xref: /linux/kernel/workqueue.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 
32 /*
33  * The per-CPU workqueue (if single thread, we always use the first
34  * possible cpu).
35  *
36  * The sequence counters are for flush_scheduled_work().  It wants to wait
37  * until until all currently-scheduled works are completed, but it doesn't
38  * want to be livelocked by new, incoming ones.  So it waits until
39  * remove_sequence is >= the insert_sequence which pertained when
40  * flush_scheduled_work() was called.
41  */
42 struct cpu_workqueue_struct {
43 
44 	spinlock_t lock;
45 
46 	long remove_sequence;	/* Least-recently added (next to run) */
47 	long insert_sequence;	/* Next to add */
48 
49 	struct list_head worklist;
50 	wait_queue_head_t more_work;
51 	wait_queue_head_t work_done;
52 
53 	struct workqueue_struct *wq;
54 	struct task_struct *thread;
55 
56 	int run_depth;		/* Detect run_workqueue() recursion depth */
57 } ____cacheline_aligned;
58 
59 /*
60  * The externally visible workqueue abstraction is an array of
61  * per-CPU workqueues:
62  */
63 struct workqueue_struct {
64 	struct cpu_workqueue_struct *cpu_wq;
65 	const char *name;
66 	struct list_head list; 	/* Empty if single thread */
67 };
68 
69 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
70    threads to each one as cpus come/go. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
73 
74 static int singlethread_cpu;
75 
76 /* If it's single threaded, it isn't in the list of workqueues. */
77 static inline int is_single_threaded(struct workqueue_struct *wq)
78 {
79 	return list_empty(&wq->list);
80 }
81 
82 /* Preempt must be disabled. */
83 static void __queue_work(struct cpu_workqueue_struct *cwq,
84 			 struct work_struct *work)
85 {
86 	unsigned long flags;
87 
88 	spin_lock_irqsave(&cwq->lock, flags);
89 	work->wq_data = cwq;
90 	list_add_tail(&work->entry, &cwq->worklist);
91 	cwq->insert_sequence++;
92 	wake_up(&cwq->more_work);
93 	spin_unlock_irqrestore(&cwq->lock, flags);
94 }
95 
96 /*
97  * Queue work on a workqueue. Return non-zero if it was successfully
98  * added.
99  *
100  * We queue the work to the CPU it was submitted, but there is no
101  * guarantee that it will be processed by that CPU.
102  */
103 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
104 {
105 	int ret = 0, cpu = get_cpu();
106 
107 	if (!test_and_set_bit(0, &work->pending)) {
108 		if (unlikely(is_single_threaded(wq)))
109 			cpu = singlethread_cpu;
110 		BUG_ON(!list_empty(&work->entry));
111 		__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
112 		ret = 1;
113 	}
114 	put_cpu();
115 	return ret;
116 }
117 EXPORT_SYMBOL_GPL(queue_work);
118 
119 static void delayed_work_timer_fn(unsigned long __data)
120 {
121 	struct work_struct *work = (struct work_struct *)__data;
122 	struct workqueue_struct *wq = work->wq_data;
123 	int cpu = smp_processor_id();
124 
125 	if (unlikely(is_single_threaded(wq)))
126 		cpu = singlethread_cpu;
127 
128 	__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
129 }
130 
131 int fastcall queue_delayed_work(struct workqueue_struct *wq,
132 			struct work_struct *work, unsigned long delay)
133 {
134 	int ret = 0;
135 	struct timer_list *timer = &work->timer;
136 
137 	if (!test_and_set_bit(0, &work->pending)) {
138 		BUG_ON(timer_pending(timer));
139 		BUG_ON(!list_empty(&work->entry));
140 
141 		/* This stores wq for the moment, for the timer_fn */
142 		work->wq_data = wq;
143 		timer->expires = jiffies + delay;
144 		timer->data = (unsigned long)work;
145 		timer->function = delayed_work_timer_fn;
146 		add_timer(timer);
147 		ret = 1;
148 	}
149 	return ret;
150 }
151 EXPORT_SYMBOL_GPL(queue_delayed_work);
152 
153 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
154 			struct work_struct *work, unsigned long delay)
155 {
156 	int ret = 0;
157 	struct timer_list *timer = &work->timer;
158 
159 	if (!test_and_set_bit(0, &work->pending)) {
160 		BUG_ON(timer_pending(timer));
161 		BUG_ON(!list_empty(&work->entry));
162 
163 		/* This stores wq for the moment, for the timer_fn */
164 		work->wq_data = wq;
165 		timer->expires = jiffies + delay;
166 		timer->data = (unsigned long)work;
167 		timer->function = delayed_work_timer_fn;
168 		add_timer_on(timer, cpu);
169 		ret = 1;
170 	}
171 	return ret;
172 }
173 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
174 
175 static void run_workqueue(struct cpu_workqueue_struct *cwq)
176 {
177 	unsigned long flags;
178 
179 	/*
180 	 * Keep taking off work from the queue until
181 	 * done.
