1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 83 /* call for help after 10ms 84 (min two ticks) */ 85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 86 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 88 89 /* 90 * Rescue workers are used only on emergencies and shared by 91 * all cpus. Give -20. 92 */ 93 RESCUER_NICE_LEVEL = -20, 94 }; 95 96 /* 97 * Structure fields follow one of the following exclusion rules. 98 * 99 * I: Modifiable by initialization/destruction paths and read-only for 100 * everyone else. 101 * 102 * P: Preemption protected. Disabling preemption is enough and should 103 * only be modified and accessed from the local cpu. 104 * 105 * L: gcwq->lock protected. Access with gcwq->lock held. 106 * 107 * X: During normal operation, modification requires gcwq->lock and 108 * should be done only from local cpu. Either disabling preemption 109 * on local cpu or grabbing gcwq->lock is enough for read access. 110 * If GCWQ_DISASSOCIATED is set, it's identical to L. 111 * 112 * F: wq->flush_mutex protected. 113 * 114 * W: workqueue_lock protected. 115 */ 116 117 struct global_cwq; 118 119 /* 120 * The poor guys doing the actual heavy lifting. All on-duty workers 121 * are either serving the manager role, on idle list or on busy hash. 122 */ 123 struct worker { 124 /* on idle list while idle, on busy hash table while busy */ 125 union { 126 struct list_head entry; /* L: while idle */ 127 struct hlist_node hentry; /* L: while busy */ 128 }; 129 130 struct work_struct *current_work; /* L: work being processed */ 131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 132 struct list_head scheduled; /* L: scheduled works */ 133 struct task_struct *task; /* I: worker task */ 134 struct global_cwq *gcwq; /* I: the associated gcwq */ 135 /* 64 bytes boundary on 64bit, 32 on 32bit */ 136 unsigned long last_active; /* L: last active timestamp */ 137 unsigned int flags; /* X: flags */ 138 int id; /* I: worker id */ 139 struct work_struct rebind_work; /* L: rebind worker to cpu */ 140 }; 141 142 /* 143 * Global per-cpu workqueue. There's one and only one for each cpu 144 * and all works are queued and processed here regardless of their 145 * target workqueues. 146 */ 147 struct global_cwq { 148 spinlock_t lock; /* the gcwq lock */ 149 struct list_head worklist; /* L: list of pending works */ 150 unsigned int cpu; /* I: the associated cpu */ 151 unsigned int flags; /* L: GCWQ_* flags */ 152 153 int nr_workers; /* L: total number of workers */ 154 int nr_idle; /* L: currently idle ones */ 155 156 /* workers are chained either in the idle_list or busy_hash */ 157 struct list_head idle_list; /* X: list of idle workers */ 158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 159 /* L: hash of busy workers */ 160 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 163 164 struct ida worker_ida; /* L: for worker IDs */ 165 166 struct task_struct *trustee; /* L: for gcwq shutdown */ 167 unsigned int trustee_state; /* L: trustee state */ 168 wait_queue_head_t trustee_wait; /* trustee wait */ 169 struct worker *first_idle; /* L: first idle worker */ 170 } ____cacheline_aligned_in_smp; 171 172 /* 173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 174 * work_struct->data are used for flags and thus cwqs need to be 175 * aligned at two's power of the number of flag bits. 176 */ 177 struct cpu_workqueue_struct { 178 struct global_cwq *gcwq; /* I: the associated gcwq */ 179 struct workqueue_struct *wq; /* I: the owning workqueue */ 180 int work_color; /* L: current color */ 181 int flush_color; /* L: flushing color */ 182 int nr_in_flight[WORK_NR_COLORS]; 183 /* L: nr of in_flight works */ 184 int nr_active; /* L: nr of active works */ 185 int max_active; /* L: max active works */ 186 struct list_head delayed_works; /* L: delayed works */ 187 }; 188 189 /* 190 * Structure used to wait for workqueue flush. 191 */ 192 struct wq_flusher { 193 struct list_head list; /* F: list of flushers */ 194 int flush_color; /* F: flush color waiting for */ 195 struct completion done; /* flush completion */ 196 }; 197 198 /* 199 * All cpumasks are assumed to be always set on UP and thus can't be 200 * used to determine whether there's something to be done. 201 */ 202 #ifdef CONFIG_SMP 203 typedef cpumask_var_t mayday_mask_t; 204 #define mayday_test_and_set_cpu(cpu, mask) \ 205 cpumask_test_and_set_cpu((cpu), (mask)) 206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 209 #define free_mayday_mask(mask) free_cpumask_var((mask)) 210 #else 211 typedef unsigned long mayday_mask_t; 212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 215 #define alloc_mayday_mask(maskp, gfp) true 216 #define free_mayday_mask(mask) do { } while (0) 217 #endif 218 219 /* 220 * The externally visible workqueue abstraction is an array of 221 * per-CPU workqueues: 222 */ 223 struct workqueue_struct { 224 unsigned int flags; /* I: WQ_* flags */ 225 union { 226 struct cpu_workqueue_struct __percpu *pcpu; 227 struct cpu_workqueue_struct *single; 228 unsigned long v; 229 } cpu_wq; /* I: cwq's */ 230 struct list_head list; /* W: list of all workqueues */ 231 232 struct mutex flush_mutex; /* protects wq flushing */ 233 int work_color; /* F: current work color */ 234 int flush_color; /* F: current flush color */ 235 atomic_t nr_cwqs_to_flush; /* flush in progress */ 236 struct wq_flusher *first_flusher; /* F: first flusher */ 237 struct list_head flusher_queue; /* F: flush waiters */ 238 struct list_head flusher_overflow; /* F: flush overflow list */ 239 240 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 241 struct worker *rescuer; /* I: rescue worker */ 242 243 int saved_max_active; /* W: saved cwq max_active */ 244 const char *name; /* I: workqueue name */ 245 #ifdef CONFIG_LOCKDEP 246 struct lockdep_map lockdep_map; 247 #endif 248 }; 249 250 struct workqueue_struct *system_wq __read_mostly; 251 struct workqueue_struct *system_long_wq __read_mostly; 252 struct workqueue_struct *system_nrt_wq __read_mostly; 253 struct workqueue_struct *system_unbound_wq __read_mostly; 254 struct workqueue_struct *system_freezable_wq __read_mostly; 255 EXPORT_SYMBOL_GPL(system_wq); 256 EXPORT_SYMBOL_GPL(system_long_wq); 257 EXPORT_SYMBOL_GPL(system_nrt_wq); 258 EXPORT_SYMBOL_GPL(system_unbound_wq); 259 EXPORT_SYMBOL_GPL(system_freezable_wq); 260 261 #define CREATE_TRACE_POINTS 262 #include <trace/events/workqueue.h> 263 264 #define for_each_busy_worker(worker, i, pos, gcwq) \ 265 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 266 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 267 268 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 269 unsigned int sw) 270 { 271 if (cpu < nr_cpu_ids) { 272 if (sw & 1) { 273 cpu = cpumask_next(cpu, mask); 274 if (cpu < nr_cpu_ids) 275 return cpu; 276 } 277 if (sw & 2) 278 return WORK_CPU_UNBOUND; 279 } 280 return WORK_CPU_NONE; 281 } 282 283 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 284 struct workqueue_struct *wq) 285 { 286 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 287 } 288 289 /* 290 * CPU iterators 291 * 292 * An extra gcwq is defined for an invalid cpu number 293 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 294 * specific CPU. The following iterators are similar to 295 * for_each_*_cpu() iterators but also considers the unbound gcwq. 296 * 297 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 298 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 299 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 300 * WORK_CPU_UNBOUND for unbound workqueues 301 */ 302 #define for_each_gcwq_cpu(cpu) \ 303 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 304 (cpu) < WORK_CPU_NONE; \ 305 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 306 307 #define for_each_online_gcwq_cpu(cpu) \ 308 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 309 (cpu) < WORK_CPU_NONE; \ 310 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 311 312 #define for_each_cwq_cpu(cpu, wq) \ 313 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 314 (cpu) < WORK_CPU_NONE; \ 315 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 316 317 #ifdef CONFIG_DEBUG_OBJECTS_WORK 318 319 static struct debug_obj_descr work_debug_descr; 320 321 static void *work_debug_hint(void *addr) 322 { 323 return ((struct work_struct *) addr)->func; 324 } 325 326 /* 327 * fixup_init is called when: 328 * - an active object is initialized 329 */ 330 static int work_fixup_init(void *addr, enum debug_obj_state state) 331 { 332 struct work_struct *work = addr; 333 334 switch (state) { 335 case ODEBUG_STATE_ACTIVE: 336 cancel_work_sync(work); 337 debug_object_init(work, &work_debug_descr); 338 return 1; 339 default: 340 return 0; 341 } 342 } 343 344 /* 345 * fixup_activate is called when: 346 * - an active object is activated 347 * - an unknown object is activated (might be a statically initialized object) 348 */ 349 static int work_fixup_activate(void *addr, enum debug_obj_state state) 350 { 351 struct work_struct *work = addr; 352 353 switch (state) { 354 355 case ODEBUG_STATE_NOTAVAILABLE: 356 /* 357 * This is not really a fixup. The work struct was 358 * statically initialized. We just make sure that it 359 * is tracked in the object tracker. 360 */ 361 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 362 debug_object_init(work, &work_debug_descr); 363 debug_object_activate(work, &work_debug_descr); 364 return 0; 365 } 366 WARN_ON_ONCE(1); 367 return 0; 368 369 case ODEBUG_STATE_ACTIVE: 370 WARN_ON(1); 371 372 default: 373 return 0; 374 } 375 } 376 377 /* 378 * fixup_free is called when: 379 * - an active object is freed 380 */ 381 static int work_fixup_free(void *addr, enum debug_obj_state state) 382 { 383 struct work_struct *work = addr; 384 385 switch (state) { 386 case ODEBUG_STATE_ACTIVE: 387 cancel_work_sync(work); 388 debug_object_free(work, &work_debug_descr); 389 return 1; 390 default: 391 return 0; 392 } 393 } 394 395 static struct debug_obj_descr work_debug_descr = { 396 .name = "work_struct", 397 .debug_hint = work_debug_hint, 398 .fixup_init = work_fixup_init, 399 .fixup_activate = work_fixup_activate, 400 .fixup_free = work_fixup_free, 401 }; 402 403 static inline void debug_work_activate(struct work_struct *work) 404 { 405 debug_object_activate(work, &work_debug_descr); 406 } 407 408 static inline void debug_work_deactivate(struct work_struct *work) 409 { 410 debug_object_deactivate(work, &work_debug_descr); 411 } 412 413 void __init_work(struct work_struct *work, int onstack) 414 { 415 if (onstack) 416 debug_object_init_on_stack(work, &work_debug_descr); 417 else 418 debug_object_init(work, &work_debug_descr); 419 } 420 EXPORT_SYMBOL_GPL(__init_work); 421 422 void destroy_work_on_stack(struct work_struct *work) 423 { 424 debug_object_free(work, &work_debug_descr); 425 } 426 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 427 428 #else 429 static inline void debug_work_activate(struct work_struct *work) { } 430 static inline void debug_work_deactivate(struct work_struct *work) { } 431 #endif 432 433 /* Serializes the accesses to the list of workqueues. */ 434 static DEFINE_SPINLOCK(workqueue_lock); 435 static LIST_HEAD(workqueues); 436 static bool workqueue_freezing; /* W: have wqs started freezing? */ 437 438 /* 439 * The almighty global cpu workqueues. nr_running is the only field 440 * which is expected to be used frequently by other cpus via 441 * try_to_wake_up(). Put it in a separate cacheline. 442 */ 443 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 444 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 445 446 /* 447 * Global cpu workqueue and nr_running counter for unbound gcwq. The 448 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 449 * workers have WORKER_UNBOUND set. 450 */ 451 static struct global_cwq unbound_global_cwq; 452 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 453 454 static int worker_thread(void *__worker); 455 456 static struct global_cwq *get_gcwq(unsigned int cpu) 457 { 458 if (cpu != WORK_CPU_UNBOUND) 459 return &per_cpu(global_cwq, cpu); 460 else 461 return &unbound_global_cwq; 462 } 463 464 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 465 { 466 if (cpu != WORK_CPU_UNBOUND) 467 return &per_cpu(gcwq_nr_running, cpu); 468 else 469 return &unbound_gcwq_nr_running; 470 } 471 472 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 473 struct workqueue_struct *wq) 474 { 475 if (!(wq->flags & WQ_UNBOUND)) { 476 if (likely(cpu < nr_cpu_ids)) { 477 #ifdef CONFIG_SMP 478 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 479 #else 480 return wq->cpu_wq.single; 481 #endif 482 } 483 } else if (likely(cpu == WORK_CPU_UNBOUND)) 484 return wq->cpu_wq.single; 485 return NULL; 486 } 487 488 static unsigned int work_color_to_flags(int color) 489 { 490 return color << WORK_STRUCT_COLOR_SHIFT; 491 } 492 493 static int get_work_color(struct work_struct *work) 494 { 495 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 496 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 497 } 498 499 static int work_next_color(int color) 500 { 501 return (color + 1) % WORK_NR_COLORS; 502 } 503 504 /* 505 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 506 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 507 * cleared and the work data contains the cpu number it was last on. 508 * 509 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 510 * cwq, cpu or clear work->data. These functions should only be 511 * called while the work is owned - ie. while the PENDING bit is set. 512 * 513 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 514 * corresponding to a work. gcwq is available once the work has been 515 * queued anywhere after initialization. cwq is available only from 516 * queueing until execution starts. 