 2751 do { 2752 ret = try_to_grab_pending(work, is_dwork, &flags); 2753 /* 2754 * If someone else is already canceling, wait for it to 2755 * finish. flush_work() doesn't work for PREEMPT_NONE 2756 * because we may get scheduled between @work's completion 2757 * and the other canceling task resuming and clearing 2758 * CANCELING - flush_work() will return false immediately 2759 * as @work is no longer busy, try_to_grab_pending() will 2760 * return -ENOENT as @work is still being canceled and the 2761 * other canceling task won't be able to clear CANCELING as 2762 * we're hogging the CPU. 2763 * 2764 * Let's wait for completion using a waitqueue. As this 2765 * may lead to the thundering herd problem, use a custom 2766 * wake function which matches @work along with exclusive 2767 * wait and wakeup. 2768 */ 2769 if (unlikely(ret == -ENOENT)) { 2770 struct cwt_wait cwait; 2771 2772 init_wait(&cwait.wait); 2773 cwait.wait.func = cwt_wakefn; 2774 cwait.work = work; 2775 2776 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2777 TASK_UNINTERRUPTIBLE); 2778 if (work_is_canceling(work)) 2779 schedule(); 2780 finish_wait(&cancel_waitq, &cwait.wait); 2781 } 2782 } while (unlikely(ret < 0)); 2783 2784 /* tell other tasks trying to grab @work to back off */ 2785 mark_work_canceling(work); 2786 local_irq_restore(flags); 2787 2788 flush_work(work); 2789 clear_work_data(work); 2790 2791 /* 2792 * Paired with prepare_to_wait() above so that either 2793 * waitqueue_active() is visible here or !work_is_canceling() is 2794 * visible there. 2795 */ 2796 smp_mb(); 2797 if (waitqueue_active(&cancel_waitq)) 2798 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2799 2800 return ret; 2801 } 2802 2803 /** 2804 * cancel_work_sync - cancel a work and wait for it to finish 2805 * @work: the work to cancel 2806 * 2807 * Cancel @work and wait for its execution to finish. This function 2808 * can be used even if the work re-queues itself or migrates to 2809 * another workqueue. On return from this function, @work is 2810 * guaranteed to be not pending or executing on any CPU. 2811 * 2812 * cancel_work_sync(&delayed_work->work) must not be used for 2813 * delayed_work's. Use cancel_delayed_work_sync() instead. 2814 * 2815 * The caller must ensure that the workqueue on which @work was last 2816 * queued can't be destroyed before this function returns. 2817 * 2818 * Return: 2819 * %true if @work was pending, %false otherwise. 2820 */ 2821 bool cancel_work_sync(struct work_struct *work) 2822 { 2823 return __cancel_work_timer(work, false); 2824 } 2825 EXPORT_SYMBOL_GPL(cancel_work_sync); 2826 2827 /** 2828 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2829 * @dwork: the delayed work to flush 2830 * 2831 * Delayed timer is cancelled and the pending work is queued for 2832 * immediate execution. Like flush_work(), this function only 2833 * considers the last queueing instance of @dwork. 2834 * 2835 * Return: 2836 * %true if flush_work() waited for the work to finish execution, 2837 * %false if it was already idle. 2838 */ 2839 bool flush_delayed_work(struct delayed_work *dwork) 2840 { 2841 local_irq_disable(); 2842 if (del_timer_sync(&dwork->timer)) 2843 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2844 local_irq_enable(); 2845 return flush_work(&dwork->work); 2846 } 2847 EXPORT_SYMBOL(flush_delayed_work); 2848 2849 /** 2850 * cancel_delayed_work - cancel a delayed work 2851 * @dwork: delayed_work to cancel 2852 * 2853 * Kill off a pending delayed_work. 2854 * 2855 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2856 * pending. 2857 * 2858 * Note: 2859 * The work callback function may still be running on return, unless 2860 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2861 * use cancel_delayed_work_sync() to wait on it. 2862 * 2863 * This function is safe to call from any context including IRQ handler. 2864 */ 2865 bool cancel_delayed_work(struct delayed_work *dwork) 2866 { 2867 unsigned long flags; 2868 int ret; 2869 2870 do { 2871 ret = try_to_grab_pending(&dwork->work, true, &flags); 2872 } while (unlikely(ret == -EAGAIN)); 2873 2874 if (unlikely(ret < 0)) 2875 return false; 2876 2877 set_work_pool_and_clear_pending(&dwork->work, 2878 get_work_pool_id(&dwork->work)); 2879 local_irq_restore(flags); 2880 return ret; 2881 } 2882 EXPORT_SYMBOL(cancel_delayed_work); 2883 2884 /** 2885 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2886 * @dwork: the delayed work cancel 2887 * 2888 * This is cancel_work_sync() for delayed works. 2889 * 2890 * Return: 2891 * %true if @dwork was pending, %false otherwise. 2892 */ 2893 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2894 { 2895 return __cancel_work_timer(&dwork->work, true); 2896 } 2897 EXPORT_SYMBOL(cancel_delayed_work_sync); 2898 2899 /** 2900 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2901 * @func: the function to call 2902 * 2903 * schedule_on_each_cpu() executes @func on each online CPU using the 2904 * system workqueue and blocks until all CPUs have completed. 2905 * schedule_on_each_cpu() is very slow. 2906 * 2907 * Return: 2908 * 0 on success, -errno on failure. 2909 */ 2910 int schedule_on_each_cpu(work_func_t func) 2911 { 2912 int cpu; 2913 struct work_struct __percpu *works; 2914 2915 works = alloc_percpu(struct work_struct); 2916 if (!works) 2917 return -ENOMEM; 2918 2919 get_online_cpus(); 2920 2921 for_each_online_cpu(cpu) { 2922 struct work_struct *work = per_cpu_ptr(works, cpu); 2923 2924 INIT_WORK(work, func); 2925 schedule_work_on(cpu, work); 2926 } 2927 2928 for_each_online_cpu(cpu) 2929 flush_work(per_cpu_ptr(works, cpu)); 2930 2931 put_online_cpus(); 2932 free_percpu(works); 2933 return 0; 2934 } 2935 2936 /** 2937 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2938 * 2939 * Forces execution of the kernel-global workqueue and blocks until its 2940 * completion. 2941 * 2942 * Think twice before calling this function! It's very easy to get into 2943 * trouble if you don't take great care. Either of the following situations 2944 * will lead to deadlock: 2945 * 2946 * One of the work items currently on the workqueue needs to acquire 2947 * a lock held by your code or its caller. 2948 * 2949 * Your code is running in the context of a work routine. 2950 * 2951 * They will be detected by lockdep when they occur, but the first might not 2952 * occur very often. It depends on what work items are on the workqueue and 2953 * what locks they need, which you have no control over. 2954 * 2955 * In most situations flushing the entire workqueue is overkill; you merely 2956 * need to know that a particular work item isn't queued and isn't running. 2957 * In such cases you should use cancel_delayed_work_sync() or 2958 * cancel_work_sync() instead. 2959 */ 2960 void flush_scheduled_work(void) 2961 { 2962 flush_workqueue(system_wq); 2963 } 2964 EXPORT_SYMBOL(flush_scheduled_work); 2965 2966 /** 2967 * execute_in_process_context - reliably execute the routine with user context 2968 * @fn: the function to execute 2969 * @ew: guaranteed storage for the execute work structure (must 2970 * be available when the work executes) 2971 * 2972 * Executes the function immediately if process context is available, 2973 * otherwise schedules the function for delayed execution. 2974 * 2975 * Return: 0 - function was executed 2976 * 1 - function was scheduled for execution 2977 */ 2978 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2979 { 2980 if (!in_interrupt()) { 2981 fn(&ew->work); 2982 return 0; 2983 } 2984 2985 INIT_WORK(&ew->work, fn); 2986 schedule_work(&ew->work); 2987 2988 return 1; 2989 } 2990 EXPORT_SYMBOL_GPL(execute_in_process_context); 2991 2992 #ifdef CONFIG_SYSFS 2993 /* 2994 * Workqueues with WQ_SYSFS flag set is visible to userland via 2995 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 2996 * following attributes. 2997 * 2998 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 2999 * max_active RW int : maximum number of in-flight work items 3000 * 3001 * Unbound workqueues have the following extra attributes. 