182 	 */
183 	spin_lock_irqsave(&cwq->lock, flags);
184 	cwq->run_depth++;
185 	if (cwq->run_depth > 3) {
186 		/* morton gets to eat his hat */
187 		printk("%s: recursion depth exceeded: %d\n",
188 			__FUNCTION__, cwq->run_depth);
189 		dump_stack();
190 	}
191 	while (!list_empty(&cwq->worklist)) {
192 		struct work_struct *work = list_entry(cwq->worklist.next,
193 						struct work_struct, entry);
194 		void (*f) (void *) = work->func;
195 		void *data = work->data;
196 
197 		list_del_init(cwq->worklist.next);
198 		spin_unlock_irqrestore(&cwq->lock, flags);
199 
200 		BUG_ON(work->wq_data != cwq);
201 		clear_bit(0, &work->pending);
202 		f(data);
203 
204 		spin_lock_irqsave(&cwq->lock, flags);
205 		cwq->remove_sequence++;
206 		wake_up(&cwq->work_done);
207 	}
208 	cwq->run_depth--;
209 	spin_unlock_irqrestore(&cwq->lock, flags);
210 }
211 
212 static int worker_thread(void *__cwq)
213 {
214 	struct cpu_workqueue_struct *cwq = __cwq;
215 	DECLARE_WAITQUEUE(wait, current);
216 	struct k_sigaction sa;
217 	sigset_t blocked;
218 
219 	current->flags |= PF_NOFREEZE;
220 
221 	set_user_nice(current, -5);
222 
223 	/* Block and flush all signals */
224 	sigfillset(&blocked);
225 	sigprocmask(SIG_BLOCK, &blocked, NULL);
226 	flush_signals(current);
227 
228 	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
229 	sa.sa.sa_handler = SIG_IGN;
230 	sa.sa.sa_flags = 0;
231 	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
232 	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
233 
234 	set_current_state(TASK_INTERRUPTIBLE);
235 	while (!kthread_should_stop()) {
236 		add_wait_queue(&cwq->more_work, &wait);
237 		if (list_empty(&cwq->worklist))
238 			schedule();
239 		else
240 			__set_current_state(TASK_RUNNING);
241 		remove_wait_queue(&cwq->more_work, &wait);
242 
243 		if (!list_empty(&cwq->worklist))
244 			run_workqueue(cwq);
245 		set_current_state(TASK_INTERRUPTIBLE);
246 	}
247 	__set_current_state(TASK_RUNNING);
248 	return 0;
249 }
250 
251 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
252 {
253 	if (cwq->thread == current) {
254 		/*
255 		 * Probably keventd trying to flush its own queue. So simply run
256 		 * it by hand rather than deadlocking.
