1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map __lockdep_map; 368 struct lockdep_map *lockdep_map; 369 #endif 370 char name[WQ_NAME_LEN]; /* I: workqueue name */ 371 372 /* 373 * Destruction of workqueue_struct is RCU protected to allow walking 374 * the workqueues list without grabbing wq_pool_mutex. 375 * This is used to dump all workqueues from sysrq. 376 */ 377 struct rcu_head rcu; 378 379 /* hot fields used during command issue, aligned to cacheline */ 380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 381 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */ 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 383 }; 384 385 /* 386 * Each pod type describes how CPUs should be grouped for unbound workqueues. 387 * See the comment above workqueue_attrs->affn_scope. 388 */ 389 struct wq_pod_type { 390 int nr_pods; /* number of pods */ 391 cpumask_var_t *pod_cpus; /* pod -> cpus */ 392 int *pod_node; /* pod -> node */ 393 int *cpu_pod; /* cpu -> pod */ 394 }; 395 396 struct work_offq_data { 397 u32 pool_id; 398 u32 disable; 399 u32 flags; 400 }; 401 402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 403 [WQ_AFFN_DFL] = "default", 404 [WQ_AFFN_CPU] = "cpu", 405 [WQ_AFFN_SMT] = "smt", 406 [WQ_AFFN_CACHE] = "cache", 407 [WQ_AFFN_NUMA] = "numa", 408 [WQ_AFFN_SYSTEM] = "system", 409 }; 410 411 /* 412 * Per-cpu work items which run for longer than the following threshold are 413 * automatically considered CPU intensive and excluded from concurrency 414 * management to prevent them from noticeably delaying other per-cpu work items. 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 416 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 417 */ 418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 421 static unsigned int wq_cpu_intensive_warning_thresh = 4; 422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 423 #endif 424 425 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 427 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 428 429 static bool wq_online; /* can kworkers be created yet? */ 430 static bool wq_topo_initialized __read_mostly = false; 431 432 static struct kmem_cache *pwq_cache; 433 434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 436 437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 439 440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 443 /* wait for manager to go away */ 444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 445 446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 447 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 448 449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 450 static cpumask_var_t wq_online_cpumask; 451 452 /* PL&A: allowable cpus for unbound wqs and work items */ 453 static cpumask_var_t wq_unbound_cpumask; 454 455 /* PL: user requested unbound cpumask via sysfs */ 456 static cpumask_var_t wq_requested_unbound_cpumask; 457 458 /* PL: isolated cpumask to be excluded from unbound cpumask */ 459 static cpumask_var_t wq_isolated_cpumask; 460 461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 462 static struct cpumask wq_cmdline_cpumask __initdata; 463 464 /* CPU where unbound work was last round robin scheduled from this CPU */ 465 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 466 467 /* 468 * Local execution of unbound work items is no longer guaranteed. The 469 * following always forces round-robin CPU selection on unbound work items 470 * to uncover usages which depend on it. 471 */ 472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 473 static bool wq_debug_force_rr_cpu = true; 474 #else 475 static bool wq_debug_force_rr_cpu = false; 476 #endif 477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 478 479 /* to raise softirq for the BH worker pools on other CPUs */ 480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works); 481 482 /* the BH worker pools */ 483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools); 484 485 /* the per-cpu worker pools */ 486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 487 488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 489 490 /* PL: hash of all unbound pools keyed by pool->attrs */ 491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 492 493 /* I: attributes used when instantiating standard unbound pools on demand */ 494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 495 496 /* I: attributes used when instantiating ordered pools on demand */ 497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 498 499 /* 500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 501 * process context while holding a pool lock. Bounce to a dedicated kthread 502 * worker to avoid A-A deadlocks. 503 */ 504 static struct kthread_worker *pwq_release_worker __ro_after_init; 505 506 struct workqueue_struct *system_wq __ro_after_init; 507 EXPORT_SYMBOL(system_wq); 508 struct workqueue_struct *system_highpri_wq __ro_after_init; 509 EXPORT_SYMBOL_GPL(system_highpri_wq); 510 struct workqueue_struct *system_long_wq __ro_after_init; 511 EXPORT_SYMBOL_GPL(system_long_wq); 512 struct workqueue_struct *system_unbound_wq __ro_after_init; 513 EXPORT_SYMBOL_GPL(system_unbound_wq); 514 struct workqueue_struct *system_freezable_wq __ro_after_init; 515 EXPORT_SYMBOL_GPL(system_freezable_wq); 516 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 517 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 520 struct workqueue_struct *system_bh_wq; 521 EXPORT_SYMBOL_GPL(system_bh_wq); 522 struct workqueue_struct *system_bh_highpri_wq; 523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 524 525 static int worker_thread(void *__worker); 526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 527 static void show_pwq(struct pool_workqueue *pwq); 528 static void show_one_worker_pool(struct worker_pool *pool); 529 530 #define CREATE_TRACE_POINTS 531 #include <trace/events/workqueue.h> 532 533 #define assert_rcu_or_pool_mutex() \ 534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 535 !lockdep_is_held(&wq_pool_mutex), \ 536 "RCU or wq_pool_mutex should be held") 537 538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 540 !lockdep_is_held(&wq->mutex) && \ 541 !lockdep_is_held(&wq_pool_mutex), \ 542 "RCU, wq->mutex or wq_pool_mutex should be held") 543 544 #define for_each_bh_worker_pool(pool, cpu) \ 545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 547 (pool)++) 548 549 #define for_each_cpu_worker_pool(pool, cpu) \ 550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 552 (pool)++) 553 554 /** 555 * for_each_pool - iterate through all worker_pools in the system 556 * @pool: iteration cursor 557 * @pi: integer used for iteration 558 * 559 * This must be called either with wq_pool_mutex held or RCU read 560 * locked. If the pool needs to be used beyond the locking in effect, the 561 * caller is responsible for guaranteeing that the pool stays online. 562 * 563 * The if/else clause exists only for the lockdep assertion and can be 564 * ignored. 565 */ 566 #define for_each_pool(pool, pi) \ 567 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 569 else 570 571 /** 572 * for_each_pool_worker - iterate through all workers of a worker_pool 573 * @worker: iteration cursor 574 * @pool: worker_pool to iterate workers of 575 * 576 * This must be called with wq_pool_attach_mutex. 577 * 578 * The if/else clause exists only for the lockdep assertion and can be 579 * ignored. 580 */ 581 #define for_each_pool_worker(worker, pool) \ 582 list_for_each_entry((worker), &(pool)->workers, node) \ 583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 584 else 585 586 /** 587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 588 * @pwq: iteration cursor 589 * @wq: the target workqueue 590 * 591 * This must be called either with wq->mutex held or RCU read locked. 592 * If the pwq needs to be used beyond the locking in effect, the caller is 593 * responsible for guaranteeing that the pwq stays online. 594 * 595 * The if/else clause exists only for the lockdep assertion and can be 596 * ignored. 597 */ 598 #define for_each_pwq(pwq, wq) \ 599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 600 lockdep_is_held(&(wq->mutex))) 601 602 #ifdef CONFIG_DEBUG_OBJECTS_WORK 603 604 static const struct debug_obj_descr work_debug_descr; 605 606 static void *work_debug_hint(void *addr) 607 { 608 return ((struct work_struct *) addr)->func; 609 } 610 611 static bool work_is_static_object(void *addr) 612 { 613 struct work_struct *work = addr; 614 615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 616 } 617 618 /* 619 * fixup_init is called when: 620 * - an active object is initialized 621 */ 622 static bool work_fixup_init(void *addr, enum debug_obj_state state) 623 { 624 struct work_struct *work = addr; 625 626 switch (state) { 627 case ODEBUG_STATE_ACTIVE: 628 cancel_work_sync(work); 629 debug_object_init(work, &work_debug_descr); 630 return true; 631 default: 632 return false; 633 } 634 } 635 636 /* 637 * fixup_free is called when: 638 * - an active object is freed 639 */ 640 static bool work_fixup_free(void *addr, enum debug_obj_state state) 641 { 642 struct work_struct *work = addr; 643 644 switch (state) { 645 case ODEBUG_STATE_ACTIVE: 646 cancel_work_sync(work); 647 debug_object_free(work, &work_debug_descr); 648 return true; 649 default: 650 return false; 651 } 652 } 653 654 static const struct debug_obj_descr work_debug_descr = { 655 .name = "work_struct", 656 .debug_hint = work_debug_hint, 657 .is_static_object = work_is_static_object, 658 .fixup_init = work_fixup_init, 659 .fixup_free = work_fixup_free, 660 }; 661 662 static inline void debug_work_activate(struct work_struct *work) 663 { 664 debug_object_activate(work, &work_debug_descr); 665 } 666 667 static inline void debug_work_deactivate(struct work_struct *work) 668 { 669 debug_object_deactivate(work, &work_debug_descr); 670 } 671 672 void __init_work(struct work_struct *work, int onstack) 673 { 674 if (onstack) 675 debug_object_init_on_stack(work, &work_debug_descr); 676 else 677 debug_object_init(work, &work_debug_descr); 678 } 679 EXPORT_SYMBOL_GPL(__init_work); 680 681 void destroy_work_on_stack(struct work_struct *work) 682 { 683 debug_object_free(work, &work_debug_descr); 684 } 685 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 686 687 void destroy_delayed_work_on_stack(struct delayed_work *work) 688 { 689 timer_destroy_on_stack(&work->timer); 690 debug_object_free(&work->work, &work_debug_descr); 691 } 692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 693 694 #else 695 static inline void debug_work_activate(struct work_struct *work) { } 696 static inline void debug_work_deactivate(struct work_struct *work) { } 697 #endif 698 699 /** 700 * worker_pool_assign_id - allocate ID and assign it to @pool 701 * @pool: the pool pointer of interest 702 * 703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 704 * successfully, -errno on failure. 705 */ 706 static int worker_pool_assign_id(struct worker_pool *pool) 707 { 708 int ret; 709 710 lockdep_assert_held(&wq_pool_mutex); 711 712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 713 GFP_KERNEL); 714 if (ret >= 0) { 715 pool->id = ret; 716 return 0; 717 } 718 return ret; 719 } 720 721 static struct pool_workqueue __rcu ** 722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 723 { 724 if (cpu >= 0) 725 return per_cpu_ptr(wq->cpu_pwq, cpu); 726 else 727 return &wq->dfl_pwq; 728 } 729 730 /* @cpu < 0 for dfl_pwq */ 731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 732 { 733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 734 lockdep_is_held(&wq_pool_mutex) || 735 lockdep_is_held(&wq->mutex)); 736 } 737 738 /** 739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 740 * @wq: workqueue of interest 741 * 742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 744 * default pwq is always mapped to the pool with the current effective cpumask. 745 */ 746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 747 { 748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 749 } 750 751 static unsigned int work_color_to_flags(int color) 752 { 753 return color << WORK_STRUCT_COLOR_SHIFT; 754 } 755 756 static int get_work_color(unsigned long work_data) 757 { 758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 759 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 760 } 761 762 static int work_next_color(int color) 763 { 764 return (color + 1) % WORK_NR_COLORS; 765 } 766 767 static unsigned long pool_offq_flags(struct worker_pool *pool) 768 { 769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 770 } 771 772 /* 773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 774 * contain the pointer to the queued pwq. Once execution starts, the flag 775 * is cleared and the high bits contain OFFQ flags and pool ID. 776 * 777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 778 * can be used to set the pwq, pool or clear work->data. These functions should 779 * only be called while the work is owned - ie. while the PENDING bit is set. 780 * 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 782 * corresponding to a work. Pool is available once the work has been 783 * queued anywhere after initialization until it is sync canceled. pwq is 784 * available only while the work item is queued. 785 */ 786 static inline void set_work_data(struct work_struct *work, unsigned long data) 787 { 788 WARN_ON_ONCE(!work_pending(work)); 789 atomic_long_set(&work->data, data | work_static(work)); 790 } 791 792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 793 unsigned long flags) 794 { 795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 796 WORK_STRUCT_PWQ | flags); 797 } 798 799 static void set_work_pool_and_keep_pending(struct work_struct *work, 800 int pool_id, unsigned long flags) 801 { 802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 803 WORK_STRUCT_PENDING | flags); 804 } 805 806 static void set_work_pool_and_clear_pending(struct work_struct *work, 807 int pool_id, unsigned long flags) 808 { 809 /* 810 * The following wmb is paired with the implied mb in 811 * test_and_set_bit(PENDING) and ensures all updates to @work made 812 * here are visible to and precede any updates by the next PENDING 813 * owner. 814 */ 815 smp_wmb(); 816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 817 flags); 818 /* 819 * The following mb guarantees that previous clear of a PENDING bit 820 * will not be reordered with any speculative LOADS or STORES from 821 * work->current_func, which is executed afterwards. This possible 822 * reordering can lead to a missed execution on attempt to queue 823 * the same @work. E.g. consider this case: 824 * 825 * CPU#0 CPU#1 826 * ---------------------------- -------------------------------- 827 * 828 * 1 STORE event_indicated 829 * 2 queue_work_on() { 830 * 3 test_and_set_bit(PENDING) 831 * 4 } set_..._and_clear_pending() { 832 * 5 set_work_data() # clear bit 833 * 6 smp_mb() 834 * 7 work->current_func() { 835 * 8 LOAD event_indicated 836 * } 837 * 838 * Without an explicit full barrier speculative LOAD on line 8 can 839 * be executed before CPU#0 does STORE on line 1. If that happens, 840 * CPU#0 observes the PENDING bit is still set and new execution of 841 * a @work is not queued in a hope, that CPU#1 will eventually 842 * finish the queued @work. Meanwhile CPU#1 does not see 843 * event_indicated is set, because speculative LOAD was executed 844 * before actual STORE. 845 */ 846 smp_mb(); 847 } 848 849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 850 { 851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 852 } 853 854 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 855 { 856 unsigned long data = atomic_long_read(&work->data); 857 858 if (data & WORK_STRUCT_PWQ) 859 return work_struct_pwq(data); 860 else 861 return NULL; 862 } 863 864 /** 865 * get_work_pool - return the worker_pool a given work was associated with 866 * @work: the work item of interest 867 * 868 * Pools are created and destroyed under wq_pool_mutex, and allows read 869 * access under RCU read lock. As such, this function should be 870 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 871 * 872 * All fields of the returned pool are accessible as long as the above 873 * mentioned locking is in effect. If the returned pool needs to be used 874 * beyond the critical section, the caller is responsible for ensuring the 875 * returned pool is and stays online. 876 * 877 * Return: The worker_pool @work was last associated with. %NULL if none. 878 */ 879 static struct worker_pool *get_work_pool(struct work_struct *work) 880 { 881 unsigned long data = atomic_long_read(&work->data); 882 int pool_id; 883 884 assert_rcu_or_pool_mutex(); 885 886 if (data & WORK_STRUCT_PWQ) 887 return work_struct_pwq(data)->pool; 888 889 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 890 if (pool_id == WORK_OFFQ_POOL_NONE) 891 return NULL; 892 893 return idr_find(&worker_pool_idr, pool_id); 894 } 895 896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 897 { 898 return (v >> shift) & ((1U << bits) - 1); 899 } 900 901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 902 { 903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 904 905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 906 WORK_OFFQ_POOL_BITS); 907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 908 WORK_OFFQ_DISABLE_BITS); 909 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 910 } 911 912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 913 { 914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 915 ((unsigned long)offqd->flags); 916 } 917 918 /* 919 * Policy functions. These define the policies on how the global worker 920 * pools are managed. Unless noted otherwise, these functions assume that 921 * they're being called with pool->lock held. 922 */ 923 924 /* 925 * Need to wake up a worker? Called from anything but currently 926 * running workers. 927 * 928 * Note that, because unbound workers never contribute to nr_running, this 929 * function will always return %true for unbound pools as long as the 930 * worklist isn't empty. 931 */ 932 static bool need_more_worker(struct worker_pool *pool) 933 { 934 return !list_empty(&pool->worklist) && !pool->nr_running; 935 } 936 937 /* Can I start working? Called from busy but !running workers. */ 938 static bool may_start_working(struct worker_pool *pool) 939 { 940 return pool->nr_idle; 941 } 942 943 /* Do I need to keep working? Called from currently running workers. */ 944 static bool keep_working(struct worker_pool *pool) 945 { 946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 947 } 948 949 /* Do we need a new worker? Called from manager. */ 950 static bool need_to_create_worker(struct worker_pool *pool) 951 { 952 return need_more_worker(pool) && !may_start_working(pool); 953 } 954 955 /* Do we have too many workers and should some go away? */ 956 static bool too_many_workers(struct worker_pool *pool) 957 { 958 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 960 int nr_busy = pool->nr_workers - nr_idle; 961 962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 963 } 964 965 /** 966 * worker_set_flags - set worker flags and adjust nr_running accordingly 967 * @worker: self 968 * @flags: flags to set 969 * 970 * Set @flags in @worker->flags and adjust nr_running accordingly. 971 */ 972 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 973 { 974 struct worker_pool *pool = worker->pool; 975 976 lockdep_assert_held(&pool->lock); 977 978 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 979 if ((flags & WORKER_NOT_RUNNING) && 980 !(worker->flags & WORKER_NOT_RUNNING)) { 981 pool->nr_running--; 982 } 983 984 worker->flags |= flags; 985 } 986 987 /** 988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 989 * @worker: self 990 * @flags: flags to clear 991 * 992 * Clear @flags in @worker->flags and adjust nr_running accordingly. 993 */ 994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 995 { 996 struct worker_pool *pool = worker->pool; 997 unsigned int oflags = worker->flags; 998 999 lockdep_assert_held(&pool->lock); 1000 1001 worker->flags &= ~flags; 1002 1003 /* 1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1006 * of multiple flags, not a single flag. 1007 */ 1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1009 if (!(worker->flags & WORKER_NOT_RUNNING)) 1010 pool->nr_running++; 1011 } 1012 1013 /* Return the first idle worker. Called with pool->lock held. */ 1014 static struct worker *first_idle_worker(struct worker_pool *pool) 1015 { 1016 if (unlikely(list_empty(&pool->idle_list))) 1017 return NULL; 1018 1019 return list_first_entry(&pool->idle_list, struct worker, entry); 1020 } 1021 1022 /** 1023 * worker_enter_idle - enter idle state 1024 * @worker: worker which is entering idle state 1025 * 1026 * @worker is entering idle state. Update stats and idle timer if 1027 * necessary. 1028 * 1029 * LOCKING: 1030 * raw_spin_lock_irq(pool->lock). 1031 */ 1032 static void worker_enter_idle(struct worker *worker) 1033 { 1034 struct worker_pool *pool = worker->pool; 1035 1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1037 WARN_ON_ONCE(!list_empty(&worker->entry) && 1038 (worker->hentry.next || worker->hentry.pprev))) 1039 return; 1040 1041 /* can't use worker_set_flags(), also called from create_worker() */ 1042 worker->flags |= WORKER_IDLE; 1043 pool->nr_idle++; 1044 worker->last_active = jiffies; 1045 1046 /* idle_list is LIFO */ 1047 list_add(&worker->entry, &pool->idle_list); 1048 1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1051 1052 /* Sanity check nr_running. */ 1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1054 } 1055 1056 /** 1057 * worker_leave_idle - leave idle state 1058 * @worker: worker which is leaving idle state 1059 * 1060 * @worker is leaving idle state. Update stats. 1061 * 1062 * LOCKING: 1063 * raw_spin_lock_irq(pool->lock). 1064 */ 1065 static void worker_leave_idle(struct worker *worker) 1066 { 1067 struct worker_pool *pool = worker->pool; 1068 1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1070 return; 1071 worker_clr_flags(worker, WORKER_IDLE); 1072 pool->nr_idle--; 1073 list_del_init(&worker->entry); 1074 } 1075 1076 /** 1077 * find_worker_executing_work - find worker which is executing a work 1078 * @pool: pool of interest 1079 * @work: work to find worker for 1080 * 1081 * Find a worker which is executing @work on @pool by searching 1082 * @pool->busy_hash which is keyed by the address of @work. For a worker 1083 * to match, its current execution should match the address of @work and 1084 * its work function. This is to avoid unwanted dependency between 1085 * unrelated work executions through a work item being recycled while still 1086 * being executed. 1087 * 1088 * This is a bit tricky. A work item may be freed once its execution 1089 * starts and nothing prevents the freed area from being recycled for 1090 * another work item. If the same work item address ends up being reused 1091 * before the original execution finishes, workqueue will identify the 1092 * recycled work item as currently executing and make it wait until the 1093 * current execution finishes, introducing an unwanted dependency. 1094 * 1095 * This function checks the work item address and work function to avoid 1096 * false positives. Note that this isn't complete as one may construct a 1097 * work function which can introduce dependency onto itself through a 1098 * recycled work item. Well, if somebody wants to shoot oneself in the 1099 * foot that badly, there's only so much we can do, and if such deadlock 1100 * actually occurs, it should be easy to locate the culprit work function. 1101 * 1102 * CONTEXT: 1103 * raw_spin_lock_irq(pool->lock). 1104 * 1105 * Return: 1106 * Pointer to worker which is executing @work if found, %NULL 1107 * otherwise. 1108 */ 1109 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1110 struct work_struct *work) 1111 { 1112 struct worker *worker; 1113 1114 hash_for_each_possible(pool->busy_hash, worker, hentry, 1115 (unsigned long)work) 1116 if (worker->current_work == work && 1117 worker->current_func == work->func) 1118 return worker; 1119 1120 return NULL; 1121 } 1122 1123 /** 1124 * move_linked_works - move linked works to a list 1125 * @work: start of series of works to be scheduled 1126 * @head: target list to append @work to 1127 * @nextp: out parameter for nested worklist walking 1128 * 1129 * Schedule linked works starting from @work to @head. Work series to be 1130 * scheduled starts at @work and includes any consecutive work with 1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1132 * @nextp. 1133 * 1134 * CONTEXT: 1135 * raw_spin_lock_irq(pool->lock). 1136 */ 1137 static void move_linked_works(struct work_struct *work, struct list_head *head, 1138 struct work_struct **nextp) 1139 { 1140 struct work_struct *n; 1141 1142 /* 1143 * Linked worklist will always end before the end of the list, 1144 * use NULL for list head. 1145 */ 1146 list_for_each_entry_safe_from(work, n, NULL, entry) { 1147 list_move_tail(&work->entry, head); 1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1149 break; 1150 } 1151 1152 /* 1153 * If we're already inside safe list traversal and have moved 1154 * multiple works to the scheduled queue, the next position 1155 * needs to be updated. 1156 */ 1157 if (nextp) 1158 *nextp = n; 1159 } 1160 1161 /** 1162 * assign_work - assign a work item and its linked work items to a worker 1163 * @work: work to assign 1164 * @worker: worker to assign to 1165 * @nextp: out parameter for nested worklist walking 1166 * 1167 * Assign @work and its linked work items to @worker. If @work is already being 1168 * executed by another worker in the same pool, it'll be punted there. 1169 * 1170 * If @nextp is not NULL, it's updated to point to the next work of the last 1171 * scheduled work. This allows assign_work() to be nested inside 1172 * list_for_each_entry_safe(). 1173 * 1174 * Returns %true if @work was successfully assigned to @worker. %false if @work 1175 * was punted to another worker already executing it. 1176 */ 1177 static bool assign_work(struct work_struct *work, struct worker *worker, 1178 struct work_struct **nextp) 1179 { 1180 struct worker_pool *pool = worker->pool; 1181 struct worker *collision; 1182 1183 lockdep_assert_held(&pool->lock); 1184 1185 /* 1186 * A single work shouldn't be executed concurrently by multiple workers. 1187 * __queue_work() ensures that @work doesn't jump to a different pool 1188 * while still running in the previous pool. Here, we should ensure that 1189 * @work is not executed concurrently by multiple workers from the same 1190 * pool. Check whether anyone is already processing the work. If so, 1191 * defer the work to the currently executing one. 1192 */ 1193 collision = find_worker_executing_work(pool, work); 1194 if (unlikely(collision)) { 1195 move_linked_works(work, &collision->scheduled, nextp); 1196 return false; 1197 } 1198 1199 move_linked_works(work, &worker->scheduled, nextp); 1200 return true; 1201 } 1202 1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1204 { 1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1206 1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1208 } 1209 1210 static void kick_bh_pool(struct worker_pool *pool) 1211 { 1212 #ifdef CONFIG_SMP 1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1214 if (unlikely(pool->cpu != smp_processor_id() && 1215 !(pool->flags & POOL_BH_DRAINING))) { 1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1217 return; 1218 } 1219 #endif 1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1221 raise_softirq_irqoff(HI_SOFTIRQ); 1222 else 1223 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1224 } 1225 1226 /** 1227 * kick_pool - wake up an idle worker if necessary 1228 * @pool: pool to kick 1229 * 1230 * @pool may have pending work items. Wake up worker if necessary. Returns 1231 * whether a worker was woken up. 1232 */ 1233 static bool kick_pool(struct worker_pool *pool) 1234 { 1235 struct worker *worker = first_idle_worker(pool); 1236 struct task_struct *p; 1237 1238 lockdep_assert_held(&pool->lock); 1239 1240 if (!need_more_worker(pool) || !worker) 1241 return false; 1242 1243 if (pool->flags & POOL_BH) { 1244 kick_bh_pool(pool); 1245 return true; 1246 } 1247 1248 p = worker->task; 1249 1250 #ifdef CONFIG_SMP 1251 /* 1252 * Idle @worker is about to execute @work and waking up provides an 1253 * opportunity to migrate @worker at a lower cost by setting the task's 1254 * wake_cpu field. Let's see if we want to move @worker to improve 1255 * execution locality. 1256 * 1257 * We're waking the worker that went idle the latest and there's some 1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1259 * so, setting the wake_cpu won't do anything. As this is a best-effort 1260 * optimization and the race window is narrow, let's leave as-is for 1261 * now. If this becomes pronounced, we can skip over workers which are 1262 * still on cpu when picking an idle worker. 1263 * 1264 * If @pool has non-strict affinity, @worker might have ended up outside 1265 * its affinity scope. Repatriate. 