xref: /linux/kernel/workqueue.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/completion.h>
23 #include <linux/workqueue.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 
29 /*
30  * The per-CPU workqueue (if single thread, we always use cpu 0's).
31  *
32  * The sequence counters are for flush_scheduled_work().  It wants to wait
33  * until until all currently-scheduled works are completed, but it doesn't
34  * want to be livelocked by new, incoming ones.  So it waits until
35  * remove_sequence is >= the insert_sequence which pertained when
36  * flush_scheduled_work() was called.
37  */
38 struct cpu_workqueue_struct {
39 
40 	spinlock_t lock;
41 
42 	long remove_sequence;	/* Least-recently added (next to run) */
43 	long insert_sequence;	/* Next to add */
44 
45 	struct list_head worklist;
46 	wait_queue_head_t more_work;
47 	wait_queue_head_t work_done;
48 
49 	struct workqueue_struct *wq;
50 	task_t *thread;
51 
52 	int run_depth;		/* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct cpu_wq[NR_CPUS];
61 	const char *name;
62 	struct list_head list; 	/* Empty if single thread */
63 };
64 
65 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
66    threads to each one as cpus come/go. */
67 static DEFINE_SPINLOCK(workqueue_lock);
68 static LIST_HEAD(workqueues);
69 
70 /* If it's single threaded, it isn't in the list of workqueues. */
71 static inline int is_single_threaded(struct workqueue_struct *wq)
72 {
73 	return list_empty(&wq->list);
74 }
75 
76 /* Preempt must be disabled. */
77 static void __queue_work(struct cpu_workqueue_struct *cwq,
78 			 struct work_struct *work)
79 {
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&cwq->lock, flags);
83 	work->wq_data = cwq;
84 	list_add_tail(&work->entry, &cwq->worklist);
85 	cwq->insert_sequence++;
86 	wake_up(&cwq->more_work);
87 	spin_unlock_irqrestore(&cwq->lock, flags);
88 }
89 
90 /*
91  * Queue work on a workqueue. Return non-zero if it was successfully
92  * added.
93  *
94  * We queue the work to the CPU it was submitted, but there is no
95  * guarantee that it will be processed by that CPU.
96  */
97 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
98 {
99 	int ret = 0, cpu = get_cpu();
100 
101 	if (!test_and_set_bit(0, &work->pending)) {
102 		if (unlikely(is_single_threaded(wq)))
103 			cpu = 0;
104 		BUG_ON(!list_empty(&work->entry));
105 		__queue_work(wq->cpu_wq + cpu, work);
106 		ret = 1;
107 	}
108 	put_cpu();
109 	return ret;
110 }
111 
112 static void delayed_work_timer_fn(unsigned long __data)
113 {
114 	struct work_struct *work = (struct work_struct *)__data;
115 	struct workqueue_struct *wq = work->wq_data;
116 	int cpu = smp_processor_id();
117 
118 	if (unlikely(is_single_threaded(wq)))
119 		cpu = 0;
120 
121 	__queue_work(wq->cpu_wq + cpu, work);
122 }
123 
124 int fastcall queue_delayed_work(struct workqueue_struct *wq,
125 			struct work_struct *work, unsigned long delay)
126 {
127 	int ret = 0;
128 	struct timer_list *timer = &work->timer;
129 
130 	if (!test_and_set_bit(0, &work->pending)) {
131 		BUG_ON(timer_pending(timer));
132 		BUG_ON(!list_empty(&work->entry));
133 
134 		/* This stores wq for the moment, for the timer_fn */
135 		work->wq_data = wq;
136 		timer->expires = jiffies + delay;
137 		timer->data = (unsigned long)work;
138 		timer->function = delayed_work_timer_fn;
139 		add_timer(timer);
140 		ret = 1;
141 	}
142 	return ret;
143 }
144 
145 static inline void run_workqueue(struct cpu_workqueue_struct *cwq)
146 {
147 	unsigned long flags;
148 
149 	/*
150 	 * Keep taking off work from the queue until
151 	 * done.