517 */ 518 static inline void set_work_data(struct work_struct *work, unsigned long data, 519 unsigned long flags) 520 { 521 BUG_ON(!work_pending(work)); 522 atomic_long_set(&work->data, data | flags | work_static(work)); 523 } 524 525 static void set_work_cwq(struct work_struct *work, 526 struct cpu_workqueue_struct *cwq, 527 unsigned long extra_flags) 528 { 529 set_work_data(work, (unsigned long)cwq, 530 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 531 } 532 533 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 534 { 535 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 536 } 537 538 static void clear_work_data(struct work_struct *work) 539 { 540 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 541 } 542 543 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 544 { 545 unsigned long data = atomic_long_read(&work->data); 546 547 if (data & WORK_STRUCT_CWQ) 548 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 549 else 550 return NULL; 551 } 552 553 static struct global_cwq *get_work_gcwq(struct work_struct *work) 554 { 555 unsigned long data = atomic_long_read(&work->data); 556 unsigned int cpu; 557 558 if (data & WORK_STRUCT_CWQ) 559 return ((struct cpu_workqueue_struct *) 560 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 561 562 cpu = data >> WORK_STRUCT_FLAG_BITS; 563 if (cpu == WORK_CPU_NONE) 564 return NULL; 565 566 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 567 return get_gcwq(cpu); 568 } 569 570 /* 571 * Policy functions. These define the policies on how the global 572 * worker pool is managed. Unless noted otherwise, these functions 573 * assume that they're being called with gcwq->lock held. 574 */ 575 576 static bool __need_more_worker(struct global_cwq *gcwq) 577 { 578 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 579 gcwq->flags & GCWQ_HIGHPRI_PENDING; 580 } 581 582 /* 583 * Need to wake up a worker? Called from anything but currently 584 * running workers. 585 */ 586 static bool need_more_worker(struct global_cwq *gcwq) 587 { 588 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 589 } 590 591 /* Can I start working? Called from busy but !running workers. */ 592 static bool may_start_working(struct global_cwq *gcwq) 593 { 594 return gcwq->nr_idle; 595 } 596 597 /* Do I need to keep working? Called from currently running workers. */ 598 static bool keep_working(struct global_cwq *gcwq) 599 { 600 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 601 602 return !list_empty(&gcwq->worklist) && 603 (atomic_read(nr_running) <= 1 || 604 gcwq->flags & GCWQ_HIGHPRI_PENDING); 605 } 606 607 /* Do we need a new worker? Called from manager. */ 608 static bool need_to_create_worker(struct global_cwq *gcwq) 609 { 610 return need_more_worker(gcwq) && !may_start_working(gcwq); 611 } 612 613 /* Do I need to be the manager? */ 614 static bool need_to_manage_workers(struct global_cwq *gcwq) 615 { 616 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 617 } 618 619 /* Do we have too many workers and should some go away? */ 620 static bool too_many_workers(struct global_cwq *gcwq) 621 { 622 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 623 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 624 int nr_busy = gcwq->nr_workers - nr_idle; 625 626 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 627 } 628 629 /* 630 * Wake up functions. 631 */ 632 633 /* Return the first worker. Safe with preemption disabled */ 634 static struct worker *first_worker(struct global_cwq *gcwq) 635 { 636 if (unlikely(list_empty(&gcwq->idle_list))) 637 return NULL; 638 639 return list_first_entry(&gcwq->idle_list, struct worker, entry); 640 } 641 642 /** 643 * wake_up_worker - wake up an idle worker 644 * @gcwq: gcwq to wake worker for 645 * 646 * Wake up the first idle worker of @gcwq. 647 * 648 * CONTEXT: 649 * spin_lock_irq(gcwq->lock). 650 */ 651 static void wake_up_worker(struct global_cwq *gcwq) 652 { 653 struct worker *worker = first_worker(gcwq); 654 655 if (likely(worker)) 656 wake_up_process(worker->task); 657 } 658 659 /** 660 * wq_worker_waking_up - a worker is waking up 661 * @task: task waking up 662 * @cpu: CPU @task is waking up to 663 * 664 * This function is called during try_to_wake_up() when a worker is 665 * being awoken. 666 * 667 * CONTEXT: 668 * spin_lock_irq(rq->lock) 669 */ 670 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 671 { 672 struct worker *worker = kthread_data(task); 673 674 if (!(worker->flags & WORKER_NOT_RUNNING)) 675 atomic_inc(get_gcwq_nr_running(cpu)); 676 } 677 678 /** 679 * wq_worker_sleeping - a worker is going to sleep 680 * @task: task going to sleep 681 * @cpu: CPU in question, must be the current CPU number 682 * 683 * This function is called during schedule() when a busy worker is 684 * going to sleep. Worker on the same cpu can be woken up by 685 * returning pointer to its task. 686 * 687 * CONTEXT: 688 * spin_lock_irq(rq->lock) 689 * 690 * RETURNS: 691 * Worker task on @cpu to wake up, %NULL if none. 692 */ 693 struct task_struct *wq_worker_sleeping(struct task_struct *task, 694 unsigned int cpu) 695 { 696 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 697 struct global_cwq *gcwq = get_gcwq(cpu); 698 atomic_t *nr_running = get_gcwq_nr_running(cpu); 699 700 if (worker->flags & WORKER_NOT_RUNNING) 701 return NULL; 702 703 /* this can only happen on the local cpu */ 704 BUG_ON(cpu != raw_smp_processor_id()); 705 706 /* 707 * The counterpart of the following dec_and_test, implied mb, 708 * worklist not empty test sequence is in insert_work(). 709 * Please read comment there. 710 * 711 * NOT_RUNNING is clear. This means that trustee is not in 712 * charge and we're running on the local cpu w/ rq lock held 713 * and preemption disabled, which in turn means that none else 714 * could be manipulating idle_list, so dereferencing idle_list 715 * without gcwq lock is safe. 716 */ 717 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 718 to_wakeup = first_worker(gcwq); 719 return to_wakeup ? to_wakeup->task : NULL; 720 } 721 722 /** 723 * worker_set_flags - set worker flags and adjust nr_running accordingly 724 * @worker: self 725 * @flags: flags to set 726 * @wakeup: wakeup an idle worker if necessary 727 * 728 * Set @flags in @worker->flags and adjust nr_running accordingly. If 729 * nr_running becomes zero and @wakeup is %true, an idle worker is 730 * woken up. 731 * 732 * CONTEXT: 733 * spin_lock_irq(gcwq->lock) 734 */ 735 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 736 bool wakeup) 737 { 738 struct global_cwq *gcwq = worker->gcwq; 739 740 WARN_ON_ONCE(worker->task != current); 741 742 /* 743 * If transitioning into NOT_RUNNING, adjust nr_running and 744 * wake up an idle worker as necessary if requested by 745 * @wakeup. 746 */ 747 if ((flags & WORKER_NOT_RUNNING) && 748 !(worker->flags & WORKER_NOT_RUNNING)) { 749 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 750 751 if (wakeup) { 752 if (atomic_dec_and_test(nr_running) && 753 !list_empty(&gcwq->worklist)) 754 wake_up_worker(gcwq); 755 } else 756 atomic_dec(nr_running); 757 } 758 759 worker->flags |= flags; 760 } 761 762 /** 763 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 764 * @worker: self 765 * @flags: flags to clear 766 * 767 * Clear @flags in @worker->flags and adjust nr_running accordingly. 768 * 769 * CONTEXT: 770 * spin_lock_irq(gcwq->lock) 771 */ 772 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 773 { 774 struct global_cwq *gcwq = worker->gcwq; 775 unsigned int oflags = worker->flags; 776 777 WARN_ON_ONCE(worker->task != current); 778 779 worker->flags &= ~flags; 780 781 /* 782 * If transitioning out of NOT_RUNNING, increment nr_running. Note 783 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 784 * of multiple flags, not a single flag. 785 */ 786 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 787 if (!(worker->flags & WORKER_NOT_RUNNING)) 788 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 789 } 790 791 /** 792 * busy_worker_head - return the busy hash head for a work 793 * @gcwq: gcwq of interest 794 * @work: work to be hashed 795 * 796 * Return hash head of @gcwq for @work. 797 * 798 * CONTEXT: 799 * spin_lock_irq(gcwq->lock). 800 * 801 * RETURNS: 802 * Pointer to the hash head. 803 */ 804 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 805 struct work_struct *work) 806 { 807 const int base_shift = ilog2(sizeof(struct work_struct)); 808 unsigned long v = (unsigned long)work; 809 810 /* simple shift and fold hash, do we need something better? */ 811 v >>= base_shift; 812 v += v >> BUSY_WORKER_HASH_ORDER; 813 v &= BUSY_WORKER_HASH_MASK; 814 815 return &gcwq->busy_hash[v]; 816 } 817 818 /** 819 * __find_worker_executing_work - find worker which is executing a work 820 * @gcwq: gcwq of interest 821 * @bwh: hash head as returned by busy_worker_head() 822 * @work: work to find worker for 823 * 824 * Find a worker which is executing @work on @gcwq. @bwh should be 825 * the hash head obtained by calling busy_worker_head() with the same 826 * work. 827 * 828 * CONTEXT: 829 * spin_lock_irq(gcwq->lock). 830 * 831 * RETURNS: 832 * Pointer to worker which is executing @work if found, NULL 833 * otherwise. 834 */ 835 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 836 struct hlist_head *bwh, 837 struct work_struct *work) 838 { 839 struct worker *worker; 840 struct hlist_node *tmp; 841 842 hlist_for_each_entry(worker, tmp, bwh, hentry) 843 if (worker->current_work == work) 844 return worker; 845 return NULL; 846 } 847 848 /** 849 * find_worker_executing_work - find worker which is executing a work 850 * @gcwq: gcwq of interest 851 * @work: work to find worker for 852 * 853 * Find a worker which is executing @work on @gcwq. This function is 854 * identical to __find_worker_executing_work() except that this 855 * function calculates @bwh itself. 856 * 857 * CONTEXT: 858 * spin_lock_irq(gcwq->lock). 859 * 860 * RETURNS: 861 * Pointer to worker which is executing @work if found, NULL 862 * otherwise. 863 */ 864 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 865 struct work_struct *work) 866 { 867 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 868 work); 869 } 870 871 /** 872 * gcwq_determine_ins_pos - find insertion position 873 * @gcwq: gcwq of interest 874 * @cwq: cwq a work is being queued for 875 * 876 * A work for @cwq is about to be queued on @gcwq, determine insertion 877 * position for the work. If @cwq is for HIGHPRI wq, the work is 878 * queued at the head of the queue but in FIFO order with respect to 879 * other HIGHPRI works; otherwise, at the end of the queue. This 880 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 881 * there are HIGHPRI works pending. 882 * 883 * CONTEXT: 884 * spin_lock_irq(gcwq->lock). 885 * 886 * RETURNS: 887 * Pointer to inserstion position. 888 */ 889 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 890 struct cpu_workqueue_struct *cwq) 891 { 892 struct work_struct *twork; 893 894 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 895 return &gcwq->worklist; 896 897 list_for_each_entry(twork, &gcwq->worklist, entry) { 898 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 899 900 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 901 break; 902 } 903 904 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 905 return &twork->entry; 906 } 907 908 /** 909 * insert_work - insert a work into gcwq 910 * @cwq: cwq @work belongs to 911 * @work: work to insert 912 * @head: insertion point 913 * @extra_flags: extra WORK_STRUCT_* flags to set 914 * 915 * Insert @work which belongs to @cwq into @gcwq after @head. 916 * @extra_flags is or'd to work_struct flags. 917 * 918 * CONTEXT: 919 * spin_lock_irq(gcwq->lock). 920 */ 921 static void insert_work(struct cpu_workqueue_struct *cwq, 922 struct work_struct *work, struct list_head *head, 923 unsigned int extra_flags) 924 { 925 struct global_cwq *gcwq = cwq->gcwq; 926 927 /* we own @work, set data and link */ 928 set_work_cwq(work, cwq, extra_flags); 929 930 /* 931 * Ensure that we get the right work->data if we see the 932 * result of list_add() below, see try_to_grab_pending(). 933 */ 934 smp_wmb(); 935 936 list_add_tail(&work->entry, head); 937 938 /* 939 * Ensure either worker_sched_deactivated() sees the above 940 * list_add_tail() or we see zero nr_running to avoid workers 941 * lying around lazily while there are works to be processed. 942 */ 943 smp_mb(); 944 945 if (__need_more_worker(gcwq)) 946 wake_up_worker(gcwq); 947 } 948 949 /* 950 * Test whether @work is being queued from another work executing on the 951 * same workqueue. This is rather expensive and should only be used from 952 * cold paths. 953 */ 954 static bool is_chained_work(struct workqueue_struct *wq) 955 { 956 unsigned long flags; 957 unsigned int cpu; 958 959 for_each_gcwq_cpu(cpu) { 960 struct global_cwq *gcwq = get_gcwq(cpu); 961 struct worker *worker; 962 struct hlist_node *pos; 963 int i; 964 965 spin_lock_irqsave(&gcwq->lock, flags); 966 for_each_busy_worker(worker, i, pos, gcwq) { 967 if (worker->task != current) 968 continue; 969 spin_unlock_irqrestore(&gcwq->lock, flags); 970 /* 971 * I'm @worker, no locking necessary. See if @work 972 * is headed to the same workqueue. 973 */ 974 return worker->current_cwq->wq == wq; 975 } 976 spin_unlock_irqrestore(&gcwq->lock, flags); 977 } 978 return false; 979 } 980 981 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 982 struct work_struct *work) 983 { 984 struct global_cwq *gcwq; 985 struct cpu_workqueue_struct *cwq; 986 struct list_head *worklist; 987 unsigned int work_flags; 988 unsigned long flags; 989 990 debug_work_activate(work); 991 992 /* if dying, only works from the same workqueue are allowed */ 993 if (unlikely(wq->flags & WQ_DYING) && 994 WARN_ON_ONCE(!is_chained_work(wq))) 995 return; 996 997 /* determine gcwq to use */ 998 if (!(wq->flags & WQ_UNBOUND)) { 999 struct global_cwq *last_gcwq; 1000 1001 if (unlikely(cpu == WORK_CPU_UNBOUND)) 1002 cpu = raw_smp_processor_id(); 1003 1004 /* 1005 * It's multi cpu. If @wq is non-reentrant and @work 1006 * was previously on a different cpu, it might still 1007 * be running there, in which case the work needs to 1008 * be queued on that cpu to guarantee non-reentrance. 