xref: /linux/kernel/workqueue.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/completion.h>
23 #include <linux/workqueue.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 
29 /*
30  * The per-CPU workqueue (if single thread, we always use cpu 0's).
31  *
32  * The sequence counters are for flush_scheduled_work().  It wants to wait
33  * until until all currently-scheduled works are completed, but it doesn't
34  * want to be livelocked by new, incoming ones.  So it waits until
35  * remove_sequence is >= the insert_sequence which pertained when
36  * flush_scheduled_work() was called.
37  */
38 struct cpu_workqueue_struct {
39 
40 	spinlock_t lock;
41 
42 	long remove_sequence;	/* Least-recently added (next to run) */
43 	long insert_sequence;	/* Next to add */
44 
45 	struct list_head worklist;
46 	wait_queue_head_t more_work;
47 	wait_queue_head_t work_done;
48 
49 	struct workqueue_struct *wq;
50 	task_t *thread;
51 
52 	int run_depth;		/* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct cpu_wq[NR_CPUS];
61 	const char *name;
62 	struct list_head list; 	/* Empty if single thread */
63 };
64 
65 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
66    threads to each one as cpus come/go. */
67 static DEFINE_SPINLOCK(workqueue_lock);
68 static LIST_HEAD(workqueues);
69 
70 /* If it's single threaded, it isn't in the list of workqueues. */
71 static inline int is_single_threaded(struct workqueue_struct *wq)
72 {
73 	return list_empty(&wq->list);
74 }
75 
76 /* Preempt must be disabled. */
77 static void __queue_work(struct cpu_workqueue_struct *cwq,
78 			 struct work_struct *work)
79 {
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&cwq->lock, flags);
83 	work->wq_data = cwq;
84 	list_add_tail(&work->entry, &cwq->worklist);
85 	cwq->insert_sequence++;
86 	wake_up(&cwq->more_work);
87 	spin_unlock_irqrestore(&cwq->lock, flags);
88 }
89 
90 /*
91  * Queue work on a workqueue. Return non-zero if it was successfully
92  * added.
93  *
94  * We queue the work to the CPU it was submitted, but there is no
95  * guarantee that it will be processed by that CPU.
96  */
97 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
98 {
99 	int ret = 0, cpu = get_cpu();
100 
101 	if (!test_and_set_bit(0, &work->pending)) {
102 		if (unlikely(is_single_threaded(wq)))
103 			cpu = 0;
104 		BUG_ON(!list_empty(&work->entry));
105 		__queue_work(wq->cpu_wq + cpu, work);
106 		ret = 1;
107 	}
108 	put_cpu();
109 	return ret;
110 }
111 
112 static void delayed_work_timer_fn(unsigned long __data)
113 {
114 	struct work_struct *work = (struct work_struct *)__data;
115 	struct workqueue_struct *wq = work->wq_data;
116 	int cpu = smp_processor_id();
117 
118 	if (unlikely(is_single_threaded(wq)))
119 		cpu = 0;
120 
121 	__queue_work(wq->cpu_wq + cpu, work);
122 }
123 
124 int fastcall queue_delayed_work(struct workqueue_struct *wq,
125 			struct work_struct *work, unsigned long delay)
126 {
127 	int ret = 0;
128 	struct timer_list *timer = &work->timer;
129 
130 	if (!test_and_set_bit(0, &work->pending)) {
131 		BUG_ON(timer_pending(timer));
132 		BUG_ON(!list_empty(&work->entry));
133 
134 		/* This stores wq for the moment, for the timer_fn */
135 		work->wq_data = wq;
136 		timer->expires = jiffies + delay;
137 		timer->data = (unsigned long)work;
138 		timer->function = delayed_work_timer_fn;
139 		add_timer(timer);
140 		ret = 1;
141 	}
142 	return ret;
143 }
144 
145 static inline void run_workqueue(struct cpu_workqueue_struct *cwq)
146 {
147 	unsigned long flags;
148 
149 	/*
150 	 * Keep taking off work from the queue until
151 	 * done.