3002 * 3003 * id RO int : the associated pool ID 3004 * nice RW int : nice value of the workers 3005 * cpumask RW mask : bitmask of allowed CPUs for the workers 3006 */ 3007 struct wq_device { 3008 struct workqueue_struct *wq; 3009 struct device dev; 3010 }; 3011 3012 static struct workqueue_struct *dev_to_wq(struct device *dev) 3013 { 3014 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3015 3016 return wq_dev->wq; 3017 } 3018 3019 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 3020 char *buf) 3021 { 3022 struct workqueue_struct *wq = dev_to_wq(dev); 3023 3024 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3025 } 3026 static DEVICE_ATTR_RO(per_cpu); 3027 3028 static ssize_t max_active_show(struct device *dev, 3029 struct device_attribute *attr, char *buf) 3030 { 3031 struct workqueue_struct *wq = dev_to_wq(dev); 3032 3033 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3034 } 3035 3036 static ssize_t max_active_store(struct device *dev, 3037 struct device_attribute *attr, const char *buf, 3038 size_t count) 3039 { 3040 struct workqueue_struct *wq = dev_to_wq(dev); 3041 int val; 3042 3043 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3044 return -EINVAL; 3045 3046 workqueue_set_max_active(wq, val); 3047 return count; 3048 } 3049 static DEVICE_ATTR_RW(max_active); 3050 3051 static struct attribute *wq_sysfs_attrs[] = { 3052 &dev_attr_per_cpu.attr, 3053 &dev_attr_max_active.attr, 3054 NULL, 3055 }; 3056 ATTRIBUTE_GROUPS(wq_sysfs); 3057 3058 static ssize_t wq_pool_ids_show(struct device *dev, 3059 struct device_attribute *attr, char *buf) 3060 { 3061 struct workqueue_struct *wq = dev_to_wq(dev); 3062 const char *delim = ""; 3063 int node, written = 0; 3064 3065 rcu_read_lock_sched(); 3066 for_each_node(node) { 3067 written += scnprintf(buf + written, PAGE_SIZE - written, 3068 "%s%d:%d", delim, node, 3069 unbound_pwq_by_node(wq, node)->pool->id); 3070 delim = " "; 3071 } 3072 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3073 rcu_read_unlock_sched(); 3074 3075 return written; 3076 } 3077 3078 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3079 char *buf) 3080 { 3081 struct workqueue_struct *wq = dev_to_wq(dev); 3082 int written; 3083 3084 mutex_lock(&wq->mutex); 3085 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3086 mutex_unlock(&wq->mutex); 3087 3088 return written; 3089 } 3090 3091 /* prepare workqueue_attrs for sysfs store operations */ 3092 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3093 { 3094 struct workqueue_attrs *attrs; 3095 3096 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3097 if (!attrs) 3098 return NULL; 3099 3100 mutex_lock(&wq->mutex); 3101 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3102 mutex_unlock(&wq->mutex); 3103 return attrs; 3104 } 3105 3106 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3107 const char *buf, size_t count) 3108 { 3109 struct workqueue_struct *wq = dev_to_wq(dev); 3110 struct workqueue_attrs *attrs; 3111 int ret; 3112 3113 attrs = wq_sysfs_prep_attrs(wq); 3114 if (!attrs) 3115 return -ENOMEM; 3116 3117 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3118 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 3119 ret = apply_workqueue_attrs(wq, attrs); 3120 else 3121 ret = -EINVAL; 3122 3123 free_workqueue_attrs(attrs); 3124 return ret ?: count; 3125 } 3126 3127 static ssize_t wq_cpumask_show(struct device *dev, 3128 struct device_attribute *attr, char *buf) 3129 { 3130 struct workqueue_struct *wq = dev_to_wq(dev); 3131 int written; 3132 3133 mutex_lock(&wq->mutex); 3134 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 3135 cpumask_pr_args(wq->unbound_attrs->cpumask)); 3136 mutex_unlock(&wq->mutex); 3137 return written; 3138 } 3139 3140 static ssize_t wq_cpumask_store(struct device *dev, 3141 struct device_attribute *attr, 3142 const char *buf, size_t count) 3143 { 3144 struct workqueue_struct *wq = dev_to_wq(dev); 3145 struct workqueue_attrs *attrs; 3146 int ret; 3147 3148 attrs = wq_sysfs_prep_attrs(wq); 3149 if (!attrs) 3150 return -ENOMEM; 3151 3152 ret = cpumask_parse(buf, attrs->cpumask); 3153 if (!ret) 3154 ret = apply_workqueue_attrs(wq, attrs); 3155 3156 free_workqueue_attrs(attrs); 3157 return ret ?: count; 3158 } 3159 3160 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3161 char *buf) 3162 { 3163 struct workqueue_struct *wq = dev_to_wq(dev); 3164 int written; 3165 3166 mutex_lock(&wq->mutex); 3167 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3168 !wq->unbound_attrs->no_numa); 3169 mutex_unlock(&wq->mutex); 3170 3171 return written; 3172 } 3173 3174 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3175 const char *buf, size_t count) 3176 { 3177 struct workqueue_struct *wq = dev_to_wq(dev); 3178 struct workqueue_attrs *attrs; 3179 int v, ret; 3180 3181 attrs = wq_sysfs_prep_attrs(wq); 3182 if (!attrs) 3183 return -ENOMEM; 3184 3185 ret = -EINVAL; 3186 if (sscanf(buf, "%d", &v) == 1) { 3187 attrs->no_numa = !v; 3188 ret = apply_workqueue_attrs(wq, attrs); 3189 } 3190 3191 free_workqueue_attrs(attrs); 3192 return ret ?: count; 3193 } 3194 3195 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3196 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3197 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3198 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3199 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3200 __ATTR_NULL, 3201 }; 3202 3203 static struct bus_type wq_subsys = { 3204 .name = "workqueue", 3205 .dev_groups = wq_sysfs_groups, 3206 }; 3207 3208 static int __init wq_sysfs_init(void) 3209 { 3210 return subsys_virtual_register(&wq_subsys, NULL); 3211 } 3212 core_initcall(wq_sysfs_init); 3213 3214 static void wq_device_release(struct device *dev) 3215 { 3216 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3217 3218 kfree(wq_dev); 3219 } 3220 3221 /** 3222 * workqueue_sysfs_register - make a workqueue visible in sysfs 3223 * @wq: the workqueue to register 3224 * 3225 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3226 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3227 * which is the preferred method. 3228 * 3229 * Workqueue user should use this function directly iff it wants to apply 3230 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3231 * apply_workqueue_attrs() may race against userland updating the 3232 * attributes. 3233 * 3234 * Return: 0 on success, -errno on failure. 3235 */ 3236 int workqueue_sysfs_register(struct workqueue_struct *wq) 3237 { 3238 struct wq_device *wq_dev; 3239 int ret; 3240 3241 /* 3242 * Adjusting max_active or creating new pwqs by applyting 3243 * attributes breaks ordering guarantee. Disallow exposing ordered 3244 * workqueues. 3245 */ 3246 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3247 return -EINVAL; 3248 3249 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3250 if (!wq_dev) 3251 return -ENOMEM; 3252 3253 wq_dev->wq = wq; 3254 wq_dev->dev.bus = &wq_subsys; 3255 wq_dev->dev.init_name = wq->name; 3256 wq_dev->dev.release = wq_device_release; 3257 3258 /* 3259 * unbound_attrs are created separately. Suppress uevent until 3260 * everything is ready. 3261 */ 3262 dev_set_uevent_suppress(&wq_dev->dev, true); 3263 3264 ret = device_register(&wq_dev->dev); 3265 if (ret) { 3266 kfree(wq_dev); 3267 wq->wq_dev = NULL; 3268 return ret; 3269 } 3270 3271 if (wq->flags & WQ_UNBOUND) { 3272 struct device_attribute *attr; 3273 3274 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3275 ret = device_create_file(&wq_dev->dev, attr); 3276 if (ret) { 3277 device_unregister(&wq_dev->dev); 3278 wq->wq_dev = NULL; 3279 return ret; 3280 } 3281 } 3282 } 3283 3284 dev_set_uevent_suppress(&wq_dev->dev, false); 3285 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3286 return 0; 3287 } 3288 3289 /** 3290 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3291 * @wq: the workqueue to unregister 3292 * 3293 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3294 */ 3295 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3296 { 3297 struct wq_device *wq_dev = wq->wq_dev; 3298 3299 if (!wq->wq_dev) 3300 return; 3301 3302 wq->wq_dev = NULL; 3303 device_unregister(&wq_dev->dev); 3304 } 3305 #else /* CONFIG_SYSFS */ 3306 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3307 #endif /* CONFIG_SYSFS */ 3308 3309 /** 3310 * free_workqueue_attrs - free a workqueue_attrs 3311 * @attrs: workqueue_attrs to free 3312 * 3313 * Undo alloc_workqueue_attrs(). 