1266 */ 1267 if (!pool->attrs->affn_strict && 1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1269 struct work_struct *work = list_first_entry(&pool->worklist, 1270 struct work_struct, entry); 1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1272 cpu_online_mask); 1273 if (wake_cpu < nr_cpu_ids) { 1274 p->wake_cpu = wake_cpu; 1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1276 } 1277 } 1278 #endif 1279 wake_up_process(p); 1280 return true; 1281 } 1282 1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1284 1285 /* 1286 * Concurrency-managed per-cpu work items that hog CPU for longer than 1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1288 * which prevents them from stalling other concurrency-managed work items. If a 1289 * work function keeps triggering this mechanism, it's likely that the work item 1290 * should be using an unbound workqueue instead. 1291 * 1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1293 * and report them so that they can be examined and converted to use unbound 1294 * workqueues as appropriate. To avoid flooding the console, each violating work 1295 * function is tracked and reported with exponential backoff. 1296 */ 1297 #define WCI_MAX_ENTS 128 1298 1299 struct wci_ent { 1300 work_func_t func; 1301 atomic64_t cnt; 1302 struct hlist_node hash_node; 1303 }; 1304 1305 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1306 static int wci_nr_ents; 1307 static DEFINE_RAW_SPINLOCK(wci_lock); 1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1309 1310 static struct wci_ent *wci_find_ent(work_func_t func) 1311 { 1312 struct wci_ent *ent; 1313 1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1315 (unsigned long)func) { 1316 if (ent->func == func) 1317 return ent; 1318 } 1319 return NULL; 1320 } 1321 1322 static void wq_cpu_intensive_report(work_func_t func) 1323 { 1324 struct wci_ent *ent; 1325 1326 restart: 1327 ent = wci_find_ent(func); 1328 if (ent) { 1329 u64 cnt; 1330 1331 /* 1332 * Start reporting from the warning_thresh and back off 1333 * exponentially. 1334 */ 1335 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1336 if (wq_cpu_intensive_warning_thresh && 1337 cnt >= wq_cpu_intensive_warning_thresh && 1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1340 ent->func, wq_cpu_intensive_thresh_us, 1341 atomic64_read(&ent->cnt)); 1342 return; 1343 } 1344 1345 /* 1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1347 * is exhausted, something went really wrong and we probably made enough 1348 * noise already. 1349 */ 1350 if (wci_nr_ents >= WCI_MAX_ENTS) 1351 return; 1352 1353 raw_spin_lock(&wci_lock); 1354 1355 if (wci_nr_ents >= WCI_MAX_ENTS) { 1356 raw_spin_unlock(&wci_lock); 1357 return; 1358 } 1359 1360 if (wci_find_ent(func)) { 1361 raw_spin_unlock(&wci_lock); 1362 goto restart; 1363 } 1364 1365 ent = &wci_ents[wci_nr_ents++]; 1366 ent->func = func; 1367 atomic64_set(&ent->cnt, 0); 1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1369 1370 raw_spin_unlock(&wci_lock); 1371 1372 goto restart; 1373 } 1374 1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1376 static void wq_cpu_intensive_report(work_func_t func) {} 1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1378 1379 /** 1380 * wq_worker_running - a worker is running again 1381 * @task: task waking up 1382 * 1383 * This function is called when a worker returns from schedule() 1384 */ 1385 void wq_worker_running(struct task_struct *task) 1386 { 1387 struct worker *worker = kthread_data(task); 1388 1389 if (!READ_ONCE(worker->sleeping)) 1390 return; 1391 1392 /* 1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1394 * and the nr_running increment below, we may ruin the nr_running reset 1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1396 * pool. Protect against such race. 1397 */ 1398 preempt_disable(); 1399 if (!(worker->flags & WORKER_NOT_RUNNING)) 1400 worker->pool->nr_running++; 1401 preempt_enable(); 1402 1403 /* 1404 * CPU intensive auto-detection cares about how long a work item hogged 1405 * CPU without sleeping. Reset the starting timestamp on wakeup. 1406 */ 1407 worker->current_at = worker->task->se.sum_exec_runtime; 1408 1409 WRITE_ONCE(worker->sleeping, 0); 1410 } 1411 1412 /** 1413 * wq_worker_sleeping - a worker is going to sleep 1414 * @task: task going to sleep 1415 * 1416 * This function is called from schedule() when a busy worker is 1417 * going to sleep. 1418 */ 1419 void wq_worker_sleeping(struct task_struct *task) 1420 { 1421 struct worker *worker = kthread_data(task); 1422 struct worker_pool *pool; 1423 1424 /* 1425 * Rescuers, which may not have all the fields set up like normal 1426 * workers, also reach here, let's not access anything before 1427 * checking NOT_RUNNING. 1428 */ 1429 if (worker->flags & WORKER_NOT_RUNNING) 1430 return; 1431 1432 pool = worker->pool; 1433 1434 /* Return if preempted before wq_worker_running() was reached */ 1435 if (READ_ONCE(worker->sleeping)) 1436 return; 1437 1438 WRITE_ONCE(worker->sleeping, 1); 1439 raw_spin_lock_irq(&pool->lock); 1440 1441 /* 1442 * Recheck in case unbind_workers() preempted us. We don't 1443 * want to decrement nr_running after the worker is unbound 1444 * and nr_running has been reset. 1445 */ 1446 if (worker->flags & WORKER_NOT_RUNNING) { 1447 raw_spin_unlock_irq(&pool->lock); 1448 return; 1449 } 1450 1451 pool->nr_running--; 1452 if (kick_pool(pool)) 1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1454 1455 raw_spin_unlock_irq(&pool->lock); 1456 } 1457 1458 /** 1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1460 * @task: task currently running 1461 * 1462 * Called from sched_tick(). We're in the IRQ context and the current 1463 * worker's fields which follow the 'K' locking rule can be accessed safely. 1464 */ 1465 void wq_worker_tick(struct task_struct *task) 1466 { 1467 struct worker *worker = kthread_data(task); 1468 struct pool_workqueue *pwq = worker->current_pwq; 1469 struct worker_pool *pool = worker->pool; 1470 1471 if (!pwq) 1472 return; 1473 1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1475 1476 if (!wq_cpu_intensive_thresh_us) 1477 return; 1478 1479 /* 1480 * If the current worker is concurrency managed and hogged the CPU for 1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1483 * 1484 * Set @worker->sleeping means that @worker is in the process of 1485 * switching out voluntarily and won't be contributing to 1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1488 * double decrements. The task is releasing the CPU anyway. Let's skip. 1489 * We probably want to make this prettier in the future. 1490 */ 1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1492 worker->task->se.sum_exec_runtime - worker->current_at < 1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1494 return; 1495 1496 raw_spin_lock(&pool->lock); 1497 1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1499 wq_cpu_intensive_report(worker->current_func); 1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1501 1502 if (kick_pool(pool)) 1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1504 1505 raw_spin_unlock(&pool->lock); 1506 } 1507 1508 /** 1509 * wq_worker_last_func - retrieve worker's last work function 1510 * @task: Task to retrieve last work function of. 1511 * 1512 * Determine the last function a worker executed. This is called from 1513 * the scheduler to get a worker's last known identity. 1514 * 1515 * CONTEXT: 1516 * raw_spin_lock_irq(rq->lock) 1517 * 1518 * This function is called during schedule() when a kworker is going 1519 * to sleep. It's used by psi to identify aggregation workers during 1520 * dequeuing, to allow periodic aggregation to shut-off when that 1521 * worker is the last task in the system or cgroup to go to sleep. 1522 * 1523 * As this function doesn't involve any workqueue-related locking, it 1524 * only returns stable values when called from inside the scheduler's 1525 * queuing and dequeuing paths, when @task, which must be a kworker, 1526 * is guaranteed to not be processing any works. 1527 * 1528 * Return: 1529 * The last work function %current executed as a worker, NULL if it 1530 * hasn't executed any work yet. 1531 */ 1532 work_func_t wq_worker_last_func(struct task_struct *task) 1533 { 1534 struct worker *worker = kthread_data(task); 1535 1536 return worker->last_func; 1537 } 1538 1539 /** 1540 * wq_node_nr_active - Determine wq_node_nr_active to use 1541 * @wq: workqueue of interest 1542 * @node: NUMA node, can be %NUMA_NO_NODE 1543 * 1544 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1545 * 1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1547 * 1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1549 * 1550 * - Otherwise, node_nr_active[@node]. 1551 */ 1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1553 int node) 1554 { 1555 if (!(wq->flags & WQ_UNBOUND)) 1556 return NULL; 1557 1558 if (node == NUMA_NO_NODE) 1559 node = nr_node_ids; 1560 1561 return wq->node_nr_active[node]; 1562 } 1563 1564 /** 1565 * wq_update_node_max_active - Update per-node max_actives to use 1566 * @wq: workqueue to update 1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1568 * 1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1570 * distributed among nodes according to the proportions of numbers of online 1571 * cpus. The result is always between @wq->min_active and max_active. 1572 */ 1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1574 { 1575 struct cpumask *effective = unbound_effective_cpumask(wq); 1576 int min_active = READ_ONCE(wq->min_active); 1577 int max_active = READ_ONCE(wq->max_active); 1578 int total_cpus, node; 1579 1580 lockdep_assert_held(&wq->mutex); 1581 1582 if (!wq_topo_initialized) 1583 return; 1584 1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1586 off_cpu = -1; 1587 1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1589 if (off_cpu >= 0) 1590 total_cpus--; 1591 1592 /* If all CPUs of the wq get offline, use the default values */ 1593 if (unlikely(!total_cpus)) { 1594 for_each_node(node) 1595 wq_node_nr_active(wq, node)->max = min_active; 1596 1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1598 return; 1599 } 1600 1601 for_each_node(node) { 1602 int node_cpus; 1603 1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1606 node_cpus--; 1607 1608 wq_node_nr_active(wq, node)->max = 1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1610 min_active, max_active); 1611 } 1612 1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1614 } 1615 1616 /** 1617 * get_pwq - get an extra reference on the specified pool_workqueue 1618 * @pwq: pool_workqueue to get 1619 * 1620 * Obtain an extra reference on @pwq. The caller should guarantee that 1621 * @pwq has positive refcnt and be holding the matching pool->lock. 1622 */ 1623 static void get_pwq(struct pool_workqueue *pwq) 1624 { 1625 lockdep_assert_held(&pwq->pool->lock); 1626 WARN_ON_ONCE(pwq->refcnt <= 0); 1627 pwq->refcnt++; 1628 } 1629 1630 /** 1631 * put_pwq - put a pool_workqueue reference 1632 * @pwq: pool_workqueue to put 1633 * 1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1635 * destruction. The caller should be holding the matching pool->lock. 1636 */ 1637 static void put_pwq(struct pool_workqueue *pwq) 1638 { 1639 lockdep_assert_held(&pwq->pool->lock); 1640 if (likely(--pwq->refcnt)) 1641 return; 1642 /* 1643 * @pwq can't be released under pool->lock, bounce to a dedicated 1644 * kthread_worker to avoid A-A deadlocks. 1645 */ 1646 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1647 } 1648 1649 /** 1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1651 * @pwq: pool_workqueue to put (can be %NULL) 1652 * 1653 * put_pwq() with locking. This function also allows %NULL @pwq. 1654 */ 1655 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1656 { 1657 if (pwq) { 1658 /* 1659 * As both pwqs and pools are RCU protected, the 1660 * following lock operations are safe. 1661 */ 1662 raw_spin_lock_irq(&pwq->pool->lock); 1663 put_pwq(pwq); 1664 raw_spin_unlock_irq(&pwq->pool->lock); 1665 } 1666 } 1667 1668 static bool pwq_is_empty(struct pool_workqueue *pwq) 1669 { 1670 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1671 } 1672 1673 static void __pwq_activate_work(struct pool_workqueue *pwq, 1674 struct work_struct *work) 1675 { 1676 unsigned long *wdb = work_data_bits(work); 1677 1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1679 trace_workqueue_activate_work(work); 1680 if (list_empty(&pwq->pool->worklist)) 1681 pwq->pool->watchdog_ts = jiffies; 1682 move_linked_works(work, &pwq->pool->worklist, NULL); 1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1684 } 1685 1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1687 { 1688 int max = READ_ONCE(nna->max); 1689 1690 while (true) { 1691 int old, tmp; 1692 1693 old = atomic_read(&nna->nr); 1694 if (old >= max) 1695 return false; 1696 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1697 if (tmp == old) 1698 return true; 1699 } 1700 } 1701 1702 /** 1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1704 * @pwq: pool_workqueue of interest 1705 * @fill: max_active may have increased, try to increase concurrency level 1706 * 1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1708 * successfully obtained. %false otherwise. 1709 */ 1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1711 { 1712 struct workqueue_struct *wq = pwq->wq; 1713 struct worker_pool *pool = pwq->pool; 1714 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1715 bool obtained = false; 1716 1717 lockdep_assert_held(&pool->lock); 1718 1719 if (!nna) { 1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1721 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1722 goto out; 1723 } 1724 1725 if (unlikely(pwq->plugged)) 1726 return false; 1727 1728 /* 1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1731 * concurrency level. Don't jump the line. 1732 * 1733 * We need to ignore the pending test after max_active has increased as 1734 * pwq_dec_nr_active() can only maintain the concurrency level but not 1735 * increase it. This is indicated by @fill. 1736 */ 1737 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1738 goto out; 1739 1740 obtained = tryinc_node_nr_active(nna); 1741 if (obtained) 1742 goto out; 1743 1744 /* 1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1746 * and try again. The smp_mb() is paired with the implied memory barrier 1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1748 * we see the decremented $nna->nr or they see non-empty 1749 * $nna->pending_pwqs. 1750 */ 1751 raw_spin_lock(&nna->lock); 1752 1753 if (list_empty(&pwq->pending_node)) 1754 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1755 else if (likely(!fill)) 1756 goto out_unlock; 1757 1758 smp_mb(); 1759 1760 obtained = tryinc_node_nr_active(nna); 1761 1762 /* 1763 * If @fill, @pwq might have already been pending. Being spuriously 1764 * pending in cold paths doesn't affect anything. Let's leave it be. 1765 */ 1766 if (obtained && likely(!fill)) 1767 list_del_init(&pwq->pending_node); 1768 1769 out_unlock: 1770 raw_spin_unlock(&nna->lock); 1771 out: 1772 if (obtained) 1773 pwq->nr_active++; 1774 return obtained; 1775 } 1776 1777 /** 1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1779 * @pwq: pool_workqueue of interest 1780 * @fill: max_active may have increased, try to increase concurrency level 1781 * 1782 * Activate the first inactive work item of @pwq if available and allowed by 1783 * max_active limit. 1784 * 1785 * Returns %true if an inactive work item has been activated. %false if no 1786 * inactive work item is found or max_active limit is reached. 1787 */ 1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1789 { 1790 struct work_struct *work = 1791 list_first_entry_or_null(&pwq->inactive_works, 1792 struct work_struct, entry); 1793 1794 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1795 __pwq_activate_work(pwq, work); 1796 return true; 1797 } else { 1798 return false; 1799 } 1800 } 1801 1802 /** 1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1805 * 1806 * This function should only be called for ordered workqueues where only the 1807 * oldest pwq is unplugged, the others are plugged to suspend execution to 1808 * ensure proper work item ordering:: 1809 * 1810 * dfl_pwq --------------+ [P] - plugged 1811 * | 1812 * v 1813 * pwqs -> A -> B [P] -> C [P] (newest) 1814 * | | | 1815 * 1 3 5 1816 * | | | 1817 * 2 4 6 1818 * 1819 * When the oldest pwq is drained and removed, this function should be called 1820 * to unplug the next oldest one to start its work item execution. Note that 1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1822 * the list is the oldest. 1823 */ 1824 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1825 { 1826 struct pool_workqueue *pwq; 1827 1828 lockdep_assert_held(&wq->mutex); 1829 1830 /* Caller should make sure that pwqs isn't empty before calling */ 1831 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1832 pwqs_node); 1833 raw_spin_lock_irq(&pwq->pool->lock); 1834 if (pwq->plugged) { 1835 pwq->plugged = false; 1836 if (pwq_activate_first_inactive(pwq, true)) 1837 kick_pool(pwq->pool); 1838 } 1839 raw_spin_unlock_irq(&pwq->pool->lock); 1840 } 1841 1842 /** 1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1844 * @nna: wq_node_nr_active to activate a pending pwq for 1845 * @caller_pool: worker_pool the caller is locking 1846 * 1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1848 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1849 */ 1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1851 struct worker_pool *caller_pool) 1852 { 1853 struct worker_pool *locked_pool = caller_pool; 1854 struct pool_workqueue *pwq; 1855 struct work_struct *work; 1856 1857 lockdep_assert_held(&caller_pool->lock); 1858 1859 raw_spin_lock(&nna->lock); 1860 retry: 1861 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1862 struct pool_workqueue, pending_node); 1863 if (!pwq) 1864 goto out_unlock; 1865 1866 /* 1867 * If @pwq is for a different pool than @locked_pool, we need to lock 1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1869 * / lock dance. For that, we also need to release @nna->lock as it's 1870 * nested inside pool locks. 1871 */ 1872 if (pwq->pool != locked_pool) { 1873 raw_spin_unlock(&locked_pool->lock); 1874 locked_pool = pwq->pool; 1875 if (!raw_spin_trylock(&locked_pool->lock)) { 1876 raw_spin_unlock(&nna->lock); 1877 raw_spin_lock(&locked_pool->lock); 1878 raw_spin_lock(&nna->lock); 1879 goto retry; 1880 } 1881 } 1882 1883 /* 1884 * $pwq may not have any inactive work items due to e.g. cancellations. 1885 * Drop it from pending_pwqs and see if there's another one. 1886 */ 1887 work = list_first_entry_or_null(&pwq->inactive_works, 1888 struct work_struct, entry); 1889 if (!work) { 1890 list_del_init(&pwq->pending_node); 1891 goto retry; 1892 } 1893 1894 /* 1895 * Acquire an nr_active count and activate the inactive work item. If 1896 * $pwq still has inactive work items, rotate it to the end of the 1897 * pending_pwqs so that we round-robin through them. This means that 1898 * inactive work items are not activated in queueing order which is fine 1899 * given that there has never been any ordering across different pwqs. 1900 */ 1901 if (likely(tryinc_node_nr_active(nna))) { 1902 pwq->nr_active++; 1903 __pwq_activate_work(pwq, work); 1904 1905 if (list_empty(&pwq->inactive_works)) 1906 list_del_init(&pwq->pending_node); 1907 else 1908 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1909 1910 /* if activating a foreign pool, make sure it's running */ 1911 if (pwq->pool != caller_pool) 1912 kick_pool(pwq->pool); 1913 } 1914 1915 out_unlock: 1916 raw_spin_unlock(&nna->lock); 1917 if (locked_pool != caller_pool) { 1918 raw_spin_unlock(&locked_pool->lock); 1919 raw_spin_lock(&caller_pool->lock); 1920 } 1921 } 1922 1923 /** 1924 * pwq_dec_nr_active - Retire an active count 1925 * @pwq: pool_workqueue of interest 1926 * 1927 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1929 */ 1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1931 { 1932 struct worker_pool *pool = pwq->pool; 1933 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1934 1935 lockdep_assert_held(&pool->lock); 1936 1937 /* 1938 * @pwq->nr_active should be decremented for both percpu and unbound 1939 * workqueues. 1940 */ 1941 pwq->nr_active--; 1942 1943 /* 1944 * For a percpu workqueue, it's simple. Just need to kick the first 1945 * inactive work item on @pwq itself. 1946 */ 1947 if (!nna) { 1948 pwq_activate_first_inactive(pwq, false); 1949 return; 1950 } 1951 1952 /* 1953 * If @pwq is for an unbound workqueue, it's more complicated because 1954 * multiple pwqs and pools may be sharing the nr_active count. When a 1955 * pwq needs to wait for an nr_active count, it puts itself on 1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1958 * guarantee that either we see non-empty pending_pwqs or they see 1959 * decremented $nna->nr. 1960 * 1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1962 * max_active gets updated. However, it is guaranteed to be equal to or 1963 * larger than @pwq->wq->min_active which is above zero unless freezing. 1964 * This maintains the forward progress guarantee. 1965 */ 1966 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1967 return; 1968 1969 if (!list_empty(&nna->pending_pwqs)) 1970 node_activate_pending_pwq(nna, pool); 1971 } 1972 1973 /** 1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1975 * @pwq: pwq of interest 1976 * @work_data: work_data of work which left the queue 1977 * 1978 * A work either has completed or is removed from pending queue, 1979 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1980 * 1981 * NOTE: 1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1983 * and thus should be called after all other state updates for the in-flight 1984 * work item is complete. 1985 * 1986 * CONTEXT: 1987 * raw_spin_lock_irq(pool->lock). 1988 */ 1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1990 { 1991 int color = get_work_color(work_data); 1992 1993 if (!(work_data & WORK_STRUCT_INACTIVE)) 1994 pwq_dec_nr_active(pwq); 1995 1996 pwq->nr_in_flight[color]--; 1997 1998 /* is flush in progress and are we at the flushing tip? */ 1999 if (likely(pwq->flush_color != color)) 2000 goto out_put; 2001 2002 /* are there still in-flight works? */ 2003 if (pwq->nr_in_flight[color]) 2004 goto out_put; 2005 2006 /* this pwq is done, clear flush_color */ 2007 pwq->flush_color = -1; 2008 2009 /* 2010 * If this was the last pwq, wake up the first flusher. It 2011 * will handle the rest. 2012 */ 2013 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2014 complete(&pwq->wq->first_flusher->done); 2015 out_put: 2016 put_pwq(pwq); 2017 } 2018 2019 /** 2020 * try_to_grab_pending - steal work item from worklist and disable irq 2021 * @work: work item to steal 2022 * @cflags: %WORK_CANCEL_ flags 2023 * @irq_flags: place to store irq state 2024 * 2025 * Try to grab PENDING bit of @work. This function can handle @work in any 2026 * stable state - idle, on timer or on worklist. 2027 * 2028 * Return: 2029 * 2030 * ======== ================================================================ 2031 * 1 if @work was pending and we successfully stole PENDING 2032 * 0 if @work was idle and we claimed PENDING 2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2034 * ======== ================================================================ 2035 * 2036 * Note: 2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2038 * interrupted while holding PENDING and @work off queue, irq must be 2039 * disabled on entry. This, combined with delayed_work->timer being 2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2041 * 2042 * On successful return, >= 0, irq is disabled and the caller is 2043 * responsible for releasing it using local_irq_restore(*@irq_flags). 2044 * 2045 * This function is safe to call from any context including IRQ handler. 2046 */ 2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2048 unsigned long *irq_flags) 2049 { 2050 struct worker_pool *pool; 2051 struct pool_workqueue *pwq; 2052 2053 local_irq_save(*irq_flags); 2054 2055 /* try to steal the timer if it exists */ 2056 if (cflags & WORK_CANCEL_DELAYED) { 2057 struct delayed_work *dwork = to_delayed_work(work); 2058 2059 /* 2060 * dwork->timer is irqsafe. If timer_delete() fails, it's 2061 * guaranteed that the timer is not queued anywhere and not 2062 * running on the local CPU. 2063 */ 2064 if (likely(timer_delete(&dwork->timer))) 2065 return 1; 2066 } 2067 2068 /* try to claim PENDING the normal way */ 2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2070 return 0; 2071 2072 rcu_read_lock(); 2073 /* 2074 * The queueing is in progress, or it is already queued. Try to 2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2076 */ 2077 pool = get_work_pool(work); 2078 if (!pool) 2079 goto fail; 2080 2081 raw_spin_lock(&pool->lock); 2082 /* 2083 * work->data is guaranteed to point to pwq only while the work 2084 * item is queued on pwq->wq, and both updating work->data to point 2085 * to pwq on queueing and to pool on dequeueing are done under 2086 * pwq->pool->lock. This in turn guarantees that, if work->data 2087 * points to pwq which is associated with a locked pool, the work 2088 * item is currently queued on that pool. 2089 */ 2090 pwq = get_work_pwq(work); 2091 if (pwq && pwq->pool == pool) { 2092 unsigned long work_data = *work_data_bits(work); 2093 2094 debug_work_deactivate(work); 2095 2096 /* 2097 * A cancelable inactive work item must be in the 2098 * pwq->inactive_works since a queued barrier can't be 2099 * canceled (see the comments in insert_wq_barrier()). 2100 * 2101 * An inactive work item cannot be deleted directly because 2102 * it might have linked barrier work items which, if left 2103 * on the inactive_works list, will confuse pwq->nr_active 2104 * management later on and cause stall. Move the linked 2105 * barrier work items to the worklist when deleting the grabbed 2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2107 * it doesn't participate in nr_active management in later 2108 * pwq_dec_nr_in_flight(). 2109 */ 2110 if (work_data & WORK_STRUCT_INACTIVE) 2111 move_linked_works(work, &pwq->pool->worklist, NULL); 2112 2113 list_del_init(&work->entry); 2114 2115 /* 2116 * work->data points to pwq iff queued. Let's point to pool. As 2117 * this destroys work->data needed by the next step, stash it. 2118 */ 2119 set_work_pool_and_keep_pending(work, pool->id, 2120 pool_offq_flags(pool)); 2121 2122 /* must be the last step, see the function comment */ 2123 pwq_dec_nr_in_flight(pwq, work_data); 2124 2125 raw_spin_unlock(&pool->lock); 2126 rcu_read_unlock(); 2127 return 1; 2128 } 2129 raw_spin_unlock(&pool->lock); 2130 fail: 2131 rcu_read_unlock(); 2132 local_irq_restore(*irq_flags); 2133 return -EAGAIN; 2134 } 2135 2136 /** 2137 * work_grab_pending - steal work item from worklist and disable irq 2138 * @work: work item to steal 2139 * @cflags: %WORK_CANCEL_ flags 2140 * @irq_flags: place to store IRQ state 2141 * 2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2143 * or on worklist. 2144 * 2145 * Can be called from any context. IRQ is disabled on return with IRQ state 2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2147 * local_irq_restore(). 2148 * 2149 * Returns %true if @work was pending. %false if idle. 2150 */ 2151 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2152 unsigned long *irq_flags) 2153 { 2154 int ret; 2155 2156 while (true) { 2157 ret = try_to_grab_pending(work, cflags, irq_flags); 2158 if (ret >= 0) 2159 return ret; 2160 cpu_relax(); 2161 } 2162 } 2163 2164 /** 2165 * insert_work - insert a work into a pool 2166 * @pwq: pwq @work belongs to 2167 * @work: work to insert 2168 * @head: insertion point 2169 * @extra_flags: extra WORK_STRUCT_* flags to set 2170 * 2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2172 * work_struct flags. 2173 * 2174 * CONTEXT: 2175 * raw_spin_lock_irq(pool->lock). 2176 */ 2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2178 struct list_head *head, unsigned int extra_flags) 2179 { 2180 debug_work_activate(work); 2181 2182 /* record the work call stack in order to print it in KASAN reports */ 2183 kasan_record_aux_stack(work); 2184 2185 /* we own @work, set data and link */ 2186 set_work_pwq(work, pwq, extra_flags); 2187 list_add_tail(&work->entry, head); 2188 get_pwq(pwq); 2189 } 2190 2191 /* 2192 * Test whether @work is being queued from another work executing on the 2193 * same workqueue. 2194 */ 2195 static bool is_chained_work(struct workqueue_struct *wq) 2196 { 2197 struct worker *worker; 2198 2199 worker = current_wq_worker(); 2200 /* 2201 * Return %true iff I'm a worker executing a work item on @wq. If 2202 * I'm @worker, it's safe to dereference it without locking. 2203 */ 2204 return worker && worker->current_pwq->wq == wq; 2205 } 2206 2207 /* 2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2210 * avoid perturbing sensitive tasks. 2211 */ 2212 static int wq_select_unbound_cpu(int cpu) 2213 { 2214 int new_cpu; 2215 2216 if (likely(!wq_debug_force_rr_cpu)) { 2217 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2218 return cpu; 2219 } else { 2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2221 } 2222 2223 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2224 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2225 if (unlikely(new_cpu >= nr_cpu_ids)) { 2226 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2227 if (unlikely(new_cpu >= nr_cpu_ids)) 2228 return cpu; 2229 } 2230 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2231 2232 return new_cpu; 2233 } 2234 2235 static void __queue_work(int cpu, struct workqueue_struct *wq, 2236 struct work_struct *work) 2237 { 2238 struct pool_workqueue *pwq; 2239 struct worker_pool *last_pool, *pool; 2240 unsigned int work_flags; 2241 unsigned int req_cpu = cpu; 2242 2243 /* 2244 * While a work item is PENDING && off queue, a task trying to 2245 * steal the PENDING will busy-loop waiting for it to either get 2246 * queued or lose PENDING. Grabbing PENDING and queueing should 2247 * happen with IRQ disabled. 