xref: /linux/kernel/workqueue.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
83 						/* call for help after 10ms
84 						   (min two ticks) */
85 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
86 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
87 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
88 
89 	/*
90 	 * Rescue workers are used only on emergencies and shared by
91 	 * all cpus.  Give -20.
92 	 */
93 	RESCUER_NICE_LEVEL	= -20,
94 };
95 
96 /*
97  * Structure fields follow one of the following exclusion rules.
98  *
99  * I: Modifiable by initialization/destruction paths and read-only for
100  *    everyone else.
101  *
102  * P: Preemption protected.  Disabling preemption is enough and should
103  *    only be modified and accessed from the local cpu.
104  *
105  * L: gcwq->lock protected.  Access with gcwq->lock held.
106  *
107  * X: During normal operation, modification requires gcwq->lock and
108  *    should be done only from local cpu.  Either disabling preemption
109  *    on local cpu or grabbing gcwq->lock is enough for read access.
110  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
111  *
112  * F: wq->flush_mutex protected.
113  *
114  * W: workqueue_lock protected.
115  */
116 
117 struct global_cwq;
118 
119 /*
120  * The poor guys doing the actual heavy lifting.  All on-duty workers
121  * are either serving the manager role, on idle list or on busy hash.
122  */
123 struct worker {
124 	/* on idle list while idle, on busy hash table while busy */
125 	union {
126 		struct list_head	entry;	/* L: while idle */
127 		struct hlist_node	hentry;	/* L: while busy */
128 	};
129 
130 	struct work_struct	*current_work;	/* L: work being processed */
131 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 	struct list_head	scheduled;	/* L: scheduled works */
133 	struct task_struct	*task;		/* I: worker task */
134 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
135 	/* 64 bytes boundary on 64bit, 32 on 32bit */
136 	unsigned long		last_active;	/* L: last active timestamp */
137 	unsigned int		flags;		/* X: flags */
138 	int			id;		/* I: worker id */
139 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
140 };
141 
142 /*
143  * Global per-cpu workqueue.  There's one and only one for each cpu
144  * and all works are queued and processed here regardless of their
145  * target workqueues.
146  */
147 struct global_cwq {
148 	spinlock_t		lock;		/* the gcwq lock */
149 	struct list_head	worklist;	/* L: list of pending works */
150 	unsigned int		cpu;		/* I: the associated cpu */
151 	unsigned int		flags;		/* L: GCWQ_* flags */
152 
153 	int			nr_workers;	/* L: total number of workers */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	/* workers are chained either in the idle_list or busy_hash */
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
159 						/* L: hash of busy workers */
160 
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
163 
164 	struct ida		worker_ida;	/* L: for worker IDs */
165 
166 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
167 	unsigned int		trustee_state;	/* L: trustee state */
168 	wait_queue_head_t	trustee_wait;	/* trustee wait */
169 	struct worker		*first_idle;	/* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
171 
172 /*
173  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
174  * work_struct->data are used for flags and thus cwqs need to be
175  * aligned at two's power of the number of flag bits.
176  */
177 struct cpu_workqueue_struct {
178 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
179 	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 	int			work_color;	/* L: current color */
181 	int			flush_color;	/* L: flushing color */
182 	int			nr_in_flight[WORK_NR_COLORS];
183 						/* L: nr of in_flight works */
184 	int			nr_active;	/* L: nr of active works */
185 	int			max_active;	/* L: max active works */
186 	struct list_head	delayed_works;	/* L: delayed works */
187 };
188 
189 /*
190  * Structure used to wait for workqueue flush.
191  */
192 struct wq_flusher {
193 	struct list_head	list;		/* F: list of flushers */
194 	int			flush_color;	/* F: flush color waiting for */
195 	struct completion	done;		/* flush completion */
196 };
197 
198 /*
199  * All cpumasks are assumed to be always set on UP and thus can't be
200  * used to determine whether there's something to be done.
201  */
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask)	\
205 	cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask)			free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp)		true
216 #define free_mayday_mask(mask)			do { } while (0)
217 #endif
218 
219 /*
220  * The externally visible workqueue abstraction is an array of
221  * per-CPU workqueues:
222  */
223 struct workqueue_struct {
224 	unsigned int		flags;		/* I: WQ_* flags */
225 	union {
226 		struct cpu_workqueue_struct __percpu	*pcpu;
227 		struct cpu_workqueue_struct		*single;
228 		unsigned long				v;
229 	} cpu_wq;				/* I: cwq's */
230 	struct list_head	list;		/* W: list of all workqueues */
231 
232 	struct mutex		flush_mutex;	/* protects wq flushing */
233 	int			work_color;	/* F: current work color */
234 	int			flush_color;	/* F: current flush color */
235 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
236 	struct wq_flusher	*first_flusher;	/* F: first flusher */
237 	struct list_head	flusher_queue;	/* F: flush waiters */
238 	struct list_head	flusher_overflow; /* F: flush overflow list */
239 
240 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
241 	struct worker		*rescuer;	/* I: rescue worker */
242 
243 	int			saved_max_active; /* W: saved cwq max_active */
244 	const char		*name;		/* I: workqueue name */
245 #ifdef CONFIG_LOCKDEP
246 	struct lockdep_map	lockdep_map;
247 #endif
248 };
249 
250 struct workqueue_struct *system_wq __read_mostly;
251 struct workqueue_struct *system_long_wq __read_mostly;
252 struct workqueue_struct *system_nrt_wq __read_mostly;
253 struct workqueue_struct *system_unbound_wq __read_mostly;
254 struct workqueue_struct *system_freezable_wq __read_mostly;
255 EXPORT_SYMBOL_GPL(system_wq);
256 EXPORT_SYMBOL_GPL(system_long_wq);
257 EXPORT_SYMBOL_GPL(system_nrt_wq);
258 EXPORT_SYMBOL_GPL(system_unbound_wq);
259 EXPORT_SYMBOL_GPL(system_freezable_wq);
260 
261 #define CREATE_TRACE_POINTS
262 #include <trace/events/workqueue.h>
263 
264 #define for_each_busy_worker(worker, i, pos, gcwq)			\
265 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
266 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
267 
268 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
269 				  unsigned int sw)
270 {
271 	if (cpu < nr_cpu_ids) {
272 		if (sw & 1) {
273 			cpu = cpumask_next(cpu, mask);
274 			if (cpu < nr_cpu_ids)
275 				return cpu;
276 		}
277 		if (sw & 2)
278 			return WORK_CPU_UNBOUND;
279 	}
280 	return WORK_CPU_NONE;
281 }
282 
283 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
284 				struct workqueue_struct *wq)
285 {
286 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
287 }
288 
289 /*
290  * CPU iterators
291  *
292  * An extra gcwq is defined for an invalid cpu number
293  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
294  * specific CPU.  The following iterators are similar to
295  * for_each_*_cpu() iterators but also considers the unbound gcwq.
296  *
297  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
298  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
299  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
300  *				  WORK_CPU_UNBOUND for unbound workqueues
301  */
302 #define for_each_gcwq_cpu(cpu)						\
303 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
304 	     (cpu) < WORK_CPU_NONE;					\
305 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
306 
307 #define for_each_online_gcwq_cpu(cpu)					\
308 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
309 	     (cpu) < WORK_CPU_NONE;					\
310 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
311 
312 #define for_each_cwq_cpu(cpu, wq)					\
313 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
314 	     (cpu) < WORK_CPU_NONE;					\
315 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
316 
317 #ifdef CONFIG_DEBUG_OBJECTS_WORK
318 
319 static struct debug_obj_descr work_debug_descr;
320 
321 static void *work_debug_hint(void *addr)
322 {
323 	return ((struct work_struct *) addr)->func;
324 }
325 
326 /*
327  * fixup_init is called when:
328  * - an active object is initialized
329  */
330 static int work_fixup_init(void *addr, enum debug_obj_state state)
331 {
332 	struct work_struct *work = addr;
333 
334 	switch (state) {
335 	case ODEBUG_STATE_ACTIVE:
336 		cancel_work_sync(work);
337 		debug_object_init(work, &work_debug_descr);
338 		return 1;
339 	default:
340 		return 0;
341 	}
342 }
343 
344 /*
345  * fixup_activate is called when:
346  * - an active object is activated
347  * - an unknown object is activated (might be a statically initialized object)
348  */
349 static int work_fixup_activate(void *addr, enum debug_obj_state state)
350 {
351 	struct work_struct *work = addr;
352 
353 	switch (state) {
354 
355 	case ODEBUG_STATE_NOTAVAILABLE:
356 		/*
357 		 * This is not really a fixup. The work struct was
358 		 * statically initialized. We just make sure that it
359 		 * is tracked in the object tracker.
360 		 */
361 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
362 			debug_object_init(work, &work_debug_descr);
363 			debug_object_activate(work, &work_debug_descr);
364 			return 0;
365 		}
366 		WARN_ON_ONCE(1);
367 		return 0;
368 
369 	case ODEBUG_STATE_ACTIVE:
370 		WARN_ON(1);
371 
372 	default:
373 		return 0;
374 	}
375 }
376 
377 /*
378  * fixup_free is called when:
379  * - an active object is freed
380  */
381 static int work_fixup_free(void *addr, enum debug_obj_state state)
382 {
383 	struct work_struct *work = addr;
384 
385 	switch (state) {
386 	case ODEBUG_STATE_ACTIVE:
387 		cancel_work_sync(work);
388 		debug_object_free(work, &work_debug_descr);
389 		return 1;
390 	default:
391 		return 0;
392 	}
393 }
394 
395 static struct debug_obj_descr work_debug_descr = {
396 	.name		= "work_struct",
397 	.debug_hint	= work_debug_hint,
398 	.fixup_init	= work_fixup_init,
399 	.fixup_activate	= work_fixup_activate,
400 	.fixup_free	= work_fixup_free,
401 };
402 
403 static inline void debug_work_activate(struct work_struct *work)
404 {
405 	debug_object_activate(work, &work_debug_descr);
406 }
407 
408 static inline void debug_work_deactivate(struct work_struct *work)
409 {
410 	debug_object_deactivate(work, &work_debug_descr);
411 }
412 
413 void __init_work(struct work_struct *work, int onstack)
414 {
415 	if (onstack)
416 		debug_object_init_on_stack(work, &work_debug_descr);
417 	else
418 		debug_object_init(work, &work_debug_descr);
419 }
420 EXPORT_SYMBOL_GPL(__init_work);
421 
422 void destroy_work_on_stack(struct work_struct *work)
423 {
424 	debug_object_free(work, &work_debug_descr);
425 }
426 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
427 
428 #else
429 static inline void debug_work_activate(struct work_struct *work) { }
430 static inline void debug_work_deactivate(struct work_struct *work) { }
431 #endif
432 
433 /* Serializes the accesses to the list of workqueues. */
434 static DEFINE_SPINLOCK(workqueue_lock);
435 static LIST_HEAD(workqueues);
436 static bool workqueue_freezing;		/* W: have wqs started freezing? */
437 
438 /*
439  * The almighty global cpu workqueues.  nr_running is the only field
440  * which is expected to be used frequently by other cpus via
441  * try_to_wake_up().  Put it in a separate cacheline.
442  */
443 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
444 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
445 
446 /*
447  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
448  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
449  * workers have WORKER_UNBOUND set.
450  */
451 static struct global_cwq unbound_global_cwq;
452 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
453 
454 static int worker_thread(void *__worker);
455 
456 static struct global_cwq *get_gcwq(unsigned int cpu)
457 {
458 	if (cpu != WORK_CPU_UNBOUND)
459 		return &per_cpu(global_cwq, cpu);
460 	else
461 		return &unbound_global_cwq;
462 }
463 
464 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
465 {
466 	if (cpu != WORK_CPU_UNBOUND)
467 		return &per_cpu(gcwq_nr_running, cpu);
468 	else
469 		return &unbound_gcwq_nr_running;
470 }
471 
472 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
473 					    struct workqueue_struct *wq)
474 {
475 	if (!(wq->flags & WQ_UNBOUND)) {
476 		if (likely(cpu < nr_cpu_ids)) {
477 #ifdef CONFIG_SMP
478 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
479 #else
480 			return wq->cpu_wq.single;
481 #endif
482 		}
483 	} else if (likely(cpu == WORK_CPU_UNBOUND))
484 		return wq->cpu_wq.single;
485 	return NULL;
486 }
487 
488 static unsigned int work_color_to_flags(int color)
489 {
490 	return color << WORK_STRUCT_COLOR_SHIFT;
491 }
492 
493 static int get_work_color(struct work_struct *work)
494 {
495 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
496 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
497 }
498 
499 static int work_next_color(int color)
500 {
501 	return (color + 1) % WORK_NR_COLORS;
502 }
503 
504 /*
505  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
506  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
507  * cleared and the work data contains the cpu number it was last on.