257 		 */
258 		run_workqueue(cwq);
259 	} else {
260 		DEFINE_WAIT(wait);
261 		long sequence_needed;
262 
263 		spin_lock_irq(&cwq->lock);
264 		sequence_needed = cwq->insert_sequence;
265 
266 		while (sequence_needed - cwq->remove_sequence > 0) {
267 			prepare_to_wait(&cwq->work_done, &wait,
268 					TASK_UNINTERRUPTIBLE);
269 			spin_unlock_irq(&cwq->lock);
270 			schedule();
271 			spin_lock_irq(&cwq->lock);
272 		}
273 		finish_wait(&cwq->work_done, &wait);
274 		spin_unlock_irq(&cwq->lock);
275 	}
276 }
277 
278 /*
279  * flush_workqueue - ensure that any scheduled work has run to completion.
280  *
281  * Forces execution of the workqueue and blocks until its completion.
282  * This is typically used in driver shutdown handlers.
283  *
284  * This function will sample each workqueue's current insert_sequence number and
285  * will sleep until the head sequence is greater than or equal to that.  This
286  * means that we sleep until all works which were queued on entry have been
287  * handled, but we are not livelocked by new incoming ones.
288  *
289  * This function used to run the workqueues itself.  Now we just wait for the
290  * helper threads to do it.
291  */
292 void fastcall flush_workqueue(struct workqueue_struct *wq)
293 {
294 	might_sleep();
295 
296 	if (is_single_threaded(wq)) {
297 		/* Always use first cpu's area. */
298 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
299 	} else {
300 		int cpu;
301 
302 		lock_cpu_hotplug();
303 		for_each_online_cpu(cpu)
304 			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
305 		unlock_cpu_hotplug();
306 	}
307 }
308 EXPORT_SYMBOL_GPL(flush_workqueue);
309 
310 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
311 						   int cpu)
312 {
313 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
314 	struct task_struct *p;
315 
316 	spin_lock_init(&cwq->lock);
317 	cwq->wq = wq;
318 	cwq->thread = NULL;
319 	cwq->insert_sequence = 0;
320 	cwq->remove_sequence = 0;
321 	INIT_LIST_HEAD(&cwq->worklist);
322 	init_waitqueue_head(&cwq->more_work);
323 	init_waitqueue_head(&cwq->work_done);
324 
325 	if (is_single_threaded(wq))
326 		p = kthread_create(worker_thread, cwq, "%s", wq->name);
327 	else
328 		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
329 	if (IS_ERR(p))
330 		return NULL;
331 	cwq->thread = p;
332 	return p;
333 }
334 
335 struct workqueue_struct *__create_workqueue(const char *name,
336 					    int singlethread)
337 {
338 	int cpu, destroy = 0;
339 	struct workqueue_struct *wq;
340 	struct task_struct *p;
341 
342 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
343 	if (!wq)
344 		return NULL;
345 
346 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
347 	if (!wq->cpu_wq) {
348 		kfree(wq);
349 		return NULL;
350 	}
351 
352 	wq->name = name;
353 	/* We don't need the distraction of CPUs appearing and vanishing. */
354 	lock_cpu_hotplug();
355 	if (singlethread) {
356 		INIT_LIST_HEAD(&wq->list);
357 		p = create_workqueue_thread(wq, singlethread_cpu);
358 		if (!p)
359 			destroy = 1;
360 		else
361 			wake_up_process(p);
362 	} else {
363 		spin_lock(&workqueue_lock);
364 		list_add(&wq->list, &workqueues);
365 		spin_unlock(&workqueue_lock);
366 		for_each_online_cpu(cpu) {
367 			p = create_workqueue_thread(wq, cpu);
368 			if (p) {
369 				kthread_bind(p, cpu);
370 				wake_up_process(p);
371 			} else
372 				destroy = 1;
373 		}
374 	}