2248 */ 2249 lockdep_assert_irqs_disabled(); 2250 2251 /* 2252 * For a draining wq, only works from the same workqueue are 2253 * allowed. The __WQ_DESTROYING helps to spot the issue that 2254 * queues a new work item to a wq after destroy_workqueue(wq). 2255 */ 2256 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2257 WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n", 2258 work->func, wq->name))) { 2259 return; 2260 } 2261 rcu_read_lock(); 2262 retry: 2263 /* pwq which will be used unless @work is executing elsewhere */ 2264 if (req_cpu == WORK_CPU_UNBOUND) { 2265 if (wq->flags & WQ_UNBOUND) 2266 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2267 else 2268 cpu = raw_smp_processor_id(); 2269 } 2270 2271 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2272 pool = pwq->pool; 2273 2274 /* 2275 * If @work was previously on a different pool, it might still be 2276 * running there, in which case the work needs to be queued on that 2277 * pool to guarantee non-reentrancy. 2278 * 2279 * For ordered workqueue, work items must be queued on the newest pwq 2280 * for accurate order management. Guaranteed order also guarantees 2281 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2282 */ 2283 last_pool = get_work_pool(work); 2284 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2285 struct worker *worker; 2286 2287 raw_spin_lock(&last_pool->lock); 2288 2289 worker = find_worker_executing_work(last_pool, work); 2290 2291 if (worker && worker->current_pwq->wq == wq) { 2292 pwq = worker->current_pwq; 2293 pool = pwq->pool; 2294 WARN_ON_ONCE(pool != last_pool); 2295 } else { 2296 /* meh... not running there, queue here */ 2297 raw_spin_unlock(&last_pool->lock); 2298 raw_spin_lock(&pool->lock); 2299 } 2300 } else { 2301 raw_spin_lock(&pool->lock); 2302 } 2303 2304 /* 2305 * pwq is determined and locked. For unbound pools, we could have raced 2306 * with pwq release and it could already be dead. If its refcnt is zero, 2307 * repeat pwq selection. Note that unbound pwqs never die without 2308 * another pwq replacing it in cpu_pwq or while work items are executing 2309 * on it, so the retrying is guaranteed to make forward-progress. 2310 */ 2311 if (unlikely(!pwq->refcnt)) { 2312 if (wq->flags & WQ_UNBOUND) { 2313 raw_spin_unlock(&pool->lock); 2314 cpu_relax(); 2315 goto retry; 2316 } 2317 /* oops */ 2318 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2319 wq->name, cpu); 2320 } 2321 2322 /* pwq determined, queue */ 2323 trace_workqueue_queue_work(req_cpu, pwq, work); 2324 2325 if (WARN_ON(!list_empty(&work->entry))) 2326 goto out; 2327 2328 pwq->nr_in_flight[pwq->work_color]++; 2329 work_flags = work_color_to_flags(pwq->work_color); 2330 2331 /* 2332 * Limit the number of concurrently active work items to max_active. 2333 * @work must also queue behind existing inactive work items to maintain 2334 * ordering when max_active changes. See wq_adjust_max_active(). 2335 */ 2336 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2337 if (list_empty(&pool->worklist)) 2338 pool->watchdog_ts = jiffies; 2339 2340 trace_workqueue_activate_work(work); 2341 insert_work(pwq, work, &pool->worklist, work_flags); 2342 kick_pool(pool); 2343 } else { 2344 work_flags |= WORK_STRUCT_INACTIVE; 2345 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2346 } 2347 2348 out: 2349 raw_spin_unlock(&pool->lock); 2350 rcu_read_unlock(); 2351 } 2352 2353 static bool clear_pending_if_disabled(struct work_struct *work) 2354 { 2355 unsigned long data = *work_data_bits(work); 2356 struct work_offq_data offqd; 2357 2358 if (likely((data & WORK_STRUCT_PWQ) || 2359 !(data & WORK_OFFQ_DISABLE_MASK))) 2360 return false; 2361 2362 work_offqd_unpack(&offqd, data); 2363 set_work_pool_and_clear_pending(work, offqd.pool_id, 2364 work_offqd_pack_flags(&offqd)); 2365 return true; 2366 } 2367 2368 /** 2369 * queue_work_on - queue work on specific cpu 2370 * @cpu: CPU number to execute work on 2371 * @wq: workqueue to use 2372 * @work: work to queue 2373 * 2374 * We queue the work to a specific CPU, the caller must ensure it 2375 * can't go away. Callers that fail to ensure that the specified 2376 * CPU cannot go away will execute on a randomly chosen CPU. 2377 * But note well that callers specifying a CPU that never has been 2378 * online will get a splat. 2379 * 2380 * Return: %false if @work was already on a queue, %true otherwise. 2381 */ 2382 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2383 struct work_struct *work) 2384 { 2385 bool ret = false; 2386 unsigned long irq_flags; 2387 2388 local_irq_save(irq_flags); 2389 2390 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2391 !clear_pending_if_disabled(work)) { 2392 __queue_work(cpu, wq, work); 2393 ret = true; 2394 } 2395 2396 local_irq_restore(irq_flags); 2397 return ret; 2398 } 2399 EXPORT_SYMBOL(queue_work_on); 2400 2401 /** 2402 * select_numa_node_cpu - Select a CPU based on NUMA node 2403 * @node: NUMA node ID that we want to select a CPU from 2404 * 2405 * This function will attempt to find a "random" cpu available on a given 2406 * node. If there are no CPUs available on the given node it will return 2407 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2408 * available CPU if we need to schedule this work. 2409 */ 2410 static int select_numa_node_cpu(int node) 2411 { 2412 int cpu; 2413 2414 /* Delay binding to CPU if node is not valid or online */ 2415 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2416 return WORK_CPU_UNBOUND; 2417 2418 /* Use local node/cpu if we are already there */ 2419 cpu = raw_smp_processor_id(); 2420 if (node == cpu_to_node(cpu)) 2421 return cpu; 2422 2423 /* Use "random" otherwise know as "first" online CPU of node */ 2424 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2425 2426 /* If CPU is valid return that, otherwise just defer */ 2427 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2428 } 2429 2430 /** 2431 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2432 * @node: NUMA node that we are targeting the work for 2433 * @wq: workqueue to use 2434 * @work: work to queue 2435 * 2436 * We queue the work to a "random" CPU within a given NUMA node. The basic 2437 * idea here is to provide a way to somehow associate work with a given 2438 * NUMA node. 2439 * 2440 * This function will only make a best effort attempt at getting this onto 2441 * the right NUMA node. If no node is requested or the requested node is 2442 * offline then we just fall back to standard queue_work behavior. 2443 * 2444 * Currently the "random" CPU ends up being the first available CPU in the 2445 * intersection of cpu_online_mask and the cpumask of the node, unless we 2446 * are running on the node. In that case we just use the current CPU. 2447 * 2448 * Return: %false if @work was already on a queue, %true otherwise. 2449 */ 2450 bool queue_work_node(int node, struct workqueue_struct *wq, 2451 struct work_struct *work) 2452 { 2453 unsigned long irq_flags; 2454 bool ret = false; 2455 2456 /* 2457 * This current implementation is specific to unbound workqueues. 2458 * Specifically we only return the first available CPU for a given 2459 * node instead of cycling through individual CPUs within the node. 2460 * 2461 * If this is used with a per-cpu workqueue then the logic in 2462 * workqueue_select_cpu_near would need to be updated to allow for 2463 * some round robin type logic. 2464 */ 2465 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2466 2467 local_irq_save(irq_flags); 2468 2469 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2470 !clear_pending_if_disabled(work)) { 2471 int cpu = select_numa_node_cpu(node); 2472 2473 __queue_work(cpu, wq, work); 2474 ret = true; 2475 } 2476 2477 local_irq_restore(irq_flags); 2478 return ret; 2479 } 2480 EXPORT_SYMBOL_GPL(queue_work_node); 2481 2482 void delayed_work_timer_fn(struct timer_list *t) 2483 { 2484 struct delayed_work *dwork = timer_container_of(dwork, t, timer); 2485 2486 /* should have been called from irqsafe timer with irq already off */ 2487 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2488 } 2489 EXPORT_SYMBOL(delayed_work_timer_fn); 2490 2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2492 struct delayed_work *dwork, unsigned long delay) 2493 { 2494 struct timer_list *timer = &dwork->timer; 2495 struct work_struct *work = &dwork->work; 2496 2497 WARN_ON_ONCE(!wq); 2498 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2499 WARN_ON_ONCE(timer_pending(timer)); 2500 WARN_ON_ONCE(!list_empty(&work->entry)); 2501 2502 /* 2503 * If @delay is 0, queue @dwork->work immediately. This is for 2504 * both optimization and correctness. The earliest @timer can 2505 * expire is on the closest next tick and delayed_work users depend 2506 * on that there's no such delay when @delay is 0. 2507 */ 2508 if (!delay) { 2509 __queue_work(cpu, wq, &dwork->work); 2510 return; 2511 } 2512 2513 WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu)); 2514 dwork->wq = wq; 2515 dwork->cpu = cpu; 2516 timer->expires = jiffies + delay; 2517 2518 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2519 /* If the current cpu is a housekeeping cpu, use it. */ 2520 cpu = smp_processor_id(); 2521 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2522 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2523 add_timer_on(timer, cpu); 2524 } else { 2525 if (likely(cpu == WORK_CPU_UNBOUND)) 2526 add_timer_global(timer); 2527 else 2528 add_timer_on(timer, cpu); 2529 } 2530 } 2531 2532 /** 2533 * queue_delayed_work_on - queue work on specific CPU after delay 2534 * @cpu: CPU number to execute work on 2535 * @wq: workqueue to use 2536 * @dwork: work to queue 2537 * @delay: number of jiffies to wait before queueing 2538 * 2539 * We queue the delayed_work to a specific CPU, for non-zero delays the 2540 * caller must ensure it is online and can't go away. Callers that fail 2541 * to ensure this, may get @dwork->timer queued to an offlined CPU and 2542 * this will prevent queueing of @dwork->work unless the offlined CPU 2543 * becomes online again. 2544 * 2545 * Return: %false if @work was already on a queue, %true otherwise. If 2546 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2547 * execution. 2548 */ 2549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2550 struct delayed_work *dwork, unsigned long delay) 2551 { 2552 struct work_struct *work = &dwork->work; 2553 bool ret = false; 2554 unsigned long irq_flags; 2555 2556 /* read the comment in __queue_work() */ 2557 local_irq_save(irq_flags); 2558 2559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2560 !clear_pending_if_disabled(work)) { 2561 __queue_delayed_work(cpu, wq, dwork, delay); 2562 ret = true; 2563 } 2564 2565 local_irq_restore(irq_flags); 2566 return ret; 2567 } 2568 EXPORT_SYMBOL(queue_delayed_work_on); 2569 2570 /** 2571 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2572 * @cpu: CPU number to execute work on 2573 * @wq: workqueue to use 2574 * @dwork: work to queue 2575 * @delay: number of jiffies to wait before queueing 2576 * 2577 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2578 * modify @dwork's timer so that it expires after @delay. If @delay is 2579 * zero, @work is guaranteed to be scheduled immediately regardless of its 2580 * current state. 2581 * 2582 * Return: %false if @dwork was idle and queued, %true if @dwork was 2583 * pending and its timer was modified. 2584 * 2585 * This function is safe to call from any context including IRQ handler. 2586 * See try_to_grab_pending() for details. 2587 */ 2588 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2589 struct delayed_work *dwork, unsigned long delay) 2590 { 2591 unsigned long irq_flags; 2592 bool ret; 2593 2594 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2595 2596 if (!clear_pending_if_disabled(&dwork->work)) 2597 __queue_delayed_work(cpu, wq, dwork, delay); 2598 2599 local_irq_restore(irq_flags); 2600 return ret; 2601 } 2602 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2603 2604 static void rcu_work_rcufn(struct rcu_head *rcu) 2605 { 2606 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2607 2608 /* read the comment in __queue_work() */ 2609 local_irq_disable(); 2610 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2611 local_irq_enable(); 2612 } 2613 2614 /** 2615 * queue_rcu_work - queue work after a RCU grace period 2616 * @wq: workqueue to use 2617 * @rwork: work to queue 2618 * 2619 * Return: %false if @rwork was already pending, %true otherwise. Note 2620 * that a full RCU grace period is guaranteed only after a %true return. 2621 * While @rwork is guaranteed to be executed after a %false return, the 2622 * execution may happen before a full RCU grace period has passed. 2623 */ 2624 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2625 { 2626 struct work_struct *work = &rwork->work; 2627 2628 /* 2629 * rcu_work can't be canceled or disabled. Warn if the user reached 2630 * inside @rwork and disabled the inner work. 2631 */ 2632 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2633 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2634 rwork->wq = wq; 2635 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2636 return true; 2637 } 2638 2639 return false; 2640 } 2641 EXPORT_SYMBOL(queue_rcu_work); 2642 2643 static struct worker *alloc_worker(int node) 2644 { 2645 struct worker *worker; 2646 2647 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2648 if (worker) { 2649 INIT_LIST_HEAD(&worker->entry); 2650 INIT_LIST_HEAD(&worker->scheduled); 2651 INIT_LIST_HEAD(&worker->node); 2652 /* on creation a worker is in !idle && prep state */ 2653 worker->flags = WORKER_PREP; 2654 } 2655 return worker; 2656 } 2657 2658 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2659 { 2660 if (pool->cpu < 0 && pool->attrs->affn_strict) 2661 return pool->attrs->__pod_cpumask; 2662 else 2663 return pool->attrs->cpumask; 2664 } 2665 2666 /** 2667 * worker_attach_to_pool() - attach a worker to a pool 2668 * @worker: worker to be attached 2669 * @pool: the target pool 2670 * 2671 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2672 * cpu-binding of @worker are kept coordinated with the pool across 2673 * cpu-[un]hotplugs. 2674 */ 2675 static void worker_attach_to_pool(struct worker *worker, 2676 struct worker_pool *pool) 2677 { 2678 mutex_lock(&wq_pool_attach_mutex); 2679 2680 /* 2681 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2682 * across this function. See the comments above the flag definition for 2683 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2684 */ 2685 if (pool->flags & POOL_DISASSOCIATED) { 2686 worker->flags |= WORKER_UNBOUND; 2687 } else { 2688 WARN_ON_ONCE(pool->flags & POOL_BH); 2689 kthread_set_per_cpu(worker->task, pool->cpu); 2690 } 2691 2692 if (worker->rescue_wq) 2693 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2694 2695 list_add_tail(&worker->node, &pool->workers); 2696 worker->pool = pool; 2697 2698 mutex_unlock(&wq_pool_attach_mutex); 2699 } 2700 2701 static void unbind_worker(struct worker *worker) 2702 { 2703 lockdep_assert_held(&wq_pool_attach_mutex); 2704 2705 kthread_set_per_cpu(worker->task, -1); 2706 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2707 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2708 else 2709 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2710 } 2711 2712 2713 static void detach_worker(struct worker *worker) 2714 { 2715 lockdep_assert_held(&wq_pool_attach_mutex); 2716 2717 unbind_worker(worker); 2718 list_del(&worker->node); 2719 } 2720 2721 /** 2722 * worker_detach_from_pool() - detach a worker from its pool 2723 * @worker: worker which is attached to its pool 2724 * 2725 * Undo the attaching which had been done in worker_attach_to_pool(). The 2726 * caller worker shouldn't access to the pool after detached except it has 2727 * other reference to the pool. 2728 */ 2729 static void worker_detach_from_pool(struct worker *worker) 2730 { 2731 struct worker_pool *pool = worker->pool; 2732 2733 /* there is one permanent BH worker per CPU which should never detach */ 2734 WARN_ON_ONCE(pool->flags & POOL_BH); 2735 2736 mutex_lock(&wq_pool_attach_mutex); 2737 detach_worker(worker); 2738 worker->pool = NULL; 2739 mutex_unlock(&wq_pool_attach_mutex); 2740 2741 /* clear leftover flags without pool->lock after it is detached */ 2742 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2743 } 2744 2745 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2746 struct worker_pool *pool) 2747 { 2748 if (worker->rescue_wq) 2749 return scnprintf(buf, size, "kworker/R-%s", 2750 worker->rescue_wq->name); 2751 2752 if (pool) { 2753 if (pool->cpu >= 0) 2754 return scnprintf(buf, size, "kworker/%d:%d%s", 2755 pool->cpu, worker->id, 2756 pool->attrs->nice < 0 ? "H" : ""); 2757 else 2758 return scnprintf(buf, size, "kworker/u%d:%d", 2759 pool->id, worker->id); 2760 } else { 2761 return scnprintf(buf, size, "kworker/dying"); 2762 } 2763 } 2764 2765 /** 2766 * create_worker - create a new workqueue worker 2767 * @pool: pool the new worker will belong to 2768 * 2769 * Create and start a new worker which is attached to @pool. 2770 * 2771 * CONTEXT: 2772 * Might sleep. Does GFP_KERNEL allocations. 2773 * 2774 * Return: 2775 * Pointer to the newly created worker. 2776 */ 2777 static struct worker *create_worker(struct worker_pool *pool) 2778 { 2779 struct worker *worker; 2780 int id; 2781 2782 /* ID is needed to determine kthread name */ 2783 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2784 if (id < 0) { 2785 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2786 ERR_PTR(id)); 2787 return NULL; 2788 } 2789 2790 worker = alloc_worker(pool->node); 2791 if (!worker) { 2792 pr_err_once("workqueue: Failed to allocate a worker\n"); 2793 goto fail; 2794 } 2795 2796 worker->id = id; 2797 2798 if (!(pool->flags & POOL_BH)) { 2799 char id_buf[WORKER_ID_LEN]; 2800 2801 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2802 worker->task = kthread_create_on_node(worker_thread, worker, 2803 pool->node, "%s", id_buf); 2804 if (IS_ERR(worker->task)) { 2805 if (PTR_ERR(worker->task) == -EINTR) { 2806 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2807 id_buf); 2808 } else { 2809 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2810 worker->task); 2811 } 2812 goto fail; 2813 } 2814 2815 set_user_nice(worker->task, pool->attrs->nice); 2816 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2817 } 2818 2819 /* successful, attach the worker to the pool */ 2820 worker_attach_to_pool(worker, pool); 2821 2822 /* start the newly created worker */ 2823 raw_spin_lock_irq(&pool->lock); 2824 2825 worker->pool->nr_workers++; 2826 worker_enter_idle(worker); 2827 2828 /* 2829 * @worker is waiting on a completion in kthread() and will trigger hung 2830 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2831 * wake it up explicitly. 2832 */ 2833 if (worker->task) 2834 wake_up_process(worker->task); 2835 2836 raw_spin_unlock_irq(&pool->lock); 2837 2838 return worker; 2839 2840 fail: 2841 ida_free(&pool->worker_ida, id); 2842 kfree(worker); 2843 return NULL; 2844 } 2845 2846 static void detach_dying_workers(struct list_head *cull_list) 2847 { 2848 struct worker *worker; 2849 2850 list_for_each_entry(worker, cull_list, entry) 2851 detach_worker(worker); 2852 } 2853 2854 static void reap_dying_workers(struct list_head *cull_list) 2855 { 2856 struct worker *worker, *tmp; 2857 2858 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2859 list_del_init(&worker->entry); 2860 kthread_stop_put(worker->task); 2861 kfree(worker); 2862 } 2863 } 2864 2865 /** 2866 * set_worker_dying - Tag a worker for destruction 2867 * @worker: worker to be destroyed 2868 * @list: transfer worker away from its pool->idle_list and into list 2869 * 2870 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2871 * should be idle. 2872 * 2873 * CONTEXT: 2874 * raw_spin_lock_irq(pool->lock). 2875 */ 2876 static void set_worker_dying(struct worker *worker, struct list_head *list) 2877 { 2878 struct worker_pool *pool = worker->pool; 2879 2880 lockdep_assert_held(&pool->lock); 2881 lockdep_assert_held(&wq_pool_attach_mutex); 2882 2883 /* sanity check frenzy */ 2884 if (WARN_ON(worker->current_work) || 2885 WARN_ON(!list_empty(&worker->scheduled)) || 2886 WARN_ON(!(worker->flags & WORKER_IDLE))) 2887 return; 2888 2889 pool->nr_workers--; 2890 pool->nr_idle--; 2891 2892 worker->flags |= WORKER_DIE; 2893 2894 list_move(&worker->entry, list); 2895 2896 /* get an extra task struct reference for later kthread_stop_put() */ 2897 get_task_struct(worker->task); 2898 } 2899 2900 /** 2901 * idle_worker_timeout - check if some idle workers can now be deleted. 2902 * @t: The pool's idle_timer that just expired 2903 * 2904 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2905 * worker_leave_idle(), as a worker flicking between idle and active while its 2906 * pool is at the too_many_workers() tipping point would cause too much timer 2907 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2908 * it expire and re-evaluate things from there. 2909 */ 2910 static void idle_worker_timeout(struct timer_list *t) 2911 { 2912 struct worker_pool *pool = timer_container_of(pool, t, idle_timer); 2913 bool do_cull = false; 2914 2915 if (work_pending(&pool->idle_cull_work)) 2916 return; 2917 2918 raw_spin_lock_irq(&pool->lock); 2919 2920 if (too_many_workers(pool)) { 2921 struct worker *worker; 2922 unsigned long expires; 2923 2924 /* idle_list is kept in LIFO order, check the last one */ 2925 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2926 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2927 do_cull = !time_before(jiffies, expires); 2928 2929 if (!do_cull) 2930 mod_timer(&pool->idle_timer, expires); 2931 } 2932 raw_spin_unlock_irq(&pool->lock); 2933 2934 if (do_cull) 2935 queue_work(system_unbound_wq, &pool->idle_cull_work); 2936 } 2937 2938 /** 2939 * idle_cull_fn - cull workers that have been idle for too long. 2940 * @work: the pool's work for handling these idle workers 2941 * 2942 * This goes through a pool's idle workers and gets rid of those that have been 2943 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2944 * 2945 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2946 * culled, so this also resets worker affinity. This requires a sleepable 2947 * context, hence the split between timer callback and work item. 2948 */ 2949 static void idle_cull_fn(struct work_struct *work) 2950 { 2951 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2952 LIST_HEAD(cull_list); 2953 2954 /* 2955 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2956 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2957 * This is required as a previously-preempted worker could run after 2958 * set_worker_dying() has happened but before detach_dying_workers() did. 2959 */ 2960 mutex_lock(&wq_pool_attach_mutex); 2961 raw_spin_lock_irq(&pool->lock); 2962 2963 while (too_many_workers(pool)) { 2964 struct worker *worker; 2965 unsigned long expires; 2966 2967 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2968 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2969 2970 if (time_before(jiffies, expires)) { 2971 mod_timer(&pool->idle_timer, expires); 2972 break; 2973 } 2974 2975 set_worker_dying(worker, &cull_list); 2976 } 2977 2978 raw_spin_unlock_irq(&pool->lock); 2979 detach_dying_workers(&cull_list); 2980 mutex_unlock(&wq_pool_attach_mutex); 2981 2982 reap_dying_workers(&cull_list); 2983 } 2984 2985 static void send_mayday(struct work_struct *work) 2986 { 2987 struct pool_workqueue *pwq = get_work_pwq(work); 2988 struct workqueue_struct *wq = pwq->wq; 2989 2990 lockdep_assert_held(&wq_mayday_lock); 2991 2992 if (!wq->rescuer) 2993 return; 2994 2995 /* mayday mayday mayday */ 2996 if (list_empty(&pwq->mayday_node)) { 2997 /* 2998 * If @pwq is for an unbound wq, its base ref may be put at 2999 * any time due to an attribute change. Pin @pwq until the 3000 * rescuer is done with it. 3001 */ 3002 get_pwq(pwq); 3003 list_add_tail(&pwq->mayday_node, &wq->maydays); 3004 wake_up_process(wq->rescuer->task); 3005 pwq->stats[PWQ_STAT_MAYDAY]++; 3006 } 3007 } 3008 3009 static void pool_mayday_timeout(struct timer_list *t) 3010 { 3011 struct worker_pool *pool = timer_container_of(pool, t, mayday_timer); 3012 struct work_struct *work; 3013 3014 raw_spin_lock_irq(&pool->lock); 3015 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3016 3017 if (need_to_create_worker(pool)) { 3018 /* 3019 * We've been trying to create a new worker but 3020 * haven't been successful. We might be hitting an 3021 * allocation deadlock. Send distress signals to 3022 * rescuers. 3023 */ 3024 list_for_each_entry(work, &pool->worklist, entry) 3025 send_mayday(work); 3026 } 3027 3028 raw_spin_unlock(&wq_mayday_lock); 3029 raw_spin_unlock_irq(&pool->lock); 3030 3031 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3032 } 3033 3034 /** 3035 * maybe_create_worker - create a new worker if necessary 3036 * @pool: pool to create a new worker for 3037 * 3038 * Create a new worker for @pool if necessary. @pool is guaranteed to 3039 * have at least one idle worker on return from this function. If 3040 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3041 * sent to all rescuers with works scheduled on @pool to resolve 3042 * possible allocation deadlock. 3043 * 3044 * On return, need_to_create_worker() is guaranteed to be %false and 3045 * may_start_working() %true. 3046 * 3047 * LOCKING: 3048 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3049 * multiple times. Does GFP_KERNEL allocations. Called only from 3050 * manager. 3051 */ 3052 static void maybe_create_worker(struct worker_pool *pool) 3053 __releases(&pool->lock) 3054 __acquires(&pool->lock) 3055 { 3056 restart: 3057 raw_spin_unlock_irq(&pool->lock); 3058 3059 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3060 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3061 3062 while (true) { 3063 if (create_worker(pool) || !need_to_create_worker(pool)) 3064 break; 3065 3066 schedule_timeout_interruptible(CREATE_COOLDOWN); 3067 3068 if (!need_to_create_worker(pool)) 3069 break; 3070 } 3071 3072 timer_delete_sync(&pool->mayday_timer); 3073 raw_spin_lock_irq(&pool->lock); 3074 /* 3075 * This is necessary even after a new worker was just successfully 3076 * created as @pool->lock was dropped and the new worker might have 3077 * already become busy. 3078 */ 3079 if (need_to_create_worker(pool)) 3080 goto restart; 3081 } 3082 3083 /** 3084 * manage_workers - manage worker pool 3085 * @worker: self 3086 * 3087 * Assume the manager role and manage the worker pool @worker belongs 3088 * to. At any given time, there can be only zero or one manager per 3089 * pool. The exclusion is handled automatically by this function. 3090 * 3091 * The caller can safely start processing works on false return. On 3092 * true return, it's guaranteed that need_to_create_worker() is false 3093 * and may_start_working() is true. 3094 * 3095 * CONTEXT: 3096 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3097 * multiple times. Does GFP_KERNEL allocations. 3098 * 3099 * Return: 3100 * %false if the pool doesn't need management and the caller can safely 3101 * start processing works, %true if management function was performed and 3102 * the conditions that the caller verified before calling the function may 3103 * no longer be true. 3104 */ 3105 static bool manage_workers(struct worker *worker) 3106 { 3107 struct worker_pool *pool = worker->pool; 3108 3109 if (pool->flags & POOL_MANAGER_ACTIVE) 3110 return false; 3111 3112 pool->flags |= POOL_MANAGER_ACTIVE; 3113 pool->manager = worker; 3114 3115 maybe_create_worker(pool); 3116 3117 pool->manager = NULL; 3118 pool->flags &= ~POOL_MANAGER_ACTIVE; 3119 rcuwait_wake_up(&manager_wait); 3120 return true; 3121 } 3122 3123 /** 3124 * process_one_work - process single work 3125 * @worker: self 3126 * @work: work to process 3127 * 3128 * Process @work. This function contains all the logics necessary to 3129 * process a single work including synchronization against and 3130 * interaction with other workers on the same cpu, queueing and 3131 * flushing. As long as context requirement is met, any worker can 3132 * call this function to process a work. 3133 * 3134 * CONTEXT: 3135 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3136 */ 3137 static void process_one_work(struct worker *worker, struct work_struct *work) 3138 __releases(&pool->lock) 3139 __acquires(&pool->lock) 3140 { 3141 struct pool_workqueue *pwq = get_work_pwq(work); 3142 struct worker_pool *pool = worker->pool; 3143 unsigned long work_data; 3144 int lockdep_start_depth, rcu_start_depth; 3145 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3146 #ifdef CONFIG_LOCKDEP 3147 /* 3148 * It is permissible to free the struct work_struct from 3149 * inside the function that is called from it, this we need to 3150 * take into account for lockdep too. To avoid bogus "held 3151 * lock freed" warnings as well as problems when looking into 3152 * work->lockdep_map, make a copy and use that here. 3153 */ 3154 struct lockdep_map lockdep_map; 3155 3156 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3157 #endif 3158 /* ensure we're on the correct CPU */ 3159 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3160 raw_smp_processor_id() != pool->cpu); 3161 3162 /* claim and dequeue */ 3163 debug_work_deactivate(work); 3164 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3165 worker->current_work = work; 3166 worker->current_func = work->func; 3167 worker->current_pwq = pwq; 3168 if (worker->task) 3169 worker->current_at = worker->task->se.sum_exec_runtime; 3170 work_data = *work_data_bits(work); 3171 worker->current_color = get_work_color(work_data); 3172 3173 /* 3174 * Record wq name for cmdline and debug reporting, may get 3175 * overridden through set_worker_desc(). 