1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 83 /* call for help after 10ms 84 (min two ticks) */ 85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 86 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 88 89 /* 90 * Rescue workers are used only on emergencies and shared by 91 * all cpus. Give -20. 92 */ 93 RESCUER_NICE_LEVEL = -20, 94 }; 95 96 /* 97 * Structure fields follow one of the following exclusion rules. 98 * 99 * I: Modifiable by initialization/destruction paths and read-only for 100 * everyone else. 101 * 102 * P: Preemption protected. Disabling preemption is enough and should 103 * only be modified and accessed from the local cpu. 104 * 105 * L: gcwq->lock protected. Access with gcwq->lock held. 106 * 107 * X: During normal operation, modification requires gcwq->lock and 108 * should be done only from local cpu. Either disabling preemption 109 * on local cpu or grabbing gcwq->lock is enough for read access. 110 * If GCWQ_DISASSOCIATED is set, it's identical to L. 111 * 112 * F: wq->flush_mutex protected. 113 * 114 * W: workqueue_lock protected. 115 */ 116 117 struct global_cwq; 118 119 /* 120 * The poor guys doing the actual heavy lifting. All on-duty workers 121 * are either serving the manager role, on idle list or on busy hash. 122 */ 123 struct worker { 124 /* on idle list while idle, on busy hash table while busy */ 125 union { 126 struct list_head entry; /* L: while idle */ 127 struct hlist_node hentry; /* L: while busy */ 128 }; 129 130 struct work_struct *current_work; /* L: work being processed */ 131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 132 struct list_head scheduled; /* L: scheduled works */ 133 struct task_struct *task; /* I: worker task */ 134 struct global_cwq *gcwq; /* I: the associated gcwq */ 135 /* 64 bytes boundary on 64bit, 32 on 32bit */ 136 unsigned long last_active; /* L: last active timestamp */ 137 unsigned int flags; /* X: flags */ 138 int id; /* I: worker id */ 139 struct work_struct rebind_work; /* L: rebind worker to cpu */ 140 }; 141 142 /* 143 * Global per-cpu workqueue. There's one and only one for each cpu 144 * and all works are queued and processed here regardless of their 145 * target workqueues. 146 */ 147 struct global_cwq { 148 spinlock_t lock; /* the gcwq lock */ 149 struct list_head worklist; /* L: list of pending works */ 150 unsigned int cpu; /* I: the associated cpu */ 151 unsigned int flags; /* L: GCWQ_* flags */ 152 153 int nr_workers; /* L: total number of workers */ 154 int nr_idle; /* L: currently idle ones */ 155 156 /* workers are chained either in the idle_list or busy_hash */ 157 struct list_head idle_list; /* X: list of idle workers */ 158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 159 /* L: hash of busy workers */ 160 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 163 164 struct ida worker_ida; /* L: for worker IDs */ 165 166 struct task_struct *trustee; /* L: for gcwq shutdown */ 167 unsigned int trustee_state; /* L: trustee state */ 168 wait_queue_head_t trustee_wait; /* trustee wait */ 169 struct worker *first_idle; /* L: first idle worker */ 170 } ____cacheline_aligned_in_smp; 171 172 /* 173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 174 * work_struct->data are used for flags and thus cwqs need to be 175 * aligned at two's power of the number of flag bits. 176 */ 177 struct cpu_workqueue_struct { 178 struct global_cwq *gcwq; /* I: the associated gcwq */ 179 struct workqueue_struct *wq; /* I: the owning workqueue */ 180 int work_color; /* L: current color */ 181 int flush_color; /* L: flushing color */ 182 int nr_in_flight[WORK_NR_COLORS]; 183 /* L: nr of in_flight works */ 184 int nr_active; /* L: nr of active works */ 185 int max_active; /* L: max active works */ 186 struct list_head delayed_works; /* L: delayed works */ 187 }; 188 189 /* 190 * Structure used to wait for workqueue flush. 191 */ 192 struct wq_flusher { 193 struct list_head list; /* F: list of flushers */ 194 int flush_color; /* F: flush color waiting for */ 195 struct completion done; /* flush completion */ 196 }; 197 198 /* 199 * All cpumasks are assumed to be always set on UP and thus can't be 200 * used to determine whether there's something to be done. 201 */ 202 #ifdef CONFIG_SMP 203 typedef cpumask_var_t mayday_mask_t; 204 #define mayday_test_and_set_cpu(cpu, mask) \ 205 cpumask_test_and_set_cpu((cpu), (mask)) 206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 209 #define free_mayday_mask(mask) free_cpumask_var((mask)) 210 #else 211 typedef unsigned long mayday_mask_t; 212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 215 #define alloc_mayday_mask(maskp, gfp) true 216 #define free_mayday_mask(mask) do { } while (0) 217 #endif 218 219 /* 220 * The externally visible workqueue abstraction is an array of 221 * per-CPU workqueues: 222 */ 223 struct workqueue_struct { 224 unsigned int flags; /* W: WQ_* flags */ 225 union { 226 struct cpu_workqueue_struct __percpu *pcpu; 227 struct cpu_workqueue_struct *single; 228 unsigned long v; 229 } cpu_wq; /* I: cwq's */ 230 struct list_head list; /* W: list of all workqueues */ 231 232 struct mutex flush_mutex; /* protects wq flushing */ 233 int work_color; /* F: current work color */ 234 int flush_color; /* F: current flush color */ 235 atomic_t nr_cwqs_to_flush; /* flush in progress */ 236 struct wq_flusher *first_flusher; /* F: first flusher */ 237 struct list_head flusher_queue; /* F: flush waiters */ 238 struct list_head flusher_overflow; /* F: flush overflow list */ 239 240 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 241 struct worker *rescuer; /* I: rescue worker */ 242 243 int nr_drainers; /* W: drain in progress */ 244 int saved_max_active; /* W: saved cwq max_active */ 245 #ifdef CONFIG_LOCKDEP 246 struct lockdep_map lockdep_map; 247 #endif 248 char name[]; /* I: workqueue name */ 249 }; 250 251 struct workqueue_struct *system_wq __read_mostly; 252 struct workqueue_struct *system_long_wq __read_mostly; 253 struct workqueue_struct *system_nrt_wq __read_mostly; 254 struct workqueue_struct *system_unbound_wq __read_mostly; 255 struct workqueue_struct *system_freezable_wq __read_mostly; 256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly; 257 EXPORT_SYMBOL_GPL(system_wq); 258 EXPORT_SYMBOL_GPL(system_long_wq); 259 EXPORT_SYMBOL_GPL(system_nrt_wq); 260 EXPORT_SYMBOL_GPL(system_unbound_wq); 261 EXPORT_SYMBOL_GPL(system_freezable_wq); 262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq); 263 264 #define CREATE_TRACE_POINTS 265 #include <trace/events/workqueue.h> 266 267 #define for_each_busy_worker(worker, i, pos, gcwq) \ 268 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 269 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 270 271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 272 unsigned int sw) 273 { 274 if (cpu < nr_cpu_ids) { 275 if (sw & 1) { 276 cpu = cpumask_next(cpu, mask); 277 if (cpu < nr_cpu_ids) 278 return cpu; 279 } 280 if (sw & 2) 281 return WORK_CPU_UNBOUND; 282 } 283 return WORK_CPU_NONE; 284 } 285 286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 287 struct workqueue_struct *wq) 288 { 289 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 290 } 291 292 /* 293 * CPU iterators 294 * 295 * An extra gcwq is defined for an invalid cpu number 296 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 297 * specific CPU. The following iterators are similar to 298 * for_each_*_cpu() iterators but also considers the unbound gcwq. 299 * 300 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 301 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 302 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 303 * WORK_CPU_UNBOUND for unbound workqueues 304 */ 305 #define for_each_gcwq_cpu(cpu) \ 306 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 307 (cpu) < WORK_CPU_NONE; \ 308 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 309 310 #define for_each_online_gcwq_cpu(cpu) \ 311 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 312 (cpu) < WORK_CPU_NONE; \ 313 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 314 315 #define for_each_cwq_cpu(cpu, wq) \ 316 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 317 (cpu) < WORK_CPU_NONE; \ 318 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 319 320 #ifdef CONFIG_DEBUG_OBJECTS_WORK 321 322 static struct debug_obj_descr work_debug_descr; 323 324 static void *work_debug_hint(void *addr) 325 { 326 return ((struct work_struct *) addr)->func; 327 } 328 329 /* 330 * fixup_init is called when: 331 * - an active object is initialized 332 */ 333 static int work_fixup_init(void *addr, enum debug_obj_state state) 334 { 335 struct work_struct *work = addr; 336 337 switch (state) { 338 case ODEBUG_STATE_ACTIVE: 339 cancel_work_sync(work); 340 debug_object_init(work, &work_debug_descr); 341 return 1; 342 default: 343 return 0; 344 } 345 } 346 347 /* 348 * fixup_activate is called when: 349 * - an active object is activated 350 * - an unknown object is activated (might be a statically initialized object) 351 */ 352 static int work_fixup_activate(void *addr, enum debug_obj_state state) 353 { 354 struct work_struct *work = addr; 355 356 switch (state) { 357 358 case ODEBUG_STATE_NOTAVAILABLE: 359 /* 360 * This is not really a fixup. The work struct was 361 * statically initialized. We just make sure that it 362 * is tracked in the object tracker. 363 */ 364 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 365 debug_object_init(work, &work_debug_descr); 366 debug_object_activate(work, &work_debug_descr); 367 return 0; 368 } 369 WARN_ON_ONCE(1); 370 return 0; 371 372 case ODEBUG_STATE_ACTIVE: 373 WARN_ON(1); 374 375 default: 376 return 0; 377 } 378 } 379 380 /* 381 * fixup_free is called when: 382 * - an active object is freed 383 */ 384 static int work_fixup_free(void *addr, enum debug_obj_state state) 385 { 386 struct work_struct *work = addr; 387 388 switch (state) { 389 case ODEBUG_STATE_ACTIVE: 390 cancel_work_sync(work); 391 debug_object_free(work, &work_debug_descr); 392 return 1; 393 default: 394 return 0; 395 } 396 } 397 398 static struct debug_obj_descr work_debug_descr = { 399 .name = "work_struct", 400 .debug_hint = work_debug_hint, 401 .fixup_init = work_fixup_init, 402 .fixup_activate = work_fixup_activate, 403 .fixup_free = work_fixup_free, 404 }; 405 406 static inline void debug_work_activate(struct work_struct *work) 407 { 408 debug_object_activate(work, &work_debug_descr); 409 } 410 411 static inline void debug_work_deactivate(struct work_struct *work) 412 { 413 debug_object_deactivate(work, &work_debug_descr); 414 } 415 416 void __init_work(struct work_struct *work, int onstack) 417 { 418 if (onstack) 419 debug_object_init_on_stack(work, &work_debug_descr); 420 else 421 debug_object_init(work, &work_debug_descr); 422 } 423 EXPORT_SYMBOL_GPL(__init_work); 424 425 void destroy_work_on_stack(struct work_struct *work) 426 { 427 debug_object_free(work, &work_debug_descr); 428 } 429 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 430 431 #else 432 static inline void debug_work_activate(struct work_struct *work) { } 433 static inline void debug_work_deactivate(struct work_struct *work) { } 434 #endif 435 436 /* Serializes the accesses to the list of workqueues. */ 437 static DEFINE_SPINLOCK(workqueue_lock); 438 static LIST_HEAD(workqueues); 439 static bool workqueue_freezing; /* W: have wqs started freezing? */ 440 441 /* 442 * The almighty global cpu workqueues. nr_running is the only field 443 * which is expected to be used frequently by other cpus via 444 * try_to_wake_up(). Put it in a separate cacheline. 445 */ 446 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 448 449 /* 450 * Global cpu workqueue and nr_running counter for unbound gcwq. The 451 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 452 * workers have WORKER_UNBOUND set. 453 */ 454 static struct global_cwq unbound_global_cwq; 455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 456 457 static int worker_thread(void *__worker); 458 459 static struct global_cwq *get_gcwq(unsigned int cpu) 460 { 461 if (cpu != WORK_CPU_UNBOUND) 462 return &per_cpu(global_cwq, cpu); 463 else 464 return &unbound_global_cwq; 465 } 466 467 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 468 { 469 if (cpu != WORK_CPU_UNBOUND) 470 return &per_cpu(gcwq_nr_running, cpu); 471 else 472 return &unbound_gcwq_nr_running; 473 } 474 475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 476 struct workqueue_struct *wq) 477 { 478 if (!(wq->flags & WQ_UNBOUND)) { 479 if (likely(cpu < nr_cpu_ids)) 480 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 481 } else if (likely(cpu == WORK_CPU_UNBOUND)) 482 return wq->cpu_wq.single; 483 return NULL; 484 } 485 486 static unsigned int work_color_to_flags(int color) 487 { 488 return color << WORK_STRUCT_COLOR_SHIFT; 489 } 490 491 static int get_work_color(struct work_struct *work) 492 { 493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 494 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 495 } 496 497 static int work_next_color(int color) 498 { 499 return (color + 1) % WORK_NR_COLORS; 500 } 501 502 /* 503 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 504 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 505 * cleared and the work data contains the cpu number it was last on. 506 * 507 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 508 * cwq, cpu or clear work->data. These functions should only be 509 * called while the work is owned - ie. while the PENDING bit is set. 510 * 511 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 512 * corresponding to a work. gcwq is available once the work has been 513 * queued anywhere after initialization. cwq is available only from 514 * queueing until execution starts. 