375 	unlock_cpu_hotplug();
376 
377 	/*
378 	 * Was there any error during startup? If yes then clean up:
379 	 */
380 	if (destroy) {
381 		destroy_workqueue(wq);
382 		wq = NULL;
383 	}
384 	return wq;
385 }
386 EXPORT_SYMBOL_GPL(__create_workqueue);
387 
388 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
389 {
390 	struct cpu_workqueue_struct *cwq;
391 	unsigned long flags;
392 	struct task_struct *p;
393 
394 	cwq = per_cpu_ptr(wq->cpu_wq, cpu);
395 	spin_lock_irqsave(&cwq->lock, flags);
396 	p = cwq->thread;
397 	cwq->thread = NULL;
398 	spin_unlock_irqrestore(&cwq->lock, flags);
399 	if (p)
400 		kthread_stop(p);
401 }
402 
403 void destroy_workqueue(struct workqueue_struct *wq)
404 {
405 	int cpu;
406 
407 	flush_workqueue(wq);
408 
409 	/* We don't need the distraction of CPUs appearing and vanishing. */
410 	lock_cpu_hotplug();
411 	if (is_single_threaded(wq))
412 		cleanup_workqueue_thread(wq, singlethread_cpu);
413 	else {
414 		for_each_online_cpu(cpu)
415 			cleanup_workqueue_thread(wq, cpu);
416 		spin_lock(&workqueue_lock);
417 		list_del(&wq->list);
418 		spin_unlock(&workqueue_lock);
419 	}
420 	unlock_cpu_hotplug();
421 	free_percpu(wq->cpu_wq);
422 	kfree(wq);
423 }
424 EXPORT_SYMBOL_GPL(destroy_workqueue);
425 
426 static struct workqueue_struct *keventd_wq;
427 
428 int fastcall schedule_work(struct work_struct *work)
429 {
430 	return queue_work(keventd_wq, work);
431 }
432 EXPORT_SYMBOL(schedule_work);
433 
434 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
435 {
436 	return queue_delayed_work(keventd_wq, work, delay);
437 }
438 EXPORT_SYMBOL(schedule_delayed_work);
439 
440 int schedule_delayed_work_on(int cpu,
441 			struct work_struct *work, unsigned long delay)
442 {
443 	return queue_delayed_work_on(cpu, keventd_wq, work, delay);
444 }
445 EXPORT_SYMBOL(schedule_delayed_work_on);
446 
447 /**
448  * schedule_on_each_cpu - call a function on each online CPU from keventd
449  * @func: the function to call
450  * @info: a pointer to pass to func()
451  *
452  * Returns zero on success.
453  * Returns -ve errno on failure.
454  *
455  * Appears to be racy against CPU hotplug.
456  *
457  * schedule_on_each_cpu() is very slow.
458  */
459 int schedule_on_each_cpu(void (*func)(void *info), void *info)
460 {
461 	int cpu;
462 	struct work_struct *works;
463 
464 	works = alloc_percpu(struct work_struct);
465 	if (!works)
466 		return -ENOMEM;
467 
468 	for_each_online_cpu(cpu) {
469 		INIT_WORK(per_cpu_ptr(works, cpu), func, info);
470 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
471 				per_cpu_ptr(works, cpu));
472 	}
473 	flush_workqueue(keventd_wq);
474 	free_percpu(works);
475 	return 0;
476 }
477 
478 void flush_scheduled_work(void)
479 {
480 	flush_workqueue(keventd_wq);
481 }
482 EXPORT_SYMBOL(flush_scheduled_work);
483 
484 /**
485  * cancel_rearming_delayed_workqueue - reliably kill off a delayed
486  *			work whose handler rearms the delayed work.
487  * @wq:   the controlling workqueue structure
488  * @work: the delayed work struct
489  */
490 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
491 				       struct work_struct *work)
492 {
493 	while (!cancel_delayed_work(work))
494 		flush_workqueue(wq);
495 }
496 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
497 
498 /**
499  * cancel_rearming_delayed_work - reliably kill off a delayed keventd
500  *			work whose handler rearms the delayed work.