3176 */ 3177 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3178 3179 list_del_init(&work->entry); 3180 3181 /* 3182 * CPU intensive works don't participate in concurrency management. 3183 * They're the scheduler's responsibility. This takes @worker out 3184 * of concurrency management and the next code block will chain 3185 * execution of the pending work items. 3186 */ 3187 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3188 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3189 3190 /* 3191 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3192 * since nr_running would always be >= 1 at this point. This is used to 3193 * chain execution of the pending work items for WORKER_NOT_RUNNING 3194 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3195 */ 3196 kick_pool(pool); 3197 3198 /* 3199 * Record the last pool and clear PENDING which should be the last 3200 * update to @work. Also, do this inside @pool->lock so that 3201 * PENDING and queued state changes happen together while IRQ is 3202 * disabled. 3203 */ 3204 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3205 3206 pwq->stats[PWQ_STAT_STARTED]++; 3207 raw_spin_unlock_irq(&pool->lock); 3208 3209 rcu_start_depth = rcu_preempt_depth(); 3210 lockdep_start_depth = lockdep_depth(current); 3211 /* see drain_dead_softirq_workfn() */ 3212 if (!bh_draining) 3213 lock_map_acquire(pwq->wq->lockdep_map); 3214 lock_map_acquire(&lockdep_map); 3215 /* 3216 * Strictly speaking we should mark the invariant state without holding 3217 * any locks, that is, before these two lock_map_acquire()'s. 3218 * 3219 * However, that would result in: 3220 * 3221 * A(W1) 3222 * WFC(C) 3223 * A(W1) 3224 * C(C) 3225 * 3226 * Which would create W1->C->W1 dependencies, even though there is no 3227 * actual deadlock possible. There are two solutions, using a 3228 * read-recursive acquire on the work(queue) 'locks', but this will then 3229 * hit the lockdep limitation on recursive locks, or simply discard 3230 * these locks. 3231 * 3232 * AFAICT there is no possible deadlock scenario between the 3233 * flush_work() and complete() primitives (except for single-threaded 3234 * workqueues), so hiding them isn't a problem. 3235 */ 3236 lockdep_invariant_state(true); 3237 trace_workqueue_execute_start(work); 3238 worker->current_func(work); 3239 /* 3240 * While we must be careful to not use "work" after this, the trace 3241 * point will only record its address. 3242 */ 3243 trace_workqueue_execute_end(work, worker->current_func); 3244 3245 lock_map_release(&lockdep_map); 3246 if (!bh_draining) 3247 lock_map_release(pwq->wq->lockdep_map); 3248 3249 if (unlikely((worker->task && in_atomic()) || 3250 lockdep_depth(current) != lockdep_start_depth || 3251 rcu_preempt_depth() != rcu_start_depth)) { 3252 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3253 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3254 current->comm, task_pid_nr(current), preempt_count(), 3255 lockdep_start_depth, lockdep_depth(current), 3256 rcu_start_depth, rcu_preempt_depth(), 3257 worker->current_func); 3258 debug_show_held_locks(current); 3259 dump_stack(); 3260 } 3261 3262 /* 3263 * The following prevents a kworker from hogging CPU on !PREEMPTION 3264 * kernels, where a requeueing work item waiting for something to 3265 * happen could deadlock with stop_machine as such work item could 3266 * indefinitely requeue itself while all other CPUs are trapped in 3267 * stop_machine. At the same time, report a quiescent RCU state so 3268 * the same condition doesn't freeze RCU. 3269 */ 3270 if (worker->task) 3271 cond_resched(); 3272 3273 raw_spin_lock_irq(&pool->lock); 3274 3275 pwq->stats[PWQ_STAT_COMPLETED]++; 3276 3277 /* 3278 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3279 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3280 * wq_cpu_intensive_thresh_us. Clear it. 3281 */ 3282 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3283 3284 /* tag the worker for identification in schedule() */ 3285 worker->last_func = worker->current_func; 3286 3287 /* we're done with it, release */ 3288 hash_del(&worker->hentry); 3289 worker->current_work = NULL; 3290 worker->current_func = NULL; 3291 worker->current_pwq = NULL; 3292 worker->current_color = INT_MAX; 3293 3294 /* must be the last step, see the function comment */ 3295 pwq_dec_nr_in_flight(pwq, work_data); 3296 } 3297 3298 /** 3299 * process_scheduled_works - process scheduled works 3300 * @worker: self 3301 * 3302 * Process all scheduled works. Please note that the scheduled list 3303 * may change while processing a work, so this function repeatedly 3304 * fetches a work from the top and executes it. 3305 * 3306 * CONTEXT: 3307 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3308 * multiple times. 3309 */ 3310 static void process_scheduled_works(struct worker *worker) 3311 { 3312 struct work_struct *work; 3313 bool first = true; 3314 3315 while ((work = list_first_entry_or_null(&worker->scheduled, 3316 struct work_struct, entry))) { 3317 if (first) { 3318 worker->pool->watchdog_ts = jiffies; 3319 first = false; 3320 } 3321 process_one_work(worker, work); 3322 } 3323 } 3324 3325 static void set_pf_worker(bool val) 3326 { 3327 mutex_lock(&wq_pool_attach_mutex); 3328 if (val) 3329 current->flags |= PF_WQ_WORKER; 3330 else 3331 current->flags &= ~PF_WQ_WORKER; 3332 mutex_unlock(&wq_pool_attach_mutex); 3333 } 3334 3335 /** 3336 * worker_thread - the worker thread function 3337 * @__worker: self 3338 * 3339 * The worker thread function. All workers belong to a worker_pool - 3340 * either a per-cpu one or dynamic unbound one. These workers process all 3341 * work items regardless of their specific target workqueue. The only 3342 * exception is work items which belong to workqueues with a rescuer which 3343 * will be explained in rescuer_thread(). 3344 * 3345 * Return: 0 3346 */ 3347 static int worker_thread(void *__worker) 3348 { 3349 struct worker *worker = __worker; 3350 struct worker_pool *pool = worker->pool; 3351 3352 /* tell the scheduler that this is a workqueue worker */ 3353 set_pf_worker(true); 3354 woke_up: 3355 raw_spin_lock_irq(&pool->lock); 3356 3357 /* am I supposed to die? */ 3358 if (unlikely(worker->flags & WORKER_DIE)) { 3359 raw_spin_unlock_irq(&pool->lock); 3360 set_pf_worker(false); 3361 /* 3362 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool 3363 * shouldn't be accessed, reset it to NULL in case otherwise. 3364 */ 3365 worker->pool = NULL; 3366 ida_free(&pool->worker_ida, worker->id); 3367 return 0; 3368 } 3369 3370 worker_leave_idle(worker); 3371 recheck: 3372 /* no more worker necessary? */ 3373 if (!need_more_worker(pool)) 3374 goto sleep; 3375 3376 /* do we need to manage? */ 3377 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3378 goto recheck; 3379 3380 /* 3381 * ->scheduled list can only be filled while a worker is 3382 * preparing to process a work or actually processing it. 3383 * Make sure nobody diddled with it while I was sleeping. 3384 */ 3385 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3386 3387 /* 3388 * Finish PREP stage. We're guaranteed to have at least one idle 3389 * worker or that someone else has already assumed the manager 3390 * role. This is where @worker starts participating in concurrency 3391 * management if applicable and concurrency management is restored 3392 * after being rebound. See rebind_workers() for details. 3393 */ 3394 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3395 3396 do { 3397 struct work_struct *work = 3398 list_first_entry(&pool->worklist, 3399 struct work_struct, entry); 3400 3401 if (assign_work(work, worker, NULL)) 3402 process_scheduled_works(worker); 3403 } while (keep_working(pool)); 3404 3405 worker_set_flags(worker, WORKER_PREP); 3406 sleep: 3407 /* 3408 * pool->lock is held and there's no work to process and no need to 3409 * manage, sleep. Workers are woken up only while holding 3410 * pool->lock or from local cpu, so setting the current state 3411 * before releasing pool->lock is enough to prevent losing any 3412 * event. 3413 */ 3414 worker_enter_idle(worker); 3415 __set_current_state(TASK_IDLE); 3416 raw_spin_unlock_irq(&pool->lock); 3417 schedule(); 3418 goto woke_up; 3419 } 3420 3421 /** 3422 * rescuer_thread - the rescuer thread function 3423 * @__rescuer: self 3424 * 3425 * Workqueue rescuer thread function. There's one rescuer for each 3426 * workqueue which has WQ_MEM_RECLAIM set. 3427 * 3428 * Regular work processing on a pool may block trying to create a new 3429 * worker which uses GFP_KERNEL allocation which has slight chance of 3430 * developing into deadlock if some works currently on the same queue 3431 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3432 * the problem rescuer solves. 3433 * 3434 * When such condition is possible, the pool summons rescuers of all 3435 * workqueues which have works queued on the pool and let them process 3436 * those works so that forward progress can be guaranteed. 3437 * 3438 * This should happen rarely. 3439 * 3440 * Return: 0 3441 */ 3442 static int rescuer_thread(void *__rescuer) 3443 { 3444 struct worker *rescuer = __rescuer; 3445 struct workqueue_struct *wq = rescuer->rescue_wq; 3446 bool should_stop; 3447 3448 set_user_nice(current, RESCUER_NICE_LEVEL); 3449 3450 /* 3451 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3452 * doesn't participate in concurrency management. 3453 */ 3454 set_pf_worker(true); 3455 repeat: 3456 set_current_state(TASK_IDLE); 3457 3458 /* 3459 * By the time the rescuer is requested to stop, the workqueue 3460 * shouldn't have any work pending, but @wq->maydays may still have 3461 * pwq(s) queued. This can happen by non-rescuer workers consuming 3462 * all the work items before the rescuer got to them. Go through 3463 * @wq->maydays processing before acting on should_stop so that the 3464 * list is always empty on exit. 3465 */ 3466 should_stop = kthread_should_stop(); 3467 3468 /* see whether any pwq is asking for help */ 3469 raw_spin_lock_irq(&wq_mayday_lock); 3470 3471 while (!list_empty(&wq->maydays)) { 3472 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3473 struct pool_workqueue, mayday_node); 3474 struct worker_pool *pool = pwq->pool; 3475 struct work_struct *work, *n; 3476 3477 __set_current_state(TASK_RUNNING); 3478 list_del_init(&pwq->mayday_node); 3479 3480 raw_spin_unlock_irq(&wq_mayday_lock); 3481 3482 worker_attach_to_pool(rescuer, pool); 3483 3484 raw_spin_lock_irq(&pool->lock); 3485 3486 /* 3487 * Slurp in all works issued via this workqueue and 3488 * process'em. 3489 */ 3490 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3491 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3492 if (get_work_pwq(work) == pwq && 3493 assign_work(work, rescuer, &n)) 3494 pwq->stats[PWQ_STAT_RESCUED]++; 3495 } 3496 3497 if (!list_empty(&rescuer->scheduled)) { 3498 process_scheduled_works(rescuer); 3499 3500 /* 3501 * The above execution of rescued work items could 3502 * have created more to rescue through 3503 * pwq_activate_first_inactive() or chained 3504 * queueing. Let's put @pwq back on mayday list so 3505 * that such back-to-back work items, which may be 3506 * being used to relieve memory pressure, don't 3507 * incur MAYDAY_INTERVAL delay inbetween. 3508 */ 3509 if (pwq->nr_active && need_to_create_worker(pool)) { 3510 raw_spin_lock(&wq_mayday_lock); 3511 /* 3512 * Queue iff we aren't racing destruction 3513 * and somebody else hasn't queued it already. 3514 */ 3515 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3516 get_pwq(pwq); 3517 list_add_tail(&pwq->mayday_node, &wq->maydays); 3518 } 3519 raw_spin_unlock(&wq_mayday_lock); 3520 } 3521 } 3522 3523 /* 3524 * Leave this pool. Notify regular workers; otherwise, we end up 3525 * with 0 concurrency and stalling the execution. 3526 */ 3527 kick_pool(pool); 3528 3529 raw_spin_unlock_irq(&pool->lock); 3530 3531 worker_detach_from_pool(rescuer); 3532 3533 /* 3534 * Put the reference grabbed by send_mayday(). @pool might 3535 * go away any time after it. 3536 */ 3537 put_pwq_unlocked(pwq); 3538 3539 raw_spin_lock_irq(&wq_mayday_lock); 3540 } 3541 3542 raw_spin_unlock_irq(&wq_mayday_lock); 3543 3544 if (should_stop) { 3545 __set_current_state(TASK_RUNNING); 3546 set_pf_worker(false); 3547 return 0; 3548 } 3549 3550 /* rescuers should never participate in concurrency management */ 3551 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3552 schedule(); 3553 goto repeat; 3554 } 3555 3556 static void bh_worker(struct worker *worker) 3557 { 3558 struct worker_pool *pool = worker->pool; 3559 int nr_restarts = BH_WORKER_RESTARTS; 3560 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3561 3562 raw_spin_lock_irq(&pool->lock); 3563 worker_leave_idle(worker); 3564 3565 /* 3566 * This function follows the structure of worker_thread(). See there for 3567 * explanations on each step. 3568 */ 3569 if (!need_more_worker(pool)) 3570 goto done; 3571 3572 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3573 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3574 3575 do { 3576 struct work_struct *work = 3577 list_first_entry(&pool->worklist, 3578 struct work_struct, entry); 3579 3580 if (assign_work(work, worker, NULL)) 3581 process_scheduled_works(worker); 3582 } while (keep_working(pool) && 3583 --nr_restarts && time_before(jiffies, end)); 3584 3585 worker_set_flags(worker, WORKER_PREP); 3586 done: 3587 worker_enter_idle(worker); 3588 kick_pool(pool); 3589 raw_spin_unlock_irq(&pool->lock); 3590 } 3591 3592 /* 3593 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3594 * 3595 * This is currently called from tasklet[_hi]action() and thus is also called 3596 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3597 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3598 * can be dropped. 3599 * 3600 * After full conversion, we'll add worker->softirq_action, directly use the 3601 * softirq action and obtain the worker pointer from the softirq_action pointer. 3602 */ 3603 void workqueue_softirq_action(bool highpri) 3604 { 3605 struct worker_pool *pool = 3606 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3607 if (need_more_worker(pool)) 3608 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3609 } 3610 3611 struct wq_drain_dead_softirq_work { 3612 struct work_struct work; 3613 struct worker_pool *pool; 3614 struct completion done; 3615 }; 3616 3617 static void drain_dead_softirq_workfn(struct work_struct *work) 3618 { 3619 struct wq_drain_dead_softirq_work *dead_work = 3620 container_of(work, struct wq_drain_dead_softirq_work, work); 3621 struct worker_pool *pool = dead_work->pool; 3622 bool repeat; 3623 3624 /* 3625 * @pool's CPU is dead and we want to execute its still pending work 3626 * items from this BH work item which is running on a different CPU. As 3627 * its CPU is dead, @pool can't be kicked and, as work execution path 3628 * will be nested, a lockdep annotation needs to be suppressed. Mark 3629 * @pool with %POOL_BH_DRAINING for the special treatments. 3630 */ 3631 raw_spin_lock_irq(&pool->lock); 3632 pool->flags |= POOL_BH_DRAINING; 3633 raw_spin_unlock_irq(&pool->lock); 3634 3635 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3636 3637 raw_spin_lock_irq(&pool->lock); 3638 pool->flags &= ~POOL_BH_DRAINING; 3639 repeat = need_more_worker(pool); 3640 raw_spin_unlock_irq(&pool->lock); 3641 3642 /* 3643 * bh_worker() might hit consecutive execution limit and bail. If there 3644 * still are pending work items, reschedule self and return so that we 3645 * don't hog this CPU's BH. 3646 */ 3647 if (repeat) { 3648 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3649 queue_work(system_bh_highpri_wq, work); 3650 else 3651 queue_work(system_bh_wq, work); 3652 } else { 3653 complete(&dead_work->done); 3654 } 3655 } 3656 3657 /* 3658 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3659 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3660 * have to worry about draining overlapping with CPU coming back online or 3661 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3662 * on). Let's keep it simple and drain them synchronously. These are BH work 3663 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3664 */ 3665 void workqueue_softirq_dead(unsigned int cpu) 3666 { 3667 int i; 3668 3669 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3670 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3671 struct wq_drain_dead_softirq_work dead_work; 3672 3673 if (!need_more_worker(pool)) 3674 continue; 3675 3676 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3677 dead_work.pool = pool; 3678 init_completion(&dead_work.done); 3679 3680 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3681 queue_work(system_bh_highpri_wq, &dead_work.work); 3682 else 3683 queue_work(system_bh_wq, &dead_work.work); 3684 3685 wait_for_completion(&dead_work.done); 3686 destroy_work_on_stack(&dead_work.work); 3687 } 3688 } 3689 3690 /** 3691 * check_flush_dependency - check for flush dependency sanity 3692 * @target_wq: workqueue being flushed 3693 * @target_work: work item being flushed (NULL for workqueue flushes) 3694 * @from_cancel: are we called from the work cancel path 3695 * 3696 * %current is trying to flush the whole @target_wq or @target_work on it. 3697 * If this is not the cancel path (which implies work being flushed is either 3698 * already running, or will not be at all), check if @target_wq doesn't have 3699 * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running 3700 * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward- 3701 * progress guarantee leading to a deadlock. 3702 */ 3703 static void check_flush_dependency(struct workqueue_struct *target_wq, 3704 struct work_struct *target_work, 3705 bool from_cancel) 3706 { 3707 work_func_t target_func; 3708 struct worker *worker; 3709 3710 if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM) 3711 return; 3712 3713 worker = current_wq_worker(); 3714 target_func = target_work ? target_work->func : NULL; 3715 3716 WARN_ONCE(current->flags & PF_MEMALLOC, 3717 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3718 current->pid, current->comm, target_wq->name, target_func); 3719 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3720 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3721 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3722 worker->current_pwq->wq->name, worker->current_func, 3723 target_wq->name, target_func); 3724 } 3725 3726 struct wq_barrier { 3727 struct work_struct work; 3728 struct completion done; 3729 struct task_struct *task; /* purely informational */ 3730 }; 3731 3732 static void wq_barrier_func(struct work_struct *work) 3733 { 3734 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3735 complete(&barr->done); 3736 } 3737 3738 /** 3739 * insert_wq_barrier - insert a barrier work 3740 * @pwq: pwq to insert barrier into 3741 * @barr: wq_barrier to insert 3742 * @target: target work to attach @barr to 3743 * @worker: worker currently executing @target, NULL if @target is not executing 3744 * 3745 * @barr is linked to @target such that @barr is completed only after 3746 * @target finishes execution. Please note that the ordering 3747 * guarantee is observed only with respect to @target and on the local 3748 * cpu. 3749 * 3750 * Currently, a queued barrier can't be canceled. This is because 3751 * try_to_grab_pending() can't determine whether the work to be 3752 * grabbed is at the head of the queue and thus can't clear LINKED 3753 * flag of the previous work while there must be a valid next work 3754 * after a work with LINKED flag set. 3755 * 3756 * Note that when @worker is non-NULL, @target may be modified 3757 * underneath us, so we can't reliably determine pwq from @target. 3758 * 3759 * CONTEXT: 3760 * raw_spin_lock_irq(pool->lock). 3761 */ 3762 static void insert_wq_barrier(struct pool_workqueue *pwq, 3763 struct wq_barrier *barr, 3764 struct work_struct *target, struct worker *worker) 3765 { 3766 static __maybe_unused struct lock_class_key bh_key, thr_key; 3767 unsigned int work_flags = 0; 3768 unsigned int work_color; 3769 struct list_head *head; 3770 3771 /* 3772 * debugobject calls are safe here even with pool->lock locked 3773 * as we know for sure that this will not trigger any of the 3774 * checks and call back into the fixup functions where we 3775 * might deadlock. 3776 * 3777 * BH and threaded workqueues need separate lockdep keys to avoid 3778 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3779 * usage". 3780 */ 3781 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3782 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3783 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3784 3785 init_completion_map(&barr->done, &target->lockdep_map); 3786 3787 barr->task = current; 3788 3789 /* The barrier work item does not participate in nr_active. */ 3790 work_flags |= WORK_STRUCT_INACTIVE; 3791 3792 /* 3793 * If @target is currently being executed, schedule the 3794 * barrier to the worker; otherwise, put it after @target. 3795 */ 3796 if (worker) { 3797 head = worker->scheduled.next; 3798 work_color = worker->current_color; 3799 } else { 3800 unsigned long *bits = work_data_bits(target); 3801 3802 head = target->entry.next; 3803 /* there can already be other linked works, inherit and set */ 3804 work_flags |= *bits & WORK_STRUCT_LINKED; 3805 work_color = get_work_color(*bits); 3806 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3807 } 3808 3809 pwq->nr_in_flight[work_color]++; 3810 work_flags |= work_color_to_flags(work_color); 3811 3812 insert_work(pwq, &barr->work, head, work_flags); 3813 } 3814 3815 /** 3816 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3817 * @wq: workqueue being flushed 3818 * @flush_color: new flush color, < 0 for no-op 3819 * @work_color: new work color, < 0 for no-op 3820 * 3821 * Prepare pwqs for workqueue flushing. 3822 * 3823 * If @flush_color is non-negative, flush_color on all pwqs should be 3824 * -1. If no pwq has in-flight commands at the specified color, all 3825 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3826 * has in flight commands, its pwq->flush_color is set to 3827 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3828 * wakeup logic is armed and %true is returned. 3829 * 3830 * The caller should have initialized @wq->first_flusher prior to 3831 * calling this function with non-negative @flush_color. If 3832 * @flush_color is negative, no flush color update is done and %false 3833 * is returned. 3834 * 3835 * If @work_color is non-negative, all pwqs should have the same 3836 * work_color which is previous to @work_color and all will be 3837 * advanced to @work_color. 3838 * 3839 * CONTEXT: 3840 * mutex_lock(wq->mutex). 3841 * 3842 * Return: 3843 * %true if @flush_color >= 0 and there's something to flush. %false 3844 * otherwise. 3845 */ 3846 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3847 int flush_color, int work_color) 3848 { 3849 bool wait = false; 3850 struct pool_workqueue *pwq; 3851 struct worker_pool *current_pool = NULL; 3852 3853 if (flush_color >= 0) { 3854 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3855 atomic_set(&wq->nr_pwqs_to_flush, 1); 3856 } 3857 3858 /* 3859 * For unbound workqueue, pwqs will map to only a few pools. 3860 * Most of the time, pwqs within the same pool will be linked 3861 * sequentially to wq->pwqs by cpu index. So in the majority 3862 * of pwq iters, the pool is the same, only doing lock/unlock 3863 * if the pool has changed. This can largely reduce expensive 3864 * lock operations. 3865 */ 3866 for_each_pwq(pwq, wq) { 3867 if (current_pool != pwq->pool) { 3868 if (likely(current_pool)) 3869 raw_spin_unlock_irq(¤t_pool->lock); 3870 current_pool = pwq->pool; 3871 raw_spin_lock_irq(¤t_pool->lock); 3872 } 3873 3874 if (flush_color >= 0) { 3875 WARN_ON_ONCE(pwq->flush_color != -1); 3876 3877 if (pwq->nr_in_flight[flush_color]) { 3878 pwq->flush_color = flush_color; 3879 atomic_inc(&wq->nr_pwqs_to_flush); 3880 wait = true; 3881 } 3882 } 3883 3884 if (work_color >= 0) { 3885 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3886 pwq->work_color = work_color; 3887 } 3888 3889 } 3890 3891 if (current_pool) 3892 raw_spin_unlock_irq(¤t_pool->lock); 3893 3894 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3895 complete(&wq->first_flusher->done); 3896 3897 return wait; 3898 } 3899 3900 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3901 { 3902 #ifdef CONFIG_LOCKDEP 3903 if (unlikely(!wq->lockdep_map)) 3904 return; 3905 3906 if (wq->flags & WQ_BH) 3907 local_bh_disable(); 3908 3909 lock_map_acquire(wq->lockdep_map); 3910 lock_map_release(wq->lockdep_map); 3911 3912 if (wq->flags & WQ_BH) 3913 local_bh_enable(); 3914 #endif 3915 } 3916 3917 static void touch_work_lockdep_map(struct work_struct *work, 3918 struct workqueue_struct *wq) 3919 { 3920 #ifdef CONFIG_LOCKDEP 3921 if (wq->flags & WQ_BH) 3922 local_bh_disable(); 3923 3924 lock_map_acquire(&work->lockdep_map); 3925 lock_map_release(&work->lockdep_map); 3926 3927 if (wq->flags & WQ_BH) 3928 local_bh_enable(); 3929 #endif 3930 } 3931 3932 /** 3933 * __flush_workqueue - ensure that any scheduled work has run to completion. 3934 * @wq: workqueue to flush 3935 * 3936 * This function sleeps until all work items which were queued on entry 3937 * have finished execution, but it is not livelocked by new incoming ones. 3938 */ 3939 void __flush_workqueue(struct workqueue_struct *wq) 3940 { 3941 struct wq_flusher this_flusher = { 3942 .list = LIST_HEAD_INIT(this_flusher.list), 3943 .flush_color = -1, 3944 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)), 3945 }; 3946 int next_color; 3947 3948 if (WARN_ON(!wq_online)) 3949 return; 3950 3951 touch_wq_lockdep_map(wq); 3952 3953 mutex_lock(&wq->mutex); 3954 3955 /* 3956 * Start-to-wait phase 3957 */ 3958 next_color = work_next_color(wq->work_color); 3959 3960 if (next_color != wq->flush_color) { 3961 /* 3962 * Color space is not full. The current work_color 3963 * becomes our flush_color and work_color is advanced 3964 * by one. 3965 */ 3966 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3967 this_flusher.flush_color = wq->work_color; 3968 wq->work_color = next_color; 3969 3970 if (!wq->first_flusher) { 3971 /* no flush in progress, become the first flusher */ 3972 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3973 3974 wq->first_flusher = &this_flusher; 3975 3976 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3977 wq->work_color)) { 3978 /* nothing to flush, done */ 3979 wq->flush_color = next_color; 3980 wq->first_flusher = NULL; 3981 goto out_unlock; 3982 } 3983 } else { 3984 /* wait in queue */ 3985 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3986 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3987 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3988 } 3989 } else { 3990 /* 3991 * Oops, color space is full, wait on overflow queue. 3992 * The next flush completion will assign us 3993 * flush_color and transfer to flusher_queue. 3994 */ 3995 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3996 } 3997 3998 check_flush_dependency(wq, NULL, false); 3999 4000 mutex_unlock(&wq->mutex); 4001 4002 wait_for_completion(&this_flusher.done); 4003 4004 /* 4005 * Wake-up-and-cascade phase 4006 * 4007 * First flushers are responsible for cascading flushes and 4008 * handling overflow. Non-first flushers can simply return. 4009 */ 4010 if (READ_ONCE(wq->first_flusher) != &this_flusher) 4011 return; 4012 4013 mutex_lock(&wq->mutex); 4014 4015 /* we might have raced, check again with mutex held */ 4016 if (wq->first_flusher != &this_flusher) 4017 goto out_unlock; 4018 4019 WRITE_ONCE(wq->first_flusher, NULL); 4020 4021 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 4022 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 4023 4024 while (true) { 4025 struct wq_flusher *next, *tmp; 4026 4027 /* complete all the flushers sharing the current flush color */ 4028 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 4029 if (next->flush_color != wq->flush_color) 4030 break; 4031 list_del_init(&next->list); 4032 complete(&next->done); 4033 } 4034 4035 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4036 wq->flush_color != work_next_color(wq->work_color)); 4037 4038 /* this flush_color is finished, advance by one */ 4039 wq->flush_color = work_next_color(wq->flush_color); 4040 4041 /* one color has been freed, handle overflow queue */ 4042 if (!list_empty(&wq->flusher_overflow)) { 4043 /* 4044 * Assign the same color to all overflowed 4045 * flushers, advance work_color and append to 4046 * flusher_queue. This is the start-to-wait 4047 * phase for these overflowed flushers. 