515 */ 516 static inline void set_work_data(struct work_struct *work, unsigned long data, 517 unsigned long flags) 518 { 519 BUG_ON(!work_pending(work)); 520 atomic_long_set(&work->data, data | flags | work_static(work)); 521 } 522 523 static void set_work_cwq(struct work_struct *work, 524 struct cpu_workqueue_struct *cwq, 525 unsigned long extra_flags) 526 { 527 set_work_data(work, (unsigned long)cwq, 528 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 529 } 530 531 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 532 { 533 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 534 } 535 536 static void clear_work_data(struct work_struct *work) 537 { 538 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 539 } 540 541 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 542 { 543 unsigned long data = atomic_long_read(&work->data); 544 545 if (data & WORK_STRUCT_CWQ) 546 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 547 else 548 return NULL; 549 } 550 551 static struct global_cwq *get_work_gcwq(struct work_struct *work) 552 { 553 unsigned long data = atomic_long_read(&work->data); 554 unsigned int cpu; 555 556 if (data & WORK_STRUCT_CWQ) 557 return ((struct cpu_workqueue_struct *) 558 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 559 560 cpu = data >> WORK_STRUCT_FLAG_BITS; 561 if (cpu == WORK_CPU_NONE) 562 return NULL; 563 564 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 565 return get_gcwq(cpu); 566 } 567 568 /* 569 * Policy functions. These define the policies on how the global 570 * worker pool is managed. Unless noted otherwise, these functions 571 * assume that they're being called with gcwq->lock held. 572 */ 573 574 static bool __need_more_worker(struct global_cwq *gcwq) 575 { 576 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 577 gcwq->flags & GCWQ_HIGHPRI_PENDING; 578 } 579 580 /* 581 * Need to wake up a worker? Called from anything but currently 582 * running workers. 583 */ 584 static bool need_more_worker(struct global_cwq *gcwq) 585 { 586 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 587 } 588 589 /* Can I start working? Called from busy but !running workers. */ 590 static bool may_start_working(struct global_cwq *gcwq) 591 { 592 return gcwq->nr_idle; 593 } 594 595 /* Do I need to keep working? Called from currently running workers. */ 596 static bool keep_working(struct global_cwq *gcwq) 597 { 598 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 599 600 return !list_empty(&gcwq->worklist) && 601 (atomic_read(nr_running) <= 1 || 602 gcwq->flags & GCWQ_HIGHPRI_PENDING); 603 } 604 605 /* Do we need a new worker? Called from manager. */ 606 static bool need_to_create_worker(struct global_cwq *gcwq) 607 { 608 return need_more_worker(gcwq) && !may_start_working(gcwq); 609 } 610 611 /* Do I need to be the manager? */ 612 static bool need_to_manage_workers(struct global_cwq *gcwq) 613 { 614 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 615 } 616 617 /* Do we have too many workers and should some go away? */ 618 static bool too_many_workers(struct global_cwq *gcwq) 619 { 620 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 621 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 622 int nr_busy = gcwq->nr_workers - nr_idle; 623 624 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 625 } 626 627 /* 628 * Wake up functions. 629 */ 630 631 /* Return the first worker. Safe with preemption disabled */ 632 static struct worker *first_worker(struct global_cwq *gcwq) 633 { 634 if (unlikely(list_empty(&gcwq->idle_list))) 635 return NULL; 636 637 return list_first_entry(&gcwq->idle_list, struct worker, entry); 638 } 639 640 /** 641 * wake_up_worker - wake up an idle worker 642 * @gcwq: gcwq to wake worker for 643 * 644 * Wake up the first idle worker of @gcwq. 645 * 646 * CONTEXT: 647 * spin_lock_irq(gcwq->lock). 648 */ 649 static void wake_up_worker(struct global_cwq *gcwq) 650 { 651 struct worker *worker = first_worker(gcwq); 652 653 if (likely(worker)) 654 wake_up_process(worker->task); 655 } 656 657 /** 658 * wq_worker_waking_up - a worker is waking up 659 * @task: task waking up 660 * @cpu: CPU @task is waking up to 661 * 662 * This function is called during try_to_wake_up() when a worker is 663 * being awoken. 664 * 665 * CONTEXT: 666 * spin_lock_irq(rq->lock) 667 */ 668 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 669 { 670 struct worker *worker = kthread_data(task); 671 672 if (!(worker->flags & WORKER_NOT_RUNNING)) 673 atomic_inc(get_gcwq_nr_running(cpu)); 674 } 675 676 /** 677 * wq_worker_sleeping - a worker is going to sleep 678 * @task: task going to sleep 679 * @cpu: CPU in question, must be the current CPU number 680 * 681 * This function is called during schedule() when a busy worker is 682 * going to sleep. Worker on the same cpu can be woken up by 683 * returning pointer to its task. 684 * 685 * CONTEXT: 686 * spin_lock_irq(rq->lock) 687 * 688 * RETURNS: 689 * Worker task on @cpu to wake up, %NULL if none. 690 */ 691 struct task_struct *wq_worker_sleeping(struct task_struct *task, 692 unsigned int cpu) 693 { 694 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 695 struct global_cwq *gcwq = get_gcwq(cpu); 696 atomic_t *nr_running = get_gcwq_nr_running(cpu); 697 698 if (worker->flags & WORKER_NOT_RUNNING) 699 return NULL; 700 701 /* this can only happen on the local cpu */ 702 BUG_ON(cpu != raw_smp_processor_id()); 703 704 /* 705 * The counterpart of the following dec_and_test, implied mb, 706 * worklist not empty test sequence is in insert_work(). 707 * Please read comment there. 708 * 709 * NOT_RUNNING is clear. This means that trustee is not in 710 * charge and we're running on the local cpu w/ rq lock held 711 * and preemption disabled, which in turn means that none else 712 * could be manipulating idle_list, so dereferencing idle_list 713 * without gcwq lock is safe. 714 */ 715 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 716 to_wakeup = first_worker(gcwq); 717 return to_wakeup ? to_wakeup->task : NULL; 718 } 719 720 /** 721 * worker_set_flags - set worker flags and adjust nr_running accordingly 722 * @worker: self 723 * @flags: flags to set 724 * @wakeup: wakeup an idle worker if necessary 725 * 726 * Set @flags in @worker->flags and adjust nr_running accordingly. If 727 * nr_running becomes zero and @wakeup is %true, an idle worker is 728 * woken up. 729 * 730 * CONTEXT: 731 * spin_lock_irq(gcwq->lock) 732 */ 733 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 734 bool wakeup) 735 { 736 struct global_cwq *gcwq = worker->gcwq; 737 738 WARN_ON_ONCE(worker->task != current); 739 740 /* 741 * If transitioning into NOT_RUNNING, adjust nr_running and 742 * wake up an idle worker as necessary if requested by 743 * @wakeup. 744 */ 745 if ((flags & WORKER_NOT_RUNNING) && 746 !(worker->flags & WORKER_NOT_RUNNING)) { 747 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 748 749 if (wakeup) { 750 if (atomic_dec_and_test(nr_running) && 751 !list_empty(&gcwq->worklist)) 752 wake_up_worker(gcwq); 753 } else 754 atomic_dec(nr_running); 755 } 756 757 worker->flags |= flags; 758 } 759 760 /** 761 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 762 * @worker: self 763 * @flags: flags to clear 764 * 765 * Clear @flags in @worker->flags and adjust nr_running accordingly. 766 * 767 * CONTEXT: 768 * spin_lock_irq(gcwq->lock) 769 */ 770 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 771 { 772 struct global_cwq *gcwq = worker->gcwq; 773 unsigned int oflags = worker->flags; 774 775 WARN_ON_ONCE(worker->task != current); 776 777 worker->flags &= ~flags; 778 779 /* 780 * If transitioning out of NOT_RUNNING, increment nr_running. Note 781 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 782 * of multiple flags, not a single flag. 783 */ 784 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 785 if (!(worker->flags & WORKER_NOT_RUNNING)) 786 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 787 } 788 789 /** 790 * busy_worker_head - return the busy hash head for a work 791 * @gcwq: gcwq of interest 792 * @work: work to be hashed 793 * 794 * Return hash head of @gcwq for @work. 795 * 796 * CONTEXT: 797 * spin_lock_irq(gcwq->lock). 798 * 799 * RETURNS: 800 * Pointer to the hash head. 801 */ 802 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 803 struct work_struct *work) 804 { 805 const int base_shift = ilog2(sizeof(struct work_struct)); 806 unsigned long v = (unsigned long)work; 807 808 /* simple shift and fold hash, do we need something better? */ 809 v >>= base_shift; 810 v += v >> BUSY_WORKER_HASH_ORDER; 811 v &= BUSY_WORKER_HASH_MASK; 812 813 return &gcwq->busy_hash[v]; 814 } 815 816 /** 817 * __find_worker_executing_work - find worker which is executing a work 818 * @gcwq: gcwq of interest 819 * @bwh: hash head as returned by busy_worker_head() 820 * @work: work to find worker for 821 * 822 * Find a worker which is executing @work on @gcwq. @bwh should be 823 * the hash head obtained by calling busy_worker_head() with the same 824 * work. 825 * 826 * CONTEXT: 827 * spin_lock_irq(gcwq->lock). 828 * 829 * RETURNS: 830 * Pointer to worker which is executing @work if found, NULL 831 * otherwise. 832 */ 833 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 834 struct hlist_head *bwh, 835 struct work_struct *work) 836 { 837 struct worker *worker; 838 struct hlist_node *tmp; 839 840 hlist_for_each_entry(worker, tmp, bwh, hentry) 841 if (worker->current_work == work) 842 return worker; 843 return NULL; 844 } 845 846 /** 847 * find_worker_executing_work - find worker which is executing a work 848 * @gcwq: gcwq of interest 849 * @work: work to find worker for 850 * 851 * Find a worker which is executing @work on @gcwq. This function is 852 * identical to __find_worker_executing_work() except that this 853 * function calculates @bwh itself. 854 * 855 * CONTEXT: 856 * spin_lock_irq(gcwq->lock). 857 * 858 * RETURNS: 859 * Pointer to worker which is executing @work if found, NULL 860 * otherwise. 861 */ 862 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 863 struct work_struct *work) 864 { 865 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 866 work); 867 } 868 869 /** 870 * gcwq_determine_ins_pos - find insertion position 871 * @gcwq: gcwq of interest 872 * @cwq: cwq a work is being queued for 873 * 874 * A work for @cwq is about to be queued on @gcwq, determine insertion 875 * position for the work. If @cwq is for HIGHPRI wq, the work is 876 * queued at the head of the queue but in FIFO order with respect to 877 * other HIGHPRI works; otherwise, at the end of the queue. This 878 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 879 * there are HIGHPRI works pending. 880 * 881 * CONTEXT: 882 * spin_lock_irq(gcwq->lock). 883 * 884 * RETURNS: 885 * Pointer to inserstion position. 886 */ 887 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 888 struct cpu_workqueue_struct *cwq) 889 { 890 struct work_struct *twork; 891 892 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 893 return &gcwq->worklist; 894 895 list_for_each_entry(twork, &gcwq->worklist, entry) { 896 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 897 898 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 899 break; 900 } 901 902 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 903 return &twork->entry; 904 } 905 906 /** 907 * insert_work - insert a work into gcwq 908 * @cwq: cwq @work belongs to 909 * @work: work to insert 910 * @head: insertion point 911 * @extra_flags: extra WORK_STRUCT_* flags to set 912 * 913 * Insert @work which belongs to @cwq into @gcwq after @head. 914 * @extra_flags is or'd to work_struct flags. 915 * 916 * CONTEXT: 917 * spin_lock_irq(gcwq->lock). 918 */ 919 static void insert_work(struct cpu_workqueue_struct *cwq, 920 struct work_struct *work, struct list_head *head, 921 unsigned int extra_flags) 922 { 923 struct global_cwq *gcwq = cwq->gcwq; 924 925 /* we own @work, set data and link */ 926 set_work_cwq(work, cwq, extra_flags); 927 928 /* 929 * Ensure that we get the right work->data if we see the 930 * result of list_add() below, see try_to_grab_pending(). 931 */ 932 smp_wmb(); 933 934 list_add_tail(&work->entry, head); 935 936 /* 937 * Ensure either worker_sched_deactivated() sees the above 938 * list_add_tail() or we see zero nr_running to avoid workers 939 * lying around lazily while there are works to be processed. 940 */ 941 smp_mb(); 942 943 if (__need_more_worker(gcwq)) 944 wake_up_worker(gcwq); 945 } 946 947 /* 948 * Test whether @work is being queued from another work executing on the 949 * same workqueue. This is rather expensive and should only be used from 950 * cold paths. 951 */ 952 static bool is_chained_work(struct workqueue_struct *wq) 953 { 954 unsigned long flags; 955 unsigned int cpu; 956 957 for_each_gcwq_cpu(cpu) { 958 struct global_cwq *gcwq = get_gcwq(cpu); 959 struct worker *worker; 960 struct hlist_node *pos; 961 int i; 962 963 spin_lock_irqsave(&gcwq->lock, flags); 964 for_each_busy_worker(worker, i, pos, gcwq) { 965 if (worker->task != current) 966 continue; 967 spin_unlock_irqrestore(&gcwq->lock, flags); 968 /* 969 * I'm @worker, no locking necessary. See if @work 970 * is headed to the same workqueue. 971 */ 972 return worker->current_cwq->wq == wq; 973 } 974 spin_unlock_irqrestore(&gcwq->lock, flags); 975 } 976 return false; 977 } 978 979 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 980 struct work_struct *work) 981 { 982 struct global_cwq *gcwq; 983 struct cpu_workqueue_struct *cwq; 984 struct list_head *worklist; 985 unsigned int work_flags; 986 unsigned long flags; 987 988 debug_work_activate(work); 989 990 /* if dying, only works from the same workqueue are allowed */ 991 if (unlikely(wq->flags & WQ_DRAINING) && 992 WARN_ON_ONCE(!is_chained_work(wq))) 993 return; 994 995 /* determine gcwq to use */ 996 if (!(wq->flags & WQ_UNBOUND)) { 997 struct global_cwq *last_gcwq; 998 999 if (unlikely(cpu == WORK_CPU_UNBOUND)) 1000 cpu = raw_smp_processor_id(); 1001 1002 /* 1003 * It's multi cpu. If @wq is non-reentrant and @work 1004 * was previously on a different cpu, it might still 1005 * be running there, in which case the work needs to 1006 * be queued on that cpu to guarantee non-reentrance. 