508  *
509  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
510  * cwq, cpu or clear work->data.  These functions should only be
511  * called while the work is owned - ie. while the PENDING bit is set.
512  *
513  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
514  * corresponding to a work.  gcwq is available once the work has been
515  * queued anywhere after initialization.  cwq is available only from
516  * queueing until execution starts.
517  */
518 static inline void set_work_data(struct work_struct *work, unsigned long data,
519 				 unsigned long flags)
520 {
521 	BUG_ON(!work_pending(work));
522 	atomic_long_set(&work->data, data | flags | work_static(work));
523 }
524 
525 static void set_work_cwq(struct work_struct *work,
526 			 struct cpu_workqueue_struct *cwq,
527 			 unsigned long extra_flags)
528 {
529 	set_work_data(work, (unsigned long)cwq,
530 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
531 }
532 
533 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
534 {
535 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
536 }
537 
538 static void clear_work_data(struct work_struct *work)
539 {
540 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
541 }
542 
543 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
544 {
545 	unsigned long data = atomic_long_read(&work->data);
546 
547 	if (data & WORK_STRUCT_CWQ)
548 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
549 	else
550 		return NULL;
551 }
552 
553 static struct global_cwq *get_work_gcwq(struct work_struct *work)
554 {
555 	unsigned long data = atomic_long_read(&work->data);
556 	unsigned int cpu;
557 
558 	if (data & WORK_STRUCT_CWQ)
559 		return ((struct cpu_workqueue_struct *)
560 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
561 
562 	cpu = data >> WORK_STRUCT_FLAG_BITS;
563 	if (cpu == WORK_CPU_NONE)
564 		return NULL;
565 
566 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
567 	return get_gcwq(cpu);
568 }
569 
570 /*
571  * Policy functions.  These define the policies on how the global
572  * worker pool is managed.  Unless noted otherwise, these functions
573  * assume that they're being called with gcwq->lock held.
574  */
575 
576 static bool __need_more_worker(struct global_cwq *gcwq)
577 {
578 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
579 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
580 }
581 
582 /*
583  * Need to wake up a worker?  Called from anything but currently
584  * running workers.
585  */
586 static bool need_more_worker(struct global_cwq *gcwq)
587 {
588 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
589 }
590 
591 /* Can I start working?  Called from busy but !running workers. */
592 static bool may_start_working(struct global_cwq *gcwq)
593 {
594 	return gcwq->nr_idle;
595 }
596 
597 /* Do I need to keep working?  Called from currently running workers. */
598 static bool keep_working(struct global_cwq *gcwq)
599 {
600 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
601 
602 	return !list_empty(&gcwq->worklist) &&
603 		(atomic_read(nr_running) <= 1 ||
604 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
605 }
606 
607 /* Do we need a new worker?  Called from manager. */
608 static bool need_to_create_worker(struct global_cwq *gcwq)
609 {
610 	return need_more_worker(gcwq) && !may_start_working(gcwq);
611 }
612 
613 /* Do I need to be the manager? */
614 static bool need_to_manage_workers(struct global_cwq *gcwq)
615 {
616 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
617 }
618 
619 /* Do we have too many workers and should some go away? */
620 static bool too_many_workers(struct global_cwq *gcwq)
621 {
622 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
623 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
624 	int nr_busy = gcwq->nr_workers - nr_idle;
625 
626 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
627 }
628 
629 /*
630  * Wake up functions.
631  */
632 
633 /* Return the first worker.  Safe with preemption disabled */
634 static struct worker *first_worker(struct global_cwq *gcwq)
635 {
636 	if (unlikely(list_empty(&gcwq->idle_list)))
637 		return NULL;
638 
639 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
640 }
641 
642 /**
643  * wake_up_worker - wake up an idle worker
644  * @gcwq: gcwq to wake worker for
645  *
646  * Wake up the first idle worker of @gcwq.
647  *
648  * CONTEXT:
649  * spin_lock_irq(gcwq->lock).
650  */
651 static void wake_up_worker(struct global_cwq *gcwq)
652 {
653 	struct worker *worker = first_worker(gcwq);
654 
655 	if (likely(worker))
656 		wake_up_process(worker->task);
657 }
658 
659 /**
660  * wq_worker_waking_up - a worker is waking up
661  * @task: task waking up
662  * @cpu: CPU @task is waking up to
663  *
664  * This function is called during try_to_wake_up() when a worker is
665  * being awoken.
666  *
667  * CONTEXT:
668  * spin_lock_irq(rq->lock)
669  */
670 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
671 {
672 	struct worker *worker = kthread_data(task);
673 
674 	if (!(worker->flags & WORKER_NOT_RUNNING))
675 		atomic_inc(get_gcwq_nr_running(cpu));
676 }
677 
678 /**
679  * wq_worker_sleeping - a worker is going to sleep
680  * @task: task going to sleep
681  * @cpu: CPU in question, must be the current CPU number
682  *
683  * This function is called during schedule() when a busy worker is
684  * going to sleep.  Worker on the same cpu can be woken up by
685  * returning pointer to its task.
686  *
687  * CONTEXT:
688  * spin_lock_irq(rq->lock)
689  *
690  * RETURNS:
691  * Worker task on @cpu to wake up, %NULL if none.
692  */
693 struct task_struct *wq_worker_sleeping(struct task_struct *task,
694 				       unsigned int cpu)
695 {
696 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
697 	struct global_cwq *gcwq = get_gcwq(cpu);
698 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
699 
700 	if (worker->flags & WORKER_NOT_RUNNING)
701 		return NULL;
702 
703 	/* this can only happen on the local cpu */
704 	BUG_ON(cpu != raw_smp_processor_id());
705 
706 	/*
707 	 * The counterpart of the following dec_and_test, implied mb,
708 	 * worklist not empty test sequence is in insert_work().
709 	 * Please read comment there.
710 	 *
711 	 * NOT_RUNNING is clear.  This means that trustee is not in
712 	 * charge and we're running on the local cpu w/ rq lock held
713 	 * and preemption disabled, which in turn means that none else
714 	 * could be manipulating idle_list, so dereferencing idle_list
715 	 * without gcwq lock is safe.
716 	 */
717 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
718 		to_wakeup = first_worker(gcwq);
719 	return to_wakeup ? to_wakeup->task : NULL;
720 }
721 
722 /**
723  * worker_set_flags - set worker flags and adjust nr_running accordingly
724  * @worker: self
725  * @flags: flags to set
726  * @wakeup: wakeup an idle worker if necessary
727  *
728  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
729  * nr_running becomes zero and @wakeup is %true, an idle worker is
730  * woken up.
731  *
732  * CONTEXT:
733  * spin_lock_irq(gcwq->lock)
734  */
735 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
736 				    bool wakeup)
737 {
738 	struct global_cwq *gcwq = worker->gcwq;
739 
740 	WARN_ON_ONCE(worker->task != current);
741 
742 	/*
743 	 * If transitioning into NOT_RUNNING, adjust nr_running and
744 	 * wake up an idle worker as necessary if requested by
745 	 * @wakeup.
746 	 */
747 	if ((flags & WORKER_NOT_RUNNING) &&
748 	    !(worker->flags & WORKER_NOT_RUNNING)) {
749 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
750 
751 		if (wakeup) {
752 			if (atomic_dec_and_test(nr_running) &&
753 			    !list_empty(&gcwq->worklist))
754 				wake_up_worker(gcwq);
755 		} else
756 			atomic_dec(nr_running);
757 	}
758 
759 	worker->flags |= flags;
760 }
761 
762 /**
763  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
764  * @worker: self
765  * @flags: flags to clear
766  *
767  * Clear @flags in @worker->flags and adjust nr_running accordingly.
768  *
769  * CONTEXT:
770  * spin_lock_irq(gcwq->lock)
771  */
772 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
773 {
774 	struct global_cwq *gcwq = worker->gcwq;
775 	unsigned int oflags = worker->flags;
776 
777 	WARN_ON_ONCE(worker->task != current);
778 
779 	worker->flags &= ~flags;
780 
781 	/*
782 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
783 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
784 	 * of multiple flags, not a single flag.
785 	 */
786 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
787 		if (!(worker->flags & WORKER_NOT_RUNNING))
788 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
789 }
790 
791 /**
792  * busy_worker_head - return the busy hash head for a work
793  * @gcwq: gcwq of interest
794  * @work: work to be hashed
795  *
796  * Return hash head of @gcwq for @work.
797  *
798  * CONTEXT:
799  * spin_lock_irq(gcwq->lock).
800  *
801  * RETURNS:
802  * Pointer to the hash head.
803  */
804 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
805 					   struct work_struct *work)
806 {
807 	const int base_shift = ilog2(sizeof(struct work_struct));
808 	unsigned long v = (unsigned long)work;
809 
810 	/* simple shift and fold hash, do we need something better? */
811 	v >>= base_shift;
812 	v += v >> BUSY_WORKER_HASH_ORDER;
813 	v &= BUSY_WORKER_HASH_MASK;
814 
815 	return &gcwq->busy_hash[v];
816 }
817 
818 /**
819  * __find_worker_executing_work - find worker which is executing a work
820  * @gcwq: gcwq of interest
821  * @bwh: hash head as returned by busy_worker_head()
822  * @work: work to find worker for
823  *
824  * Find a worker which is executing @work on @gcwq.  @bwh should be
825  * the hash head obtained by calling busy_worker_head() with the same
826  * work.
827  *
828  * CONTEXT:
829  * spin_lock_irq(gcwq->lock).
830  *
831  * RETURNS:
832  * Pointer to worker which is executing @work if found, NULL
833  * otherwise.
834  */
835 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
836 						   struct hlist_head *bwh,
837 						   struct work_struct *work)
838 {
839 	struct worker *worker;
840 	struct hlist_node *tmp;
841 
842 	hlist_for_each_entry(worker, tmp, bwh, hentry)
843 		if (worker->current_work == work)
844 			return worker;
845 	return NULL;
846 }
847 
848 /**
849  * find_worker_executing_work - find worker which is executing a work
850  * @gcwq: gcwq of interest
851  * @work: work to find worker for
852  *
853  * Find a worker which is executing @work on @gcwq.  This function is
854  * identical to __find_worker_executing_work() except that this
855  * function calculates @bwh itself.
856  *
857  * CONTEXT:
858  * spin_lock_irq(gcwq->lock).
859  *
860  * RETURNS:
861  * Pointer to worker which is executing @work if found, NULL
862  * otherwise.
863  */
864 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
865 						 struct work_struct *work)
866 {
867 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
868 					    work);
869 }
870 
871 /**
872  * gcwq_determine_ins_pos - find insertion position
873  * @gcwq: gcwq of interest
874  * @cwq: cwq a work is being queued for
875  *
876  * A work for @cwq is about to be queued on @gcwq, determine insertion
877  * position for the work.  If @cwq is for HIGHPRI wq, the work is
878  * queued at the head of the queue but in FIFO order with respect to
879  * other HIGHPRI works; otherwise, at the end of the queue.  This
880  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
881  * there are HIGHPRI works pending.
882  *
883  * CONTEXT:
884  * spin_lock_irq(gcwq->lock).
885  *
886  * RETURNS:
887  * Pointer to inserstion position.
888  */
889 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
890 					       struct cpu_workqueue_struct *cwq)
891 {
892 	struct work_struct *twork;
893 
894 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
895 		return &gcwq->worklist;
896 
897 	list_for_each_entry(twork, &gcwq->worklist, entry) {
898 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
899 
900 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
901 			break;
902 	}
903 
904 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
905 	return &twork->entry;
906 }
907 
908 /**
909  * insert_work - insert a work into gcwq
910  * @cwq: cwq @work belongs to
911  * @work: work to insert
912  * @head: insertion point
913  * @extra_flags: extra WORK_STRUCT_* flags to set
914  *
915  * Insert @work which belongs to @cwq into @gcwq after @head.
916  * @extra_flags is or'd to work_struct flags.
917  *
918  * CONTEXT:
919  * spin_lock_irq(gcwq->lock).
920  */
921 static void insert_work(struct cpu_workqueue_struct *cwq,
922 			struct work_struct *work, struct list_head *head,
923 			unsigned int extra_flags)
924 {
925 	struct global_cwq *gcwq = cwq->gcwq;
926 
927 	/* we own @work, set data and link */
928 	set_work_cwq(work, cwq, extra_flags);
929 
930 	/*
931 	 * Ensure that we get the right work->data if we see the
932 	 * result of list_add() below, see try_to_grab_pending().