152 	 */
153 	spin_lock_irqsave(&cwq->lock, flags);
154 	cwq->run_depth++;
155 	if (cwq->run_depth > 3) {
156 		/* morton gets to eat his hat */
157 		printk("%s: recursion depth exceeded: %d\n",
158 			__FUNCTION__, cwq->run_depth);
159 		dump_stack();
160 	}
161 	while (!list_empty(&cwq->worklist)) {
162 		struct work_struct *work = list_entry(cwq->worklist.next,
163 						struct work_struct, entry);
164 		void (*f) (void *) = work->func;
165 		void *data = work->data;
166 
167 		list_del_init(cwq->worklist.next);
168 		spin_unlock_irqrestore(&cwq->lock, flags);
169 
170 		BUG_ON(work->wq_data != cwq);
171 		clear_bit(0, &work->pending);
172 		f(data);
173 
174 		spin_lock_irqsave(&cwq->lock, flags);
175 		cwq->remove_sequence++;
176 		wake_up(&cwq->work_done);
177 	}
178 	cwq->run_depth--;
179 	spin_unlock_irqrestore(&cwq->lock, flags);
180 }
181 
182 static int worker_thread(void *__cwq)
183 {
184 	struct cpu_workqueue_struct *cwq = __cwq;
185 	DECLARE_WAITQUEUE(wait, current);
186 	struct k_sigaction sa;
187 	sigset_t blocked;
188 
189 	current->flags |= PF_NOFREEZE;
190 
191 	set_user_nice(current, -5);
192 
193 	/* Block and flush all signals */
194 	sigfillset(&blocked);
195 	sigprocmask(SIG_BLOCK, &blocked, NULL);
196 	flush_signals(current);
197 
198 	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
199 	sa.sa.sa_handler = SIG_IGN;
200 	sa.sa.sa_flags = 0;
201 	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
202 	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
203 
204 	set_current_state(TASK_INTERRUPTIBLE);
205 	while (!kthread_should_stop()) {
206 		add_wait_queue(&cwq->more_work, &wait);
207 		if (list_empty(&cwq->worklist))
208 			schedule();
209 		else
210 			__set_current_state(TASK_RUNNING);
211 		remove_wait_queue(&cwq->more_work, &wait);
212 
213 		if (!list_empty(&cwq->worklist))
214 			run_workqueue(cwq);
215 		set_current_state(TASK_INTERRUPTIBLE);
216 	}
217 	__set_current_state(TASK_RUNNING);
218 	return 0;
219 }
220 
221 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
222 {
223 	if (cwq->thread == current) {
224 		/*
225 		 * Probably keventd trying to flush its own queue. So simply run
226 		 * it by hand rather than deadlocking.
227 		 */
228 		run_workqueue(cwq);
229 	} else {
230 		DEFINE_WAIT(wait);
231 		long sequence_needed;
232 
233 		spin_lock_irq(&cwq->lock);
234 		sequence_needed = cwq->insert_sequence;
235 
236 		while (sequence_needed - cwq->remove_sequence > 0) {
237 			prepare_to_wait(&cwq->work_done, &wait,
238 					TASK_UNINTERRUPTIBLE);
239 			spin_unlock_irq(&cwq->lock);
240 			schedule();
241 			spin_lock_irq(&cwq->lock);
242 		}
243 		finish_wait(&cwq->work_done, &wait);
244 		spin_unlock_irq(&cwq->lock);
245 	}
246 }
247 
248 /*
249  * flush_workqueue - ensure that any scheduled work has run to completion.
250  *
251  * Forces execution of the workqueue and blocks until its completion.
252  * This is typically used in driver shutdown handlers.
253  *
254  * This function will sample each workqueue's current insert_sequence number and
255  * will sleep until the head sequence is greater than or equal to that.  This
256  * means that we sleep until all works which were queued on entry have been
257  * handled, but we are not livelocked by new incoming ones.
258  *
259  * This function used to run the workqueues itself.  Now we just wait for the
260  * helper threads to do it.