1007 */ 1008 gcwq = get_gcwq(cpu); 1009 if (wq->flags & WQ_NON_REENTRANT && 1010 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 1011 struct worker *worker; 1012 1013 spin_lock_irqsave(&last_gcwq->lock, flags); 1014 1015 worker = find_worker_executing_work(last_gcwq, work); 1016 1017 if (worker && worker->current_cwq->wq == wq) 1018 gcwq = last_gcwq; 1019 else { 1020 /* meh... not running there, queue here */ 1021 spin_unlock_irqrestore(&last_gcwq->lock, flags); 1022 spin_lock_irqsave(&gcwq->lock, flags); 1023 } 1024 } else 1025 spin_lock_irqsave(&gcwq->lock, flags); 1026 } else { 1027 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1028 spin_lock_irqsave(&gcwq->lock, flags); 1029 } 1030 1031 /* gcwq determined, get cwq and queue */ 1032 cwq = get_cwq(gcwq->cpu, wq); 1033 trace_workqueue_queue_work(cpu, cwq, work); 1034 1035 if (WARN_ON(!list_empty(&work->entry))) { 1036 spin_unlock_irqrestore(&gcwq->lock, flags); 1037 return; 1038 } 1039 1040 cwq->nr_in_flight[cwq->work_color]++; 1041 work_flags = work_color_to_flags(cwq->work_color); 1042 1043 if (likely(cwq->nr_active < cwq->max_active)) { 1044 trace_workqueue_activate_work(work); 1045 cwq->nr_active++; 1046 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1047 } else { 1048 work_flags |= WORK_STRUCT_DELAYED; 1049 worklist = &cwq->delayed_works; 1050 } 1051 1052 insert_work(cwq, work, worklist, work_flags); 1053 1054 spin_unlock_irqrestore(&gcwq->lock, flags); 1055 } 1056 1057 /** 1058 * queue_work - queue work on a workqueue 1059 * @wq: workqueue to use 1060 * @work: work to queue 1061 * 1062 * Returns 0 if @work was already on a queue, non-zero otherwise. 1063 * 1064 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1065 * it can be processed by another CPU. 1066 */ 1067 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1068 { 1069 int ret; 1070 1071 ret = queue_work_on(get_cpu(), wq, work); 1072 put_cpu(); 1073 1074 return ret; 1075 } 1076 EXPORT_SYMBOL_GPL(queue_work); 1077 1078 /** 1079 * queue_work_on - queue work on specific cpu 1080 * @cpu: CPU number to execute work on 1081 * @wq: workqueue to use 1082 * @work: work to queue 1083 * 1084 * Returns 0 if @work was already on a queue, non-zero otherwise. 1085 * 1086 * We queue the work to a specific CPU, the caller must ensure it 1087 * can't go away. 1088 */ 1089 int 1090 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1091 { 1092 int ret = 0; 1093 1094 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1095 __queue_work(cpu, wq, work); 1096 ret = 1; 1097 } 1098 return ret; 1099 } 1100 EXPORT_SYMBOL_GPL(queue_work_on); 1101 1102 static void delayed_work_timer_fn(unsigned long __data) 1103 { 1104 struct delayed_work *dwork = (struct delayed_work *)__data; 1105 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1106 1107 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1108 } 1109 1110 /** 1111 * queue_delayed_work - queue work on a workqueue after delay 1112 * @wq: workqueue to use 1113 * @dwork: delayable work to queue 1114 * @delay: number of jiffies to wait before queueing 1115 * 1116 * Returns 0 if @work was already on a queue, non-zero otherwise. 1117 */ 1118 int queue_delayed_work(struct workqueue_struct *wq, 1119 struct delayed_work *dwork, unsigned long delay) 1120 { 1121 if (delay == 0) 1122 return queue_work(wq, &dwork->work); 1123 1124 return queue_delayed_work_on(-1, wq, dwork, delay); 1125 } 1126 EXPORT_SYMBOL_GPL(queue_delayed_work); 1127 1128 /** 1129 * queue_delayed_work_on - queue work on specific CPU after delay 1130 * @cpu: CPU number to execute work on 1131 * @wq: workqueue to use 1132 * @dwork: work to queue 1133 * @delay: number of jiffies to wait before queueing 1134 * 1135 * Returns 0 if @work was already on a queue, non-zero otherwise. 1136 */ 1137 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1138 struct delayed_work *dwork, unsigned long delay) 1139 { 1140 int ret = 0; 1141 struct timer_list *timer = &dwork->timer; 1142 struct work_struct *work = &dwork->work; 1143 1144 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1145 unsigned int lcpu; 1146 1147 BUG_ON(timer_pending(timer)); 1148 BUG_ON(!list_empty(&work->entry)); 1149 1150 timer_stats_timer_set_start_info(&dwork->timer); 1151 1152 /* 1153 * This stores cwq for the moment, for the timer_fn. 1154 * Note that the work's gcwq is preserved to allow 1155 * reentrance detection for delayed works. 1156 */ 1157 if (!(wq->flags & WQ_UNBOUND)) { 1158 struct global_cwq *gcwq = get_work_gcwq(work); 1159 1160 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1161 lcpu = gcwq->cpu; 1162 else 1163 lcpu = raw_smp_processor_id(); 1164 } else 1165 lcpu = WORK_CPU_UNBOUND; 1166 1167 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1168 1169 timer->expires = jiffies + delay; 1170 timer->data = (unsigned long)dwork; 1171 timer->function = delayed_work_timer_fn; 1172 1173 if (unlikely(cpu >= 0)) 1174 add_timer_on(timer, cpu); 1175 else 1176 add_timer(timer); 1177 ret = 1; 1178 } 1179 return ret; 1180 } 1181 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1182 1183 /** 1184 * worker_enter_idle - enter idle state 1185 * @worker: worker which is entering idle state 1186 * 1187 * @worker is entering idle state. Update stats and idle timer if 1188 * necessary. 1189 * 1190 * LOCKING: 1191 * spin_lock_irq(gcwq->lock). 1192 */ 1193 static void worker_enter_idle(struct worker *worker) 1194 { 1195 struct global_cwq *gcwq = worker->gcwq; 1196 1197 BUG_ON(worker->flags & WORKER_IDLE); 1198 BUG_ON(!list_empty(&worker->entry) && 1199 (worker->hentry.next || worker->hentry.pprev)); 1200 1201 /* can't use worker_set_flags(), also called from start_worker() */ 1202 worker->flags |= WORKER_IDLE; 1203 gcwq->nr_idle++; 1204 worker->last_active = jiffies; 1205 1206 /* idle_list is LIFO */ 1207 list_add(&worker->entry, &gcwq->idle_list); 1208 1209 if (likely(!(worker->flags & WORKER_ROGUE))) { 1210 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1211 mod_timer(&gcwq->idle_timer, 1212 jiffies + IDLE_WORKER_TIMEOUT); 1213 } else 1214 wake_up_all(&gcwq->trustee_wait); 1215 1216 /* 1217 * Sanity check nr_running. Because trustee releases gcwq->lock 1218 * between setting %WORKER_ROGUE and zapping nr_running, the 1219 * warning may trigger spuriously. Check iff trustee is idle. 1220 */ 1221 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE && 1222 gcwq->nr_workers == gcwq->nr_idle && 1223 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1224 } 1225 1226 /** 1227 * worker_leave_idle - leave idle state 1228 * @worker: worker which is leaving idle state 1229 * 1230 * @worker is leaving idle state. Update stats. 1231 * 1232 * LOCKING: 1233 * spin_lock_irq(gcwq->lock). 1234 */ 1235 static void worker_leave_idle(struct worker *worker) 1236 { 1237 struct global_cwq *gcwq = worker->gcwq; 1238 1239 BUG_ON(!(worker->flags & WORKER_IDLE)); 1240 worker_clr_flags(worker, WORKER_IDLE); 1241 gcwq->nr_idle--; 1242 list_del_init(&worker->entry); 1243 } 1244 1245 /** 1246 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1247 * @worker: self 1248 * 1249 * Works which are scheduled while the cpu is online must at least be 1250 * scheduled to a worker which is bound to the cpu so that if they are 1251 * flushed from cpu callbacks while cpu is going down, they are 1252 * guaranteed to execute on the cpu. 1253 * 1254 * This function is to be used by rogue workers and rescuers to bind 1255 * themselves to the target cpu and may race with cpu going down or 1256 * coming online. kthread_bind() can't be used because it may put the 1257 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1258 * verbatim as it's best effort and blocking and gcwq may be 1259 * [dis]associated in the meantime. 1260 * 1261 * This function tries set_cpus_allowed() and locks gcwq and verifies 1262 * the binding against GCWQ_DISASSOCIATED which is set during 1263 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1264 * idle state or fetches works without dropping lock, it can guarantee 1265 * the scheduling requirement described in the first paragraph. 1266 * 1267 * CONTEXT: 1268 * Might sleep. Called without any lock but returns with gcwq->lock 1269 * held. 1270 * 1271 * RETURNS: 1272 * %true if the associated gcwq is online (@worker is successfully 1273 * bound), %false if offline. 1274 */ 1275 static bool worker_maybe_bind_and_lock(struct worker *worker) 1276 __acquires(&gcwq->lock) 1277 { 1278 struct global_cwq *gcwq = worker->gcwq; 1279 struct task_struct *task = worker->task; 1280 1281 while (true) { 1282 /* 1283 * The following call may fail, succeed or succeed 1284 * without actually migrating the task to the cpu if 1285 * it races with cpu hotunplug operation. Verify 1286 * against GCWQ_DISASSOCIATED. 1287 */ 1288 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1289 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1290 1291 spin_lock_irq(&gcwq->lock); 1292 if (gcwq->flags & GCWQ_DISASSOCIATED) 1293 return false; 1294 if (task_cpu(task) == gcwq->cpu && 1295 cpumask_equal(¤t->cpus_allowed, 1296 get_cpu_mask(gcwq->cpu))) 1297 return true; 1298 spin_unlock_irq(&gcwq->lock); 1299 1300 /* 1301 * We've raced with CPU hot[un]plug. Give it a breather 1302 * and retry migration. cond_resched() is required here; 1303 * otherwise, we might deadlock against cpu_stop trying to 1304 * bring down the CPU on non-preemptive kernel. 1305 */ 1306 cpu_relax(); 1307 cond_resched(); 1308 } 1309 } 1310 1311 /* 1312 * Function for worker->rebind_work used to rebind rogue busy workers 1313 * to the associated cpu which is coming back online. This is 1314 * scheduled by cpu up but can race with other cpu hotplug operations 1315 * and may be executed twice without intervening cpu down. 1316 */ 1317 static void worker_rebind_fn(struct work_struct *work) 1318 { 1319 struct worker *worker = container_of(work, struct worker, rebind_work); 1320 struct global_cwq *gcwq = worker->gcwq; 1321 1322 if (worker_maybe_bind_and_lock(worker)) 1323 worker_clr_flags(worker, WORKER_REBIND); 1324 1325 spin_unlock_irq(&gcwq->lock); 1326 } 1327 1328 static struct worker *alloc_worker(void) 1329 { 1330 struct worker *worker; 1331 1332 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1333 if (worker) { 1334 INIT_LIST_HEAD(&worker->entry); 1335 INIT_LIST_HEAD(&worker->scheduled); 1336 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1337 /* on creation a worker is in !idle && prep state */ 1338 worker->flags = WORKER_PREP; 1339 } 1340 return worker; 1341 } 1342 1343 /** 1344 * create_worker - create a new workqueue worker 1345 * @gcwq: gcwq the new worker will belong to 1346 * @bind: whether to set affinity to @cpu or not 1347 * 1348 * Create a new worker which is bound to @gcwq. The returned worker 1349 * can be started by calling start_worker() or destroyed using 1350 * destroy_worker(). 1351 * 1352 * CONTEXT: 1353 * Might sleep. Does GFP_KERNEL allocations. 1354 * 1355 * RETURNS: 1356 * Pointer to the newly created worker. 1357 */ 1358 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1359 { 1360 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1361 struct worker *worker = NULL; 1362 int id = -1; 1363 1364 spin_lock_irq(&gcwq->lock); 1365 while (ida_get_new(&gcwq->worker_ida, &id)) { 1366 spin_unlock_irq(&gcwq->lock); 1367 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1368 goto fail; 1369 spin_lock_irq(&gcwq->lock); 1370 } 1371 spin_unlock_irq(&gcwq->lock); 1372 1373 worker = alloc_worker(); 1374 if (!worker) 1375 goto fail; 1376 1377 worker->gcwq = gcwq; 1378 worker->id = id; 1379 1380 if (!on_unbound_cpu) 1381 worker->task = kthread_create_on_node(worker_thread, 1382 worker, 1383 cpu_to_node(gcwq->cpu), 1384 "kworker/%u:%d", gcwq->cpu, id); 1385 else 1386 worker->task = kthread_create(worker_thread, worker, 1387 "kworker/u:%d", id); 1388 if (IS_ERR(worker->task)) 1389 goto fail; 1390 1391 /* 1392 * A rogue worker will become a regular one if CPU comes 1393 * online later on. Make sure every worker has 1394 * PF_THREAD_BOUND set. 1395 */ 1396 if (bind && !on_unbound_cpu) 1397 kthread_bind(worker->task, gcwq->cpu); 1398 else { 1399 worker->task->flags |= PF_THREAD_BOUND; 1400 if (on_unbound_cpu) 1401 worker->flags |= WORKER_UNBOUND; 1402 } 1403 1404 return worker; 1405 fail: 1406 if (id >= 0) { 1407 spin_lock_irq(&gcwq->lock); 1408 ida_remove(&gcwq->worker_ida, id); 1409 spin_unlock_irq(&gcwq->lock); 1410 } 1411 kfree(worker); 1412 return NULL; 1413 } 1414 1415 /** 1416 * start_worker - start a newly created worker 1417 * @worker: worker to start 1418 * 1419 * Make the gcwq aware of @worker and start it. 1420 * 1421 * CONTEXT: 1422 * spin_lock_irq(gcwq->lock). 1423 */ 1424 static void start_worker(struct worker *worker) 1425 { 1426 worker->flags |= WORKER_STARTED; 1427 worker->gcwq->nr_workers++; 1428 worker_enter_idle(worker); 1429 wake_up_process(worker->task); 1430 } 1431 1432 /** 1433 * destroy_worker - destroy a workqueue worker 1434 * @worker: worker to be destroyed 1435 * 1436 * Destroy @worker and adjust @gcwq stats accordingly. 1437 * 1438 * CONTEXT: 1439 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1440 */ 1441 static void destroy_worker(struct worker *worker) 1442 { 1443 struct global_cwq *gcwq = worker->gcwq; 1444 int id = worker->id; 1445 1446 /* sanity check frenzy */ 1447 BUG_ON(worker->current_work); 1448 BUG_ON(!list_empty(&worker->scheduled)); 1449 1450 if (worker->flags & WORKER_STARTED) 1451 gcwq->nr_workers--; 1452 if (worker->flags & WORKER_IDLE) 1453 gcwq->nr_idle--; 1454 1455 list_del_init(&worker->entry); 1456 worker->flags |= WORKER_DIE; 1457 1458 spin_unlock_irq(&gcwq->lock); 1459 1460 kthread_stop(worker->task); 1461 kfree(worker); 1462 1463 spin_lock_irq(&gcwq->lock); 1464 ida_remove(&gcwq->worker_ida, id); 1465 } 1466 1467 static void idle_worker_timeout(unsigned long __gcwq) 1468 { 1469 struct global_cwq *gcwq = (void *)__gcwq; 1470 1471 spin_lock_irq(&gcwq->lock); 1472 1473 if (too_many_workers(gcwq)) { 1474 struct worker *worker; 1475 unsigned long expires; 1476 1477 /* idle_list is kept in LIFO order, check the last one */ 1478 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1479 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1480 1481 if (time_before(jiffies, expires)) 1482 mod_timer(&gcwq->idle_timer, expires); 1483 else { 1484 /* it's been idle for too long, wake up manager */ 1485 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1486 wake_up_worker(gcwq); 1487 } 1488 } 1489 1490 spin_unlock_irq(&gcwq->lock); 1491 } 1492 1493 static bool send_mayday(struct work_struct *work) 1494 { 1495 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1496 struct workqueue_struct *wq = cwq->wq; 1497 unsigned int cpu; 1498 1499 if (!