3314 */ 3315 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3316 { 3317 if (attrs) { 3318 free_cpumask_var(attrs->cpumask); 3319 kfree(attrs); 3320 } 3321 } 3322 3323 /** 3324 * alloc_workqueue_attrs - allocate a workqueue_attrs 3325 * @gfp_mask: allocation mask to use 3326 * 3327 * Allocate a new workqueue_attrs, initialize with default settings and 3328 * return it. 3329 * 3330 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3331 */ 3332 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3333 { 3334 struct workqueue_attrs *attrs; 3335 3336 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3337 if (!attrs) 3338 goto fail; 3339 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3340 goto fail; 3341 3342 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3343 return attrs; 3344 fail: 3345 free_workqueue_attrs(attrs); 3346 return NULL; 3347 } 3348 3349 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3350 const struct workqueue_attrs *from) 3351 { 3352 to->nice = from->nice; 3353 cpumask_copy(to->cpumask, from->cpumask); 3354 /* 3355 * Unlike hash and equality test, this function doesn't ignore 3356 * ->no_numa as it is used for both pool and wq attrs. Instead, 3357 * get_unbound_pool() explicitly clears ->no_numa after copying. 3358 */ 3359 to->no_numa = from->no_numa; 3360 } 3361 3362 /* hash value of the content of @attr */ 3363 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3364 { 3365 u32 hash = 0; 3366 3367 hash = jhash_1word(attrs->nice, hash); 3368 hash = jhash(cpumask_bits(attrs->cpumask), 3369 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3370 return hash; 3371 } 3372 3373 /* content equality test */ 3374 static bool wqattrs_equal(const struct workqueue_attrs *a, 3375 const struct workqueue_attrs *b) 3376 { 3377 if (a->nice != b->nice) 3378 return false; 3379 if (!cpumask_equal(a->cpumask, b->cpumask)) 3380 return false; 3381 return true; 3382 } 3383 3384 /** 3385 * init_worker_pool - initialize a newly zalloc'd worker_pool 3386 * @pool: worker_pool to initialize 3387 * 3388 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3389 * 3390 * Return: 0 on success, -errno on failure. Even on failure, all fields 3391 * inside @pool proper are initialized and put_unbound_pool() can be called 3392 * on @pool safely to release it. 3393 */ 3394 static int init_worker_pool(struct worker_pool *pool) 3395 { 3396 spin_lock_init(&pool->lock); 3397 pool->id = -1; 3398 pool->cpu = -1; 3399 pool->node = NUMA_NO_NODE; 3400 pool->flags |= POOL_DISASSOCIATED; 3401 INIT_LIST_HEAD(&pool->worklist); 3402 INIT_LIST_HEAD(&pool->idle_list); 3403 hash_init(pool->busy_hash); 3404 3405 init_timer_deferrable(&pool->idle_timer); 3406 pool->idle_timer.function = idle_worker_timeout; 3407 pool->idle_timer.data = (unsigned long)pool; 3408 3409 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3410 (unsigned long)pool); 3411 3412 mutex_init(&pool->manager_arb); 3413 mutex_init(&pool->attach_mutex); 3414 INIT_LIST_HEAD(&pool->workers); 3415 3416 ida_init(&pool->worker_ida); 3417 INIT_HLIST_NODE(&pool->hash_node); 3418 pool->refcnt = 1; 3419 3420 /* shouldn't fail above this point */ 3421 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3422 if (!pool->attrs) 3423 return -ENOMEM; 3424 return 0; 3425 } 3426 3427 static void rcu_free_pool(struct rcu_head *rcu) 3428 { 3429 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3430 3431 ida_destroy(&pool->worker_ida); 3432 free_workqueue_attrs(pool->attrs); 3433 kfree(pool); 3434 } 3435 3436 /** 3437 * put_unbound_pool - put a worker_pool 3438 * @pool: worker_pool to put 3439 * 3440 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3441 * safe manner. get_unbound_pool() calls this function on its failure path 3442 * and this function should be able to release pools which went through, 3443 * successfully or not, init_worker_pool(). 3444 * 3445 * Should be called with wq_pool_mutex held. 3446 */ 3447 static void put_unbound_pool(struct worker_pool *pool) 3448 { 3449 DECLARE_COMPLETION_ONSTACK(detach_completion); 3450 struct worker *worker; 3451 3452 lockdep_assert_held(&wq_pool_mutex); 3453 3454 if (--pool->refcnt) 3455 return; 3456 3457 /* sanity checks */ 3458 if (WARN_ON(!(pool->cpu < 0)) || 3459 WARN_ON(!list_empty(&pool->worklist))) 3460 return; 3461 3462 /* release id and unhash */ 3463 if (pool->id >= 0) 3464 idr_remove(&worker_pool_idr, pool->id); 3465 hash_del(&pool->hash_node); 3466 3467 /* 3468 * Become the manager and destroy all workers. Grabbing 3469 * manager_arb prevents @pool's workers from blocking on 3470 * attach_mutex. 3471 */ 3472 mutex_lock(&pool->manager_arb); 3473 3474 spin_lock_irq(&pool->lock); 3475 while ((worker = first_idle_worker(pool))) 3476 destroy_worker(worker); 3477 WARN_ON(pool->nr_workers || pool->nr_idle); 3478 spin_unlock_irq(&pool->lock); 3479 3480 mutex_lock(&pool->attach_mutex); 3481 if (!list_empty(&pool->workers)) 3482 pool->detach_completion = &detach_completion; 3483 mutex_unlock(&pool->attach_mutex); 3484 3485 if (pool->detach_completion) 3486 wait_for_completion(pool->detach_completion); 3487 3488 mutex_unlock(&pool->manager_arb); 3489 3490 /* shut down the timers */ 3491 del_timer_sync(&pool->idle_timer); 3492 del_timer_sync(&pool->mayday_timer); 3493 3494 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3495 call_rcu_sched(&pool->rcu, rcu_free_pool); 3496 } 3497 3498 /** 3499 * get_unbound_pool - get a worker_pool with the specified attributes 3500 * @attrs: the attributes of the worker_pool to get 3501 * 3502 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3503 * reference count and return it. If there already is a matching 3504 * worker_pool, it will be used; otherwise, this function attempts to 3505 * create a new one. 3506 * 3507 * Should be called with wq_pool_mutex held. 3508 * 3509 * Return: On success, a worker_pool with the same attributes as @attrs. 3510 * On failure, %NULL. 3511 */ 3512 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3513 { 3514 u32 hash = wqattrs_hash(attrs); 3515 struct worker_pool *pool; 3516 int node; 3517 3518 lockdep_assert_held(&wq_pool_mutex); 3519 3520 /* do we already have a matching pool? */ 3521 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3522 if (wqattrs_equal(pool->attrs, attrs)) { 3523 pool->refcnt++; 3524 return pool; 3525 } 3526 } 3527 3528 /* nope, create a new one */ 3529 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3530 if (!pool || init_worker_pool(pool) < 0) 3531 goto fail; 3532 3533 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3534 copy_workqueue_attrs(pool->attrs, attrs); 3535 3536 /* 3537 * no_numa isn't a worker_pool attribute, always clear it. See 3538 * 'struct workqueue_attrs' comments for detail. 3539 */ 3540 pool->attrs->no_numa = false; 3541 3542 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3543 if (wq_numa_enabled) { 3544 for_each_node(node) { 3545 if (cpumask_subset(pool->attrs->cpumask, 3546 wq_numa_possible_cpumask[node])) { 3547 pool->node = node; 3548 break; 3549 } 3550 } 3551 } 3552 3553 if (worker_pool_assign_id(pool) < 0) 3554 goto fail; 3555 3556 /* create and start the initial worker */ 3557 if (!create_worker(pool)) 3558 goto fail; 3559 3560 /* install */ 3561 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3562 3563 return pool; 3564 fail: 3565 if (pool) 3566 put_unbound_pool(pool); 3567 return NULL; 3568 } 3569 3570 static void rcu_free_pwq(struct rcu_head *rcu) 3571 { 3572 kmem_cache_free(pwq_cache, 3573 container_of(rcu, struct pool_workqueue, rcu)); 3574 } 3575 3576 /* 3577 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3578 * and needs to be destroyed. 