261  */
262 void fastcall flush_workqueue(struct workqueue_struct *wq)
263 {
264 	might_sleep();
265 
266 	if (is_single_threaded(wq)) {
267 		/* Always use cpu 0's area. */
268 		flush_cpu_workqueue(wq->cpu_wq + 0);
269 	} else {
270 		int cpu;
271 
272 		lock_cpu_hotplug();
273 		for_each_online_cpu(cpu)
274 			flush_cpu_workqueue(wq->cpu_wq + cpu);
275 		unlock_cpu_hotplug();
276 	}
277 }
278 
279 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
280 						   int cpu)
281 {
282 	struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu;
283 	struct task_struct *p;
284 
285 	spin_lock_init(&cwq->lock);
286 	cwq->wq = wq;
287 	cwq->thread = NULL;
288 	cwq->insert_sequence = 0;
289 	cwq->remove_sequence = 0;
290 	INIT_LIST_HEAD(&cwq->worklist);
291 	init_waitqueue_head(&cwq->more_work);
292 	init_waitqueue_head(&cwq->work_done);
293 
294 	if (is_single_threaded(wq))
295 		p = kthread_create(worker_thread, cwq, "%s", wq->name);
296 	else
297 		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
298 	if (IS_ERR(p))
299 		return NULL;
300 	cwq->thread = p;
301 	return p;
302 }
303 
304 struct workqueue_struct *__create_workqueue(const char *name,
305 					    int singlethread)
306 {
307 	int cpu, destroy = 0;
308 	struct workqueue_struct *wq;
309 	struct task_struct *p;
310 
311 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
312 	if (!wq)
313 		return NULL;
314 	memset(wq, 0, sizeof(*wq));
315 
316 	wq->name = name;
317 	/* We don't need the distraction of CPUs appearing and vanishing. */
318 	lock_cpu_hotplug();
319 	if (singlethread) {
320 		INIT_LIST_HEAD(&wq->list);
321 		p = create_workqueue_thread(wq, 0);
322 		if (!p)
323 			destroy = 1;
324 		else
325 			wake_up_process(p);
326 	} else {
327 		spin_lock(&workqueue_lock);
328 		list_add(&wq->list, &workqueues);
329 		spin_unlock(&workqueue_lock);
330 		for_each_online_cpu(cpu) {
331 			p = create_workqueue_thread(wq, cpu);
332 			if (p) {
333 				kthread_bind(p, cpu);
334 				wake_up_process(p);
335 			} else
336 				destroy = 1;
337 		}
338 	}
339 	unlock_cpu_hotplug();
340 
341 	/*
342 	 * Was there any error during startup? If yes then clean up:
343 	 */
344 	if (destroy) {
345 		destroy_workqueue(wq);
346 		wq = NULL;
347 	}
348 	return wq;
349 }
350 
351 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
352 {
353 	struct cpu_workqueue_struct *cwq;
354 	unsigned long flags;
355 	struct task_struct *p;
356 
357 	cwq = wq->cpu_wq + cpu;
358 	spin_lock_irqsave(&cwq->lock, flags);
359 	p = cwq->thread;
360 	cwq->thread = NULL;
361 	spin_unlock_irqrestore(&cwq->lock, flags);
362 	if (p)
363 		kthread_stop(p);
364 }
365 
366 void destroy_workqueue(struct workqueue_struct *wq)
367 {
368 	int cpu;
369 
370 	flush_workqueue(wq);
371 
372 	/* We don't need the distraction of CPUs appearing and vanishing. */
373 	lock_cpu_hotplug();
374 	if (is_single_threaded(wq))
375 		cleanup_workqueue_thread(wq, 0);
376 	else {
377 		for_each_online_cpu(cpu)
378 			cleanup_workqueue_thread(wq, cpu);
379 		spin_lock(&workqueue_lock);
380 		list_del(&wq->list);
381 		spin_unlock(&workqueue_lock);
382 	}
383 	unlock_cpu_hotplug();
384 	kfree(wq);
385 }
386 
387 static struct workqueue_struct *keventd_wq;
388 
389 int fastcall schedule_work(struct work_struct *work)
390 {
391 	return queue_work(keventd_wq, work);
392 }
393 
394 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
395 {
396 	return queue_delayed_work(keventd_wq, work, delay);
397 }
398 
399 int schedule_delayed_work_on(int cpu,
400 			struct work_struct *work, unsigned long delay)
401 {
402 	int ret = 0;
403 	struct timer_list *timer = &work->timer;
404 
405 	if (!test_and_set_bit(0, &work->pending)) {
406 		BUG_ON(timer_pending(timer));
407 		BUG_ON(!list_empty(&work->entry));
408 		/* This stores keventd_wq for the moment, for the timer_fn */
409 		work->wq_data = keventd_wq;
410 		timer->expires = jiffies + delay;
411 		timer->data = (unsigned long)work;
412 		timer->function = delayed_work_timer_fn;
413 		add_timer_on(timer, cpu);
414 		ret = 1;
415 	}
416 	return ret;
417 }
418 
419 void flush_scheduled_work(void)
420 {
421 	flush_workqueue(keventd_wq);
422 }
423 
424 /**
425  * cancel_rearming_delayed_workqueue - reliably kill off a delayed
426  *			work whose handler rearms the delayed work.