933 	 */
934 	smp_wmb();
935 
936 	list_add_tail(&work->entry, head);
937 
938 	/*
939 	 * Ensure either worker_sched_deactivated() sees the above
940 	 * list_add_tail() or we see zero nr_running to avoid workers
941 	 * lying around lazily while there are works to be processed.
942 	 */
943 	smp_mb();
944 
945 	if (__need_more_worker(gcwq))
946 		wake_up_worker(gcwq);
947 }
948 
949 /*
950  * Test whether @work is being queued from another work executing on the
951  * same workqueue.  This is rather expensive and should only be used from
952  * cold paths.
953  */
954 static bool is_chained_work(struct workqueue_struct *wq)
955 {
956 	unsigned long flags;
957 	unsigned int cpu;
958 
959 	for_each_gcwq_cpu(cpu) {
960 		struct global_cwq *gcwq = get_gcwq(cpu);
961 		struct worker *worker;
962 		struct hlist_node *pos;
963 		int i;
964 
965 		spin_lock_irqsave(&gcwq->lock, flags);
966 		for_each_busy_worker(worker, i, pos, gcwq) {
967 			if (worker->task != current)
968 				continue;
969 			spin_unlock_irqrestore(&gcwq->lock, flags);
970 			/*
971 			 * I'm @worker, no locking necessary.  See if @work
972 			 * is headed to the same workqueue.
973 			 */
974 			return worker->current_cwq->wq == wq;
975 		}
976 		spin_unlock_irqrestore(&gcwq->lock, flags);
977 	}
978 	return false;
979 }
980 
981 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
982 			 struct work_struct *work)
983 {
984 	struct global_cwq *gcwq;
985 	struct cpu_workqueue_struct *cwq;
986 	struct list_head *worklist;
987 	unsigned int work_flags;
988 	unsigned long flags;
989 
990 	debug_work_activate(work);
991 
992 	/* if dying, only works from the same workqueue are allowed */
993 	if (unlikely(wq->flags & WQ_DYING) &&
994 	    WARN_ON_ONCE(!is_chained_work(wq)))
995 		return;
996 
997 	/* determine gcwq to use */
998 	if (!(wq->flags & WQ_UNBOUND)) {
999 		struct global_cwq *last_gcwq;
1000 
1001 		if (unlikely(cpu == WORK_CPU_UNBOUND))
1002 			cpu = raw_smp_processor_id();
1003 
1004 		/*
1005 		 * It's multi cpu.  If @wq is non-reentrant and @work
1006 		 * was previously on a different cpu, it might still
1007 		 * be running there, in which case the work needs to
1008 		 * be queued on that cpu to guarantee non-reentrance.
1009 		 */
1010 		gcwq = get_gcwq(cpu);
1011 		if (wq->flags & WQ_NON_REENTRANT &&
1012 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1013 			struct worker *worker;
1014 
1015 			spin_lock_irqsave(&last_gcwq->lock, flags);
1016 
1017 			worker = find_worker_executing_work(last_gcwq, work);
1018 
1019 			if (worker && worker->current_cwq->wq == wq)
1020 				gcwq = last_gcwq;
1021 			else {
1022 				/* meh... not running there, queue here */
1023 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1024 				spin_lock_irqsave(&gcwq->lock, flags);
1025 			}
1026 		} else
1027 			spin_lock_irqsave(&gcwq->lock, flags);
1028 	} else {
1029 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1030 		spin_lock_irqsave(&gcwq->lock, flags);
1031 	}
1032 
1033 	/* gcwq determined, get cwq and queue */
1034 	cwq = get_cwq(gcwq->cpu, wq);
1035 	trace_workqueue_queue_work(cpu, cwq, work);
1036 
1037 	BUG_ON(!list_empty(&work->entry));
1038 
1039 	cwq->nr_in_flight[cwq->work_color]++;
1040 	work_flags = work_color_to_flags(cwq->work_color);
1041 
1042 	if (likely(cwq->nr_active < cwq->max_active)) {
1043 		trace_workqueue_activate_work(work);
1044 		cwq->nr_active++;
1045 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1046 	} else {
1047 		work_flags |= WORK_STRUCT_DELAYED;
1048 		worklist = &cwq->delayed_works;
1049 	}
1050 
1051 	insert_work(cwq, work, worklist, work_flags);
1052 
1053 	spin_unlock_irqrestore(&gcwq->lock, flags);
1054 }
1055 
1056 /**
1057  * queue_work - queue work on a workqueue
1058  * @wq: workqueue to use
1059  * @work: work to queue
1060  *
1061  * Returns 0 if @work was already on a queue, non-zero otherwise.
1062  *
1063  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064  * it can be processed by another CPU.
1065  */
1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1067 {
1068 	int ret;
1069 
1070 	ret = queue_work_on(get_cpu(), wq, work);
1071 	put_cpu();
1072 
1073 	return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(queue_work);
1076 
1077 /**
1078  * queue_work_on - queue work on specific cpu
1079  * @cpu: CPU number to execute work on
1080  * @wq: workqueue to use
1081  * @work: work to queue
1082  *
1083  * Returns 0 if @work was already on a queue, non-zero otherwise.
1084  *
1085  * We queue the work to a specific CPU, the caller must ensure it
1086  * can't go away.
1087  */
1088 int
1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1090 {
1091 	int ret = 0;
1092 
1093 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1094 		__queue_work(cpu, wq, work);
1095 		ret = 1;
1096 	}
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(queue_work_on);
1100 
1101 static void delayed_work_timer_fn(unsigned long __data)
1102 {
1103 	struct delayed_work *dwork = (struct delayed_work *)__data;
1104 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1105 
1106 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1107 }
1108 
1109 /**
1110  * queue_delayed_work - queue work on a workqueue after delay
1111  * @wq: workqueue to use
1112  * @dwork: delayable work to queue
1113  * @delay: number of jiffies to wait before queueing
1114  *
1115  * Returns 0 if @work was already on a queue, non-zero otherwise.
1116  */
1117 int queue_delayed_work(struct workqueue_struct *wq,
1118 			struct delayed_work *dwork, unsigned long delay)
1119 {
1120 	if (delay == 0)
1121 		return queue_work(wq, &dwork->work);
1122 
1123 	return queue_delayed_work_on(-1, wq, dwork, delay);
1124 }
1125 EXPORT_SYMBOL_GPL(queue_delayed_work);
1126 
1127 /**
1128  * queue_delayed_work_on - queue work on specific CPU after delay
1129  * @cpu: CPU number to execute work on
1130  * @wq: workqueue to use
1131  * @dwork: work to queue
1132  * @delay: number of jiffies to wait before queueing
1133  *
1134  * Returns 0 if @work was already on a queue, non-zero otherwise.
1135  */
1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1137 			struct delayed_work *dwork, unsigned long delay)
1138 {
1139 	int ret = 0;
1140 	struct timer_list *timer = &dwork->timer;
1141 	struct work_struct *work = &dwork->work;
1142 
1143 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1144 		unsigned int lcpu;
1145 
1146 		BUG_ON(timer_pending(timer));
1147 		BUG_ON(!list_empty(&work->entry));
1148 
1149 		timer_stats_timer_set_start_info(&dwork->timer);
1150 
1151 		/*
1152 		 * This stores cwq for the moment, for the timer_fn.
1153 		 * Note that the work's gcwq is preserved to allow
1154 		 * reentrance detection for delayed works.
1155 		 */
1156 		if (!(wq->flags & WQ_UNBOUND)) {
1157 			struct global_cwq *gcwq = get_work_gcwq(work);
1158 
1159 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 				lcpu = gcwq->cpu;
1161 			else
1162 				lcpu = raw_smp_processor_id();
1163 		} else
1164 			lcpu = WORK_CPU_UNBOUND;
1165 
1166 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1167 
1168 		timer->expires = jiffies + delay;
1169 		timer->data = (unsigned long)dwork;
1170 		timer->function = delayed_work_timer_fn;
1171 
1172 		if (unlikely(cpu >= 0))
1173 			add_timer_on(timer, cpu);
1174 		else
1175 			add_timer(timer);
1176 		ret = 1;
1177 	}
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1181 
1182 /**
1183  * worker_enter_idle - enter idle state
1184  * @worker: worker which is entering idle state
1185  *
1186  * @worker is entering idle state.  Update stats and idle timer if
1187  * necessary.
1188  *
1189  * LOCKING:
1190  * spin_lock_irq(gcwq->lock).
1191  */
1192 static void worker_enter_idle(struct worker *worker)
1193 {
1194 	struct global_cwq *gcwq = worker->gcwq;
1195 
1196 	BUG_ON(worker->flags & WORKER_IDLE);
1197 	BUG_ON(!list_empty(&worker->entry) &&
1198 	       (worker->hentry.next || worker->hentry.pprev));
1199 
1200 	/* can't use worker_set_flags(), also called from start_worker() */
1201 	worker->flags |= WORKER_IDLE;
1202 	gcwq->nr_idle++;
1203 	worker->last_active = jiffies;
1204 
1205 	/* idle_list is LIFO */
1206 	list_add(&worker->entry, &gcwq->idle_list);
1207 
1208 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1209 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1210 			mod_timer(&gcwq->idle_timer,
1211 				  jiffies + IDLE_WORKER_TIMEOUT);
1212 	} else
1213 		wake_up_all(&gcwq->trustee_wait);
1214 
1215 	/* sanity check nr_running */
1216 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1217 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1218 }
1219 
1220 /**
1221  * worker_leave_idle - leave idle state
1222  * @worker: worker which is leaving idle state
1223  *
1224  * @worker is leaving idle state.  Update stats.
1225  *
1226  * LOCKING:
1227  * spin_lock_irq(gcwq->lock).
1228  */
1229 static void worker_leave_idle(struct worker *worker)
1230 {
1231 	struct global_cwq *gcwq = worker->gcwq;
1232 
1233 	BUG_ON(!(worker->flags & WORKER_IDLE));
1234 	worker_clr_flags(worker, WORKER_IDLE);
1235 	gcwq->nr_idle--;
1236 	list_del_init(&worker->entry);
1237 }
1238 
1239 /**
1240  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1241  * @worker: self
1242  *
1243  * Works which are scheduled while the cpu is online must at least be
1244  * scheduled to a worker which is bound to the cpu so that if they are
1245  * flushed from cpu callbacks while cpu is going down, they are
1246  * guaranteed to execute on the cpu.
1247  *
1248  * This function is to be used by rogue workers and rescuers to bind
1249  * themselves to the target cpu and may race with cpu going down or
1250  * coming online.  kthread_bind() can't be used because it may put the
1251  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1252  * verbatim as it's best effort and blocking and gcwq may be
1253  * [dis]associated in the meantime.
1254  *
1255  * This function tries set_cpus_allowed() and locks gcwq and verifies
1256  * the binding against GCWQ_DISASSOCIATED which is set during
1257  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1258  * idle state or fetches works without dropping lock, it can guarantee
1259  * the scheduling requirement described in the first paragraph.
1260  *
1261  * CONTEXT:
1262  * Might sleep.  Called without any lock but returns with gcwq->lock
1263  * held.
1264  *
1265  * RETURNS:
1266  * %true if the associated gcwq is online (@worker is successfully
1267  * bound), %false if offline.
1268  */
1269 static bool worker_maybe_bind_and_lock(struct worker *worker)
1270 __acquires(&gcwq->lock)
1271 {
1272 	struct global_cwq *gcwq = worker->gcwq;
1273 	struct task_struct *task = worker->task;
1274 
1275 	while (true) {
1276 		/*
1277 		 * The following call may fail, succeed or succeed
1278 		 * without actually migrating the task to the cpu if
1279 		 * it races with cpu hotunplug operation.  Verify
1280 		 * against GCWQ_DISASSOCIATED.
1281 		 */
1282 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1283 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1284 
1285 		spin_lock_irq(&gcwq->lock);
1286 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1287 			return false;
1288 		if (task_cpu(task) == gcwq->cpu &&
1289 		    cpumask_equal(&current->cpus_allowed,
1290 				  get_cpu_mask(gcwq->cpu)))
1291 			return true;
1292 		spin_unlock_irq(&gcwq->lock);
1293 
1294 		/*
1295 		 * We've raced with CPU hot[un]plug.  Give it a breather
1296 		 * and retry migration.  cond_resched() is required here;
1297 		 * otherwise, we might deadlock against cpu_stop trying to
1298 		 * bring down the CPU on non-preemptive kernel.
