xref: /linux/kernel/workqueue.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
83 						/* call for help after 10ms
84 						   (min two ticks) */
85 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
86 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
87 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
88 
89 	/*
90 	 * Rescue workers are used only on emergencies and shared by
91 	 * all cpus.  Give -20.
92 	 */
93 	RESCUER_NICE_LEVEL	= -20,
94 };
95 
96 /*
97  * Structure fields follow one of the following exclusion rules.
98  *
99  * I: Modifiable by initialization/destruction paths and read-only for
100  *    everyone else.
101  *
102  * P: Preemption protected.  Disabling preemption is enough and should
103  *    only be modified and accessed from the local cpu.
104  *
105  * L: gcwq->lock protected.  Access with gcwq->lock held.
106  *
107  * X: During normal operation, modification requires gcwq->lock and
108  *    should be done only from local cpu.  Either disabling preemption
109  *    on local cpu or grabbing gcwq->lock is enough for read access.
110  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
111  *
112  * F: wq->flush_mutex protected.
113  *
114  * W: workqueue_lock protected.
115  */
116 
117 struct global_cwq;
118 
119 /*
120  * The poor guys doing the actual heavy lifting.  All on-duty workers
121  * are either serving the manager role, on idle list or on busy hash.
122  */
123 struct worker {
124 	/* on idle list while idle, on busy hash table while busy */
125 	union {
126 		struct list_head	entry;	/* L: while idle */
127 		struct hlist_node	hentry;	/* L: while busy */
128 	};
129 
130 	struct work_struct	*current_work;	/* L: work being processed */
131 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 	struct list_head	scheduled;	/* L: scheduled works */
133 	struct task_struct	*task;		/* I: worker task */
134 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
135 	/* 64 bytes boundary on 64bit, 32 on 32bit */
136 	unsigned long		last_active;	/* L: last active timestamp */
137 	unsigned int		flags;		/* X: flags */
138 	int			id;		/* I: worker id */
139 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
140 };
141 
142 /*
143  * Global per-cpu workqueue.  There's one and only one for each cpu
144  * and all works are queued and processed here regardless of their
145  * target workqueues.
146  */
147 struct global_cwq {
148 	spinlock_t		lock;		/* the gcwq lock */
149 	struct list_head	worklist;	/* L: list of pending works */
150 	unsigned int		cpu;		/* I: the associated cpu */
151 	unsigned int		flags;		/* L: GCWQ_* flags */
152 
153 	int			nr_workers;	/* L: total number of workers */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	/* workers are chained either in the idle_list or busy_hash */
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
159 						/* L: hash of busy workers */
160 
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
163 
164 	struct ida		worker_ida;	/* L: for worker IDs */
165 
166 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
167 	unsigned int		trustee_state;	/* L: trustee state */
168 	wait_queue_head_t	trustee_wait;	/* trustee wait */
169 	struct worker		*first_idle;	/* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
171 
172 /*
173  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
174  * work_struct->data are used for flags and thus cwqs need to be
175  * aligned at two's power of the number of flag bits.
176  */
177 struct cpu_workqueue_struct {
178 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
179 	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 	int			work_color;	/* L: current color */
181 	int			flush_color;	/* L: flushing color */
182 	int			nr_in_flight[WORK_NR_COLORS];
183 						/* L: nr of in_flight works */
184 	int			nr_active;	/* L: nr of active works */
185 	int			max_active;	/* L: max active works */
186 	struct list_head	delayed_works;	/* L: delayed works */
187 };
188 
189 /*
190  * Structure used to wait for workqueue flush.
191  */
192 struct wq_flusher {
193 	struct list_head	list;		/* F: list of flushers */
194 	int			flush_color;	/* F: flush color waiting for */
195 	struct completion	done;		/* flush completion */
196 };
197 
198 /*
199  * All cpumasks are assumed to be always set on UP and thus can't be
200  * used to determine whether there's something to be done.
201  */
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask)	\
205 	cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask)			free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp)		true
216 #define free_mayday_mask(mask)			do { } while (0)
217 #endif
218 
219 /*
220  * The externally visible workqueue abstraction is an array of
221  * per-CPU workqueues:
222  */
223 struct workqueue_struct {
224 	unsigned int		flags;		/* W: WQ_* flags */
225 	union {
226 		struct cpu_workqueue_struct __percpu	*pcpu;
227 		struct cpu_workqueue_struct		*single;
228 		unsigned long				v;
229 	} cpu_wq;				/* I: cwq's */
230 	struct list_head	list;		/* W: list of all workqueues */
231 
232 	struct mutex		flush_mutex;	/* protects wq flushing */
233 	int			work_color;	/* F: current work color */
234 	int			flush_color;	/* F: current flush color */
235 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
236 	struct wq_flusher	*first_flusher;	/* F: first flusher */
237 	struct list_head	flusher_queue;	/* F: flush waiters */
238 	struct list_head	flusher_overflow; /* F: flush overflow list */
239 
240 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
241 	struct worker		*rescuer;	/* I: rescue worker */
242 
243 	int			nr_drainers;	/* W: drain in progress */
244 	int			saved_max_active; /* W: saved cwq max_active */
245 #ifdef CONFIG_LOCKDEP
246 	struct lockdep_map	lockdep_map;
247 #endif
248 	char			name[];		/* I: workqueue name */
249 };
250 
251 struct workqueue_struct *system_wq __read_mostly;
252 struct workqueue_struct *system_long_wq __read_mostly;
253 struct workqueue_struct *system_nrt_wq __read_mostly;
254 struct workqueue_struct *system_unbound_wq __read_mostly;
255 struct workqueue_struct *system_freezable_wq __read_mostly;
256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
257 EXPORT_SYMBOL_GPL(system_wq);
258 EXPORT_SYMBOL_GPL(system_long_wq);
259 EXPORT_SYMBOL_GPL(system_nrt_wq);
260 EXPORT_SYMBOL_GPL(system_unbound_wq);
261 EXPORT_SYMBOL_GPL(system_freezable_wq);
262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
263 
264 #define CREATE_TRACE_POINTS
265 #include <trace/events/workqueue.h>
266 
267 #define for_each_busy_worker(worker, i, pos, gcwq)			\
268 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
269 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
270 
271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
272 				  unsigned int sw)
273 {
274 	if (cpu < nr_cpu_ids) {
275 		if (sw & 1) {
276 			cpu = cpumask_next(cpu, mask);
277 			if (cpu < nr_cpu_ids)
278 				return cpu;
279 		}
280 		if (sw & 2)
281 			return WORK_CPU_UNBOUND;
282 	}
283 	return WORK_CPU_NONE;
284 }
285 
286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
287 				struct workqueue_struct *wq)
288 {
289 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
290 }
291 
292 /*
293  * CPU iterators
294  *
295  * An extra gcwq is defined for an invalid cpu number
296  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
297  * specific CPU.  The following iterators are similar to
298  * for_each_*_cpu() iterators but also considers the unbound gcwq.
299  *
300  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
301  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
302  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
303  *				  WORK_CPU_UNBOUND for unbound workqueues
304  */
305 #define for_each_gcwq_cpu(cpu)						\
306 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
307 	     (cpu) < WORK_CPU_NONE;					\
308 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
309 
310 #define for_each_online_gcwq_cpu(cpu)					\
311 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
312 	     (cpu) < WORK_CPU_NONE;					\
313 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
314 
315 #define for_each_cwq_cpu(cpu, wq)					\
316 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
317 	     (cpu) < WORK_CPU_NONE;					\
318 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
319 
320 #ifdef CONFIG_DEBUG_OBJECTS_WORK
321 
322 static struct debug_obj_descr work_debug_descr;
323 
324 static void *work_debug_hint(void *addr)
325 {
326 	return ((struct work_struct *) addr)->func;
327 }
328 
329 /*
330  * fixup_init is called when:
331  * - an active object is initialized
332  */
333 static int work_fixup_init(void *addr, enum debug_obj_state state)
334 {
335 	struct work_struct *work = addr;
336 
337 	switch (state) {
338 	case ODEBUG_STATE_ACTIVE:
339 		cancel_work_sync(work);
340 		debug_object_init(work, &work_debug_descr);
341 		return 1;
342 	default:
343 		return 0;
344 	}
345 }
346 
347 /*
348  * fixup_activate is called when:
349  * - an active object is activated
350  * - an unknown object is activated (might be a statically initialized object)
351  */
352 static int work_fixup_activate(void *addr, enum debug_obj_state state)
353 {
354 	struct work_struct *work = addr;
355 
356 	switch (state) {
357 
358 	case ODEBUG_STATE_NOTAVAILABLE:
359 		/*
360 		 * This is not really a fixup. The work struct was
361 		 * statically initialized. We just make sure that it
362 		 * is tracked in the object tracker.
363 		 */
364 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
365 			debug_object_init(work, &work_debug_descr);
366 			debug_object_activate(work, &work_debug_descr);
367 			return 0;
368 		}
369 		WARN_ON_ONCE(1);
370 		return 0;
371 
372 	case ODEBUG_STATE_ACTIVE:
373 		WARN_ON(1);
374 
375 	default:
376 		return 0;
377 	}
378 }
379 
380 /*
381  * fixup_free is called when:
382  * - an active object is freed
383  */
384 static int work_fixup_free(void *addr, enum debug_obj_state state)
385 {
386 	struct work_struct *work = addr;
387 
388 	switch (state) {
389 	case ODEBUG_STATE_ACTIVE:
390 		cancel_work_sync(work);
391 		debug_object_free(work, &work_debug_descr);
392 		return 1;
393 	default:
394 		return 0;
395 	}
396 }
397 
398 static struct debug_obj_descr work_debug_descr = {
399 	.name		= "work_struct",
400 	.debug_hint	= work_debug_hint,
401 	.fixup_init	= work_fixup_init,
402 	.fixup_activate	= work_fixup_activate,
403 	.fixup_free	= work_fixup_free,
404 };
405 
406 static inline void debug_work_activate(struct work_struct *work)
407 {
408 	debug_object_activate(work, &work_debug_descr);
409 }
410 
411 static inline void debug_work_deactivate(struct work_struct *work)
412 {
413 	debug_object_deactivate(work, &work_debug_descr);
414 }
415 
416 void __init_work(struct work_struct *work, int onstack)
417 {
418 	if (onstack)
419 		debug_object_init_on_stack(work, &work_debug_descr);
420 	else
421 		debug_object_init(work, &work_debug_descr);
422 }
423 EXPORT_SYMBOL_GPL(__init_work);
424 
425 void destroy_work_on_stack(struct work_struct *work)
426 {
427 	debug_object_free(work, &work_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
430 
431 #else
432 static inline void debug_work_activate(struct work_struct *work) { }
433 static inline void debug_work_deactivate(struct work_struct *work) { }
434 #endif
435 
436 /* Serializes the accesses to the list of workqueues. */
437 static DEFINE_SPINLOCK(workqueue_lock);
438 static LIST_HEAD(workqueues);
439 static bool workqueue_freezing;		/* W: have wqs started freezing? */
440 
441 /*
442  * The almighty global cpu workqueues.  nr_running is the only field
443  * which is expected to be used frequently by other cpus via
444  * try_to_wake_up().  Put it in a separate cacheline.
445  */
446 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
448 
449 /*
450  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
451  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
452  * workers have WORKER_UNBOUND set.
453  */
454 static struct global_cwq unbound_global_cwq;
455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
456 
457 static int worker_thread(void *__worker);
458 
459 static struct global_cwq *get_gcwq(unsigned int cpu)
460 {
461 	if (cpu != WORK_CPU_UNBOUND)
462 		return &per_cpu(global_cwq, cpu);
463 	else
464 		return &unbound_global_cwq;
465 }
466 
467 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
468 {
469 	if (cpu != WORK_CPU_UNBOUND)
470 		return &per_cpu(gcwq_nr_running, cpu);
471 	else
472 		return &unbound_gcwq_nr_running;
473 }
474 
475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 					    struct workqueue_struct *wq)
477 {
478 	if (!(wq->flags & WQ_UNBOUND)) {
479 		if (likely(cpu < nr_cpu_ids))
480 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
481 	} else if (likely(cpu == WORK_CPU_UNBOUND))
482 		return wq->cpu_wq.single;
483 	return NULL;
484 }
485 
486 static unsigned int work_color_to_flags(int color)
487 {
488 	return color << WORK_STRUCT_COLOR_SHIFT;
489 }
490 
491 static int get_work_color(struct work_struct *work)
492 {
493 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
495 }
496 
497 static int work_next_color(int color)
498 {
499 	return (color + 1) % WORK_NR_COLORS;
500 }
501 
502 /*
503  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
504  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
505  * cleared and the work data contains the cpu number it was last on.
506  *
507  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
508  * cwq, cpu or clear work->data.  These functions should only be
509  * called while the work is owned - ie. while the PENDING bit is set.
510  *
511  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
512  * corresponding to a work.  gcwq is available once the work has been
513  * queued anywhere after initialization.  cwq is available only from
514  * queueing until execution starts.
515  */
516 static inline void set_work_data(struct work_struct *work, unsigned long data,
517 				 unsigned long flags)
518 {
519 	BUG_ON(!work_pending(work));
520 	atomic_long_set(&work->data, data | flags | work_static(work));
521 }
522 
523 static void set_work_cwq(struct work_struct *work,
524 			 struct cpu_workqueue_struct *cwq,
525 			 unsigned long extra_flags)
526 {
527 	set_work_data(work, (unsigned long)cwq,
528 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
529 }
530 
531 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
532 {
533 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
534 }
535 
536 static void clear_work_data(struct work_struct *work)
537 {
538 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
539 }
540 
541 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
542 {
543 	unsigned long data = atomic_long_read(&work->data);
544 
545 	if (data & WORK_STRUCT_CWQ)
546 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
547 	else
548 		return NULL;
549 }
550 
551 static struct global_cwq *get_work_gcwq(struct work_struct *work)
552 {
553 	unsigned long data = atomic_long_read(&work->data);
554 	unsigned int cpu;
555 
556 	if (data & WORK_STRUCT_CWQ)
557 		return ((struct cpu_workqueue_struct *)
558 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
559 
560 	cpu = data >> WORK_STRUCT_FLAG_BITS;
561 	if (cpu == WORK_CPU_NONE)
562 		return NULL;
563 
564 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
565 	return get_gcwq(cpu);
566 }
567 
568 /*
569  * Policy functions.  These define the policies on how the global
570  * worker pool is managed.  Unless noted otherwise, these functions
571  * assume that they're being called with gcwq->lock held.
572  */
573 
574 static bool __need_more_worker(struct global_cwq *gcwq)
575 {
576 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
577 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
578 }
579 
580 /*
581  * Need to wake up a worker?  Called from anything but currently
582  * running workers.