501  * @work: the delayed work struct
502  */
503 void cancel_rearming_delayed_work(struct work_struct *work)
504 {
505 	cancel_rearming_delayed_workqueue(keventd_wq, work);
506 }
507 EXPORT_SYMBOL(cancel_rearming_delayed_work);
508 
509 /**
510  * execute_in_process_context - reliably execute the routine with user context
511  * @fn:		the function to execute
512  * @data:	data to pass to the function
513  * @ew:		guaranteed storage for the execute work structure (must
514  *		be available when the work executes)
515  *
516  * Executes the function immediately if process context is available,
517  * otherwise schedules the function for delayed execution.
518  *
519  * Returns:	0 - function was executed
520  *		1 - function was scheduled for execution
521  */
522 int execute_in_process_context(void (*fn)(void *data), void *data,
523 			       struct execute_work *ew)
524 {
525 	if (!in_interrupt()) {
526 		fn(data);
527 		return 0;
528 	}
529 
530 	INIT_WORK(&ew->work, fn, data);
531 	schedule_work(&ew->work);
532 
533 	return 1;
534 }
535 EXPORT_SYMBOL_GPL(execute_in_process_context);
536 
537 int keventd_up(void)
538 {
539 	return keventd_wq != NULL;
540 }
541 
542 int current_is_keventd(void)
543 {
544 	struct cpu_workqueue_struct *cwq;
545 	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
546 	int ret = 0;
547 
548 	BUG_ON(!keventd_wq);
549 
550 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
551 	if (current == cwq->thread)
552 		ret = 1;
553 
554 	return ret;
555 
556 }
557 
558 #ifdef CONFIG_HOTPLUG_CPU
559 /* Take the work from this (downed) CPU. */
560 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
561 {
562 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
563 	struct list_head list;
564 	struct work_struct *work;
565 
566 	spin_lock_irq(&cwq->lock);
567 	list_replace_init(&cwq->worklist, &list);
568 
569 	while (!list_empty(&list)) {
570 		printk("Taking work for %s\n", wq->name);
571 		work = list_entry(list.next,struct work_struct,entry);
572 		list_del(&work->entry);
573 		__queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
574 	}
575 	spin_unlock_irq(&cwq->lock);
576 }
577 
578 /* We're holding the cpucontrol mutex here */
579 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
580 				  unsigned long action,
581 				  void *hcpu)
582 {
583 	unsigned int hotcpu = (unsigned long)hcpu;
584 	struct workqueue_struct *wq;
585 
586 	switch (action) {
587 	case CPU_UP_PREPARE:
588 		/* Create a new workqueue thread for it. */
589 		list_for_each_entry(wq, &workqueues, list) {
590 			if (!create_workqueue_thread(wq, hotcpu)) {
591 				printk("workqueue for %i failed\n", hotcpu);
592 				return NOTIFY_BAD;
593 			}
594 		}
595 		break;
596 
597 	case CPU_ONLINE:
598 		/* Kick off worker threads. */
599 		list_for_each_entry(wq, &workqueues, list) {
600 			struct cpu_workqueue_struct *cwq;
601 
602 			cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
603 			kthread_bind(cwq->thread, hotcpu);
604 			wake_up_process(cwq->thread);
605 		}
606 		break;
607 
608 	case CPU_UP_CANCELED:
609 		list_for_each_entry(wq, &workqueues, list) {
610 			if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
611 				continue;
612 			/* Unbind so it can run. */
613 			kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
614 				     any_online_cpu(cpu_online_map));
615 			cleanup_workqueue_thread(wq, hotcpu);
616 		}
617 		break;
618 
619 	case CPU_DEAD:
620 		list_for_each_entry(wq, &workqueues, list)
621 			cleanup_workqueue_thread(wq, hotcpu);
622 		list_for_each_entry(wq, &workqueues, list)
623 			take_over_work(wq, hotcpu);
624 		break;
625 	}
626 
627 	return NOTIFY_OK;
628 }
629 #endif
630 
631 void init_workqueues(void)
632 {
633 	singlethread_cpu = first_cpu(cpu_possible_map);
634 	hotcpu_notifier(workqueue_cpu_callback, 0);
635 	keventd_wq = create_workqueue("events");
636 	BUG_ON(!keventd_wq);
637 }
638 
639