3579 */ 3580 static void pwq_unbound_release_workfn(struct work_struct *work) 3581 { 3582 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3583 unbound_release_work); 3584 struct workqueue_struct *wq = pwq->wq; 3585 struct worker_pool *pool = pwq->pool; 3586 bool is_last; 3587 3588 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3589 return; 3590 3591 mutex_lock(&wq->mutex); 3592 list_del_rcu(&pwq->pwqs_node); 3593 is_last = list_empty(&wq->pwqs); 3594 mutex_unlock(&wq->mutex); 3595 3596 mutex_lock(&wq_pool_mutex); 3597 put_unbound_pool(pool); 3598 mutex_unlock(&wq_pool_mutex); 3599 3600 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3601 3602 /* 3603 * If we're the last pwq going away, @wq is already dead and no one 3604 * is gonna access it anymore. Free it. 3605 */ 3606 if (is_last) { 3607 free_workqueue_attrs(wq->unbound_attrs); 3608 kfree(wq); 3609 } 3610 } 3611 3612 /** 3613 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3614 * @pwq: target pool_workqueue 3615 * 3616 * If @pwq isn't freezing, set @pwq->max_active to the associated 3617 * workqueue's saved_max_active and activate delayed work items 3618 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3619 */ 3620 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3621 { 3622 struct workqueue_struct *wq = pwq->wq; 3623 bool freezable = wq->flags & WQ_FREEZABLE; 3624 3625 /* for @wq->saved_max_active */ 3626 lockdep_assert_held(&wq->mutex); 3627 3628 /* fast exit for non-freezable wqs */ 3629 if (!freezable && pwq->max_active == wq->saved_max_active) 3630 return; 3631 3632 spin_lock_irq(&pwq->pool->lock); 3633 3634 /* 3635 * During [un]freezing, the caller is responsible for ensuring that 3636 * this function is called at least once after @workqueue_freezing 3637 * is updated and visible. 3638 */ 3639 if (!freezable || !workqueue_freezing) { 3640 pwq->max_active = wq->saved_max_active; 3641 3642 while (!list_empty(&pwq->delayed_works) && 3643 pwq->nr_active < pwq->max_active) 3644 pwq_activate_first_delayed(pwq); 3645 3646 /* 3647 * Need to kick a worker after thawed or an unbound wq's 3648 * max_active is bumped. It's a slow path. Do it always. 3649 */ 3650 wake_up_worker(pwq->pool); 3651 } else { 3652 pwq->max_active = 0; 3653 } 3654 3655 spin_unlock_irq(&pwq->pool->lock); 3656 } 3657 3658 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3659 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3660 struct worker_pool *pool) 3661 { 3662 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3663 3664 memset(pwq, 0, sizeof(*pwq)); 3665 3666 pwq->pool = pool; 3667 pwq->wq = wq; 3668 pwq->flush_color = -1; 3669 pwq->refcnt = 1; 3670 INIT_LIST_HEAD(&pwq->delayed_works); 3671 INIT_LIST_HEAD(&pwq->pwqs_node); 3672 INIT_LIST_HEAD(&pwq->mayday_node); 3673 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3674 } 3675 3676 /* sync @pwq with the current state of its associated wq and link it */ 3677 static void link_pwq(struct pool_workqueue *pwq) 3678 { 3679 struct workqueue_struct *wq = pwq->wq; 3680 3681 lockdep_assert_held(&wq->mutex); 3682 3683 /* may be called multiple times, ignore if already linked */ 3684 if (!list_empty(&pwq->pwqs_node)) 3685 return; 3686 3687 /* set the matching work_color */ 3688 pwq->work_color = wq->work_color; 3689 3690 /* sync max_active to the current setting */ 3691 pwq_adjust_max_active(pwq); 3692 3693 /* link in @pwq */ 3694 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3695 } 3696 3697 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3698 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3699 const struct workqueue_attrs *attrs) 3700 { 3701 struct worker_pool *pool; 3702 struct pool_workqueue *pwq; 3703 3704 lockdep_assert_held(&wq_pool_mutex); 3705 3706 pool = get_unbound_pool(attrs); 3707 if (!pool) 3708 return NULL; 3709 3710 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3711 if (!pwq) { 3712 put_unbound_pool(pool); 3713 return NULL; 3714 } 3715 3716 init_pwq(pwq, wq, pool); 3717 return pwq; 3718 } 3719 3720 /* undo alloc_unbound_pwq(), used only in the error path */ 3721 static void free_unbound_pwq(struct pool_workqueue *pwq) 3722 { 3723 lockdep_assert_held(&wq_pool_mutex); 3724 3725 if (pwq) { 3726 put_unbound_pool(pwq->pool); 3727 kmem_cache_free(pwq_cache, pwq); 3728 } 3729 } 3730 3731 /** 3732 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3733 * @attrs: the wq_attrs of interest 3734 * @node: the target NUMA node 3735 * @cpu_going_down: if >= 0, the CPU to consider as offline 3736 * @cpumask: outarg, the resulting cpumask 3737 * 3738 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3739 * @cpu_going_down is >= 0, that cpu is considered offline during 3740 * calculation. The result is stored in @cpumask. 3741 * 3742 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3743 * enabled and @node has online CPUs requested by @attrs, the returned 3744 * cpumask is the intersection of the possible CPUs of @node and 3745 * @attrs->cpumask. 3746 * 3747 * The caller is responsible for ensuring that the cpumask of @node stays 3748 * stable. 3749 * 3750 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3751 * %false if equal. 3752 */ 3753 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3754 int cpu_going_down, cpumask_t *cpumask) 3755 { 3756 if (!wq_numa_enabled || attrs->no_numa) 3757 goto use_dfl; 3758 3759 /* does @node have any online CPUs @attrs wants? */ 3760 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3761 if (cpu_going_down >= 0) 3762 cpumask_clear_cpu(cpu_going_down, cpumask); 3763 3764 if (cpumask_empty(cpumask)) 3765 goto use_dfl; 3766 3767 /* yeap, return possible CPUs in @node that @attrs wants */ 3768 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3769 return !cpumask_equal(cpumask, attrs->cpumask); 3770 3771 use_dfl: 3772 cpumask_copy(cpumask, attrs->cpumask); 3773 return false; 3774 } 3775 3776 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3777 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3778 int node, 3779 struct pool_workqueue *pwq) 3780 { 3781 struct pool_workqueue *old_pwq; 3782 3783 lockdep_assert_held(&wq->mutex); 3784 3785 /* link_pwq() can handle duplicate calls */ 3786 link_pwq(pwq); 3787 3788 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3789 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3790 return old_pwq; 3791 } 3792 3793 /** 3794 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3795 * @wq: the target workqueue 3796 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3797 * 3798 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3799 * machines, this function maps a separate pwq to each NUMA node with 3800 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3801 * NUMA node it was issued on. Older pwqs are released as in-flight work 3802 * items finish. Note that a work item which repeatedly requeues itself 3803 * back-to-back will stay on its current pwq. 3804 * 3805 * Performs GFP_KERNEL allocations. 3806 * 3807 * Return: 0 on success and -errno on failure. 3808 */ 3809 int apply_workqueue_attrs(struct workqueue_struct *wq, 3810 const struct workqueue_attrs *attrs) 3811 { 3812 struct workqueue_attrs *new_attrs, *tmp_attrs; 3813 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3814 int node, ret; 3815 3816 /* only unbound workqueues can change attributes */ 3817 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3818 return -EINVAL; 3819 3820 /* creating multiple pwqs breaks ordering guarantee */ 3821 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3822 return -EINVAL; 3823 3824 pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL); 3825 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3826 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3827 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3828 goto enomem; 3829 3830 /* make a copy of @attrs and sanitize it */ 3831 copy_workqueue_attrs(new_attrs, attrs); 3832 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3833 3834 /* 3835 * We may create multiple pwqs with differing cpumasks. Make a 3836 * copy of @new_attrs which will be modified and used to obtain 3837 * pools. 3838 */ 3839 copy_workqueue_attrs(tmp_attrs, new_attrs); 3840 3841 /* 3842 * CPUs should stay stable across pwq creations and installations. 3843 * Pin CPUs, determine the target cpumask for each node and create 3844 * pwqs accordingly. 3845 */ 3846 get_online_cpus(); 3847 3848 mutex_lock(&wq_pool_mutex); 3849 3850 /* 3851 * If something goes wrong during CPU up/down, we'll fall back to 3852 * the default pwq covering whole @attrs->cpumask. Always create 3853 * it even if we don't use it immediately. 