1299 		 */
1300 		cpu_relax();
1301 		cond_resched();
1302 	}
1303 }
1304 
1305 /*
1306  * Function for worker->rebind_work used to rebind rogue busy workers
1307  * to the associated cpu which is coming back online.  This is
1308  * scheduled by cpu up but can race with other cpu hotplug operations
1309  * and may be executed twice without intervening cpu down.
1310  */
1311 static void worker_rebind_fn(struct work_struct *work)
1312 {
1313 	struct worker *worker = container_of(work, struct worker, rebind_work);
1314 	struct global_cwq *gcwq = worker->gcwq;
1315 
1316 	if (worker_maybe_bind_and_lock(worker))
1317 		worker_clr_flags(worker, WORKER_REBIND);
1318 
1319 	spin_unlock_irq(&gcwq->lock);
1320 }
1321 
1322 static struct worker *alloc_worker(void)
1323 {
1324 	struct worker *worker;
1325 
1326 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1327 	if (worker) {
1328 		INIT_LIST_HEAD(&worker->entry);
1329 		INIT_LIST_HEAD(&worker->scheduled);
1330 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1331 		/* on creation a worker is in !idle && prep state */
1332 		worker->flags = WORKER_PREP;
1333 	}
1334 	return worker;
1335 }
1336 
1337 /**
1338  * create_worker - create a new workqueue worker
1339  * @gcwq: gcwq the new worker will belong to
1340  * @bind: whether to set affinity to @cpu or not
1341  *
1342  * Create a new worker which is bound to @gcwq.  The returned worker
1343  * can be started by calling start_worker() or destroyed using
1344  * destroy_worker().
1345  *
1346  * CONTEXT:
1347  * Might sleep.  Does GFP_KERNEL allocations.
1348  *
1349  * RETURNS:
1350  * Pointer to the newly created worker.
1351  */
1352 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1353 {
1354 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1355 	struct worker *worker = NULL;
1356 	int id = -1;
1357 
1358 	spin_lock_irq(&gcwq->lock);
1359 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1360 		spin_unlock_irq(&gcwq->lock);
1361 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1362 			goto fail;
1363 		spin_lock_irq(&gcwq->lock);
1364 	}
1365 	spin_unlock_irq(&gcwq->lock);
1366 
1367 	worker = alloc_worker();
1368 	if (!worker)
1369 		goto fail;
1370 
1371 	worker->gcwq = gcwq;
1372 	worker->id = id;
1373 
1374 	if (!on_unbound_cpu)
1375 		worker->task = kthread_create_on_node(worker_thread,
1376 						      worker,
1377 						      cpu_to_node(gcwq->cpu),
1378 						      "kworker/%u:%d", gcwq->cpu, id);
1379 	else
1380 		worker->task = kthread_create(worker_thread, worker,
1381 					      "kworker/u:%d", id);
1382 	if (IS_ERR(worker->task))
1383 		goto fail;
1384 
1385 	/*
1386 	 * A rogue worker will become a regular one if CPU comes
1387 	 * online later on.  Make sure every worker has
1388 	 * PF_THREAD_BOUND set.
1389 	 */
1390 	if (bind && !on_unbound_cpu)
1391 		kthread_bind(worker->task, gcwq->cpu);
1392 	else {
1393 		worker->task->flags |= PF_THREAD_BOUND;
1394 		if (on_unbound_cpu)
1395 			worker->flags |= WORKER_UNBOUND;
1396 	}
1397 
1398 	return worker;
1399 fail:
1400 	if (id >= 0) {
1401 		spin_lock_irq(&gcwq->lock);
1402 		ida_remove(&gcwq->worker_ida, id);
1403 		spin_unlock_irq(&gcwq->lock);
1404 	}
1405 	kfree(worker);
1406 	return NULL;
1407 }
1408 
1409 /**
1410  * start_worker - start a newly created worker
1411  * @worker: worker to start
1412  *
1413  * Make the gcwq aware of @worker and start it.
1414  *
1415  * CONTEXT:
1416  * spin_lock_irq(gcwq->lock).
1417  */
1418 static void start_worker(struct worker *worker)
1419 {
1420 	worker->flags |= WORKER_STARTED;
1421 	worker->gcwq->nr_workers++;
1422 	worker_enter_idle(worker);
1423 	wake_up_process(worker->task);
1424 }
1425 
1426 /**
1427  * destroy_worker - destroy a workqueue worker
1428  * @worker: worker to be destroyed
1429  *
1430  * Destroy @worker and adjust @gcwq stats accordingly.
1431  *
1432  * CONTEXT:
1433  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1434  */
1435 static void destroy_worker(struct worker *worker)
1436 {
1437 	struct global_cwq *gcwq = worker->gcwq;
1438 	int id = worker->id;
1439 
1440 	/* sanity check frenzy */
1441 	BUG_ON(worker->current_work);
1442 	BUG_ON(!list_empty(&worker->scheduled));
1443 
1444 	if (worker->flags & WORKER_STARTED)
1445 		gcwq->nr_workers--;
1446 	if (worker->flags & WORKER_IDLE)
1447 		gcwq->nr_idle--;
1448 
1449 	list_del_init(&worker->entry);
1450 	worker->flags |= WORKER_DIE;
1451 
1452 	spin_unlock_irq(&gcwq->lock);
1453 
1454 	kthread_stop(worker->task);
1455 	kfree(worker);
1456 
1457 	spin_lock_irq(&gcwq->lock);
1458 	ida_remove(&gcwq->worker_ida, id);
1459 }
1460 
1461 static void idle_worker_timeout(unsigned long __gcwq)
1462 {
1463 	struct global_cwq *gcwq = (void *)__gcwq;
1464 
1465 	spin_lock_irq(&gcwq->lock);
1466 
1467 	if (too_many_workers(gcwq)) {
1468 		struct worker *worker;
1469 		unsigned long expires;
1470 
1471 		/* idle_list is kept in LIFO order, check the last one */
1472 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1473 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1474 
1475 		if (time_before(jiffies, expires))
1476 			mod_timer(&gcwq->idle_timer, expires);
1477 		else {
1478 			/* it's been idle for too long, wake up manager */
1479 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1480 			wake_up_worker(gcwq);
1481 		}
1482 	}
1483 
1484 	spin_unlock_irq(&gcwq->lock);
1485 }
1486 
1487 static bool send_mayday(struct work_struct *work)
1488 {
1489 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1490 	struct workqueue_struct *wq = cwq->wq;
1491 	unsigned int cpu;
1492 
1493 	if (!(wq->flags & WQ_RESCUER))
1494 		return false;
1495 
1496 	/* mayday mayday mayday */
1497 	cpu = cwq->gcwq->cpu;
1498 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1499 	if (cpu == WORK_CPU_UNBOUND)
1500 		cpu = 0;
1501 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1502 		wake_up_process(wq->rescuer->task);
1503 	return true;
1504 }
1505 
1506 static void gcwq_mayday_timeout(unsigned long __gcwq)
1507 {
1508 	struct global_cwq *gcwq = (void *)__gcwq;
1509 	struct work_struct *work;
1510 
1511 	spin_lock_irq(&gcwq->lock);
1512 
1513 	if (need_to_create_worker(gcwq)) {
1514 		/*
1515 		 * We've been trying to create a new worker but
1516 		 * haven't been successful.  We might be hitting an
1517 		 * allocation deadlock.  Send distress signals to
1518 		 * rescuers.
1519 		 */
1520 		list_for_each_entry(work, &gcwq->worklist, entry)
1521 			send_mayday(work);
1522 	}
1523 
1524 	spin_unlock_irq(&gcwq->lock);
1525 
1526 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1527 }
1528 
1529 /**
1530  * maybe_create_worker - create a new worker if necessary
1531  * @gcwq: gcwq to create a new worker for
1532  *
1533  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1534  * have at least one idle worker on return from this function.  If
1535  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1536  * sent to all rescuers with works scheduled on @gcwq to resolve
1537  * possible allocation deadlock.
1538  *
1539  * On return, need_to_create_worker() is guaranteed to be false and
1540  * may_start_working() true.
1541  *
1542  * LOCKING:
1543  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1544  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1545  * manager.
1546  *
1547  * RETURNS:
1548  * false if no action was taken and gcwq->lock stayed locked, true
1549  * otherwise.
1550  */
1551 static bool maybe_create_worker(struct global_cwq *gcwq)
1552 __releases(&gcwq->lock)
1553 __acquires(&gcwq->lock)
1554 {
1555 	if (!need_to_create_worker(gcwq))
1556 		return false;
1557 restart:
1558 	spin_unlock_irq(&gcwq->lock);
1559 
1560 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1561 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1562 
1563 	while (true) {
1564 		struct worker *worker;
1565 
1566 		worker = create_worker(gcwq, true);
1567 		if (worker) {
1568 			del_timer_sync(&gcwq->mayday_timer);
1569 			spin_lock_irq(&gcwq->lock);
1570 			start_worker(worker);
1571 			BUG_ON(need_to_create_worker(gcwq));
1572 			return true;
1573 		}
1574 
1575 		if (!need_to_create_worker(gcwq))
1576 			break;
1577 
1578 		__set_current_state(TASK_INTERRUPTIBLE);
1579 		schedule_timeout(CREATE_COOLDOWN);
1580 
1581 		if (!need_to_create_worker(gcwq))
1582 			break;
1583 	}
1584 
1585 	del_timer_sync(&gcwq->mayday_timer);
1586 	spin_lock_irq(&gcwq->lock);
1587 	if (need_to_create_worker(gcwq))
1588 		goto restart;
1589 	return true;
1590 }
1591 
1592 /**
1593  * maybe_destroy_worker - destroy workers which have been idle for a while
1594  * @gcwq: gcwq to destroy workers for
1595  *
1596  * Destroy @gcwq workers which have been idle for longer than
1597  * IDLE_WORKER_TIMEOUT.
1598  *
1599  * LOCKING:
1600  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1601  * multiple times.  Called only from manager.
1602  *
1603  * RETURNS:
1604  * false if no action was taken and gcwq->lock stayed locked, true
1605  * otherwise.
1606  */
1607 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1608 {
1609 	bool ret = false;
1610 
1611 	while (too_many_workers(gcwq)) {
1612 		struct worker *worker;
1613 		unsigned long expires;
1614 
1615 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1616 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1617 
1618 		if (time_before(jiffies, expires)) {
1619 			mod_timer(&gcwq->idle_timer, expires);
1620 			break;
1621 		}
1622 
1623 		destroy_worker(worker);
1624 		ret = true;
1625 	}
1626 
1627 	return ret;
1628 }
1629 
1630 /**
1631  * manage_workers - manage worker pool
1632  * @worker: self
1633  *
1634  * Assume the manager role and manage gcwq worker pool @worker belongs
1635  * to.  At any given time, there can be only zero or one manager per
1636  * gcwq.  The exclusion is handled automatically by this function.
1637  *
1638  * The caller can safely start processing works on false return.  On
1639  * true return, it's guaranteed that need_to_create_worker() is false
1640  * and may_start_working() is true.
1641  *
1642  * CONTEXT:
1643  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1644  * multiple times.  Does GFP_KERNEL allocations.
1645  *
1646  * RETURNS:
1647  * false if no action was taken and gcwq->lock stayed locked, true if
1648  * some action was taken.
1649  */
1650 static bool manage_workers(struct worker *worker)
1651 {
1652 	struct global_cwq *gcwq = worker->gcwq;
1653 	bool ret = false;
1654 
1655 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1656 		return ret;
1657 
1658 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1659 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1660 
1661 	/*
1662 	 * Destroy and then create so that may_start_working() is true
1663 	 * on return.
1664 	 */
1665 	ret |= maybe_destroy_workers(gcwq);
1666 	ret |= maybe_create_worker(gcwq);
1667 
1668 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1669 
1670 	/*
1671 	 * The trustee might be waiting to take over the manager
1672 	 * position, tell it we're done.
1673 	 */
1674 	if (unlikely(gcwq->trustee))
1675 		wake_up_all(&gcwq->trustee_wait);
1676 
1677 	return ret;
1678 }
1679 
1680 /**
1681  * move_linked_works - move linked works to a list
1682  * @work: start of series of works to be scheduled
1683  * @head: target list to append @work to
1684  * @nextp: out paramter for nested worklist walking
1685  *
1686  * Schedule linked works starting from @work to @head.  Work series to
1687  * be scheduled starts at @work and includes any consecutive work with
1688  * WORK_STRUCT_LINKED set in its predecessor.