583  */
584 static bool need_more_worker(struct global_cwq *gcwq)
585 {
586 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
587 }
588 
589 /* Can I start working?  Called from busy but !running workers. */
590 static bool may_start_working(struct global_cwq *gcwq)
591 {
592 	return gcwq->nr_idle;
593 }
594 
595 /* Do I need to keep working?  Called from currently running workers. */
596 static bool keep_working(struct global_cwq *gcwq)
597 {
598 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
599 
600 	return !list_empty(&gcwq->worklist) &&
601 		(atomic_read(nr_running) <= 1 ||
602 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
603 }
604 
605 /* Do we need a new worker?  Called from manager. */
606 static bool need_to_create_worker(struct global_cwq *gcwq)
607 {
608 	return need_more_worker(gcwq) && !may_start_working(gcwq);
609 }
610 
611 /* Do I need to be the manager? */
612 static bool need_to_manage_workers(struct global_cwq *gcwq)
613 {
614 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
615 }
616 
617 /* Do we have too many workers and should some go away? */
618 static bool too_many_workers(struct global_cwq *gcwq)
619 {
620 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
621 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
622 	int nr_busy = gcwq->nr_workers - nr_idle;
623 
624 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
625 }
626 
627 /*
628  * Wake up functions.
629  */
630 
631 /* Return the first worker.  Safe with preemption disabled */
632 static struct worker *first_worker(struct global_cwq *gcwq)
633 {
634 	if (unlikely(list_empty(&gcwq->idle_list)))
635 		return NULL;
636 
637 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
638 }
639 
640 /**
641  * wake_up_worker - wake up an idle worker
642  * @gcwq: gcwq to wake worker for
643  *
644  * Wake up the first idle worker of @gcwq.
645  *
646  * CONTEXT:
647  * spin_lock_irq(gcwq->lock).
648  */
649 static void wake_up_worker(struct global_cwq *gcwq)
650 {
651 	struct worker *worker = first_worker(gcwq);
652 
653 	if (likely(worker))
654 		wake_up_process(worker->task);
655 }
656 
657 /**
658  * wq_worker_waking_up - a worker is waking up
659  * @task: task waking up
660  * @cpu: CPU @task is waking up to
661  *
662  * This function is called during try_to_wake_up() when a worker is
663  * being awoken.
664  *
665  * CONTEXT:
666  * spin_lock_irq(rq->lock)
667  */
668 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
669 {
670 	struct worker *worker = kthread_data(task);
671 
672 	if (!(worker->flags & WORKER_NOT_RUNNING))
673 		atomic_inc(get_gcwq_nr_running(cpu));
674 }
675 
676 /**
677  * wq_worker_sleeping - a worker is going to sleep
678  * @task: task going to sleep
679  * @cpu: CPU in question, must be the current CPU number
680  *
681  * This function is called during schedule() when a busy worker is
682  * going to sleep.  Worker on the same cpu can be woken up by
683  * returning pointer to its task.
684  *
685  * CONTEXT:
686  * spin_lock_irq(rq->lock)
687  *
688  * RETURNS:
689  * Worker task on @cpu to wake up, %NULL if none.
690  */
691 struct task_struct *wq_worker_sleeping(struct task_struct *task,
692 				       unsigned int cpu)
693 {
694 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
695 	struct global_cwq *gcwq = get_gcwq(cpu);
696 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
697 
698 	if (worker->flags & WORKER_NOT_RUNNING)
699 		return NULL;
700 
701 	/* this can only happen on the local cpu */
702 	BUG_ON(cpu != raw_smp_processor_id());
703 
704 	/*
705 	 * The counterpart of the following dec_and_test, implied mb,
706 	 * worklist not empty test sequence is in insert_work().
707 	 * Please read comment there.
708 	 *
709 	 * NOT_RUNNING is clear.  This means that trustee is not in
710 	 * charge and we're running on the local cpu w/ rq lock held
711 	 * and preemption disabled, which in turn means that none else
712 	 * could be manipulating idle_list, so dereferencing idle_list
713 	 * without gcwq lock is safe.
714 	 */
715 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
716 		to_wakeup = first_worker(gcwq);
717 	return to_wakeup ? to_wakeup->task : NULL;
718 }
719 
720 /**
721  * worker_set_flags - set worker flags and adjust nr_running accordingly
722  * @worker: self
723  * @flags: flags to set
724  * @wakeup: wakeup an idle worker if necessary
725  *
726  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
727  * nr_running becomes zero and @wakeup is %true, an idle worker is
728  * woken up.
729  *
730  * CONTEXT:
731  * spin_lock_irq(gcwq->lock)
732  */
733 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
734 				    bool wakeup)
735 {
736 	struct global_cwq *gcwq = worker->gcwq;
737 
738 	WARN_ON_ONCE(worker->task != current);
739 
740 	/*
741 	 * If transitioning into NOT_RUNNING, adjust nr_running and
742 	 * wake up an idle worker as necessary if requested by
743 	 * @wakeup.
744 	 */
745 	if ((flags & WORKER_NOT_RUNNING) &&
746 	    !(worker->flags & WORKER_NOT_RUNNING)) {
747 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
748 
749 		if (wakeup) {
750 			if (atomic_dec_and_test(nr_running) &&
751 			    !list_empty(&gcwq->worklist))
752 				wake_up_worker(gcwq);
753 		} else
754 			atomic_dec(nr_running);
755 	}
756 
757 	worker->flags |= flags;
758 }
759 
760 /**
761  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
762  * @worker: self
763  * @flags: flags to clear
764  *
765  * Clear @flags in @worker->flags and adjust nr_running accordingly.
766  *
767  * CONTEXT:
768  * spin_lock_irq(gcwq->lock)
769  */
770 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
771 {
772 	struct global_cwq *gcwq = worker->gcwq;
773 	unsigned int oflags = worker->flags;
774 
775 	WARN_ON_ONCE(worker->task != current);
776 
777 	worker->flags &= ~flags;
778 
779 	/*
780 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
781 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
782 	 * of multiple flags, not a single flag.
783 	 */
784 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
785 		if (!(worker->flags & WORKER_NOT_RUNNING))
786 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
787 }
788 
789 /**
790  * busy_worker_head - return the busy hash head for a work
791  * @gcwq: gcwq of interest
792  * @work: work to be hashed
793  *
794  * Return hash head of @gcwq for @work.
795  *
796  * CONTEXT:
797  * spin_lock_irq(gcwq->lock).
798  *
799  * RETURNS:
800  * Pointer to the hash head.
801  */
802 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
803 					   struct work_struct *work)
804 {
805 	const int base_shift = ilog2(sizeof(struct work_struct));
806 	unsigned long v = (unsigned long)work;
807 
808 	/* simple shift and fold hash, do we need something better? */
809 	v >>= base_shift;
810 	v += v >> BUSY_WORKER_HASH_ORDER;
811 	v &= BUSY_WORKER_HASH_MASK;
812 
813 	return &gcwq->busy_hash[v];
814 }
815 
816 /**
817  * __find_worker_executing_work - find worker which is executing a work
818  * @gcwq: gcwq of interest
819  * @bwh: hash head as returned by busy_worker_head()
820  * @work: work to find worker for
821  *
822  * Find a worker which is executing @work on @gcwq.  @bwh should be
823  * the hash head obtained by calling busy_worker_head() with the same
824  * work.
825  *
826  * CONTEXT:
827  * spin_lock_irq(gcwq->lock).
828  *
829  * RETURNS:
830  * Pointer to worker which is executing @work if found, NULL
831  * otherwise.
832  */
833 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
834 						   struct hlist_head *bwh,
835 						   struct work_struct *work)
836 {
837 	struct worker *worker;
838 	struct hlist_node *tmp;
839 
840 	hlist_for_each_entry(worker, tmp, bwh, hentry)
841 		if (worker->current_work == work)
842 			return worker;
843 	return NULL;
844 }
845 
846 /**
847  * find_worker_executing_work - find worker which is executing a work
848  * @gcwq: gcwq of interest
849  * @work: work to find worker for
850  *
851  * Find a worker which is executing @work on @gcwq.  This function is
852  * identical to __find_worker_executing_work() except that this
853  * function calculates @bwh itself.
854  *
855  * CONTEXT:
856  * spin_lock_irq(gcwq->lock).
857  *
858  * RETURNS:
859  * Pointer to worker which is executing @work if found, NULL
860  * otherwise.
861  */
862 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
863 						 struct work_struct *work)
864 {
865 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
866 					    work);
867 }
868 
869 /**
870  * gcwq_determine_ins_pos - find insertion position
871  * @gcwq: gcwq of interest
872  * @cwq: cwq a work is being queued for
873  *
874  * A work for @cwq is about to be queued on @gcwq, determine insertion
875  * position for the work.  If @cwq is for HIGHPRI wq, the work is
876  * queued at the head of the queue but in FIFO order with respect to
877  * other HIGHPRI works; otherwise, at the end of the queue.  This
878  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
879  * there are HIGHPRI works pending.
880  *
881  * CONTEXT:
882  * spin_lock_irq(gcwq->lock).
883  *
884  * RETURNS:
885  * Pointer to inserstion position.
886  */
887 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
888 					       struct cpu_workqueue_struct *cwq)
889 {
890 	struct work_struct *twork;
891 
892 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
893 		return &gcwq->worklist;
894 
895 	list_for_each_entry(twork, &gcwq->worklist, entry) {
896 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
897 
898 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
899 			break;
900 	}
901 
902 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
903 	return &twork->entry;
904 }
905 
906 /**
907  * insert_work - insert a work into gcwq
908  * @cwq: cwq @work belongs to
909  * @work: work to insert
910  * @head: insertion point
911  * @extra_flags: extra WORK_STRUCT_* flags to set
912  *
913  * Insert @work which belongs to @cwq into @gcwq after @head.
914  * @extra_flags is or'd to work_struct flags.
915  *
916  * CONTEXT:
917  * spin_lock_irq(gcwq->lock).
918  */
919 static void insert_work(struct cpu_workqueue_struct *cwq,
920 			struct work_struct *work, struct list_head *head,
921 			unsigned int extra_flags)
922 {
923 	struct global_cwq *gcwq = cwq->gcwq;
924 
925 	/* we own @work, set data and link */
926 	set_work_cwq(work, cwq, extra_flags);
927 
928 	/*
929 	 * Ensure that we get the right work->data if we see the
930 	 * result of list_add() below, see try_to_grab_pending().
931 	 */
932 	smp_wmb();
933 
934 	list_add_tail(&work->entry, head);
935 
936 	/*
937 	 * Ensure either worker_sched_deactivated() sees the above
938 	 * list_add_tail() or we see zero nr_running to avoid workers
939 	 * lying around lazily while there are works to be processed.
940 	 */
941 	smp_mb();
942 
943 	if (__need_more_worker(gcwq))
944 		wake_up_worker(gcwq);
945 }
946 
947 /*
948  * Test whether @work is being queued from another work executing on the
949  * same workqueue.  This is rather expensive and should only be used from
950  * cold paths.
951  */
952 static bool is_chained_work(struct workqueue_struct *wq)
953 {
954 	unsigned long flags;
955 	unsigned int cpu;
956 
957 	for_each_gcwq_cpu(cpu) {
958 		struct global_cwq *gcwq = get_gcwq(cpu);
959 		struct worker *worker;
960 		struct hlist_node *pos;
961 		int i;
962 
963 		spin_lock_irqsave(&gcwq->lock, flags);
964 		for_each_busy_worker(worker, i, pos, gcwq) {
965 			if (worker->task != current)
966 				continue;
967 			spin_unlock_irqrestore(&gcwq->lock, flags);
968 			/*
969 			 * I'm @worker, no locking necessary.  See if @work
970 			 * is headed to the same workqueue.
971 			 */
972 			return worker->current_cwq->wq == wq;
973 		}
974 		spin_unlock_irqrestore(&gcwq->lock, flags);
975 	}
976 	return false;
977 }
978 
979 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
980 			 struct work_struct *work)
981 {
982 	struct global_cwq *gcwq;
983 	struct cpu_workqueue_struct *cwq;
984 	struct list_head *worklist;
985 	unsigned int work_flags;
986 	unsigned long flags;
987 
988 	debug_work_activate(work);
989 
990 	/* if dying, only works from the same workqueue are allowed */
991 	if (unlikely(wq->flags & WQ_DRAINING) &&
992 	    WARN_ON_ONCE(!is_chained_work(wq)))
993 		return;
994 
995 	/* determine gcwq to use */
996 	if (!(wq->flags & WQ_UNBOUND)) {
997 		struct global_cwq *last_gcwq;
998 
999 		if (unlikely(cpu == WORK_CPU_UNBOUND))
1000 			cpu = raw_smp_processor_id();
1001 
1002 		/*
1003 		 * It's multi cpu.  If @wq is non-reentrant and @work
1004 		 * was previously on a different cpu, it might still
1005 		 * be running there, in which case the work needs to
1006 		 * be queued on that cpu to guarantee non-reentrance.
1007 		 */
1008 		gcwq = get_gcwq(cpu);
1009 		if (wq->flags & WQ_NON_REENTRANT &&
1010 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1011 			struct worker *worker;
1012 
1013 			spin_lock_irqsave(&last_gcwq->lock, flags);
1014 
1015 			worker = find_worker_executing_work(last_gcwq, work);
1016 
1017 			if (worker && worker->current_cwq->wq == wq)
1018 				gcwq = last_gcwq;
1019 			else {
1020 				/* meh... not running there, queue here */
1021 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1022 				spin_lock_irqsave(&gcwq->lock, flags);
1023 			}
1024 		} else
1025 			spin_lock_irqsave(&gcwq->lock, flags);
1026 	} else {
1027 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1028 		spin_lock_irqsave(&gcwq->lock, flags);
1029 	}
1030 
1031 	/* gcwq determined, get cwq and queue */
1032 	cwq = get_cwq(gcwq->cpu, wq);
1033 	trace_workqueue_queue_work(cpu, cwq, work);
1034 
1035 	if (WARN_ON(!list_empty(&work->entry))) {
1036 		spin_unlock_irqrestore(&gcwq->lock, flags);
1037 		return;
1038 	}
1039 
1040 	cwq->nr_in_flight[cwq->work_color]++;
1041 	work_flags = work_color_to_flags(cwq->work_color);
1042 
1043 	if (likely(cwq->nr_active < cwq->max_active)) {
1044 		trace_workqueue_activate_work(work);
1045 		cwq->nr_active++;
1046 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1047 	} else {
1048 		work_flags |= WORK_STRUCT_DELAYED;
1049 		worklist = &cwq->delayed_works;
1050 	}
1051 
1052 	insert_work(cwq, work, worklist, work_flags);
1053 
1054 	spin_unlock_irqrestore(&gcwq->lock, flags);
1055 }
1056 
1057 /**
1058  * queue_work - queue work on a workqueue
1059  * @wq: workqueue to use
1060  * @work: work to queue
1061  *
1062  * Returns 0 if @work was already on a queue, non-zero otherwise.
1063  *
1064  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1065  * it can be processed by another CPU.
1066  */
1067 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1068 {
1069 	int ret;
1070 
1071 	ret = queue_work_on(get_cpu(), wq, work);
1072 	put_cpu();
1073 
1074 	return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(queue_work);
1077 
1078 /**
1079  * queue_work_on - queue work on specific cpu
1080  * @cpu: CPU number to execute work on
1081  * @wq: workqueue to use
1082  * @work: work to queue
1083  *
1084  * Returns 0 if @work was already on a queue, non-zero otherwise.
1085  *
1086  * We queue the work to a specific CPU, the caller must ensure it
1087  * can't go away.