3854 */ 3855 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3856 if (!dfl_pwq) 3857 goto enomem_pwq; 3858 3859 for_each_node(node) { 3860 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3861 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3862 if (!pwq_tbl[node]) 3863 goto enomem_pwq; 3864 } else { 3865 dfl_pwq->refcnt++; 3866 pwq_tbl[node] = dfl_pwq; 3867 } 3868 } 3869 3870 mutex_unlock(&wq_pool_mutex); 3871 3872 /* all pwqs have been created successfully, let's install'em */ 3873 mutex_lock(&wq->mutex); 3874 3875 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3876 3877 /* save the previous pwq and install the new one */ 3878 for_each_node(node) 3879 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3880 3881 /* @dfl_pwq might not have been used, ensure it's linked */ 3882 link_pwq(dfl_pwq); 3883 swap(wq->dfl_pwq, dfl_pwq); 3884 3885 mutex_unlock(&wq->mutex); 3886 3887 /* put the old pwqs */ 3888 for_each_node(node) 3889 put_pwq_unlocked(pwq_tbl[node]); 3890 put_pwq_unlocked(dfl_pwq); 3891 3892 put_online_cpus(); 3893 ret = 0; 3894 /* fall through */ 3895 out_free: 3896 free_workqueue_attrs(tmp_attrs); 3897 free_workqueue_attrs(new_attrs); 3898 kfree(pwq_tbl); 3899 return ret; 3900 3901 enomem_pwq: 3902 free_unbound_pwq(dfl_pwq); 3903 for_each_node(node) 3904 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3905 free_unbound_pwq(pwq_tbl[node]); 3906 mutex_unlock(&wq_pool_mutex); 3907 put_online_cpus(); 3908 enomem: 3909 ret = -ENOMEM; 3910 goto out_free; 3911 } 3912 3913 /** 3914 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3915 * @wq: the target workqueue 3916 * @cpu: the CPU coming up or going down 3917 * @online: whether @cpu is coming up or going down 3918 * 3919 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3920 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3921 * @wq accordingly. 3922 * 3923 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3924 * falls back to @wq->dfl_pwq which may not be optimal but is always 3925 * correct. 3926 * 3927 * Note that when the last allowed CPU of a NUMA node goes offline for a 3928 * workqueue with a cpumask spanning multiple nodes, the workers which were 3929 * already executing the work items for the workqueue will lose their CPU 3930 * affinity and may execute on any CPU. This is similar to how per-cpu 3931 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3932 * affinity, it's the user's responsibility to flush the work item from 3933 * CPU_DOWN_PREPARE. 3934 */ 3935 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3936 bool online) 3937 { 3938 int node = cpu_to_node(cpu); 3939 int cpu_off = online ? -1 : cpu; 3940 struct pool_workqueue *old_pwq = NULL, *pwq; 3941 struct workqueue_attrs *target_attrs; 3942 cpumask_t *cpumask; 3943 3944 lockdep_assert_held(&wq_pool_mutex); 3945 3946 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 3947 return; 3948 3949 /* 3950 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3951 * Let's use a preallocated one. The following buf is protected by 3952 * CPU hotplug exclusion. 3953 */ 3954 target_attrs = wq_update_unbound_numa_attrs_buf; 3955 cpumask = target_attrs->cpumask; 3956 3957 mutex_lock(&wq->mutex); 3958 if (wq->unbound_attrs->no_numa) 3959 goto out_unlock; 3960 3961 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3962 pwq = unbound_pwq_by_node(wq, node); 3963 3964 /* 3965 * Let's determine what needs to be done. If the target cpumask is 3966 * different from wq's, we need to compare it to @pwq's and create 3967 * a new one if they don't match. If the target cpumask equals 3968 * wq's, the default pwq should be used. 3969 */ 3970 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 3971 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3972 goto out_unlock; 3973 } else { 3974 goto use_dfl_pwq; 3975 } 3976 3977 mutex_unlock(&wq->mutex); 3978 3979 /* create a new pwq */ 3980 pwq = alloc_unbound_pwq(wq, target_attrs); 3981 if (!pwq) { 3982 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3983 wq->name); 3984 mutex_lock(&wq->mutex); 3985 goto use_dfl_pwq; 3986 } 3987 3988 /* 3989 * Install the new pwq. As this function is called only from CPU 3990 * hotplug callbacks and applying a new attrs is wrapped with 3991 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 3992 * inbetween. 3993 */ 3994 mutex_lock(&wq->mutex); 3995 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3996 goto out_unlock; 3997 3998 use_dfl_pwq: 3999 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4000 get_pwq(wq->dfl_pwq); 4001 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4002 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4003 out_unlock: 4004 mutex_unlock(&wq->mutex); 4005 put_pwq_unlocked(old_pwq); 4006 } 4007 4008 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4009 { 4010 bool highpri = wq->flags & WQ_HIGHPRI; 4011 int cpu, ret; 4012 4013 if (!(wq->flags & WQ_UNBOUND)) { 4014 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4015 if (!wq->cpu_pwqs) 4016 return -ENOMEM; 4017 4018 for_each_possible_cpu(cpu) { 4019 struct pool_workqueue *pwq = 4020 per_cpu_ptr(wq->cpu_pwqs, cpu); 4021 struct worker_pool *cpu_pools = 4022 per_cpu(cpu_worker_pools, cpu); 4023 4024 init_pwq(pwq, wq, &cpu_pools[highpri]); 4025 4026 mutex_lock(&wq->mutex); 4027 link_pwq(pwq); 4028 mutex_unlock(&wq->mutex); 4029 } 4030 return 0; 4031 } else if (wq->flags & __WQ_ORDERED) { 4032 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4033 /* there should only be single pwq for ordering guarantee */ 4034 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4035 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4036 "ordering guarantee broken for workqueue %s\n", wq->name); 4037 return ret; 4038 } else { 4039 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4040 } 4041 } 4042 4043 static int wq_clamp_max_active(int max_active, unsigned int flags, 4044 const char *name) 4045 { 4046 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4047 4048 if (max_active < 1 || max_active > lim) 4049 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4050 max_active, name, 1, lim); 4051 4052 return clamp_val(max_active, 1, lim); 4053 } 4054 4055 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4056 unsigned int flags, 4057 int max_active, 4058 struct lock_class_key *key, 4059 const char *lock_name, ...) 4060 { 4061 size_t tbl_size = 0; 4062 va_list args; 4063 struct workqueue_struct *wq; 4064 struct pool_workqueue *pwq; 4065 4066 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4067 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4068 flags |= WQ_UNBOUND; 4069 4070 /* allocate wq and format name */ 4071 if (flags & WQ_UNBOUND) 4072 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4073 4074 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4075 if (!wq) 4076 return NULL; 4077 4078 if (flags & WQ_UNBOUND) { 4079 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4080 if (!wq->unbound_attrs) 4081 goto err_free_wq; 4082 } 4083 4084 va_start(args, lock_name); 4085 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4086 va_end(args); 4087 4088 max_active = max_active ?: WQ_DFL_ACTIVE; 4089 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4090 4091 /* init wq */ 4092 wq->flags = flags; 4093 wq->saved_max_active = max_active; 4094 mutex_init(&wq->mutex); 4095 atomic_set(&wq->nr_pwqs_to_flush, 0); 4096 INIT_LIST_HEAD(&wq->pwqs); 4097 INIT_LIST_HEAD(&wq->flusher_queue); 4098 INIT_LIST_HEAD(&wq->flusher_overflow); 4099 INIT_LIST_HEAD(&wq->maydays); 4100 4101 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4102 INIT_LIST_HEAD(&wq->list); 4103 4104 if (alloc_and_link_pwqs(wq) < 0) 4105 goto err_free_wq; 4106 4107 /* 4108 * Workqueues which may be used during memory reclaim should 4109 * have a rescuer to guarantee forward progress. 