4048 */ 4049 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4050 tmp->flush_color = wq->work_color; 4051 4052 wq->work_color = work_next_color(wq->work_color); 4053 4054 list_splice_tail_init(&wq->flusher_overflow, 4055 &wq->flusher_queue); 4056 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4057 } 4058 4059 if (list_empty(&wq->flusher_queue)) { 4060 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4061 break; 4062 } 4063 4064 /* 4065 * Need to flush more colors. Make the next flusher 4066 * the new first flusher and arm pwqs. 4067 */ 4068 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4069 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4070 4071 list_del_init(&next->list); 4072 wq->first_flusher = next; 4073 4074 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4075 break; 4076 4077 /* 4078 * Meh... this color is already done, clear first 4079 * flusher and repeat cascading. 4080 */ 4081 wq->first_flusher = NULL; 4082 } 4083 4084 out_unlock: 4085 mutex_unlock(&wq->mutex); 4086 } 4087 EXPORT_SYMBOL(__flush_workqueue); 4088 4089 /** 4090 * drain_workqueue - drain a workqueue 4091 * @wq: workqueue to drain 4092 * 4093 * Wait until the workqueue becomes empty. While draining is in progress, 4094 * only chain queueing is allowed. IOW, only currently pending or running 4095 * work items on @wq can queue further work items on it. @wq is flushed 4096 * repeatedly until it becomes empty. The number of flushing is determined 4097 * by the depth of chaining and should be relatively short. Whine if it 4098 * takes too long. 4099 */ 4100 void drain_workqueue(struct workqueue_struct *wq) 4101 { 4102 unsigned int flush_cnt = 0; 4103 struct pool_workqueue *pwq; 4104 4105 /* 4106 * __queue_work() needs to test whether there are drainers, is much 4107 * hotter than drain_workqueue() and already looks at @wq->flags. 4108 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4109 */ 4110 mutex_lock(&wq->mutex); 4111 if (!wq->nr_drainers++) 4112 wq->flags |= __WQ_DRAINING; 4113 mutex_unlock(&wq->mutex); 4114 reflush: 4115 __flush_workqueue(wq); 4116 4117 mutex_lock(&wq->mutex); 4118 4119 for_each_pwq(pwq, wq) { 4120 bool drained; 4121 4122 raw_spin_lock_irq(&pwq->pool->lock); 4123 drained = pwq_is_empty(pwq); 4124 raw_spin_unlock_irq(&pwq->pool->lock); 4125 4126 if (drained) 4127 continue; 4128 4129 if (++flush_cnt == 10 || 4130 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4131 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4132 wq->name, __func__, flush_cnt); 4133 4134 mutex_unlock(&wq->mutex); 4135 goto reflush; 4136 } 4137 4138 if (!--wq->nr_drainers) 4139 wq->flags &= ~__WQ_DRAINING; 4140 mutex_unlock(&wq->mutex); 4141 } 4142 EXPORT_SYMBOL_GPL(drain_workqueue); 4143 4144 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4145 bool from_cancel) 4146 { 4147 struct worker *worker = NULL; 4148 struct worker_pool *pool; 4149 struct pool_workqueue *pwq; 4150 struct workqueue_struct *wq; 4151 4152 rcu_read_lock(); 4153 pool = get_work_pool(work); 4154 if (!pool) { 4155 rcu_read_unlock(); 4156 return false; 4157 } 4158 4159 raw_spin_lock_irq(&pool->lock); 4160 /* see the comment in try_to_grab_pending() with the same code */ 4161 pwq = get_work_pwq(work); 4162 if (pwq) { 4163 if (unlikely(pwq->pool != pool)) 4164 goto already_gone; 4165 } else { 4166 worker = find_worker_executing_work(pool, work); 4167 if (!worker) 4168 goto already_gone; 4169 pwq = worker->current_pwq; 4170 } 4171 4172 wq = pwq->wq; 4173 check_flush_dependency(wq, work, from_cancel); 4174 4175 insert_wq_barrier(pwq, barr, work, worker); 4176 raw_spin_unlock_irq(&pool->lock); 4177 4178 touch_work_lockdep_map(work, wq); 4179 4180 /* 4181 * Force a lock recursion deadlock when using flush_work() inside a 4182 * single-threaded or rescuer equipped workqueue. 4183 * 4184 * For single threaded workqueues the deadlock happens when the work 4185 * is after the work issuing the flush_work(). For rescuer equipped 4186 * workqueues the deadlock happens when the rescuer stalls, blocking 4187 * forward progress. 4188 */ 4189 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4190 touch_wq_lockdep_map(wq); 4191 4192 rcu_read_unlock(); 4193 return true; 4194 already_gone: 4195 raw_spin_unlock_irq(&pool->lock); 4196 rcu_read_unlock(); 4197 return false; 4198 } 4199 4200 static bool __flush_work(struct work_struct *work, bool from_cancel) 4201 { 4202 struct wq_barrier barr; 4203 4204 if (WARN_ON(!wq_online)) 4205 return false; 4206 4207 if (WARN_ON(!work->func)) 4208 return false; 4209 4210 if (!start_flush_work(work, &barr, from_cancel)) 4211 return false; 4212 4213 /* 4214 * start_flush_work() returned %true. If @from_cancel is set, we know 4215 * that @work must have been executing during start_flush_work() and 4216 * can't currently be queued. Its data must contain OFFQ bits. If @work 4217 * was queued on a BH workqueue, we also know that it was running in the 4218 * BH context and thus can be busy-waited. 4219 */ 4220 if (from_cancel) { 4221 unsigned long data = *work_data_bits(work); 4222 4223 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && 4224 (data & WORK_OFFQ_BH)) { 4225 /* 4226 * On RT, prevent a live lock when %current preempted 4227 * soft interrupt processing or prevents ksoftirqd from 4228 * running by keeping flipping BH. If the BH work item 4229 * runs on a different CPU then this has no effect other 4230 * than doing the BH disable/enable dance for nothing. 4231 * This is copied from 4232 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4233 */ 4234 while (!try_wait_for_completion(&barr.done)) { 4235 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4236 local_bh_disable(); 4237 local_bh_enable(); 4238 } else { 4239 cpu_relax(); 4240 } 4241 } 4242 goto out_destroy; 4243 } 4244 } 4245 4246 wait_for_completion(&barr.done); 4247 4248 out_destroy: 4249 destroy_work_on_stack(&barr.work); 4250 return true; 4251 } 4252 4253 /** 4254 * flush_work - wait for a work to finish executing the last queueing instance 4255 * @work: the work to flush 4256 * 4257 * Wait until @work has finished execution. @work is guaranteed to be idle 4258 * on return if it hasn't been requeued since flush started. 4259 * 4260 * Return: 4261 * %true if flush_work() waited for the work to finish execution, 4262 * %false if it was already idle. 4263 */ 4264 bool flush_work(struct work_struct *work) 4265 { 4266 might_sleep(); 4267 return __flush_work(work, false); 4268 } 4269 EXPORT_SYMBOL_GPL(flush_work); 4270 4271 /** 4272 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4273 * @dwork: the delayed work to flush 4274 * 4275 * Delayed timer is cancelled and the pending work is queued for 4276 * immediate execution. Like flush_work(), this function only 4277 * considers the last queueing instance of @dwork. 4278 * 4279 * Return: 4280 * %true if flush_work() waited for the work to finish execution, 4281 * %false if it was already idle. 4282 */ 4283 bool flush_delayed_work(struct delayed_work *dwork) 4284 { 4285 local_irq_disable(); 4286 if (timer_delete_sync(&dwork->timer)) 4287 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4288 local_irq_enable(); 4289 return flush_work(&dwork->work); 4290 } 4291 EXPORT_SYMBOL(flush_delayed_work); 4292 4293 /** 4294 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4295 * @rwork: the rcu work to flush 4296 * 4297 * Return: 4298 * %true if flush_rcu_work() waited for the work to finish execution, 4299 * %false if it was already idle. 4300 */ 4301 bool flush_rcu_work(struct rcu_work *rwork) 4302 { 4303 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4304 rcu_barrier(); 4305 flush_work(&rwork->work); 4306 return true; 4307 } else { 4308 return flush_work(&rwork->work); 4309 } 4310 } 4311 EXPORT_SYMBOL(flush_rcu_work); 4312 4313 static void work_offqd_disable(struct work_offq_data *offqd) 4314 { 4315 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4316 4317 if (likely(offqd->disable < max)) 4318 offqd->disable++; 4319 else 4320 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4321 } 4322 4323 static void work_offqd_enable(struct work_offq_data *offqd) 4324 { 4325 if (likely(offqd->disable > 0)) 4326 offqd->disable--; 4327 else 4328 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4329 } 4330 4331 static bool __cancel_work(struct work_struct *work, u32 cflags) 4332 { 4333 struct work_offq_data offqd; 4334 unsigned long irq_flags; 4335 int ret; 4336 4337 ret = work_grab_pending(work, cflags, &irq_flags); 4338 4339 work_offqd_unpack(&offqd, *work_data_bits(work)); 4340 4341 if (cflags & WORK_CANCEL_DISABLE) 4342 work_offqd_disable(&offqd); 4343 4344 set_work_pool_and_clear_pending(work, offqd.pool_id, 4345 work_offqd_pack_flags(&offqd)); 4346 local_irq_restore(irq_flags); 4347 return ret; 4348 } 4349 4350 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4351 { 4352 bool ret; 4353 4354 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4355 4356 if (*work_data_bits(work) & WORK_OFFQ_BH) 4357 WARN_ON_ONCE(in_hardirq()); 4358 else 4359 might_sleep(); 4360 4361 /* 4362 * Skip __flush_work() during early boot when we know that @work isn't 4363 * executing. This allows canceling during early boot. 4364 */ 4365 if (wq_online) 4366 __flush_work(work, true); 4367 4368 if (!(cflags & WORK_CANCEL_DISABLE)) 4369 enable_work(work); 4370 4371 return ret; 4372 } 4373 4374 /* 4375 * See cancel_delayed_work() 4376 */ 4377 bool cancel_work(struct work_struct *work) 4378 { 4379 return __cancel_work(work, 0); 4380 } 4381 EXPORT_SYMBOL(cancel_work); 4382 4383 /** 4384 * cancel_work_sync - cancel a work and wait for it to finish 4385 * @work: the work to cancel 4386 * 4387 * Cancel @work and wait for its execution to finish. This function can be used 4388 * even if the work re-queues itself or migrates to another workqueue. On return 4389 * from this function, @work is guaranteed to be not pending or executing on any 4390 * CPU as long as there aren't racing enqueues. 4391 * 4392 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4393 * Use cancel_delayed_work_sync() instead. 4394 * 4395 * Must be called from a sleepable context if @work was last queued on a non-BH 4396 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4397 * if @work was last queued on a BH workqueue. 4398 * 4399 * Returns %true if @work was pending, %false otherwise. 4400 */ 4401 bool cancel_work_sync(struct work_struct *work) 4402 { 4403 return __cancel_work_sync(work, 0); 4404 } 4405 EXPORT_SYMBOL_GPL(cancel_work_sync); 4406 4407 /** 4408 * cancel_delayed_work - cancel a delayed work 4409 * @dwork: delayed_work to cancel 4410 * 4411 * Kill off a pending delayed_work. 4412 * 4413 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4414 * pending. 4415 * 4416 * Note: 4417 * The work callback function may still be running on return, unless 4418 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4419 * use cancel_delayed_work_sync() to wait on it. 4420 * 4421 * This function is safe to call from any context including IRQ handler. 4422 */ 4423 bool cancel_delayed_work(struct delayed_work *dwork) 4424 { 4425 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4426 } 4427 EXPORT_SYMBOL(cancel_delayed_work); 4428 4429 /** 4430 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4431 * @dwork: the delayed work cancel 4432 * 4433 * This is cancel_work_sync() for delayed works. 4434 * 4435 * Return: 4436 * %true if @dwork was pending, %false otherwise. 4437 */ 4438 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4439 { 4440 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4441 } 4442 EXPORT_SYMBOL(cancel_delayed_work_sync); 4443 4444 /** 4445 * disable_work - Disable and cancel a work item 4446 * @work: work item to disable 4447 * 4448 * Disable @work by incrementing its disable count and cancel it if currently 4449 * pending. As long as the disable count is non-zero, any attempt to queue @work 4450 * will fail and return %false. The maximum supported disable depth is 2 to the 4451 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4452 * 4453 * Can be called from any context. Returns %true if @work was pending, %false 4454 * otherwise. 4455 */ 4456 bool disable_work(struct work_struct *work) 4457 { 4458 return __cancel_work(work, WORK_CANCEL_DISABLE); 4459 } 4460 EXPORT_SYMBOL_GPL(disable_work); 4461 4462 /** 4463 * disable_work_sync - Disable, cancel and drain a work item 4464 * @work: work item to disable 4465 * 4466 * Similar to disable_work() but also wait for @work to finish if currently 4467 * executing. 4468 * 4469 * Must be called from a sleepable context if @work was last queued on a non-BH 4470 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4471 * if @work was last queued on a BH workqueue. 4472 * 4473 * Returns %true if @work was pending, %false otherwise. 4474 */ 4475 bool disable_work_sync(struct work_struct *work) 4476 { 4477 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4478 } 4479 EXPORT_SYMBOL_GPL(disable_work_sync); 4480 4481 /** 4482 * enable_work - Enable a work item 4483 * @work: work item to enable 4484 * 4485 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4486 * only be queued if its disable count is 0. 4487 * 4488 * Can be called from any context. Returns %true if the disable count reached 0. 4489 * Otherwise, %false. 4490 */ 4491 bool enable_work(struct work_struct *work) 4492 { 4493 struct work_offq_data offqd; 4494 unsigned long irq_flags; 4495 4496 work_grab_pending(work, 0, &irq_flags); 4497 4498 work_offqd_unpack(&offqd, *work_data_bits(work)); 4499 work_offqd_enable(&offqd); 4500 set_work_pool_and_clear_pending(work, offqd.pool_id, 4501 work_offqd_pack_flags(&offqd)); 4502 local_irq_restore(irq_flags); 4503 4504 return !offqd.disable; 4505 } 4506 EXPORT_SYMBOL_GPL(enable_work); 4507 4508 /** 4509 * disable_delayed_work - Disable and cancel a delayed work item 4510 * @dwork: delayed work item to disable 4511 * 4512 * disable_work() for delayed work items. 4513 */ 4514 bool disable_delayed_work(struct delayed_work *dwork) 4515 { 4516 return __cancel_work(&dwork->work, 4517 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4518 } 4519 EXPORT_SYMBOL_GPL(disable_delayed_work); 4520 4521 /** 4522 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4523 * @dwork: delayed work item to disable 4524 * 4525 * disable_work_sync() for delayed work items. 4526 */ 4527 bool disable_delayed_work_sync(struct delayed_work *dwork) 4528 { 4529 return __cancel_work_sync(&dwork->work, 4530 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4531 } 4532 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4533 4534 /** 4535 * enable_delayed_work - Enable a delayed work item 4536 * @dwork: delayed work item to enable 4537 * 4538 * enable_work() for delayed work items. 4539 */ 4540 bool enable_delayed_work(struct delayed_work *dwork) 4541 { 4542 return enable_work(&dwork->work); 4543 } 4544 EXPORT_SYMBOL_GPL(enable_delayed_work); 4545 4546 /** 4547 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4548 * @func: the function to call 4549 * 4550 * schedule_on_each_cpu() executes @func on each online CPU using the 4551 * system workqueue and blocks until all CPUs have completed. 4552 * schedule_on_each_cpu() is very slow. 4553 * 4554 * Return: 4555 * 0 on success, -errno on failure. 4556 */ 4557 int schedule_on_each_cpu(work_func_t func) 4558 { 4559 int cpu; 4560 struct work_struct __percpu *works; 4561 4562 works = alloc_percpu(struct work_struct); 4563 if (!works) 4564 return -ENOMEM; 4565 4566 cpus_read_lock(); 4567 4568 for_each_online_cpu(cpu) { 4569 struct work_struct *work = per_cpu_ptr(works, cpu); 4570 4571 INIT_WORK(work, func); 4572 schedule_work_on(cpu, work); 4573 } 4574 4575 for_each_online_cpu(cpu) 4576 flush_work(per_cpu_ptr(works, cpu)); 4577 4578 cpus_read_unlock(); 4579 free_percpu(works); 4580 return 0; 4581 } 4582 4583 /** 4584 * execute_in_process_context - reliably execute the routine with user context 4585 * @fn: the function to execute 4586 * @ew: guaranteed storage for the execute work structure (must 4587 * be available when the work executes) 4588 * 4589 * Executes the function immediately if process context is available, 4590 * otherwise schedules the function for delayed execution. 4591 * 4592 * Return: 0 - function was executed 4593 * 1 - function was scheduled for execution 4594 */ 4595 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4596 { 4597 if (!in_interrupt()) { 4598 fn(&ew->work); 4599 return 0; 4600 } 4601 4602 INIT_WORK(&ew->work, fn); 4603 schedule_work(&ew->work); 4604 4605 return 1; 4606 } 4607 EXPORT_SYMBOL_GPL(execute_in_process_context); 4608 4609 /** 4610 * free_workqueue_attrs - free a workqueue_attrs 4611 * @attrs: workqueue_attrs to free 4612 * 4613 * Undo alloc_workqueue_attrs(). 4614 */ 4615 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4616 { 4617 if (attrs) { 4618 free_cpumask_var(attrs->cpumask); 4619 free_cpumask_var(attrs->__pod_cpumask); 4620 kfree(attrs); 4621 } 4622 } 4623 4624 /** 4625 * alloc_workqueue_attrs - allocate a workqueue_attrs 4626 * 4627 * Allocate a new workqueue_attrs, initialize with default settings and 4628 * return it. 4629 * 4630 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4631 */ 4632 struct workqueue_attrs *alloc_workqueue_attrs(void) 4633 { 4634 struct workqueue_attrs *attrs; 4635 4636 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4637 if (!attrs) 4638 goto fail; 4639 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4640 goto fail; 4641 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4642 goto fail; 4643 4644 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4645 attrs->affn_scope = WQ_AFFN_DFL; 4646 return attrs; 4647 fail: 4648 free_workqueue_attrs(attrs); 4649 return NULL; 4650 } 4651 4652 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4653 const struct workqueue_attrs *from) 4654 { 4655 to->nice = from->nice; 4656 cpumask_copy(to->cpumask, from->cpumask); 4657 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4658 to->affn_strict = from->affn_strict; 4659 4660 /* 4661 * Unlike hash and equality test, copying shouldn't ignore wq-only 4662 * fields as copying is used for both pool and wq attrs. Instead, 4663 * get_unbound_pool() explicitly clears the fields. 4664 */ 4665 to->affn_scope = from->affn_scope; 4666 to->ordered = from->ordered; 4667 } 4668 4669 /* 4670 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4671 * comments in 'struct workqueue_attrs' definition. 4672 */ 4673 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4674 { 4675 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4676 attrs->ordered = false; 4677 if (attrs->affn_strict) 4678 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4679 } 4680 4681 /* hash value of the content of @attr */ 4682 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4683 { 4684 u32 hash = 0; 4685 4686 hash = jhash_1word(attrs->nice, hash); 4687 hash = jhash_1word(attrs->affn_strict, hash); 4688 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4689 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4690 if (!attrs->affn_strict) 4691 hash = jhash(cpumask_bits(attrs->cpumask), 4692 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4693 return hash; 4694 } 4695 4696 /* content equality test */ 4697 static bool wqattrs_equal(const struct workqueue_attrs *a, 4698 const struct workqueue_attrs *b) 4699 { 4700 if (a->nice != b->nice) 4701 return false; 4702 if (a->affn_strict != b->affn_strict) 4703 return false; 4704 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4705 return false; 4706 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4707 return false; 4708 return true; 4709 } 4710 4711 /* Update @attrs with actually available CPUs */ 4712 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4713 const cpumask_t *unbound_cpumask) 4714 { 4715 /* 4716 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4717 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4718 * @unbound_cpumask. 4719 */ 4720 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4721 if (unlikely(cpumask_empty(attrs->cpumask))) 4722 cpumask_copy(attrs->cpumask, unbound_cpumask); 4723 } 4724 4725 /* find wq_pod_type to use for @attrs */ 4726 static const struct wq_pod_type * 4727 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4728 { 4729 enum wq_affn_scope scope; 4730 struct wq_pod_type *pt; 4731 4732 /* to synchronize access to wq_affn_dfl */ 4733 lockdep_assert_held(&wq_pool_mutex); 4734 4735 if (attrs->affn_scope == WQ_AFFN_DFL) 4736 scope = wq_affn_dfl; 4737 else 4738 scope = attrs->affn_scope; 4739 4740 pt = &wq_pod_types[scope]; 4741 4742 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4743 likely(pt->nr_pods)) 4744 return pt; 4745 4746 /* 4747 * Before workqueue_init_topology(), only SYSTEM is available which is 4748 * initialized in workqueue_init_early(). 4749 */ 4750 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4751 BUG_ON(!pt->nr_pods); 4752 return pt; 4753 } 4754 4755 /** 4756 * init_worker_pool - initialize a newly zalloc'd worker_pool 4757 * @pool: worker_pool to initialize 4758 * 4759 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4760 * 4761 * Return: 0 on success, -errno on failure. Even on failure, all fields 4762 * inside @pool proper are initialized and put_unbound_pool() can be called 4763 * on @pool safely to release it. 4764 */ 4765 static int init_worker_pool(struct worker_pool *pool) 4766 { 4767 raw_spin_lock_init(&pool->lock); 4768 pool->id = -1; 4769 pool->cpu = -1; 4770 pool->node = NUMA_NO_NODE; 4771 pool->flags |= POOL_DISASSOCIATED; 4772 pool->watchdog_ts = jiffies; 4773 INIT_LIST_HEAD(&pool->worklist); 4774 INIT_LIST_HEAD(&pool->idle_list); 4775 hash_init(pool->busy_hash); 4776 4777 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4778 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4779 4780 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4781 4782 INIT_LIST_HEAD(&pool->workers); 4783 4784 ida_init(&pool->worker_ida); 4785 INIT_HLIST_NODE(&pool->hash_node); 4786 pool->refcnt = 1; 4787 4788 /* shouldn't fail above this point */ 4789 pool->attrs = alloc_workqueue_attrs(); 4790 if (!pool->attrs) 4791 return -ENOMEM; 4792 4793 wqattrs_clear_for_pool(pool->attrs); 4794 4795 return 0; 4796 } 4797 4798 #ifdef CONFIG_LOCKDEP 4799 static void wq_init_lockdep(struct workqueue_struct *wq) 4800 { 4801 char *lock_name; 4802 4803 lockdep_register_key(&wq->key); 4804 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4805 if (!lock_name) 4806 lock_name = wq->name; 4807 4808 wq->lock_name = lock_name; 4809 wq->lockdep_map = &wq->__lockdep_map; 4810 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0); 4811 } 4812 4813 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4814 { 4815 if (wq->lockdep_map != &wq->__lockdep_map) 4816 return; 4817 4818 lockdep_unregister_key(&wq->key); 4819 } 4820 4821 static void wq_free_lockdep(struct workqueue_struct *wq) 4822 { 4823 if (wq->lockdep_map != &wq->__lockdep_map) 4824 return; 4825 4826 if (wq->lock_name != wq->name) 4827 kfree(wq->lock_name); 4828 } 4829 #else 4830 static void wq_init_lockdep(struct workqueue_struct *wq) 4831 { 4832 } 4833 4834 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4835 { 4836 } 4837 4838 static void wq_free_lockdep(struct workqueue_struct *wq) 4839 { 4840 } 4841 #endif 4842 4843 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4844 { 4845 int node; 4846 4847 for_each_node(node) { 4848 kfree(nna_ar[node]); 4849 nna_ar[node] = NULL; 4850 } 4851 4852 kfree(nna_ar[nr_node_ids]); 4853 nna_ar[nr_node_ids] = NULL; 4854 } 4855 4856 static void init_node_nr_active(struct wq_node_nr_active *nna) 4857 { 4858 nna->max = WQ_DFL_MIN_ACTIVE; 4859 atomic_set(&nna->nr, 0); 4860 raw_spin_lock_init(&nna->lock); 4861 INIT_LIST_HEAD(&nna->pending_pwqs); 4862 } 4863 4864 /* 4865 * Each node's nr_active counter will be accessed mostly from its own node and 4866 * should be allocated in the node. 4867 */ 4868 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4869 { 4870 struct wq_node_nr_active *nna; 4871 int node; 4872 4873 for_each_node(node) { 4874 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4875 if (!nna) 4876 goto err_free; 4877 init_node_nr_active(nna); 4878 nna_ar[node] = nna; 4879 } 4880 4881 /* [nr_node_ids] is used as the fallback */ 4882 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4883 if (!nna) 4884 goto err_free; 4885 init_node_nr_active(nna); 4886 nna_ar[nr_node_ids] = nna; 4887 4888 return 0; 4889 4890 err_free: 4891 free_node_nr_active(nna_ar); 4892 return -ENOMEM; 4893 } 4894 4895 static void rcu_free_wq(struct rcu_head *rcu) 4896 { 4897 struct workqueue_struct *wq = 4898 container_of(rcu, struct workqueue_struct, rcu); 4899 4900 if (wq->flags & WQ_UNBOUND) 4901 free_node_nr_active(wq->node_nr_active); 4902 4903 wq_free_lockdep(wq); 4904 free_percpu(wq->cpu_pwq); 4905 free_workqueue_attrs(wq->unbound_attrs); 4906 kfree(wq); 4907 } 4908 4909 static void rcu_free_pool(struct rcu_head *rcu) 4910 { 4911 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4912 4913 ida_destroy(&pool->worker_ida); 4914 free_workqueue_attrs(pool->attrs); 4915 kfree(pool); 4916 } 4917 4918 /** 4919 * put_unbound_pool - put a worker_pool 4920 * @pool: worker_pool to put 4921 * 4922 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4923 * safe manner. get_unbound_pool() calls this function on its failure path 4924 * and this function should be able to release pools which went through, 4925 * successfully or not, init_worker_pool(). 4926 * 4927 * Should be called with wq_pool_mutex held. 4928 */ 4929 static void put_unbound_pool(struct worker_pool *pool) 4930 { 4931 struct worker *worker; 4932 LIST_HEAD(cull_list); 4933 4934 lockdep_assert_held(&wq_pool_mutex); 4935 4936 if (--pool->refcnt) 4937 return; 4938 4939 /* sanity checks */ 4940 if (WARN_ON(!(pool->cpu < 0)) || 4941 WARN_ON(!list_empty(&pool->worklist))) 4942 return; 4943 4944 /* release id and unhash */ 4945 if (pool->id >= 0) 4946 idr_remove(&worker_pool_idr, pool->id); 4947 hash_del(&pool->hash_node); 4948 4949 /* 4950 * Become the manager and destroy all workers. This prevents 4951 * @pool's workers from blocking on attach_mutex. We're the last 4952 * manager and @pool gets freed with the flag set. 4953 * 4954 * Having a concurrent manager is quite unlikely to happen as we can 4955 * only get here with 4956 * pwq->refcnt == pool->refcnt == 0 4957 * which implies no work queued to the pool, which implies no worker can 4958 * become the manager. However a worker could have taken the role of 4959 * manager before the refcnts dropped to 0, since maybe_create_worker() 4960 * drops pool->lock 4961 */ 4962 while (true) { 4963 rcuwait_wait_event(&manager_wait, 4964 !(pool->flags & POOL_MANAGER_ACTIVE), 4965 TASK_UNINTERRUPTIBLE); 4966 4967 mutex_lock(&wq_pool_attach_mutex); 4968 raw_spin_lock_irq(&pool->lock); 4969 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4970 pool->flags |= POOL_MANAGER_ACTIVE; 4971 break; 4972 } 4973 raw_spin_unlock_irq(&pool->lock); 4974 mutex_unlock(&wq_pool_attach_mutex); 4975 } 4976 4977 while ((worker = first_idle_worker(pool))) 4978 set_worker_dying(worker, &cull_list); 4979 WARN_ON(pool->nr_workers || pool->nr_idle); 4980 raw_spin_unlock_irq(&pool->lock); 4981 4982 detach_dying_workers(&cull_list); 4983 4984 mutex_unlock(&wq_pool_attach_mutex); 4985 4986 reap_dying_workers(&cull_list); 4987 4988 /* shut down the timers */ 4989 timer_delete_sync(&pool->idle_timer); 4990 cancel_work_sync(&pool->idle_cull_work); 4991 timer_delete_sync(&pool->mayday_timer); 4992 4993 /* RCU protected to allow dereferences from get_work_pool() */ 4994 call_rcu(&pool->rcu, rcu_free_pool); 4995 } 4996 4997 /** 4998 * get_unbound_pool - get a worker_pool with the specified attributes 4999 * @attrs: the attributes of the worker_pool to get 5000 * 5001 * Obtain a worker_pool which has the same attributes as @attrs, bump the 5002 * reference count and return it. If there already is a matching 5003 * worker_pool, it will be used; otherwise, this function attempts to 5004 * create a new one. 5005 * 5006 * Should be called with wq_pool_mutex held. 5007 * 5008 * Return: On success, a worker_pool with the same attributes as @attrs. 5009 * On failure, %NULL. 5010 */ 5011 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 5012 { 5013 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 5014 u32 hash = wqattrs_hash(attrs); 5015 struct worker_pool *pool; 5016 int pod, node = NUMA_NO_NODE; 5017 5018 lockdep_assert_held(&wq_pool_mutex); 5019 5020 /* do we already have a matching pool? */ 5021 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 5022 if (wqattrs_equal(pool->attrs, attrs)) { 5023 pool->refcnt++; 5024 return pool; 5025 } 5026 } 5027 5028 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 5029 for (pod = 0; pod < pt->nr_pods; pod++) { 5030 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 5031 node = pt->pod_node[pod]; 5032 break; 5033 } 5034 } 5035 5036 /* nope, create a new one */ 5037 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5038 if (!pool || init_worker_pool(pool) < 0) 5039 goto fail; 5040 5041 pool->node = node; 5042 copy_workqueue_attrs(pool->attrs, attrs); 5043 wqattrs_clear_for_pool(pool->attrs); 5044 5045 if (worker_pool_assign_id(pool) < 0) 5046 goto fail; 5047 5048 /* create and start the initial worker */ 5049 if (wq_online && !create_worker(pool)) 5050 goto fail; 5051 5052 /* install */ 5053 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5054 5055 return pool; 5056 fail: 5057 if (pool) 5058 put_unbound_pool(pool); 5059 return NULL; 5060 } 5061 5062 /* 5063 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5064 * refcnt and needs to be destroyed. 