(wq->flags & WQ_RESCUER)) 1500 return false; 1501 1502 /* mayday mayday mayday */ 1503 cpu = cwq->gcwq->cpu; 1504 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1505 if (cpu == WORK_CPU_UNBOUND) 1506 cpu = 0; 1507 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1508 wake_up_process(wq->rescuer->task); 1509 return true; 1510 } 1511 1512 static void gcwq_mayday_timeout(unsigned long __gcwq) 1513 { 1514 struct global_cwq *gcwq = (void *)__gcwq; 1515 struct work_struct *work; 1516 1517 spin_lock_irq(&gcwq->lock); 1518 1519 if (need_to_create_worker(gcwq)) { 1520 /* 1521 * We've been trying to create a new worker but 1522 * haven't been successful. We might be hitting an 1523 * allocation deadlock. Send distress signals to 1524 * rescuers. 1525 */ 1526 list_for_each_entry(work, &gcwq->worklist, entry) 1527 send_mayday(work); 1528 } 1529 1530 spin_unlock_irq(&gcwq->lock); 1531 1532 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1533 } 1534 1535 /** 1536 * maybe_create_worker - create a new worker if necessary 1537 * @gcwq: gcwq to create a new worker for 1538 * 1539 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1540 * have at least one idle worker on return from this function. If 1541 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1542 * sent to all rescuers with works scheduled on @gcwq to resolve 1543 * possible allocation deadlock. 1544 * 1545 * On return, need_to_create_worker() is guaranteed to be false and 1546 * may_start_working() true. 1547 * 1548 * LOCKING: 1549 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1550 * multiple times. Does GFP_KERNEL allocations. Called only from 1551 * manager. 1552 * 1553 * RETURNS: 1554 * false if no action was taken and gcwq->lock stayed locked, true 1555 * otherwise. 1556 */ 1557 static bool maybe_create_worker(struct global_cwq *gcwq) 1558 __releases(&gcwq->lock) 1559 __acquires(&gcwq->lock) 1560 { 1561 if (!need_to_create_worker(gcwq)) 1562 return false; 1563 restart: 1564 spin_unlock_irq(&gcwq->lock); 1565 1566 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1567 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1568 1569 while (true) { 1570 struct worker *worker; 1571 1572 worker = create_worker(gcwq, true); 1573 if (worker) { 1574 del_timer_sync(&gcwq->mayday_timer); 1575 spin_lock_irq(&gcwq->lock); 1576 start_worker(worker); 1577 BUG_ON(need_to_create_worker(gcwq)); 1578 return true; 1579 } 1580 1581 if (!need_to_create_worker(gcwq)) 1582 break; 1583 1584 __set_current_state(TASK_INTERRUPTIBLE); 1585 schedule_timeout(CREATE_COOLDOWN); 1586 1587 if (!need_to_create_worker(gcwq)) 1588 break; 1589 } 1590 1591 del_timer_sync(&gcwq->mayday_timer); 1592 spin_lock_irq(&gcwq->lock); 1593 if (need_to_create_worker(gcwq)) 1594 goto restart; 1595 return true; 1596 } 1597 1598 /** 1599 * maybe_destroy_worker - destroy workers which have been idle for a while 1600 * @gcwq: gcwq to destroy workers for 1601 * 1602 * Destroy @gcwq workers which have been idle for longer than 1603 * IDLE_WORKER_TIMEOUT. 1604 * 1605 * LOCKING: 1606 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1607 * multiple times. Called only from manager. 1608 * 1609 * RETURNS: 1610 * false if no action was taken and gcwq->lock stayed locked, true 1611 * otherwise. 1612 */ 1613 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1614 { 1615 bool ret = false; 1616 1617 while (too_many_workers(gcwq)) { 1618 struct worker *worker; 1619 unsigned long expires; 1620 1621 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1622 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1623 1624 if (time_before(jiffies, expires)) { 1625 mod_timer(&gcwq->idle_timer, expires); 1626 break; 1627 } 1628 1629 destroy_worker(worker); 1630 ret = true; 1631 } 1632 1633 return ret; 1634 } 1635 1636 /** 1637 * manage_workers - manage worker pool 1638 * @worker: self 1639 * 1640 * Assume the manager role and manage gcwq worker pool @worker belongs 1641 * to. At any given time, there can be only zero or one manager per 1642 * gcwq. The exclusion is handled automatically by this function. 1643 * 1644 * The caller can safely start processing works on false return. On 1645 * true return, it's guaranteed that need_to_create_worker() is false 1646 * and may_start_working() is true. 1647 * 1648 * CONTEXT: 1649 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1650 * multiple times. Does GFP_KERNEL allocations. 1651 * 1652 * RETURNS: 1653 * false if no action was taken and gcwq->lock stayed locked, true if 1654 * some action was taken. 1655 */ 1656 static bool manage_workers(struct worker *worker) 1657 { 1658 struct global_cwq *gcwq = worker->gcwq; 1659 bool ret = false; 1660 1661 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1662 return ret; 1663 1664 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1665 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1666 1667 /* 1668 * Destroy and then create so that may_start_working() is true 1669 * on return. 1670 */ 1671 ret |= maybe_destroy_workers(gcwq); 1672 ret |= maybe_create_worker(gcwq); 1673 1674 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1675 1676 /* 1677 * The trustee might be waiting to take over the manager 1678 * position, tell it we're done. 1679 */ 1680 if (unlikely(gcwq->trustee)) 1681 wake_up_all(&gcwq->trustee_wait); 1682 1683 return ret; 1684 } 1685 1686 /** 1687 * move_linked_works - move linked works to a list 1688 * @work: start of series of works to be scheduled 1689 * @head: target list to append @work to 1690 * @nextp: out paramter for nested worklist walking 1691 * 1692 * Schedule linked works starting from @work to @head. Work series to 1693 * be scheduled starts at @work and includes any consecutive work with 1694 * WORK_STRUCT_LINKED set in its predecessor. 1695 * 1696 * If @nextp is not NULL, it's updated to point to the next work of 1697 * the last scheduled work. This allows move_linked_works() to be 1698 * nested inside outer list_for_each_entry_safe(). 1699 * 1700 * CONTEXT: 1701 * spin_lock_irq(gcwq->lock). 1702 */ 1703 static void move_linked_works(struct work_struct *work, struct list_head *head, 1704 struct work_struct **nextp) 1705 { 1706 struct work_struct *n; 1707 1708 /* 1709 * Linked worklist will always end before the end of the list, 1710 * use NULL for list head. 1711 */ 1712 list_for_each_entry_safe_from(work, n, NULL, entry) { 1713 list_move_tail(&work->entry, head); 1714 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1715 break; 1716 } 1717 1718 /* 1719 * If we're already inside safe list traversal and have moved 1720 * multiple works to the scheduled queue, the next position 1721 * needs to be updated. 1722 */ 1723 if (nextp) 1724 *nextp = n; 1725 } 1726 1727 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1728 { 1729 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1730 struct work_struct, entry); 1731 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1732 1733 trace_workqueue_activate_work(work); 1734 move_linked_works(work, pos, NULL); 1735 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1736 cwq->nr_active++; 1737 } 1738 1739 /** 1740 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1741 * @cwq: cwq of interest 1742 * @color: color of work which left the queue 1743 * @delayed: for a delayed work 1744 * 1745 * A work either has completed or is removed from pending queue, 1746 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1747 * 1748 * CONTEXT: 1749 * spin_lock_irq(gcwq->lock). 1750 */ 1751 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1752 bool delayed) 1753 { 1754 /* ignore uncolored works */ 1755 if (color == WORK_NO_COLOR) 1756 return; 1757 1758 cwq->nr_in_flight[color]--; 1759 1760 if (!delayed) { 1761 cwq->nr_active--; 1762 if (!list_empty(&cwq->delayed_works)) { 1763 /* one down, submit a delayed one */ 1764 if (cwq->nr_active < cwq->max_active) 1765 cwq_activate_first_delayed(cwq); 1766 } 1767 } 1768 1769 /* is flush in progress and are we at the flushing tip? */ 1770 if (likely(cwq->flush_color != color)) 1771 return; 1772 1773 /* are there still in-flight works? */ 1774 if (cwq->nr_in_flight[color]) 1775 return; 1776 1777 /* this cwq is done, clear flush_color */ 1778 cwq->flush_color = -1; 1779 1780 /* 1781 * If this was the last cwq, wake up the first flusher. It 1782 * will handle the rest. 1783 */ 1784 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1785 complete(&cwq->wq->first_flusher->done); 1786 } 1787 1788 /** 1789 * process_one_work - process single work 1790 * @worker: self 1791 * @work: work to process 1792 * 1793 * Process @work. This function contains all the logics necessary to 1794 * process a single work including synchronization against and 1795 * interaction with other workers on the same cpu, queueing and 1796 * flushing. As long as context requirement is met, any worker can 1797 * call this function to process a work. 1798 * 1799 * CONTEXT: 1800 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1801 */ 1802 static void process_one_work(struct worker *worker, struct work_struct *work) 1803 __releases(&gcwq->lock) 1804 __acquires(&gcwq->lock) 1805 { 1806 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1807 struct global_cwq *gcwq = cwq->gcwq; 1808 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1809 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1810 work_func_t f = work->func; 1811 int work_color; 1812 struct worker *collision; 1813 #ifdef CONFIG_LOCKDEP 1814 /* 1815 * It is permissible to free the struct work_struct from 1816 * inside the function that is called from it, this we need to 1817 * take into account for lockdep too. To avoid bogus "held 1818 * lock freed" warnings as well as problems when looking into 1819 * work->lockdep_map, make a copy and use that here. 1820 */ 1821 struct lockdep_map lockdep_map; 1822 1823 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 1824 #endif 1825 /* 1826 * A single work shouldn't be executed concurrently by 1827 * multiple workers on a single cpu. Check whether anyone is 1828 * already processing the work. If so, defer the work to the 1829 * currently executing one. 1830 */ 1831 collision = __find_worker_executing_work(gcwq, bwh, work); 1832 if (unlikely(collision)) { 1833 move_linked_works(work, &collision->scheduled, NULL); 1834 return; 1835 } 1836 1837 /* claim and process */ 1838 debug_work_deactivate(work); 1839 hlist_add_head(&worker->hentry, bwh); 1840 worker->current_work = work; 1841 worker->current_cwq = cwq; 1842 work_color = get_work_color(work); 1843 1844 /* record the current cpu number in the work data and dequeue */ 1845 set_work_cpu(work, gcwq->cpu); 1846 list_del_init(&work->entry); 1847 1848 /* 1849 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1850 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1851 */ 1852 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1853 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1854 struct work_struct, entry); 1855 1856 if (!list_empty(&gcwq->worklist) && 1857 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1858 wake_up_worker(gcwq); 1859 else 1860 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1861 } 1862 1863 /* 1864 * CPU intensive works don't participate in concurrency 1865 * management. They're the scheduler's responsibility. 1866 */ 1867 if (unlikely(cpu_intensive)) 1868 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1869 1870 spin_unlock_irq(&gcwq->lock); 1871 1872 work_clear_pending(work); 1873 lock_map_acquire_read(&cwq->wq->lockdep_map); 1874 lock_map_acquire(&lockdep_map); 1875 trace_workqueue_execute_start(work); 1876 f(work); 1877 /* 1878 * While we must be careful to not use "work" after this, the trace 1879 * point will only record its address. 1880 */ 1881 trace_workqueue_execute_end(work); 1882 lock_map_release(&lockdep_map); 1883 lock_map_release(&cwq->wq->lockdep_map); 1884 1885 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1886 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1887 "%s/0x%08x/%d\n", 1888 current->comm, preempt_count(), task_pid_nr(current)); 1889 printk(KERN_ERR " last function: "); 1890 print_symbol("%s\n", (unsigned long)f); 1891 debug_show_held_locks(current); 1892 dump_stack(); 1893 } 1894 1895 spin_lock_irq(&gcwq->lock); 1896 1897 /* clear cpu intensive status */ 1898 if (unlikely(cpu_intensive)) 1899 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1900 1901 /* we're done with it, release */ 1902 hlist_del_init(&worker->hentry); 1903 worker->current_work = NULL; 1904 worker->current_cwq = NULL; 1905 cwq_dec_nr_in_flight(cwq, work_color, false); 1906 } 1907 1908 /** 1909 * process_scheduled_works - process scheduled works 1910 * @worker: self 1911 * 1912 * Process all scheduled works. Please note that the scheduled list 1913 * may change while processing a work, so this function repeatedly 1914 * fetches a work from the top and executes it. 1915 * 1916 * CONTEXT: 1917 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1918 * multiple times. 1919 */ 1920 static void process_scheduled_works(struct worker *worker) 1921 { 1922 while (!list_empty(&worker->scheduled)) { 1923 struct work_struct *work = list_first_entry(&worker->scheduled, 1924 struct work_struct, entry); 1925 process_one_work(worker, work); 1926 } 1927 } 1928 1929 /** 1930 * worker_thread - the worker thread function 1931 * @__worker: self 1932 * 1933 * The gcwq worker thread function. There's a single dynamic pool of 1934 * these per each cpu. These workers process all works regardless of 1935 * their specific target workqueue. The only exception is works which 1936 * belong to workqueues with a rescuer which will be explained in 1937 * rescuer_thread(). 1938 */ 1939 static int worker_thread(void *__worker) 1940 { 1941 struct worker *worker = __worker; 1942 struct global_cwq *gcwq = worker->gcwq; 1943 1944 /* tell the scheduler that this is a workqueue worker */ 1945 worker->task->flags |= PF_WQ_WORKER; 1946 woke_up: 1947 spin_lock_irq(&gcwq->lock); 1948 1949 /* DIE can be set only while we're idle, checking here is enough */ 1950 if (worker->flags & WORKER_DIE) { 1951 spin_unlock_irq(&gcwq->lock); 1952 worker->task->flags &= ~PF_WQ_WORKER; 1953 return 0; 1954 } 1955 1956 worker_leave_idle(worker); 1957 recheck: 1958 /* no more worker necessary? */ 1959 if (!need_more_worker(gcwq)) 1960 goto sleep; 1961 1962 /* do we need to manage? */ 1963 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1964 goto recheck; 1965 1966 /* 1967 * ->scheduled list can only be filled while a worker is 1968 * preparing to process a work or actually processing it. 1969 * Make sure nobody diddled with it while I was sleeping. 