4110 */ 4111 if (flags & WQ_MEM_RECLAIM) { 4112 struct worker *rescuer; 4113 4114 rescuer = alloc_worker(NUMA_NO_NODE); 4115 if (!rescuer) 4116 goto err_destroy; 4117 4118 rescuer->rescue_wq = wq; 4119 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4120 wq->name); 4121 if (IS_ERR(rescuer->task)) { 4122 kfree(rescuer); 4123 goto err_destroy; 4124 } 4125 4126 wq->rescuer = rescuer; 4127 rescuer->task->flags |= PF_NO_SETAFFINITY; 4128 wake_up_process(rescuer->task); 4129 } 4130 4131 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4132 goto err_destroy; 4133 4134 /* 4135 * wq_pool_mutex protects global freeze state and workqueues list. 4136 * Grab it, adjust max_active and add the new @wq to workqueues 4137 * list. 4138 */ 4139 mutex_lock(&wq_pool_mutex); 4140 4141 mutex_lock(&wq->mutex); 4142 for_each_pwq(pwq, wq) 4143 pwq_adjust_max_active(pwq); 4144 mutex_unlock(&wq->mutex); 4145 4146 list_add(&wq->list, &workqueues); 4147 4148 mutex_unlock(&wq_pool_mutex); 4149 4150 return wq; 4151 4152 err_free_wq: 4153 free_workqueue_attrs(wq->unbound_attrs); 4154 kfree(wq); 4155 return NULL; 4156 err_destroy: 4157 destroy_workqueue(wq); 4158 return NULL; 4159 } 4160 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4161 4162 /** 4163 * destroy_workqueue - safely terminate a workqueue 4164 * @wq: target workqueue 4165 * 4166 * Safely destroy a workqueue. All work currently pending will be done first. 4167 */ 4168 void destroy_workqueue(struct workqueue_struct *wq) 4169 { 4170 struct pool_workqueue *pwq; 4171 int node; 4172 4173 /* drain it before proceeding with destruction */ 4174 drain_workqueue(wq); 4175 4176 /* sanity checks */ 4177 mutex_lock(&wq->mutex); 4178 for_each_pwq(pwq, wq) { 4179 int i; 4180 4181 for (i = 0; i < WORK_NR_COLORS; i++) { 4182 if (WARN_ON(pwq->nr_in_flight[i])) { 4183 mutex_unlock(&wq->mutex); 4184 return; 4185 } 4186 } 4187 4188 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4189 WARN_ON(pwq->nr_active) || 4190 WARN_ON(!list_empty(&pwq->delayed_works))) { 4191 mutex_unlock(&wq->mutex); 4192 return; 4193 } 4194 } 4195 mutex_unlock(&wq->mutex); 4196 4197 /* 4198 * wq list is used to freeze wq, remove from list after 4199 * flushing is complete in case freeze races us. 4200 */ 4201 mutex_lock(&wq_pool_mutex); 4202 list_del_init(&wq->list); 4203 mutex_unlock(&wq_pool_mutex); 4204 4205 workqueue_sysfs_unregister(wq); 4206 4207 if (wq->rescuer) { 4208 kthread_stop(wq->rescuer->task); 4209 kfree(wq->rescuer); 4210 wq->rescuer = NULL; 4211 } 4212 4213 if (!(wq->flags & WQ_UNBOUND)) { 4214 /* 4215 * The base ref is never dropped on per-cpu pwqs. Directly 4216 * free the pwqs and wq. 4217 */ 4218 free_percpu(wq->cpu_pwqs); 4219 kfree(wq); 4220 } else { 4221 /* 4222 * We're the sole accessor of @wq at this point. Directly 4223 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4224 * @wq will be freed when the last pwq is released. 4225 */ 4226 for_each_node(node) { 4227 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4228 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4229 put_pwq_unlocked(pwq); 4230 } 4231 4232 /* 4233 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4234 * put. Don't access it afterwards. 4235 */ 4236 pwq = wq->dfl_pwq; 4237 wq->dfl_pwq = NULL; 4238 put_pwq_unlocked(pwq); 4239 } 4240 } 4241 EXPORT_SYMBOL_GPL(destroy_workqueue); 4242 4243 /** 4244 * workqueue_set_max_active - adjust max_active of a workqueue 4245 * @wq: target workqueue 4246 * @max_active: new max_active value. 4247 * 4248 * Set max_active of @wq to @max_active. 4249 * 4250 * CONTEXT: 4251 * Don't call from IRQ context. 4252 */ 4253 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4254 { 4255 struct pool_workqueue *pwq; 4256 4257 /* disallow meddling with max_active for ordered workqueues */ 4258 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4259 return; 4260 4261 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4262 4263 mutex_lock(&wq->mutex); 4264 4265 wq->saved_max_active = max_active; 4266 4267 for_each_pwq(pwq, wq) 4268 pwq_adjust_max_active(pwq); 4269 4270 mutex_unlock(&wq->mutex); 4271 } 4272 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4273 4274 /** 4275 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4276 * 4277 * Determine whether %current is a workqueue rescuer. Can be used from 4278 * work functions to determine whether it's being run off the rescuer task. 4279 * 4280 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4281 */ 4282 bool current_is_workqueue_rescuer(void) 4283 { 4284 struct worker *worker = current_wq_worker(); 4285 4286 return worker && worker->rescue_wq; 4287 } 4288 4289 /** 4290 * workqueue_congested - test whether a workqueue is congested 4291 * @cpu: CPU in question 4292 * @wq: target workqueue 4293 * 4294 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4295 * no synchronization around this function and the test result is 4296 * unreliable and only useful as advisory hints or for debugging. 4297 * 4298 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4299 * Note that both per-cpu and unbound workqueues may be associated with 4300 * multiple pool_workqueues which have separate congested states. A 4301 * workqueue being congested on one CPU doesn't mean the workqueue is also 4302 * contested on other CPUs / NUMA nodes. 4303 * 4304 * Return: 4305 * %true if congested, %false otherwise. 4306 */ 4307 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4308 { 4309 struct pool_workqueue *pwq; 4310 bool ret; 4311 4312 rcu_read_lock_sched(); 4313 4314 if (cpu == WORK_CPU_UNBOUND) 4315 cpu = smp_processor_id(); 4316 4317 if (!(wq->flags & WQ_UNBOUND)) 4318 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4319 else 4320 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4321 4322 ret = !list_empty(&pwq->delayed_works); 4323 rcu_read_unlock_sched(); 4324 4325 return ret; 4326 } 4327 EXPORT_SYMBOL_GPL(workqueue_congested); 4328 4329 /** 4330 * work_busy - test whether a work is currently pending or running 4331 * @work: the work to be tested 4332 * 4333 * Test whether @work is currently pending or running. There is no 4334 * synchronization around this function and the test result is 4335 * unreliable and only useful as advisory hints or for debugging. 4336 * 4337 * Return: 4338 * OR'd bitmask of WORK_BUSY_* bits. 4339 */ 4340 unsigned int work_busy(struct work_struct *work) 4341 { 4342 struct worker_pool *pool; 4343 unsigned long flags; 4344 unsigned int ret = 0; 4345 4346 if (work_pending(work)) 4347 ret |= WORK_BUSY_PENDING; 4348 4349 local_irq_save(flags); 4350 pool = get_work_pool(work); 4351 if (pool) { 4352 spin_lock(&pool->lock); 4353 if (find_worker_executing_work(pool, work)) 4354 ret |= WORK_BUSY_RUNNING; 4355 spin_unlock(&pool->lock); 4356 } 4357 local_irq_restore(flags); 4358 4359 return ret; 4360 } 4361 EXPORT_SYMBOL_GPL(work_busy); 4362 4363 /** 4364 * set_worker_desc - set description for the current work item 4365 * @fmt: printf-style format string 4366 * @...: arguments for the format string 4367 * 4368 * This function can be called by a running work function to describe what 4369 * the work item is about. If the worker task gets dumped, this 4370 * information will be printed out together to help debugging. The 4371 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4372 */ 4373 void set_worker_desc(const char *fmt, ...) 4374 { 4375 struct worker *worker = current_wq_worker(); 4376 va_list args; 4377 4378 if (worker) { 4379 va_start(args, fmt); 4380 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4381 va_end(args); 4382 worker->desc_valid = true; 4383 } 4384 } 4385 4386 /** 4387 * print_worker_info - print out worker information and description 4388 * @log_lvl: the log level to use when printing 4389 * @task: target task 4390 * 4391 * If @task is a worker and currently executing a work item, print out the 4392 * name of the workqueue being serviced and worker description set with 4393 * set_worker_desc() by the currently executing work item. 4394 * 4395 * This function can be safely called on any task as long as the 4396 * task_struct itself is accessible. While safe, this function isn't 4397 * synchronized and may print out mixups or garbages of limited length. 4398 */ 4399 void print_worker_info(const char *log_lvl, struct task_struct *task) 4400 { 4401 work_func_t *fn = NULL; 4402 char name[WQ_NAME_LEN] = { }; 4403 char desc[WORKER_DESC_LEN] = { }; 4404 struct pool_workqueue *pwq = NULL; 4405 struct workqueue_struct *wq = NULL; 4406 bool desc_valid = false; 4407 struct worker *worker; 4408 4409 if (!(task->flags & PF_WQ_WORKER)) 4410 return; 4411 4412 /* 4413 * This function is called without any synchronization and @task 4414 * could be in any state. Be careful with dereferences. 4415 */ 4416 worker = probe_kthread_data(task); 4417 4418 /* 4419 * Carefully copy the associated workqueue's workfn and name. Keep 4420 * the original last '\0' in case the original contains garbage. 