5065 */ 5066 static void pwq_release_workfn(struct kthread_work *work) 5067 { 5068 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5069 release_work); 5070 struct workqueue_struct *wq = pwq->wq; 5071 struct worker_pool *pool = pwq->pool; 5072 bool is_last = false; 5073 5074 /* 5075 * When @pwq is not linked, it doesn't hold any reference to the 5076 * @wq, and @wq is invalid to access. 5077 */ 5078 if (!list_empty(&pwq->pwqs_node)) { 5079 mutex_lock(&wq->mutex); 5080 list_del_rcu(&pwq->pwqs_node); 5081 is_last = list_empty(&wq->pwqs); 5082 5083 /* 5084 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5085 */ 5086 if (!is_last && (wq->flags & __WQ_ORDERED)) 5087 unplug_oldest_pwq(wq); 5088 5089 mutex_unlock(&wq->mutex); 5090 } 5091 5092 if (wq->flags & WQ_UNBOUND) { 5093 mutex_lock(&wq_pool_mutex); 5094 put_unbound_pool(pool); 5095 mutex_unlock(&wq_pool_mutex); 5096 } 5097 5098 if (!list_empty(&pwq->pending_node)) { 5099 struct wq_node_nr_active *nna = 5100 wq_node_nr_active(pwq->wq, pwq->pool->node); 5101 5102 raw_spin_lock_irq(&nna->lock); 5103 list_del_init(&pwq->pending_node); 5104 raw_spin_unlock_irq(&nna->lock); 5105 } 5106 5107 kfree_rcu(pwq, rcu); 5108 5109 /* 5110 * If we're the last pwq going away, @wq is already dead and no one 5111 * is gonna access it anymore. Schedule RCU free. 5112 */ 5113 if (is_last) { 5114 wq_unregister_lockdep(wq); 5115 call_rcu(&wq->rcu, rcu_free_wq); 5116 } 5117 } 5118 5119 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5120 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5121 struct worker_pool *pool) 5122 { 5123 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5124 5125 memset(pwq, 0, sizeof(*pwq)); 5126 5127 pwq->pool = pool; 5128 pwq->wq = wq; 5129 pwq->flush_color = -1; 5130 pwq->refcnt = 1; 5131 INIT_LIST_HEAD(&pwq->inactive_works); 5132 INIT_LIST_HEAD(&pwq->pending_node); 5133 INIT_LIST_HEAD(&pwq->pwqs_node); 5134 INIT_LIST_HEAD(&pwq->mayday_node); 5135 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5136 } 5137 5138 /* sync @pwq with the current state of its associated wq and link it */ 5139 static void link_pwq(struct pool_workqueue *pwq) 5140 { 5141 struct workqueue_struct *wq = pwq->wq; 5142 5143 lockdep_assert_held(&wq->mutex); 5144 5145 /* may be called multiple times, ignore if already linked */ 5146 if (!list_empty(&pwq->pwqs_node)) 5147 return; 5148 5149 /* set the matching work_color */ 5150 pwq->work_color = wq->work_color; 5151 5152 /* link in @pwq */ 5153 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5154 } 5155 5156 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5157 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5158 const struct workqueue_attrs *attrs) 5159 { 5160 struct worker_pool *pool; 5161 struct pool_workqueue *pwq; 5162 5163 lockdep_assert_held(&wq_pool_mutex); 5164 5165 pool = get_unbound_pool(attrs); 5166 if (!pool) 5167 return NULL; 5168 5169 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5170 if (!pwq) { 5171 put_unbound_pool(pool); 5172 return NULL; 5173 } 5174 5175 init_pwq(pwq, wq, pool); 5176 return pwq; 5177 } 5178 5179 static void apply_wqattrs_lock(void) 5180 { 5181 mutex_lock(&wq_pool_mutex); 5182 } 5183 5184 static void apply_wqattrs_unlock(void) 5185 { 5186 mutex_unlock(&wq_pool_mutex); 5187 } 5188 5189 /** 5190 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5191 * @attrs: the wq_attrs of the default pwq of the target workqueue 5192 * @cpu: the target CPU 5193 * 5194 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5195 * The result is stored in @attrs->__pod_cpumask. 5196 * 5197 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5198 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5199 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5200 * 5201 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5202 */ 5203 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5204 { 5205 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5206 int pod = pt->cpu_pod[cpu]; 5207 5208 /* calculate possible CPUs in @pod that @attrs wants */ 5209 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5210 /* does @pod have any online CPUs @attrs wants? */ 5211 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5212 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5213 return; 5214 } 5215 } 5216 5217 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5218 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5219 int cpu, struct pool_workqueue *pwq) 5220 { 5221 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5222 struct pool_workqueue *old_pwq; 5223 5224 lockdep_assert_held(&wq_pool_mutex); 5225 lockdep_assert_held(&wq->mutex); 5226 5227 /* link_pwq() can handle duplicate calls */ 5228 link_pwq(pwq); 5229 5230 old_pwq = rcu_access_pointer(*slot); 5231 rcu_assign_pointer(*slot, pwq); 5232 return old_pwq; 5233 } 5234 5235 /* context to store the prepared attrs & pwqs before applying */ 5236 struct apply_wqattrs_ctx { 5237 struct workqueue_struct *wq; /* target workqueue */ 5238 struct workqueue_attrs *attrs; /* attrs to apply */ 5239 struct list_head list; /* queued for batching commit */ 5240 struct pool_workqueue *dfl_pwq; 5241 struct pool_workqueue *pwq_tbl[]; 5242 }; 5243 5244 /* free the resources after success or abort */ 5245 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5246 { 5247 if (ctx) { 5248 int cpu; 5249 5250 for_each_possible_cpu(cpu) 5251 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5252 put_pwq_unlocked(ctx->dfl_pwq); 5253 5254 free_workqueue_attrs(ctx->attrs); 5255 5256 kfree(ctx); 5257 } 5258 } 5259 5260 /* allocate the attrs and pwqs for later installation */ 5261 static struct apply_wqattrs_ctx * 5262 apply_wqattrs_prepare(struct workqueue_struct *wq, 5263 const struct workqueue_attrs *attrs, 5264 const cpumask_var_t unbound_cpumask) 5265 { 5266 struct apply_wqattrs_ctx *ctx; 5267 struct workqueue_attrs *new_attrs; 5268 int cpu; 5269 5270 lockdep_assert_held(&wq_pool_mutex); 5271 5272 if (WARN_ON(attrs->affn_scope < 0 || 5273 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5274 return ERR_PTR(-EINVAL); 5275 5276 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5277 5278 new_attrs = alloc_workqueue_attrs(); 5279 if (!ctx || !new_attrs) 5280 goto out_free; 5281 5282 /* 5283 * If something goes wrong during CPU up/down, we'll fall back to 5284 * the default pwq covering whole @attrs->cpumask. Always create 5285 * it even if we don't use it immediately. 5286 */ 5287 copy_workqueue_attrs(new_attrs, attrs); 5288 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5289 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5290 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5291 if (!ctx->dfl_pwq) 5292 goto out_free; 5293 5294 for_each_possible_cpu(cpu) { 5295 if (new_attrs->ordered) { 5296 ctx->dfl_pwq->refcnt++; 5297 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5298 } else { 5299 wq_calc_pod_cpumask(new_attrs, cpu); 5300 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5301 if (!ctx->pwq_tbl[cpu]) 5302 goto out_free; 5303 } 5304 } 5305 5306 /* save the user configured attrs and sanitize it. */ 5307 copy_workqueue_attrs(new_attrs, attrs); 5308 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5309 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5310 ctx->attrs = new_attrs; 5311 5312 /* 5313 * For initialized ordered workqueues, there should only be one pwq 5314 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5315 * of newly queued work items until execution of older work items in 5316 * the old pwq's have completed. 5317 */ 5318 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5319 ctx->dfl_pwq->plugged = true; 5320 5321 ctx->wq = wq; 5322 return ctx; 5323 5324 out_free: 5325 free_workqueue_attrs(new_attrs); 5326 apply_wqattrs_cleanup(ctx); 5327 return ERR_PTR(-ENOMEM); 5328 } 5329 5330 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5331 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5332 { 5333 int cpu; 5334 5335 /* all pwqs have been created successfully, let's install'em */ 5336 mutex_lock(&ctx->wq->mutex); 5337 5338 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5339 5340 /* save the previous pwqs and install the new ones */ 5341 for_each_possible_cpu(cpu) 5342 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5343 ctx->pwq_tbl[cpu]); 5344 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5345 5346 /* update node_nr_active->max */ 5347 wq_update_node_max_active(ctx->wq, -1); 5348 5349 /* rescuer needs to respect wq cpumask changes */ 5350 if (ctx->wq->rescuer) 5351 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5352 unbound_effective_cpumask(ctx->wq)); 5353 5354 mutex_unlock(&ctx->wq->mutex); 5355 } 5356 5357 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5358 const struct workqueue_attrs *attrs) 5359 { 5360 struct apply_wqattrs_ctx *ctx; 5361 5362 /* only unbound workqueues can change attributes */ 5363 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5364 return -EINVAL; 5365 5366 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5367 if (IS_ERR(ctx)) 5368 return PTR_ERR(ctx); 5369 5370 /* the ctx has been prepared successfully, let's commit it */ 5371 apply_wqattrs_commit(ctx); 5372 apply_wqattrs_cleanup(ctx); 5373 5374 return 0; 5375 } 5376 5377 /** 5378 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5379 * @wq: the target workqueue 5380 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5381 * 5382 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5383 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5384 * work items are affine to the pod it was issued on. Older pwqs are released as 5385 * in-flight work items finish. Note that a work item which repeatedly requeues 5386 * itself back-to-back will stay on its current pwq. 5387 * 5388 * Performs GFP_KERNEL allocations. 5389 * 5390 * Return: 0 on success and -errno on failure. 5391 */ 5392 int apply_workqueue_attrs(struct workqueue_struct *wq, 5393 const struct workqueue_attrs *attrs) 5394 { 5395 int ret; 5396 5397 mutex_lock(&wq_pool_mutex); 5398 ret = apply_workqueue_attrs_locked(wq, attrs); 5399 mutex_unlock(&wq_pool_mutex); 5400 5401 return ret; 5402 } 5403 5404 /** 5405 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5406 * @wq: the target workqueue 5407 * @cpu: the CPU to update the pwq slot for 5408 * 5409 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5410 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5411 * 5412 * 5413 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5414 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5415 * 5416 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5417 * with a cpumask spanning multiple pods, the workers which were already 5418 * executing the work items for the workqueue will lose their CPU affinity and 5419 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5420 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5421 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5422 */ 5423 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5424 { 5425 struct pool_workqueue *old_pwq = NULL, *pwq; 5426 struct workqueue_attrs *target_attrs; 5427 5428 lockdep_assert_held(&wq_pool_mutex); 5429 5430 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5431 return; 5432 5433 /* 5434 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5435 * Let's use a preallocated one. The following buf is protected by 5436 * CPU hotplug exclusion. 5437 */ 5438 target_attrs = unbound_wq_update_pwq_attrs_buf; 5439 5440 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5441 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5442 5443 /* nothing to do if the target cpumask matches the current pwq */ 5444 wq_calc_pod_cpumask(target_attrs, cpu); 5445 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5446 return; 5447 5448 /* create a new pwq */ 5449 pwq = alloc_unbound_pwq(wq, target_attrs); 5450 if (!pwq) { 5451 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5452 wq->name); 5453 goto use_dfl_pwq; 5454 } 5455 5456 /* Install the new pwq. */ 5457 mutex_lock(&wq->mutex); 5458 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5459 goto out_unlock; 5460 5461 use_dfl_pwq: 5462 mutex_lock(&wq->mutex); 5463 pwq = unbound_pwq(wq, -1); 5464 raw_spin_lock_irq(&pwq->pool->lock); 5465 get_pwq(pwq); 5466 raw_spin_unlock_irq(&pwq->pool->lock); 5467 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5468 out_unlock: 5469 mutex_unlock(&wq->mutex); 5470 put_pwq_unlocked(old_pwq); 5471 } 5472 5473 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5474 { 5475 bool highpri = wq->flags & WQ_HIGHPRI; 5476 int cpu, ret; 5477 5478 lockdep_assert_held(&wq_pool_mutex); 5479 5480 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5481 if (!wq->cpu_pwq) 5482 goto enomem; 5483 5484 if (!(wq->flags & WQ_UNBOUND)) { 5485 struct worker_pool __percpu *pools; 5486 5487 if (wq->flags & WQ_BH) 5488 pools = bh_worker_pools; 5489 else 5490 pools = cpu_worker_pools; 5491 5492 for_each_possible_cpu(cpu) { 5493 struct pool_workqueue **pwq_p; 5494 struct worker_pool *pool; 5495 5496 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5497 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5498 5499 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5500 pool->node); 5501 if (!*pwq_p) 5502 goto enomem; 5503 5504 init_pwq(*pwq_p, wq, pool); 5505 5506 mutex_lock(&wq->mutex); 5507 link_pwq(*pwq_p); 5508 mutex_unlock(&wq->mutex); 5509 } 5510 return 0; 5511 } 5512 5513 if (wq->flags & __WQ_ORDERED) { 5514 struct pool_workqueue *dfl_pwq; 5515 5516 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5517 /* there should only be single pwq for ordering guarantee */ 5518 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5519 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5520 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5521 "ordering guarantee broken for workqueue %s\n", wq->name); 5522 } else { 5523 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5524 } 5525 5526 return ret; 5527 5528 enomem: 5529 if (wq->cpu_pwq) { 5530 for_each_possible_cpu(cpu) { 5531 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5532 5533 if (pwq) 5534 kmem_cache_free(pwq_cache, pwq); 5535 } 5536 free_percpu(wq->cpu_pwq); 5537 wq->cpu_pwq = NULL; 5538 } 5539 return -ENOMEM; 5540 } 5541 5542 static int wq_clamp_max_active(int max_active, unsigned int flags, 5543 const char *name) 5544 { 5545 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5546 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5547 max_active, name, 1, WQ_MAX_ACTIVE); 5548 5549 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5550 } 5551 5552 /* 5553 * Workqueues which may be used during memory reclaim should have a rescuer 5554 * to guarantee forward progress. 5555 */ 5556 static int init_rescuer(struct workqueue_struct *wq) 5557 { 5558 struct worker *rescuer; 5559 char id_buf[WORKER_ID_LEN]; 5560 int ret; 5561 5562 lockdep_assert_held(&wq_pool_mutex); 5563 5564 if (!(wq->flags & WQ_MEM_RECLAIM)) 5565 return 0; 5566 5567 rescuer = alloc_worker(NUMA_NO_NODE); 5568 if (!rescuer) { 5569 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5570 wq->name); 5571 return -ENOMEM; 5572 } 5573 5574 rescuer->rescue_wq = wq; 5575 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5576 5577 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5578 if (IS_ERR(rescuer->task)) { 5579 ret = PTR_ERR(rescuer->task); 5580 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5581 wq->name, ERR_PTR(ret)); 5582 kfree(rescuer); 5583 return ret; 5584 } 5585 5586 wq->rescuer = rescuer; 5587 if (wq->flags & WQ_UNBOUND) 5588 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5589 else 5590 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5591 wake_up_process(rescuer->task); 5592 5593 return 0; 5594 } 5595 5596 /** 5597 * wq_adjust_max_active - update a wq's max_active to the current setting 5598 * @wq: target workqueue 5599 * 5600 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5601 * activate inactive work items accordingly. If @wq is freezing, clear 5602 * @wq->max_active to zero. 5603 */ 5604 static void wq_adjust_max_active(struct workqueue_struct *wq) 5605 { 5606 bool activated; 5607 int new_max, new_min; 5608 5609 lockdep_assert_held(&wq->mutex); 5610 5611 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5612 new_max = 0; 5613 new_min = 0; 5614 } else { 5615 new_max = wq->saved_max_active; 5616 new_min = wq->saved_min_active; 5617 } 5618 5619 if (wq->max_active == new_max && wq->min_active == new_min) 5620 return; 5621 5622 /* 5623 * Update @wq->max/min_active and then kick inactive work items if more 5624 * active work items are allowed. This doesn't break work item ordering 5625 * because new work items are always queued behind existing inactive 5626 * work items if there are any. 5627 */ 5628 WRITE_ONCE(wq->max_active, new_max); 5629 WRITE_ONCE(wq->min_active, new_min); 5630 5631 if (wq->flags & WQ_UNBOUND) 5632 wq_update_node_max_active(wq, -1); 5633 5634 if (new_max == 0) 5635 return; 5636 5637 /* 5638 * Round-robin through pwq's activating the first inactive work item 5639 * until max_active is filled. 5640 */ 5641 do { 5642 struct pool_workqueue *pwq; 5643 5644 activated = false; 5645 for_each_pwq(pwq, wq) { 5646 unsigned long irq_flags; 5647 5648 /* can be called during early boot w/ irq disabled */ 5649 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5650 if (pwq_activate_first_inactive(pwq, true)) { 5651 activated = true; 5652 kick_pool(pwq->pool); 5653 } 5654 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5655 } 5656 } while (activated); 5657 } 5658 5659 __printf(1, 0) 5660 static struct workqueue_struct *__alloc_workqueue(const char *fmt, 5661 unsigned int flags, 5662 int max_active, va_list args) 5663 { 5664 struct workqueue_struct *wq; 5665 size_t wq_size; 5666 int name_len; 5667 5668 if (flags & WQ_BH) { 5669 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5670 return NULL; 5671 if (WARN_ON_ONCE(max_active)) 5672 return NULL; 5673 } 5674 5675 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5676 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5677 flags |= WQ_UNBOUND; 5678 5679 /* allocate wq and format name */ 5680 if (flags & WQ_UNBOUND) 5681 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5682 else 5683 wq_size = sizeof(*wq); 5684 5685 wq = kzalloc(wq_size, GFP_KERNEL); 5686 if (!wq) 5687 return NULL; 5688 5689 if (flags & WQ_UNBOUND) { 5690 wq->unbound_attrs = alloc_workqueue_attrs(); 5691 if (!wq->unbound_attrs) 5692 goto err_free_wq; 5693 } 5694 5695 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5696 5697 if (name_len >= WQ_NAME_LEN) 5698 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5699 wq->name); 5700 5701 if (flags & WQ_BH) { 5702 /* 5703 * BH workqueues always share a single execution context per CPU 5704 * and don't impose any max_active limit. 5705 */ 5706 max_active = INT_MAX; 5707 } else { 5708 max_active = max_active ?: WQ_DFL_ACTIVE; 5709 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5710 } 5711 5712 /* init wq */ 5713 wq->flags = flags; 5714 wq->max_active = max_active; 5715 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5716 wq->saved_max_active = wq->max_active; 5717 wq->saved_min_active = wq->min_active; 5718 mutex_init(&wq->mutex); 5719 atomic_set(&wq->nr_pwqs_to_flush, 0); 5720 INIT_LIST_HEAD(&wq->pwqs); 5721 INIT_LIST_HEAD(&wq->flusher_queue); 5722 INIT_LIST_HEAD(&wq->flusher_overflow); 5723 INIT_LIST_HEAD(&wq->maydays); 5724 5725 INIT_LIST_HEAD(&wq->list); 5726 5727 if (flags & WQ_UNBOUND) { 5728 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5729 goto err_free_wq; 5730 } 5731 5732 /* 5733 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5734 * and the global freeze state. 5735 */ 5736 apply_wqattrs_lock(); 5737 5738 if (alloc_and_link_pwqs(wq) < 0) 5739 goto err_unlock_free_node_nr_active; 5740 5741 mutex_lock(&wq->mutex); 5742 wq_adjust_max_active(wq); 5743 mutex_unlock(&wq->mutex); 5744 5745 list_add_tail_rcu(&wq->list, &workqueues); 5746 5747 if (wq_online && init_rescuer(wq) < 0) 5748 goto err_unlock_destroy; 5749 5750 apply_wqattrs_unlock(); 5751 5752 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5753 goto err_destroy; 5754 5755 return wq; 5756 5757 err_unlock_free_node_nr_active: 5758 apply_wqattrs_unlock(); 5759 /* 5760 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5761 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5762 * completes before calling kfree(wq). 5763 */ 5764 if (wq->flags & WQ_UNBOUND) { 5765 kthread_flush_worker(pwq_release_worker); 5766 free_node_nr_active(wq->node_nr_active); 5767 } 5768 err_free_wq: 5769 free_workqueue_attrs(wq->unbound_attrs); 5770 kfree(wq); 5771 return NULL; 5772 err_unlock_destroy: 5773 apply_wqattrs_unlock(); 5774 err_destroy: 5775 destroy_workqueue(wq); 5776 return NULL; 5777 } 5778 5779 __printf(1, 4) 5780 struct workqueue_struct *alloc_workqueue(const char *fmt, 5781 unsigned int flags, 5782 int max_active, ...) 5783 { 5784 struct workqueue_struct *wq; 5785 va_list args; 5786 5787 va_start(args, max_active); 5788 wq = __alloc_workqueue(fmt, flags, max_active, args); 5789 va_end(args); 5790 if (!wq) 5791 return NULL; 5792 5793 wq_init_lockdep(wq); 5794 5795 return wq; 5796 } 5797 EXPORT_SYMBOL_GPL(alloc_workqueue); 5798 5799 #ifdef CONFIG_LOCKDEP 5800 __printf(1, 5) 5801 struct workqueue_struct * 5802 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags, 5803 int max_active, struct lockdep_map *lockdep_map, ...) 5804 { 5805 struct workqueue_struct *wq; 5806 va_list args; 5807 5808 va_start(args, lockdep_map); 5809 wq = __alloc_workqueue(fmt, flags, max_active, args); 5810 va_end(args); 5811 if (!wq) 5812 return NULL; 5813 5814 wq->lockdep_map = lockdep_map; 5815 5816 return wq; 5817 } 5818 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map); 5819 #endif 5820 5821 static bool pwq_busy(struct pool_workqueue *pwq) 5822 { 5823 int i; 5824 5825 for (i = 0; i < WORK_NR_COLORS; i++) 5826 if (pwq->nr_in_flight[i]) 5827 return true; 5828 5829 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5830 return true; 5831 if (!pwq_is_empty(pwq)) 5832 return true; 5833 5834 return false; 5835 } 5836 5837 /** 5838 * destroy_workqueue - safely terminate a workqueue 5839 * @wq: target workqueue 5840 * 5841 * Safely destroy a workqueue. All work currently pending will be done first. 5842 * 5843 * This function does NOT guarantee that non-pending work that has been 5844 * submitted with queue_delayed_work() and similar functions will be done 5845 * before destroying the workqueue. The fundamental problem is that, currently, 5846 * the workqueue has no way of accessing non-pending delayed_work. delayed_work 5847 * is only linked on the timer-side. All delayed_work must, therefore, be 5848 * canceled before calling this function. 5849 * 5850 * TODO: It would be better if the problem described above wouldn't exist and 5851 * destroy_workqueue() would cleanly cancel all pending and non-pending 5852 * delayed_work. 5853 */ 5854 void destroy_workqueue(struct workqueue_struct *wq) 5855 { 5856 struct pool_workqueue *pwq; 5857 int cpu; 5858 5859 /* 5860 * Remove it from sysfs first so that sanity check failure doesn't 5861 * lead to sysfs name conflicts. 5862 */ 5863 workqueue_sysfs_unregister(wq); 5864 5865 /* mark the workqueue destruction is in progress */ 5866 mutex_lock(&wq->mutex); 5867 wq->flags |= __WQ_DESTROYING; 5868 mutex_unlock(&wq->mutex); 5869 5870 /* drain it before proceeding with destruction */ 5871 drain_workqueue(wq); 5872 5873 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5874 if (wq->rescuer) { 5875 struct worker *rescuer = wq->rescuer; 5876 5877 /* this prevents new queueing */ 5878 raw_spin_lock_irq(&wq_mayday_lock); 5879 wq->rescuer = NULL; 5880 raw_spin_unlock_irq(&wq_mayday_lock); 5881 5882 /* rescuer will empty maydays list before exiting */ 5883 kthread_stop(rescuer->task); 5884 kfree(rescuer); 5885 } 5886 5887 /* 5888 * Sanity checks - grab all the locks so that we wait for all 5889 * in-flight operations which may do put_pwq(). 5890 */ 5891 mutex_lock(&wq_pool_mutex); 5892 mutex_lock(&wq->mutex); 5893 for_each_pwq(pwq, wq) { 5894 raw_spin_lock_irq(&pwq->pool->lock); 5895 if (WARN_ON(pwq_busy(pwq))) { 5896 pr_warn("%s: %s has the following busy pwq\n", 5897 __func__, wq->name); 5898 show_pwq(pwq); 5899 raw_spin_unlock_irq(&pwq->pool->lock); 5900 mutex_unlock(&wq->mutex); 5901 mutex_unlock(&wq_pool_mutex); 5902 show_one_workqueue(wq); 5903 return; 5904 } 5905 raw_spin_unlock_irq(&pwq->pool->lock); 5906 } 5907 mutex_unlock(&wq->mutex); 5908 5909 /* 5910 * wq list is used to freeze wq, remove from list after 5911 * flushing is complete in case freeze races us. 5912 */ 5913 list_del_rcu(&wq->list); 5914 mutex_unlock(&wq_pool_mutex); 5915 5916 /* 5917 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5918 * to put the base refs. @wq will be auto-destroyed from the last 5919 * pwq_put. RCU read lock prevents @wq from going away from under us. 5920 */ 5921 rcu_read_lock(); 5922 5923 for_each_possible_cpu(cpu) { 5924 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5925 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5926 } 5927 5928 put_pwq_unlocked(unbound_pwq(wq, -1)); 5929 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5930 5931 rcu_read_unlock(); 5932 } 5933 EXPORT_SYMBOL_GPL(destroy_workqueue); 5934 5935 /** 5936 * workqueue_set_max_active - adjust max_active of a workqueue 5937 * @wq: target workqueue 5938 * @max_active: new max_active value. 5939 * 5940 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5941 * comment. 5942 * 5943 * CONTEXT: 5944 * Don't call from IRQ context. 5945 */ 5946 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5947 { 5948 /* max_active doesn't mean anything for BH workqueues */ 5949 if (WARN_ON(wq->flags & WQ_BH)) 5950 return; 5951 /* disallow meddling with max_active for ordered workqueues */ 5952 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5953 return; 5954 5955 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5956 5957 mutex_lock(&wq->mutex); 5958 5959 wq->saved_max_active = max_active; 5960 if (wq->flags & WQ_UNBOUND) 5961 wq->saved_min_active = min(wq->saved_min_active, max_active); 5962 5963 wq_adjust_max_active(wq); 5964 5965 mutex_unlock(&wq->mutex); 5966 } 5967 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5968 5969 /** 5970 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5971 * @wq: target unbound workqueue 5972 * @min_active: new min_active value 5973 * 5974 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5975 * unbound workqueue is not guaranteed to be able to process max_active 5976 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5977 * able to process min_active number of interdependent work items which is 5978 * %WQ_DFL_MIN_ACTIVE by default. 5979 * 5980 * Use this function to adjust the min_active value between 0 and the current 5981 * max_active. 5982 */ 5983 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5984 { 5985 /* min_active is only meaningful for non-ordered unbound workqueues */ 5986 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5987 WQ_UNBOUND)) 5988 return; 5989 5990 mutex_lock(&wq->mutex); 5991 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5992 wq_adjust_max_active(wq); 5993 mutex_unlock(&wq->mutex); 5994 } 5995 5996 /** 5997 * current_work - retrieve %current task's work struct 5998 * 5999 * Determine if %current task is a workqueue worker and what it's working on. 6000 * Useful to find out the context that the %current task is running in. 6001 * 6002 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 6003 */ 6004 struct work_struct *current_work(void) 6005 { 6006 struct worker *worker = current_wq_worker(); 6007 6008 return worker ? worker->current_work : NULL; 6009 } 6010 EXPORT_SYMBOL(current_work); 6011 6012 /** 6013 * current_is_workqueue_rescuer - is %current workqueue rescuer? 6014 * 6015 * Determine whether %current is a workqueue rescuer. Can be used from 6016 * work functions to determine whether it's being run off the rescuer task. 6017 * 6018 * Return: %true if %current is a workqueue rescuer. %false otherwise. 6019 */ 6020 bool current_is_workqueue_rescuer(void) 6021 { 6022 struct worker *worker = current_wq_worker(); 6023 6024 return worker && worker->rescue_wq; 6025 } 6026 6027 /** 6028 * workqueue_congested - test whether a workqueue is congested 6029 * @cpu: CPU in question 6030 * @wq: target workqueue 6031 * 6032 * Test whether @wq's cpu workqueue for @cpu is congested. There is 6033 * no synchronization around this function and the test result is 6034 * unreliable and only useful as advisory hints or for debugging. 6035 * 6036 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 6037 * 6038 * With the exception of ordered workqueues, all workqueues have per-cpu 6039 * pool_workqueues, each with its own congested state. A workqueue being 6040 * congested on one CPU doesn't mean that the workqueue is contested on any 6041 * other CPUs. 6042 * 6043 * Return: 6044 * %true if congested, %false otherwise. 