1088  */
1089 int
1090 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1091 {
1092 	int ret = 0;
1093 
1094 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1095 		__queue_work(cpu, wq, work);
1096 		ret = 1;
1097 	}
1098 	return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(queue_work_on);
1101 
1102 static void delayed_work_timer_fn(unsigned long __data)
1103 {
1104 	struct delayed_work *dwork = (struct delayed_work *)__data;
1105 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1106 
1107 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1108 }
1109 
1110 /**
1111  * queue_delayed_work - queue work on a workqueue after delay
1112  * @wq: workqueue to use
1113  * @dwork: delayable work to queue
1114  * @delay: number of jiffies to wait before queueing
1115  *
1116  * Returns 0 if @work was already on a queue, non-zero otherwise.
1117  */
1118 int queue_delayed_work(struct workqueue_struct *wq,
1119 			struct delayed_work *dwork, unsigned long delay)
1120 {
1121 	if (delay == 0)
1122 		return queue_work(wq, &dwork->work);
1123 
1124 	return queue_delayed_work_on(-1, wq, dwork, delay);
1125 }
1126 EXPORT_SYMBOL_GPL(queue_delayed_work);
1127 
1128 /**
1129  * queue_delayed_work_on - queue work on specific CPU after delay
1130  * @cpu: CPU number to execute work on
1131  * @wq: workqueue to use
1132  * @dwork: work to queue
1133  * @delay: number of jiffies to wait before queueing
1134  *
1135  * Returns 0 if @work was already on a queue, non-zero otherwise.
1136  */
1137 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1138 			struct delayed_work *dwork, unsigned long delay)
1139 {
1140 	int ret = 0;
1141 	struct timer_list *timer = &dwork->timer;
1142 	struct work_struct *work = &dwork->work;
1143 
1144 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1145 		unsigned int lcpu;
1146 
1147 		BUG_ON(timer_pending(timer));
1148 		BUG_ON(!list_empty(&work->entry));
1149 
1150 		timer_stats_timer_set_start_info(&dwork->timer);
1151 
1152 		/*
1153 		 * This stores cwq for the moment, for the timer_fn.
1154 		 * Note that the work's gcwq is preserved to allow
1155 		 * reentrance detection for delayed works.
1156 		 */
1157 		if (!(wq->flags & WQ_UNBOUND)) {
1158 			struct global_cwq *gcwq = get_work_gcwq(work);
1159 
1160 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1161 				lcpu = gcwq->cpu;
1162 			else
1163 				lcpu = raw_smp_processor_id();
1164 		} else
1165 			lcpu = WORK_CPU_UNBOUND;
1166 
1167 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1168 
1169 		timer->expires = jiffies + delay;
1170 		timer->data = (unsigned long)dwork;
1171 		timer->function = delayed_work_timer_fn;
1172 
1173 		if (unlikely(cpu >= 0))
1174 			add_timer_on(timer, cpu);
1175 		else
1176 			add_timer(timer);
1177 		ret = 1;
1178 	}
1179 	return ret;
1180 }
1181 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1182 
1183 /**
1184  * worker_enter_idle - enter idle state
1185  * @worker: worker which is entering idle state
1186  *
1187  * @worker is entering idle state.  Update stats and idle timer if
1188  * necessary.
1189  *
1190  * LOCKING:
1191  * spin_lock_irq(gcwq->lock).
1192  */
1193 static void worker_enter_idle(struct worker *worker)
1194 {
1195 	struct global_cwq *gcwq = worker->gcwq;
1196 
1197 	BUG_ON(worker->flags & WORKER_IDLE);
1198 	BUG_ON(!list_empty(&worker->entry) &&
1199 	       (worker->hentry.next || worker->hentry.pprev));
1200 
1201 	/* can't use worker_set_flags(), also called from start_worker() */
1202 	worker->flags |= WORKER_IDLE;
1203 	gcwq->nr_idle++;
1204 	worker->last_active = jiffies;
1205 
1206 	/* idle_list is LIFO */
1207 	list_add(&worker->entry, &gcwq->idle_list);
1208 
1209 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1210 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1211 			mod_timer(&gcwq->idle_timer,
1212 				  jiffies + IDLE_WORKER_TIMEOUT);
1213 	} else
1214 		wake_up_all(&gcwq->trustee_wait);
1215 
1216 	/*
1217 	 * Sanity check nr_running.  Because trustee releases gcwq->lock
1218 	 * between setting %WORKER_ROGUE and zapping nr_running, the
1219 	 * warning may trigger spuriously.  Check iff trustee is idle.
1220 	 */
1221 	WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1222 		     gcwq->nr_workers == gcwq->nr_idle &&
1223 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1224 }
1225 
1226 /**
1227  * worker_leave_idle - leave idle state
1228  * @worker: worker which is leaving idle state
1229  *
1230  * @worker is leaving idle state.  Update stats.
1231  *
1232  * LOCKING:
1233  * spin_lock_irq(gcwq->lock).
1234  */
1235 static void worker_leave_idle(struct worker *worker)
1236 {
1237 	struct global_cwq *gcwq = worker->gcwq;
1238 
1239 	BUG_ON(!(worker->flags & WORKER_IDLE));
1240 	worker_clr_flags(worker, WORKER_IDLE);
1241 	gcwq->nr_idle--;
1242 	list_del_init(&worker->entry);
1243 }
1244 
1245 /**
1246  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1247  * @worker: self
1248  *
1249  * Works which are scheduled while the cpu is online must at least be
1250  * scheduled to a worker which is bound to the cpu so that if they are
1251  * flushed from cpu callbacks while cpu is going down, they are
1252  * guaranteed to execute on the cpu.
1253  *
1254  * This function is to be used by rogue workers and rescuers to bind
1255  * themselves to the target cpu and may race with cpu going down or
1256  * coming online.  kthread_bind() can't be used because it may put the
1257  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1258  * verbatim as it's best effort and blocking and gcwq may be
1259  * [dis]associated in the meantime.
1260  *
1261  * This function tries set_cpus_allowed() and locks gcwq and verifies
1262  * the binding against GCWQ_DISASSOCIATED which is set during
1263  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1264  * idle state or fetches works without dropping lock, it can guarantee
1265  * the scheduling requirement described in the first paragraph.
1266  *
1267  * CONTEXT:
1268  * Might sleep.  Called without any lock but returns with gcwq->lock
1269  * held.
1270  *
1271  * RETURNS:
1272  * %true if the associated gcwq is online (@worker is successfully
1273  * bound), %false if offline.
1274  */
1275 static bool worker_maybe_bind_and_lock(struct worker *worker)
1276 __acquires(&gcwq->lock)
1277 {
1278 	struct global_cwq *gcwq = worker->gcwq;
1279 	struct task_struct *task = worker->task;
1280 
1281 	while (true) {
1282 		/*
1283 		 * The following call may fail, succeed or succeed
1284 		 * without actually migrating the task to the cpu if
1285 		 * it races with cpu hotunplug operation.  Verify
1286 		 * against GCWQ_DISASSOCIATED.
1287 		 */
1288 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1289 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1290 
1291 		spin_lock_irq(&gcwq->lock);
1292 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1293 			return false;
1294 		if (task_cpu(task) == gcwq->cpu &&
1295 		    cpumask_equal(&current->cpus_allowed,
1296 				  get_cpu_mask(gcwq->cpu)))
1297 			return true;
1298 		spin_unlock_irq(&gcwq->lock);
1299 
1300 		/*
1301 		 * We've raced with CPU hot[un]plug.  Give it a breather
1302 		 * and retry migration.  cond_resched() is required here;
1303 		 * otherwise, we might deadlock against cpu_stop trying to
1304 		 * bring down the CPU on non-preemptive kernel.
1305 		 */
1306 		cpu_relax();
1307 		cond_resched();
1308 	}
1309 }
1310 
1311 /*
1312  * Function for worker->rebind_work used to rebind rogue busy workers
1313  * to the associated cpu which is coming back online.  This is
1314  * scheduled by cpu up but can race with other cpu hotplug operations
1315  * and may be executed twice without intervening cpu down.
1316  */
1317 static void worker_rebind_fn(struct work_struct *work)
1318 {
1319 	struct worker *worker = container_of(work, struct worker, rebind_work);
1320 	struct global_cwq *gcwq = worker->gcwq;
1321 
1322 	if (worker_maybe_bind_and_lock(worker))
1323 		worker_clr_flags(worker, WORKER_REBIND);
1324 
1325 	spin_unlock_irq(&gcwq->lock);
1326 }
1327 
1328 static struct worker *alloc_worker(void)
1329 {
1330 	struct worker *worker;
1331 
1332 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1333 	if (worker) {
1334 		INIT_LIST_HEAD(&worker->entry);
1335 		INIT_LIST_HEAD(&worker->scheduled);
1336 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1337 		/* on creation a worker is in !idle && prep state */
1338 		worker->flags = WORKER_PREP;
1339 	}
1340 	return worker;
1341 }
1342 
1343 /**
1344  * create_worker - create a new workqueue worker
1345  * @gcwq: gcwq the new worker will belong to
1346  * @bind: whether to set affinity to @cpu or not
1347  *
1348  * Create a new worker which is bound to @gcwq.  The returned worker
1349  * can be started by calling start_worker() or destroyed using
1350  * destroy_worker().
1351  *
1352  * CONTEXT:
1353  * Might sleep.  Does GFP_KERNEL allocations.
1354  *
1355  * RETURNS:
1356  * Pointer to the newly created worker.
1357  */
1358 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1359 {
1360 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1361 	struct worker *worker = NULL;
1362 	int id = -1;
1363 
1364 	spin_lock_irq(&gcwq->lock);
1365 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1366 		spin_unlock_irq(&gcwq->lock);
1367 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1368 			goto fail;
1369 		spin_lock_irq(&gcwq->lock);
1370 	}
1371 	spin_unlock_irq(&gcwq->lock);
1372 
1373 	worker = alloc_worker();
1374 	if (!worker)
1375 		goto fail;
1376 
1377 	worker->gcwq = gcwq;
1378 	worker->id = id;
1379 
1380 	if (!on_unbound_cpu)
1381 		worker->task = kthread_create_on_node(worker_thread,
1382 						      worker,
1383 						      cpu_to_node(gcwq->cpu),
1384 						      "kworker/%u:%d", gcwq->cpu, id);
1385 	else
1386 		worker->task = kthread_create(worker_thread, worker,
1387 					      "kworker/u:%d", id);
1388 	if (IS_ERR(worker->task))
1389 		goto fail;
1390 
1391 	/*
1392 	 * A rogue worker will become a regular one if CPU comes
1393 	 * online later on.  Make sure every worker has
1394 	 * PF_THREAD_BOUND set.
1395 	 */
1396 	if (bind && !on_unbound_cpu)
1397 		kthread_bind(worker->task, gcwq->cpu);
1398 	else {
1399 		worker->task->flags |= PF_THREAD_BOUND;
1400 		if (on_unbound_cpu)
1401 			worker->flags |= WORKER_UNBOUND;
1402 	}
1403 
1404 	return worker;
1405 fail:
1406 	if (id >= 0) {
1407 		spin_lock_irq(&gcwq->lock);
1408 		ida_remove(&gcwq->worker_ida, id);
1409 		spin_unlock_irq(&gcwq->lock);
1410 	}
1411 	kfree(worker);
1412 	return NULL;
1413 }
1414 
1415 /**
1416  * start_worker - start a newly created worker
1417  * @worker: worker to start
1418  *
1419  * Make the gcwq aware of @worker and start it.
1420  *
1421  * CONTEXT:
1422  * spin_lock_irq(gcwq->lock).
1423  */
1424 static void start_worker(struct worker *worker)
1425 {
1426 	worker->flags |= WORKER_STARTED;
1427 	worker->gcwq->nr_workers++;
1428 	worker_enter_idle(worker);
1429 	wake_up_process(worker->task);
1430 }
1431 
1432 /**
1433  * destroy_worker - destroy a workqueue worker
1434  * @worker: worker to be destroyed
1435  *
1436  * Destroy @worker and adjust @gcwq stats accordingly.
1437  *
1438  * CONTEXT:
1439  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1440  */
1441 static void destroy_worker(struct worker *worker)
1442 {
1443 	struct global_cwq *gcwq = worker->gcwq;
1444 	int id = worker->id;
1445 
1446 	/* sanity check frenzy */
1447 	BUG_ON(worker->current_work);
1448 	BUG_ON(!list_empty(&worker->scheduled));
1449 
1450 	if (worker->flags & WORKER_STARTED)
1451 		gcwq->nr_workers--;
1452 	if (worker->flags & WORKER_IDLE)
1453 		gcwq->nr_idle--;
1454 
1455 	list_del_init(&worker->entry);
1456 	worker->flags |= WORKER_DIE;
1457 
1458 	spin_unlock_irq(&gcwq->lock);
1459 
1460 	kthread_stop(worker->task);
1461 	kfree(worker);
1462 
1463 	spin_lock_irq(&gcwq->lock);
1464 	ida_remove(&gcwq->worker_ida, id);
1465 }
1466 
1467 static void idle_worker_timeout(unsigned long __gcwq)
1468 {
1469 	struct global_cwq *gcwq = (void *)__gcwq;
1470 
1471 	spin_lock_irq(&gcwq->lock);
1472 
1473 	if (too_many_workers(gcwq)) {
1474 		struct worker *worker;
1475 		unsigned long expires;
1476 
1477 		/* idle_list is kept in LIFO order, check the last one */
1478 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1479 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1480 
1481 		if (time_before(jiffies, expires))
1482 			mod_timer(&gcwq->idle_timer, expires);
1483 		else {
1484 			/* it's been idle for too long, wake up manager */
1485 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1486 			wake_up_worker(gcwq);
1487 		}
1488 	}
1489 
1490 	spin_unlock_irq(&gcwq->lock);
1491 }
1492 
1493 static bool send_mayday(struct work_struct *work)
1494 {
1495 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1496 	struct workqueue_struct *wq = cwq->wq;
1497 	unsigned int cpu;
1498 
1499 	if (!(wq->flags & WQ_RESCUER))
1500 		return false;
1501 
1502 	/* mayday mayday mayday */
1503 	cpu = cwq->gcwq->cpu;
1504 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1505 	if (cpu == WORK_CPU_UNBOUND)
1506 		cpu = 0;
1507 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1508 		wake_up_process(wq->rescuer->task);
1509 	return true;
1510 }
1511 
1512 static void gcwq_mayday_timeout(unsigned long __gcwq)
1513 {
1514 	struct global_cwq *gcwq = (void *)__gcwq;
1515 	struct work_struct *work;
1516 
1517 	spin_lock_irq(&gcwq->lock);
1518 
1519 	if (need_to_create_worker(gcwq)) {
1520 		/*
1521 		 * We've been trying to create a new worker but
1522 		 * haven't been successful.  We might be hitting an
1523 		 * allocation deadlock.  Send distress signals to
1524 		 * rescuers.
1525 		 */
1526 		list_for_each_entry(work, &gcwq->worklist, entry)
1527 			send_mayday(work);
1528 	}
1529 
1530 	spin_unlock_irq(&gcwq->lock);
1531 
1532 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1533 }
1534 
1535 /**
1536  * maybe_create_worker - create a new worker if necessary
1537  * @gcwq: gcwq to create a new worker for
1538  *
1539  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1540  * have at least one idle worker on return from this function.  If
1541  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1542  * sent to all rescuers with works scheduled on @gcwq to resolve
1543  * possible allocation deadlock.