1009 */ 1010 gcwq = get_gcwq(cpu); 1011 if (wq->flags & WQ_NON_REENTRANT && 1012 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 1013 struct worker *worker; 1014 1015 spin_lock_irqsave(&last_gcwq->lock, flags); 1016 1017 worker = find_worker_executing_work(last_gcwq, work); 1018 1019 if (worker && worker->current_cwq->wq == wq) 1020 gcwq = last_gcwq; 1021 else { 1022 /* meh... not running there, queue here */ 1023 spin_unlock_irqrestore(&last_gcwq->lock, flags); 1024 spin_lock_irqsave(&gcwq->lock, flags); 1025 } 1026 } else 1027 spin_lock_irqsave(&gcwq->lock, flags); 1028 } else { 1029 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1030 spin_lock_irqsave(&gcwq->lock, flags); 1031 } 1032 1033 /* gcwq determined, get cwq and queue */ 1034 cwq = get_cwq(gcwq->cpu, wq); 1035 trace_workqueue_queue_work(cpu, cwq, work); 1036 1037 BUG_ON(!list_empty(&work->entry)); 1038 1039 cwq->nr_in_flight[cwq->work_color]++; 1040 work_flags = work_color_to_flags(cwq->work_color); 1041 1042 if (likely(cwq->nr_active < cwq->max_active)) { 1043 trace_workqueue_activate_work(work); 1044 cwq->nr_active++; 1045 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1046 } else { 1047 work_flags |= WORK_STRUCT_DELAYED; 1048 worklist = &cwq->delayed_works; 1049 } 1050 1051 insert_work(cwq, work, worklist, work_flags); 1052 1053 spin_unlock_irqrestore(&gcwq->lock, flags); 1054 } 1055 1056 /** 1057 * queue_work - queue work on a workqueue 1058 * @wq: workqueue to use 1059 * @work: work to queue 1060 * 1061 * Returns 0 if @work was already on a queue, non-zero otherwise. 1062 * 1063 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1064 * it can be processed by another CPU. 1065 */ 1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1067 { 1068 int ret; 1069 1070 ret = queue_work_on(get_cpu(), wq, work); 1071 put_cpu(); 1072 1073 return ret; 1074 } 1075 EXPORT_SYMBOL_GPL(queue_work); 1076 1077 /** 1078 * queue_work_on - queue work on specific cpu 1079 * @cpu: CPU number to execute work on 1080 * @wq: workqueue to use 1081 * @work: work to queue 1082 * 1083 * Returns 0 if @work was already on a queue, non-zero otherwise. 1084 * 1085 * We queue the work to a specific CPU, the caller must ensure it 1086 * can't go away. 1087 */ 1088 int 1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1090 { 1091 int ret = 0; 1092 1093 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1094 __queue_work(cpu, wq, work); 1095 ret = 1; 1096 } 1097 return ret; 1098 } 1099 EXPORT_SYMBOL_GPL(queue_work_on); 1100 1101 static void delayed_work_timer_fn(unsigned long __data) 1102 { 1103 struct delayed_work *dwork = (struct delayed_work *)__data; 1104 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1105 1106 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1107 } 1108 1109 /** 1110 * queue_delayed_work - queue work on a workqueue after delay 1111 * @wq: workqueue to use 1112 * @dwork: delayable work to queue 1113 * @delay: number of jiffies to wait before queueing 1114 * 1115 * Returns 0 if @work was already on a queue, non-zero otherwise. 1116 */ 1117 int queue_delayed_work(struct workqueue_struct *wq, 1118 struct delayed_work *dwork, unsigned long delay) 1119 { 1120 if (delay == 0) 1121 return queue_work(wq, &dwork->work); 1122 1123 return queue_delayed_work_on(-1, wq, dwork, delay); 1124 } 1125 EXPORT_SYMBOL_GPL(queue_delayed_work); 1126 1127 /** 1128 * queue_delayed_work_on - queue work on specific CPU after delay 1129 * @cpu: CPU number to execute work on 1130 * @wq: workqueue to use 1131 * @dwork: work to queue 1132 * @delay: number of jiffies to wait before queueing 1133 * 1134 * Returns 0 if @work was already on a queue, non-zero otherwise. 1135 */ 1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1137 struct delayed_work *dwork, unsigned long delay) 1138 { 1139 int ret = 0; 1140 struct timer_list *timer = &dwork->timer; 1141 struct work_struct *work = &dwork->work; 1142 1143 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1144 unsigned int lcpu; 1145 1146 BUG_ON(timer_pending(timer)); 1147 BUG_ON(!list_empty(&work->entry)); 1148 1149 timer_stats_timer_set_start_info(&dwork->timer); 1150 1151 /* 1152 * This stores cwq for the moment, for the timer_fn. 1153 * Note that the work's gcwq is preserved to allow 1154 * reentrance detection for delayed works. 1155 */ 1156 if (!(wq->flags & WQ_UNBOUND)) { 1157 struct global_cwq *gcwq = get_work_gcwq(work); 1158 1159 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1160 lcpu = gcwq->cpu; 1161 else 1162 lcpu = raw_smp_processor_id(); 1163 } else 1164 lcpu = WORK_CPU_UNBOUND; 1165 1166 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1167 1168 timer->expires = jiffies + delay; 1169 timer->data = (unsigned long)dwork; 1170 timer->function = delayed_work_timer_fn; 1171 1172 if (unlikely(cpu >= 0)) 1173 add_timer_on(timer, cpu); 1174 else 1175 add_timer(timer); 1176 ret = 1; 1177 } 1178 return ret; 1179 } 1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1181 1182 /** 1183 * worker_enter_idle - enter idle state 1184 * @worker: worker which is entering idle state 1185 * 1186 * @worker is entering idle state. Update stats and idle timer if 1187 * necessary. 1188 * 1189 * LOCKING: 1190 * spin_lock_irq(gcwq->lock). 1191 */ 1192 static void worker_enter_idle(struct worker *worker) 1193 { 1194 struct global_cwq *gcwq = worker->gcwq; 1195 1196 BUG_ON(worker->flags & WORKER_IDLE); 1197 BUG_ON(!list_empty(&worker->entry) && 1198 (worker->hentry.next || worker->hentry.pprev)); 1199 1200 /* can't use worker_set_flags(), also called from start_worker() */ 1201 worker->flags |= WORKER_IDLE; 1202 gcwq->nr_idle++; 1203 worker->last_active = jiffies; 1204 1205 /* idle_list is LIFO */ 1206 list_add(&worker->entry, &gcwq->idle_list); 1207 1208 if (likely(!(worker->flags & WORKER_ROGUE))) { 1209 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1210 mod_timer(&gcwq->idle_timer, 1211 jiffies + IDLE_WORKER_TIMEOUT); 1212 } else 1213 wake_up_all(&gcwq->trustee_wait); 1214 1215 /* sanity check nr_running */ 1216 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1217 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1218 } 1219 1220 /** 1221 * worker_leave_idle - leave idle state 1222 * @worker: worker which is leaving idle state 1223 * 1224 * @worker is leaving idle state. Update stats. 1225 * 1226 * LOCKING: 1227 * spin_lock_irq(gcwq->lock). 1228 */ 1229 static void worker_leave_idle(struct worker *worker) 1230 { 1231 struct global_cwq *gcwq = worker->gcwq; 1232 1233 BUG_ON(!(worker->flags & WORKER_IDLE)); 1234 worker_clr_flags(worker, WORKER_IDLE); 1235 gcwq->nr_idle--; 1236 list_del_init(&worker->entry); 1237 } 1238 1239 /** 1240 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1241 * @worker: self 1242 * 1243 * Works which are scheduled while the cpu is online must at least be 1244 * scheduled to a worker which is bound to the cpu so that if they are 1245 * flushed from cpu callbacks while cpu is going down, they are 1246 * guaranteed to execute on the cpu. 1247 * 1248 * This function is to be used by rogue workers and rescuers to bind 1249 * themselves to the target cpu and may race with cpu going down or 1250 * coming online. kthread_bind() can't be used because it may put the 1251 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1252 * verbatim as it's best effort and blocking and gcwq may be 1253 * [dis]associated in the meantime. 1254 * 1255 * This function tries set_cpus_allowed() and locks gcwq and verifies 1256 * the binding against GCWQ_DISASSOCIATED which is set during 1257 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1258 * idle state or fetches works without dropping lock, it can guarantee 1259 * the scheduling requirement described in the first paragraph. 1260 * 1261 * CONTEXT: 1262 * Might sleep. Called without any lock but returns with gcwq->lock 1263 * held. 1264 * 1265 * RETURNS: 1266 * %true if the associated gcwq is online (@worker is successfully 1267 * bound), %false if offline. 1268 */ 1269 static bool worker_maybe_bind_and_lock(struct worker *worker) 1270 __acquires(&gcwq->lock) 1271 { 1272 struct global_cwq *gcwq = worker->gcwq; 1273 struct task_struct *task = worker->task; 1274 1275 while (true) { 1276 /* 1277 * The following call may fail, succeed or succeed 1278 * without actually migrating the task to the cpu if 1279 * it races with cpu hotunplug operation. Verify 1280 * against GCWQ_DISASSOCIATED. 1281 */ 1282 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1283 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1284 1285 spin_lock_irq(&gcwq->lock); 1286 if (gcwq->flags & GCWQ_DISASSOCIATED) 1287 return false; 1288 if (task_cpu(task) == gcwq->cpu && 1289 cpumask_equal(¤t->cpus_allowed, 1290 get_cpu_mask(gcwq->cpu))) 1291 return true; 1292 spin_unlock_irq(&gcwq->lock); 1293 1294 /* 1295 * We've raced with CPU hot[un]plug. Give it a breather 1296 * and retry migration. cond_resched() is required here; 1297 * otherwise, we might deadlock against cpu_stop trying to 1298 * bring down the CPU on non-preemptive kernel. 1299 */ 1300 cpu_relax(); 1301 cond_resched(); 1302 } 1303 } 1304 1305 /* 1306 * Function for worker->rebind_work used to rebind rogue busy workers 1307 * to the associated cpu which is coming back online. This is 1308 * scheduled by cpu up but can race with other cpu hotplug operations 1309 * and may be executed twice without intervening cpu down. 1310 */ 1311 static void worker_rebind_fn(struct work_struct *work) 1312 { 1313 struct worker *worker = container_of(work, struct worker, rebind_work); 1314 struct global_cwq *gcwq = worker->gcwq; 1315 1316 if (worker_maybe_bind_and_lock(worker)) 1317 worker_clr_flags(worker, WORKER_REBIND); 1318 1319 spin_unlock_irq(&gcwq->lock); 1320 } 1321 1322 static struct worker *alloc_worker(void) 1323 { 1324 struct worker *worker; 1325 1326 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1327 if (worker) { 1328 INIT_LIST_HEAD(&worker->entry); 1329 INIT_LIST_HEAD(&worker->scheduled); 1330 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1331 /* on creation a worker is in !idle && prep state */ 1332 worker->flags = WORKER_PREP; 1333 } 1334 return worker; 1335 } 1336 1337 /** 1338 * create_worker - create a new workqueue worker 1339 * @gcwq: gcwq the new worker will belong to 1340 * @bind: whether to set affinity to @cpu or not 1341 * 1342 * Create a new worker which is bound to @gcwq. The returned worker 1343 * can be started by calling start_worker() or destroyed using 1344 * destroy_worker(). 1345 * 1346 * CONTEXT: 1347 * Might sleep. Does GFP_KERNEL allocations. 1348 * 1349 * RETURNS: 1350 * Pointer to the newly created worker. 1351 */ 1352 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1353 { 1354 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1355 struct worker *worker = NULL; 1356 int id = -1; 1357 1358 spin_lock_irq(&gcwq->lock); 1359 while (ida_get_new(&gcwq->worker_ida, &id)) { 1360 spin_unlock_irq(&gcwq->lock); 1361 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1362 goto fail; 1363 spin_lock_irq(&gcwq->lock); 1364 } 1365 spin_unlock_irq(&gcwq->lock); 1366 1367 worker = alloc_worker(); 1368 if (!worker) 1369 goto fail; 1370 1371 worker->gcwq = gcwq; 1372 worker->id = id; 1373 1374 if (!on_unbound_cpu) 1375 worker->task = kthread_create_on_node(worker_thread, 1376 worker, 1377 cpu_to_node(gcwq->cpu), 1378 "kworker/%u:%d", gcwq->cpu, id); 1379 else 1380 worker->task = kthread_create(worker_thread, worker, 1381 "kworker/u:%d", id); 1382 if (IS_ERR(worker->task)) 1383 goto fail; 1384 1385 /* 1386 * A rogue worker will become a regular one if CPU comes 1387 * online later on. Make sure every worker has 1388 * PF_THREAD_BOUND set. 1389 */ 1390 if (bind && !on_unbound_cpu) 1391 kthread_bind(worker->task, gcwq->cpu); 1392 else { 1393 worker->task->flags |= PF_THREAD_BOUND; 1394 if (on_unbound_cpu) 1395 worker->flags |= WORKER_UNBOUND; 1396 } 1397 1398 return worker; 1399 fail: 1400 if (id >= 0) { 1401 spin_lock_irq(&gcwq->lock); 1402 ida_remove(&gcwq->worker_ida, id); 1403 spin_unlock_irq(&gcwq->lock); 1404 } 1405 kfree(worker); 1406 return NULL; 1407 } 1408 1409 /** 1410 * start_worker - start a newly created worker 1411 * @worker: worker to start 1412 * 1413 * Make the gcwq aware of @worker and start it. 1414 * 1415 * CONTEXT: 1416 * spin_lock_irq(gcwq->lock). 1417 */ 1418 static void start_worker(struct worker *worker) 1419 { 1420 worker->flags |= WORKER_STARTED; 1421 worker->gcwq->nr_workers++; 1422 worker_enter_idle(worker); 1423 wake_up_process(worker->task); 1424 } 1425 1426 /** 1427 * destroy_worker - destroy a workqueue worker 1428 * @worker: worker to be destroyed 1429 * 1430 * Destroy @worker and adjust @gcwq stats accordingly. 1431 * 1432 * CONTEXT: 1433 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1434 */ 1435 static void destroy_worker(struct worker *worker) 1436 { 1437 struct global_cwq *gcwq = worker->gcwq; 1438 int id = worker->id; 1439 1440 /* sanity check frenzy */ 1441 BUG_ON(worker->current_work); 1442 BUG_ON(!list_empty(&worker->scheduled)); 1443 1444 if (worker->flags & WORKER_STARTED) 1445 gcwq->nr_workers--; 1446 if (worker->flags & WORKER_IDLE) 1447 gcwq->nr_idle--; 1448 1449 list_del_init(&worker->entry); 1450 worker->flags |= WORKER_DIE; 1451 1452 spin_unlock_irq(&gcwq->lock); 1453 1454 kthread_stop(worker->task); 1455 kfree(worker); 1456 1457 spin_lock_irq(&gcwq->lock); 1458 ida_remove(&gcwq->worker_ida, id); 1459 } 1460 1461 static void idle_worker_timeout(unsigned long __gcwq) 1462 { 1463 struct global_cwq *gcwq = (void *)__gcwq; 1464 1465 spin_lock_irq(&gcwq->lock); 1466 1467 if (too_many_workers(gcwq)) { 1468 struct worker *worker; 1469 unsigned long expires; 1470 1471 /* idle_list is kept in LIFO order, check the last one */ 1472 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1473 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1474 1475 if (time_before(jiffies, expires)) 1476 mod_timer(&gcwq->idle_timer, expires); 1477 else { 1478 /* it's been idle for too long, wake up manager */ 1479 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1480 wake_up_worker(gcwq); 1481 } 1482 } 1483 1484 spin_unlock_irq(&gcwq->lock); 1485 } 1486 1487 static bool send_mayday(struct work_struct *work) 1488 { 1489 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1490 struct workqueue_struct *wq = cwq->wq; 1491 unsigned int cpu; 1492 1493 if (!