1970 */ 1971 BUG_ON(!list_empty(&worker->scheduled)); 1972 1973 /* 1974 * When control reaches this point, we're guaranteed to have 1975 * at least one idle worker or that someone else has already 1976 * assumed the manager role. 1977 */ 1978 worker_clr_flags(worker, WORKER_PREP); 1979 1980 do { 1981 struct work_struct *work = 1982 list_first_entry(&gcwq->worklist, 1983 struct work_struct, entry); 1984 1985 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1986 /* optimization path, not strictly necessary */ 1987 process_one_work(worker, work); 1988 if (unlikely(!list_empty(&worker->scheduled))) 1989 process_scheduled_works(worker); 1990 } else { 1991 move_linked_works(work, &worker->scheduled, NULL); 1992 process_scheduled_works(worker); 1993 } 1994 } while (keep_working(gcwq)); 1995 1996 worker_set_flags(worker, WORKER_PREP, false); 1997 sleep: 1998 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1999 goto recheck; 2000 2001 /* 2002 * gcwq->lock is held and there's no work to process and no 2003 * need to manage, sleep. Workers are woken up only while 2004 * holding gcwq->lock or from local cpu, so setting the 2005 * current state before releasing gcwq->lock is enough to 2006 * prevent losing any event. 2007 */ 2008 worker_enter_idle(worker); 2009 __set_current_state(TASK_INTERRUPTIBLE); 2010 spin_unlock_irq(&gcwq->lock); 2011 schedule(); 2012 goto woke_up; 2013 } 2014 2015 /** 2016 * rescuer_thread - the rescuer thread function 2017 * @__wq: the associated workqueue 2018 * 2019 * Workqueue rescuer thread function. There's one rescuer for each 2020 * workqueue which has WQ_RESCUER set. 2021 * 2022 * Regular work processing on a gcwq may block trying to create a new 2023 * worker which uses GFP_KERNEL allocation which has slight chance of 2024 * developing into deadlock if some works currently on the same queue 2025 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2026 * the problem rescuer solves. 2027 * 2028 * When such condition is possible, the gcwq summons rescuers of all 2029 * workqueues which have works queued on the gcwq and let them process 2030 * those works so that forward progress can be guaranteed. 2031 * 2032 * This should happen rarely. 2033 */ 2034 static int rescuer_thread(void *__wq) 2035 { 2036 struct workqueue_struct *wq = __wq; 2037 struct worker *rescuer = wq->rescuer; 2038 struct list_head *scheduled = &rescuer->scheduled; 2039 bool is_unbound = wq->flags & WQ_UNBOUND; 2040 unsigned int cpu; 2041 2042 set_user_nice(current, RESCUER_NICE_LEVEL); 2043 repeat: 2044 set_current_state(TASK_INTERRUPTIBLE); 2045 2046 if (kthread_should_stop()) 2047 return 0; 2048 2049 /* 2050 * See whether any cpu is asking for help. Unbounded 2051 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2052 */ 2053 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2054 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2055 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2056 struct global_cwq *gcwq = cwq->gcwq; 2057 struct work_struct *work, *n; 2058 2059 __set_current_state(TASK_RUNNING); 2060 mayday_clear_cpu(cpu, wq->mayday_mask); 2061 2062 /* migrate to the target cpu if possible */ 2063 rescuer->gcwq = gcwq; 2064 worker_maybe_bind_and_lock(rescuer); 2065 2066 /* 2067 * Slurp in all works issued via this workqueue and 2068 * process'em. 2069 */ 2070 BUG_ON(!list_empty(&rescuer->scheduled)); 2071 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2072 if (get_work_cwq(work) == cwq) 2073 move_linked_works(work, scheduled, &n); 2074 2075 process_scheduled_works(rescuer); 2076 2077 /* 2078 * Leave this gcwq. If keep_working() is %true, notify a 2079 * regular worker; otherwise, we end up with 0 concurrency 2080 * and stalling the execution. 2081 */ 2082 if (keep_working(gcwq)) 2083 wake_up_worker(gcwq); 2084 2085 spin_unlock_irq(&gcwq->lock); 2086 } 2087 2088 schedule(); 2089 goto repeat; 2090 } 2091 2092 struct wq_barrier { 2093 struct work_struct work; 2094 struct completion done; 2095 }; 2096 2097 static void wq_barrier_func(struct work_struct *work) 2098 { 2099 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2100 complete(&barr->done); 2101 } 2102 2103 /** 2104 * insert_wq_barrier - insert a barrier work 2105 * @cwq: cwq to insert barrier into 2106 * @barr: wq_barrier to insert 2107 * @target: target work to attach @barr to 2108 * @worker: worker currently executing @target, NULL if @target is not executing 2109 * 2110 * @barr is linked to @target such that @barr is completed only after 2111 * @target finishes execution. Please note that the ordering 2112 * guarantee is observed only with respect to @target and on the local 2113 * cpu. 2114 * 2115 * Currently, a queued barrier can't be canceled. This is because 2116 * try_to_grab_pending() can't determine whether the work to be 2117 * grabbed is at the head of the queue and thus can't clear LINKED 2118 * flag of the previous work while there must be a valid next work 2119 * after a work with LINKED flag set. 2120 * 2121 * Note that when @worker is non-NULL, @target may be modified 2122 * underneath us, so we can't reliably determine cwq from @target. 2123 * 2124 * CONTEXT: 2125 * spin_lock_irq(gcwq->lock). 2126 */ 2127 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2128 struct wq_barrier *barr, 2129 struct work_struct *target, struct worker *worker) 2130 { 2131 struct list_head *head; 2132 unsigned int linked = 0; 2133 2134 /* 2135 * debugobject calls are safe here even with gcwq->lock locked 2136 * as we know for sure that this will not trigger any of the 2137 * checks and call back into the fixup functions where we 2138 * might deadlock. 2139 */ 2140 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2141 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2142 init_completion(&barr->done); 2143 2144 /* 2145 * If @target is currently being executed, schedule the 2146 * barrier to the worker; otherwise, put it after @target. 2147 */ 2148 if (worker) 2149 head = worker->scheduled.next; 2150 else { 2151 unsigned long *bits = work_data_bits(target); 2152 2153 head = target->entry.next; 2154 /* there can already be other linked works, inherit and set */ 2155 linked = *bits & WORK_STRUCT_LINKED; 2156 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2157 } 2158 2159 debug_work_activate(&barr->work); 2160 insert_work(cwq, &barr->work, head, 2161 work_color_to_flags(WORK_NO_COLOR) | linked); 2162 } 2163 2164 /** 2165 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2166 * @wq: workqueue being flushed 2167 * @flush_color: new flush color, < 0 for no-op 2168 * @work_color: new work color, < 0 for no-op 2169 * 2170 * Prepare cwqs for workqueue flushing. 2171 * 2172 * If @flush_color is non-negative, flush_color on all cwqs should be 2173 * -1. If no cwq has in-flight commands at the specified color, all 2174 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2175 * has in flight commands, its cwq->flush_color is set to 2176 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2177 * wakeup logic is armed and %true is returned. 2178 * 2179 * The caller should have initialized @wq->first_flusher prior to 2180 * calling this function with non-negative @flush_color. If 2181 * @flush_color is negative, no flush color update is done and %false 2182 * is returned. 2183 * 2184 * If @work_color is non-negative, all cwqs should have the same 2185 * work_color which is previous to @work_color and all will be 2186 * advanced to @work_color. 2187 * 2188 * CONTEXT: 2189 * mutex_lock(wq->flush_mutex). 2190 * 2191 * RETURNS: 2192 * %true if @flush_color >= 0 and there's something to flush. %false 2193 * otherwise. 2194 */ 2195 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2196 int flush_color, int work_color) 2197 { 2198 bool wait = false; 2199 unsigned int cpu; 2200 2201 if (flush_color >= 0) { 2202 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2203 atomic_set(&wq->nr_cwqs_to_flush, 1); 2204 } 2205 2206 for_each_cwq_cpu(cpu, wq) { 2207 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2208 struct global_cwq *gcwq = cwq->gcwq; 2209 2210 spin_lock_irq(&gcwq->lock); 2211 2212 if (flush_color >= 0) { 2213 BUG_ON(cwq->flush_color != -1); 2214 2215 if (cwq->nr_in_flight[flush_color]) { 2216 cwq->flush_color = flush_color; 2217 atomic_inc(&wq->nr_cwqs_to_flush); 2218 wait = true; 2219 } 2220 } 2221 2222 if (work_color >= 0) { 2223 BUG_ON(work_color != work_next_color(cwq->work_color)); 2224 cwq->work_color = work_color; 2225 } 2226 2227 spin_unlock_irq(&gcwq->lock); 2228 } 2229 2230 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2231 complete(&wq->first_flusher->done); 2232 2233 return wait; 2234 } 2235 2236 /** 2237 * flush_workqueue - ensure that any scheduled work has run to completion. 2238 * @wq: workqueue to flush 2239 * 2240 * Forces execution of the workqueue and blocks until its completion. 2241 * This is typically used in driver shutdown handlers. 2242 * 2243 * We sleep until all works which were queued on entry have been handled, 2244 * but we are not livelocked by new incoming ones. 2245 */ 2246 void flush_workqueue(struct workqueue_struct *wq) 2247 { 2248 struct wq_flusher this_flusher = { 2249 .list = LIST_HEAD_INIT(this_flusher.list), 2250 .flush_color = -1, 2251 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2252 }; 2253 int next_color; 2254 2255 lock_map_acquire(&wq->lockdep_map); 2256 lock_map_release(&wq->lockdep_map); 2257 2258 mutex_lock(&wq->flush_mutex); 2259 2260 /* 2261 * Start-to-wait phase 2262 */ 2263 next_color = work_next_color(wq->work_color); 2264 2265 if (next_color != wq->flush_color) { 2266 /* 2267 * Color space is not full. The current work_color 2268 * becomes our flush_color and work_color is advanced 2269 * by one. 2270 */ 2271 BUG_ON(!list_empty(&wq->flusher_overflow)); 2272 this_flusher.flush_color = wq->work_color; 2273 wq->work_color = next_color; 2274 2275 if (!wq->first_flusher) { 2276 /* no flush in progress, become the first flusher */ 2277 BUG_ON(wq->flush_color != this_flusher.flush_color); 2278 2279 wq->first_flusher = &this_flusher; 2280 2281 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2282 wq->work_color)) { 2283 /* nothing to flush, done */ 2284 wq->flush_color = next_color; 2285 wq->first_flusher = NULL; 2286 goto out_unlock; 2287 } 2288 } else { 2289 /* wait in queue */ 2290 BUG_ON(wq->flush_color == this_flusher.flush_color); 2291 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2292 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2293 } 2294 } else { 2295 /* 2296 * Oops, color space is full, wait on overflow queue. 2297 * The next flush completion will assign us 2298 * flush_color and transfer to flusher_queue. 2299 */ 2300 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2301 } 2302 2303 mutex_unlock(&wq->flush_mutex); 2304 2305 wait_for_completion(&this_flusher.done); 2306 2307 /* 2308 * Wake-up-and-cascade phase 2309 * 2310 * First flushers are responsible for cascading flushes and 2311 * handling overflow. Non-first flushers can simply return. 2312 */ 2313 if (wq->first_flusher != &this_flusher) 2314 return; 2315 2316 mutex_lock(&wq->flush_mutex); 2317 2318 /* we might have raced, check again with mutex held */ 2319 if (wq->first_flusher != &this_flusher) 2320 goto out_unlock; 2321 2322 wq->first_flusher = NULL; 2323 2324 BUG_ON(!list_empty(&this_flusher.list)); 2325 BUG_ON(wq->flush_color != this_flusher.flush_color); 2326 2327 while (true) { 2328 struct wq_flusher *next, *tmp; 2329 2330 /* complete all the flushers sharing the current flush color */ 2331 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2332 if (next->flush_color != wq->flush_color) 2333 break; 2334 list_del_init(&next->list); 2335 complete(&next->done); 2336 } 2337 2338 BUG_ON(!list_empty(&wq->flusher_overflow) && 2339 wq->flush_color != work_next_color(wq->work_color)); 2340 2341 /* this flush_color is finished, advance by one */ 2342 wq->flush_color = work_next_color(wq->flush_color); 2343 2344 /* one color has been freed, handle overflow queue */ 2345 if (!list_empty(&wq->flusher_overflow)) { 2346 /* 2347 * Assign the same color to all overflowed 2348 * flushers, advance work_color and append to 2349 * flusher_queue. This is the start-to-wait 2350 * phase for these overflowed flushers. 2351 */ 2352 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2353 tmp->flush_color = wq->work_color; 2354 2355 wq->work_color = work_next_color(wq->work_color); 2356 2357 list_splice_tail_init(&wq->flusher_overflow, 2358 &wq->flusher_queue); 2359 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2360 } 2361 2362 if (list_empty(&wq->flusher_queue)) { 2363 BUG_ON(wq->flush_color != wq->work_color); 2364 break; 2365 } 2366 2367 /* 2368 * Need to flush more colors. Make the next flusher 2369 * the new first flusher and arm cwqs. 2370 */ 2371 BUG_ON(wq->flush_color == wq->work_color); 2372 BUG_ON(wq->flush_color != next->flush_color); 2373 2374 list_del_init(&next->list); 2375 wq->first_flusher = next; 2376 2377 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2378 break; 2379 2380 /* 2381 * Meh... this color is already done, clear first 2382 * flusher and repeat cascading. 2383 */ 2384 wq->first_flusher = NULL; 2385 } 2386 2387 out_unlock: 2388 mutex_unlock(&wq->flush_mutex); 2389 } 2390 EXPORT_SYMBOL_GPL(flush_workqueue); 2391 2392 /** 2393 * drain_workqueue - drain a workqueue 2394 * @wq: workqueue to drain 2395 * 2396 * Wait until the workqueue becomes empty. While draining is in progress, 2397 * only chain queueing is allowed. IOW, only currently pending or running 2398 * work items on @wq can queue further work items on it. @wq is flushed 2399 * repeatedly until it becomes empty. The number of flushing is detemined 2400 * by the depth of chaining and should be relatively short. Whine if it 2401 * takes too long. 2402 */ 2403 void drain_workqueue(struct workqueue_struct *wq) 2404 { 2405 unsigned int flush_cnt = 0; 2406 unsigned int cpu; 2407 2408 /* 2409 * __queue_work() needs to test whether there are drainers, is much 2410 * hotter than drain_workqueue() and already looks at @wq->flags. 2411 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. 