1544  *
1545  * On return, need_to_create_worker() is guaranteed to be false and
1546  * may_start_working() true.
1547  *
1548  * LOCKING:
1549  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1550  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1551  * manager.
1552  *
1553  * RETURNS:
1554  * false if no action was taken and gcwq->lock stayed locked, true
1555  * otherwise.
1556  */
1557 static bool maybe_create_worker(struct global_cwq *gcwq)
1558 __releases(&gcwq->lock)
1559 __acquires(&gcwq->lock)
1560 {
1561 	if (!need_to_create_worker(gcwq))
1562 		return false;
1563 restart:
1564 	spin_unlock_irq(&gcwq->lock);
1565 
1566 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1567 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1568 
1569 	while (true) {
1570 		struct worker *worker;
1571 
1572 		worker = create_worker(gcwq, true);
1573 		if (worker) {
1574 			del_timer_sync(&gcwq->mayday_timer);
1575 			spin_lock_irq(&gcwq->lock);
1576 			start_worker(worker);
1577 			BUG_ON(need_to_create_worker(gcwq));
1578 			return true;
1579 		}
1580 
1581 		if (!need_to_create_worker(gcwq))
1582 			break;
1583 
1584 		__set_current_state(TASK_INTERRUPTIBLE);
1585 		schedule_timeout(CREATE_COOLDOWN);
1586 
1587 		if (!need_to_create_worker(gcwq))
1588 			break;
1589 	}
1590 
1591 	del_timer_sync(&gcwq->mayday_timer);
1592 	spin_lock_irq(&gcwq->lock);
1593 	if (need_to_create_worker(gcwq))
1594 		goto restart;
1595 	return true;
1596 }
1597 
1598 /**
1599  * maybe_destroy_worker - destroy workers which have been idle for a while
1600  * @gcwq: gcwq to destroy workers for
1601  *
1602  * Destroy @gcwq workers which have been idle for longer than
1603  * IDLE_WORKER_TIMEOUT.
1604  *
1605  * LOCKING:
1606  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1607  * multiple times.  Called only from manager.
1608  *
1609  * RETURNS:
1610  * false if no action was taken and gcwq->lock stayed locked, true
1611  * otherwise.
1612  */
1613 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1614 {
1615 	bool ret = false;
1616 
1617 	while (too_many_workers(gcwq)) {
1618 		struct worker *worker;
1619 		unsigned long expires;
1620 
1621 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1622 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1623 
1624 		if (time_before(jiffies, expires)) {
1625 			mod_timer(&gcwq->idle_timer, expires);
1626 			break;
1627 		}
1628 
1629 		destroy_worker(worker);
1630 		ret = true;
1631 	}
1632 
1633 	return ret;
1634 }
1635 
1636 /**
1637  * manage_workers - manage worker pool
1638  * @worker: self
1639  *
1640  * Assume the manager role and manage gcwq worker pool @worker belongs
1641  * to.  At any given time, there can be only zero or one manager per
1642  * gcwq.  The exclusion is handled automatically by this function.
1643  *
1644  * The caller can safely start processing works on false return.  On
1645  * true return, it's guaranteed that need_to_create_worker() is false
1646  * and may_start_working() is true.
1647  *
1648  * CONTEXT:
1649  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1650  * multiple times.  Does GFP_KERNEL allocations.
1651  *
1652  * RETURNS:
1653  * false if no action was taken and gcwq->lock stayed locked, true if
1654  * some action was taken.
1655  */
1656 static bool manage_workers(struct worker *worker)
1657 {
1658 	struct global_cwq *gcwq = worker->gcwq;
1659 	bool ret = false;
1660 
1661 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1662 		return ret;
1663 
1664 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1665 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1666 
1667 	/*
1668 	 * Destroy and then create so that may_start_working() is true
1669 	 * on return.
1670 	 */
1671 	ret |= maybe_destroy_workers(gcwq);
1672 	ret |= maybe_create_worker(gcwq);
1673 
1674 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1675 
1676 	/*
1677 	 * The trustee might be waiting to take over the manager
1678 	 * position, tell it we're done.
1679 	 */
1680 	if (unlikely(gcwq->trustee))
1681 		wake_up_all(&gcwq->trustee_wait);
1682 
1683 	return ret;
1684 }
1685 
1686 /**
1687  * move_linked_works - move linked works to a list
1688  * @work: start of series of works to be scheduled
1689  * @head: target list to append @work to
1690  * @nextp: out paramter for nested worklist walking
1691  *
1692  * Schedule linked works starting from @work to @head.  Work series to
1693  * be scheduled starts at @work and includes any consecutive work with
1694  * WORK_STRUCT_LINKED set in its predecessor.
1695  *
1696  * If @nextp is not NULL, it's updated to point to the next work of
1697  * the last scheduled work.  This allows move_linked_works() to be
1698  * nested inside outer list_for_each_entry_safe().
1699  *
1700  * CONTEXT:
1701  * spin_lock_irq(gcwq->lock).
1702  */
1703 static void move_linked_works(struct work_struct *work, struct list_head *head,
1704 			      struct work_struct **nextp)
1705 {
1706 	struct work_struct *n;
1707 
1708 	/*
1709 	 * Linked worklist will always end before the end of the list,
1710 	 * use NULL for list head.
1711 	 */
1712 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1713 		list_move_tail(&work->entry, head);
1714 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1715 			break;
1716 	}
1717 
1718 	/*
1719 	 * If we're already inside safe list traversal and have moved
1720 	 * multiple works to the scheduled queue, the next position
1721 	 * needs to be updated.
1722 	 */
1723 	if (nextp)
1724 		*nextp = n;
1725 }
1726 
1727 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1728 {
1729 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1730 						    struct work_struct, entry);
1731 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1732 
1733 	trace_workqueue_activate_work(work);
1734 	move_linked_works(work, pos, NULL);
1735 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1736 	cwq->nr_active++;
1737 }
1738 
1739 /**
1740  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1741  * @cwq: cwq of interest
1742  * @color: color of work which left the queue
1743  * @delayed: for a delayed work
1744  *
1745  * A work either has completed or is removed from pending queue,
1746  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1747  *
1748  * CONTEXT:
1749  * spin_lock_irq(gcwq->lock).
1750  */
1751 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1752 				 bool delayed)
1753 {
1754 	/* ignore uncolored works */
1755 	if (color == WORK_NO_COLOR)
1756 		return;
1757 
1758 	cwq->nr_in_flight[color]--;
1759 
1760 	if (!delayed) {
1761 		cwq->nr_active--;
1762 		if (!list_empty(&cwq->delayed_works)) {
1763 			/* one down, submit a delayed one */
1764 			if (cwq->nr_active < cwq->max_active)
1765 				cwq_activate_first_delayed(cwq);
1766 		}
1767 	}
1768 
1769 	/* is flush in progress and are we at the flushing tip? */
1770 	if (likely(cwq->flush_color != color))
1771 		return;
1772 
1773 	/* are there still in-flight works? */
1774 	if (cwq->nr_in_flight[color])
1775 		return;
1776 
1777 	/* this cwq is done, clear flush_color */
1778 	cwq->flush_color = -1;
1779 
1780 	/*
1781 	 * If this was the last cwq, wake up the first flusher.  It
1782 	 * will handle the rest.
1783 	 */
1784 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1785 		complete(&cwq->wq->first_flusher->done);
1786 }
1787 
1788 /**
1789  * process_one_work - process single work
1790  * @worker: self
1791  * @work: work to process
1792  *
1793  * Process @work.  This function contains all the logics necessary to
1794  * process a single work including synchronization against and
1795  * interaction with other workers on the same cpu, queueing and
1796  * flushing.  As long as context requirement is met, any worker can
1797  * call this function to process a work.
1798  *
1799  * CONTEXT:
1800  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1801  */
1802 static void process_one_work(struct worker *worker, struct work_struct *work)
1803 __releases(&gcwq->lock)
1804 __acquires(&gcwq->lock)
1805 {
1806 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1807 	struct global_cwq *gcwq = cwq->gcwq;
1808 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1809 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1810 	work_func_t f = work->func;
1811 	int work_color;
1812 	struct worker *collision;
1813 #ifdef CONFIG_LOCKDEP
1814 	/*
1815 	 * It is permissible to free the struct work_struct from
1816 	 * inside the function that is called from it, this we need to
1817 	 * take into account for lockdep too.  To avoid bogus "held
1818 	 * lock freed" warnings as well as problems when looking into
1819 	 * work->lockdep_map, make a copy and use that here.
1820 	 */
1821 	struct lockdep_map lockdep_map;
1822 
1823 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1824 #endif
1825 	/*
1826 	 * A single work shouldn't be executed concurrently by
1827 	 * multiple workers on a single cpu.  Check whether anyone is
1828 	 * already processing the work.  If so, defer the work to the
1829 	 * currently executing one.
1830 	 */
1831 	collision = __find_worker_executing_work(gcwq, bwh, work);
1832 	if (unlikely(collision)) {
1833 		move_linked_works(work, &collision->scheduled, NULL);
1834 		return;
1835 	}
1836 
1837 	/* claim and process */
1838 	debug_work_deactivate(work);
1839 	hlist_add_head(&worker->hentry, bwh);
1840 	worker->current_work = work;
1841 	worker->current_cwq = cwq;
1842 	work_color = get_work_color(work);
1843 
1844 	/* record the current cpu number in the work data and dequeue */
1845 	set_work_cpu(work, gcwq->cpu);
1846 	list_del_init(&work->entry);
1847 
1848 	/*
1849 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1850 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1851 	 */
1852 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1853 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1854 						struct work_struct, entry);
1855 
1856 		if (!list_empty(&gcwq->worklist) &&
1857 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1858 			wake_up_worker(gcwq);
1859 		else
1860 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1861 	}
1862 
1863 	/*
1864 	 * CPU intensive works don't participate in concurrency
1865 	 * management.  They're the scheduler's responsibility.
1866 	 */
1867 	if (unlikely(cpu_intensive))
1868 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1869 
1870 	spin_unlock_irq(&gcwq->lock);
1871 
1872 	work_clear_pending(work);
1873 	lock_map_acquire_read(&cwq->wq->lockdep_map);
1874 	lock_map_acquire(&lockdep_map);
1875 	trace_workqueue_execute_start(work);
1876 	f(work);
1877 	/*
1878 	 * While we must be careful to not use "work" after this, the trace
1879 	 * point will only record its address.
1880 	 */
1881 	trace_workqueue_execute_end(work);
1882 	lock_map_release(&lockdep_map);
1883 	lock_map_release(&cwq->wq->lockdep_map);
1884 
1885 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1886 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1887 		       "%s/0x%08x/%d\n",
1888 		       current->comm, preempt_count(), task_pid_nr(current));
1889 		printk(KERN_ERR "    last function: ");
1890 		print_symbol("%s\n", (unsigned long)f);
1891 		debug_show_held_locks(current);
1892 		dump_stack();
1893 	}
1894 
1895 	spin_lock_irq(&gcwq->lock);
1896 
1897 	/* clear cpu intensive status */
1898 	if (unlikely(cpu_intensive))
1899 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1900 
1901 	/* we're done with it, release */
1902 	hlist_del_init(&worker->hentry);
1903 	worker->current_work = NULL;
1904 	worker->current_cwq = NULL;
1905 	cwq_dec_nr_in_flight(cwq, work_color, false);
1906 }
1907 
1908 /**
1909  * process_scheduled_works - process scheduled works
1910  * @worker: self
1911  *
1912  * Process all scheduled works.  Please note that the scheduled list
1913  * may change while processing a work, so this function repeatedly
1914  * fetches a work from the top and executes it.
1915  *
1916  * CONTEXT:
1917  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1918  * multiple times.
1919  */
1920 static void process_scheduled_works(struct worker *worker)
1921 {
1922 	while (!list_empty(&worker->scheduled)) {
1923 		struct work_struct *work = list_first_entry(&worker->scheduled,
1924 						struct work_struct, entry);
1925 		process_one_work(worker, work);
1926 	}
1927 }
1928 
1929 /**
1930  * worker_thread - the worker thread function
1931  * @__worker: self
1932  *
1933  * The gcwq worker thread function.  There's a single dynamic pool of
1934  * these per each cpu.  These workers process all works regardless of
1935  * their specific target workqueue.  The only exception is works which
1936  * belong to workqueues with a rescuer which will be explained in
1937  * rescuer_thread().
1938  */
1939 static int worker_thread(void *__worker)
1940 {
1941 	struct worker *worker = __worker;
1942 	struct global_cwq *gcwq = worker->gcwq;
1943 
1944 	/* tell the scheduler that this is a workqueue worker */
1945 	worker->task->flags |= PF_WQ_WORKER;
1946 woke_up:
1947 	spin_lock_irq(&gcwq->lock);
1948 
1949 	/* DIE can be set only while we're idle, checking here is enough */
1950 	if (worker->flags & WORKER_DIE) {
1951 		spin_unlock_irq(&gcwq->lock);
1952 		worker->task->flags &= ~PF_WQ_WORKER;
1953 		return 0;
1954 	}
1955 
1956 	worker_leave_idle(worker);
1957 recheck:
1958 	/* no more worker necessary? */
1959 	if (!need_more_worker(gcwq))
1960 		goto sleep;
1961 
1962 	/* do we need to manage? */
1963 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1964 		goto recheck;
1965 
1966 	/*
1967 	 * ->scheduled list can only be filled while a worker is
1968 	 * preparing to process a work or actually processing it.
1969 	 * Make sure nobody diddled with it while I was sleeping.
1970 	 */
1971 	BUG_ON(!list_empty(&worker->scheduled));
1972 
1973 	/*
1974 	 * When control reaches this point, we're guaranteed to have
1975 	 * at least one idle worker or that someone else has already
1976 	 * assumed the manager role.
1977 	 */
1978 	worker_clr_flags(worker, WORKER_PREP);
1979 
1980 	do {
1981 		struct work_struct *work =
1982 			list_first_entry(&gcwq->worklist,
1983 					 struct work_struct, entry);
1984 
1985 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1986 			/* optimization path, not strictly necessary */
1987 			process_one_work(worker, work);
1988 			if (unlikely(!list_empty(&worker->scheduled)))
1989 				process_scheduled_works(worker);
1990 		} else {
1991 			move_linked_works(work, &worker->scheduled, NULL);
1992 			process_scheduled_works(worker);
1993 		}
1994 	} while (keep_working(gcwq));
1995 
1996 	worker_set_flags(worker, WORKER_PREP, false);
1997 sleep:
1998 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1999 		goto recheck;
2000 
2001 	/*
2002 	 * gcwq->lock is held and there's no work to process and no
2003 	 * need to manage, sleep.  Workers are woken up only while
2004 	 * holding gcwq->lock or from local cpu, so setting the
2005 	 * current state before releasing gcwq->lock is enough to
2006 	 * prevent losing any event.
2007 	 */
2008 	worker_enter_idle(worker);
2009 	__set_current_state(TASK_INTERRUPTIBLE);
2010 	spin_unlock_irq(&gcwq->lock);
2011 	schedule();
2012 	goto woke_up;
2013 }
2014 
2015 /**
2016  * rescuer_thread - the rescuer thread function
2017  * @__wq: the associated workqueue
2018  *
2019  * Workqueue rescuer thread function.  There's one rescuer for each
2020  * workqueue which has WQ_RESCUER set.