6045 */ 6046 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 6047 { 6048 struct pool_workqueue *pwq; 6049 bool ret; 6050 6051 rcu_read_lock(); 6052 preempt_disable(); 6053 6054 if (cpu == WORK_CPU_UNBOUND) 6055 cpu = smp_processor_id(); 6056 6057 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 6058 ret = !list_empty(&pwq->inactive_works); 6059 6060 preempt_enable(); 6061 rcu_read_unlock(); 6062 6063 return ret; 6064 } 6065 EXPORT_SYMBOL_GPL(workqueue_congested); 6066 6067 /** 6068 * work_busy - test whether a work is currently pending or running 6069 * @work: the work to be tested 6070 * 6071 * Test whether @work is currently pending or running. There is no 6072 * synchronization around this function and the test result is 6073 * unreliable and only useful as advisory hints or for debugging. 6074 * 6075 * Return: 6076 * OR'd bitmask of WORK_BUSY_* bits. 6077 */ 6078 unsigned int work_busy(struct work_struct *work) 6079 { 6080 struct worker_pool *pool; 6081 unsigned long irq_flags; 6082 unsigned int ret = 0; 6083 6084 if (work_pending(work)) 6085 ret |= WORK_BUSY_PENDING; 6086 6087 rcu_read_lock(); 6088 pool = get_work_pool(work); 6089 if (pool) { 6090 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6091 if (find_worker_executing_work(pool, work)) 6092 ret |= WORK_BUSY_RUNNING; 6093 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6094 } 6095 rcu_read_unlock(); 6096 6097 return ret; 6098 } 6099 EXPORT_SYMBOL_GPL(work_busy); 6100 6101 /** 6102 * set_worker_desc - set description for the current work item 6103 * @fmt: printf-style format string 6104 * @...: arguments for the format string 6105 * 6106 * This function can be called by a running work function to describe what 6107 * the work item is about. If the worker task gets dumped, this 6108 * information will be printed out together to help debugging. The 6109 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6110 */ 6111 void set_worker_desc(const char *fmt, ...) 6112 { 6113 struct worker *worker = current_wq_worker(); 6114 va_list args; 6115 6116 if (worker) { 6117 va_start(args, fmt); 6118 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6119 va_end(args); 6120 } 6121 } 6122 EXPORT_SYMBOL_GPL(set_worker_desc); 6123 6124 /** 6125 * print_worker_info - print out worker information and description 6126 * @log_lvl: the log level to use when printing 6127 * @task: target task 6128 * 6129 * If @task is a worker and currently executing a work item, print out the 6130 * name of the workqueue being serviced and worker description set with 6131 * set_worker_desc() by the currently executing work item. 6132 * 6133 * This function can be safely called on any task as long as the 6134 * task_struct itself is accessible. While safe, this function isn't 6135 * synchronized and may print out mixups or garbages of limited length. 6136 */ 6137 void print_worker_info(const char *log_lvl, struct task_struct *task) 6138 { 6139 work_func_t *fn = NULL; 6140 char name[WQ_NAME_LEN] = { }; 6141 char desc[WORKER_DESC_LEN] = { }; 6142 struct pool_workqueue *pwq = NULL; 6143 struct workqueue_struct *wq = NULL; 6144 struct worker *worker; 6145 6146 if (!(task->flags & PF_WQ_WORKER)) 6147 return; 6148 6149 /* 6150 * This function is called without any synchronization and @task 6151 * could be in any state. Be careful with dereferences. 6152 */ 6153 worker = kthread_probe_data(task); 6154 6155 /* 6156 * Carefully copy the associated workqueue's workfn, name and desc. 6157 * Keep the original last '\0' in case the original is garbage. 6158 */ 6159 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6160 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6161 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6162 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6163 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6164 6165 if (fn || name[0] || desc[0]) { 6166 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6167 if (strcmp(name, desc)) 6168 pr_cont(" (%s)", desc); 6169 pr_cont("\n"); 6170 } 6171 } 6172 6173 static void pr_cont_pool_info(struct worker_pool *pool) 6174 { 6175 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6176 if (pool->node != NUMA_NO_NODE) 6177 pr_cont(" node=%d", pool->node); 6178 pr_cont(" flags=0x%x", pool->flags); 6179 if (pool->flags & POOL_BH) 6180 pr_cont(" bh%s", 6181 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6182 else 6183 pr_cont(" nice=%d", pool->attrs->nice); 6184 } 6185 6186 static void pr_cont_worker_id(struct worker *worker) 6187 { 6188 struct worker_pool *pool = worker->pool; 6189 6190 if (pool->flags & WQ_BH) 6191 pr_cont("bh%s", 6192 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6193 else 6194 pr_cont("%d%s", task_pid_nr(worker->task), 6195 worker->rescue_wq ? "(RESCUER)" : ""); 6196 } 6197 6198 struct pr_cont_work_struct { 6199 bool comma; 6200 work_func_t func; 6201 long ctr; 6202 }; 6203 6204 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6205 { 6206 if (!pcwsp->ctr) 6207 goto out_record; 6208 if (func == pcwsp->func) { 6209 pcwsp->ctr++; 6210 return; 6211 } 6212 if (pcwsp->ctr == 1) 6213 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6214 else 6215 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6216 pcwsp->ctr = 0; 6217 out_record: 6218 if ((long)func == -1L) 6219 return; 6220 pcwsp->comma = comma; 6221 pcwsp->func = func; 6222 pcwsp->ctr = 1; 6223 } 6224 6225 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6226 { 6227 if (work->func == wq_barrier_func) { 6228 struct wq_barrier *barr; 6229 6230 barr = container_of(work, struct wq_barrier, work); 6231 6232 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6233 pr_cont("%s BAR(%d)", comma ? "," : "", 6234 task_pid_nr(barr->task)); 6235 } else { 6236 if (!comma) 6237 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6238 pr_cont_work_flush(comma, work->func, pcwsp); 6239 } 6240 } 6241 6242 static void show_pwq(struct pool_workqueue *pwq) 6243 { 6244 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6245 struct worker_pool *pool = pwq->pool; 6246 struct work_struct *work; 6247 struct worker *worker; 6248 bool has_in_flight = false, has_pending = false; 6249 int bkt; 6250 6251 pr_info(" pwq %d:", pool->id); 6252 pr_cont_pool_info(pool); 6253 6254 pr_cont(" active=%d refcnt=%d%s\n", 6255 pwq->nr_active, pwq->refcnt, 6256 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6257 6258 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6259 if (worker->current_pwq == pwq) { 6260 has_in_flight = true; 6261 break; 6262 } 6263 } 6264 if (has_in_flight) { 6265 bool comma = false; 6266 6267 pr_info(" in-flight:"); 6268 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6269 if (worker->current_pwq != pwq) 6270 continue; 6271 6272 pr_cont(" %s", comma ? "," : ""); 6273 pr_cont_worker_id(worker); 6274 pr_cont(":%ps", worker->current_func); 6275 list_for_each_entry(work, &worker->scheduled, entry) 6276 pr_cont_work(false, work, &pcws); 6277 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6278 comma = true; 6279 } 6280 pr_cont("\n"); 6281 } 6282 6283 list_for_each_entry(work, &pool->worklist, entry) { 6284 if (get_work_pwq(work) == pwq) { 6285 has_pending = true; 6286 break; 6287 } 6288 } 6289 if (has_pending) { 6290 bool comma = false; 6291 6292 pr_info(" pending:"); 6293 list_for_each_entry(work, &pool->worklist, entry) { 6294 if (get_work_pwq(work) != pwq) 6295 continue; 6296 6297 pr_cont_work(comma, work, &pcws); 6298 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6299 } 6300 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6301 pr_cont("\n"); 6302 } 6303 6304 if (!list_empty(&pwq->inactive_works)) { 6305 bool comma = false; 6306 6307 pr_info(" inactive:"); 6308 list_for_each_entry(work, &pwq->inactive_works, entry) { 6309 pr_cont_work(comma, work, &pcws); 6310 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6311 } 6312 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6313 pr_cont("\n"); 6314 } 6315 } 6316 6317 /** 6318 * show_one_workqueue - dump state of specified workqueue 6319 * @wq: workqueue whose state will be printed 6320 */ 6321 void show_one_workqueue(struct workqueue_struct *wq) 6322 { 6323 struct pool_workqueue *pwq; 6324 bool idle = true; 6325 unsigned long irq_flags; 6326 6327 for_each_pwq(pwq, wq) { 6328 if (!pwq_is_empty(pwq)) { 6329 idle = false; 6330 break; 6331 } 6332 } 6333 if (idle) /* Nothing to print for idle workqueue */ 6334 return; 6335 6336 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6337 6338 for_each_pwq(pwq, wq) { 6339 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6340 if (!pwq_is_empty(pwq)) { 6341 /* 6342 * Defer printing to avoid deadlocks in console 6343 * drivers that queue work while holding locks 6344 * also taken in their write paths. 6345 */ 6346 printk_deferred_enter(); 6347 show_pwq(pwq); 6348 printk_deferred_exit(); 6349 } 6350 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6351 /* 6352 * We could be printing a lot from atomic context, e.g. 6353 * sysrq-t -> show_all_workqueues(). Avoid triggering 6354 * hard lockup. 6355 */ 6356 touch_nmi_watchdog(); 6357 } 6358 6359 } 6360 6361 /** 6362 * show_one_worker_pool - dump state of specified worker pool 6363 * @pool: worker pool whose state will be printed 6364 */ 6365 static void show_one_worker_pool(struct worker_pool *pool) 6366 { 6367 struct worker *worker; 6368 bool first = true; 6369 unsigned long irq_flags; 6370 unsigned long hung = 0; 6371 6372 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6373 if (pool->nr_workers == pool->nr_idle) 6374 goto next_pool; 6375 6376 /* How long the first pending work is waiting for a worker. */ 6377 if (!list_empty(&pool->worklist)) 6378 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6379 6380 /* 6381 * Defer printing to avoid deadlocks in console drivers that 6382 * queue work while holding locks also taken in their write 6383 * paths. 6384 */ 6385 printk_deferred_enter(); 6386 pr_info("pool %d:", pool->id); 6387 pr_cont_pool_info(pool); 6388 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6389 if (pool->manager) 6390 pr_cont(" manager: %d", 6391 task_pid_nr(pool->manager->task)); 6392 list_for_each_entry(worker, &pool->idle_list, entry) { 6393 pr_cont(" %s", first ? "idle: " : ""); 6394 pr_cont_worker_id(worker); 6395 first = false; 6396 } 6397 pr_cont("\n"); 6398 printk_deferred_exit(); 6399 next_pool: 6400 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6401 /* 6402 * We could be printing a lot from atomic context, e.g. 6403 * sysrq-t -> show_all_workqueues(). Avoid triggering 6404 * hard lockup. 6405 */ 6406 touch_nmi_watchdog(); 6407 6408 } 6409 6410 /** 6411 * show_all_workqueues - dump workqueue state 6412 * 6413 * Called from a sysrq handler and prints out all busy workqueues and pools. 6414 */ 6415 void show_all_workqueues(void) 6416 { 6417 struct workqueue_struct *wq; 6418 struct worker_pool *pool; 6419 int pi; 6420 6421 rcu_read_lock(); 6422 6423 pr_info("Showing busy workqueues and worker pools:\n"); 6424 6425 list_for_each_entry_rcu(wq, &workqueues, list) 6426 show_one_workqueue(wq); 6427 6428 for_each_pool(pool, pi) 6429 show_one_worker_pool(pool); 6430 6431 rcu_read_unlock(); 6432 } 6433 6434 /** 6435 * show_freezable_workqueues - dump freezable workqueue state 6436 * 6437 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6438 * still busy. 6439 */ 6440 void show_freezable_workqueues(void) 6441 { 6442 struct workqueue_struct *wq; 6443 6444 rcu_read_lock(); 6445 6446 pr_info("Showing freezable workqueues that are still busy:\n"); 6447 6448 list_for_each_entry_rcu(wq, &workqueues, list) { 6449 if (!(wq->flags & WQ_FREEZABLE)) 6450 continue; 6451 show_one_workqueue(wq); 6452 } 6453 6454 rcu_read_unlock(); 6455 } 6456 6457 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6458 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6459 { 6460 /* stabilize PF_WQ_WORKER and worker pool association */ 6461 mutex_lock(&wq_pool_attach_mutex); 6462 6463 if (task->flags & PF_WQ_WORKER) { 6464 struct worker *worker = kthread_data(task); 6465 struct worker_pool *pool = worker->pool; 6466 int off; 6467 6468 off = format_worker_id(buf, size, worker, pool); 6469 6470 if (pool) { 6471 raw_spin_lock_irq(&pool->lock); 6472 /* 6473 * ->desc tracks information (wq name or 6474 * set_worker_desc()) for the latest execution. If 6475 * current, prepend '+', otherwise '-'. 6476 */ 6477 if (worker->desc[0] != '\0') { 6478 if (worker->current_work) 6479 scnprintf(buf + off, size - off, "+%s", 6480 worker->desc); 6481 else 6482 scnprintf(buf + off, size - off, "-%s", 6483 worker->desc); 6484 } 6485 raw_spin_unlock_irq(&pool->lock); 6486 } 6487 } else { 6488 strscpy(buf, task->comm, size); 6489 } 6490 6491 mutex_unlock(&wq_pool_attach_mutex); 6492 } 6493 6494 #ifdef CONFIG_SMP 6495 6496 /* 6497 * CPU hotplug. 6498 * 6499 * There are two challenges in supporting CPU hotplug. Firstly, there 6500 * are a lot of assumptions on strong associations among work, pwq and 6501 * pool which make migrating pending and scheduled works very 6502 * difficult to implement without impacting hot paths. Secondly, 6503 * worker pools serve mix of short, long and very long running works making 6504 * blocked draining impractical. 6505 * 6506 * This is solved by allowing the pools to be disassociated from the CPU 6507 * running as an unbound one and allowing it to be reattached later if the 6508 * cpu comes back online. 6509 */ 6510 6511 static void unbind_workers(int cpu) 6512 { 6513 struct worker_pool *pool; 6514 struct worker *worker; 6515 6516 for_each_cpu_worker_pool(pool, cpu) { 6517 mutex_lock(&wq_pool_attach_mutex); 6518 raw_spin_lock_irq(&pool->lock); 6519 6520 /* 6521 * We've blocked all attach/detach operations. Make all workers 6522 * unbound and set DISASSOCIATED. Before this, all workers 6523 * must be on the cpu. After this, they may become diasporas. 6524 * And the preemption disabled section in their sched callbacks 6525 * are guaranteed to see WORKER_UNBOUND since the code here 6526 * is on the same cpu. 6527 */ 6528 for_each_pool_worker(worker, pool) 6529 worker->flags |= WORKER_UNBOUND; 6530 6531 pool->flags |= POOL_DISASSOCIATED; 6532 6533 /* 6534 * The handling of nr_running in sched callbacks are disabled 6535 * now. Zap nr_running. After this, nr_running stays zero and 6536 * need_more_worker() and keep_working() are always true as 6537 * long as the worklist is not empty. This pool now behaves as 6538 * an unbound (in terms of concurrency management) pool which 6539 * are served by workers tied to the pool. 6540 */ 6541 pool->nr_running = 0; 6542 6543 /* 6544 * With concurrency management just turned off, a busy 6545 * worker blocking could lead to lengthy stalls. Kick off 6546 * unbound chain execution of currently pending work items. 6547 */ 6548 kick_pool(pool); 6549 6550 raw_spin_unlock_irq(&pool->lock); 6551 6552 for_each_pool_worker(worker, pool) 6553 unbind_worker(worker); 6554 6555 mutex_unlock(&wq_pool_attach_mutex); 6556 } 6557 } 6558 6559 /** 6560 * rebind_workers - rebind all workers of a pool to the associated CPU 6561 * @pool: pool of interest 6562 * 6563 * @pool->cpu is coming online. Rebind all workers to the CPU. 6564 */ 6565 static void rebind_workers(struct worker_pool *pool) 6566 { 6567 struct worker *worker; 6568 6569 lockdep_assert_held(&wq_pool_attach_mutex); 6570 6571 /* 6572 * Restore CPU affinity of all workers. As all idle workers should 6573 * be on the run-queue of the associated CPU before any local 6574 * wake-ups for concurrency management happen, restore CPU affinity 6575 * of all workers first and then clear UNBOUND. As we're called 6576 * from CPU_ONLINE, the following shouldn't fail. 6577 */ 6578 for_each_pool_worker(worker, pool) { 6579 kthread_set_per_cpu(worker->task, pool->cpu); 6580 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6581 pool_allowed_cpus(pool)) < 0); 6582 } 6583 6584 raw_spin_lock_irq(&pool->lock); 6585 6586 pool->flags &= ~POOL_DISASSOCIATED; 6587 6588 for_each_pool_worker(worker, pool) { 6589 unsigned int worker_flags = worker->flags; 6590 6591 /* 6592 * We want to clear UNBOUND but can't directly call 6593 * worker_clr_flags() or adjust nr_running. Atomically 6594 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6595 * @worker will clear REBOUND using worker_clr_flags() when 6596 * it initiates the next execution cycle thus restoring 6597 * concurrency management. Note that when or whether 6598 * @worker clears REBOUND doesn't affect correctness. 6599 * 6600 * WRITE_ONCE() is necessary because @worker->flags may be 6601 * tested without holding any lock in 6602 * wq_worker_running(). Without it, NOT_RUNNING test may 6603 * fail incorrectly leading to premature concurrency 6604 * management operations. 6605 */ 6606 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6607 worker_flags |= WORKER_REBOUND; 6608 worker_flags &= ~WORKER_UNBOUND; 6609 WRITE_ONCE(worker->flags, worker_flags); 6610 } 6611 6612 raw_spin_unlock_irq(&pool->lock); 6613 } 6614 6615 /** 6616 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6617 * @pool: unbound pool of interest 6618 * @cpu: the CPU which is coming up 6619 * 6620 * An unbound pool may end up with a cpumask which doesn't have any online 6621 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6622 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6623 * online CPU before, cpus_allowed of all its workers should be restored. 6624 */ 6625 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6626 { 6627 static cpumask_t cpumask; 6628 struct worker *worker; 6629 6630 lockdep_assert_held(&wq_pool_attach_mutex); 6631 6632 /* is @cpu allowed for @pool? */ 6633 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6634 return; 6635 6636 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6637 6638 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6639 for_each_pool_worker(worker, pool) 6640 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6641 } 6642 6643 int workqueue_prepare_cpu(unsigned int cpu) 6644 { 6645 struct worker_pool *pool; 6646 6647 for_each_cpu_worker_pool(pool, cpu) { 6648 if (pool->nr_workers) 6649 continue; 6650 if (!create_worker(pool)) 6651 return -ENOMEM; 6652 } 6653 return 0; 6654 } 6655 6656 int workqueue_online_cpu(unsigned int cpu) 6657 { 6658 struct worker_pool *pool; 6659 struct workqueue_struct *wq; 6660 int pi; 6661 6662 mutex_lock(&wq_pool_mutex); 6663 6664 cpumask_set_cpu(cpu, wq_online_cpumask); 6665 6666 for_each_pool(pool, pi) { 6667 /* BH pools aren't affected by hotplug */ 6668 if (pool->flags & POOL_BH) 6669 continue; 6670 6671 mutex_lock(&wq_pool_attach_mutex); 6672 if (pool->cpu == cpu) 6673 rebind_workers(pool); 6674 else if (pool->cpu < 0) 6675 restore_unbound_workers_cpumask(pool, cpu); 6676 mutex_unlock(&wq_pool_attach_mutex); 6677 } 6678 6679 /* update pod affinity of unbound workqueues */ 6680 list_for_each_entry(wq, &workqueues, list) { 6681 struct workqueue_attrs *attrs = wq->unbound_attrs; 6682 6683 if (attrs) { 6684 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6685 int tcpu; 6686 6687 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6688 unbound_wq_update_pwq(wq, tcpu); 6689 6690 mutex_lock(&wq->mutex); 6691 wq_update_node_max_active(wq, -1); 6692 mutex_unlock(&wq->mutex); 6693 } 6694 } 6695 6696 mutex_unlock(&wq_pool_mutex); 6697 return 0; 6698 } 6699 6700 int workqueue_offline_cpu(unsigned int cpu) 6701 { 6702 struct workqueue_struct *wq; 6703 6704 /* unbinding per-cpu workers should happen on the local CPU */ 6705 if (WARN_ON(cpu != smp_processor_id())) 6706 return -1; 6707 6708 unbind_workers(cpu); 6709 6710 /* update pod affinity of unbound workqueues */ 6711 mutex_lock(&wq_pool_mutex); 6712 6713 cpumask_clear_cpu(cpu, wq_online_cpumask); 6714 6715 list_for_each_entry(wq, &workqueues, list) { 6716 struct workqueue_attrs *attrs = wq->unbound_attrs; 6717 6718 if (attrs) { 6719 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6720 int tcpu; 6721 6722 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6723 unbound_wq_update_pwq(wq, tcpu); 6724 6725 mutex_lock(&wq->mutex); 6726 wq_update_node_max_active(wq, cpu); 6727 mutex_unlock(&wq->mutex); 6728 } 6729 } 6730 mutex_unlock(&wq_pool_mutex); 6731 6732 return 0; 6733 } 6734 6735 struct work_for_cpu { 6736 struct work_struct work; 6737 long (*fn)(void *); 6738 void *arg; 6739 long ret; 6740 }; 6741 6742 static void work_for_cpu_fn(struct work_struct *work) 6743 { 6744 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6745 6746 wfc->ret = wfc->fn(wfc->arg); 6747 } 6748 6749 /** 6750 * work_on_cpu_key - run a function in thread context on a particular cpu 6751 * @cpu: the cpu to run on 6752 * @fn: the function to run 6753 * @arg: the function arg 6754 * @key: The lock class key for lock debugging purposes 6755 * 6756 * It is up to the caller to ensure that the cpu doesn't go offline. 6757 * The caller must not hold any locks which would prevent @fn from completing. 6758 * 6759 * Return: The value @fn returns. 6760 */ 6761 long work_on_cpu_key(int cpu, long (*fn)(void *), 6762 void *arg, struct lock_class_key *key) 6763 { 6764 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6765 6766 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6767 schedule_work_on(cpu, &wfc.work); 6768 flush_work(&wfc.work); 6769 destroy_work_on_stack(&wfc.work); 6770 return wfc.ret; 6771 } 6772 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6773 6774 /** 6775 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6776 * @cpu: the cpu to run on 6777 * @fn: the function to run 6778 * @arg: the function argument 6779 * @key: The lock class key for lock debugging purposes 6780 * 6781 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6782 * any locks which would prevent @fn from completing. 6783 * 6784 * Return: The value @fn returns. 6785 */ 6786 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6787 void *arg, struct lock_class_key *key) 6788 { 6789 long ret = -ENODEV; 6790 6791 cpus_read_lock(); 6792 if (cpu_online(cpu)) 6793 ret = work_on_cpu_key(cpu, fn, arg, key); 6794 cpus_read_unlock(); 6795 return ret; 6796 } 6797 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6798 #endif /* CONFIG_SMP */ 6799 6800 #ifdef CONFIG_FREEZER 6801 6802 /** 6803 * freeze_workqueues_begin - begin freezing workqueues 6804 * 6805 * Start freezing workqueues. After this function returns, all freezable 6806 * workqueues will queue new works to their inactive_works list instead of 6807 * pool->worklist. 6808 * 6809 * CONTEXT: 6810 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6811 */ 6812 void freeze_workqueues_begin(void) 6813 { 6814 struct workqueue_struct *wq; 6815 6816 mutex_lock(&wq_pool_mutex); 6817 6818 WARN_ON_ONCE(workqueue_freezing); 6819 workqueue_freezing = true; 6820 6821 list_for_each_entry(wq, &workqueues, list) { 6822 mutex_lock(&wq->mutex); 6823 wq_adjust_max_active(wq); 6824 mutex_unlock(&wq->mutex); 6825 } 6826 6827 mutex_unlock(&wq_pool_mutex); 6828 } 6829 6830 /** 6831 * freeze_workqueues_busy - are freezable workqueues still busy? 6832 * 6833 * Check whether freezing is complete. This function must be called 6834 * between freeze_workqueues_begin() and thaw_workqueues(). 6835 * 6836 * CONTEXT: 6837 * Grabs and releases wq_pool_mutex. 6838 * 6839 * Return: 6840 * %true if some freezable workqueues are still busy. %false if freezing 6841 * is complete. 6842 */ 6843 bool freeze_workqueues_busy(void) 6844 { 6845 bool busy = false; 6846 struct workqueue_struct *wq; 6847 struct pool_workqueue *pwq; 6848 6849 mutex_lock(&wq_pool_mutex); 6850 6851 WARN_ON_ONCE(!workqueue_freezing); 6852 6853 list_for_each_entry(wq, &workqueues, list) { 6854 if (!(wq->flags & WQ_FREEZABLE)) 6855 continue; 6856 /* 6857 * nr_active is monotonically decreasing. It's safe 6858 * to peek without lock. 6859 */ 6860 rcu_read_lock(); 6861 for_each_pwq(pwq, wq) { 6862 WARN_ON_ONCE(pwq->nr_active < 0); 6863 if (pwq->nr_active) { 6864 busy = true; 6865 rcu_read_unlock(); 6866 goto out_unlock; 6867 } 6868 } 6869 rcu_read_unlock(); 6870 } 6871 out_unlock: 6872 mutex_unlock(&wq_pool_mutex); 6873 return busy; 6874 } 6875 6876 /** 6877 * thaw_workqueues - thaw workqueues 6878 * 6879 * Thaw workqueues. Normal queueing is restored and all collected 6880 * frozen works are transferred to their respective pool worklists. 6881 * 6882 * CONTEXT: 6883 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6884 */ 6885 void thaw_workqueues(void) 6886 { 6887 struct workqueue_struct *wq; 6888 6889 mutex_lock(&wq_pool_mutex); 6890 6891 if (!workqueue_freezing) 6892 goto out_unlock; 6893 6894 workqueue_freezing = false; 6895 6896 /* restore max_active and repopulate worklist */ 6897 list_for_each_entry(wq, &workqueues, list) { 6898 mutex_lock(&wq->mutex); 6899 wq_adjust_max_active(wq); 6900 mutex_unlock(&wq->mutex); 6901 } 6902 6903 out_unlock: 6904 mutex_unlock(&wq_pool_mutex); 6905 } 6906 #endif /* CONFIG_FREEZER */ 6907 6908 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6909 { 6910 LIST_HEAD(ctxs); 6911 int ret = 0; 6912 struct workqueue_struct *wq; 6913 struct apply_wqattrs_ctx *ctx, *n; 6914 6915 lockdep_assert_held(&wq_pool_mutex); 6916 6917 list_for_each_entry(wq, &workqueues, list) { 6918 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6919 continue; 6920 6921 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6922 if (IS_ERR(ctx)) { 6923 ret = PTR_ERR(ctx); 6924 break; 6925 } 6926 6927 list_add_tail(&ctx->list, &ctxs); 6928 } 6929 6930 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6931 if (!ret) 6932 apply_wqattrs_commit(ctx); 6933 apply_wqattrs_cleanup(ctx); 6934 } 6935 6936 if (!ret) { 6937 mutex_lock(&wq_pool_attach_mutex); 6938 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6939 mutex_unlock(&wq_pool_attach_mutex); 6940 } 6941 return ret; 6942 } 6943 6944 /** 6945 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6946 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6947 * 6948 * This function can be called from cpuset code to provide a set of isolated 6949 * CPUs that should be excluded from wq_unbound_cpumask. 6950 */ 6951 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6952 { 6953 cpumask_var_t cpumask; 6954 int ret = 0; 6955 6956 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6957 return -ENOMEM; 6958 6959 mutex_lock(&wq_pool_mutex); 6960 6961 /* 6962 * If the operation fails, it will fall back to 6963 * wq_requested_unbound_cpumask which is initially set to 6964 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6965 * by any subsequent write to workqueue/cpumask sysfs file. 6966 */ 6967 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6968 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6969 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6970 ret = workqueue_apply_unbound_cpumask(cpumask); 6971 6972 /* Save the current isolated cpumask & export it via sysfs */ 6973 if (!ret) 6974 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6975 6976 mutex_unlock(&wq_pool_mutex); 6977 free_cpumask_var(cpumask); 6978 return ret; 6979 } 6980 6981 static int parse_affn_scope(const char *val) 6982 { 6983 int i; 6984 6985 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6986 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6987 return i; 6988 } 6989 return -EINVAL; 6990 } 6991 6992 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6993 { 6994 struct workqueue_struct *wq; 6995 int affn, cpu; 6996 6997 affn = parse_affn_scope(val); 6998 if (affn < 0) 6999 return affn; 7000 if (affn == WQ_AFFN_DFL) 7001 return -EINVAL; 7002 7003 cpus_read_lock(); 7004 mutex_lock(&wq_pool_mutex); 7005 7006 wq_affn_dfl = affn; 7007 7008 list_for_each_entry(wq, &workqueues, list) { 7009 for_each_online_cpu(cpu) 7010 unbound_wq_update_pwq(wq, cpu); 7011 } 7012 7013 mutex_unlock(&wq_pool_mutex); 7014 cpus_read_unlock(); 7015 7016 return 0; 7017 } 7018 7019 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 7020 { 7021 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 7022 } 7023 7024 static const struct kernel_param_ops wq_affn_dfl_ops = { 7025 .set = wq_affn_dfl_set, 7026 .get = wq_affn_dfl_get, 7027 }; 7028 7029 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 7030 7031 #ifdef CONFIG_SYSFS 7032 /* 7033 * Workqueues with WQ_SYSFS flag set is visible to userland via 7034 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 7035 * following attributes. 7036 * 7037 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 7038 * max_active RW int : maximum number of in-flight work items 7039 * 7040 * Unbound workqueues have the following extra attributes. 