427  * @wq:   the controlling workqueue structure
428  * @work: the delayed work struct
429  */
430 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
431 				       struct work_struct *work)
432 {
433 	while (!cancel_delayed_work(work))
434 		flush_workqueue(wq);
435 }
436 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
437 
438 /**
439  * cancel_rearming_delayed_work - reliably kill off a delayed keventd
440  *			work whose handler rearms the delayed work.
441  * @work: the delayed work struct
442  */
443 void cancel_rearming_delayed_work(struct work_struct *work)
444 {
445 	cancel_rearming_delayed_workqueue(keventd_wq, work);
446 }
447 EXPORT_SYMBOL(cancel_rearming_delayed_work);
448 
449 int keventd_up(void)
450 {
451 	return keventd_wq != NULL;
452 }
453 
454 int current_is_keventd(void)
455 {
456 	struct cpu_workqueue_struct *cwq;
457 	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
458 	int ret = 0;
459 
460 	BUG_ON(!keventd_wq);
461 
462 	cwq = keventd_wq->cpu_wq + cpu;
463 	if (current == cwq->thread)
464 		ret = 1;
465 
466 	return ret;
467 
468 }
469 
470 #ifdef CONFIG_HOTPLUG_CPU
471 /* Take the work from this (downed) CPU. */
472 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
473 {
474 	struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu;
475 	LIST_HEAD(list);
476 	struct work_struct *work;
477 
478 	spin_lock_irq(&cwq->lock);
479 	list_splice_init(&cwq->worklist, &list);
480 
481 	while (!list_empty(&list)) {
482 		printk("Taking work for %s\n", wq->name);
483 		work = list_entry(list.next,struct work_struct,entry);
484 		list_del(&work->entry);
485 		__queue_work(wq->cpu_wq + smp_processor_id(), work);
486 	}
487 	spin_unlock_irq(&cwq->lock);
488 }
489 
490 /* We're holding the cpucontrol mutex here */
491 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
492 				  unsigned long action,
493 				  void *hcpu)
494 {
495 	unsigned int hotcpu = (unsigned long)hcpu;
496 	struct workqueue_struct *wq;
497 
498 	switch (action) {
499 	case CPU_UP_PREPARE:
500 		/* Create a new workqueue thread for it. */
501 		list_for_each_entry(wq, &workqueues, list) {
502 			if (create_workqueue_thread(wq, hotcpu) < 0) {
503 				printk("workqueue for %i failed\n", hotcpu);
504 				return NOTIFY_BAD;
505 			}
506 		}
507 		break;
508 
509 	case CPU_ONLINE:
510 		/* Kick off worker threads. */
511 		list_for_each_entry(wq, &workqueues, list) {
512 			kthread_bind(wq->cpu_wq[hotcpu].thread, hotcpu);
513 			wake_up_process(wq->cpu_wq[hotcpu].thread);
514 		}
515 		break;
516 
517 	case CPU_UP_CANCELED:
518 		list_for_each_entry(wq, &workqueues, list) {
519 			/* Unbind so it can run. */
520 			kthread_bind(wq->cpu_wq[hotcpu].thread,
521 				     smp_processor_id());
522 			cleanup_workqueue_thread(wq, hotcpu);
523 		}
524 		break;
525 
526 	case CPU_DEAD:
527 		list_for_each_entry(wq, &workqueues, list)
528 			cleanup_workqueue_thread(wq, hotcpu);
529 		list_for_each_entry(wq, &workqueues, list)
530 			take_over_work(wq, hotcpu);
531 		break;
532 	}
533 
534 	return NOTIFY_OK;
535 }
536 #endif
537 
538 void init_workqueues(void)
539 {
540 	hotcpu_notifier(workqueue_cpu_callback, 0);
541 	keventd_wq = create_workqueue("events");
542 	BUG_ON(!keventd_wq);
543 }
544 
545 EXPORT_SYMBOL_GPL(__create_workqueue);
546 EXPORT_SYMBOL_GPL(queue_work);
547 EXPORT_SYMBOL_GPL(queue_delayed_work);
548 EXPORT_SYMBOL_GPL(flush_workqueue);
549 EXPORT_SYMBOL_GPL(destroy_workqueue);
550 
551 EXPORT_SYMBOL(schedule_work);
552 EXPORT_SYMBOL(schedule_delayed_work);
553 EXPORT_SYMBOL(schedule_delayed_work_on);
554 EXPORT_SYMBOL(flush_scheduled_work);
555