2021  *
2022  * Regular work processing on a gcwq may block trying to create a new
2023  * worker which uses GFP_KERNEL allocation which has slight chance of
2024  * developing into deadlock if some works currently on the same queue
2025  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2026  * the problem rescuer solves.
2027  *
2028  * When such condition is possible, the gcwq summons rescuers of all
2029  * workqueues which have works queued on the gcwq and let them process
2030  * those works so that forward progress can be guaranteed.
2031  *
2032  * This should happen rarely.
2033  */
2034 static int rescuer_thread(void *__wq)
2035 {
2036 	struct workqueue_struct *wq = __wq;
2037 	struct worker *rescuer = wq->rescuer;
2038 	struct list_head *scheduled = &rescuer->scheduled;
2039 	bool is_unbound = wq->flags & WQ_UNBOUND;
2040 	unsigned int cpu;
2041 
2042 	set_user_nice(current, RESCUER_NICE_LEVEL);
2043 repeat:
2044 	set_current_state(TASK_INTERRUPTIBLE);
2045 
2046 	if (kthread_should_stop())
2047 		return 0;
2048 
2049 	/*
2050 	 * See whether any cpu is asking for help.  Unbounded
2051 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2052 	 */
2053 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2054 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2055 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2056 		struct global_cwq *gcwq = cwq->gcwq;
2057 		struct work_struct *work, *n;
2058 
2059 		__set_current_state(TASK_RUNNING);
2060 		mayday_clear_cpu(cpu, wq->mayday_mask);
2061 
2062 		/* migrate to the target cpu if possible */
2063 		rescuer->gcwq = gcwq;
2064 		worker_maybe_bind_and_lock(rescuer);
2065 
2066 		/*
2067 		 * Slurp in all works issued via this workqueue and
2068 		 * process'em.
2069 		 */
2070 		BUG_ON(!list_empty(&rescuer->scheduled));
2071 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2072 			if (get_work_cwq(work) == cwq)
2073 				move_linked_works(work, scheduled, &n);
2074 
2075 		process_scheduled_works(rescuer);
2076 
2077 		/*
2078 		 * Leave this gcwq.  If keep_working() is %true, notify a
2079 		 * regular worker; otherwise, we end up with 0 concurrency
2080 		 * and stalling the execution.
2081 		 */
2082 		if (keep_working(gcwq))
2083 			wake_up_worker(gcwq);
2084 
2085 		spin_unlock_irq(&gcwq->lock);
2086 	}
2087 
2088 	schedule();
2089 	goto repeat;
2090 }
2091 
2092 struct wq_barrier {
2093 	struct work_struct	work;
2094 	struct completion	done;
2095 };
2096 
2097 static void wq_barrier_func(struct work_struct *work)
2098 {
2099 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2100 	complete(&barr->done);
2101 }
2102 
2103 /**
2104  * insert_wq_barrier - insert a barrier work
2105  * @cwq: cwq to insert barrier into
2106  * @barr: wq_barrier to insert
2107  * @target: target work to attach @barr to
2108  * @worker: worker currently executing @target, NULL if @target is not executing
2109  *
2110  * @barr is linked to @target such that @barr is completed only after
2111  * @target finishes execution.  Please note that the ordering
2112  * guarantee is observed only with respect to @target and on the local
2113  * cpu.
2114  *
2115  * Currently, a queued barrier can't be canceled.  This is because
2116  * try_to_grab_pending() can't determine whether the work to be
2117  * grabbed is at the head of the queue and thus can't clear LINKED
2118  * flag of the previous work while there must be a valid next work
2119  * after a work with LINKED flag set.
2120  *
2121  * Note that when @worker is non-NULL, @target may be modified
2122  * underneath us, so we can't reliably determine cwq from @target.
2123  *
2124  * CONTEXT:
2125  * spin_lock_irq(gcwq->lock).
2126  */
2127 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2128 			      struct wq_barrier *barr,
2129 			      struct work_struct *target, struct worker *worker)
2130 {
2131 	struct list_head *head;
2132 	unsigned int linked = 0;
2133 
2134 	/*
2135 	 * debugobject calls are safe here even with gcwq->lock locked
2136 	 * as we know for sure that this will not trigger any of the
2137 	 * checks and call back into the fixup functions where we
2138 	 * might deadlock.
2139 	 */
2140 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2141 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2142 	init_completion(&barr->done);
2143 
2144 	/*
2145 	 * If @target is currently being executed, schedule the
2146 	 * barrier to the worker; otherwise, put it after @target.
2147 	 */
2148 	if (worker)
2149 		head = worker->scheduled.next;
2150 	else {
2151 		unsigned long *bits = work_data_bits(target);
2152 
2153 		head = target->entry.next;
2154 		/* there can already be other linked works, inherit and set */
2155 		linked = *bits & WORK_STRUCT_LINKED;
2156 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2157 	}
2158 
2159 	debug_work_activate(&barr->work);
2160 	insert_work(cwq, &barr->work, head,
2161 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2162 }
2163 
2164 /**
2165  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2166  * @wq: workqueue being flushed
2167  * @flush_color: new flush color, < 0 for no-op
2168  * @work_color: new work color, < 0 for no-op
2169  *
2170  * Prepare cwqs for workqueue flushing.
2171  *
2172  * If @flush_color is non-negative, flush_color on all cwqs should be
2173  * -1.  If no cwq has in-flight commands at the specified color, all
2174  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2175  * has in flight commands, its cwq->flush_color is set to
2176  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2177  * wakeup logic is armed and %true is returned.
2178  *
2179  * The caller should have initialized @wq->first_flusher prior to
2180  * calling this function with non-negative @flush_color.  If
2181  * @flush_color is negative, no flush color update is done and %false
2182  * is returned.
2183  *
2184  * If @work_color is non-negative, all cwqs should have the same
2185  * work_color which is previous to @work_color and all will be
2186  * advanced to @work_color.
2187  *
2188  * CONTEXT:
2189  * mutex_lock(wq->flush_mutex).
2190  *
2191  * RETURNS:
2192  * %true if @flush_color >= 0 and there's something to flush.  %false
2193  * otherwise.
2194  */
2195 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2196 				      int flush_color, int work_color)
2197 {
2198 	bool wait = false;
2199 	unsigned int cpu;
2200 
2201 	if (flush_color >= 0) {
2202 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2203 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2204 	}
2205 
2206 	for_each_cwq_cpu(cpu, wq) {
2207 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2208 		struct global_cwq *gcwq = cwq->gcwq;
2209 
2210 		spin_lock_irq(&gcwq->lock);
2211 
2212 		if (flush_color >= 0) {
2213 			BUG_ON(cwq->flush_color != -1);
2214 
2215 			if (cwq->nr_in_flight[flush_color]) {
2216 				cwq->flush_color = flush_color;
2217 				atomic_inc(&wq->nr_cwqs_to_flush);
2218 				wait = true;
2219 			}
2220 		}
2221 
2222 		if (work_color >= 0) {
2223 			BUG_ON(work_color != work_next_color(cwq->work_color));
2224 			cwq->work_color = work_color;
2225 		}
2226 
2227 		spin_unlock_irq(&gcwq->lock);
2228 	}
2229 
2230 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2231 		complete(&wq->first_flusher->done);
2232 
2233 	return wait;
2234 }
2235 
2236 /**
2237  * flush_workqueue - ensure that any scheduled work has run to completion.
2238  * @wq: workqueue to flush
2239  *
2240  * Forces execution of the workqueue and blocks until its completion.
2241  * This is typically used in driver shutdown handlers.
2242  *
2243  * We sleep until all works which were queued on entry have been handled,
2244  * but we are not livelocked by new incoming ones.
2245  */
2246 void flush_workqueue(struct workqueue_struct *wq)
2247 {
2248 	struct wq_flusher this_flusher = {
2249 		.list = LIST_HEAD_INIT(this_flusher.list),
2250 		.flush_color = -1,
2251 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2252 	};
2253 	int next_color;
2254 
2255 	lock_map_acquire(&wq->lockdep_map);
2256 	lock_map_release(&wq->lockdep_map);
2257 
2258 	mutex_lock(&wq->flush_mutex);
2259 
2260 	/*
2261 	 * Start-to-wait phase
2262 	 */
2263 	next_color = work_next_color(wq->work_color);
2264 
2265 	if (next_color != wq->flush_color) {
2266 		/*
2267 		 * Color space is not full.  The current work_color
2268 		 * becomes our flush_color and work_color is advanced
2269 		 * by one.
2270 		 */
2271 		BUG_ON(!list_empty(&wq->flusher_overflow));
2272 		this_flusher.flush_color = wq->work_color;
2273 		wq->work_color = next_color;
2274 
2275 		if (!wq->first_flusher) {
2276 			/* no flush in progress, become the first flusher */
2277 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2278 
2279 			wq->first_flusher = &this_flusher;
2280 
2281 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2282 						       wq->work_color)) {
2283 				/* nothing to flush, done */
2284 				wq->flush_color = next_color;
2285 				wq->first_flusher = NULL;
2286 				goto out_unlock;
2287 			}
2288 		} else {
2289 			/* wait in queue */
2290 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2291 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2292 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2293 		}
2294 	} else {
2295 		/*
2296 		 * Oops, color space is full, wait on overflow queue.
2297 		 * The next flush completion will assign us
2298 		 * flush_color and transfer to flusher_queue.
2299 		 */
2300 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2301 	}
2302 
2303 	mutex_unlock(&wq->flush_mutex);
2304 
2305 	wait_for_completion(&this_flusher.done);
2306 
2307 	/*
2308 	 * Wake-up-and-cascade phase
2309 	 *
2310 	 * First flushers are responsible for cascading flushes and
2311 	 * handling overflow.  Non-first flushers can simply return.
2312 	 */
2313 	if (wq->first_flusher != &this_flusher)
2314 		return;
2315 
2316 	mutex_lock(&wq->flush_mutex);
2317 
2318 	/* we might have raced, check again with mutex held */
2319 	if (wq->first_flusher != &this_flusher)
2320 		goto out_unlock;
2321 
2322 	wq->first_flusher = NULL;
2323 
2324 	BUG_ON(!list_empty(&this_flusher.list));
2325 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2326 
2327 	while (true) {
2328 		struct wq_flusher *next, *tmp;
2329 
2330 		/* complete all the flushers sharing the current flush color */
2331 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2332 			if (next->flush_color != wq->flush_color)
2333 				break;
2334 			list_del_init(&next->list);
2335 			complete(&next->done);
2336 		}
2337 
2338 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2339 		       wq->flush_color != work_next_color(wq->work_color));
2340 
2341 		/* this flush_color is finished, advance by one */
2342 		wq->flush_color = work_next_color(wq->flush_color);
2343 
2344 		/* one color has been freed, handle overflow queue */
2345 		if (!list_empty(&wq->flusher_overflow)) {
2346 			/*
2347 			 * Assign the same color to all overflowed
2348 			 * flushers, advance work_color and append to
2349 			 * flusher_queue.  This is the start-to-wait
2350 			 * phase for these overflowed flushers.
2351 			 */
2352 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2353 				tmp->flush_color = wq->work_color;
2354 
2355 			wq->work_color = work_next_color(wq->work_color);
2356 
2357 			list_splice_tail_init(&wq->flusher_overflow,
2358 					      &wq->flusher_queue);
2359 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2360 		}
2361 
2362 		if (list_empty(&wq->flusher_queue)) {
2363 			BUG_ON(wq->flush_color != wq->work_color);
2364 			break;
2365 		}
2366 
2367 		/*
2368 		 * Need to flush more colors.  Make the next flusher
2369 		 * the new first flusher and arm cwqs.
2370 		 */
2371 		BUG_ON(wq->flush_color == wq->work_color);
2372 		BUG_ON(wq->flush_color != next->flush_color);
2373 
2374 		list_del_init(&next->list);
2375 		wq->first_flusher = next;
2376 
2377 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2378 			break;
2379 
2380 		/*
2381 		 * Meh... this color is already done, clear first
2382 		 * flusher and repeat cascading.
2383 		 */
2384 		wq->first_flusher = NULL;
2385 	}
2386 
2387 out_unlock:
2388 	mutex_unlock(&wq->flush_mutex);
2389 }
2390 EXPORT_SYMBOL_GPL(flush_workqueue);
2391 
2392 /**
2393  * drain_workqueue - drain a workqueue
2394  * @wq: workqueue to drain
2395  *
2396  * Wait until the workqueue becomes empty.  While draining is in progress,
2397  * only chain queueing is allowed.  IOW, only currently pending or running
2398  * work items on @wq can queue further work items on it.  @wq is flushed
2399  * repeatedly until it becomes empty.  The number of flushing is detemined
2400  * by the depth of chaining and should be relatively short.  Whine if it
2401  * takes too long.
2402  */
2403 void drain_workqueue(struct workqueue_struct *wq)
2404 {
2405 	unsigned int flush_cnt = 0;
2406 	unsigned int cpu;
2407 
2408 	/*
2409 	 * __queue_work() needs to test whether there are drainers, is much
2410 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2411 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2412 	 */
2413 	spin_lock(&workqueue_lock);
2414 	if (!wq->nr_drainers++)
2415 		wq->flags |= WQ_DRAINING;
2416 	spin_unlock(&workqueue_lock);
2417 reflush:
2418 	flush_workqueue(wq);
2419 
2420 	for_each_cwq_cpu(cpu, wq) {
2421 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2422 		bool drained;
2423 
2424 		spin_lock_irq(&cwq->gcwq->lock);
2425 		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2426 		spin_unlock_irq(&cwq->gcwq->lock);
2427 
2428 		if (drained)
2429 			continue;
2430 
2431 		if (++flush_cnt == 10 ||
2432 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2433 			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2434 				   wq->name, flush_cnt);
2435 		goto reflush;
2436 	}
2437 
2438 	spin_lock(&workqueue_lock);
2439 	if (!--wq->nr_drainers)
2440 		wq->flags &= ~WQ_DRAINING;
2441 	spin_unlock(&workqueue_lock);
2442 }
2443 EXPORT_SYMBOL_GPL(drain_workqueue);
2444 
2445 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2446 			     bool wait_executing)
2447 {
2448 	struct worker *worker = NULL;
2449 	struct global_cwq *gcwq;
2450 	struct cpu_workqueue_struct *cwq;
2451 
2452 	might_sleep();
2453 	gcwq = get_work_gcwq(work);
2454 	if (!gcwq)
2455 		return false;
2456 
2457 	spin_lock_irq(&gcwq->lock);
2458 	if (!list_empty(&work->entry)) {
2459 		/*
2460 		 * See the comment near try_to_grab_pending()->smp_rmb().
2461 		 * If it was re-queued to a different gcwq under us, we
2462 		 * are not going to wait.