(wq->flags & WQ_RESCUER)) 1494 return false; 1495 1496 /* mayday mayday mayday */ 1497 cpu = cwq->gcwq->cpu; 1498 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1499 if (cpu == WORK_CPU_UNBOUND) 1500 cpu = 0; 1501 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1502 wake_up_process(wq->rescuer->task); 1503 return true; 1504 } 1505 1506 static void gcwq_mayday_timeout(unsigned long __gcwq) 1507 { 1508 struct global_cwq *gcwq = (void *)__gcwq; 1509 struct work_struct *work; 1510 1511 spin_lock_irq(&gcwq->lock); 1512 1513 if (need_to_create_worker(gcwq)) { 1514 /* 1515 * We've been trying to create a new worker but 1516 * haven't been successful. We might be hitting an 1517 * allocation deadlock. Send distress signals to 1518 * rescuers. 1519 */ 1520 list_for_each_entry(work, &gcwq->worklist, entry) 1521 send_mayday(work); 1522 } 1523 1524 spin_unlock_irq(&gcwq->lock); 1525 1526 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1527 } 1528 1529 /** 1530 * maybe_create_worker - create a new worker if necessary 1531 * @gcwq: gcwq to create a new worker for 1532 * 1533 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1534 * have at least one idle worker on return from this function. If 1535 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1536 * sent to all rescuers with works scheduled on @gcwq to resolve 1537 * possible allocation deadlock. 1538 * 1539 * On return, need_to_create_worker() is guaranteed to be false and 1540 * may_start_working() true. 1541 * 1542 * LOCKING: 1543 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1544 * multiple times. Does GFP_KERNEL allocations. Called only from 1545 * manager. 1546 * 1547 * RETURNS: 1548 * false if no action was taken and gcwq->lock stayed locked, true 1549 * otherwise. 1550 */ 1551 static bool maybe_create_worker(struct global_cwq *gcwq) 1552 __releases(&gcwq->lock) 1553 __acquires(&gcwq->lock) 1554 { 1555 if (!need_to_create_worker(gcwq)) 1556 return false; 1557 restart: 1558 spin_unlock_irq(&gcwq->lock); 1559 1560 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1561 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1562 1563 while (true) { 1564 struct worker *worker; 1565 1566 worker = create_worker(gcwq, true); 1567 if (worker) { 1568 del_timer_sync(&gcwq->mayday_timer); 1569 spin_lock_irq(&gcwq->lock); 1570 start_worker(worker); 1571 BUG_ON(need_to_create_worker(gcwq)); 1572 return true; 1573 } 1574 1575 if (!need_to_create_worker(gcwq)) 1576 break; 1577 1578 __set_current_state(TASK_INTERRUPTIBLE); 1579 schedule_timeout(CREATE_COOLDOWN); 1580 1581 if (!need_to_create_worker(gcwq)) 1582 break; 1583 } 1584 1585 del_timer_sync(&gcwq->mayday_timer); 1586 spin_lock_irq(&gcwq->lock); 1587 if (need_to_create_worker(gcwq)) 1588 goto restart; 1589 return true; 1590 } 1591 1592 /** 1593 * maybe_destroy_worker - destroy workers which have been idle for a while 1594 * @gcwq: gcwq to destroy workers for 1595 * 1596 * Destroy @gcwq workers which have been idle for longer than 1597 * IDLE_WORKER_TIMEOUT. 1598 * 1599 * LOCKING: 1600 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1601 * multiple times. Called only from manager. 1602 * 1603 * RETURNS: 1604 * false if no action was taken and gcwq->lock stayed locked, true 1605 * otherwise. 1606 */ 1607 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1608 { 1609 bool ret = false; 1610 1611 while (too_many_workers(gcwq)) { 1612 struct worker *worker; 1613 unsigned long expires; 1614 1615 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1616 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1617 1618 if (time_before(jiffies, expires)) { 1619 mod_timer(&gcwq->idle_timer, expires); 1620 break; 1621 } 1622 1623 destroy_worker(worker); 1624 ret = true; 1625 } 1626 1627 return ret; 1628 } 1629 1630 /** 1631 * manage_workers - manage worker pool 1632 * @worker: self 1633 * 1634 * Assume the manager role and manage gcwq worker pool @worker belongs 1635 * to. At any given time, there can be only zero or one manager per 1636 * gcwq. The exclusion is handled automatically by this function. 1637 * 1638 * The caller can safely start processing works on false return. On 1639 * true return, it's guaranteed that need_to_create_worker() is false 1640 * and may_start_working() is true. 1641 * 1642 * CONTEXT: 1643 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1644 * multiple times. Does GFP_KERNEL allocations. 1645 * 1646 * RETURNS: 1647 * false if no action was taken and gcwq->lock stayed locked, true if 1648 * some action was taken. 1649 */ 1650 static bool manage_workers(struct worker *worker) 1651 { 1652 struct global_cwq *gcwq = worker->gcwq; 1653 bool ret = false; 1654 1655 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1656 return ret; 1657 1658 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1659 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1660 1661 /* 1662 * Destroy and then create so that may_start_working() is true 1663 * on return. 1664 */ 1665 ret |= maybe_destroy_workers(gcwq); 1666 ret |= maybe_create_worker(gcwq); 1667 1668 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1669 1670 /* 1671 * The trustee might be waiting to take over the manager 1672 * position, tell it we're done. 1673 */ 1674 if (unlikely(gcwq->trustee)) 1675 wake_up_all(&gcwq->trustee_wait); 1676 1677 return ret; 1678 } 1679 1680 /** 1681 * move_linked_works - move linked works to a list 1682 * @work: start of series of works to be scheduled 1683 * @head: target list to append @work to 1684 * @nextp: out paramter for nested worklist walking 1685 * 1686 * Schedule linked works starting from @work to @head. Work series to 1687 * be scheduled starts at @work and includes any consecutive work with 1688 * WORK_STRUCT_LINKED set in its predecessor. 1689 * 1690 * If @nextp is not NULL, it's updated to point to the next work of 1691 * the last scheduled work. This allows move_linked_works() to be 1692 * nested inside outer list_for_each_entry_safe(). 1693 * 1694 * CONTEXT: 1695 * spin_lock_irq(gcwq->lock). 1696 */ 1697 static void move_linked_works(struct work_struct *work, struct list_head *head, 1698 struct work_struct **nextp) 1699 { 1700 struct work_struct *n; 1701 1702 /* 1703 * Linked worklist will always end before the end of the list, 1704 * use NULL for list head. 1705 */ 1706 list_for_each_entry_safe_from(work, n, NULL, entry) { 1707 list_move_tail(&work->entry, head); 1708 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1709 break; 1710 } 1711 1712 /* 1713 * If we're already inside safe list traversal and have moved 1714 * multiple works to the scheduled queue, the next position 1715 * needs to be updated. 1716 */ 1717 if (nextp) 1718 *nextp = n; 1719 } 1720 1721 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1722 { 1723 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1724 struct work_struct, entry); 1725 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1726 1727 trace_workqueue_activate_work(work); 1728 move_linked_works(work, pos, NULL); 1729 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1730 cwq->nr_active++; 1731 } 1732 1733 /** 1734 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1735 * @cwq: cwq of interest 1736 * @color: color of work which left the queue 1737 * @delayed: for a delayed work 1738 * 1739 * A work either has completed or is removed from pending queue, 1740 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1741 * 1742 * CONTEXT: 1743 * spin_lock_irq(gcwq->lock). 1744 */ 1745 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1746 bool delayed) 1747 { 1748 /* ignore uncolored works */ 1749 if (color == WORK_NO_COLOR) 1750 return; 1751 1752 cwq->nr_in_flight[color]--; 1753 1754 if (!delayed) { 1755 cwq->nr_active--; 1756 if (!list_empty(&cwq->delayed_works)) { 1757 /* one down, submit a delayed one */ 1758 if (cwq->nr_active < cwq->max_active) 1759 cwq_activate_first_delayed(cwq); 1760 } 1761 } 1762 1763 /* is flush in progress and are we at the flushing tip? */ 1764 if (likely(cwq->flush_color != color)) 1765 return; 1766 1767 /* are there still in-flight works? */ 1768 if (cwq->nr_in_flight[color]) 1769 return; 1770 1771 /* this cwq is done, clear flush_color */ 1772 cwq->flush_color = -1; 1773 1774 /* 1775 * If this was the last cwq, wake up the first flusher. It 1776 * will handle the rest. 1777 */ 1778 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1779 complete(&cwq->wq->first_flusher->done); 1780 } 1781 1782 /** 1783 * process_one_work - process single work 1784 * @worker: self 1785 * @work: work to process 1786 * 1787 * Process @work. This function contains all the logics necessary to 1788 * process a single work including synchronization against and 1789 * interaction with other workers on the same cpu, queueing and 1790 * flushing. As long as context requirement is met, any worker can 1791 * call this function to process a work. 1792 * 1793 * CONTEXT: 1794 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1795 */ 1796 static void process_one_work(struct worker *worker, struct work_struct *work) 1797 __releases(&gcwq->lock) 1798 __acquires(&gcwq->lock) 1799 { 1800 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1801 struct global_cwq *gcwq = cwq->gcwq; 1802 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1803 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1804 work_func_t f = work->func; 1805 int work_color; 1806 struct worker *collision; 1807 #ifdef CONFIG_LOCKDEP 1808 /* 1809 * It is permissible to free the struct work_struct from 1810 * inside the function that is called from it, this we need to 1811 * take into account for lockdep too. To avoid bogus "held 1812 * lock freed" warnings as well as problems when looking into 1813 * work->lockdep_map, make a copy and use that here. 1814 */ 1815 struct lockdep_map lockdep_map = work->lockdep_map; 1816 #endif 1817 /* 1818 * A single work shouldn't be executed concurrently by 1819 * multiple workers on a single cpu. Check whether anyone is 1820 * already processing the work. If so, defer the work to the 1821 * currently executing one. 1822 */ 1823 collision = __find_worker_executing_work(gcwq, bwh, work); 1824 if (unlikely(collision)) { 1825 move_linked_works(work, &collision->scheduled, NULL); 1826 return; 1827 } 1828 1829 /* claim and process */ 1830 debug_work_deactivate(work); 1831 hlist_add_head(&worker->hentry, bwh); 1832 worker->current_work = work; 1833 worker->current_cwq = cwq; 1834 work_color = get_work_color(work); 1835 1836 /* record the current cpu number in the work data and dequeue */ 1837 set_work_cpu(work, gcwq->cpu); 1838 list_del_init(&work->entry); 1839 1840 /* 1841 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1842 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1843 */ 1844 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1845 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1846 struct work_struct, entry); 1847 1848 if (!list_empty(&gcwq->worklist) && 1849 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1850 wake_up_worker(gcwq); 1851 else 1852 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1853 } 1854 1855 /* 1856 * CPU intensive works don't participate in concurrency 1857 * management. They're the scheduler's responsibility. 1858 */ 1859 if (unlikely(cpu_intensive)) 1860 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1861 1862 spin_unlock_irq(&gcwq->lock); 1863 1864 work_clear_pending(work); 1865 lock_map_acquire_read(&cwq->wq->lockdep_map); 1866 lock_map_acquire(&lockdep_map); 1867 trace_workqueue_execute_start(work); 1868 f(work); 1869 /* 1870 * While we must be careful to not use "work" after this, the trace 1871 * point will only record its address. 1872 */ 1873 trace_workqueue_execute_end(work); 1874 lock_map_release(&lockdep_map); 1875 lock_map_release(&cwq->wq->lockdep_map); 1876 1877 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1878 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1879 "%s/0x%08x/%d\n", 1880 current->comm, preempt_count(), task_pid_nr(current)); 1881 printk(KERN_ERR " last function: "); 1882 print_symbol("%s\n", (unsigned long)f); 1883 debug_show_held_locks(current); 1884 dump_stack(); 1885 } 1886 1887 spin_lock_irq(&gcwq->lock); 1888 1889 /* clear cpu intensive status */ 1890 if (unlikely(cpu_intensive)) 1891 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1892 1893 /* we're done with it, release */ 1894 hlist_del_init(&worker->hentry); 1895 worker->current_work = NULL; 1896 worker->current_cwq = NULL; 1897 cwq_dec_nr_in_flight(cwq, work_color, false); 1898 } 1899 1900 /** 1901 * process_scheduled_works - process scheduled works 1902 * @worker: self 1903 * 1904 * Process all scheduled works. Please note that the scheduled list 1905 * may change while processing a work, so this function repeatedly 1906 * fetches a work from the top and executes it. 1907 * 1908 * CONTEXT: 1909 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1910 * multiple times. 1911 */ 1912 static void process_scheduled_works(struct worker *worker) 1913 { 1914 while (!list_empty(&worker->scheduled)) { 1915 struct work_struct *work = list_first_entry(&worker->scheduled, 1916 struct work_struct, entry); 1917 process_one_work(worker, work); 1918 } 1919 } 1920 1921 /** 1922 * worker_thread - the worker thread function 1923 * @__worker: self 1924 * 1925 * The gcwq worker thread function. There's a single dynamic pool of 1926 * these per each cpu. These workers process all works regardless of 1927 * their specific target workqueue. The only exception is works which 1928 * belong to workqueues with a rescuer which will be explained in 1929 * rescuer_thread(). 