152 	 */
153 	spin_lock_irqsave(&cwq->lock, flags);
154 	cwq->run_depth++;
155 	if (cwq->run_depth > 3) {
156 		/* morton gets to eat his hat */
157 		printk("%s: recursion depth exceeded: %d\n",
158 			__FUNCTION__, cwq->run_depth);
159 		dump_stack();
160 	}
161 	while (!list_empty(&cwq->worklist)) {
162 		struct work_struct *work = list_entry(cwq->worklist.next,
163 						struct work_struct, entry);
164 		void (*f) (void *) = work->func;
165 		void *data = work->data;
166 
167 		list_del_init(cwq->worklist.next);
168 		spin_unlock_irqrestore(&cwq->lock, flags);
169 
170 		BUG_ON(work->wq_data != cwq);
171 		clear_bit(0, &work->pending);
172 		f(data);
173 
174 		spin_lock_irqsave(&cwq->lock, flags);
175 		cwq->remove_sequence++;
176 		wake_up(&cwq->work_done);
177 	}
178 	cwq->run_depth--;
179 	spin_unlock_irqrestore(&cwq->lock, flags);
180 }
181 
182 static int worker_thread(void *__cwq)
183 {
184 	struct cpu_workqueue_struct *cwq = __cwq;
185 	DECLARE_WAITQUEUE(wait, current);
186 	struct k_sigaction sa;
187 	sigset_t blocked;
188 
189 	current->flags |= PF_NOFREEZE;
190 
191 	set_user_nice(current, -5);
192 
193 	/* Block and flush all signals */
194 	sigfillset(&blocked);
195 	sigprocmask(SIG_BLOCK, &blocked, NULL);
196 	flush_signals(current);
197 
198 	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
199 	sa.sa.sa_handler = SIG_IGN;
200 	sa.sa.sa_flags = 0;
201 	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
202 	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
203 
204 	set_current_state(TASK_INTERRUPTIBLE);
205 	while (!kthread_should_stop()) {
206 		add_wait_queue(&cwq->more_work, &wait);
207 		if (list_empty(&cwq->worklist))
208 			schedule();
209 		else
210 			__set_current_state(TASK_RUNNING);
211 		remove_wait_queue(&cwq->more_work, &wait);
212 
213 		if (!list_empty(&cwq->worklist))
214 			run_workqueue(cwq);
215 		set_current_state(TASK_INTERRUPTIBLE);
216 	}
217 	__set_current_state(TASK_RUNNING);
218 	return 0;
219 }
220 
221 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
222 {
223 	if (cwq->thread == current) {
224 		/*
225 		 * Probably keventd trying to flush its own queue. So simply run
226 		 * it by hand rather than deadlocking.
227 		 */
228 		run_workqueue(cwq);
229 	} else {
230 		DEFINE_WAIT(wait);
231 		long sequence_needed;
232 
233 		spin_lock_irq(&cwq->lock);
234 		sequence_needed = cwq->insert_sequence;
235 
236 		while (sequence_needed - cwq->remove_sequence > 0) {
237 			prepare_to_wait(&cwq->work_done, &wait,
238 					TASK_UNINTERRUPTIBLE);
239 			spin_unlock_irq(&cwq->lock);
240 			schedule();
241 			spin_lock_irq(&cwq->lock);
242 		}
243 		finish_wait(&cwq->work_done, &wait);
244 		spin_unlock_irq(&cwq->lock);
245 	}
246 }
247 
248 /*
249  * flush_workqueue - ensure that any scheduled work has run to completion.
250  *
251  * Forces execution of the workqueue and blocks until its completion.
252  * This is typically used in driver shutdown handlers.
253  *
254  * This function will sample each workqueue's current insert_sequence number and
255  * will sleep until the head sequence is greater than or equal to that.  This
256  * means that we sleep until all works which were queued on entry have been
257  * handled, but we are not livelocked by new incoming ones.
258  *
259  * This function used to run the workqueues itself.  Now we just wait for the
260  * helper threads to do it.