1689  *
1690  * If @nextp is not NULL, it's updated to point to the next work of
1691  * the last scheduled work.  This allows move_linked_works() to be
1692  * nested inside outer list_for_each_entry_safe().
1693  *
1694  * CONTEXT:
1695  * spin_lock_irq(gcwq->lock).
1696  */
1697 static void move_linked_works(struct work_struct *work, struct list_head *head,
1698 			      struct work_struct **nextp)
1699 {
1700 	struct work_struct *n;
1701 
1702 	/*
1703 	 * Linked worklist will always end before the end of the list,
1704 	 * use NULL for list head.
1705 	 */
1706 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1707 		list_move_tail(&work->entry, head);
1708 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1709 			break;
1710 	}
1711 
1712 	/*
1713 	 * If we're already inside safe list traversal and have moved
1714 	 * multiple works to the scheduled queue, the next position
1715 	 * needs to be updated.
1716 	 */
1717 	if (nextp)
1718 		*nextp = n;
1719 }
1720 
1721 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1722 {
1723 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1724 						    struct work_struct, entry);
1725 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1726 
1727 	trace_workqueue_activate_work(work);
1728 	move_linked_works(work, pos, NULL);
1729 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1730 	cwq->nr_active++;
1731 }
1732 
1733 /**
1734  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1735  * @cwq: cwq of interest
1736  * @color: color of work which left the queue
1737  * @delayed: for a delayed work
1738  *
1739  * A work either has completed or is removed from pending queue,
1740  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1741  *
1742  * CONTEXT:
1743  * spin_lock_irq(gcwq->lock).
1744  */
1745 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1746 				 bool delayed)
1747 {
1748 	/* ignore uncolored works */
1749 	if (color == WORK_NO_COLOR)
1750 		return;
1751 
1752 	cwq->nr_in_flight[color]--;
1753 
1754 	if (!delayed) {
1755 		cwq->nr_active--;
1756 		if (!list_empty(&cwq->delayed_works)) {
1757 			/* one down, submit a delayed one */
1758 			if (cwq->nr_active < cwq->max_active)
1759 				cwq_activate_first_delayed(cwq);
1760 		}
1761 	}
1762 
1763 	/* is flush in progress and are we at the flushing tip? */
1764 	if (likely(cwq->flush_color != color))
1765 		return;
1766 
1767 	/* are there still in-flight works? */
1768 	if (cwq->nr_in_flight[color])
1769 		return;
1770 
1771 	/* this cwq is done, clear flush_color */
1772 	cwq->flush_color = -1;
1773 
1774 	/*
1775 	 * If this was the last cwq, wake up the first flusher.  It
1776 	 * will handle the rest.
1777 	 */
1778 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1779 		complete(&cwq->wq->first_flusher->done);
1780 }
1781 
1782 /**
1783  * process_one_work - process single work
1784  * @worker: self
1785  * @work: work to process
1786  *
1787  * Process @work.  This function contains all the logics necessary to
1788  * process a single work including synchronization against and
1789  * interaction with other workers on the same cpu, queueing and
1790  * flushing.  As long as context requirement is met, any worker can
1791  * call this function to process a work.
1792  *
1793  * CONTEXT:
1794  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1795  */
1796 static void process_one_work(struct worker *worker, struct work_struct *work)
1797 __releases(&gcwq->lock)
1798 __acquires(&gcwq->lock)
1799 {
1800 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1801 	struct global_cwq *gcwq = cwq->gcwq;
1802 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1803 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1804 	work_func_t f = work->func;
1805 	int work_color;
1806 	struct worker *collision;
1807 #ifdef CONFIG_LOCKDEP
1808 	/*
1809 	 * It is permissible to free the struct work_struct from
1810 	 * inside the function that is called from it, this we need to
1811 	 * take into account for lockdep too.  To avoid bogus "held
1812 	 * lock freed" warnings as well as problems when looking into
1813 	 * work->lockdep_map, make a copy and use that here.
1814 	 */
1815 	struct lockdep_map lockdep_map = work->lockdep_map;
1816 #endif
1817 	/*
1818 	 * A single work shouldn't be executed concurrently by
1819 	 * multiple workers on a single cpu.  Check whether anyone is
1820 	 * already processing the work.  If so, defer the work to the
1821 	 * currently executing one.
1822 	 */
1823 	collision = __find_worker_executing_work(gcwq, bwh, work);
1824 	if (unlikely(collision)) {
1825 		move_linked_works(work, &collision->scheduled, NULL);
1826 		return;
1827 	}
1828 
1829 	/* claim and process */
1830 	debug_work_deactivate(work);
1831 	hlist_add_head(&worker->hentry, bwh);
1832 	worker->current_work = work;
1833 	worker->current_cwq = cwq;
1834 	work_color = get_work_color(work);
1835 
1836 	/* record the current cpu number in the work data and dequeue */
1837 	set_work_cpu(work, gcwq->cpu);
1838 	list_del_init(&work->entry);
1839 
1840 	/*
1841 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1842 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1843 	 */
1844 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1845 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1846 						struct work_struct, entry);
1847 
1848 		if (!list_empty(&gcwq->worklist) &&
1849 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1850 			wake_up_worker(gcwq);
1851 		else
1852 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1853 	}
1854 
1855 	/*
1856 	 * CPU intensive works don't participate in concurrency
1857 	 * management.  They're the scheduler's responsibility.
1858 	 */
1859 	if (unlikely(cpu_intensive))
1860 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1861 
1862 	spin_unlock_irq(&gcwq->lock);
1863 
1864 	work_clear_pending(work);
1865 	lock_map_acquire_read(&cwq->wq->lockdep_map);
1866 	lock_map_acquire(&lockdep_map);
1867 	trace_workqueue_execute_start(work);
1868 	f(work);
1869 	/*
1870 	 * While we must be careful to not use "work" after this, the trace
1871 	 * point will only record its address.
1872 	 */
1873 	trace_workqueue_execute_end(work);
1874 	lock_map_release(&lockdep_map);
1875 	lock_map_release(&cwq->wq->lockdep_map);
1876 
1877 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1878 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1879 		       "%s/0x%08x/%d\n",
1880 		       current->comm, preempt_count(), task_pid_nr(current));
1881 		printk(KERN_ERR "    last function: ");
1882 		print_symbol("%s\n", (unsigned long)f);
1883 		debug_show_held_locks(current);
1884 		dump_stack();
1885 	}
1886 
1887 	spin_lock_irq(&gcwq->lock);
1888 
1889 	/* clear cpu intensive status */
1890 	if (unlikely(cpu_intensive))
1891 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1892 
1893 	/* we're done with it, release */
1894 	hlist_del_init(&worker->hentry);
1895 	worker->current_work = NULL;
1896 	worker->current_cwq = NULL;
1897 	cwq_dec_nr_in_flight(cwq, work_color, false);
1898 }
1899 
1900 /**
1901  * process_scheduled_works - process scheduled works
1902  * @worker: self
1903  *
1904  * Process all scheduled works.  Please note that the scheduled list
1905  * may change while processing a work, so this function repeatedly
1906  * fetches a work from the top and executes it.
1907  *
1908  * CONTEXT:
1909  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1910  * multiple times.
1911  */
1912 static void process_scheduled_works(struct worker *worker)
1913 {
1914 	while (!list_empty(&worker->scheduled)) {
1915 		struct work_struct *work = list_first_entry(&worker->scheduled,
1916 						struct work_struct, entry);
1917 		process_one_work(worker, work);
1918 	}
1919 }
1920 
1921 /**
1922  * worker_thread - the worker thread function
1923  * @__worker: self
1924  *
1925  * The gcwq worker thread function.  There's a single dynamic pool of
1926  * these per each cpu.  These workers process all works regardless of
1927  * their specific target workqueue.  The only exception is works which
1928  * belong to workqueues with a rescuer which will be explained in
1929  * rescuer_thread().
1930  */
1931 static int worker_thread(void *__worker)
1932 {
1933 	struct worker *worker = __worker;
1934 	struct global_cwq *gcwq = worker->gcwq;
1935 
1936 	/* tell the scheduler that this is a workqueue worker */
1937 	worker->task->flags |= PF_WQ_WORKER;
1938 woke_up:
1939 	spin_lock_irq(&gcwq->lock);
1940 
1941 	/* DIE can be set only while we're idle, checking here is enough */
1942 	if (worker->flags & WORKER_DIE) {
1943 		spin_unlock_irq(&gcwq->lock);
1944 		worker->task->flags &= ~PF_WQ_WORKER;
1945 		return 0;
1946 	}
1947 
1948 	worker_leave_idle(worker);
1949 recheck:
1950 	/* no more worker necessary? */
1951 	if (!need_more_worker(gcwq))
1952 		goto sleep;
1953 
1954 	/* do we need to manage? */
1955 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1956 		goto recheck;
1957 
1958 	/*
1959 	 * ->scheduled list can only be filled while a worker is
1960 	 * preparing to process a work or actually processing it.
1961 	 * Make sure nobody diddled with it while I was sleeping.
1962 	 */
1963 	BUG_ON(!list_empty(&worker->scheduled));
1964 
1965 	/*
1966 	 * When control reaches this point, we're guaranteed to have
1967 	 * at least one idle worker or that someone else has already
1968 	 * assumed the manager role.
1969 	 */
1970 	worker_clr_flags(worker, WORKER_PREP);
1971 
1972 	do {
1973 		struct work_struct *work =
1974 			list_first_entry(&gcwq->worklist,
1975 					 struct work_struct, entry);
1976 
1977 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1978 			/* optimization path, not strictly necessary */
1979 			process_one_work(worker, work);
1980 			if (unlikely(!list_empty(&worker->scheduled)))
1981 				process_scheduled_works(worker);
1982 		} else {
1983 			move_linked_works(work, &worker->scheduled, NULL);
1984 			process_scheduled_works(worker);
1985 		}
1986 	} while (keep_working(gcwq));
1987 
1988 	worker_set_flags(worker, WORKER_PREP, false);
1989 sleep:
1990 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1991 		goto recheck;
1992 
1993 	/*
1994 	 * gcwq->lock is held and there's no work to process and no
1995 	 * need to manage, sleep.  Workers are woken up only while
1996 	 * holding gcwq->lock or from local cpu, so setting the
1997 	 * current state before releasing gcwq->lock is enough to
1998 	 * prevent losing any event.
1999 	 */
2000 	worker_enter_idle(worker);
2001 	__set_current_state(TASK_INTERRUPTIBLE);
2002 	spin_unlock_irq(&gcwq->lock);
2003 	schedule();
2004 	goto woke_up;
2005 }
2006 
2007 /**
2008  * rescuer_thread - the rescuer thread function
2009  * @__wq: the associated workqueue
2010  *
2011  * Workqueue rescuer thread function.  There's one rescuer for each
2012  * workqueue which has WQ_RESCUER set.
2013  *
2014  * Regular work processing on a gcwq may block trying to create a new
2015  * worker which uses GFP_KERNEL allocation which has slight chance of
2016  * developing into deadlock if some works currently on the same queue
2017  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2018  * the problem rescuer solves.
2019  *
2020  * When such condition is possible, the gcwq summons rescuers of all
2021  * workqueues which have works queued on the gcwq and let them process
2022  * those works so that forward progress can be guaranteed.
2023  *
2024  * This should happen rarely.
2025  */
2026 static int rescuer_thread(void *__wq)
2027 {
2028 	struct workqueue_struct *wq = __wq;
2029 	struct worker *rescuer = wq->rescuer;
2030 	struct list_head *scheduled = &rescuer->scheduled;
2031 	bool is_unbound = wq->flags & WQ_UNBOUND;
2032 	unsigned int cpu;
2033 
2034 	set_user_nice(current, RESCUER_NICE_LEVEL);
2035 repeat:
2036 	set_current_state(TASK_INTERRUPTIBLE);
2037 
2038 	if (kthread_should_stop())
2039 		return 0;
2040 
2041 	/*
2042 	 * See whether any cpu is asking for help.  Unbounded
2043 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2044 	 */
2045 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2046 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2047 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2048 		struct global_cwq *gcwq = cwq->gcwq;
2049 		struct work_struct *work, *n;
2050 
2051 		__set_current_state(TASK_RUNNING);
2052 		mayday_clear_cpu(cpu, wq->mayday_mask);
2053 
2054 		/* migrate to the target cpu if possible */
2055 		rescuer->gcwq = gcwq;
2056 		worker_maybe_bind_and_lock(rescuer);
2057 
2058 		/*
2059 		 * Slurp in all works issued via this workqueue and
2060 		 * process'em.