1930 */ 1931 static int worker_thread(void *__worker) 1932 { 1933 struct worker *worker = __worker; 1934 struct global_cwq *gcwq = worker->gcwq; 1935 1936 /* tell the scheduler that this is a workqueue worker */ 1937 worker->task->flags |= PF_WQ_WORKER; 1938 woke_up: 1939 spin_lock_irq(&gcwq->lock); 1940 1941 /* DIE can be set only while we're idle, checking here is enough */ 1942 if (worker->flags & WORKER_DIE) { 1943 spin_unlock_irq(&gcwq->lock); 1944 worker->task->flags &= ~PF_WQ_WORKER; 1945 return 0; 1946 } 1947 1948 worker_leave_idle(worker); 1949 recheck: 1950 /* no more worker necessary? */ 1951 if (!need_more_worker(gcwq)) 1952 goto sleep; 1953 1954 /* do we need to manage? */ 1955 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1956 goto recheck; 1957 1958 /* 1959 * ->scheduled list can only be filled while a worker is 1960 * preparing to process a work or actually processing it. 1961 * Make sure nobody diddled with it while I was sleeping. 1962 */ 1963 BUG_ON(!list_empty(&worker->scheduled)); 1964 1965 /* 1966 * When control reaches this point, we're guaranteed to have 1967 * at least one idle worker or that someone else has already 1968 * assumed the manager role. 1969 */ 1970 worker_clr_flags(worker, WORKER_PREP); 1971 1972 do { 1973 struct work_struct *work = 1974 list_first_entry(&gcwq->worklist, 1975 struct work_struct, entry); 1976 1977 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1978 /* optimization path, not strictly necessary */ 1979 process_one_work(worker, work); 1980 if (unlikely(!list_empty(&worker->scheduled))) 1981 process_scheduled_works(worker); 1982 } else { 1983 move_linked_works(work, &worker->scheduled, NULL); 1984 process_scheduled_works(worker); 1985 } 1986 } while (keep_working(gcwq)); 1987 1988 worker_set_flags(worker, WORKER_PREP, false); 1989 sleep: 1990 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1991 goto recheck; 1992 1993 /* 1994 * gcwq->lock is held and there's no work to process and no 1995 * need to manage, sleep. Workers are woken up only while 1996 * holding gcwq->lock or from local cpu, so setting the 1997 * current state before releasing gcwq->lock is enough to 1998 * prevent losing any event. 1999 */ 2000 worker_enter_idle(worker); 2001 __set_current_state(TASK_INTERRUPTIBLE); 2002 spin_unlock_irq(&gcwq->lock); 2003 schedule(); 2004 goto woke_up; 2005 } 2006 2007 /** 2008 * rescuer_thread - the rescuer thread function 2009 * @__wq: the associated workqueue 2010 * 2011 * Workqueue rescuer thread function. There's one rescuer for each 2012 * workqueue which has WQ_RESCUER set. 2013 * 2014 * Regular work processing on a gcwq may block trying to create a new 2015 * worker which uses GFP_KERNEL allocation which has slight chance of 2016 * developing into deadlock if some works currently on the same queue 2017 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2018 * the problem rescuer solves. 2019 * 2020 * When such condition is possible, the gcwq summons rescuers of all 2021 * workqueues which have works queued on the gcwq and let them process 2022 * those works so that forward progress can be guaranteed. 2023 * 2024 * This should happen rarely. 2025 */ 2026 static int rescuer_thread(void *__wq) 2027 { 2028 struct workqueue_struct *wq = __wq; 2029 struct worker *rescuer = wq->rescuer; 2030 struct list_head *scheduled = &rescuer->scheduled; 2031 bool is_unbound = wq->flags & WQ_UNBOUND; 2032 unsigned int cpu; 2033 2034 set_user_nice(current, RESCUER_NICE_LEVEL); 2035 repeat: 2036 set_current_state(TASK_INTERRUPTIBLE); 2037 2038 if (kthread_should_stop()) 2039 return 0; 2040 2041 /* 2042 * See whether any cpu is asking for help. Unbounded 2043 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2044 */ 2045 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2046 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2047 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2048 struct global_cwq *gcwq = cwq->gcwq; 2049 struct work_struct *work, *n; 2050 2051 __set_current_state(TASK_RUNNING); 2052 mayday_clear_cpu(cpu, wq->mayday_mask); 2053 2054 /* migrate to the target cpu if possible */ 2055 rescuer->gcwq = gcwq; 2056 worker_maybe_bind_and_lock(rescuer); 2057 2058 /* 2059 * Slurp in all works issued via this workqueue and 2060 * process'em. 2061 */ 2062 BUG_ON(!list_empty(&rescuer->scheduled)); 2063 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2064 if (get_work_cwq(work) == cwq) 2065 move_linked_works(work, scheduled, &n); 2066 2067 process_scheduled_works(rescuer); 2068 2069 /* 2070 * Leave this gcwq. If keep_working() is %true, notify a 2071 * regular worker; otherwise, we end up with 0 concurrency 2072 * and stalling the execution. 2073 */ 2074 if (keep_working(gcwq)) 2075 wake_up_worker(gcwq); 2076 2077 spin_unlock_irq(&gcwq->lock); 2078 } 2079 2080 schedule(); 2081 goto repeat; 2082 } 2083 2084 struct wq_barrier { 2085 struct work_struct work; 2086 struct completion done; 2087 }; 2088 2089 static void wq_barrier_func(struct work_struct *work) 2090 { 2091 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2092 complete(&barr->done); 2093 } 2094 2095 /** 2096 * insert_wq_barrier - insert a barrier work 2097 * @cwq: cwq to insert barrier into 2098 * @barr: wq_barrier to insert 2099 * @target: target work to attach @barr to 2100 * @worker: worker currently executing @target, NULL if @target is not executing 2101 * 2102 * @barr is linked to @target such that @barr is completed only after 2103 * @target finishes execution. Please note that the ordering 2104 * guarantee is observed only with respect to @target and on the local 2105 * cpu. 2106 * 2107 * Currently, a queued barrier can't be canceled. This is because 2108 * try_to_grab_pending() can't determine whether the work to be 2109 * grabbed is at the head of the queue and thus can't clear LINKED 2110 * flag of the previous work while there must be a valid next work 2111 * after a work with LINKED flag set. 2112 * 2113 * Note that when @worker is non-NULL, @target may be modified 2114 * underneath us, so we can't reliably determine cwq from @target. 2115 * 2116 * CONTEXT: 2117 * spin_lock_irq(gcwq->lock). 2118 */ 2119 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2120 struct wq_barrier *barr, 2121 struct work_struct *target, struct worker *worker) 2122 { 2123 struct list_head *head; 2124 unsigned int linked = 0; 2125 2126 /* 2127 * debugobject calls are safe here even with gcwq->lock locked 2128 * as we know for sure that this will not trigger any of the 2129 * checks and call back into the fixup functions where we 2130 * might deadlock. 2131 */ 2132 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2133 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2134 init_completion(&barr->done); 2135 2136 /* 2137 * If @target is currently being executed, schedule the 2138 * barrier to the worker; otherwise, put it after @target. 2139 */ 2140 if (worker) 2141 head = worker->scheduled.next; 2142 else { 2143 unsigned long *bits = work_data_bits(target); 2144 2145 head = target->entry.next; 2146 /* there can already be other linked works, inherit and set */ 2147 linked = *bits & WORK_STRUCT_LINKED; 2148 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2149 } 2150 2151 debug_work_activate(&barr->work); 2152 insert_work(cwq, &barr->work, head, 2153 work_color_to_flags(WORK_NO_COLOR) | linked); 2154 } 2155 2156 /** 2157 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2158 * @wq: workqueue being flushed 2159 * @flush_color: new flush color, < 0 for no-op 2160 * @work_color: new work color, < 0 for no-op 2161 * 2162 * Prepare cwqs for workqueue flushing. 2163 * 2164 * If @flush_color is non-negative, flush_color on all cwqs should be 2165 * -1. If no cwq has in-flight commands at the specified color, all 2166 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2167 * has in flight commands, its cwq->flush_color is set to 2168 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2169 * wakeup logic is armed and %true is returned. 2170 * 2171 * The caller should have initialized @wq->first_flusher prior to 2172 * calling this function with non-negative @flush_color. If 2173 * @flush_color is negative, no flush color update is done and %false 2174 * is returned. 2175 * 2176 * If @work_color is non-negative, all cwqs should have the same 2177 * work_color which is previous to @work_color and all will be 2178 * advanced to @work_color. 2179 * 2180 * CONTEXT: 2181 * mutex_lock(wq->flush_mutex). 2182 * 2183 * RETURNS: 2184 * %true if @flush_color >= 0 and there's something to flush. %false 2185 * otherwise. 2186 */ 2187 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2188 int flush_color, int work_color) 2189 { 2190 bool wait = false; 2191 unsigned int cpu; 2192 2193 if (flush_color >= 0) { 2194 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2195 atomic_set(&wq->nr_cwqs_to_flush, 1); 2196 } 2197 2198 for_each_cwq_cpu(cpu, wq) { 2199 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2200 struct global_cwq *gcwq = cwq->gcwq; 2201 2202 spin_lock_irq(&gcwq->lock); 2203 2204 if (flush_color >= 0) { 2205 BUG_ON(cwq->flush_color != -1); 2206 2207 if (cwq->nr_in_flight[flush_color]) { 2208 cwq->flush_color = flush_color; 2209 atomic_inc(&wq->nr_cwqs_to_flush); 2210 wait = true; 2211 } 2212 } 2213 2214 if (work_color >= 0) { 2215 BUG_ON(work_color != work_next_color(cwq->work_color)); 2216 cwq->work_color = work_color; 2217 } 2218 2219 spin_unlock_irq(&gcwq->lock); 2220 } 2221 2222 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2223 complete(&wq->first_flusher->done); 2224 2225 return wait; 2226 } 2227 2228 /** 2229 * flush_workqueue - ensure that any scheduled work has run to completion. 2230 * @wq: workqueue to flush 2231 * 2232 * Forces execution of the workqueue and blocks until its completion. 2233 * This is typically used in driver shutdown handlers. 2234 * 2235 * We sleep until all works which were queued on entry have been handled, 2236 * but we are not livelocked by new incoming ones. 2237 */ 2238 void flush_workqueue(struct workqueue_struct *wq) 2239 { 2240 struct wq_flusher this_flusher = { 2241 .list = LIST_HEAD_INIT(this_flusher.list), 2242 .flush_color = -1, 2243 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2244 }; 2245 int next_color; 2246 2247 lock_map_acquire(&wq->lockdep_map); 2248 lock_map_release(&wq->lockdep_map); 2249 2250 mutex_lock(&wq->flush_mutex); 2251 2252 /* 2253 * Start-to-wait phase 2254 */ 2255 next_color = work_next_color(wq->work_color); 2256 2257 if (next_color != wq->flush_color) { 2258 /* 2259 * Color space is not full. The current work_color 2260 * becomes our flush_color and work_color is advanced 2261 * by one. 2262 */ 2263 BUG_ON(!list_empty(&wq->flusher_overflow)); 2264 this_flusher.flush_color = wq->work_color; 2265 wq->work_color = next_color; 2266 2267 if (!wq->first_flusher) { 2268 /* no flush in progress, become the first flusher */ 2269 BUG_ON(wq->flush_color != this_flusher.flush_color); 2270 2271 wq->first_flusher = &this_flusher; 2272 2273 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2274 wq->work_color)) { 2275 /* nothing to flush, done */ 2276 wq->flush_color = next_color; 2277 wq->first_flusher = NULL; 2278 goto out_unlock; 2279 } 2280 } else { 2281 /* wait in queue */ 2282 BUG_ON(wq->flush_color == this_flusher.flush_color); 2283 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2284 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2285 } 2286 } else { 2287 /* 2288 * Oops, color space is full, wait on overflow queue. 2289 * The next flush completion will assign us 2290 * flush_color and transfer to flusher_queue. 2291 */ 2292 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2293 } 2294 2295 mutex_unlock(&wq->flush_mutex); 2296 2297 wait_for_completion(&this_flusher.done); 2298 2299 /* 2300 * Wake-up-and-cascade phase 2301 * 2302 * First flushers are responsible for cascading flushes and 2303 * handling overflow. Non-first flushers can simply return. 2304 */ 2305 if (wq->first_flusher != &this_flusher) 2306 return; 2307 2308 mutex_lock(&wq->flush_mutex); 2309 2310 /* we might have raced, check again with mutex held */ 2311 if (wq->first_flusher != &this_flusher) 2312 goto out_unlock; 2313 2314 wq->first_flusher = NULL; 2315 2316 BUG_ON(!list_empty(&this_flusher.list)); 2317 BUG_ON(wq->flush_color != this_flusher.flush_color); 2318 2319 while (true) { 2320 struct wq_flusher *next, *tmp; 2321 2322 /* complete all the flushers sharing the current flush color */ 2323 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2324 if (next->flush_color != wq->flush_color) 2325 break; 2326 list_del_init(&next->list); 2327 complete(&next->done); 2328 } 2329 2330 BUG_ON(!list_empty(&wq->flusher_overflow) && 2331 wq->flush_color != work_next_color(wq->work_color)); 2332 2333 /* this flush_color is finished, advance by one */ 2334 wq->flush_color = work_next_color(wq->flush_color); 2335 2336 /* one color has been freed, handle overflow queue */ 2337 if (!list_empty(&wq->flusher_overflow)) { 2338 /* 2339 * Assign the same color to all overflowed 2340 * flushers, advance work_color and append to 2341 * flusher_queue. This is the start-to-wait 2342 * phase for these overflowed flushers. 2343 */ 2344 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2345 tmp->flush_color = wq->work_color; 2346 2347 wq->work_color = work_next_color(wq->work_color); 2348 2349 list_splice_tail_init(&wq->flusher_overflow, 2350 &wq->flusher_queue); 2351 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2352 } 2353 2354 if (list_empty(&wq->flusher_queue)) { 2355 BUG_ON(wq->flush_color != wq->work_color); 2356 break; 2357 } 2358 2359 /* 2360 * Need to flush more colors. Make the next flusher 2361 * the new first flusher and arm cwqs. 2362 */ 2363 BUG_ON(wq->flush_color == wq->work_color); 2364 BUG_ON(wq->flush_color != next->flush_color); 2365 2366 list_del_init(&next->list); 2367 wq->first_flusher = next; 2368 2369 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2370 break; 2371 2372 /* 2373 * Meh... this color is already done, clear first 2374 * flusher and repeat cascading. 2375 */ 2376 wq->first_flusher = NULL; 2377 } 2378 2379 out_unlock: 2380 mutex_unlock(&wq->flush_mutex); 2381 } 2382 EXPORT_SYMBOL_GPL(flush_workqueue); 2383 2384 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2385 bool wait_executing) 2386 { 2387 struct worker *worker = NULL; 2388 struct global_cwq *gcwq; 2389 struct cpu_workqueue_struct *cwq; 2390 2391 might_sleep(); 2392 gcwq = get_work_gcwq(work); 2393 if (!gcwq) 2394 return false; 2395 2396 spin_lock_irq(&gcwq->lock); 2397 if (!list_empty(&work->entry)) { 2398 /* 2399 * See the comment near try_to_grab_pending()->smp_rmb(). 