261  */
262 void fastcall flush_workqueue(struct workqueue_struct *wq)
263 {
264 	might_sleep();
265 
266 	if (is_single_threaded(wq)) {
267 		/* Always use cpu 0's area. */
268 		flush_cpu_workqueue(wq->cpu_wq + 0);
269 	} else {
270 		int cpu;
271 
272 		lock_cpu_hotplug();
273 		for_each_online_cpu(cpu)
274 			flush_cpu_workqueue(wq->cpu_wq + cpu);
275 		unlock_cpu_hotplug();
276 	}
277 }
278 
279 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
280 						   int cpu)
281 {
282 	struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu;
283 	struct task_struct *p;
284 
285 	spin_lock_init(&cwq->lock);
286 	cwq->wq = wq;
287 	cwq->thread = NULL;
288 	cwq->insert_sequence = 0;
289 	cwq->remove_sequence = 0;
290 	INIT_LIST_HEAD(&cwq->worklist);
291 	init_waitqueue_head(&cwq->more_work);
292 	init_waitqueue_head(&cwq->work_done);
293 
294 	if (is_single_threaded(wq))
295 		p = kthread_create(worker_thread, cwq, "%s", wq->name);
296 	else
297 		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
298 	if (IS_ERR(p))
299 		return NULL;
300 	cwq->thread = p;
301 	return p;
302 }
303 
304 struct workqueue_struct *__create_workqueue(const char *name,
305 					    int singlethread)
306 {
307 	int cpu, destroy = 0;
308 	struct workqueue_struct *wq;
309 	struct task_struct *p;
310 
311 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
312 	if (!wq)
313 		return NULL;
314 
315 	wq->name = name;
316 	/* We don't need the distraction of CPUs appearing and vanishing. */
317 	lock_cpu_hotplug();
318 	if (singlethread) {
319 		INIT_LIST_HEAD(&wq->list);
320 		p = create_workqueue_thread(wq, 0);
321 		if (!p)
322 			destroy = 1;
323 		else
324 			wake_up_process(p);
325 	} else {
326 		spin_lock(&workqueue_lock);
327 		list_add(&wq->list, &workqueues);
328 		spin_unlock(&workqueue_lock);
329 		for_each_online_cpu(cpu) {
330 			p = create_workqueue_thread(wq, cpu);
331 			if (p) {
332 				kthread_bind(p, cpu);
333 				wake_up_process(p);
334 			} else
335 				destroy = 1;
336 		}
337 	}
338 	unlock_cpu_hotplug();
339 
340 	/*
341 	 * Was there any error during startup? If yes then clean up:
342 	 */
343 	if (destroy) {
344 		destroy_workqueue(wq);
345 		wq = NULL;
346 	}
347 	return wq;
348 }
349 
350 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
351 {
352 	struct cpu_workqueue_struct *cwq;
353 	unsigned long flags;
354 	struct task_struct *p;
355 
356 	cwq = wq->cpu_wq + cpu;
357 	spin_lock_irqsave(&cwq->lock, flags);
358 	p = cwq->thread;
359 	cwq->thread = NULL;
360 	spin_unlock_irqrestore(&cwq->lock, flags);
361 	if (p)
362 		kthread_stop(p);
363 }
364 
365 void destroy_workqueue(struct workqueue_struct *wq)
366 {
367 	int cpu;
368 
369 	flush_workqueue(wq);
370 
371 	/* We don't need the distraction of CPUs appearing and vanishing. */
372 	lock_cpu_hotplug();
373 	if (is_single_threaded(wq))
374 		cleanup_workqueue_thread(wq, 0);
375 	else {
376 		for_each_online_cpu(cpu)
377 			cleanup_workqueue_thread(wq, cpu);
378 		spin_lock(&workqueue_lock);
379 		list_del(&wq->list);
380 		spin_unlock(&workqueue_lock);
381 	}
382 	unlock_cpu_hotplug();
383 	kfree(wq);
384 }
385 
386 static struct workqueue_struct *keventd_wq;
387 
388 int fastcall schedule_work(struct work_struct *work)
389 {
390 	return queue_work(keventd_wq, work);
391 }
392 
393 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
394 {
395 	return queue_delayed_work(keventd_wq, work, delay);
396 }
397 
398 int schedule_delayed_work_on(int cpu,
399 			struct work_struct *work, unsigned long delay)
400 {
401 	int ret = 0;
402 	struct timer_list *timer = &work->timer;
403 
404 	if (!test_and_set_bit(0, &work->pending)) {
405 		BUG_ON(timer_pending(timer));
406 		BUG_ON(!list_empty(&work->entry));
407 		/* This stores keventd_wq for the moment, for the timer_fn */
408 		work->wq_data = keventd_wq;
409 		timer->expires = jiffies + delay;
410 		timer->data = (unsigned long)work;
411 		timer->function = delayed_work_timer_fn;
412 		add_timer_on(timer, cpu);
413 		ret = 1;
414 	}
415 	return ret;
416 }
417 
418 void flush_scheduled_work(void)
419 {
420 	flush_workqueue(keventd_wq);
421 }
422 
423 /**
424  * cancel_rearming_delayed_workqueue - reliably kill off a delayed
425  *			work whose handler rearms the delayed work.