2463 		 */
2464 		smp_rmb();
2465 		cwq = get_work_cwq(work);
2466 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2467 			goto already_gone;
2468 	} else if (wait_executing) {
2469 		worker = find_worker_executing_work(gcwq, work);
2470 		if (!worker)
2471 			goto already_gone;
2472 		cwq = worker->current_cwq;
2473 	} else
2474 		goto already_gone;
2475 
2476 	insert_wq_barrier(cwq, barr, work, worker);
2477 	spin_unlock_irq(&gcwq->lock);
2478 
2479 	/*
2480 	 * If @max_active is 1 or rescuer is in use, flushing another work
2481 	 * item on the same workqueue may lead to deadlock.  Make sure the
2482 	 * flusher is not running on the same workqueue by verifying write
2483 	 * access.
2484 	 */
2485 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2486 		lock_map_acquire(&cwq->wq->lockdep_map);
2487 	else
2488 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2489 	lock_map_release(&cwq->wq->lockdep_map);
2490 
2491 	return true;
2492 already_gone:
2493 	spin_unlock_irq(&gcwq->lock);
2494 	return false;
2495 }
2496 
2497 /**
2498  * flush_work - wait for a work to finish executing the last queueing instance
2499  * @work: the work to flush
2500  *
2501  * Wait until @work has finished execution.  This function considers
2502  * only the last queueing instance of @work.  If @work has been
2503  * enqueued across different CPUs on a non-reentrant workqueue or on
2504  * multiple workqueues, @work might still be executing on return on
2505  * some of the CPUs from earlier queueing.
2506  *
2507  * If @work was queued only on a non-reentrant, ordered or unbound
2508  * workqueue, @work is guaranteed to be idle on return if it hasn't
2509  * been requeued since flush started.
2510  *
2511  * RETURNS:
2512  * %true if flush_work() waited for the work to finish execution,
2513  * %false if it was already idle.
2514  */
2515 bool flush_work(struct work_struct *work)
2516 {
2517 	struct wq_barrier barr;
2518 
2519 	lock_map_acquire(&work->lockdep_map);
2520 	lock_map_release(&work->lockdep_map);
2521 
2522 	if (start_flush_work(work, &barr, true)) {
2523 		wait_for_completion(&barr.done);
2524 		destroy_work_on_stack(&barr.work);
2525 		return true;
2526 	} else
2527 		return false;
2528 }
2529 EXPORT_SYMBOL_GPL(flush_work);
2530 
2531 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2532 {
2533 	struct wq_barrier barr;
2534 	struct worker *worker;
2535 
2536 	spin_lock_irq(&gcwq->lock);
2537 
2538 	worker = find_worker_executing_work(gcwq, work);
2539 	if (unlikely(worker))
2540 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2541 
2542 	spin_unlock_irq(&gcwq->lock);
2543 
2544 	if (unlikely(worker)) {
2545 		wait_for_completion(&barr.done);
2546 		destroy_work_on_stack(&barr.work);
2547 		return true;
2548 	} else
2549 		return false;
2550 }
2551 
2552 static bool wait_on_work(struct work_struct *work)
2553 {
2554 	bool ret = false;
2555 	int cpu;
2556 
2557 	might_sleep();
2558 
2559 	lock_map_acquire(&work->lockdep_map);
2560 	lock_map_release(&work->lockdep_map);
2561 
2562 	for_each_gcwq_cpu(cpu)
2563 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2564 	return ret;
2565 }
2566 
2567 /**
2568  * flush_work_sync - wait until a work has finished execution
2569  * @work: the work to flush
2570  *
2571  * Wait until @work has finished execution.  On return, it's
2572  * guaranteed that all queueing instances of @work which happened
2573  * before this function is called are finished.  In other words, if
2574  * @work hasn't been requeued since this function was called, @work is
2575  * guaranteed to be idle on return.
2576  *
2577  * RETURNS:
2578  * %true if flush_work_sync() waited for the work to finish execution,
2579  * %false if it was already idle.
2580  */
2581 bool flush_work_sync(struct work_struct *work)
2582 {
2583 	struct wq_barrier barr;
2584 	bool pending, waited;
2585 
2586 	/* we'll wait for executions separately, queue barr only if pending */
2587 	pending = start_flush_work(work, &barr, false);
2588 
2589 	/* wait for executions to finish */
2590 	waited = wait_on_work(work);
2591 
2592 	/* wait for the pending one */
2593 	if (pending) {
2594 		wait_for_completion(&barr.done);
2595 		destroy_work_on_stack(&barr.work);
2596 	}
2597 
2598 	return pending || waited;
2599 }
2600 EXPORT_SYMBOL_GPL(flush_work_sync);
2601 
2602 /*
2603  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2604  * so this work can't be re-armed in any way.
2605  */
2606 static int try_to_grab_pending(struct work_struct *work)
2607 {
2608 	struct global_cwq *gcwq;
2609 	int ret = -1;
2610 
2611 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2612 		return 0;
2613 
2614 	/*
2615 	 * The queueing is in progress, or it is already queued. Try to
2616 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2617 	 */
2618 	gcwq = get_work_gcwq(work);
2619 	if (!gcwq)
2620 		return ret;
2621 
2622 	spin_lock_irq(&gcwq->lock);
2623 	if (!list_empty(&work->entry)) {
2624 		/*
2625 		 * This work is queued, but perhaps we locked the wrong gcwq.
2626 		 * In that case we must see the new value after rmb(), see
2627 		 * insert_work()->wmb().
2628 		 */
2629 		smp_rmb();
2630 		if (gcwq == get_work_gcwq(work)) {
2631 			debug_work_deactivate(work);
2632 			list_del_init(&work->entry);
2633 			cwq_dec_nr_in_flight(get_work_cwq(work),
2634 				get_work_color(work),
2635 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2636 			ret = 1;
2637 		}
2638 	}
2639 	spin_unlock_irq(&gcwq->lock);
2640 
2641 	return ret;
2642 }
2643 
2644 static bool __cancel_work_timer(struct work_struct *work,
2645 				struct timer_list* timer)
2646 {
2647 	int ret;
2648 
2649 	do {
2650 		ret = (timer && likely(del_timer(timer)));
2651 		if (!ret)
2652 			ret = try_to_grab_pending(work);
2653 		wait_on_work(work);
2654 	} while (unlikely(ret < 0));
2655 
2656 	clear_work_data(work);
2657 	return ret;
2658 }
2659 
2660 /**
2661  * cancel_work_sync - cancel a work and wait for it to finish
2662  * @work: the work to cancel
2663  *
2664  * Cancel @work and wait for its execution to finish.  This function
2665  * can be used even if the work re-queues itself or migrates to
2666  * another workqueue.  On return from this function, @work is
2667  * guaranteed to be not pending or executing on any CPU.
2668  *
2669  * cancel_work_sync(&delayed_work->work) must not be used for
2670  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2671  *
2672  * The caller must ensure that the workqueue on which @work was last
2673  * queued can't be destroyed before this function returns.
2674  *
2675  * RETURNS:
2676  * %true if @work was pending, %false otherwise.
2677  */
2678 bool cancel_work_sync(struct work_struct *work)
2679 {
2680 	return __cancel_work_timer(work, NULL);
2681 }
2682 EXPORT_SYMBOL_GPL(cancel_work_sync);
2683 
2684 /**
2685  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2686  * @dwork: the delayed work to flush
2687  *
2688  * Delayed timer is cancelled and the pending work is queued for
2689  * immediate execution.  Like flush_work(), this function only
2690  * considers the last queueing instance of @dwork.
2691  *
2692  * RETURNS:
2693  * %true if flush_work() waited for the work to finish execution,
2694  * %false if it was already idle.
2695  */
2696 bool flush_delayed_work(struct delayed_work *dwork)
2697 {
2698 	if (del_timer_sync(&dwork->timer))
2699 		__queue_work(raw_smp_processor_id(),
2700 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2701 	return flush_work(&dwork->work);
2702 }
2703 EXPORT_SYMBOL(flush_delayed_work);
2704 
2705 /**
2706  * flush_delayed_work_sync - wait for a dwork to finish
2707  * @dwork: the delayed work to flush
2708  *
2709  * Delayed timer is cancelled and the pending work is queued for
2710  * execution immediately.  Other than timer handling, its behavior
2711  * is identical to flush_work_sync().
2712  *
2713  * RETURNS:
2714  * %true if flush_work_sync() waited for the work to finish execution,
2715  * %false if it was already idle.
2716  */
2717 bool flush_delayed_work_sync(struct delayed_work *dwork)
2718 {
2719 	if (del_timer_sync(&dwork->timer))
2720 		__queue_work(raw_smp_processor_id(),
2721 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2722 	return flush_work_sync(&dwork->work);
2723 }
2724 EXPORT_SYMBOL(flush_delayed_work_sync);
2725 
2726 /**
2727  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2728  * @dwork: the delayed work cancel
2729  *
2730  * This is cancel_work_sync() for delayed works.
2731  *
2732  * RETURNS:
2733  * %true if @dwork was pending, %false otherwise.
2734  */
2735 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2736 {
2737 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2738 }
2739 EXPORT_SYMBOL(cancel_delayed_work_sync);
2740 
2741 /**
2742  * schedule_work - put work task in global workqueue
2743  * @work: job to be done
2744  *
2745  * Returns zero if @work was already on the kernel-global workqueue and
2746  * non-zero otherwise.
2747  *
2748  * This puts a job in the kernel-global workqueue if it was not already
2749  * queued and leaves it in the same position on the kernel-global
2750  * workqueue otherwise.
2751  */
2752 int schedule_work(struct work_struct *work)
2753 {
2754 	return queue_work(system_wq, work);
2755 }
2756 EXPORT_SYMBOL(schedule_work);
2757 
2758 /*
2759  * schedule_work_on - put work task on a specific cpu
2760  * @cpu: cpu to put the work task on
2761  * @work: job to be done
2762  *
2763  * This puts a job on a specific cpu
2764  */
2765 int schedule_work_on(int cpu, struct work_struct *work)
2766 {
2767 	return queue_work_on(cpu, system_wq, work);
2768 }
2769 EXPORT_SYMBOL(schedule_work_on);
2770 
2771 /**
2772  * schedule_delayed_work - put work task in global workqueue after delay
2773  * @dwork: job to be done
2774  * @delay: number of jiffies to wait or 0 for immediate execution
2775  *
2776  * After waiting for a given time this puts a job in the kernel-global
2777  * workqueue.
2778  */
2779 int schedule_delayed_work(struct delayed_work *dwork,
2780 					unsigned long delay)
2781 {
2782 	return queue_delayed_work(system_wq, dwork, delay);
2783 }
2784 EXPORT_SYMBOL(schedule_delayed_work);
2785 
2786 /**
2787  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2788  * @cpu: cpu to use
2789  * @dwork: job to be done
2790  * @delay: number of jiffies to wait
2791  *
2792  * After waiting for a given time this puts a job in the kernel-global
2793  * workqueue on the specified CPU.
2794  */
2795 int schedule_delayed_work_on(int cpu,
2796 			struct delayed_work *dwork, unsigned long delay)
2797 {
2798 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2799 }
2800 EXPORT_SYMBOL(schedule_delayed_work_on);
2801 
2802 /**
2803  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2804  * @func: the function to call
2805  *
2806  * schedule_on_each_cpu() executes @func on each online CPU using the
2807  * system workqueue and blocks until all CPUs have completed.
2808  * schedule_on_each_cpu() is very slow.
2809  *
2810  * RETURNS:
2811  * 0 on success, -errno on failure.
2812  */
2813 int schedule_on_each_cpu(work_func_t func)
2814 {
2815 	int cpu;
2816 	struct work_struct __percpu *works;
2817 
2818 	works = alloc_percpu(struct work_struct);
2819 	if (!works)
2820 		return -ENOMEM;
2821 
2822 	get_online_cpus();
2823 
2824 	for_each_online_cpu(cpu) {
2825 		struct work_struct *work = per_cpu_ptr(works, cpu);
2826 
2827 		INIT_WORK(work, func);
2828 		schedule_work_on(cpu, work);
2829 	}
2830 
2831 	for_each_online_cpu(cpu)
2832 		flush_work(per_cpu_ptr(works, cpu));
2833 
2834 	put_online_cpus();
2835 	free_percpu(works);
2836 	return 0;
2837 }
2838 
2839 /**
2840  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2841  *
2842  * Forces execution of the kernel-global workqueue and blocks until its
2843  * completion.
2844  *
2845  * Think twice before calling this function!  It's very easy to get into
2846  * trouble if you don't take great care.  Either of the following situations
2847  * will lead to deadlock:
2848  *
2849  *	One of the work items currently on the workqueue needs to acquire
2850  *	a lock held by your code or its caller.
2851  *
2852  *	Your code is running in the context of a work routine.
2853  *
2854  * They will be detected by lockdep when they occur, but the first might not
2855  * occur very often.  It depends on what work items are on the workqueue and
2856  * what locks they need, which you have no control over.
2857  *
2858  * In most situations flushing the entire workqueue is overkill; you merely
2859  * need to know that a particular work item isn't queued and isn't running.
2860  * In such cases you should use cancel_delayed_work_sync() or
2861  * cancel_work_sync() instead.
2862  */
2863 void flush_scheduled_work(void)
2864 {
2865 	flush_workqueue(system_wq);
2866 }
2867 EXPORT_SYMBOL(flush_scheduled_work);
2868 
2869 /**
2870  * execute_in_process_context - reliably execute the routine with user context
2871  * @fn:		the function to execute
2872  * @ew:		guaranteed storage for the execute work structure (must
2873  *		be available when the work executes)
2874  *
2875  * Executes the function immediately if process context is available,
2876  * otherwise schedules the function for delayed execution.
2877  *
2878  * Returns:	0 - function was executed
2879  *		1 - function was scheduled for execution
2880  */
2881 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2882 {
2883 	if (!in_interrupt()) {
2884 		fn(&ew->work);
2885 		return 0;
2886 	}
2887 
2888 	INIT_WORK(&ew->work, fn);
2889 	schedule_work(&ew->work);
2890 
2891 	return 1;
2892 }
2893 EXPORT_SYMBOL_GPL(execute_in_process_context);
2894 
2895 int keventd_up(void)
2896 {
2897 	return system_wq != NULL;
2898 }
2899 
2900 static int alloc_cwqs(struct workqueue_struct *wq)
2901 {
2902 	/*
2903 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2904 	 * Make sure that the alignment isn't lower than that of
2905 	 * unsigned long long.
2906 	 */
2907 	const size_t size = sizeof(struct cpu_workqueue_struct);
2908 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2909 				   __alignof__(unsigned long long));
2910 
2911 	if (!(wq->flags & WQ_UNBOUND))
2912 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2913 	else {
2914 		void *ptr;
2915 
2916 		/*
2917 		 * Allocate enough room to align cwq and put an extra
2918 		 * pointer at the end pointing back to the originally
2919 		 * allocated pointer which will be used for free.
2920 		 */
2921 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2922 		if (ptr) {
2923 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2924 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2925 		}
2926 	}
2927 
2928 	/* just in case, make sure it's actually aligned */
2929 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2930 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2931 }
2932 
2933 static void free_cwqs(struct workqueue_struct *wq)
2934 {
2935 	if (!(wq->flags & WQ_UNBOUND))
2936 		free_percpu(wq->cpu_wq.pcpu);
2937 	else if (wq->cpu_wq.single) {
2938 		/* the pointer to free is stored right after the cwq */
2939 		kfree(*(void **)(wq->cpu_wq.single + 1));
2940 	}
2941 }
2942 
2943 static int wq_clamp_max_active(int max_active, unsigned int flags,
2944 			       const char *name)
2945 {
2946 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2947 
2948 	if (max_active < 1 || max_active > lim)
2949 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2950 		       "is out of range, clamping between %d and %d\n",
2951 		       max_active, name, 1, lim);
2952 
2953 	return clamp_val(max_active, 1, lim);
2954 }
2955 
2956 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2957 					       unsigned int flags,
2958 					       int max_active,
2959 					       struct lock_class_key *key,
2960 					       const char *lock_name, ...)