2400 * If it was re-queued to a different gcwq under us, we 2401 * are not going to wait. 2402 */ 2403 smp_rmb(); 2404 cwq = get_work_cwq(work); 2405 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2406 goto already_gone; 2407 } else if (wait_executing) { 2408 worker = find_worker_executing_work(gcwq, work); 2409 if (!worker) 2410 goto already_gone; 2411 cwq = worker->current_cwq; 2412 } else 2413 goto already_gone; 2414 2415 insert_wq_barrier(cwq, barr, work, worker); 2416 spin_unlock_irq(&gcwq->lock); 2417 2418 /* 2419 * If @max_active is 1 or rescuer is in use, flushing another work 2420 * item on the same workqueue may lead to deadlock. Make sure the 2421 * flusher is not running on the same workqueue by verifying write 2422 * access. 2423 */ 2424 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER) 2425 lock_map_acquire(&cwq->wq->lockdep_map); 2426 else 2427 lock_map_acquire_read(&cwq->wq->lockdep_map); 2428 lock_map_release(&cwq->wq->lockdep_map); 2429 2430 return true; 2431 already_gone: 2432 spin_unlock_irq(&gcwq->lock); 2433 return false; 2434 } 2435 2436 /** 2437 * flush_work - wait for a work to finish executing the last queueing instance 2438 * @work: the work to flush 2439 * 2440 * Wait until @work has finished execution. This function considers 2441 * only the last queueing instance of @work. If @work has been 2442 * enqueued across different CPUs on a non-reentrant workqueue or on 2443 * multiple workqueues, @work might still be executing on return on 2444 * some of the CPUs from earlier queueing. 2445 * 2446 * If @work was queued only on a non-reentrant, ordered or unbound 2447 * workqueue, @work is guaranteed to be idle on return if it hasn't 2448 * been requeued since flush started. 2449 * 2450 * RETURNS: 2451 * %true if flush_work() waited for the work to finish execution, 2452 * %false if it was already idle. 2453 */ 2454 bool flush_work(struct work_struct *work) 2455 { 2456 struct wq_barrier barr; 2457 2458 if (start_flush_work(work, &barr, true)) { 2459 wait_for_completion(&barr.done); 2460 destroy_work_on_stack(&barr.work); 2461 return true; 2462 } else 2463 return false; 2464 } 2465 EXPORT_SYMBOL_GPL(flush_work); 2466 2467 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2468 { 2469 struct wq_barrier barr; 2470 struct worker *worker; 2471 2472 spin_lock_irq(&gcwq->lock); 2473 2474 worker = find_worker_executing_work(gcwq, work); 2475 if (unlikely(worker)) 2476 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2477 2478 spin_unlock_irq(&gcwq->lock); 2479 2480 if (unlikely(worker)) { 2481 wait_for_completion(&barr.done); 2482 destroy_work_on_stack(&barr.work); 2483 return true; 2484 } else 2485 return false; 2486 } 2487 2488 static bool wait_on_work(struct work_struct *work) 2489 { 2490 bool ret = false; 2491 int cpu; 2492 2493 might_sleep(); 2494 2495 lock_map_acquire(&work->lockdep_map); 2496 lock_map_release(&work->lockdep_map); 2497 2498 for_each_gcwq_cpu(cpu) 2499 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2500 return ret; 2501 } 2502 2503 /** 2504 * flush_work_sync - wait until a work has finished execution 2505 * @work: the work to flush 2506 * 2507 * Wait until @work has finished execution. On return, it's 2508 * guaranteed that all queueing instances of @work which happened 2509 * before this function is called are finished. In other words, if 2510 * @work hasn't been requeued since this function was called, @work is 2511 * guaranteed to be idle on return. 2512 * 2513 * RETURNS: 2514 * %true if flush_work_sync() waited for the work to finish execution, 2515 * %false if it was already idle. 2516 */ 2517 bool flush_work_sync(struct work_struct *work) 2518 { 2519 struct wq_barrier barr; 2520 bool pending, waited; 2521 2522 /* we'll wait for executions separately, queue barr only if pending */ 2523 pending = start_flush_work(work, &barr, false); 2524 2525 /* wait for executions to finish */ 2526 waited = wait_on_work(work); 2527 2528 /* wait for the pending one */ 2529 if (pending) { 2530 wait_for_completion(&barr.done); 2531 destroy_work_on_stack(&barr.work); 2532 } 2533 2534 return pending || waited; 2535 } 2536 EXPORT_SYMBOL_GPL(flush_work_sync); 2537 2538 /* 2539 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2540 * so this work can't be re-armed in any way. 2541 */ 2542 static int try_to_grab_pending(struct work_struct *work) 2543 { 2544 struct global_cwq *gcwq; 2545 int ret = -1; 2546 2547 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2548 return 0; 2549 2550 /* 2551 * The queueing is in progress, or it is already queued. Try to 2552 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2553 */ 2554 gcwq = get_work_gcwq(work); 2555 if (!gcwq) 2556 return ret; 2557 2558 spin_lock_irq(&gcwq->lock); 2559 if (!list_empty(&work->entry)) { 2560 /* 2561 * This work is queued, but perhaps we locked the wrong gcwq. 2562 * In that case we must see the new value after rmb(), see 2563 * insert_work()->wmb(). 2564 */ 2565 smp_rmb(); 2566 if (gcwq == get_work_gcwq(work)) { 2567 debug_work_deactivate(work); 2568 list_del_init(&work->entry); 2569 cwq_dec_nr_in_flight(get_work_cwq(work), 2570 get_work_color(work), 2571 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2572 ret = 1; 2573 } 2574 } 2575 spin_unlock_irq(&gcwq->lock); 2576 2577 return ret; 2578 } 2579 2580 static bool __cancel_work_timer(struct work_struct *work, 2581 struct timer_list* timer) 2582 { 2583 int ret; 2584 2585 do { 2586 ret = (timer && likely(del_timer(timer))); 2587 if (!ret) 2588 ret = try_to_grab_pending(work); 2589 wait_on_work(work); 2590 } while (unlikely(ret < 0)); 2591 2592 clear_work_data(work); 2593 return ret; 2594 } 2595 2596 /** 2597 * cancel_work_sync - cancel a work and wait for it to finish 2598 * @work: the work to cancel 2599 * 2600 * Cancel @work and wait for its execution to finish. This function 2601 * can be used even if the work re-queues itself or migrates to 2602 * another workqueue. On return from this function, @work is 2603 * guaranteed to be not pending or executing on any CPU. 2604 * 2605 * cancel_work_sync(&delayed_work->work) must not be used for 2606 * delayed_work's. Use cancel_delayed_work_sync() instead. 2607 * 2608 * The caller must ensure that the workqueue on which @work was last 2609 * queued can't be destroyed before this function returns. 2610 * 2611 * RETURNS: 2612 * %true if @work was pending, %false otherwise. 2613 */ 2614 bool cancel_work_sync(struct work_struct *work) 2615 { 2616 return __cancel_work_timer(work, NULL); 2617 } 2618 EXPORT_SYMBOL_GPL(cancel_work_sync); 2619 2620 /** 2621 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2622 * @dwork: the delayed work to flush 2623 * 2624 * Delayed timer is cancelled and the pending work is queued for 2625 * immediate execution. Like flush_work(), this function only 2626 * considers the last queueing instance of @dwork. 2627 * 2628 * RETURNS: 2629 * %true if flush_work() waited for the work to finish execution, 2630 * %false if it was already idle. 2631 */ 2632 bool flush_delayed_work(struct delayed_work *dwork) 2633 { 2634 if (del_timer_sync(&dwork->timer)) 2635 __queue_work(raw_smp_processor_id(), 2636 get_work_cwq(&dwork->work)->wq, &dwork->work); 2637 return flush_work(&dwork->work); 2638 } 2639 EXPORT_SYMBOL(flush_delayed_work); 2640 2641 /** 2642 * flush_delayed_work_sync - wait for a dwork to finish 2643 * @dwork: the delayed work to flush 2644 * 2645 * Delayed timer is cancelled and the pending work is queued for 2646 * execution immediately. Other than timer handling, its behavior 2647 * is identical to flush_work_sync(). 2648 * 2649 * RETURNS: 2650 * %true if flush_work_sync() waited for the work to finish execution, 2651 * %false if it was already idle. 2652 */ 2653 bool flush_delayed_work_sync(struct delayed_work *dwork) 2654 { 2655 if (del_timer_sync(&dwork->timer)) 2656 __queue_work(raw_smp_processor_id(), 2657 get_work_cwq(&dwork->work)->wq, &dwork->work); 2658 return flush_work_sync(&dwork->work); 2659 } 2660 EXPORT_SYMBOL(flush_delayed_work_sync); 2661 2662 /** 2663 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2664 * @dwork: the delayed work cancel 2665 * 2666 * This is cancel_work_sync() for delayed works. 2667 * 2668 * RETURNS: 2669 * %true if @dwork was pending, %false otherwise. 2670 */ 2671 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2672 { 2673 return __cancel_work_timer(&dwork->work, &dwork->timer); 2674 } 2675 EXPORT_SYMBOL(cancel_delayed_work_sync); 2676 2677 /** 2678 * schedule_work - put work task in global workqueue 2679 * @work: job to be done 2680 * 2681 * Returns zero if @work was already on the kernel-global workqueue and 2682 * non-zero otherwise. 2683 * 2684 * This puts a job in the kernel-global workqueue if it was not already 2685 * queued and leaves it in the same position on the kernel-global 2686 * workqueue otherwise. 2687 */ 2688 int schedule_work(struct work_struct *work) 2689 { 2690 return queue_work(system_wq, work); 2691 } 2692 EXPORT_SYMBOL(schedule_work); 2693 2694 /* 2695 * schedule_work_on - put work task on a specific cpu 2696 * @cpu: cpu to put the work task on 2697 * @work: job to be done 2698 * 2699 * This puts a job on a specific cpu 2700 */ 2701 int schedule_work_on(int cpu, struct work_struct *work) 2702 { 2703 return queue_work_on(cpu, system_wq, work); 2704 } 2705 EXPORT_SYMBOL(schedule_work_on); 2706 2707 /** 2708 * schedule_delayed_work - put work task in global workqueue after delay 2709 * @dwork: job to be done 2710 * @delay: number of jiffies to wait or 0 for immediate execution 2711 * 2712 * After waiting for a given time this puts a job in the kernel-global 2713 * workqueue. 2714 */ 2715 int schedule_delayed_work(struct delayed_work *dwork, 2716 unsigned long delay) 2717 { 2718 return queue_delayed_work(system_wq, dwork, delay); 2719 } 2720 EXPORT_SYMBOL(schedule_delayed_work); 2721 2722 /** 2723 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2724 * @cpu: cpu to use 2725 * @dwork: job to be done 2726 * @delay: number of jiffies to wait 2727 * 2728 * After waiting for a given time this puts a job in the kernel-global 2729 * workqueue on the specified CPU. 2730 */ 2731 int schedule_delayed_work_on(int cpu, 2732 struct delayed_work *dwork, unsigned long delay) 2733 { 2734 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2735 } 2736 EXPORT_SYMBOL(schedule_delayed_work_on); 2737 2738 /** 2739 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2740 * @func: the function to call 2741 * 2742 * schedule_on_each_cpu() executes @func on each online CPU using the 2743 * system workqueue and blocks until all CPUs have completed. 2744 * schedule_on_each_cpu() is very slow. 2745 * 2746 * RETURNS: 2747 * 0 on success, -errno on failure. 2748 */ 2749 int schedule_on_each_cpu(work_func_t func) 2750 { 2751 int cpu; 2752 struct work_struct __percpu *works; 2753 2754 works = alloc_percpu(struct work_struct); 2755 if (!works) 2756 return -ENOMEM; 2757 2758 get_online_cpus(); 2759 2760 for_each_online_cpu(cpu) { 2761 struct work_struct *work = per_cpu_ptr(works, cpu); 2762 2763 INIT_WORK(work, func); 2764 schedule_work_on(cpu, work); 2765 } 2766 2767 for_each_online_cpu(cpu) 2768 flush_work(per_cpu_ptr(works, cpu)); 2769 2770 put_online_cpus(); 2771 free_percpu(works); 2772 return 0; 2773 } 2774 2775 /** 2776 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2777 * 2778 * Forces execution of the kernel-global workqueue and blocks until its 2779 * completion. 2780 * 2781 * Think twice before calling this function! It's very easy to get into 2782 * trouble if you don't take great care. Either of the following situations 2783 * will lead to deadlock: 2784 * 2785 * One of the work items currently on the workqueue needs to acquire 2786 * a lock held by your code or its caller. 2787 * 2788 * Your code is running in the context of a work routine. 2789 * 2790 * They will be detected by lockdep when they occur, but the first might not 2791 * occur very often. It depends on what work items are on the workqueue and 2792 * what locks they need, which you have no control over. 2793 * 2794 * In most situations flushing the entire workqueue is overkill; you merely 2795 * need to know that a particular work item isn't queued and isn't running. 2796 * In such cases you should use cancel_delayed_work_sync() or 2797 * cancel_work_sync() instead. 2798 */ 2799 void flush_scheduled_work(void) 2800 { 2801 flush_workqueue(system_wq); 2802 } 2803 EXPORT_SYMBOL(flush_scheduled_work); 2804 2805 /** 2806 * execute_in_process_context - reliably execute the routine with user context 2807 * @fn: the function to execute 2808 * @ew: guaranteed storage for the execute work structure (must 2809 * be available when the work executes) 2810 * 2811 * Executes the function immediately if process context is available, 2812 * otherwise schedules the function for delayed execution. 2813 * 2814 * Returns: 0 - function was executed 2815 * 1 - function was scheduled for execution 2816 */ 2817 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2818 { 2819 if (!in_interrupt()) { 2820 fn(&ew->work); 2821 return 0; 2822 } 2823 2824 INIT_WORK(&ew->work, fn); 2825 schedule_work(&ew->work); 2826 2827 return 1; 2828 } 2829 EXPORT_SYMBOL_GPL(execute_in_process_context); 2830 2831 int keventd_up(void) 2832 { 2833 return system_wq != NULL; 2834 } 2835 2836 static int alloc_cwqs(struct workqueue_struct *wq) 2837 { 2838 /* 2839 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2840 * Make sure that the alignment isn't lower than that of 2841 * unsigned long long. 2842 */ 2843 const size_t size = sizeof(struct cpu_workqueue_struct); 2844 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2845 __alignof__(unsigned long long)); 2846 #ifdef CONFIG_SMP 2847 bool percpu = !