7041 * 7042 * nice RW int : nice value of the workers 7043 * cpumask RW mask : bitmask of allowed CPUs for the workers 7044 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 7045 * affinity_strict RW bool : worker CPU affinity is strict 7046 */ 7047 struct wq_device { 7048 struct workqueue_struct *wq; 7049 struct device dev; 7050 }; 7051 7052 static struct workqueue_struct *dev_to_wq(struct device *dev) 7053 { 7054 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7055 7056 return wq_dev->wq; 7057 } 7058 7059 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 7060 char *buf) 7061 { 7062 struct workqueue_struct *wq = dev_to_wq(dev); 7063 7064 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 7065 } 7066 static DEVICE_ATTR_RO(per_cpu); 7067 7068 static ssize_t max_active_show(struct device *dev, 7069 struct device_attribute *attr, char *buf) 7070 { 7071 struct workqueue_struct *wq = dev_to_wq(dev); 7072 7073 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 7074 } 7075 7076 static ssize_t max_active_store(struct device *dev, 7077 struct device_attribute *attr, const char *buf, 7078 size_t count) 7079 { 7080 struct workqueue_struct *wq = dev_to_wq(dev); 7081 int val; 7082 7083 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7084 return -EINVAL; 7085 7086 workqueue_set_max_active(wq, val); 7087 return count; 7088 } 7089 static DEVICE_ATTR_RW(max_active); 7090 7091 static struct attribute *wq_sysfs_attrs[] = { 7092 &dev_attr_per_cpu.attr, 7093 &dev_attr_max_active.attr, 7094 NULL, 7095 }; 7096 ATTRIBUTE_GROUPS(wq_sysfs); 7097 7098 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7099 char *buf) 7100 { 7101 struct workqueue_struct *wq = dev_to_wq(dev); 7102 int written; 7103 7104 mutex_lock(&wq->mutex); 7105 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7106 mutex_unlock(&wq->mutex); 7107 7108 return written; 7109 } 7110 7111 /* prepare workqueue_attrs for sysfs store operations */ 7112 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7113 { 7114 struct workqueue_attrs *attrs; 7115 7116 lockdep_assert_held(&wq_pool_mutex); 7117 7118 attrs = alloc_workqueue_attrs(); 7119 if (!attrs) 7120 return NULL; 7121 7122 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7123 return attrs; 7124 } 7125 7126 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7127 const char *buf, size_t count) 7128 { 7129 struct workqueue_struct *wq = dev_to_wq(dev); 7130 struct workqueue_attrs *attrs; 7131 int ret = -ENOMEM; 7132 7133 apply_wqattrs_lock(); 7134 7135 attrs = wq_sysfs_prep_attrs(wq); 7136 if (!attrs) 7137 goto out_unlock; 7138 7139 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7140 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7141 ret = apply_workqueue_attrs_locked(wq, attrs); 7142 else 7143 ret = -EINVAL; 7144 7145 out_unlock: 7146 apply_wqattrs_unlock(); 7147 free_workqueue_attrs(attrs); 7148 return ret ?: count; 7149 } 7150 7151 static ssize_t wq_cpumask_show(struct device *dev, 7152 struct device_attribute *attr, char *buf) 7153 { 7154 struct workqueue_struct *wq = dev_to_wq(dev); 7155 int written; 7156 7157 mutex_lock(&wq->mutex); 7158 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7159 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7160 mutex_unlock(&wq->mutex); 7161 return written; 7162 } 7163 7164 static ssize_t wq_cpumask_store(struct device *dev, 7165 struct device_attribute *attr, 7166 const char *buf, size_t count) 7167 { 7168 struct workqueue_struct *wq = dev_to_wq(dev); 7169 struct workqueue_attrs *attrs; 7170 int ret = -ENOMEM; 7171 7172 apply_wqattrs_lock(); 7173 7174 attrs = wq_sysfs_prep_attrs(wq); 7175 if (!attrs) 7176 goto out_unlock; 7177 7178 ret = cpumask_parse(buf, attrs->cpumask); 7179 if (!ret) 7180 ret = apply_workqueue_attrs_locked(wq, attrs); 7181 7182 out_unlock: 7183 apply_wqattrs_unlock(); 7184 free_workqueue_attrs(attrs); 7185 return ret ?: count; 7186 } 7187 7188 static ssize_t wq_affn_scope_show(struct device *dev, 7189 struct device_attribute *attr, char *buf) 7190 { 7191 struct workqueue_struct *wq = dev_to_wq(dev); 7192 int written; 7193 7194 mutex_lock(&wq->mutex); 7195 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7196 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7197 wq_affn_names[WQ_AFFN_DFL], 7198 wq_affn_names[wq_affn_dfl]); 7199 else 7200 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7201 wq_affn_names[wq->unbound_attrs->affn_scope]); 7202 mutex_unlock(&wq->mutex); 7203 7204 return written; 7205 } 7206 7207 static ssize_t wq_affn_scope_store(struct device *dev, 7208 struct device_attribute *attr, 7209 const char *buf, size_t count) 7210 { 7211 struct workqueue_struct *wq = dev_to_wq(dev); 7212 struct workqueue_attrs *attrs; 7213 int affn, ret = -ENOMEM; 7214 7215 affn = parse_affn_scope(buf); 7216 if (affn < 0) 7217 return affn; 7218 7219 apply_wqattrs_lock(); 7220 attrs = wq_sysfs_prep_attrs(wq); 7221 if (attrs) { 7222 attrs->affn_scope = affn; 7223 ret = apply_workqueue_attrs_locked(wq, attrs); 7224 } 7225 apply_wqattrs_unlock(); 7226 free_workqueue_attrs(attrs); 7227 return ret ?: count; 7228 } 7229 7230 static ssize_t wq_affinity_strict_show(struct device *dev, 7231 struct device_attribute *attr, char *buf) 7232 { 7233 struct workqueue_struct *wq = dev_to_wq(dev); 7234 7235 return scnprintf(buf, PAGE_SIZE, "%d\n", 7236 wq->unbound_attrs->affn_strict); 7237 } 7238 7239 static ssize_t wq_affinity_strict_store(struct device *dev, 7240 struct device_attribute *attr, 7241 const char *buf, size_t count) 7242 { 7243 struct workqueue_struct *wq = dev_to_wq(dev); 7244 struct workqueue_attrs *attrs; 7245 int v, ret = -ENOMEM; 7246 7247 if (sscanf(buf, "%d", &v) != 1) 7248 return -EINVAL; 7249 7250 apply_wqattrs_lock(); 7251 attrs = wq_sysfs_prep_attrs(wq); 7252 if (attrs) { 7253 attrs->affn_strict = (bool)v; 7254 ret = apply_workqueue_attrs_locked(wq, attrs); 7255 } 7256 apply_wqattrs_unlock(); 7257 free_workqueue_attrs(attrs); 7258 return ret ?: count; 7259 } 7260 7261 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7262 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7263 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7264 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7265 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7266 __ATTR_NULL, 7267 }; 7268 7269 static const struct bus_type wq_subsys = { 7270 .name = "workqueue", 7271 .dev_groups = wq_sysfs_groups, 7272 }; 7273 7274 /** 7275 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7276 * @cpumask: the cpumask to set 7277 * 7278 * The low-level workqueues cpumask is a global cpumask that limits 7279 * the affinity of all unbound workqueues. This function check the @cpumask 7280 * and apply it to all unbound workqueues and updates all pwqs of them. 7281 * 7282 * Return: 0 - Success 7283 * -EINVAL - Invalid @cpumask 7284 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7285 */ 7286 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7287 { 7288 int ret = -EINVAL; 7289 7290 /* 7291 * Not excluding isolated cpus on purpose. 7292 * If the user wishes to include them, we allow that. 7293 */ 7294 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7295 if (!cpumask_empty(cpumask)) { 7296 ret = 0; 7297 apply_wqattrs_lock(); 7298 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7299 ret = workqueue_apply_unbound_cpumask(cpumask); 7300 if (!ret) 7301 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7302 apply_wqattrs_unlock(); 7303 } 7304 7305 return ret; 7306 } 7307 7308 static ssize_t __wq_cpumask_show(struct device *dev, 7309 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7310 { 7311 int written; 7312 7313 mutex_lock(&wq_pool_mutex); 7314 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7315 mutex_unlock(&wq_pool_mutex); 7316 7317 return written; 7318 } 7319 7320 static ssize_t cpumask_requested_show(struct device *dev, 7321 struct device_attribute *attr, char *buf) 7322 { 7323 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7324 } 7325 static DEVICE_ATTR_RO(cpumask_requested); 7326 7327 static ssize_t cpumask_isolated_show(struct device *dev, 7328 struct device_attribute *attr, char *buf) 7329 { 7330 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7331 } 7332 static DEVICE_ATTR_RO(cpumask_isolated); 7333 7334 static ssize_t cpumask_show(struct device *dev, 7335 struct device_attribute *attr, char *buf) 7336 { 7337 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7338 } 7339 7340 static ssize_t cpumask_store(struct device *dev, 7341 struct device_attribute *attr, const char *buf, size_t count) 7342 { 7343 cpumask_var_t cpumask; 7344 int ret; 7345 7346 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7347 return -ENOMEM; 7348 7349 ret = cpumask_parse(buf, cpumask); 7350 if (!ret) 7351 ret = workqueue_set_unbound_cpumask(cpumask); 7352 7353 free_cpumask_var(cpumask); 7354 return ret ? ret : count; 7355 } 7356 static DEVICE_ATTR_RW(cpumask); 7357 7358 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7359 &dev_attr_cpumask.attr, 7360 &dev_attr_cpumask_requested.attr, 7361 &dev_attr_cpumask_isolated.attr, 7362 NULL, 7363 }; 7364 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7365 7366 static int __init wq_sysfs_init(void) 7367 { 7368 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7369 } 7370 core_initcall(wq_sysfs_init); 7371 7372 static void wq_device_release(struct device *dev) 7373 { 7374 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7375 7376 kfree(wq_dev); 7377 } 7378 7379 /** 7380 * workqueue_sysfs_register - make a workqueue visible in sysfs 7381 * @wq: the workqueue to register 7382 * 7383 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7384 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7385 * which is the preferred method. 7386 * 7387 * Workqueue user should use this function directly iff it wants to apply 7388 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7389 * apply_workqueue_attrs() may race against userland updating the 7390 * attributes. 7391 * 7392 * Return: 0 on success, -errno on failure. 7393 */ 7394 int workqueue_sysfs_register(struct workqueue_struct *wq) 7395 { 7396 struct wq_device *wq_dev; 7397 int ret; 7398 7399 /* 7400 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7401 * ordered workqueues. 7402 */ 7403 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7404 return -EINVAL; 7405 7406 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7407 if (!wq_dev) 7408 return -ENOMEM; 7409 7410 wq_dev->wq = wq; 7411 wq_dev->dev.bus = &wq_subsys; 7412 wq_dev->dev.release = wq_device_release; 7413 dev_set_name(&wq_dev->dev, "%s", wq->name); 7414 7415 /* 7416 * unbound_attrs are created separately. Suppress uevent until 7417 * everything is ready. 7418 */ 7419 dev_set_uevent_suppress(&wq_dev->dev, true); 7420 7421 ret = device_register(&wq_dev->dev); 7422 if (ret) { 7423 put_device(&wq_dev->dev); 7424 wq->wq_dev = NULL; 7425 return ret; 7426 } 7427 7428 if (wq->flags & WQ_UNBOUND) { 7429 struct device_attribute *attr; 7430 7431 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7432 ret = device_create_file(&wq_dev->dev, attr); 7433 if (ret) { 7434 device_unregister(&wq_dev->dev); 7435 wq->wq_dev = NULL; 7436 return ret; 7437 } 7438 } 7439 } 7440 7441 dev_set_uevent_suppress(&wq_dev->dev, false); 7442 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7443 return 0; 7444 } 7445 7446 /** 7447 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7448 * @wq: the workqueue to unregister 7449 * 7450 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7451 */ 7452 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7453 { 7454 struct wq_device *wq_dev = wq->wq_dev; 7455 7456 if (!wq->wq_dev) 7457 return; 7458 7459 wq->wq_dev = NULL; 7460 device_unregister(&wq_dev->dev); 7461 } 7462 #else /* CONFIG_SYSFS */ 7463 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7464 #endif /* CONFIG_SYSFS */ 7465 7466 /* 7467 * Workqueue watchdog. 7468 * 7469 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7470 * flush dependency, a concurrency managed work item which stays RUNNING 7471 * indefinitely. Workqueue stalls can be very difficult to debug as the 7472 * usual warning mechanisms don't trigger and internal workqueue state is 7473 * largely opaque. 7474 * 7475 * Workqueue watchdog monitors all worker pools periodically and dumps 7476 * state if some pools failed to make forward progress for a while where 7477 * forward progress is defined as the first item on ->worklist changing. 7478 * 7479 * This mechanism is controlled through the kernel parameter 7480 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7481 * corresponding sysfs parameter file. 7482 */ 7483 #ifdef CONFIG_WQ_WATCHDOG 7484 7485 static unsigned long wq_watchdog_thresh = 30; 7486 static struct timer_list wq_watchdog_timer; 7487 7488 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7489 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7490 7491 static unsigned int wq_panic_on_stall; 7492 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644); 7493 7494 /* 7495 * Show workers that might prevent the processing of pending work items. 7496 * The only candidates are CPU-bound workers in the running state. 7497 * Pending work items should be handled by another idle worker 7498 * in all other situations. 7499 */ 7500 static void show_cpu_pool_hog(struct worker_pool *pool) 7501 { 7502 struct worker *worker; 7503 unsigned long irq_flags; 7504 int bkt; 7505 7506 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7507 7508 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7509 if (task_is_running(worker->task)) { 7510 /* 7511 * Defer printing to avoid deadlocks in console 7512 * drivers that queue work while holding locks 7513 * also taken in their write paths. 7514 */ 7515 printk_deferred_enter(); 7516 7517 pr_info("pool %d:\n", pool->id); 7518 sched_show_task(worker->task); 7519 7520 printk_deferred_exit(); 7521 } 7522 } 7523 7524 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7525 } 7526 7527 static void show_cpu_pools_hogs(void) 7528 { 7529 struct worker_pool *pool; 7530 int pi; 7531 7532 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7533 7534 rcu_read_lock(); 7535 7536 for_each_pool(pool, pi) { 7537 if (pool->cpu_stall) 7538 show_cpu_pool_hog(pool); 7539 7540 } 7541 7542 rcu_read_unlock(); 7543 } 7544 7545 static void panic_on_wq_watchdog(void) 7546 { 7547 static unsigned int wq_stall; 7548 7549 if (wq_panic_on_stall) { 7550 wq_stall++; 7551 BUG_ON(wq_stall >= wq_panic_on_stall); 7552 } 7553 } 7554 7555 static void wq_watchdog_reset_touched(void) 7556 { 7557 int cpu; 7558 7559 wq_watchdog_touched = jiffies; 7560 for_each_possible_cpu(cpu) 7561 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7562 } 7563 7564 static void wq_watchdog_timer_fn(struct timer_list *unused) 7565 { 7566 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7567 bool lockup_detected = false; 7568 bool cpu_pool_stall = false; 7569 unsigned long now = jiffies; 7570 struct worker_pool *pool; 7571 int pi; 7572 7573 if (!thresh) 7574 return; 7575 7576 rcu_read_lock(); 7577 7578 for_each_pool(pool, pi) { 7579 unsigned long pool_ts, touched, ts; 7580 7581 pool->cpu_stall = false; 7582 if (list_empty(&pool->worklist)) 7583 continue; 7584 7585 /* 7586 * If a virtual machine is stopped by the host it can look to 7587 * the watchdog like a stall. 7588 */ 7589 kvm_check_and_clear_guest_paused(); 7590 7591 /* get the latest of pool and touched timestamps */ 7592 if (pool->cpu >= 0) 7593 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7594 else 7595 touched = READ_ONCE(wq_watchdog_touched); 7596 pool_ts = READ_ONCE(pool->watchdog_ts); 7597 7598 if (time_after(pool_ts, touched)) 7599 ts = pool_ts; 7600 else 7601 ts = touched; 7602 7603 /* did we stall? */ 7604 if (time_after(now, ts + thresh)) { 7605 lockup_detected = true; 7606 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7607 pool->cpu_stall = true; 7608 cpu_pool_stall = true; 7609 } 7610 pr_emerg("BUG: workqueue lockup - pool"); 7611 pr_cont_pool_info(pool); 7612 pr_cont(" stuck for %us!\n", 7613 jiffies_to_msecs(now - pool_ts) / 1000); 7614 } 7615 7616 7617 } 7618 7619 rcu_read_unlock(); 7620 7621 if (lockup_detected) 7622 show_all_workqueues(); 7623 7624 if (cpu_pool_stall) 7625 show_cpu_pools_hogs(); 7626 7627 if (lockup_detected) 7628 panic_on_wq_watchdog(); 7629 7630 wq_watchdog_reset_touched(); 7631 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7632 } 7633 7634 notrace void wq_watchdog_touch(int cpu) 7635 { 7636 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7637 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7638 unsigned long now = jiffies; 7639 7640 if (cpu >= 0) 7641 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7642 else 7643 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7644 7645 /* Don't unnecessarily store to global cacheline */ 7646 if (time_after(now, touch_ts + thresh / 4)) 7647 WRITE_ONCE(wq_watchdog_touched, jiffies); 7648 } 7649 7650 static void wq_watchdog_set_thresh(unsigned long thresh) 7651 { 7652 wq_watchdog_thresh = 0; 7653 timer_delete_sync(&wq_watchdog_timer); 7654 7655 if (thresh) { 7656 wq_watchdog_thresh = thresh; 7657 wq_watchdog_reset_touched(); 7658 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7659 } 7660 } 7661 7662 static int wq_watchdog_param_set_thresh(const char *val, 7663 const struct kernel_param *kp) 7664 { 7665 unsigned long thresh; 7666 int ret; 7667 7668 ret = kstrtoul(val, 0, &thresh); 7669 if (ret) 7670 return ret; 7671 7672 if (system_wq) 7673 wq_watchdog_set_thresh(thresh); 7674 else 7675 wq_watchdog_thresh = thresh; 7676 7677 return 0; 7678 } 7679 7680 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7681 .set = wq_watchdog_param_set_thresh, 7682 .get = param_get_ulong, 7683 }; 7684 7685 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7686 0644); 7687 7688 static void wq_watchdog_init(void) 7689 { 7690 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7691 wq_watchdog_set_thresh(wq_watchdog_thresh); 7692 } 7693 7694 #else /* CONFIG_WQ_WATCHDOG */ 7695 7696 static inline void wq_watchdog_init(void) { } 7697 7698 #endif /* CONFIG_WQ_WATCHDOG */ 7699 7700 static void bh_pool_kick_normal(struct irq_work *irq_work) 7701 { 7702 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7703 } 7704 7705 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7706 { 7707 raise_softirq_irqoff(HI_SOFTIRQ); 7708 } 7709 7710 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7711 { 7712 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7713 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7714 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7715 return; 7716 } 7717 7718 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7719 } 7720 7721 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7722 { 7723 BUG_ON(init_worker_pool(pool)); 7724 pool->cpu = cpu; 7725 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7726 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7727 pool->attrs->nice = nice; 7728 pool->attrs->affn_strict = true; 7729 pool->node = cpu_to_node(cpu); 7730 7731 /* alloc pool ID */ 7732 mutex_lock(&wq_pool_mutex); 7733 BUG_ON(worker_pool_assign_id(pool)); 7734 mutex_unlock(&wq_pool_mutex); 7735 } 7736 7737 /** 7738 * workqueue_init_early - early init for workqueue subsystem 7739 * 7740 * This is the first step of three-staged workqueue subsystem initialization and 7741 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7742 * up. It sets up all the data structures and system workqueues and allows early 7743 * boot code to create workqueues and queue/cancel work items. Actual work item 7744 * execution starts only after kthreads can be created and scheduled right 7745 * before early initcalls. 7746 */ 7747 void __init workqueue_init_early(void) 7748 { 7749 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7750 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7751 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7752 bh_pool_kick_highpri }; 7753 int i, cpu; 7754 7755 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7756 7757 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7758 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7759 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7760 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7761 7762 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7763 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7764 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7765 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7766 if (!cpumask_empty(&wq_cmdline_cpumask)) 7767 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7768 7769 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7770 cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask, 7771 housekeeping_cpumask(HK_TYPE_DOMAIN)); 7772 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7773 7774 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7775 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7776 7777 /* 7778 * If nohz_full is enabled, set power efficient workqueue as unbound. 7779 * This allows workqueue items to be moved to HK CPUs. 7780 */ 7781 if (housekeeping_enabled(HK_TYPE_TICK)) 7782 wq_power_efficient = true; 7783 7784 /* initialize WQ_AFFN_SYSTEM pods */ 7785 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7786 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7787 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7788 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7789 7790 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7791 7792 pt->nr_pods = 1; 7793 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7794 pt->pod_node[0] = NUMA_NO_NODE; 7795 pt->cpu_pod[0] = 0; 7796 7797 /* initialize BH and CPU pools */ 7798 for_each_possible_cpu(cpu) { 7799 struct worker_pool *pool; 7800 7801 i = 0; 7802 for_each_bh_worker_pool(pool, cpu) { 7803 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7804 pool->flags |= POOL_BH; 7805 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7806 i++; 7807 } 7808 7809 i = 0; 7810 for_each_cpu_worker_pool(pool, cpu) 7811 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7812 } 7813 7814 /* create default unbound and ordered wq attrs */ 7815 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7816 struct workqueue_attrs *attrs; 7817 7818 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7819 attrs->nice = std_nice[i]; 7820 unbound_std_wq_attrs[i] = attrs; 7821 7822 /* 7823 * An ordered wq should have only one pwq as ordering is 7824 * guaranteed by max_active which is enforced by pwqs. 7825 */ 7826 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7827 attrs->nice = std_nice[i]; 7828 attrs->ordered = true; 7829 ordered_wq_attrs[i] = attrs; 7830 } 7831 7832 system_wq = alloc_workqueue("events", 0, 0); 7833 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7834 system_long_wq = alloc_workqueue("events_long", 0, 0); 7835 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7836 WQ_MAX_ACTIVE); 7837 system_freezable_wq = alloc_workqueue("events_freezable", 7838 WQ_FREEZABLE, 0); 7839 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7840 WQ_POWER_EFFICIENT, 0); 7841 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7842 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7843 0); 7844 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7845 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7846 WQ_BH | WQ_HIGHPRI, 0); 7847 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7848 !system_unbound_wq || !system_freezable_wq || 7849 !system_power_efficient_wq || 7850 !system_freezable_power_efficient_wq || 7851 !system_bh_wq || !system_bh_highpri_wq); 7852 } 7853 7854 static void __init wq_cpu_intensive_thresh_init(void) 7855 { 7856 unsigned long thresh; 7857 unsigned long bogo; 7858 7859 pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release"); 7860 BUG_ON(IS_ERR(pwq_release_worker)); 7861 7862 /* if the user set it to a specific value, keep it */ 7863 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7864 return; 7865 7866 /* 7867 * The default of 10ms is derived from the fact that most modern (as of 7868 * 2023) processors can do a lot in 10ms and that it's just below what 7869 * most consider human-perceivable. However, the kernel also runs on a 7870 * lot slower CPUs including microcontrollers where the threshold is way 7871 * too low. 7872 * 7873 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7874 * This is by no means accurate but it doesn't have to be. The mechanism 7875 * is still useful even when the threshold is fully scaled up. Also, as 7876 * the reports would usually be applicable to everyone, some machines 7877 * operating on longer thresholds won't significantly diminish their 7878 * usefulness. 7879 */ 7880 thresh = 10 * USEC_PER_MSEC; 7881 7882 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7883 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7884 if (bogo < 4000) 7885 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7886 7887 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7888 loops_per_jiffy, bogo, thresh); 7889 7890 wq_cpu_intensive_thresh_us = thresh; 7891 } 7892 7893 /** 7894 * workqueue_init - bring workqueue subsystem fully online 7895 * 7896 * This is the second step of three-staged workqueue subsystem initialization 7897 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7898 * been created and work items queued on them, but there are no kworkers 7899 * executing the work items yet. Populate the worker pools with the initial 7900 * workers and enable future kworker creations. 7901 */ 7902 void __init workqueue_init(void) 7903 { 7904 struct workqueue_struct *wq; 7905 struct worker_pool *pool; 7906 int cpu, bkt; 7907 7908 wq_cpu_intensive_thresh_init(); 7909 7910 mutex_lock(&wq_pool_mutex); 7911 7912 /* 7913 * Per-cpu pools created earlier could be missing node hint. Fix them 7914 * up. Also, create a rescuer for workqueues that requested it. 7915 */ 7916 for_each_possible_cpu(cpu) { 7917 for_each_bh_worker_pool(pool, cpu) 7918 pool->node = cpu_to_node(cpu); 7919 for_each_cpu_worker_pool(pool, cpu) 7920 pool->node = cpu_to_node(cpu); 7921 } 7922 7923 list_for_each_entry(wq, &workqueues, list) { 7924 WARN(init_rescuer(wq), 7925 "workqueue: failed to create early rescuer for %s", 7926 wq->name); 7927 } 7928 7929 mutex_unlock(&wq_pool_mutex); 7930 7931 /* 7932 * Create the initial workers. A BH pool has one pseudo worker that 7933 * represents the shared BH execution context and thus doesn't get 7934 * affected by hotplug events. Create the BH pseudo workers for all 7935 * possible CPUs here. 7936 */ 7937 for_each_possible_cpu(cpu) 7938 for_each_bh_worker_pool(pool, cpu) 7939 BUG_ON(!create_worker(pool)); 7940 7941 for_each_online_cpu(cpu) { 7942 for_each_cpu_worker_pool(pool, cpu) { 7943 pool->flags &= ~POOL_DISASSOCIATED; 7944 BUG_ON(!create_worker(pool)); 7945 } 7946 } 7947 7948 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7949 BUG_ON(!create_worker(pool)); 7950 7951 wq_online = true; 7952 wq_watchdog_init(); 7953 } 7954 7955 /* 7956 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7957 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7958 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7959 */ 7960 static void __init init_pod_type(struct wq_pod_type *pt, 7961 bool (*cpus_share_pod)(int, int)) 7962 { 7963 int cur, pre, cpu, pod; 7964 7965 pt->nr_pods = 0; 7966 7967 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7968 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7969 BUG_ON(!pt->cpu_pod); 7970 7971 for_each_possible_cpu(cur) { 7972 for_each_possible_cpu(pre) { 7973 if (pre >= cur) { 7974 pt->cpu_pod[cur] = pt->nr_pods++; 7975 break; 7976 } 7977 if (cpus_share_pod(cur, pre)) { 7978 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7979 break; 7980 } 7981 } 7982 } 7983 7984 /* init the rest to match @pt->cpu_pod[] */ 7985 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7986 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7987 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7988 7989 for (pod = 0; pod < pt->nr_pods; pod++) 7990 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7991 7992 for_each_possible_cpu(cpu) { 7993 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7994 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7995 } 7996 } 7997 7998 static bool __init cpus_dont_share(int cpu0, int cpu1) 7999 { 8000 return false; 8001 } 8002 8003 static bool __init cpus_share_smt(int cpu0, int cpu1) 8004 { 8005 #ifdef CONFIG_SCHED_SMT 8006 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 8007 #else 8008 return false; 8009 #endif 8010 } 8011 8012 static bool __init cpus_share_numa(int cpu0, int cpu1) 8013 { 8014 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 8015 } 8016 8017 /** 8018 * workqueue_init_topology - initialize CPU pods for unbound workqueues 8019 * 8020 * This is the third step of three-staged workqueue subsystem initialization and 8021 * invoked after SMP and topology information are fully initialized. It 8022 * initializes the unbound CPU pods accordingly. 8023 */ 8024 void __init workqueue_init_topology(void) 8025 { 8026 struct workqueue_struct *wq; 8027 int cpu; 8028 8029 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 8030 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 8031 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 8032 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 8033 8034 wq_topo_initialized = true; 8035 8036 mutex_lock(&wq_pool_mutex); 8037 8038 /* 8039 * Workqueues allocated earlier would have all CPUs sharing the default 8040 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 8041 * and CPU combinations to apply per-pod sharing. 8042 */ 8043 list_for_each_entry(wq, &workqueues, list) { 8044 for_each_online_cpu(cpu) 8045 unbound_wq_update_pwq(wq, cpu); 8046 if (wq->flags & WQ_UNBOUND) { 8047 mutex_lock(&wq->mutex); 8048 wq_update_node_max_active(wq, -1); 8049 mutex_unlock(&wq->mutex); 8050 } 8051 } 8052 8053 mutex_unlock(&wq_pool_mutex); 8054 } 8055 8056 void __warn_flushing_systemwide_wq(void) 8057 { 8058 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 8059 dump_stack(); 8060 } 8061 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 8062 8063 static int __init workqueue_unbound_cpus_setup(char *str) 8064 { 8065 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 8066 cpumask_clear(&wq_cmdline_cpumask); 8067 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 8068 } 8069 8070 return 1; 8071 } 8072 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 8073