2061 		 */
2062 		BUG_ON(!list_empty(&rescuer->scheduled));
2063 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2064 			if (get_work_cwq(work) == cwq)
2065 				move_linked_works(work, scheduled, &n);
2066 
2067 		process_scheduled_works(rescuer);
2068 
2069 		/*
2070 		 * Leave this gcwq.  If keep_working() is %true, notify a
2071 		 * regular worker; otherwise, we end up with 0 concurrency
2072 		 * and stalling the execution.
2073 		 */
2074 		if (keep_working(gcwq))
2075 			wake_up_worker(gcwq);
2076 
2077 		spin_unlock_irq(&gcwq->lock);
2078 	}
2079 
2080 	schedule();
2081 	goto repeat;
2082 }
2083 
2084 struct wq_barrier {
2085 	struct work_struct	work;
2086 	struct completion	done;
2087 };
2088 
2089 static void wq_barrier_func(struct work_struct *work)
2090 {
2091 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2092 	complete(&barr->done);
2093 }
2094 
2095 /**
2096  * insert_wq_barrier - insert a barrier work
2097  * @cwq: cwq to insert barrier into
2098  * @barr: wq_barrier to insert
2099  * @target: target work to attach @barr to
2100  * @worker: worker currently executing @target, NULL if @target is not executing
2101  *
2102  * @barr is linked to @target such that @barr is completed only after
2103  * @target finishes execution.  Please note that the ordering
2104  * guarantee is observed only with respect to @target and on the local
2105  * cpu.
2106  *
2107  * Currently, a queued barrier can't be canceled.  This is because
2108  * try_to_grab_pending() can't determine whether the work to be
2109  * grabbed is at the head of the queue and thus can't clear LINKED
2110  * flag of the previous work while there must be a valid next work
2111  * after a work with LINKED flag set.
2112  *
2113  * Note that when @worker is non-NULL, @target may be modified
2114  * underneath us, so we can't reliably determine cwq from @target.
2115  *
2116  * CONTEXT:
2117  * spin_lock_irq(gcwq->lock).
2118  */
2119 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2120 			      struct wq_barrier *barr,
2121 			      struct work_struct *target, struct worker *worker)
2122 {
2123 	struct list_head *head;
2124 	unsigned int linked = 0;
2125 
2126 	/*
2127 	 * debugobject calls are safe here even with gcwq->lock locked
2128 	 * as we know for sure that this will not trigger any of the
2129 	 * checks and call back into the fixup functions where we
2130 	 * might deadlock.
2131 	 */
2132 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2133 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2134 	init_completion(&barr->done);
2135 
2136 	/*
2137 	 * If @target is currently being executed, schedule the
2138 	 * barrier to the worker; otherwise, put it after @target.
2139 	 */
2140 	if (worker)
2141 		head = worker->scheduled.next;
2142 	else {
2143 		unsigned long *bits = work_data_bits(target);
2144 
2145 		head = target->entry.next;
2146 		/* there can already be other linked works, inherit and set */
2147 		linked = *bits & WORK_STRUCT_LINKED;
2148 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2149 	}
2150 
2151 	debug_work_activate(&barr->work);
2152 	insert_work(cwq, &barr->work, head,
2153 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2154 }
2155 
2156 /**
2157  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2158  * @wq: workqueue being flushed
2159  * @flush_color: new flush color, < 0 for no-op
2160  * @work_color: new work color, < 0 for no-op
2161  *
2162  * Prepare cwqs for workqueue flushing.
2163  *
2164  * If @flush_color is non-negative, flush_color on all cwqs should be
2165  * -1.  If no cwq has in-flight commands at the specified color, all
2166  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2167  * has in flight commands, its cwq->flush_color is set to
2168  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2169  * wakeup logic is armed and %true is returned.
2170  *
2171  * The caller should have initialized @wq->first_flusher prior to
2172  * calling this function with non-negative @flush_color.  If
2173  * @flush_color is negative, no flush color update is done and %false
2174  * is returned.
2175  *
2176  * If @work_color is non-negative, all cwqs should have the same
2177  * work_color which is previous to @work_color and all will be
2178  * advanced to @work_color.
2179  *
2180  * CONTEXT:
2181  * mutex_lock(wq->flush_mutex).
2182  *
2183  * RETURNS:
2184  * %true if @flush_color >= 0 and there's something to flush.  %false
2185  * otherwise.
2186  */
2187 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2188 				      int flush_color, int work_color)
2189 {
2190 	bool wait = false;
2191 	unsigned int cpu;
2192 
2193 	if (flush_color >= 0) {
2194 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2195 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2196 	}
2197 
2198 	for_each_cwq_cpu(cpu, wq) {
2199 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2200 		struct global_cwq *gcwq = cwq->gcwq;
2201 
2202 		spin_lock_irq(&gcwq->lock);
2203 
2204 		if (flush_color >= 0) {
2205 			BUG_ON(cwq->flush_color != -1);
2206 
2207 			if (cwq->nr_in_flight[flush_color]) {
2208 				cwq->flush_color = flush_color;
2209 				atomic_inc(&wq->nr_cwqs_to_flush);
2210 				wait = true;
2211 			}
2212 		}
2213 
2214 		if (work_color >= 0) {
2215 			BUG_ON(work_color != work_next_color(cwq->work_color));
2216 			cwq->work_color = work_color;
2217 		}
2218 
2219 		spin_unlock_irq(&gcwq->lock);
2220 	}
2221 
2222 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2223 		complete(&wq->first_flusher->done);
2224 
2225 	return wait;
2226 }
2227 
2228 /**
2229  * flush_workqueue - ensure that any scheduled work has run to completion.
2230  * @wq: workqueue to flush
2231  *
2232  * Forces execution of the workqueue and blocks until its completion.
2233  * This is typically used in driver shutdown handlers.
2234  *
2235  * We sleep until all works which were queued on entry have been handled,
2236  * but we are not livelocked by new incoming ones.
2237  */
2238 void flush_workqueue(struct workqueue_struct *wq)
2239 {
2240 	struct wq_flusher this_flusher = {
2241 		.list = LIST_HEAD_INIT(this_flusher.list),
2242 		.flush_color = -1,
2243 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2244 	};
2245 	int next_color;
2246 
2247 	lock_map_acquire(&wq->lockdep_map);
2248 	lock_map_release(&wq->lockdep_map);
2249 
2250 	mutex_lock(&wq->flush_mutex);
2251 
2252 	/*
2253 	 * Start-to-wait phase
2254 	 */
2255 	next_color = work_next_color(wq->work_color);
2256 
2257 	if (next_color != wq->flush_color) {
2258 		/*
2259 		 * Color space is not full.  The current work_color
2260 		 * becomes our flush_color and work_color is advanced
2261 		 * by one.
2262 		 */
2263 		BUG_ON(!list_empty(&wq->flusher_overflow));
2264 		this_flusher.flush_color = wq->work_color;
2265 		wq->work_color = next_color;
2266 
2267 		if (!wq->first_flusher) {
2268 			/* no flush in progress, become the first flusher */
2269 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2270 
2271 			wq->first_flusher = &this_flusher;
2272 
2273 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2274 						       wq->work_color)) {
2275 				/* nothing to flush, done */
2276 				wq->flush_color = next_color;
2277 				wq->first_flusher = NULL;
2278 				goto out_unlock;
2279 			}
2280 		} else {
2281 			/* wait in queue */
2282 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2283 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2284 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2285 		}
2286 	} else {
2287 		/*
2288 		 * Oops, color space is full, wait on overflow queue.
2289 		 * The next flush completion will assign us
2290 		 * flush_color and transfer to flusher_queue.
2291 		 */
2292 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2293 	}
2294 
2295 	mutex_unlock(&wq->flush_mutex);
2296 
2297 	wait_for_completion(&this_flusher.done);
2298 
2299 	/*
2300 	 * Wake-up-and-cascade phase
2301 	 *
2302 	 * First flushers are responsible for cascading flushes and
2303 	 * handling overflow.  Non-first flushers can simply return.
2304 	 */
2305 	if (wq->first_flusher != &this_flusher)
2306 		return;
2307 
2308 	mutex_lock(&wq->flush_mutex);
2309 
2310 	/* we might have raced, check again with mutex held */
2311 	if (wq->first_flusher != &this_flusher)
2312 		goto out_unlock;
2313 
2314 	wq->first_flusher = NULL;
2315 
2316 	BUG_ON(!list_empty(&this_flusher.list));
2317 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2318 
2319 	while (true) {
2320 		struct wq_flusher *next, *tmp;
2321 
2322 		/* complete all the flushers sharing the current flush color */
2323 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2324 			if (next->flush_color != wq->flush_color)
2325 				break;
2326 			list_del_init(&next->list);
2327 			complete(&next->done);
2328 		}
2329 
2330 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2331 		       wq->flush_color != work_next_color(wq->work_color));
2332 
2333 		/* this flush_color is finished, advance by one */
2334 		wq->flush_color = work_next_color(wq->flush_color);
2335 
2336 		/* one color has been freed, handle overflow queue */
2337 		if (!list_empty(&wq->flusher_overflow)) {
2338 			/*
2339 			 * Assign the same color to all overflowed
2340 			 * flushers, advance work_color and append to
2341 			 * flusher_queue.  This is the start-to-wait
2342 			 * phase for these overflowed flushers.
2343 			 */
2344 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2345 				tmp->flush_color = wq->work_color;
2346 
2347 			wq->work_color = work_next_color(wq->work_color);
2348 
2349 			list_splice_tail_init(&wq->flusher_overflow,
2350 					      &wq->flusher_queue);
2351 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2352 		}
2353 
2354 		if (list_empty(&wq->flusher_queue)) {
2355 			BUG_ON(wq->flush_color != wq->work_color);
2356 			break;
2357 		}
2358 
2359 		/*
2360 		 * Need to flush more colors.  Make the next flusher
2361 		 * the new first flusher and arm cwqs.
2362 		 */
2363 		BUG_ON(wq->flush_color == wq->work_color);
2364 		BUG_ON(wq->flush_color != next->flush_color);
2365 
2366 		list_del_init(&next->list);
2367 		wq->first_flusher = next;
2368 
2369 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2370 			break;
2371 
2372 		/*
2373 		 * Meh... this color is already done, clear first
2374 		 * flusher and repeat cascading.
2375 		 */
2376 		wq->first_flusher = NULL;
2377 	}
2378 
2379 out_unlock:
2380 	mutex_unlock(&wq->flush_mutex);
2381 }
2382 EXPORT_SYMBOL_GPL(flush_workqueue);
2383 
2384 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2385 			     bool wait_executing)
2386 {
2387 	struct worker *worker = NULL;
2388 	struct global_cwq *gcwq;
2389 	struct cpu_workqueue_struct *cwq;
2390 
2391 	might_sleep();
2392 	gcwq = get_work_gcwq(work);
2393 	if (!gcwq)
2394 		return false;
2395 
2396 	spin_lock_irq(&gcwq->lock);
2397 	if (!list_empty(&work->entry)) {
2398 		/*
2399 		 * See the comment near try_to_grab_pending()->smp_rmb().
2400 		 * If it was re-queued to a different gcwq under us, we
2401 		 * are not going to wait.
2402 		 */
2403 		smp_rmb();
2404 		cwq = get_work_cwq(work);
2405 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2406 			goto already_gone;
2407 	} else if (wait_executing) {
2408 		worker = find_worker_executing_work(gcwq, work);
2409 		if (!worker)
2410 			goto already_gone;
2411 		cwq = worker->current_cwq;
2412 	} else
2413 		goto already_gone;
2414 
2415 	insert_wq_barrier(cwq, barr, work, worker);
2416 	spin_unlock_irq(&gcwq->lock);
2417 
2418 	/*
2419 	 * If @max_active is 1 or rescuer is in use, flushing another work
2420 	 * item on the same workqueue may lead to deadlock.  Make sure the
2421 	 * flusher is not running on the same workqueue by verifying write
2422 	 * access.
2423 	 */
2424 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2425 		lock_map_acquire(&cwq->wq->lockdep_map);
2426 	else
2427 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2428 	lock_map_release(&cwq->wq->lockdep_map);
2429 
2430 	return true;
2431 already_gone:
2432 	spin_unlock_irq(&gcwq->lock);
2433 	return false;
2434 }
2435 
2436 /**
2437  * flush_work - wait for a work to finish executing the last queueing instance
2438  * @work: the work to flush
2439  *
2440  * Wait until @work has finished execution.  This function considers
2441  * only the last queueing instance of @work.  If @work has been
2442  * enqueued across different CPUs on a non-reentrant workqueue or on
2443  * multiple workqueues, @work might still be executing on return on
2444  * some of the CPUs from earlier queueing.