(wq->flags & WQ_UNBOUND); 2848 #else 2849 bool percpu = false; 2850 #endif 2851 2852 if (percpu) 2853 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2854 else { 2855 void *ptr; 2856 2857 /* 2858 * Allocate enough room to align cwq and put an extra 2859 * pointer at the end pointing back to the originally 2860 * allocated pointer which will be used for free. 2861 */ 2862 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2863 if (ptr) { 2864 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2865 *(void **)(wq->cpu_wq.single + 1) = ptr; 2866 } 2867 } 2868 2869 /* just in case, make sure it's actually aligned */ 2870 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2871 return wq->cpu_wq.v ? 0 : -ENOMEM; 2872 } 2873 2874 static void free_cwqs(struct workqueue_struct *wq) 2875 { 2876 #ifdef CONFIG_SMP 2877 bool percpu = !(wq->flags & WQ_UNBOUND); 2878 #else 2879 bool percpu = false; 2880 #endif 2881 2882 if (percpu) 2883 free_percpu(wq->cpu_wq.pcpu); 2884 else if (wq->cpu_wq.single) { 2885 /* the pointer to free is stored right after the cwq */ 2886 kfree(*(void **)(wq->cpu_wq.single + 1)); 2887 } 2888 } 2889 2890 static int wq_clamp_max_active(int max_active, unsigned int flags, 2891 const char *name) 2892 { 2893 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2894 2895 if (max_active < 1 || max_active > lim) 2896 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2897 "is out of range, clamping between %d and %d\n", 2898 max_active, name, 1, lim); 2899 2900 return clamp_val(max_active, 1, lim); 2901 } 2902 2903 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2904 unsigned int flags, 2905 int max_active, 2906 struct lock_class_key *key, 2907 const char *lock_name) 2908 { 2909 struct workqueue_struct *wq; 2910 unsigned int cpu; 2911 2912 /* 2913 * Workqueues which may be used during memory reclaim should 2914 * have a rescuer to guarantee forward progress. 2915 */ 2916 if (flags & WQ_MEM_RECLAIM) 2917 flags |= WQ_RESCUER; 2918 2919 /* 2920 * Unbound workqueues aren't concurrency managed and should be 2921 * dispatched to workers immediately. 2922 */ 2923 if (flags & WQ_UNBOUND) 2924 flags |= WQ_HIGHPRI; 2925 2926 max_active = max_active ?: WQ_DFL_ACTIVE; 2927 max_active = wq_clamp_max_active(max_active, flags, name); 2928 2929 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2930 if (!wq) 2931 goto err; 2932 2933 wq->flags = flags; 2934 wq->saved_max_active = max_active; 2935 mutex_init(&wq->flush_mutex); 2936 atomic_set(&wq->nr_cwqs_to_flush, 0); 2937 INIT_LIST_HEAD(&wq->flusher_queue); 2938 INIT_LIST_HEAD(&wq->flusher_overflow); 2939 2940 wq->name = name; 2941 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2942 INIT_LIST_HEAD(&wq->list); 2943 2944 if (alloc_cwqs(wq) < 0) 2945 goto err; 2946 2947 for_each_cwq_cpu(cpu, wq) { 2948 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2949 struct global_cwq *gcwq = get_gcwq(cpu); 2950 2951 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2952 cwq->gcwq = gcwq; 2953 cwq->wq = wq; 2954 cwq->flush_color = -1; 2955 cwq->max_active = max_active; 2956 INIT_LIST_HEAD(&cwq->delayed_works); 2957 } 2958 2959 if (flags & WQ_RESCUER) { 2960 struct worker *rescuer; 2961 2962 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2963 goto err; 2964 2965 wq->rescuer = rescuer = alloc_worker(); 2966 if (!rescuer) 2967 goto err; 2968 2969 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2970 if (IS_ERR(rescuer->task)) 2971 goto err; 2972 2973 rescuer->task->flags |= PF_THREAD_BOUND; 2974 wake_up_process(rescuer->task); 2975 } 2976 2977 /* 2978 * workqueue_lock protects global freeze state and workqueues 2979 * list. Grab it, set max_active accordingly and add the new 2980 * workqueue to workqueues list. 2981 */ 2982 spin_lock(&workqueue_lock); 2983 2984 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 2985 for_each_cwq_cpu(cpu, wq) 2986 get_cwq(cpu, wq)->max_active = 0; 2987 2988 list_add(&wq->list, &workqueues); 2989 2990 spin_unlock(&workqueue_lock); 2991 2992 return wq; 2993 err: 2994 if (wq) { 2995 free_cwqs(wq); 2996 free_mayday_mask(wq->mayday_mask); 2997 kfree(wq->rescuer); 2998 kfree(wq); 2999 } 3000 return NULL; 3001 } 3002 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3003 3004 /** 3005 * destroy_workqueue - safely terminate a workqueue 3006 * @wq: target workqueue 3007 * 3008 * Safely destroy a workqueue. All work currently pending will be done first. 3009 */ 3010 void destroy_workqueue(struct workqueue_struct *wq) 3011 { 3012 unsigned int flush_cnt = 0; 3013 unsigned int cpu; 3014 3015 /* 3016 * Mark @wq dying and drain all pending works. Once WQ_DYING is 3017 * set, only chain queueing is allowed. IOW, only currently 3018 * pending or running work items on @wq can queue further work 3019 * items on it. @wq is flushed repeatedly until it becomes empty. 3020 * The number of flushing is detemined by the depth of chaining and 3021 * should be relatively short. Whine if it takes too long. 3022 */ 3023 wq->flags |= WQ_DYING; 3024 reflush: 3025 flush_workqueue(wq); 3026 3027 for_each_cwq_cpu(cpu, wq) { 3028 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3029 3030 if (!cwq->nr_active && list_empty(&cwq->delayed_works)) 3031 continue; 3032 3033 if (++flush_cnt == 10 || 3034 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3035 printk(KERN_WARNING "workqueue %s: flush on " 3036 "destruction isn't complete after %u tries\n", 3037 wq->name, flush_cnt); 3038 goto reflush; 3039 } 3040 3041 /* 3042 * wq list is used to freeze wq, remove from list after 3043 * flushing is complete in case freeze races us. 3044 */ 3045 spin_lock(&workqueue_lock); 3046 list_del(&wq->list); 3047 spin_unlock(&workqueue_lock); 3048 3049 /* sanity check */ 3050 for_each_cwq_cpu(cpu, wq) { 3051 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3052 int i; 3053 3054 for (i = 0; i < WORK_NR_COLORS; i++) 3055 BUG_ON(cwq->nr_in_flight[i]); 3056 BUG_ON(cwq->nr_active); 3057 BUG_ON(!list_empty(&cwq->delayed_works)); 3058 } 3059 3060 if (wq->flags & WQ_RESCUER) { 3061 kthread_stop(wq->rescuer->task); 3062 free_mayday_mask(wq->mayday_mask); 3063 kfree(wq->rescuer); 3064 } 3065 3066 free_cwqs(wq); 3067 kfree(wq); 3068 } 3069 EXPORT_SYMBOL_GPL(destroy_workqueue); 3070 3071 /** 3072 * workqueue_set_max_active - adjust max_active of a workqueue 3073 * @wq: target workqueue 3074 * @max_active: new max_active value. 3075 * 3076 * Set max_active of @wq to @max_active. 3077 * 3078 * CONTEXT: 3079 * Don't call from IRQ context. 3080 */ 3081 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3082 { 3083 unsigned int cpu; 3084 3085 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3086 3087 spin_lock(&workqueue_lock); 3088 3089 wq->saved_max_active = max_active; 3090 3091 for_each_cwq_cpu(cpu, wq) { 3092 struct global_cwq *gcwq = get_gcwq(cpu); 3093 3094 spin_lock_irq(&gcwq->lock); 3095 3096 if (!(wq->flags & WQ_FREEZABLE) || 3097 !(gcwq->flags & GCWQ_FREEZING)) 3098 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3099 3100 spin_unlock_irq(&gcwq->lock); 3101 } 3102 3103 spin_unlock(&workqueue_lock); 3104 } 3105 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3106 3107 /** 3108 * workqueue_congested - test whether a workqueue is congested 3109 * @cpu: CPU in question 3110 * @wq: target workqueue 3111 * 3112 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3113 * no synchronization around this function and the test result is 3114 * unreliable and only useful as advisory hints or for debugging. 3115 * 3116 * RETURNS: 3117 * %true if congested, %false otherwise. 3118 */ 3119 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3120 { 3121 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3122 3123 return !list_empty(&cwq->delayed_works); 3124 } 3125 EXPORT_SYMBOL_GPL(workqueue_congested); 3126 3127 /** 3128 * work_cpu - return the last known associated cpu for @work 3129 * @work: the work of interest 3130 * 3131 * RETURNS: 3132 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3133 */ 3134 unsigned int work_cpu(struct work_struct *work) 3135 { 3136 struct global_cwq *gcwq = get_work_gcwq(work); 3137 3138 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3139 } 3140 EXPORT_SYMBOL_GPL(work_cpu); 3141 3142 /** 3143 * work_busy - test whether a work is currently pending or running 3144 * @work: the work to be tested 3145 * 3146 * Test whether @work is currently pending or running. There is no 3147 * synchronization around this function and the test result is 3148 * unreliable and only useful as advisory hints or for debugging. 3149 * Especially for reentrant wqs, the pending state might hide the 3150 * running state. 3151 * 3152 * RETURNS: 3153 * OR'd bitmask of WORK_BUSY_* bits. 3154 */ 3155 unsigned int work_busy(struct work_struct *work) 3156 { 3157 struct global_cwq *gcwq = get_work_gcwq(work); 3158 unsigned long flags; 3159 unsigned int ret = 0; 3160 3161 if (!gcwq) 3162 return false; 3163 3164 spin_lock_irqsave(&gcwq->lock, flags); 3165 3166 if (work_pending(work)) 3167 ret |= WORK_BUSY_PENDING; 3168 if (find_worker_executing_work(gcwq, work)) 3169 ret |= WORK_BUSY_RUNNING; 3170 3171 spin_unlock_irqrestore(&gcwq->lock, flags); 3172 3173 return ret; 3174 } 3175 EXPORT_SYMBOL_GPL(work_busy); 3176 3177 /* 3178 * CPU hotplug. 3179 * 3180 * There are two challenges in supporting CPU hotplug. Firstly, there 3181 * are a lot of assumptions on strong associations among work, cwq and 3182 * gcwq which make migrating pending and scheduled works very 3183 * difficult to implement without impacting hot paths. Secondly, 3184 * gcwqs serve mix of short, long and very long running works making 3185 * blocked draining impractical. 3186 * 3187 * This is solved by allowing a gcwq to be detached from CPU, running 3188 * it with unbound (rogue) workers and allowing it to be reattached 3189 * later if the cpu comes back online. A separate thread is created 3190 * to govern a gcwq in such state and is called the trustee of the 3191 * gcwq. 3192 * 3193 * Trustee states and their descriptions. 3194 * 3195 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3196 * new trustee is started with this state. 3197 * 3198 * IN_CHARGE Once started, trustee will enter this state after 3199 * assuming the manager role and making all existing 3200 * workers rogue. DOWN_PREPARE waits for trustee to 3201 * enter this state. After reaching IN_CHARGE, trustee 3202 * tries to execute the pending worklist until it's empty 3203 * and the state is set to BUTCHER, or the state is set 3204 * to RELEASE. 3205 * 3206 * BUTCHER Command state which is set by the cpu callback after 3207 * the cpu has went down. Once this state is set trustee 3208 * knows that there will be no new works on the worklist 3209 * and once the worklist is empty it can proceed to 3210 * killing idle workers. 3211 * 3212 * RELEASE Command state which is set by the cpu callback if the 3213 * cpu down has been canceled or it has come online 3214 * again. After recognizing this state, trustee stops 3215 * trying to drain or butcher and clears ROGUE, rebinds 3216 * all remaining workers back to the cpu and releases 3217 * manager role. 3218 * 3219 * DONE Trustee will enter this state after BUTCHER or RELEASE 3220 * is complete. 3221 * 3222 * trustee CPU draining 3223 * took over down complete 3224 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3225 * | | ^ 3226 * | CPU is back online v return workers | 3227 * ----------------> RELEASE -------------- 3228 */ 3229 3230 /** 3231 * trustee_wait_event_timeout - timed event wait for trustee 3232 * @cond: condition to wait for 3233 * @timeout: timeout in jiffies 3234 * 3235 * wait_event_timeout() for trustee to use. Handles locking and 3236 * checks for RELEASE request. 3237 * 3238 * CONTEXT: 3239 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3240 * multiple times. To be used by trustee. 3241 * 3242 * RETURNS: 3243 * Positive indicating left time if @cond is satisfied, 0 if timed 3244 * out, -1 if canceled. 3245 */ 3246 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3247 long __ret = (timeout); \ 3248 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3249 __ret) { \ 3250 spin_unlock_irq(&gcwq->lock); \ 3251 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3252 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3253 __ret); \ 3254 spin_lock_irq(&gcwq->lock); \ 3255 } \ 3256 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3257 }) 3258 3259 /** 3260 * trustee_wait_event - event wait for trustee 3261 * @cond: condition to wait for 3262 * 3263 * wait_event() for trustee to use. Automatically handles locking and 3264 * checks for CANCEL request. 3265 * 3266 * CONTEXT: 3267 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3268 * multiple times. To be used by trustee. 3269 * 3270 * RETURNS: 3271 * 0 if @cond is satisfied, -1 if canceled. 3272 */ 3273 #define trustee_wait_event(cond) ({ \ 3274 long __ret1; \ 3275 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3276 __ret1 < 0 ? -1 : 0; \ 3277 }) 3278 3279 static int __cpuinit trustee_thread(void *__gcwq) 3280 { 3281 struct global_cwq *gcwq = __gcwq; 3282 struct worker *worker; 3283 struct work_struct *work; 3284 struct hlist_node *pos; 3285 long rc; 3286 int i; 3287 3288 BUG_ON(gcwq->cpu != smp_processor_id()); 3289 3290 spin_lock_irq(&gcwq->lock); 3291 /* 3292 * Claim the manager position and make all workers rogue. 3293 * Trustee must be bound to the target cpu and can't be 3294 * cancelled. 3295 */ 3296 BUG_ON(gcwq->cpu != smp_processor_id()); 3297 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3298 BUG_ON(rc < 0); 3299 3300 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3301 3302 list_for_each_entry(worker, &gcwq->idle_list, entry) 3303 worker->flags |= WORKER_ROGUE; 3304 3305 for_each_busy_worker(worker, i, pos, gcwq) 3306 worker->flags |= WORKER_ROGUE; 3307 3308 /* 3309 * Call schedule() so that we cross rq->lock and thus can 3310 * guarantee sched callbacks see the rogue flag. This is 3311 * necessary as scheduler callbacks may be invoked from other 3312 * cpus. 3313 */ 3314 spin_unlock_irq(&gcwq->lock); 3315 schedule(); 3316 spin_lock_irq(&gcwq->lock); 3317 3318 /* 3319 * Sched callbacks are disabled now. Zap nr_running. After 3320 * this, nr_running stays zero and need_more_worker() and 3321 * keep_working() are always true as long as the worklist is 3322 * not empty. 