4421 */ 4422 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4423 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4424 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4425 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4426 4427 /* copy worker description */ 4428 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4429 if (desc_valid) 4430 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4431 4432 if (fn || name[0] || desc[0]) { 4433 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4434 if (desc[0]) 4435 pr_cont(" (%s)", desc); 4436 pr_cont("\n"); 4437 } 4438 } 4439 4440 /* 4441 * CPU hotplug. 4442 * 4443 * There are two challenges in supporting CPU hotplug. Firstly, there 4444 * are a lot of assumptions on strong associations among work, pwq and 4445 * pool which make migrating pending and scheduled works very 4446 * difficult to implement without impacting hot paths. Secondly, 4447 * worker pools serve mix of short, long and very long running works making 4448 * blocked draining impractical. 4449 * 4450 * This is solved by allowing the pools to be disassociated from the CPU 4451 * running as an unbound one and allowing it to be reattached later if the 4452 * cpu comes back online. 4453 */ 4454 4455 static void wq_unbind_fn(struct work_struct *work) 4456 { 4457 int cpu = smp_processor_id(); 4458 struct worker_pool *pool; 4459 struct worker *worker; 4460 4461 for_each_cpu_worker_pool(pool, cpu) { 4462 mutex_lock(&pool->attach_mutex); 4463 spin_lock_irq(&pool->lock); 4464 4465 /* 4466 * We've blocked all attach/detach operations. Make all workers 4467 * unbound and set DISASSOCIATED. Before this, all workers 4468 * except for the ones which are still executing works from 4469 * before the last CPU down must be on the cpu. After 4470 * this, they may become diasporas. 4471 */ 4472 for_each_pool_worker(worker, pool) 4473 worker->flags |= WORKER_UNBOUND; 4474 4475 pool->flags |= POOL_DISASSOCIATED; 4476 4477 spin_unlock_irq(&pool->lock); 4478 mutex_unlock(&pool->attach_mutex); 4479 4480 /* 4481 * Call schedule() so that we cross rq->lock and thus can 4482 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4483 * This is necessary as scheduler callbacks may be invoked 4484 * from other cpus. 4485 */ 4486 schedule(); 4487 4488 /* 4489 * Sched callbacks are disabled now. Zap nr_running. 4490 * After this, nr_running stays zero and need_more_worker() 4491 * and keep_working() are always true as long as the 4492 * worklist is not empty. This pool now behaves as an 4493 * unbound (in terms of concurrency management) pool which 4494 * are served by workers tied to the pool. 4495 */ 4496 atomic_set(&pool->nr_running, 0); 4497 4498 /* 4499 * With concurrency management just turned off, a busy 4500 * worker blocking could lead to lengthy stalls. Kick off 4501 * unbound chain execution of currently pending work items. 4502 */ 4503 spin_lock_irq(&pool->lock); 4504 wake_up_worker(pool); 4505 spin_unlock_irq(&pool->lock); 4506 } 4507 } 4508 4509 /** 4510 * rebind_workers - rebind all workers of a pool to the associated CPU 4511 * @pool: pool of interest 4512 * 4513 * @pool->cpu is coming online. Rebind all workers to the CPU. 4514 */ 4515 static void rebind_workers(struct worker_pool *pool) 4516 { 4517 struct worker *worker; 4518 4519 lockdep_assert_held(&pool->attach_mutex); 4520 4521 /* 4522 * Restore CPU affinity of all workers. As all idle workers should 4523 * be on the run-queue of the associated CPU before any local 4524 * wake-ups for concurrency management happen, restore CPU affinty 4525 * of all workers first and then clear UNBOUND. As we're called 4526 * from CPU_ONLINE, the following shouldn't fail. 4527 */ 4528 for_each_pool_worker(worker, pool) 4529 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4530 pool->attrs->cpumask) < 0); 4531 4532 spin_lock_irq(&pool->lock); 4533 pool->flags &= ~POOL_DISASSOCIATED; 4534 4535 for_each_pool_worker(worker, pool) { 4536 unsigned int worker_flags = worker->flags; 4537 4538 /* 4539 * A bound idle worker should actually be on the runqueue 4540 * of the associated CPU for local wake-ups targeting it to 4541 * work. Kick all idle workers so that they migrate to the 4542 * associated CPU. Doing this in the same loop as 4543 * replacing UNBOUND with REBOUND is safe as no worker will 4544 * be bound before @pool->lock is released. 4545 */ 4546 if (worker_flags & WORKER_IDLE) 4547 wake_up_process(worker->task); 4548 4549 /* 4550 * We want to clear UNBOUND but can't directly call 4551 * worker_clr_flags() or adjust nr_running. Atomically 4552 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4553 * @worker will clear REBOUND using worker_clr_flags() when 4554 * it initiates the next execution cycle thus restoring 4555 * concurrency management. Note that when or whether 4556 * @worker clears REBOUND doesn't affect correctness. 4557 * 4558 * ACCESS_ONCE() is necessary because @worker->flags may be 4559 * tested without holding any lock in 4560 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4561 * fail incorrectly leading to premature concurrency 4562 * management operations. 4563 */ 4564 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4565 worker_flags |= WORKER_REBOUND; 4566 worker_flags &= ~WORKER_UNBOUND; 4567 ACCESS_ONCE(worker->flags) = worker_flags; 4568 } 4569 4570 spin_unlock_irq(&pool->lock); 4571 } 4572 4573 /** 4574 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4575 * @pool: unbound pool of interest 4576 * @cpu: the CPU which is coming up 4577 * 4578 * An unbound pool may end up with a cpumask which doesn't have any online 4579 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4580 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4581 * online CPU before, cpus_allowed of all its workers should be restored. 4582 */ 4583 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4584 { 4585 static cpumask_t cpumask; 4586 struct worker *worker; 4587 4588 lockdep_assert_held(&pool->attach_mutex); 4589 4590 /* is @cpu allowed for @pool? */ 4591 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4592 return; 4593 4594 /* is @cpu the only online CPU? */ 4595 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4596 if (cpumask_weight(&cpumask) != 1) 4597 return; 4598 4599 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4600 for_each_pool_worker(worker, pool) 4601 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4602 pool->attrs->cpumask) < 0); 4603 } 4604 4605 /* 4606 * Workqueues should be brought up before normal priority CPU notifiers. 4607 * This will be registered high priority CPU notifier. 4608 */ 4609 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4610 unsigned long action, 4611 void *hcpu) 4612 { 4613 int cpu = (unsigned long)hcpu; 4614 struct worker_pool *pool; 4615 struct workqueue_struct *wq; 4616 int pi; 4617 4618 switch (action & ~CPU_TASKS_FROZEN) { 4619 case CPU_UP_PREPARE: 4620 for_each_cpu_worker_pool(pool, cpu) { 4621 if (pool->nr_workers) 4622 continue; 4623 if (!create_worker(pool)) 4624 return NOTIFY_BAD; 4625 } 4626 break; 4627 4628 case CPU_DOWN_FAILED: 4629 case CPU_ONLINE: 4630 mutex_lock(&wq_pool_mutex); 4631 4632 for_each_pool(pool, pi) { 4633 mutex_lock(&pool->attach_mutex); 4634 4635 if (pool->cpu == cpu) 4636 rebind_workers(pool); 4637 else if (pool->cpu < 0) 4638 restore_unbound_workers_cpumask(pool, cpu); 4639 4640 mutex_unlock(&pool->attach_mutex); 4641 } 4642 4643 /* update NUMA affinity of unbound workqueues */ 4644 list_for_each_entry(wq, &workqueues, list) 4645 wq_update_unbound_numa(wq, cpu, true); 4646 4647 mutex_unlock(&wq_pool_mutex); 4648 break; 4649 } 4650 return NOTIFY_OK; 4651 } 4652 4653 /* 4654 * Workqueues should be brought down after normal priority CPU notifiers. 4655 * This will be registered as low priority CPU notifier. 