2445  *
2446  * If @work was queued only on a non-reentrant, ordered or unbound
2447  * workqueue, @work is guaranteed to be idle on return if it hasn't
2448  * been requeued since flush started.
2449  *
2450  * RETURNS:
2451  * %true if flush_work() waited for the work to finish execution,
2452  * %false if it was already idle.
2453  */
2454 bool flush_work(struct work_struct *work)
2455 {
2456 	struct wq_barrier barr;
2457 
2458 	if (start_flush_work(work, &barr, true)) {
2459 		wait_for_completion(&barr.done);
2460 		destroy_work_on_stack(&barr.work);
2461 		return true;
2462 	} else
2463 		return false;
2464 }
2465 EXPORT_SYMBOL_GPL(flush_work);
2466 
2467 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2468 {
2469 	struct wq_barrier barr;
2470 	struct worker *worker;
2471 
2472 	spin_lock_irq(&gcwq->lock);
2473 
2474 	worker = find_worker_executing_work(gcwq, work);
2475 	if (unlikely(worker))
2476 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2477 
2478 	spin_unlock_irq(&gcwq->lock);
2479 
2480 	if (unlikely(worker)) {
2481 		wait_for_completion(&barr.done);
2482 		destroy_work_on_stack(&barr.work);
2483 		return true;
2484 	} else
2485 		return false;
2486 }
2487 
2488 static bool wait_on_work(struct work_struct *work)
2489 {
2490 	bool ret = false;
2491 	int cpu;
2492 
2493 	might_sleep();
2494 
2495 	lock_map_acquire(&work->lockdep_map);
2496 	lock_map_release(&work->lockdep_map);
2497 
2498 	for_each_gcwq_cpu(cpu)
2499 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2500 	return ret;
2501 }
2502 
2503 /**
2504  * flush_work_sync - wait until a work has finished execution
2505  * @work: the work to flush
2506  *
2507  * Wait until @work has finished execution.  On return, it's
2508  * guaranteed that all queueing instances of @work which happened
2509  * before this function is called are finished.  In other words, if
2510  * @work hasn't been requeued since this function was called, @work is
2511  * guaranteed to be idle on return.
2512  *
2513  * RETURNS:
2514  * %true if flush_work_sync() waited for the work to finish execution,
2515  * %false if it was already idle.
2516  */
2517 bool flush_work_sync(struct work_struct *work)
2518 {
2519 	struct wq_barrier barr;
2520 	bool pending, waited;
2521 
2522 	/* we'll wait for executions separately, queue barr only if pending */
2523 	pending = start_flush_work(work, &barr, false);
2524 
2525 	/* wait for executions to finish */
2526 	waited = wait_on_work(work);
2527 
2528 	/* wait for the pending one */
2529 	if (pending) {
2530 		wait_for_completion(&barr.done);
2531 		destroy_work_on_stack(&barr.work);
2532 	}
2533 
2534 	return pending || waited;
2535 }
2536 EXPORT_SYMBOL_GPL(flush_work_sync);
2537 
2538 /*
2539  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2540  * so this work can't be re-armed in any way.
2541  */
2542 static int try_to_grab_pending(struct work_struct *work)
2543 {
2544 	struct global_cwq *gcwq;
2545 	int ret = -1;
2546 
2547 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2548 		return 0;
2549 
2550 	/*
2551 	 * The queueing is in progress, or it is already queued. Try to
2552 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2553 	 */
2554 	gcwq = get_work_gcwq(work);
2555 	if (!gcwq)
2556 		return ret;
2557 
2558 	spin_lock_irq(&gcwq->lock);
2559 	if (!list_empty(&work->entry)) {
2560 		/*
2561 		 * This work is queued, but perhaps we locked the wrong gcwq.
2562 		 * In that case we must see the new value after rmb(), see
2563 		 * insert_work()->wmb().
2564 		 */
2565 		smp_rmb();
2566 		if (gcwq == get_work_gcwq(work)) {
2567 			debug_work_deactivate(work);
2568 			list_del_init(&work->entry);
2569 			cwq_dec_nr_in_flight(get_work_cwq(work),
2570 				get_work_color(work),
2571 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2572 			ret = 1;
2573 		}
2574 	}
2575 	spin_unlock_irq(&gcwq->lock);
2576 
2577 	return ret;
2578 }
2579 
2580 static bool __cancel_work_timer(struct work_struct *work,
2581 				struct timer_list* timer)
2582 {
2583 	int ret;
2584 
2585 	do {
2586 		ret = (timer && likely(del_timer(timer)));
2587 		if (!ret)
2588 			ret = try_to_grab_pending(work);
2589 		wait_on_work(work);
2590 	} while (unlikely(ret < 0));
2591 
2592 	clear_work_data(work);
2593 	return ret;
2594 }
2595 
2596 /**
2597  * cancel_work_sync - cancel a work and wait for it to finish
2598  * @work: the work to cancel
2599  *
2600  * Cancel @work and wait for its execution to finish.  This function
2601  * can be used even if the work re-queues itself or migrates to
2602  * another workqueue.  On return from this function, @work is
2603  * guaranteed to be not pending or executing on any CPU.
2604  *
2605  * cancel_work_sync(&delayed_work->work) must not be used for
2606  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2607  *
2608  * The caller must ensure that the workqueue on which @work was last
2609  * queued can't be destroyed before this function returns.
2610  *
2611  * RETURNS:
2612  * %true if @work was pending, %false otherwise.
2613  */
2614 bool cancel_work_sync(struct work_struct *work)
2615 {
2616 	return __cancel_work_timer(work, NULL);
2617 }
2618 EXPORT_SYMBOL_GPL(cancel_work_sync);
2619 
2620 /**
2621  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2622  * @dwork: the delayed work to flush
2623  *
2624  * Delayed timer is cancelled and the pending work is queued for
2625  * immediate execution.  Like flush_work(), this function only
2626  * considers the last queueing instance of @dwork.
2627  *
2628  * RETURNS:
2629  * %true if flush_work() waited for the work to finish execution,
2630  * %false if it was already idle.
2631  */
2632 bool flush_delayed_work(struct delayed_work *dwork)
2633 {
2634 	if (del_timer_sync(&dwork->timer))
2635 		__queue_work(raw_smp_processor_id(),
2636 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2637 	return flush_work(&dwork->work);
2638 }
2639 EXPORT_SYMBOL(flush_delayed_work);
2640 
2641 /**
2642  * flush_delayed_work_sync - wait for a dwork to finish
2643  * @dwork: the delayed work to flush
2644  *
2645  * Delayed timer is cancelled and the pending work is queued for
2646  * execution immediately.  Other than timer handling, its behavior
2647  * is identical to flush_work_sync().
2648  *
2649  * RETURNS:
2650  * %true if flush_work_sync() waited for the work to finish execution,
2651  * %false if it was already idle.
2652  */
2653 bool flush_delayed_work_sync(struct delayed_work *dwork)
2654 {
2655 	if (del_timer_sync(&dwork->timer))
2656 		__queue_work(raw_smp_processor_id(),
2657 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2658 	return flush_work_sync(&dwork->work);
2659 }
2660 EXPORT_SYMBOL(flush_delayed_work_sync);
2661 
2662 /**
2663  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2664  * @dwork: the delayed work cancel
2665  *
2666  * This is cancel_work_sync() for delayed works.
2667  *
2668  * RETURNS:
2669  * %true if @dwork was pending, %false otherwise.
2670  */
2671 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2672 {
2673 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2674 }
2675 EXPORT_SYMBOL(cancel_delayed_work_sync);
2676 
2677 /**
2678  * schedule_work - put work task in global workqueue
2679  * @work: job to be done
2680  *
2681  * Returns zero if @work was already on the kernel-global workqueue and
2682  * non-zero otherwise.
2683  *
2684  * This puts a job in the kernel-global workqueue if it was not already
2685  * queued and leaves it in the same position on the kernel-global
2686  * workqueue otherwise.
2687  */
2688 int schedule_work(struct work_struct *work)
2689 {
2690 	return queue_work(system_wq, work);
2691 }
2692 EXPORT_SYMBOL(schedule_work);
2693 
2694 /*
2695  * schedule_work_on - put work task on a specific cpu
2696  * @cpu: cpu to put the work task on
2697  * @work: job to be done
2698  *
2699  * This puts a job on a specific cpu
2700  */
2701 int schedule_work_on(int cpu, struct work_struct *work)
2702 {
2703 	return queue_work_on(cpu, system_wq, work);
2704 }
2705 EXPORT_SYMBOL(schedule_work_on);
2706 
2707 /**
2708  * schedule_delayed_work - put work task in global workqueue after delay
2709  * @dwork: job to be done
2710  * @delay: number of jiffies to wait or 0 for immediate execution
2711  *
2712  * After waiting for a given time this puts a job in the kernel-global
2713  * workqueue.
2714  */
2715 int schedule_delayed_work(struct delayed_work *dwork,
2716 					unsigned long delay)
2717 {
2718 	return queue_delayed_work(system_wq, dwork, delay);
2719 }
2720 EXPORT_SYMBOL(schedule_delayed_work);
2721 
2722 /**
2723  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2724  * @cpu: cpu to use
2725  * @dwork: job to be done
2726  * @delay: number of jiffies to wait
2727  *
2728  * After waiting for a given time this puts a job in the kernel-global
2729  * workqueue on the specified CPU.
2730  */
2731 int schedule_delayed_work_on(int cpu,
2732 			struct delayed_work *dwork, unsigned long delay)
2733 {
2734 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2735 }
2736 EXPORT_SYMBOL(schedule_delayed_work_on);
2737 
2738 /**
2739  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2740  * @func: the function to call
2741  *
2742  * schedule_on_each_cpu() executes @func on each online CPU using the
2743  * system workqueue and blocks until all CPUs have completed.
2744  * schedule_on_each_cpu() is very slow.
2745  *
2746  * RETURNS:
2747  * 0 on success, -errno on failure.
2748  */
2749 int schedule_on_each_cpu(work_func_t func)
2750 {
2751 	int cpu;
2752 	struct work_struct __percpu *works;
2753 
2754 	works = alloc_percpu(struct work_struct);
2755 	if (!works)
2756 		return -ENOMEM;
2757 
2758 	get_online_cpus();
2759 
2760 	for_each_online_cpu(cpu) {
2761 		struct work_struct *work = per_cpu_ptr(works, cpu);
2762 
2763 		INIT_WORK(work, func);
2764 		schedule_work_on(cpu, work);
2765 	}
2766 
2767 	for_each_online_cpu(cpu)
2768 		flush_work(per_cpu_ptr(works, cpu));
2769 
2770 	put_online_cpus();
2771 	free_percpu(works);
2772 	return 0;
2773 }
2774 
2775 /**
2776  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2777  *
2778  * Forces execution of the kernel-global workqueue and blocks until its
2779  * completion.
2780  *
2781  * Think twice before calling this function!  It's very easy to get into
2782  * trouble if you don't take great care.  Either of the following situations
2783  * will lead to deadlock:
2784  *
2785  *	One of the work items currently on the workqueue needs to acquire
2786  *	a lock held by your code or its caller.
2787  *
2788  *	Your code is running in the context of a work routine.
2789  *
2790  * They will be detected by lockdep when they occur, but the first might not
2791  * occur very often.  It depends on what work items are on the workqueue and
2792  * what locks they need, which you have no control over.
2793  *
2794  * In most situations flushing the entire workqueue is overkill; you merely
2795  * need to know that a particular work item isn't queued and isn't running.
2796  * In such cases you should use cancel_delayed_work_sync() or
2797  * cancel_work_sync() instead.
2798  */
2799 void flush_scheduled_work(void)
2800 {
2801 	flush_workqueue(system_wq);
2802 }
2803 EXPORT_SYMBOL(flush_scheduled_work);
2804 
2805 /**
2806  * execute_in_process_context - reliably execute the routine with user context
2807  * @fn:		the function to execute
2808  * @ew:		guaranteed storage for the execute work structure (must
2809  *		be available when the work executes)
2810  *
2811  * Executes the function immediately if process context is available,
2812  * otherwise schedules the function for delayed execution.