426  * @wq:   the controlling workqueue structure
427  * @work: the delayed work struct
428  */
429 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
430 				       struct work_struct *work)
431 {
432 	while (!cancel_delayed_work(work))
433 		flush_workqueue(wq);
434 }
435 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
436 
437 /**
438  * cancel_rearming_delayed_work - reliably kill off a delayed keventd
439  *			work whose handler rearms the delayed work.
440  * @work: the delayed work struct
441  */
442 void cancel_rearming_delayed_work(struct work_struct *work)
443 {
444 	cancel_rearming_delayed_workqueue(keventd_wq, work);
445 }
446 EXPORT_SYMBOL(cancel_rearming_delayed_work);
447 
448 int keventd_up(void)
449 {
450 	return keventd_wq != NULL;
451 }
452 
453 int current_is_keventd(void)
454 {
455 	struct cpu_workqueue_struct *cwq;
456 	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
457 	int ret = 0;
458 
459 	BUG_ON(!keventd_wq);
460 
461 	cwq = keventd_wq->cpu_wq + cpu;
462 	if (current == cwq->thread)
463 		ret = 1;
464 
465 	return ret;
466 
467 }
468 
469 #ifdef CONFIG_HOTPLUG_CPU
470 /* Take the work from this (downed) CPU. */
471 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
472 {
473 	struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu;
474 	LIST_HEAD(list);
475 	struct work_struct *work;
476 
477 	spin_lock_irq(&cwq->lock);
478 	list_splice_init(&cwq->worklist, &list);
479 
480 	while (!list_empty(&list)) {
481 		printk("Taking work for %s\n", wq->name);
482 		work = list_entry(list.next,struct work_struct,entry);
483 		list_del(&work->entry);
484 		__queue_work(wq->cpu_wq + smp_processor_id(), work);
485 	}
486 	spin_unlock_irq(&cwq->lock);
487 }
488 
489 /* We're holding the cpucontrol mutex here */
490 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
491 				  unsigned long action,
492 				  void *hcpu)
493 {
494 	unsigned int hotcpu = (unsigned long)hcpu;
495 	struct workqueue_struct *wq;
496 
497 	switch (action) {
498 	case CPU_UP_PREPARE:
499 		/* Create a new workqueue thread for it. */
500 		list_for_each_entry(wq, &workqueues, list) {
501 			if (!create_workqueue_thread(wq, hotcpu)) {
502 				printk("workqueue for %i failed\n", hotcpu);
503 				return NOTIFY_BAD;
504 			}
505 		}
506 		break;
507 
508 	case CPU_ONLINE:
509 		/* Kick off worker threads. */
510 		list_for_each_entry(wq, &workqueues, list) {
511 			kthread_bind(wq->cpu_wq[hotcpu].thread, hotcpu);
512 			wake_up_process(wq->cpu_wq[hotcpu].thread);
513 		}
514 		break;
515 
516 	case CPU_UP_CANCELED:
517 		list_for_each_entry(wq, &workqueues, list) {
518 			/* Unbind so it can run. */
519 			kthread_bind(wq->cpu_wq[hotcpu].thread,
520 				     smp_processor_id());
521 			cleanup_workqueue_thread(wq, hotcpu);
522 		}
523 		break;
524 
525 	case CPU_DEAD:
526 		list_for_each_entry(wq, &workqueues, list)
527 			cleanup_workqueue_thread(wq, hotcpu);
528 		list_for_each_entry(wq, &workqueues, list)
529 			take_over_work(wq, hotcpu);
530 		break;
531 	}
532 
533 	return NOTIFY_OK;
534 }
535 #endif
536 
537 void init_workqueues(void)
538 {
539 	hotcpu_notifier(workqueue_cpu_callback, 0);
540 	keventd_wq = create_workqueue("events");
541 	BUG_ON(!keventd_wq);
542 }
543 
544 EXPORT_SYMBOL_GPL(__create_workqueue);
545 EXPORT_SYMBOL_GPL(queue_work);
546 EXPORT_SYMBOL_GPL(queue_delayed_work);
547 EXPORT_SYMBOL_GPL(flush_workqueue);
548 EXPORT_SYMBOL_GPL(destroy_workqueue);
549 
550 EXPORT_SYMBOL(schedule_work);
551 EXPORT_SYMBOL(schedule_delayed_work);
552 EXPORT_SYMBOL(schedule_delayed_work_on);
553 EXPORT_SYMBOL(flush_scheduled_work);
554