2412 */ 2413 spin_lock(&workqueue_lock); 2414 if (!wq->nr_drainers++) 2415 wq->flags |= WQ_DRAINING; 2416 spin_unlock(&workqueue_lock); 2417 reflush: 2418 flush_workqueue(wq); 2419 2420 for_each_cwq_cpu(cpu, wq) { 2421 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2422 bool drained; 2423 2424 spin_lock_irq(&cwq->gcwq->lock); 2425 drained = !cwq->nr_active && list_empty(&cwq->delayed_works); 2426 spin_unlock_irq(&cwq->gcwq->lock); 2427 2428 if (drained) 2429 continue; 2430 2431 if (++flush_cnt == 10 || 2432 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2433 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n", 2434 wq->name, flush_cnt); 2435 goto reflush; 2436 } 2437 2438 spin_lock(&workqueue_lock); 2439 if (!--wq->nr_drainers) 2440 wq->flags &= ~WQ_DRAINING; 2441 spin_unlock(&workqueue_lock); 2442 } 2443 EXPORT_SYMBOL_GPL(drain_workqueue); 2444 2445 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2446 bool wait_executing) 2447 { 2448 struct worker *worker = NULL; 2449 struct global_cwq *gcwq; 2450 struct cpu_workqueue_struct *cwq; 2451 2452 might_sleep(); 2453 gcwq = get_work_gcwq(work); 2454 if (!gcwq) 2455 return false; 2456 2457 spin_lock_irq(&gcwq->lock); 2458 if (!list_empty(&work->entry)) { 2459 /* 2460 * See the comment near try_to_grab_pending()->smp_rmb(). 2461 * If it was re-queued to a different gcwq under us, we 2462 * are not going to wait. 2463 */ 2464 smp_rmb(); 2465 cwq = get_work_cwq(work); 2466 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2467 goto already_gone; 2468 } else if (wait_executing) { 2469 worker = find_worker_executing_work(gcwq, work); 2470 if (!worker) 2471 goto already_gone; 2472 cwq = worker->current_cwq; 2473 } else 2474 goto already_gone; 2475 2476 insert_wq_barrier(cwq, barr, work, worker); 2477 spin_unlock_irq(&gcwq->lock); 2478 2479 /* 2480 * If @max_active is 1 or rescuer is in use, flushing another work 2481 * item on the same workqueue may lead to deadlock. Make sure the 2482 * flusher is not running on the same workqueue by verifying write 2483 * access. 2484 */ 2485 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER) 2486 lock_map_acquire(&cwq->wq->lockdep_map); 2487 else 2488 lock_map_acquire_read(&cwq->wq->lockdep_map); 2489 lock_map_release(&cwq->wq->lockdep_map); 2490 2491 return true; 2492 already_gone: 2493 spin_unlock_irq(&gcwq->lock); 2494 return false; 2495 } 2496 2497 /** 2498 * flush_work - wait for a work to finish executing the last queueing instance 2499 * @work: the work to flush 2500 * 2501 * Wait until @work has finished execution. This function considers 2502 * only the last queueing instance of @work. If @work has been 2503 * enqueued across different CPUs on a non-reentrant workqueue or on 2504 * multiple workqueues, @work might still be executing on return on 2505 * some of the CPUs from earlier queueing. 2506 * 2507 * If @work was queued only on a non-reentrant, ordered or unbound 2508 * workqueue, @work is guaranteed to be idle on return if it hasn't 2509 * been requeued since flush started. 2510 * 2511 * RETURNS: 2512 * %true if flush_work() waited for the work to finish execution, 2513 * %false if it was already idle. 2514 */ 2515 bool flush_work(struct work_struct *work) 2516 { 2517 struct wq_barrier barr; 2518 2519 lock_map_acquire(&work->lockdep_map); 2520 lock_map_release(&work->lockdep_map); 2521 2522 if (start_flush_work(work, &barr, true)) { 2523 wait_for_completion(&barr.done); 2524 destroy_work_on_stack(&barr.work); 2525 return true; 2526 } else 2527 return false; 2528 } 2529 EXPORT_SYMBOL_GPL(flush_work); 2530 2531 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2532 { 2533 struct wq_barrier barr; 2534 struct worker *worker; 2535 2536 spin_lock_irq(&gcwq->lock); 2537 2538 worker = find_worker_executing_work(gcwq, work); 2539 if (unlikely(worker)) 2540 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2541 2542 spin_unlock_irq(&gcwq->lock); 2543 2544 if (unlikely(worker)) { 2545 wait_for_completion(&barr.done); 2546 destroy_work_on_stack(&barr.work); 2547 return true; 2548 } else 2549 return false; 2550 } 2551 2552 static bool wait_on_work(struct work_struct *work) 2553 { 2554 bool ret = false; 2555 int cpu; 2556 2557 might_sleep(); 2558 2559 lock_map_acquire(&work->lockdep_map); 2560 lock_map_release(&work->lockdep_map); 2561 2562 for_each_gcwq_cpu(cpu) 2563 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2564 return ret; 2565 } 2566 2567 /** 2568 * flush_work_sync - wait until a work has finished execution 2569 * @work: the work to flush 2570 * 2571 * Wait until @work has finished execution. On return, it's 2572 * guaranteed that all queueing instances of @work which happened 2573 * before this function is called are finished. In other words, if 2574 * @work hasn't been requeued since this function was called, @work is 2575 * guaranteed to be idle on return. 2576 * 2577 * RETURNS: 2578 * %true if flush_work_sync() waited for the work to finish execution, 2579 * %false if it was already idle. 2580 */ 2581 bool flush_work_sync(struct work_struct *work) 2582 { 2583 struct wq_barrier barr; 2584 bool pending, waited; 2585 2586 /* we'll wait for executions separately, queue barr only if pending */ 2587 pending = start_flush_work(work, &barr, false); 2588 2589 /* wait for executions to finish */ 2590 waited = wait_on_work(work); 2591 2592 /* wait for the pending one */ 2593 if (pending) { 2594 wait_for_completion(&barr.done); 2595 destroy_work_on_stack(&barr.work); 2596 } 2597 2598 return pending || waited; 2599 } 2600 EXPORT_SYMBOL_GPL(flush_work_sync); 2601 2602 /* 2603 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2604 * so this work can't be re-armed in any way. 2605 */ 2606 static int try_to_grab_pending(struct work_struct *work) 2607 { 2608 struct global_cwq *gcwq; 2609 int ret = -1; 2610 2611 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2612 return 0; 2613 2614 /* 2615 * The queueing is in progress, or it is already queued. Try to 2616 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2617 */ 2618 gcwq = get_work_gcwq(work); 2619 if (!gcwq) 2620 return ret; 2621 2622 spin_lock_irq(&gcwq->lock); 2623 if (!list_empty(&work->entry)) { 2624 /* 2625 * This work is queued, but perhaps we locked the wrong gcwq. 2626 * In that case we must see the new value after rmb(), see 2627 * insert_work()->wmb(). 2628 */ 2629 smp_rmb(); 2630 if (gcwq == get_work_gcwq(work)) { 2631 debug_work_deactivate(work); 2632 list_del_init(&work->entry); 2633 cwq_dec_nr_in_flight(get_work_cwq(work), 2634 get_work_color(work), 2635 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2636 ret = 1; 2637 } 2638 } 2639 spin_unlock_irq(&gcwq->lock); 2640 2641 return ret; 2642 } 2643 2644 static bool __cancel_work_timer(struct work_struct *work, 2645 struct timer_list* timer) 2646 { 2647 int ret; 2648 2649 do { 2650 ret = (timer && likely(del_timer(timer))); 2651 if (!ret) 2652 ret = try_to_grab_pending(work); 2653 wait_on_work(work); 2654 } while (unlikely(ret < 0)); 2655 2656 clear_work_data(work); 2657 return ret; 2658 } 2659 2660 /** 2661 * cancel_work_sync - cancel a work and wait for it to finish 2662 * @work: the work to cancel 2663 * 2664 * Cancel @work and wait for its execution to finish. This function 2665 * can be used even if the work re-queues itself or migrates to 2666 * another workqueue. On return from this function, @work is 2667 * guaranteed to be not pending or executing on any CPU. 2668 * 2669 * cancel_work_sync(&delayed_work->work) must not be used for 2670 * delayed_work's. Use cancel_delayed_work_sync() instead. 2671 * 2672 * The caller must ensure that the workqueue on which @work was last 2673 * queued can't be destroyed before this function returns. 2674 * 2675 * RETURNS: 2676 * %true if @work was pending, %false otherwise. 2677 */ 2678 bool cancel_work_sync(struct work_struct *work) 2679 { 2680 return __cancel_work_timer(work, NULL); 2681 } 2682 EXPORT_SYMBOL_GPL(cancel_work_sync); 2683 2684 /** 2685 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2686 * @dwork: the delayed work to flush 2687 * 2688 * Delayed timer is cancelled and the pending work is queued for 2689 * immediate execution. Like flush_work(), this function only 2690 * considers the last queueing instance of @dwork. 2691 * 2692 * RETURNS: 2693 * %true if flush_work() waited for the work to finish execution, 2694 * %false if it was already idle. 2695 */ 2696 bool flush_delayed_work(struct delayed_work *dwork) 2697 { 2698 if (del_timer_sync(&dwork->timer)) 2699 __queue_work(raw_smp_processor_id(), 2700 get_work_cwq(&dwork->work)->wq, &dwork->work); 2701 return flush_work(&dwork->work); 2702 } 2703 EXPORT_SYMBOL(flush_delayed_work); 2704 2705 /** 2706 * flush_delayed_work_sync - wait for a dwork to finish 2707 * @dwork: the delayed work to flush 2708 * 2709 * Delayed timer is cancelled and the pending work is queued for 2710 * execution immediately. Other than timer handling, its behavior 2711 * is identical to flush_work_sync(). 2712 * 2713 * RETURNS: 2714 * %true if flush_work_sync() waited for the work to finish execution, 2715 * %false if it was already idle. 2716 */ 2717 bool flush_delayed_work_sync(struct delayed_work *dwork) 2718 { 2719 if (del_timer_sync(&dwork->timer)) 2720 __queue_work(raw_smp_processor_id(), 2721 get_work_cwq(&dwork->work)->wq, &dwork->work); 2722 return flush_work_sync(&dwork->work); 2723 } 2724 EXPORT_SYMBOL(flush_delayed_work_sync); 2725 2726 /** 2727 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2728 * @dwork: the delayed work cancel 2729 * 2730 * This is cancel_work_sync() for delayed works. 2731 * 2732 * RETURNS: 2733 * %true if @dwork was pending, %false otherwise. 2734 */ 2735 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2736 { 2737 return __cancel_work_timer(&dwork->work, &dwork->timer); 2738 } 2739 EXPORT_SYMBOL(cancel_delayed_work_sync); 2740 2741 /** 2742 * schedule_work - put work task in global workqueue 2743 * @work: job to be done 2744 * 2745 * Returns zero if @work was already on the kernel-global workqueue and 2746 * non-zero otherwise. 2747 * 2748 * This puts a job in the kernel-global workqueue if it was not already 2749 * queued and leaves it in the same position on the kernel-global 2750 * workqueue otherwise. 2751 */ 2752 int schedule_work(struct work_struct *work) 2753 { 2754 return queue_work(system_wq, work); 2755 } 2756 EXPORT_SYMBOL(schedule_work); 2757 2758 /* 2759 * schedule_work_on - put work task on a specific cpu 2760 * @cpu: cpu to put the work task on 2761 * @work: job to be done 2762 * 2763 * This puts a job on a specific cpu 2764 */ 2765 int schedule_work_on(int cpu, struct work_struct *work) 2766 { 2767 return queue_work_on(cpu, system_wq, work); 2768 } 2769 EXPORT_SYMBOL(schedule_work_on); 2770 2771 /** 2772 * schedule_delayed_work - put work task in global workqueue after delay 2773 * @dwork: job to be done 2774 * @delay: number of jiffies to wait or 0 for immediate execution 2775 * 2776 * After waiting for a given time this puts a job in the kernel-global 2777 * workqueue. 2778 */ 2779 int schedule_delayed_work(struct delayed_work *dwork, 2780 unsigned long delay) 2781 { 2782 return queue_delayed_work(system_wq, dwork, delay); 2783 } 2784 EXPORT_SYMBOL(schedule_delayed_work); 2785 2786 /** 2787 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2788 * @cpu: cpu to use 2789 * @dwork: job to be done 2790 * @delay: number of jiffies to wait 2791 * 2792 * After waiting for a given time this puts a job in the kernel-global 2793 * workqueue on the specified CPU. 2794 */ 2795 int schedule_delayed_work_on(int cpu, 2796 struct delayed_work *dwork, unsigned long delay) 2797 { 2798 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2799 } 2800 EXPORT_SYMBOL(schedule_delayed_work_on); 2801 2802 /** 2803 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2804 * @func: the function to call 2805 * 2806 * schedule_on_each_cpu() executes @func on each online CPU using the 2807 * system workqueue and blocks until all CPUs have completed. 2808 * schedule_on_each_cpu() is very slow. 2809 * 2810 * RETURNS: 2811 * 0 on success, -errno on failure. 2812 */ 2813 int schedule_on_each_cpu(work_func_t func) 2814 { 2815 int cpu; 2816 struct work_struct __percpu *works; 2817 2818 works = alloc_percpu(struct work_struct); 2819 if (!works) 2820 return -ENOMEM; 2821 2822 get_online_cpus(); 2823 2824 for_each_online_cpu(cpu) { 2825 struct work_struct *work = per_cpu_ptr(works, cpu); 2826 2827 INIT_WORK(work, func); 2828 schedule_work_on(cpu, work); 2829 } 2830 2831 for_each_online_cpu(cpu) 2832 flush_work(per_cpu_ptr(works, cpu)); 2833 2834 put_online_cpus(); 2835 free_percpu(works); 2836 return 0; 2837 } 2838 2839 /** 2840 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2841 * 2842 * Forces execution of the kernel-global workqueue and blocks until its 2843 * completion. 2844 * 2845 * Think twice before calling this function! It's very easy to get into 2846 * trouble if you don't take great care. Either of the following situations 2847 * will lead to deadlock: 2848 * 2849 * One of the work items currently on the workqueue needs to acquire 2850 * a lock held by your code or its caller. 2851 * 2852 * Your code is running in the context of a work routine. 2853 * 2854 * They will be detected by lockdep when they occur, but the first might not 2855 * occur very often. It depends on what work items are on the workqueue and 2856 * what locks they need, which you have no control over. 2857 * 2858 * In most situations flushing the entire workqueue is overkill; you merely 2859 * need to know that a particular work item isn't queued and isn't running. 2860 * In such cases you should use cancel_delayed_work_sync() or 2861 * cancel_work_sync() instead. 2862 */ 2863 void flush_scheduled_work(void) 2864 { 2865 flush_workqueue(system_wq); 2866 } 2867 EXPORT_SYMBOL(flush_scheduled_work); 2868 2869 /** 2870 * execute_in_process_context - reliably execute the routine with user context 2871 * @fn: the function to execute 2872 * @ew: guaranteed storage for the execute work structure (must 2873 * be available when the work executes) 2874 * 2875 * Executes the function immediately if process context is available, 2876 * otherwise schedules the function for delayed execution. 