4656 */ 4657 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4658 unsigned long action, 4659 void *hcpu) 4660 { 4661 int cpu = (unsigned long)hcpu; 4662 struct work_struct unbind_work; 4663 struct workqueue_struct *wq; 4664 4665 switch (action & ~CPU_TASKS_FROZEN) { 4666 case CPU_DOWN_PREPARE: 4667 /* unbinding per-cpu workers should happen on the local CPU */ 4668 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4669 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4670 4671 /* update NUMA affinity of unbound workqueues */ 4672 mutex_lock(&wq_pool_mutex); 4673 list_for_each_entry(wq, &workqueues, list) 4674 wq_update_unbound_numa(wq, cpu, false); 4675 mutex_unlock(&wq_pool_mutex); 4676 4677 /* wait for per-cpu unbinding to finish */ 4678 flush_work(&unbind_work); 4679 destroy_work_on_stack(&unbind_work); 4680 break; 4681 } 4682 return NOTIFY_OK; 4683 } 4684 4685 #ifdef CONFIG_SMP 4686 4687 struct work_for_cpu { 4688 struct work_struct work; 4689 long (*fn)(void *); 4690 void *arg; 4691 long ret; 4692 }; 4693 4694 static void work_for_cpu_fn(struct work_struct *work) 4695 { 4696 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4697 4698 wfc->ret = wfc->fn(wfc->arg); 4699 } 4700 4701 /** 4702 * work_on_cpu - run a function in user context on a particular cpu 4703 * @cpu: the cpu to run on 4704 * @fn: the function to run 4705 * @arg: the function arg 4706 * 4707 * It is up to the caller to ensure that the cpu doesn't go offline. 4708 * The caller must not hold any locks which would prevent @fn from completing. 4709 * 4710 * Return: The value @fn returns. 4711 */ 4712 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4713 { 4714 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4715 4716 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4717 schedule_work_on(cpu, &wfc.work); 4718 flush_work(&wfc.work); 4719 destroy_work_on_stack(&wfc.work); 4720 return wfc.ret; 4721 } 4722 EXPORT_SYMBOL_GPL(work_on_cpu); 4723 #endif /* CONFIG_SMP */ 4724 4725 #ifdef CONFIG_FREEZER 4726 4727 /** 4728 * freeze_workqueues_begin - begin freezing workqueues 4729 * 4730 * Start freezing workqueues. After this function returns, all freezable 4731 * workqueues will queue new works to their delayed_works list instead of 4732 * pool->worklist. 4733 * 4734 * CONTEXT: 4735 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4736 */ 4737 void freeze_workqueues_begin(void) 4738 { 4739 struct workqueue_struct *wq; 4740 struct pool_workqueue *pwq; 4741 4742 mutex_lock(&wq_pool_mutex); 4743 4744 WARN_ON_ONCE(workqueue_freezing); 4745 workqueue_freezing = true; 4746 4747 list_for_each_entry(wq, &workqueues, list) { 4748 mutex_lock(&wq->mutex); 4749 for_each_pwq(pwq, wq) 4750 pwq_adjust_max_active(pwq); 4751 mutex_unlock(&wq->mutex); 4752 } 4753 4754 mutex_unlock(&wq_pool_mutex); 4755 } 4756 4757 /** 4758 * freeze_workqueues_busy - are freezable workqueues still busy? 4759 * 4760 * Check whether freezing is complete. This function must be called 4761 * between freeze_workqueues_begin() and thaw_workqueues(). 4762 * 4763 * CONTEXT: 4764 * Grabs and releases wq_pool_mutex. 4765 * 4766 * Return: 4767 * %true if some freezable workqueues are still busy. %false if freezing 4768 * is complete. 4769 */ 4770 bool freeze_workqueues_busy(void) 4771 { 4772 bool busy = false; 4773 struct workqueue_struct *wq; 4774 struct pool_workqueue *pwq; 4775 4776 mutex_lock(&wq_pool_mutex); 4777 4778 WARN_ON_ONCE(!workqueue_freezing); 4779 4780 list_for_each_entry(wq, &workqueues, list) { 4781 if (!(wq->flags & WQ_FREEZABLE)) 4782 continue; 4783 /* 4784 * nr_active is monotonically decreasing. It's safe 4785 * to peek without lock. 4786 */ 4787 rcu_read_lock_sched(); 4788 for_each_pwq(pwq, wq) { 4789 WARN_ON_ONCE(pwq->nr_active < 0); 4790 if (pwq->nr_active) { 4791 busy = true; 4792 rcu_read_unlock_sched(); 4793 goto out_unlock; 4794 } 4795 } 4796 rcu_read_unlock_sched(); 4797 } 4798 out_unlock: 4799 mutex_unlock(&wq_pool_mutex); 4800 return busy; 4801 } 4802 4803 /** 4804 * thaw_workqueues - thaw workqueues 4805 * 4806 * Thaw workqueues. Normal queueing is restored and all collected 4807 * frozen works are transferred to their respective pool worklists. 4808 * 4809 * CONTEXT: 4810 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4811 */ 4812 void thaw_workqueues(void) 4813 { 4814 struct workqueue_struct *wq; 4815 struct pool_workqueue *pwq; 4816 4817 mutex_lock(&wq_pool_mutex); 4818 4819 if (!workqueue_freezing) 4820 goto out_unlock; 4821 4822 workqueue_freezing = false; 4823 4824 /* restore max_active and repopulate worklist */ 4825 list_for_each_entry(wq, &workqueues, list) { 4826 mutex_lock(&wq->mutex); 4827 for_each_pwq(pwq, wq) 4828 pwq_adjust_max_active(pwq); 4829 mutex_unlock(&wq->mutex); 4830 } 4831 4832 out_unlock: 4833 mutex_unlock(&wq_pool_mutex); 4834 } 4835 #endif /* CONFIG_FREEZER */ 4836 4837 static void __init wq_numa_init(void) 4838 { 4839 cpumask_var_t *tbl; 4840 int node, cpu; 4841 4842 if (num_possible_nodes() <= 1) 4843 return; 4844 4845 if (wq_disable_numa) { 4846 pr_info("workqueue: NUMA affinity support disabled\n"); 4847 return; 4848 } 4849 4850 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4851 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4852 4853 /* 4854 * We want masks of possible CPUs of each node which isn't readily 4855 * available. Build one from cpu_to_node() which should have been 4856 * fully initialized by now. 4857 */ 4858 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 4859 BUG_ON(!tbl); 4860 4861 for_each_node(node) 4862 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4863 node_online(node) ? node : NUMA_NO_NODE)); 4864 4865 for_each_possible_cpu(cpu) { 4866 node = cpu_to_node(cpu); 4867 if (WARN_ON(node == NUMA_NO_NODE)) { 4868 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4869 /* happens iff arch is bonkers, let's just proceed */ 4870 return; 4871 } 4872 cpumask_set_cpu(cpu, tbl[node]); 4873 } 4874 4875 wq_numa_possible_cpumask = tbl; 4876 wq_numa_enabled = true; 4877 } 4878 4879 static int __init init_workqueues(void) 4880 { 4881 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 4882 int i, cpu; 4883 4884 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 4885 4886 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 4887 4888 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 4889 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 4890 4891 wq_numa_init(); 4892 4893 /* initialize CPU pools */ 4894 for_each_possible_cpu(cpu) { 4895 struct worker_pool *pool; 4896 4897 i = 0; 4898 for_each_cpu_worker_pool(pool, cpu) { 4899 BUG_ON(init_worker_pool(pool)); 4900 pool->cpu = cpu; 4901 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 4902 pool->attrs->nice = std_nice[i++]; 4903 pool->node = cpu_to_node(cpu); 4904 4905 /* alloc pool ID */ 4906 mutex_lock(&wq_pool_mutex); 4907 BUG_ON(worker_pool_assign_id(pool)); 4908 mutex_unlock(&wq_pool_mutex); 4909 } 4910 } 4911 4912 /* create the initial worker */ 4913 for_each_online_cpu(cpu) { 4914 struct worker_pool *pool; 4915 4916 for_each_cpu_worker_pool(pool, cpu) { 4917 pool->flags &= ~POOL_DISASSOCIATED; 4918 BUG_ON(!create_worker(pool)); 4919 } 4920 } 4921 4922 /* create default unbound and ordered wq attrs */ 4923 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 4924 struct workqueue_attrs *attrs; 4925 4926 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4927 attrs->nice = std_nice[i]; 4928 unbound_std_wq_attrs[i] = attrs; 4929 4930 /* 4931 * An ordered wq should have only one pwq as ordering is 4932 * guaranteed by max_active which is enforced by pwqs. 4933 * Turn off NUMA so that dfl_pwq is used for all nodes. 4934 */ 4935 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4936 attrs->nice = std_nice[i]; 4937 attrs->no_numa = true; 4938 ordered_wq_attrs[i] = attrs; 4939 } 4940 4941 system_wq = alloc_workqueue("events", 0, 0); 4942 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 4943 system_long_wq = alloc_workqueue("events_long", 0, 0); 4944 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 4945 WQ_UNBOUND_MAX_ACTIVE); 4946 system_freezable_wq = alloc_workqueue("events_freezable", 4947 WQ_FREEZABLE, 0); 4948 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 4949 WQ_POWER_EFFICIENT, 0); 4950 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 4951 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 4952 0); 4953 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 4954 !system_unbound_wq || !system_freezable_wq || 4955 !system_power_efficient_wq || 4956 !system_freezable_power_efficient_wq); 4957 return 0; 4958 } 4959 early_initcall(init_workqueues); 4960