3323 */ 3324 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3325 3326 spin_unlock_irq(&gcwq->lock); 3327 del_timer_sync(&gcwq->idle_timer); 3328 spin_lock_irq(&gcwq->lock); 3329 3330 /* 3331 * We're now in charge. Notify and proceed to drain. We need 3332 * to keep the gcwq running during the whole CPU down 3333 * procedure as other cpu hotunplug callbacks may need to 3334 * flush currently running tasks. 3335 */ 3336 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3337 wake_up_all(&gcwq->trustee_wait); 3338 3339 /* 3340 * The original cpu is in the process of dying and may go away 3341 * anytime now. When that happens, we and all workers would 3342 * be migrated to other cpus. Try draining any left work. We 3343 * want to get it over with ASAP - spam rescuers, wake up as 3344 * many idlers as necessary and create new ones till the 3345 * worklist is empty. Note that if the gcwq is frozen, there 3346 * may be frozen works in freezable cwqs. Don't declare 3347 * completion while frozen. 3348 */ 3349 while (gcwq->nr_workers != gcwq->nr_idle || 3350 gcwq->flags & GCWQ_FREEZING || 3351 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3352 int nr_works = 0; 3353 3354 list_for_each_entry(work, &gcwq->worklist, entry) { 3355 send_mayday(work); 3356 nr_works++; 3357 } 3358 3359 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3360 if (!nr_works--) 3361 break; 3362 wake_up_process(worker->task); 3363 } 3364 3365 if (need_to_create_worker(gcwq)) { 3366 spin_unlock_irq(&gcwq->lock); 3367 worker = create_worker(gcwq, false); 3368 spin_lock_irq(&gcwq->lock); 3369 if (worker) { 3370 worker->flags |= WORKER_ROGUE; 3371 start_worker(worker); 3372 } 3373 } 3374 3375 /* give a breather */ 3376 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3377 break; 3378 } 3379 3380 /* 3381 * Either all works have been scheduled and cpu is down, or 3382 * cpu down has already been canceled. Wait for and butcher 3383 * all workers till we're canceled. 3384 */ 3385 do { 3386 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3387 while (!list_empty(&gcwq->idle_list)) 3388 destroy_worker(list_first_entry(&gcwq->idle_list, 3389 struct worker, entry)); 3390 } while (gcwq->nr_workers && rc >= 0); 3391 3392 /* 3393 * At this point, either draining has completed and no worker 3394 * is left, or cpu down has been canceled or the cpu is being 3395 * brought back up. There shouldn't be any idle one left. 3396 * Tell the remaining busy ones to rebind once it finishes the 3397 * currently scheduled works by scheduling the rebind_work. 3398 */ 3399 WARN_ON(!list_empty(&gcwq->idle_list)); 3400 3401 for_each_busy_worker(worker, i, pos, gcwq) { 3402 struct work_struct *rebind_work = &worker->rebind_work; 3403 3404 /* 3405 * Rebind_work may race with future cpu hotplug 3406 * operations. Use a separate flag to mark that 3407 * rebinding is scheduled. 3408 */ 3409 worker->flags |= WORKER_REBIND; 3410 worker->flags &= ~WORKER_ROGUE; 3411 3412 /* queue rebind_work, wq doesn't matter, use the default one */ 3413 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3414 work_data_bits(rebind_work))) 3415 continue; 3416 3417 debug_work_activate(rebind_work); 3418 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3419 worker->scheduled.next, 3420 work_color_to_flags(WORK_NO_COLOR)); 3421 } 3422 3423 /* relinquish manager role */ 3424 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3425 3426 /* notify completion */ 3427 gcwq->trustee = NULL; 3428 gcwq->trustee_state = TRUSTEE_DONE; 3429 wake_up_all(&gcwq->trustee_wait); 3430 spin_unlock_irq(&gcwq->lock); 3431 return 0; 3432 } 3433 3434 /** 3435 * wait_trustee_state - wait for trustee to enter the specified state 3436 * @gcwq: gcwq the trustee of interest belongs to 3437 * @state: target state to wait for 3438 * 3439 * Wait for the trustee to reach @state. DONE is already matched. 3440 * 3441 * CONTEXT: 3442 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3443 * multiple times. To be used by cpu_callback. 3444 */ 3445 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3446 __releases(&gcwq->lock) 3447 __acquires(&gcwq->lock) 3448 { 3449 if (!(gcwq->trustee_state == state || 3450 gcwq->trustee_state == TRUSTEE_DONE)) { 3451 spin_unlock_irq(&gcwq->lock); 3452 __wait_event(gcwq->trustee_wait, 3453 gcwq->trustee_state == state || 3454 gcwq->trustee_state == TRUSTEE_DONE); 3455 spin_lock_irq(&gcwq->lock); 3456 } 3457 } 3458 3459 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3460 unsigned long action, 3461 void *hcpu) 3462 { 3463 unsigned int cpu = (unsigned long)hcpu; 3464 struct global_cwq *gcwq = get_gcwq(cpu); 3465 struct task_struct *new_trustee = NULL; 3466 struct worker *uninitialized_var(new_worker); 3467 unsigned long flags; 3468 3469 action &= ~CPU_TASKS_FROZEN; 3470 3471 switch (action) { 3472 case CPU_DOWN_PREPARE: 3473 new_trustee = kthread_create(trustee_thread, gcwq, 3474 "workqueue_trustee/%d\n", cpu); 3475 if (IS_ERR(new_trustee)) 3476 return notifier_from_errno(PTR_ERR(new_trustee)); 3477 kthread_bind(new_trustee, cpu); 3478 /* fall through */ 3479 case CPU_UP_PREPARE: 3480 BUG_ON(gcwq->first_idle); 3481 new_worker = create_worker(gcwq, false); 3482 if (!new_worker) { 3483 if (new_trustee) 3484 kthread_stop(new_trustee); 3485 return NOTIFY_BAD; 3486 } 3487 } 3488 3489 /* some are called w/ irq disabled, don't disturb irq status */ 3490 spin_lock_irqsave(&gcwq->lock, flags); 3491 3492 switch (action) { 3493 case CPU_DOWN_PREPARE: 3494 /* initialize trustee and tell it to acquire the gcwq */ 3495 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3496 gcwq->trustee = new_trustee; 3497 gcwq->trustee_state = TRUSTEE_START; 3498 wake_up_process(gcwq->trustee); 3499 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3500 /* fall through */ 3501 case CPU_UP_PREPARE: 3502 BUG_ON(gcwq->first_idle); 3503 gcwq->first_idle = new_worker; 3504 break; 3505 3506 case CPU_DYING: 3507 /* 3508 * Before this, the trustee and all workers except for 3509 * the ones which are still executing works from 3510 * before the last CPU down must be on the cpu. After 3511 * this, they'll all be diasporas. 3512 */ 3513 gcwq->flags |= GCWQ_DISASSOCIATED; 3514 break; 3515 3516 case CPU_POST_DEAD: 3517 gcwq->trustee_state = TRUSTEE_BUTCHER; 3518 /* fall through */ 3519 case CPU_UP_CANCELED: 3520 destroy_worker(gcwq->first_idle); 3521 gcwq->first_idle = NULL; 3522 break; 3523 3524 case CPU_DOWN_FAILED: 3525 case CPU_ONLINE: 3526 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3527 if (gcwq->trustee_state != TRUSTEE_DONE) { 3528 gcwq->trustee_state = TRUSTEE_RELEASE; 3529 wake_up_process(gcwq->trustee); 3530 wait_trustee_state(gcwq, TRUSTEE_DONE); 3531 } 3532 3533 /* 3534 * Trustee is done and there might be no worker left. 3535 * Put the first_idle in and request a real manager to 3536 * take a look. 3537 */ 3538 spin_unlock_irq(&gcwq->lock); 3539 kthread_bind(gcwq->first_idle->task, cpu); 3540 spin_lock_irq(&gcwq->lock); 3541 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3542 start_worker(gcwq->first_idle); 3543 gcwq->first_idle = NULL; 3544 break; 3545 } 3546 3547 spin_unlock_irqrestore(&gcwq->lock, flags); 3548 3549 return notifier_from_errno(0); 3550 } 3551 3552 #ifdef CONFIG_SMP 3553 3554 struct work_for_cpu { 3555 struct completion completion; 3556 long (*fn)(void *); 3557 void *arg; 3558 long ret; 3559 }; 3560 3561 static int do_work_for_cpu(void *_wfc) 3562 { 3563 struct work_for_cpu *wfc = _wfc; 3564 wfc->ret = wfc->fn(wfc->arg); 3565 complete(&wfc->completion); 3566 return 0; 3567 } 3568 3569 /** 3570 * work_on_cpu - run a function in user context on a particular cpu 3571 * @cpu: the cpu to run on 3572 * @fn: the function to run 3573 * @arg: the function arg 3574 * 3575 * This will return the value @fn returns. 3576 * It is up to the caller to ensure that the cpu doesn't go offline. 3577 * The caller must not hold any locks which would prevent @fn from completing. 3578 */ 3579 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3580 { 3581 struct task_struct *sub_thread; 3582 struct work_for_cpu wfc = { 3583 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3584 .fn = fn, 3585 .arg = arg, 3586 }; 3587 3588 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3589 if (IS_ERR(sub_thread)) 3590 return PTR_ERR(sub_thread); 3591 kthread_bind(sub_thread, cpu); 3592 wake_up_process(sub_thread); 3593 wait_for_completion(&wfc.completion); 3594 return wfc.ret; 3595 } 3596 EXPORT_SYMBOL_GPL(work_on_cpu); 3597 #endif /* CONFIG_SMP */ 3598 3599 #ifdef CONFIG_FREEZER 3600 3601 /** 3602 * freeze_workqueues_begin - begin freezing workqueues 3603 * 3604 * Start freezing workqueues. After this function returns, all freezable 3605 * workqueues will queue new works to their frozen_works list instead of 3606 * gcwq->worklist. 3607 * 3608 * CONTEXT: 3609 * Grabs and releases workqueue_lock and gcwq->lock's. 3610 */ 3611 void freeze_workqueues_begin(void) 3612 { 3613 unsigned int cpu; 3614 3615 spin_lock(&workqueue_lock); 3616 3617 BUG_ON(workqueue_freezing); 3618 workqueue_freezing = true; 3619 3620 for_each_gcwq_cpu(cpu) { 3621 struct global_cwq *gcwq = get_gcwq(cpu); 3622 struct workqueue_struct *wq; 3623 3624 spin_lock_irq(&gcwq->lock); 3625 3626 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3627 gcwq->flags |= GCWQ_FREEZING; 3628 3629 list_for_each_entry(wq, &workqueues, list) { 3630 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3631 3632 if (cwq && wq->flags & WQ_FREEZABLE) 3633 cwq->max_active = 0; 3634 } 3635 3636 spin_unlock_irq(&gcwq->lock); 3637 } 3638 3639 spin_unlock(&workqueue_lock); 3640 } 3641 3642 /** 3643 * freeze_workqueues_busy - are freezable workqueues still busy? 3644 * 3645 * Check whether freezing is complete. This function must be called 3646 * between freeze_workqueues_begin() and thaw_workqueues(). 3647 * 3648 * CONTEXT: 3649 * Grabs and releases workqueue_lock. 3650 * 3651 * RETURNS: 3652 * %true if some freezable workqueues are still busy. %false if freezing 3653 * is complete. 3654 */ 3655 bool freeze_workqueues_busy(void) 3656 { 3657 unsigned int cpu; 3658 bool busy = false; 3659 3660 spin_lock(&workqueue_lock); 3661 3662 BUG_ON(!workqueue_freezing); 3663 3664 for_each_gcwq_cpu(cpu) { 3665 struct workqueue_struct *wq; 3666 /* 3667 * nr_active is monotonically decreasing. It's safe 3668 * to peek without lock. 3669 */ 3670 list_for_each_entry(wq, &workqueues, list) { 3671 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3672 3673 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3674 continue; 3675 3676 BUG_ON(cwq->nr_active < 0); 3677 if (cwq->nr_active) { 3678 busy = true; 3679 goto out_unlock; 3680 } 3681 } 3682 } 3683 out_unlock: 3684 spin_unlock(&workqueue_lock); 3685 return busy; 3686 } 3687 3688 /** 3689 * thaw_workqueues - thaw workqueues 3690 * 3691 * Thaw workqueues. Normal queueing is restored and all collected 3692 * frozen works are transferred to their respective gcwq worklists. 3693 * 3694 * CONTEXT: 3695 * Grabs and releases workqueue_lock and gcwq->lock's. 3696 */ 3697 void thaw_workqueues(void) 3698 { 3699 unsigned int cpu; 3700 3701 spin_lock(&workqueue_lock); 3702 3703 if (!workqueue_freezing) 3704 goto out_unlock; 3705 3706 for_each_gcwq_cpu(cpu) { 3707 struct global_cwq *gcwq = get_gcwq(cpu); 3708 struct workqueue_struct *wq; 3709 3710 spin_lock_irq(&gcwq->lock); 3711 3712 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3713 gcwq->flags &= ~GCWQ_FREEZING; 3714 3715 list_for_each_entry(wq, &workqueues, list) { 3716 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3717 3718 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3719 continue; 3720 3721 /* restore max_active and repopulate worklist */ 3722 cwq->max_active = wq->saved_max_active; 3723 3724 while (!list_empty(&cwq->delayed_works) && 3725 cwq->nr_active < cwq->max_active) 3726 cwq_activate_first_delayed(cwq); 3727 } 3728 3729 wake_up_worker(gcwq); 3730 3731 spin_unlock_irq(&gcwq->lock); 3732 } 3733 3734 workqueue_freezing = false; 3735 out_unlock: 3736 spin_unlock(&workqueue_lock); 3737 } 3738 #endif /* CONFIG_FREEZER */ 3739 3740 static int __init init_workqueues(void) 3741 { 3742 unsigned int cpu; 3743 int i; 3744 3745 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3746 3747 /* initialize gcwqs */ 3748 for_each_gcwq_cpu(cpu) { 3749 struct global_cwq *gcwq = get_gcwq(cpu); 3750 3751 spin_lock_init(&gcwq->lock); 3752 INIT_LIST_HEAD(&gcwq->worklist); 3753 gcwq->cpu = cpu; 3754 gcwq->flags |= GCWQ_DISASSOCIATED; 3755 3756 INIT_LIST_HEAD(&gcwq->idle_list); 3757 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3758 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3759 3760 init_timer_deferrable(&gcwq->idle_timer); 3761 gcwq->idle_timer.function = idle_worker_timeout; 3762 gcwq->idle_timer.data = (unsigned long)gcwq; 3763 3764 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3765 (unsigned long)gcwq); 3766 3767 ida_init(&gcwq->worker_ida); 3768 3769 gcwq->trustee_state = TRUSTEE_DONE; 3770 init_waitqueue_head(&gcwq->trustee_wait); 3771 } 3772 3773 /* create the initial worker */ 3774 for_each_online_gcwq_cpu(cpu) { 3775 struct global_cwq *gcwq = get_gcwq(cpu); 3776 struct worker *worker; 3777 3778 if (cpu != WORK_CPU_UNBOUND) 3779 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3780 worker = create_worker(gcwq, true); 3781 BUG_ON(!worker); 3782 spin_lock_irq(&gcwq->lock); 3783 start_worker(worker); 3784 spin_unlock_irq(&gcwq->lock); 3785 } 3786 3787 system_wq = alloc_workqueue("events", 0, 0); 3788 system_long_wq = alloc_workqueue("events_long", 0, 0); 3789 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3790 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3791 WQ_UNBOUND_MAX_ACTIVE); 3792 system_freezable_wq = alloc_workqueue("events_freezable", 3793 WQ_FREEZABLE, 0); 3794 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq || 3795 !system_unbound_wq || !system_freezable_wq); 3796 return 0; 3797 } 3798 early_initcall(init_workqueues); 3799