2877 * 2878 * Returns: 0 - function was executed 2879 * 1 - function was scheduled for execution 2880 */ 2881 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2882 { 2883 if (!in_interrupt()) { 2884 fn(&ew->work); 2885 return 0; 2886 } 2887 2888 INIT_WORK(&ew->work, fn); 2889 schedule_work(&ew->work); 2890 2891 return 1; 2892 } 2893 EXPORT_SYMBOL_GPL(execute_in_process_context); 2894 2895 int keventd_up(void) 2896 { 2897 return system_wq != NULL; 2898 } 2899 2900 static int alloc_cwqs(struct workqueue_struct *wq) 2901 { 2902 /* 2903 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2904 * Make sure that the alignment isn't lower than that of 2905 * unsigned long long. 2906 */ 2907 const size_t size = sizeof(struct cpu_workqueue_struct); 2908 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2909 __alignof__(unsigned long long)); 2910 2911 if (!(wq->flags & WQ_UNBOUND)) 2912 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2913 else { 2914 void *ptr; 2915 2916 /* 2917 * Allocate enough room to align cwq and put an extra 2918 * pointer at the end pointing back to the originally 2919 * allocated pointer which will be used for free. 2920 */ 2921 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2922 if (ptr) { 2923 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2924 *(void **)(wq->cpu_wq.single + 1) = ptr; 2925 } 2926 } 2927 2928 /* just in case, make sure it's actually aligned */ 2929 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2930 return wq->cpu_wq.v ? 0 : -ENOMEM; 2931 } 2932 2933 static void free_cwqs(struct workqueue_struct *wq) 2934 { 2935 if (!(wq->flags & WQ_UNBOUND)) 2936 free_percpu(wq->cpu_wq.pcpu); 2937 else if (wq->cpu_wq.single) { 2938 /* the pointer to free is stored right after the cwq */ 2939 kfree(*(void **)(wq->cpu_wq.single + 1)); 2940 } 2941 } 2942 2943 static int wq_clamp_max_active(int max_active, unsigned int flags, 2944 const char *name) 2945 { 2946 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2947 2948 if (max_active < 1 || max_active > lim) 2949 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2950 "is out of range, clamping between %d and %d\n", 2951 max_active, name, 1, lim); 2952 2953 return clamp_val(max_active, 1, lim); 2954 } 2955 2956 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 2957 unsigned int flags, 2958 int max_active, 2959 struct lock_class_key *key, 2960 const char *lock_name, ...) 2961 { 2962 va_list args, args1; 2963 struct workqueue_struct *wq; 2964 unsigned int cpu; 2965 size_t namelen; 2966 2967 /* determine namelen, allocate wq and format name */ 2968 va_start(args, lock_name); 2969 va_copy(args1, args); 2970 namelen = vsnprintf(NULL, 0, fmt, args) + 1; 2971 2972 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL); 2973 if (!wq) 2974 goto err; 2975 2976 vsnprintf(wq->name, namelen, fmt, args1); 2977 va_end(args); 2978 va_end(args1); 2979 2980 /* 2981 * Workqueues which may be used during memory reclaim should 2982 * have a rescuer to guarantee forward progress. 2983 */ 2984 if (flags & WQ_MEM_RECLAIM) 2985 flags |= WQ_RESCUER; 2986 2987 /* 2988 * Unbound workqueues aren't concurrency managed and should be 2989 * dispatched to workers immediately. 2990 */ 2991 if (flags & WQ_UNBOUND) 2992 flags |= WQ_HIGHPRI; 2993 2994 max_active = max_active ?: WQ_DFL_ACTIVE; 2995 max_active = wq_clamp_max_active(max_active, flags, wq->name); 2996 2997 /* init wq */ 2998 wq->flags = flags; 2999 wq->saved_max_active = max_active; 3000 mutex_init(&wq->flush_mutex); 3001 atomic_set(&wq->nr_cwqs_to_flush, 0); 3002 INIT_LIST_HEAD(&wq->flusher_queue); 3003 INIT_LIST_HEAD(&wq->flusher_overflow); 3004 3005 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3006 INIT_LIST_HEAD(&wq->list); 3007 3008 if (alloc_cwqs(wq) < 0) 3009 goto err; 3010 3011 for_each_cwq_cpu(cpu, wq) { 3012 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3013 struct global_cwq *gcwq = get_gcwq(cpu); 3014 3015 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 3016 cwq->gcwq = gcwq; 3017 cwq->wq = wq; 3018 cwq->flush_color = -1; 3019 cwq->max_active = max_active; 3020 INIT_LIST_HEAD(&cwq->delayed_works); 3021 } 3022 3023 if (flags & WQ_RESCUER) { 3024 struct worker *rescuer; 3025 3026 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 3027 goto err; 3028 3029 wq->rescuer = rescuer = alloc_worker(); 3030 if (!rescuer) 3031 goto err; 3032 3033 rescuer->task = kthread_create(rescuer_thread, wq, "%s", 3034 wq->name); 3035 if (IS_ERR(rescuer->task)) 3036 goto err; 3037 3038 rescuer->task->flags |= PF_THREAD_BOUND; 3039 wake_up_process(rescuer->task); 3040 } 3041 3042 /* 3043 * workqueue_lock protects global freeze state and workqueues 3044 * list. Grab it, set max_active accordingly and add the new 3045 * workqueue to workqueues list. 3046 */ 3047 spin_lock(&workqueue_lock); 3048 3049 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 3050 for_each_cwq_cpu(cpu, wq) 3051 get_cwq(cpu, wq)->max_active = 0; 3052 3053 list_add(&wq->list, &workqueues); 3054 3055 spin_unlock(&workqueue_lock); 3056 3057 return wq; 3058 err: 3059 if (wq) { 3060 free_cwqs(wq); 3061 free_mayday_mask(wq->mayday_mask); 3062 kfree(wq->rescuer); 3063 kfree(wq); 3064 } 3065 return NULL; 3066 } 3067 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3068 3069 /** 3070 * destroy_workqueue - safely terminate a workqueue 3071 * @wq: target workqueue 3072 * 3073 * Safely destroy a workqueue. All work currently pending will be done first. 3074 */ 3075 void destroy_workqueue(struct workqueue_struct *wq) 3076 { 3077 unsigned int cpu; 3078 3079 /* drain it before proceeding with destruction */ 3080 drain_workqueue(wq); 3081 3082 /* 3083 * wq list is used to freeze wq, remove from list after 3084 * flushing is complete in case freeze races us. 3085 */ 3086 spin_lock(&workqueue_lock); 3087 list_del(&wq->list); 3088 spin_unlock(&workqueue_lock); 3089 3090 /* sanity check */ 3091 for_each_cwq_cpu(cpu, wq) { 3092 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3093 int i; 3094 3095 for (i = 0; i < WORK_NR_COLORS; i++) 3096 BUG_ON(cwq->nr_in_flight[i]); 3097 BUG_ON(cwq->nr_active); 3098 BUG_ON(!list_empty(&cwq->delayed_works)); 3099 } 3100 3101 if (wq->flags & WQ_RESCUER) { 3102 kthread_stop(wq->rescuer->task); 3103 free_mayday_mask(wq->mayday_mask); 3104 kfree(wq->rescuer); 3105 } 3106 3107 free_cwqs(wq); 3108 kfree(wq); 3109 } 3110 EXPORT_SYMBOL_GPL(destroy_workqueue); 3111 3112 /** 3113 * workqueue_set_max_active - adjust max_active of a workqueue 3114 * @wq: target workqueue 3115 * @max_active: new max_active value. 3116 * 3117 * Set max_active of @wq to @max_active. 3118 * 3119 * CONTEXT: 3120 * Don't call from IRQ context. 3121 */ 3122 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3123 { 3124 unsigned int cpu; 3125 3126 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3127 3128 spin_lock(&workqueue_lock); 3129 3130 wq->saved_max_active = max_active; 3131 3132 for_each_cwq_cpu(cpu, wq) { 3133 struct global_cwq *gcwq = get_gcwq(cpu); 3134 3135 spin_lock_irq(&gcwq->lock); 3136 3137 if (!(wq->flags & WQ_FREEZABLE) || 3138 !(gcwq->flags & GCWQ_FREEZING)) 3139 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3140 3141 spin_unlock_irq(&gcwq->lock); 3142 } 3143 3144 spin_unlock(&workqueue_lock); 3145 } 3146 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3147 3148 /** 3149 * workqueue_congested - test whether a workqueue is congested 3150 * @cpu: CPU in question 3151 * @wq: target workqueue 3152 * 3153 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3154 * no synchronization around this function and the test result is 3155 * unreliable and only useful as advisory hints or for debugging. 3156 * 3157 * RETURNS: 3158 * %true if congested, %false otherwise. 3159 */ 3160 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3161 { 3162 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3163 3164 return !list_empty(&cwq->delayed_works); 3165 } 3166 EXPORT_SYMBOL_GPL(workqueue_congested); 3167 3168 /** 3169 * work_cpu - return the last known associated cpu for @work 3170 * @work: the work of interest 3171 * 3172 * RETURNS: 3173 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3174 */ 3175 unsigned int work_cpu(struct work_struct *work) 3176 { 3177 struct global_cwq *gcwq = get_work_gcwq(work); 3178 3179 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3180 } 3181 EXPORT_SYMBOL_GPL(work_cpu); 3182 3183 /** 3184 * work_busy - test whether a work is currently pending or running 3185 * @work: the work to be tested 3186 * 3187 * Test whether @work is currently pending or running. There is no 3188 * synchronization around this function and the test result is 3189 * unreliable and only useful as advisory hints or for debugging. 3190 * Especially for reentrant wqs, the pending state might hide the 3191 * running state. 3192 * 3193 * RETURNS: 3194 * OR'd bitmask of WORK_BUSY_* bits. 3195 */ 3196 unsigned int work_busy(struct work_struct *work) 3197 { 3198 struct global_cwq *gcwq = get_work_gcwq(work); 3199 unsigned long flags; 3200 unsigned int ret = 0; 3201 3202 if (!gcwq) 3203 return false; 3204 3205 spin_lock_irqsave(&gcwq->lock, flags); 3206 3207 if (work_pending(work)) 3208 ret |= WORK_BUSY_PENDING; 3209 if (find_worker_executing_work(gcwq, work)) 3210 ret |= WORK_BUSY_RUNNING; 3211 3212 spin_unlock_irqrestore(&gcwq->lock, flags); 3213 3214 return ret; 3215 } 3216 EXPORT_SYMBOL_GPL(work_busy); 3217 3218 /* 3219 * CPU hotplug. 3220 * 3221 * There are two challenges in supporting CPU hotplug. Firstly, there 3222 * are a lot of assumptions on strong associations among work, cwq and 3223 * gcwq which make migrating pending and scheduled works very 3224 * difficult to implement without impacting hot paths. Secondly, 3225 * gcwqs serve mix of short, long and very long running works making 3226 * blocked draining impractical. 3227 * 3228 * This is solved by allowing a gcwq to be detached from CPU, running 3229 * it with unbound (rogue) workers and allowing it to be reattached 3230 * later if the cpu comes back online. A separate thread is created 3231 * to govern a gcwq in such state and is called the trustee of the 3232 * gcwq. 3233 * 3234 * Trustee states and their descriptions. 3235 * 3236 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3237 * new trustee is started with this state. 3238 * 3239 * IN_CHARGE Once started, trustee will enter this state after 3240 * assuming the manager role and making all existing 3241 * workers rogue. DOWN_PREPARE waits for trustee to 3242 * enter this state. After reaching IN_CHARGE, trustee 3243 * tries to execute the pending worklist until it's empty 3244 * and the state is set to BUTCHER, or the state is set 3245 * to RELEASE. 3246 * 3247 * BUTCHER Command state which is set by the cpu callback after 3248 * the cpu has went down. Once this state is set trustee 3249 * knows that there will be no new works on the worklist 3250 * and once the worklist is empty it can proceed to 3251 * killing idle workers. 3252 * 3253 * RELEASE Command state which is set by the cpu callback if the 3254 * cpu down has been canceled or it has come online 3255 * again. After recognizing this state, trustee stops 3256 * trying to drain or butcher and clears ROGUE, rebinds 3257 * all remaining workers back to the cpu and releases 3258 * manager role. 3259 * 3260 * DONE Trustee will enter this state after BUTCHER or RELEASE 3261 * is complete. 3262 * 3263 * trustee CPU draining 3264 * took over down complete 3265 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3266 * | | ^ 3267 * | CPU is back online v return workers | 3268 * ----------------> RELEASE -------------- 3269 */ 3270 3271 /** 3272 * trustee_wait_event_timeout - timed event wait for trustee 3273 * @cond: condition to wait for 3274 * @timeout: timeout in jiffies 3275 * 3276 * wait_event_timeout() for trustee to use. Handles locking and 3277 * checks for RELEASE request. 3278 * 3279 * CONTEXT: 3280 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3281 * multiple times. To be used by trustee. 3282 * 3283 * RETURNS: 3284 * Positive indicating left time if @cond is satisfied, 0 if timed 3285 * out, -1 if canceled. 3286 */ 3287 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3288 long __ret = (timeout); \ 3289 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3290 __ret) { \ 3291 spin_unlock_irq(&gcwq->lock); \ 3292 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3293 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3294 __ret); \ 3295 spin_lock_irq(&gcwq->lock); \ 3296 } \ 3297 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3298 }) 3299 3300 /** 3301 * trustee_wait_event - event wait for trustee 3302 * @cond: condition to wait for 3303 * 3304 * wait_event() for trustee to use. Automatically handles locking and 3305 * checks for CANCEL request. 3306 * 3307 * CONTEXT: 3308 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3309 * multiple times. To be used by trustee. 3310 * 3311 * RETURNS: 3312 * 0 if @cond is satisfied, -1 if canceled. 3313 */ 3314 #define trustee_wait_event(cond) ({ \ 3315 long __ret1; \ 3316 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3317 __ret1 < 0 ? -1 : 0; \ 3318 }) 3319 3320 static int __cpuinit trustee_thread(void *__gcwq) 3321 { 3322 struct global_cwq *gcwq = __gcwq; 3323 struct worker *worker; 3324 struct work_struct *work; 3325 struct hlist_node *pos; 3326 long rc; 3327 int i; 3328 3329 BUG_ON(gcwq->cpu != smp_processor_id()); 3330 3331 spin_lock_irq(&gcwq->lock); 3332 /* 3333 * Claim the manager position and make all workers rogue. 3334 * Trustee must be bound to the target cpu and can't be 3335 * cancelled. 3336 */ 3337 BUG_ON(gcwq->cpu != smp_processor_id()); 3338 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3339 BUG_ON(rc < 0); 3340 3341 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3342 3343 list_for_each_entry(worker, &gcwq->idle_list, entry) 3344 worker->flags |= WORKER_ROGUE; 3345 3346 for_each_busy_worker(worker, i, pos, gcwq) 3347 worker->flags |= WORKER_ROGUE; 3348 3349 /* 3350 * Call schedule() so that we cross rq->lock and thus can 3351 * guarantee sched callbacks see the rogue flag. This is 3352 * necessary as scheduler callbacks may be invoked from other 3353 * cpus. 3354 */ 3355 spin_unlock_irq(&gcwq->lock); 3356 schedule(); 3357 spin_lock_irq(&gcwq->lock); 3358 3359 /* 3360 * Sched callbacks are disabled now. Zap nr_running. After 3361 * this, nr_running stays zero and need_more_worker() and 3362 * keep_working() are always true as long as the worklist is 3363 * not empty. 