2961 {
2962 	va_list args, args1;
2963 	struct workqueue_struct *wq;
2964 	unsigned int cpu;
2965 	size_t namelen;
2966 
2967 	/* determine namelen, allocate wq and format name */
2968 	va_start(args, lock_name);
2969 	va_copy(args1, args);
2970 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2971 
2972 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2973 	if (!wq)
2974 		goto err;
2975 
2976 	vsnprintf(wq->name, namelen, fmt, args1);
2977 	va_end(args);
2978 	va_end(args1);
2979 
2980 	/*
2981 	 * Workqueues which may be used during memory reclaim should
2982 	 * have a rescuer to guarantee forward progress.
2983 	 */
2984 	if (flags & WQ_MEM_RECLAIM)
2985 		flags |= WQ_RESCUER;
2986 
2987 	/*
2988 	 * Unbound workqueues aren't concurrency managed and should be
2989 	 * dispatched to workers immediately.
2990 	 */
2991 	if (flags & WQ_UNBOUND)
2992 		flags |= WQ_HIGHPRI;
2993 
2994 	max_active = max_active ?: WQ_DFL_ACTIVE;
2995 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
2996 
2997 	/* init wq */
2998 	wq->flags = flags;
2999 	wq->saved_max_active = max_active;
3000 	mutex_init(&wq->flush_mutex);
3001 	atomic_set(&wq->nr_cwqs_to_flush, 0);
3002 	INIT_LIST_HEAD(&wq->flusher_queue);
3003 	INIT_LIST_HEAD(&wq->flusher_overflow);
3004 
3005 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3006 	INIT_LIST_HEAD(&wq->list);
3007 
3008 	if (alloc_cwqs(wq) < 0)
3009 		goto err;
3010 
3011 	for_each_cwq_cpu(cpu, wq) {
3012 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3013 		struct global_cwq *gcwq = get_gcwq(cpu);
3014 
3015 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3016 		cwq->gcwq = gcwq;
3017 		cwq->wq = wq;
3018 		cwq->flush_color = -1;
3019 		cwq->max_active = max_active;
3020 		INIT_LIST_HEAD(&cwq->delayed_works);
3021 	}
3022 
3023 	if (flags & WQ_RESCUER) {
3024 		struct worker *rescuer;
3025 
3026 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3027 			goto err;
3028 
3029 		wq->rescuer = rescuer = alloc_worker();
3030 		if (!rescuer)
3031 			goto err;
3032 
3033 		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3034 					       wq->name);
3035 		if (IS_ERR(rescuer->task))
3036 			goto err;
3037 
3038 		rescuer->task->flags |= PF_THREAD_BOUND;
3039 		wake_up_process(rescuer->task);
3040 	}
3041 
3042 	/*
3043 	 * workqueue_lock protects global freeze state and workqueues
3044 	 * list.  Grab it, set max_active accordingly and add the new
3045 	 * workqueue to workqueues list.
3046 	 */
3047 	spin_lock(&workqueue_lock);
3048 
3049 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3050 		for_each_cwq_cpu(cpu, wq)
3051 			get_cwq(cpu, wq)->max_active = 0;
3052 
3053 	list_add(&wq->list, &workqueues);
3054 
3055 	spin_unlock(&workqueue_lock);
3056 
3057 	return wq;
3058 err:
3059 	if (wq) {
3060 		free_cwqs(wq);
3061 		free_mayday_mask(wq->mayday_mask);
3062 		kfree(wq->rescuer);
3063 		kfree(wq);
3064 	}
3065 	return NULL;
3066 }
3067 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3068 
3069 /**
3070  * destroy_workqueue - safely terminate a workqueue
3071  * @wq: target workqueue
3072  *
3073  * Safely destroy a workqueue. All work currently pending will be done first.
3074  */
3075 void destroy_workqueue(struct workqueue_struct *wq)
3076 {
3077 	unsigned int cpu;
3078 
3079 	/* drain it before proceeding with destruction */
3080 	drain_workqueue(wq);
3081 
3082 	/*
3083 	 * wq list is used to freeze wq, remove from list after
3084 	 * flushing is complete in case freeze races us.
3085 	 */
3086 	spin_lock(&workqueue_lock);
3087 	list_del(&wq->list);
3088 	spin_unlock(&workqueue_lock);
3089 
3090 	/* sanity check */
3091 	for_each_cwq_cpu(cpu, wq) {
3092 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3093 		int i;
3094 
3095 		for (i = 0; i < WORK_NR_COLORS; i++)
3096 			BUG_ON(cwq->nr_in_flight[i]);
3097 		BUG_ON(cwq->nr_active);
3098 		BUG_ON(!list_empty(&cwq->delayed_works));
3099 	}
3100 
3101 	if (wq->flags & WQ_RESCUER) {
3102 		kthread_stop(wq->rescuer->task);
3103 		free_mayday_mask(wq->mayday_mask);
3104 		kfree(wq->rescuer);
3105 	}
3106 
3107 	free_cwqs(wq);
3108 	kfree(wq);
3109 }
3110 EXPORT_SYMBOL_GPL(destroy_workqueue);
3111 
3112 /**
3113  * workqueue_set_max_active - adjust max_active of a workqueue
3114  * @wq: target workqueue
3115  * @max_active: new max_active value.
3116  *
3117  * Set max_active of @wq to @max_active.
3118  *
3119  * CONTEXT:
3120  * Don't call from IRQ context.
3121  */
3122 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3123 {
3124 	unsigned int cpu;
3125 
3126 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3127 
3128 	spin_lock(&workqueue_lock);
3129 
3130 	wq->saved_max_active = max_active;
3131 
3132 	for_each_cwq_cpu(cpu, wq) {
3133 		struct global_cwq *gcwq = get_gcwq(cpu);
3134 
3135 		spin_lock_irq(&gcwq->lock);
3136 
3137 		if (!(wq->flags & WQ_FREEZABLE) ||
3138 		    !(gcwq->flags & GCWQ_FREEZING))
3139 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3140 
3141 		spin_unlock_irq(&gcwq->lock);
3142 	}
3143 
3144 	spin_unlock(&workqueue_lock);
3145 }
3146 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3147 
3148 /**
3149  * workqueue_congested - test whether a workqueue is congested
3150  * @cpu: CPU in question
3151  * @wq: target workqueue
3152  *
3153  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3154  * no synchronization around this function and the test result is
3155  * unreliable and only useful as advisory hints or for debugging.
3156  *
3157  * RETURNS:
3158  * %true if congested, %false otherwise.
3159  */
3160 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3161 {
3162 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3163 
3164 	return !list_empty(&cwq->delayed_works);
3165 }
3166 EXPORT_SYMBOL_GPL(workqueue_congested);
3167 
3168 /**
3169  * work_cpu - return the last known associated cpu for @work
3170  * @work: the work of interest
3171  *
3172  * RETURNS:
3173  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3174  */
3175 unsigned int work_cpu(struct work_struct *work)
3176 {
3177 	struct global_cwq *gcwq = get_work_gcwq(work);
3178 
3179 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3180 }
3181 EXPORT_SYMBOL_GPL(work_cpu);
3182 
3183 /**
3184  * work_busy - test whether a work is currently pending or running
3185  * @work: the work to be tested
3186  *
3187  * Test whether @work is currently pending or running.  There is no
3188  * synchronization around this function and the test result is
3189  * unreliable and only useful as advisory hints or for debugging.
3190  * Especially for reentrant wqs, the pending state might hide the
3191  * running state.
3192  *
3193  * RETURNS:
3194  * OR'd bitmask of WORK_BUSY_* bits.
3195  */
3196 unsigned int work_busy(struct work_struct *work)
3197 {
3198 	struct global_cwq *gcwq = get_work_gcwq(work);
3199 	unsigned long flags;
3200 	unsigned int ret = 0;
3201 
3202 	if (!gcwq)
3203 		return false;
3204 
3205 	spin_lock_irqsave(&gcwq->lock, flags);
3206 
3207 	if (work_pending(work))
3208 		ret |= WORK_BUSY_PENDING;
3209 	if (find_worker_executing_work(gcwq, work))
3210 		ret |= WORK_BUSY_RUNNING;
3211 
3212 	spin_unlock_irqrestore(&gcwq->lock, flags);
3213 
3214 	return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(work_busy);
3217 
3218 /*
3219  * CPU hotplug.
3220  *
3221  * There are two challenges in supporting CPU hotplug.  Firstly, there
3222  * are a lot of assumptions on strong associations among work, cwq and
3223  * gcwq which make migrating pending and scheduled works very
3224  * difficult to implement without impacting hot paths.  Secondly,
3225  * gcwqs serve mix of short, long and very long running works making
3226  * blocked draining impractical.
3227  *
3228  * This is solved by allowing a gcwq to be detached from CPU, running
3229  * it with unbound (rogue) workers and allowing it to be reattached
3230  * later if the cpu comes back online.  A separate thread is created
3231  * to govern a gcwq in such state and is called the trustee of the
3232  * gcwq.
3233  *
3234  * Trustee states and their descriptions.
3235  *
3236  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3237  *		new trustee is started with this state.
3238  *
3239  * IN_CHARGE	Once started, trustee will enter this state after
3240  *		assuming the manager role and making all existing
3241  *		workers rogue.  DOWN_PREPARE waits for trustee to
3242  *		enter this state.  After reaching IN_CHARGE, trustee
3243  *		tries to execute the pending worklist until it's empty
3244  *		and the state is set to BUTCHER, or the state is set
3245  *		to RELEASE.
3246  *
3247  * BUTCHER	Command state which is set by the cpu callback after
3248  *		the cpu has went down.  Once this state is set trustee
3249  *		knows that there will be no new works on the worklist
3250  *		and once the worklist is empty it can proceed to
3251  *		killing idle workers.
3252  *
3253  * RELEASE	Command state which is set by the cpu callback if the
3254  *		cpu down has been canceled or it has come online
3255  *		again.  After recognizing this state, trustee stops
3256  *		trying to drain or butcher and clears ROGUE, rebinds
3257  *		all remaining workers back to the cpu and releases
3258  *		manager role.
3259  *
3260  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3261  *		is complete.
3262  *
3263  *          trustee                 CPU                draining
3264  *         took over                down               complete
3265  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3266  *                        |                     |                  ^
3267  *                        | CPU is back online  v   return workers |
3268  *                         ----------------> RELEASE --------------
3269  */
3270 
3271 /**
3272  * trustee_wait_event_timeout - timed event wait for trustee
3273  * @cond: condition to wait for
3274  * @timeout: timeout in jiffies
3275  *
3276  * wait_event_timeout() for trustee to use.  Handles locking and
3277  * checks for RELEASE request.
3278  *
3279  * CONTEXT:
3280  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3281  * multiple times.  To be used by trustee.
3282  *
3283  * RETURNS:
3284  * Positive indicating left time if @cond is satisfied, 0 if timed
3285  * out, -1 if canceled.
3286  */
3287 #define trustee_wait_event_timeout(cond, timeout) ({			\
3288 	long __ret = (timeout);						\
3289 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3290 	       __ret) {							\
3291 		spin_unlock_irq(&gcwq->lock);				\
3292 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3293 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3294 			__ret);						\
3295 		spin_lock_irq(&gcwq->lock);				\
3296 	}								\
3297 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3298 })
3299 
3300 /**
3301  * trustee_wait_event - event wait for trustee
3302  * @cond: condition to wait for
3303  *
3304  * wait_event() for trustee to use.  Automatically handles locking and
3305  * checks for CANCEL request.
3306  *
3307  * CONTEXT:
3308  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3309  * multiple times.  To be used by trustee.
3310  *
3311  * RETURNS:
3312  * 0 if @cond is satisfied, -1 if canceled.
3313  */
3314 #define trustee_wait_event(cond) ({					\
3315 	long __ret1;							\
3316 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3317 	__ret1 < 0 ? -1 : 0;						\
3318 })
3319 
3320 static int __cpuinit trustee_thread(void *__gcwq)
3321 {
3322 	struct global_cwq *gcwq = __gcwq;
3323 	struct worker *worker;
3324 	struct work_struct *work;
3325 	struct hlist_node *pos;
3326 	long rc;
3327 	int i;
3328 
3329 	BUG_ON(gcwq->cpu != smp_processor_id());
3330 
3331 	spin_lock_irq(&gcwq->lock);
3332 	/*
3333 	 * Claim the manager position and make all workers rogue.
3334 	 * Trustee must be bound to the target cpu and can't be
3335 	 * cancelled.
3336 	 */
3337 	BUG_ON(gcwq->cpu != smp_processor_id());
3338 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3339 	BUG_ON(rc < 0);
3340 
3341 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3342 
3343 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3344 		worker->flags |= WORKER_ROGUE;
3345 
3346 	for_each_busy_worker(worker, i, pos, gcwq)
3347 		worker->flags |= WORKER_ROGUE;
3348 
3349 	/*
3350 	 * Call schedule() so that we cross rq->lock and thus can
3351 	 * guarantee sched callbacks see the rogue flag.  This is
3352 	 * necessary as scheduler callbacks may be invoked from other
3353 	 * cpus.
3354 	 */
3355 	spin_unlock_irq(&gcwq->lock);
3356 	schedule();
3357 	spin_lock_irq(&gcwq->lock);
3358 
3359 	/*
3360 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3361 	 * this, nr_running stays zero and need_more_worker() and
3362 	 * keep_working() are always true as long as the worklist is
3363 	 * not empty.
3364 	 */
3365 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3366 
3367 	spin_unlock_irq(&gcwq->lock);
3368 	del_timer_sync(&gcwq->idle_timer);
3369 	spin_lock_irq(&gcwq->lock);
3370 
3371 	/*
3372 	 * We're now in charge.  Notify and proceed to drain.  We need
3373 	 * to keep the gcwq running during the whole CPU down
3374 	 * procedure as other cpu hotunplug callbacks may need to
3375 	 * flush currently running tasks.
3376 	 */
3377 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3378 	wake_up_all(&gcwq->trustee_wait);
3379 
3380 	/*
3381 	 * The original cpu is in the process of dying and may go away
3382 	 * anytime now.  When that happens, we and all workers would
3383 	 * be migrated to other cpus.  Try draining any left work.  We
3384 	 * want to get it over with ASAP - spam rescuers, wake up as
3385 	 * many idlers as necessary and create new ones till the
3386 	 * worklist is empty.  Note that if the gcwq is frozen, there
3387 	 * may be frozen works in freezable cwqs.  Don't declare
3388 	 * completion while frozen.