3364 */ 3365 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3366 3367 spin_unlock_irq(&gcwq->lock); 3368 del_timer_sync(&gcwq->idle_timer); 3369 spin_lock_irq(&gcwq->lock); 3370 3371 /* 3372 * We're now in charge. Notify and proceed to drain. We need 3373 * to keep the gcwq running during the whole CPU down 3374 * procedure as other cpu hotunplug callbacks may need to 3375 * flush currently running tasks. 3376 */ 3377 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3378 wake_up_all(&gcwq->trustee_wait); 3379 3380 /* 3381 * The original cpu is in the process of dying and may go away 3382 * anytime now. When that happens, we and all workers would 3383 * be migrated to other cpus. Try draining any left work. We 3384 * want to get it over with ASAP - spam rescuers, wake up as 3385 * many idlers as necessary and create new ones till the 3386 * worklist is empty. Note that if the gcwq is frozen, there 3387 * may be frozen works in freezable cwqs. Don't declare 3388 * completion while frozen. 3389 */ 3390 while (gcwq->nr_workers != gcwq->nr_idle || 3391 gcwq->flags & GCWQ_FREEZING || 3392 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3393 int nr_works = 0; 3394 3395 list_for_each_entry(work, &gcwq->worklist, entry) { 3396 send_mayday(work); 3397 nr_works++; 3398 } 3399 3400 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3401 if (!nr_works--) 3402 break; 3403 wake_up_process(worker->task); 3404 } 3405 3406 if (need_to_create_worker(gcwq)) { 3407 spin_unlock_irq(&gcwq->lock); 3408 worker = create_worker(gcwq, false); 3409 spin_lock_irq(&gcwq->lock); 3410 if (worker) { 3411 worker->flags |= WORKER_ROGUE; 3412 start_worker(worker); 3413 } 3414 } 3415 3416 /* give a breather */ 3417 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3418 break; 3419 } 3420 3421 /* 3422 * Either all works have been scheduled and cpu is down, or 3423 * cpu down has already been canceled. Wait for and butcher 3424 * all workers till we're canceled. 3425 */ 3426 do { 3427 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3428 while (!list_empty(&gcwq->idle_list)) 3429 destroy_worker(list_first_entry(&gcwq->idle_list, 3430 struct worker, entry)); 3431 } while (gcwq->nr_workers && rc >= 0); 3432 3433 /* 3434 * At this point, either draining has completed and no worker 3435 * is left, or cpu down has been canceled or the cpu is being 3436 * brought back up. There shouldn't be any idle one left. 3437 * Tell the remaining busy ones to rebind once it finishes the 3438 * currently scheduled works by scheduling the rebind_work. 3439 */ 3440 WARN_ON(!list_empty(&gcwq->idle_list)); 3441 3442 for_each_busy_worker(worker, i, pos, gcwq) { 3443 struct work_struct *rebind_work = &worker->rebind_work; 3444 3445 /* 3446 * Rebind_work may race with future cpu hotplug 3447 * operations. Use a separate flag to mark that 3448 * rebinding is scheduled. 3449 */ 3450 worker->flags |= WORKER_REBIND; 3451 worker->flags &= ~WORKER_ROGUE; 3452 3453 /* queue rebind_work, wq doesn't matter, use the default one */ 3454 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3455 work_data_bits(rebind_work))) 3456 continue; 3457 3458 debug_work_activate(rebind_work); 3459 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3460 worker->scheduled.next, 3461 work_color_to_flags(WORK_NO_COLOR)); 3462 } 3463 3464 /* relinquish manager role */ 3465 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3466 3467 /* notify completion */ 3468 gcwq->trustee = NULL; 3469 gcwq->trustee_state = TRUSTEE_DONE; 3470 wake_up_all(&gcwq->trustee_wait); 3471 spin_unlock_irq(&gcwq->lock); 3472 return 0; 3473 } 3474 3475 /** 3476 * wait_trustee_state - wait for trustee to enter the specified state 3477 * @gcwq: gcwq the trustee of interest belongs to 3478 * @state: target state to wait for 3479 * 3480 * Wait for the trustee to reach @state. DONE is already matched. 3481 * 3482 * CONTEXT: 3483 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3484 * multiple times. To be used by cpu_callback. 3485 */ 3486 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3487 __releases(&gcwq->lock) 3488 __acquires(&gcwq->lock) 3489 { 3490 if (!(gcwq->trustee_state == state || 3491 gcwq->trustee_state == TRUSTEE_DONE)) { 3492 spin_unlock_irq(&gcwq->lock); 3493 __wait_event(gcwq->trustee_wait, 3494 gcwq->trustee_state == state || 3495 gcwq->trustee_state == TRUSTEE_DONE); 3496 spin_lock_irq(&gcwq->lock); 3497 } 3498 } 3499 3500 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3501 unsigned long action, 3502 void *hcpu) 3503 { 3504 unsigned int cpu = (unsigned long)hcpu; 3505 struct global_cwq *gcwq = get_gcwq(cpu); 3506 struct task_struct *new_trustee = NULL; 3507 struct worker *uninitialized_var(new_worker); 3508 unsigned long flags; 3509 3510 action &= ~CPU_TASKS_FROZEN; 3511 3512 switch (action) { 3513 case CPU_DOWN_PREPARE: 3514 new_trustee = kthread_create(trustee_thread, gcwq, 3515 "workqueue_trustee/%d\n", cpu); 3516 if (IS_ERR(new_trustee)) 3517 return notifier_from_errno(PTR_ERR(new_trustee)); 3518 kthread_bind(new_trustee, cpu); 3519 /* fall through */ 3520 case CPU_UP_PREPARE: 3521 BUG_ON(gcwq->first_idle); 3522 new_worker = create_worker(gcwq, false); 3523 if (!new_worker) { 3524 if (new_trustee) 3525 kthread_stop(new_trustee); 3526 return NOTIFY_BAD; 3527 } 3528 } 3529 3530 /* some are called w/ irq disabled, don't disturb irq status */ 3531 spin_lock_irqsave(&gcwq->lock, flags); 3532 3533 switch (action) { 3534 case CPU_DOWN_PREPARE: 3535 /* initialize trustee and tell it to acquire the gcwq */ 3536 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3537 gcwq->trustee = new_trustee; 3538 gcwq->trustee_state = TRUSTEE_START; 3539 wake_up_process(gcwq->trustee); 3540 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3541 /* fall through */ 3542 case CPU_UP_PREPARE: 3543 BUG_ON(gcwq->first_idle); 3544 gcwq->first_idle = new_worker; 3545 break; 3546 3547 case CPU_DYING: 3548 /* 3549 * Before this, the trustee and all workers except for 3550 * the ones which are still executing works from 3551 * before the last CPU down must be on the cpu. After 3552 * this, they'll all be diasporas. 3553 */ 3554 gcwq->flags |= GCWQ_DISASSOCIATED; 3555 break; 3556 3557 case CPU_POST_DEAD: 3558 gcwq->trustee_state = TRUSTEE_BUTCHER; 3559 /* fall through */ 3560 case CPU_UP_CANCELED: 3561 destroy_worker(gcwq->first_idle); 3562 gcwq->first_idle = NULL; 3563 break; 3564 3565 case CPU_DOWN_FAILED: 3566 case CPU_ONLINE: 3567 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3568 if (gcwq->trustee_state != TRUSTEE_DONE) { 3569 gcwq->trustee_state = TRUSTEE_RELEASE; 3570 wake_up_process(gcwq->trustee); 3571 wait_trustee_state(gcwq, TRUSTEE_DONE); 3572 } 3573 3574 /* 3575 * Trustee is done and there might be no worker left. 3576 * Put the first_idle in and request a real manager to 3577 * take a look. 3578 */ 3579 spin_unlock_irq(&gcwq->lock); 3580 kthread_bind(gcwq->first_idle->task, cpu); 3581 spin_lock_irq(&gcwq->lock); 3582 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3583 start_worker(gcwq->first_idle); 3584 gcwq->first_idle = NULL; 3585 break; 3586 } 3587 3588 spin_unlock_irqrestore(&gcwq->lock, flags); 3589 3590 return notifier_from_errno(0); 3591 } 3592 3593 #ifdef CONFIG_SMP 3594 3595 struct work_for_cpu { 3596 struct completion completion; 3597 long (*fn)(void *); 3598 void *arg; 3599 long ret; 3600 }; 3601 3602 static int do_work_for_cpu(void *_wfc) 3603 { 3604 struct work_for_cpu *wfc = _wfc; 3605 wfc->ret = wfc->fn(wfc->arg); 3606 complete(&wfc->completion); 3607 return 0; 3608 } 3609 3610 /** 3611 * work_on_cpu - run a function in user context on a particular cpu 3612 * @cpu: the cpu to run on 3613 * @fn: the function to run 3614 * @arg: the function arg 3615 * 3616 * This will return the value @fn returns. 3617 * It is up to the caller to ensure that the cpu doesn't go offline. 3618 * The caller must not hold any locks which would prevent @fn from completing. 3619 */ 3620 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3621 { 3622 struct task_struct *sub_thread; 3623 struct work_for_cpu wfc = { 3624 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3625 .fn = fn, 3626 .arg = arg, 3627 }; 3628 3629 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3630 if (IS_ERR(sub_thread)) 3631 return PTR_ERR(sub_thread); 3632 kthread_bind(sub_thread, cpu); 3633 wake_up_process(sub_thread); 3634 wait_for_completion(&wfc.completion); 3635 return wfc.ret; 3636 } 3637 EXPORT_SYMBOL_GPL(work_on_cpu); 3638 #endif /* CONFIG_SMP */ 3639 3640 #ifdef CONFIG_FREEZER 3641 3642 /** 3643 * freeze_workqueues_begin - begin freezing workqueues 3644 * 3645 * Start freezing workqueues. After this function returns, all freezable 3646 * workqueues will queue new works to their frozen_works list instead of 3647 * gcwq->worklist. 3648 * 3649 * CONTEXT: 3650 * Grabs and releases workqueue_lock and gcwq->lock's. 3651 */ 3652 void freeze_workqueues_begin(void) 3653 { 3654 unsigned int cpu; 3655 3656 spin_lock(&workqueue_lock); 3657 3658 BUG_ON(workqueue_freezing); 3659 workqueue_freezing = true; 3660 3661 for_each_gcwq_cpu(cpu) { 3662 struct global_cwq *gcwq = get_gcwq(cpu); 3663 struct workqueue_struct *wq; 3664 3665 spin_lock_irq(&gcwq->lock); 3666 3667 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3668 gcwq->flags |= GCWQ_FREEZING; 3669 3670 list_for_each_entry(wq, &workqueues, list) { 3671 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3672 3673 if (cwq && wq->flags & WQ_FREEZABLE) 3674 cwq->max_active = 0; 3675 } 3676 3677 spin_unlock_irq(&gcwq->lock); 3678 } 3679 3680 spin_unlock(&workqueue_lock); 3681 } 3682 3683 /** 3684 * freeze_workqueues_busy - are freezable workqueues still busy? 3685 * 3686 * Check whether freezing is complete. This function must be called 3687 * between freeze_workqueues_begin() and thaw_workqueues(). 3688 * 3689 * CONTEXT: 3690 * Grabs and releases workqueue_lock. 3691 * 3692 * RETURNS: 3693 * %true if some freezable workqueues are still busy. %false if freezing 3694 * is complete. 3695 */ 3696 bool freeze_workqueues_busy(void) 3697 { 3698 unsigned int cpu; 3699 bool busy = false; 3700 3701 spin_lock(&workqueue_lock); 3702 3703 BUG_ON(!workqueue_freezing); 3704 3705 for_each_gcwq_cpu(cpu) { 3706 struct workqueue_struct *wq; 3707 /* 3708 * nr_active is monotonically decreasing. It's safe 3709 * to peek without lock. 3710 */ 3711 list_for_each_entry(wq, &workqueues, list) { 3712 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3713 3714 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3715 continue; 3716 3717 BUG_ON(cwq->nr_active < 0); 3718 if (cwq->nr_active) { 3719 busy = true; 3720 goto out_unlock; 3721 } 3722 } 3723 } 3724 out_unlock: 3725 spin_unlock(&workqueue_lock); 3726 return busy; 3727 } 3728 3729 /** 3730 * thaw_workqueues - thaw workqueues 3731 * 3732 * Thaw workqueues. Normal queueing is restored and all collected 3733 * frozen works are transferred to their respective gcwq worklists. 3734 * 3735 * CONTEXT: 3736 * Grabs and releases workqueue_lock and gcwq->lock's. 3737 */ 3738 void thaw_workqueues(void) 3739 { 3740 unsigned int cpu; 3741 3742 spin_lock(&workqueue_lock); 3743 3744 if (!workqueue_freezing) 3745 goto out_unlock; 3746 3747 for_each_gcwq_cpu(cpu) { 3748 struct global_cwq *gcwq = get_gcwq(cpu); 3749 struct workqueue_struct *wq; 3750 3751 spin_lock_irq(&gcwq->lock); 3752 3753 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3754 gcwq->flags &= ~GCWQ_FREEZING; 3755 3756 list_for_each_entry(wq, &workqueues, list) { 3757 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3758 3759 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3760 continue; 3761 3762 /* restore max_active and repopulate worklist */ 3763 cwq->max_active = wq->saved_max_active; 3764 3765 while (!list_empty(&cwq->delayed_works) && 3766 cwq->nr_active < cwq->max_active) 3767 cwq_activate_first_delayed(cwq); 3768 } 3769 3770 wake_up_worker(gcwq); 3771 3772 spin_unlock_irq(&gcwq->lock); 3773 } 3774 3775 workqueue_freezing = false; 3776 out_unlock: 3777 spin_unlock(&workqueue_lock); 3778 } 3779 #endif /* CONFIG_FREEZER */ 3780 3781 static int __init init_workqueues(void) 3782 { 3783 unsigned int cpu; 3784 int i; 3785 3786 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3787 3788 /* initialize gcwqs */ 3789 for_each_gcwq_cpu(cpu) { 3790 struct global_cwq *gcwq = get_gcwq(cpu); 3791 3792 spin_lock_init(&gcwq->lock); 3793 INIT_LIST_HEAD(&gcwq->worklist); 3794 gcwq->cpu = cpu; 3795 gcwq->flags |= GCWQ_DISASSOCIATED; 3796 3797 INIT_LIST_HEAD(&gcwq->idle_list); 3798 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3799 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3800 3801 init_timer_deferrable(&gcwq->idle_timer); 3802 gcwq->idle_timer.function = idle_worker_timeout; 3803 gcwq->idle_timer.data = (unsigned long)gcwq; 3804 3805 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3806 (unsigned long)gcwq); 3807 3808 ida_init(&gcwq->worker_ida); 3809 3810 gcwq->trustee_state = TRUSTEE_DONE; 3811 init_waitqueue_head(&gcwq->trustee_wait); 3812 } 3813 3814 /* create the initial worker */ 3815 for_each_online_gcwq_cpu(cpu) { 3816 struct global_cwq *gcwq = get_gcwq(cpu); 3817 struct worker *worker; 3818 3819 if (cpu != WORK_CPU_UNBOUND) 3820 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3821 worker = create_worker(gcwq, true); 3822 BUG_ON(!worker); 3823 spin_lock_irq(&gcwq->lock); 3824 start_worker(worker); 3825 spin_unlock_irq(&gcwq->lock); 3826 } 3827 3828 system_wq = alloc_workqueue("events", 0, 0); 3829 system_long_wq = alloc_workqueue("events_long", 0, 0); 3830 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3831 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3832 WQ_UNBOUND_MAX_ACTIVE); 3833 system_freezable_wq = alloc_workqueue("events_freezable", 3834 WQ_FREEZABLE, 0); 3835 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable", 3836 WQ_NON_REENTRANT | WQ_FREEZABLE, 0); 3837 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq || 3838 !system_unbound_wq || !system_freezable_wq || 3839 !system_nrt_freezable_wq); 3840 return 0; 3841 } 3842 early_initcall(init_workqueues); 3843