3389 	 */
3390 	while (gcwq->nr_workers != gcwq->nr_idle ||
3391 	       gcwq->flags & GCWQ_FREEZING ||
3392 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3393 		int nr_works = 0;
3394 
3395 		list_for_each_entry(work, &gcwq->worklist, entry) {
3396 			send_mayday(work);
3397 			nr_works++;
3398 		}
3399 
3400 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3401 			if (!nr_works--)
3402 				break;
3403 			wake_up_process(worker->task);
3404 		}
3405 
3406 		if (need_to_create_worker(gcwq)) {
3407 			spin_unlock_irq(&gcwq->lock);
3408 			worker = create_worker(gcwq, false);
3409 			spin_lock_irq(&gcwq->lock);
3410 			if (worker) {
3411 				worker->flags |= WORKER_ROGUE;
3412 				start_worker(worker);
3413 			}
3414 		}
3415 
3416 		/* give a breather */
3417 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3418 			break;
3419 	}
3420 
3421 	/*
3422 	 * Either all works have been scheduled and cpu is down, or
3423 	 * cpu down has already been canceled.  Wait for and butcher
3424 	 * all workers till we're canceled.
3425 	 */
3426 	do {
3427 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3428 		while (!list_empty(&gcwq->idle_list))
3429 			destroy_worker(list_first_entry(&gcwq->idle_list,
3430 							struct worker, entry));
3431 	} while (gcwq->nr_workers && rc >= 0);
3432 
3433 	/*
3434 	 * At this point, either draining has completed and no worker
3435 	 * is left, or cpu down has been canceled or the cpu is being
3436 	 * brought back up.  There shouldn't be any idle one left.
3437 	 * Tell the remaining busy ones to rebind once it finishes the
3438 	 * currently scheduled works by scheduling the rebind_work.
3439 	 */
3440 	WARN_ON(!list_empty(&gcwq->idle_list));
3441 
3442 	for_each_busy_worker(worker, i, pos, gcwq) {
3443 		struct work_struct *rebind_work = &worker->rebind_work;
3444 
3445 		/*
3446 		 * Rebind_work may race with future cpu hotplug
3447 		 * operations.  Use a separate flag to mark that
3448 		 * rebinding is scheduled.
3449 		 */
3450 		worker->flags |= WORKER_REBIND;
3451 		worker->flags &= ~WORKER_ROGUE;
3452 
3453 		/* queue rebind_work, wq doesn't matter, use the default one */
3454 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3455 				     work_data_bits(rebind_work)))
3456 			continue;
3457 
3458 		debug_work_activate(rebind_work);
3459 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3460 			    worker->scheduled.next,
3461 			    work_color_to_flags(WORK_NO_COLOR));
3462 	}
3463 
3464 	/* relinquish manager role */
3465 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3466 
3467 	/* notify completion */
3468 	gcwq->trustee = NULL;
3469 	gcwq->trustee_state = TRUSTEE_DONE;
3470 	wake_up_all(&gcwq->trustee_wait);
3471 	spin_unlock_irq(&gcwq->lock);
3472 	return 0;
3473 }
3474 
3475 /**
3476  * wait_trustee_state - wait for trustee to enter the specified state
3477  * @gcwq: gcwq the trustee of interest belongs to
3478  * @state: target state to wait for
3479  *
3480  * Wait for the trustee to reach @state.  DONE is already matched.
3481  *
3482  * CONTEXT:
3483  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3484  * multiple times.  To be used by cpu_callback.
3485  */
3486 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3487 __releases(&gcwq->lock)
3488 __acquires(&gcwq->lock)
3489 {
3490 	if (!(gcwq->trustee_state == state ||
3491 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3492 		spin_unlock_irq(&gcwq->lock);
3493 		__wait_event(gcwq->trustee_wait,
3494 			     gcwq->trustee_state == state ||
3495 			     gcwq->trustee_state == TRUSTEE_DONE);
3496 		spin_lock_irq(&gcwq->lock);
3497 	}
3498 }
3499 
3500 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3501 						unsigned long action,
3502 						void *hcpu)
3503 {
3504 	unsigned int cpu = (unsigned long)hcpu;
3505 	struct global_cwq *gcwq = get_gcwq(cpu);
3506 	struct task_struct *new_trustee = NULL;
3507 	struct worker *uninitialized_var(new_worker);
3508 	unsigned long flags;
3509 
3510 	action &= ~CPU_TASKS_FROZEN;
3511 
3512 	switch (action) {
3513 	case CPU_DOWN_PREPARE:
3514 		new_trustee = kthread_create(trustee_thread, gcwq,
3515 					     "workqueue_trustee/%d\n", cpu);
3516 		if (IS_ERR(new_trustee))
3517 			return notifier_from_errno(PTR_ERR(new_trustee));
3518 		kthread_bind(new_trustee, cpu);
3519 		/* fall through */
3520 	case CPU_UP_PREPARE:
3521 		BUG_ON(gcwq->first_idle);
3522 		new_worker = create_worker(gcwq, false);
3523 		if (!new_worker) {
3524 			if (new_trustee)
3525 				kthread_stop(new_trustee);
3526 			return NOTIFY_BAD;
3527 		}
3528 	}
3529 
3530 	/* some are called w/ irq disabled, don't disturb irq status */
3531 	spin_lock_irqsave(&gcwq->lock, flags);
3532 
3533 	switch (action) {
3534 	case CPU_DOWN_PREPARE:
3535 		/* initialize trustee and tell it to acquire the gcwq */
3536 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3537 		gcwq->trustee = new_trustee;
3538 		gcwq->trustee_state = TRUSTEE_START;
3539 		wake_up_process(gcwq->trustee);
3540 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3541 		/* fall through */
3542 	case CPU_UP_PREPARE:
3543 		BUG_ON(gcwq->first_idle);
3544 		gcwq->first_idle = new_worker;
3545 		break;
3546 
3547 	case CPU_DYING:
3548 		/*
3549 		 * Before this, the trustee and all workers except for
3550 		 * the ones which are still executing works from
3551 		 * before the last CPU down must be on the cpu.  After
3552 		 * this, they'll all be diasporas.
3553 		 */
3554 		gcwq->flags |= GCWQ_DISASSOCIATED;
3555 		break;
3556 
3557 	case CPU_POST_DEAD:
3558 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3559 		/* fall through */
3560 	case CPU_UP_CANCELED:
3561 		destroy_worker(gcwq->first_idle);
3562 		gcwq->first_idle = NULL;
3563 		break;
3564 
3565 	case CPU_DOWN_FAILED:
3566 	case CPU_ONLINE:
3567 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3568 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3569 			gcwq->trustee_state = TRUSTEE_RELEASE;
3570 			wake_up_process(gcwq->trustee);
3571 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3572 		}
3573 
3574 		/*
3575 		 * Trustee is done and there might be no worker left.
3576 		 * Put the first_idle in and request a real manager to
3577 		 * take a look.
3578 		 */
3579 		spin_unlock_irq(&gcwq->lock);
3580 		kthread_bind(gcwq->first_idle->task, cpu);
3581 		spin_lock_irq(&gcwq->lock);
3582 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3583 		start_worker(gcwq->first_idle);
3584 		gcwq->first_idle = NULL;
3585 		break;
3586 	}
3587 
3588 	spin_unlock_irqrestore(&gcwq->lock, flags);
3589 
3590 	return notifier_from_errno(0);
3591 }
3592 
3593 #ifdef CONFIG_SMP
3594 
3595 struct work_for_cpu {
3596 	struct completion completion;
3597 	long (*fn)(void *);
3598 	void *arg;
3599 	long ret;
3600 };
3601 
3602 static int do_work_for_cpu(void *_wfc)
3603 {
3604 	struct work_for_cpu *wfc = _wfc;
3605 	wfc->ret = wfc->fn(wfc->arg);
3606 	complete(&wfc->completion);
3607 	return 0;
3608 }
3609 
3610 /**
3611  * work_on_cpu - run a function in user context on a particular cpu
3612  * @cpu: the cpu to run on
3613  * @fn: the function to run
3614  * @arg: the function arg
3615  *
3616  * This will return the value @fn returns.
3617  * It is up to the caller to ensure that the cpu doesn't go offline.
3618  * The caller must not hold any locks which would prevent @fn from completing.
3619  */
3620 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3621 {
3622 	struct task_struct *sub_thread;
3623 	struct work_for_cpu wfc = {
3624 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3625 		.fn = fn,
3626 		.arg = arg,
3627 	};
3628 
3629 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3630 	if (IS_ERR(sub_thread))
3631 		return PTR_ERR(sub_thread);
3632 	kthread_bind(sub_thread, cpu);
3633 	wake_up_process(sub_thread);
3634 	wait_for_completion(&wfc.completion);
3635 	return wfc.ret;
3636 }
3637 EXPORT_SYMBOL_GPL(work_on_cpu);
3638 #endif /* CONFIG_SMP */
3639 
3640 #ifdef CONFIG_FREEZER
3641 
3642 /**
3643  * freeze_workqueues_begin - begin freezing workqueues
3644  *
3645  * Start freezing workqueues.  After this function returns, all freezable
3646  * workqueues will queue new works to their frozen_works list instead of
3647  * gcwq->worklist.
3648  *
3649  * CONTEXT:
3650  * Grabs and releases workqueue_lock and gcwq->lock's.
3651  */
3652 void freeze_workqueues_begin(void)
3653 {
3654 	unsigned int cpu;
3655 
3656 	spin_lock(&workqueue_lock);
3657 
3658 	BUG_ON(workqueue_freezing);
3659 	workqueue_freezing = true;
3660 
3661 	for_each_gcwq_cpu(cpu) {
3662 		struct global_cwq *gcwq = get_gcwq(cpu);
3663 		struct workqueue_struct *wq;
3664 
3665 		spin_lock_irq(&gcwq->lock);
3666 
3667 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3668 		gcwq->flags |= GCWQ_FREEZING;
3669 
3670 		list_for_each_entry(wq, &workqueues, list) {
3671 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3672 
3673 			if (cwq && wq->flags & WQ_FREEZABLE)
3674 				cwq->max_active = 0;
3675 		}
3676 
3677 		spin_unlock_irq(&gcwq->lock);
3678 	}
3679 
3680 	spin_unlock(&workqueue_lock);
3681 }
3682 
3683 /**
3684  * freeze_workqueues_busy - are freezable workqueues still busy?
3685  *
3686  * Check whether freezing is complete.  This function must be called
3687  * between freeze_workqueues_begin() and thaw_workqueues().
3688  *
3689  * CONTEXT:
3690  * Grabs and releases workqueue_lock.
3691  *
3692  * RETURNS:
3693  * %true if some freezable workqueues are still busy.  %false if freezing
3694  * is complete.
3695  */
3696 bool freeze_workqueues_busy(void)
3697 {
3698 	unsigned int cpu;
3699 	bool busy = false;
3700 
3701 	spin_lock(&workqueue_lock);
3702 
3703 	BUG_ON(!workqueue_freezing);
3704 
3705 	for_each_gcwq_cpu(cpu) {
3706 		struct workqueue_struct *wq;
3707 		/*
3708 		 * nr_active is monotonically decreasing.  It's safe
3709 		 * to peek without lock.
3710 		 */
3711 		list_for_each_entry(wq, &workqueues, list) {
3712 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3713 
3714 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3715 				continue;
3716 
3717 			BUG_ON(cwq->nr_active < 0);
3718 			if (cwq->nr_active) {
3719 				busy = true;
3720 				goto out_unlock;
3721 			}
3722 		}
3723 	}
3724 out_unlock:
3725 	spin_unlock(&workqueue_lock);
3726 	return busy;
3727 }
3728 
3729 /**
3730  * thaw_workqueues - thaw workqueues
3731  *
3732  * Thaw workqueues.  Normal queueing is restored and all collected
3733  * frozen works are transferred to their respective gcwq worklists.
3734  *
3735  * CONTEXT:
3736  * Grabs and releases workqueue_lock and gcwq->lock's.
3737  */
3738 void thaw_workqueues(void)
3739 {
3740 	unsigned int cpu;
3741 
3742 	spin_lock(&workqueue_lock);
3743 
3744 	if (!workqueue_freezing)
3745 		goto out_unlock;
3746 
3747 	for_each_gcwq_cpu(cpu) {
3748 		struct global_cwq *gcwq = get_gcwq(cpu);
3749 		struct workqueue_struct *wq;
3750 
3751 		spin_lock_irq(&gcwq->lock);
3752 
3753 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3754 		gcwq->flags &= ~GCWQ_FREEZING;
3755 
3756 		list_for_each_entry(wq, &workqueues, list) {
3757 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3758 
3759 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3760 				continue;
3761 
3762 			/* restore max_active and repopulate worklist */
3763 			cwq->max_active = wq->saved_max_active;
3764 
3765 			while (!list_empty(&cwq->delayed_works) &&
3766 			       cwq->nr_active < cwq->max_active)
3767 				cwq_activate_first_delayed(cwq);
3768 		}
3769 
3770 		wake_up_worker(gcwq);
3771 
3772 		spin_unlock_irq(&gcwq->lock);
3773 	}
3774 
3775 	workqueue_freezing = false;
3776 out_unlock:
3777 	spin_unlock(&workqueue_lock);
3778 }
3779 #endif /* CONFIG_FREEZER */
3780 
3781 static int __init init_workqueues(void)
3782 {
3783 	unsigned int cpu;
3784 	int i;
3785 
3786 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3787 
3788 	/* initialize gcwqs */
3789 	for_each_gcwq_cpu(cpu) {
3790 		struct global_cwq *gcwq = get_gcwq(cpu);
3791 
3792 		spin_lock_init(&gcwq->lock);
3793 		INIT_LIST_HEAD(&gcwq->worklist);
3794 		gcwq->cpu = cpu;
3795 		gcwq->flags |= GCWQ_DISASSOCIATED;
3796 
3797 		INIT_LIST_HEAD(&gcwq->idle_list);
3798 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3799 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3800 
3801 		init_timer_deferrable(&gcwq->idle_timer);
3802 		gcwq->idle_timer.function = idle_worker_timeout;
3803 		gcwq->idle_timer.data = (unsigned long)gcwq;
3804 
3805 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3806 			    (unsigned long)gcwq);
3807 
3808 		ida_init(&gcwq->worker_ida);
3809 
3810 		gcwq->trustee_state = TRUSTEE_DONE;
3811 		init_waitqueue_head(&gcwq->trustee_wait);
3812 	}
3813 
3814 	/* create the initial worker */
3815 	for_each_online_gcwq_cpu(cpu) {
3816 		struct global_cwq *gcwq = get_gcwq(cpu);
3817 		struct worker *worker;
3818 
3819 		if (cpu != WORK_CPU_UNBOUND)
3820 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3821 		worker = create_worker(gcwq, true);
3822 		BUG_ON(!worker);
3823 		spin_lock_irq(&gcwq->lock);
3824 		start_worker(worker);
3825 		spin_unlock_irq(&gcwq->lock);
3826 	}
3827 
3828 	system_wq = alloc_workqueue("events", 0, 0);
3829 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3830 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3831 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3832 					    WQ_UNBOUND_MAX_ACTIVE);
3833 	system_freezable_wq = alloc_workqueue("events_freezable",
3834 					      WQ_FREEZABLE, 0);
3835 	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3836 			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3837 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3838 	       !system_unbound_wq || !system_freezable_wq ||
3839 		!system_nrt_freezable_wq);
3840 	return 0;
3841 }
3842 early_initcall(init_workqueues);
3843