2813  *
2814  * Returns:	0 - function was executed
2815  *		1 - function was scheduled for execution
2816  */
2817 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2818 {
2819 	if (!in_interrupt()) {
2820 		fn(&ew->work);
2821 		return 0;
2822 	}
2823 
2824 	INIT_WORK(&ew->work, fn);
2825 	schedule_work(&ew->work);
2826 
2827 	return 1;
2828 }
2829 EXPORT_SYMBOL_GPL(execute_in_process_context);
2830 
2831 int keventd_up(void)
2832 {
2833 	return system_wq != NULL;
2834 }
2835 
2836 static int alloc_cwqs(struct workqueue_struct *wq)
2837 {
2838 	/*
2839 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2840 	 * Make sure that the alignment isn't lower than that of
2841 	 * unsigned long long.
2842 	 */
2843 	const size_t size = sizeof(struct cpu_workqueue_struct);
2844 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2845 				   __alignof__(unsigned long long));
2846 #ifdef CONFIG_SMP
2847 	bool percpu = !(wq->flags & WQ_UNBOUND);
2848 #else
2849 	bool percpu = false;
2850 #endif
2851 
2852 	if (percpu)
2853 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2854 	else {
2855 		void *ptr;
2856 
2857 		/*
2858 		 * Allocate enough room to align cwq and put an extra
2859 		 * pointer at the end pointing back to the originally
2860 		 * allocated pointer which will be used for free.
2861 		 */
2862 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2863 		if (ptr) {
2864 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2865 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2866 		}
2867 	}
2868 
2869 	/* just in case, make sure it's actually aligned */
2870 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2871 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2872 }
2873 
2874 static void free_cwqs(struct workqueue_struct *wq)
2875 {
2876 #ifdef CONFIG_SMP
2877 	bool percpu = !(wq->flags & WQ_UNBOUND);
2878 #else
2879 	bool percpu = false;
2880 #endif
2881 
2882 	if (percpu)
2883 		free_percpu(wq->cpu_wq.pcpu);
2884 	else if (wq->cpu_wq.single) {
2885 		/* the pointer to free is stored right after the cwq */
2886 		kfree(*(void **)(wq->cpu_wq.single + 1));
2887 	}
2888 }
2889 
2890 static int wq_clamp_max_active(int max_active, unsigned int flags,
2891 			       const char *name)
2892 {
2893 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2894 
2895 	if (max_active < 1 || max_active > lim)
2896 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2897 		       "is out of range, clamping between %d and %d\n",
2898 		       max_active, name, 1, lim);
2899 
2900 	return clamp_val(max_active, 1, lim);
2901 }
2902 
2903 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2904 					       unsigned int flags,
2905 					       int max_active,
2906 					       struct lock_class_key *key,
2907 					       const char *lock_name)
2908 {
2909 	struct workqueue_struct *wq;
2910 	unsigned int cpu;
2911 
2912 	/*
2913 	 * Workqueues which may be used during memory reclaim should
2914 	 * have a rescuer to guarantee forward progress.
2915 	 */
2916 	if (flags & WQ_MEM_RECLAIM)
2917 		flags |= WQ_RESCUER;
2918 
2919 	/*
2920 	 * Unbound workqueues aren't concurrency managed and should be
2921 	 * dispatched to workers immediately.
2922 	 */
2923 	if (flags & WQ_UNBOUND)
2924 		flags |= WQ_HIGHPRI;
2925 
2926 	max_active = max_active ?: WQ_DFL_ACTIVE;
2927 	max_active = wq_clamp_max_active(max_active, flags, name);
2928 
2929 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2930 	if (!wq)
2931 		goto err;
2932 
2933 	wq->flags = flags;
2934 	wq->saved_max_active = max_active;
2935 	mutex_init(&wq->flush_mutex);
2936 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2937 	INIT_LIST_HEAD(&wq->flusher_queue);
2938 	INIT_LIST_HEAD(&wq->flusher_overflow);
2939 
2940 	wq->name = name;
2941 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2942 	INIT_LIST_HEAD(&wq->list);
2943 
2944 	if (alloc_cwqs(wq) < 0)
2945 		goto err;
2946 
2947 	for_each_cwq_cpu(cpu, wq) {
2948 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2949 		struct global_cwq *gcwq = get_gcwq(cpu);
2950 
2951 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2952 		cwq->gcwq = gcwq;
2953 		cwq->wq = wq;
2954 		cwq->flush_color = -1;
2955 		cwq->max_active = max_active;
2956 		INIT_LIST_HEAD(&cwq->delayed_works);
2957 	}
2958 
2959 	if (flags & WQ_RESCUER) {
2960 		struct worker *rescuer;
2961 
2962 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2963 			goto err;
2964 
2965 		wq->rescuer = rescuer = alloc_worker();
2966 		if (!rescuer)
2967 			goto err;
2968 
2969 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2970 		if (IS_ERR(rescuer->task))
2971 			goto err;
2972 
2973 		rescuer->task->flags |= PF_THREAD_BOUND;
2974 		wake_up_process(rescuer->task);
2975 	}
2976 
2977 	/*
2978 	 * workqueue_lock protects global freeze state and workqueues
2979 	 * list.  Grab it, set max_active accordingly and add the new
2980 	 * workqueue to workqueues list.
2981 	 */
2982 	spin_lock(&workqueue_lock);
2983 
2984 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
2985 		for_each_cwq_cpu(cpu, wq)
2986 			get_cwq(cpu, wq)->max_active = 0;
2987 
2988 	list_add(&wq->list, &workqueues);
2989 
2990 	spin_unlock(&workqueue_lock);
2991 
2992 	return wq;
2993 err:
2994 	if (wq) {
2995 		free_cwqs(wq);
2996 		free_mayday_mask(wq->mayday_mask);
2997 		kfree(wq->rescuer);
2998 		kfree(wq);
2999 	}
3000 	return NULL;
3001 }
3002 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3003 
3004 /**
3005  * destroy_workqueue - safely terminate a workqueue
3006  * @wq: target workqueue
3007  *
3008  * Safely destroy a workqueue. All work currently pending will be done first.
3009  */
3010 void destroy_workqueue(struct workqueue_struct *wq)
3011 {
3012 	unsigned int flush_cnt = 0;
3013 	unsigned int cpu;
3014 
3015 	/*
3016 	 * Mark @wq dying and drain all pending works.  Once WQ_DYING is
3017 	 * set, only chain queueing is allowed.  IOW, only currently
3018 	 * pending or running work items on @wq can queue further work
3019 	 * items on it.  @wq is flushed repeatedly until it becomes empty.
3020 	 * The number of flushing is detemined by the depth of chaining and
3021 	 * should be relatively short.  Whine if it takes too long.
3022 	 */
3023 	wq->flags |= WQ_DYING;
3024 reflush:
3025 	flush_workqueue(wq);
3026 
3027 	for_each_cwq_cpu(cpu, wq) {
3028 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3029 
3030 		if (!cwq->nr_active && list_empty(&cwq->delayed_works))
3031 			continue;
3032 
3033 		if (++flush_cnt == 10 ||
3034 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3035 			printk(KERN_WARNING "workqueue %s: flush on "
3036 			       "destruction isn't complete after %u tries\n",
3037 			       wq->name, flush_cnt);
3038 		goto reflush;
3039 	}
3040 
3041 	/*
3042 	 * wq list is used to freeze wq, remove from list after
3043 	 * flushing is complete in case freeze races us.
3044 	 */
3045 	spin_lock(&workqueue_lock);
3046 	list_del(&wq->list);
3047 	spin_unlock(&workqueue_lock);
3048 
3049 	/* sanity check */
3050 	for_each_cwq_cpu(cpu, wq) {
3051 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3052 		int i;
3053 
3054 		for (i = 0; i < WORK_NR_COLORS; i++)
3055 			BUG_ON(cwq->nr_in_flight[i]);
3056 		BUG_ON(cwq->nr_active);
3057 		BUG_ON(!list_empty(&cwq->delayed_works));
3058 	}
3059 
3060 	if (wq->flags & WQ_RESCUER) {
3061 		kthread_stop(wq->rescuer->task);
3062 		free_mayday_mask(wq->mayday_mask);
3063 		kfree(wq->rescuer);
3064 	}
3065 
3066 	free_cwqs(wq);
3067 	kfree(wq);
3068 }
3069 EXPORT_SYMBOL_GPL(destroy_workqueue);
3070 
3071 /**
3072  * workqueue_set_max_active - adjust max_active of a workqueue
3073  * @wq: target workqueue
3074  * @max_active: new max_active value.
3075  *
3076  * Set max_active of @wq to @max_active.
3077  *
3078  * CONTEXT:
3079  * Don't call from IRQ context.
3080  */
3081 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3082 {
3083 	unsigned int cpu;
3084 
3085 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3086 
3087 	spin_lock(&workqueue_lock);
3088 
3089 	wq->saved_max_active = max_active;
3090 
3091 	for_each_cwq_cpu(cpu, wq) {
3092 		struct global_cwq *gcwq = get_gcwq(cpu);
3093 
3094 		spin_lock_irq(&gcwq->lock);
3095 
3096 		if (!(wq->flags & WQ_FREEZABLE) ||
3097 		    !(gcwq->flags & GCWQ_FREEZING))
3098 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3099 
3100 		spin_unlock_irq(&gcwq->lock);
3101 	}
3102 
3103 	spin_unlock(&workqueue_lock);
3104 }
3105 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3106 
3107 /**
3108  * workqueue_congested - test whether a workqueue is congested
3109  * @cpu: CPU in question
3110  * @wq: target workqueue
3111  *
3112  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3113  * no synchronization around this function and the test result is
3114  * unreliable and only useful as advisory hints or for debugging.
3115  *
3116  * RETURNS:
3117  * %true if congested, %false otherwise.
3118  */
3119 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3120 {
3121 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3122 
3123 	return !list_empty(&cwq->delayed_works);
3124 }
3125 EXPORT_SYMBOL_GPL(workqueue_congested);
3126 
3127 /**
3128  * work_cpu - return the last known associated cpu for @work
3129  * @work: the work of interest
3130  *
3131  * RETURNS:
3132  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3133  */
3134 unsigned int work_cpu(struct work_struct *work)
3135 {
3136 	struct global_cwq *gcwq = get_work_gcwq(work);
3137 
3138 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3139 }
3140 EXPORT_SYMBOL_GPL(work_cpu);
3141 
3142 /**
3143  * work_busy - test whether a work is currently pending or running
3144  * @work: the work to be tested
3145  *
3146  * Test whether @work is currently pending or running.  There is no
3147  * synchronization around this function and the test result is
3148  * unreliable and only useful as advisory hints or for debugging.
3149  * Especially for reentrant wqs, the pending state might hide the
3150  * running state.
3151  *
3152  * RETURNS:
3153  * OR'd bitmask of WORK_BUSY_* bits.
3154  */
3155 unsigned int work_busy(struct work_struct *work)
3156 {
3157 	struct global_cwq *gcwq = get_work_gcwq(work);
3158 	unsigned long flags;
3159 	unsigned int ret = 0;
3160 
3161 	if (!gcwq)
3162 		return false;
3163 
3164 	spin_lock_irqsave(&gcwq->lock, flags);
3165 
3166 	if (work_pending(work))
3167 		ret |= WORK_BUSY_PENDING;
3168 	if (find_worker_executing_work(gcwq, work))
3169 		ret |= WORK_BUSY_RUNNING;
3170 
3171 	spin_unlock_irqrestore(&gcwq->lock, flags);
3172 
3173 	return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(work_busy);
3176 
3177 /*
3178  * CPU hotplug.
3179  *
3180  * There are two challenges in supporting CPU hotplug.  Firstly, there
3181  * are a lot of assumptions on strong associations among work, cwq and
3182  * gcwq which make migrating pending and scheduled works very
3183  * difficult to implement without impacting hot paths.  Secondly,
3184  * gcwqs serve mix of short, long and very long running works making
3185  * blocked draining impractical.
3186  *
3187  * This is solved by allowing a gcwq to be detached from CPU, running
3188  * it with unbound (rogue) workers and allowing it to be reattached
3189  * later if the cpu comes back online.  A separate thread is created
3190  * to govern a gcwq in such state and is called the trustee of the
3191  * gcwq.
3192  *
3193  * Trustee states and their descriptions.
3194  *
3195  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3196  *		new trustee is started with this state.
3197  *
3198  * IN_CHARGE	Once started, trustee will enter this state after
3199  *		assuming the manager role and making all existing
3200  *		workers rogue.  DOWN_PREPARE waits for trustee to
3201  *		enter this state.  After reaching IN_CHARGE, trustee
3202  *		tries to execute the pending worklist until it's empty
3203  *		and the state is set to BUTCHER, or the state is set
3204  *		to RELEASE.
3205  *
3206  * BUTCHER	Command state which is set by the cpu callback after
3207  *		the cpu has went down.  Once this state is set trustee
3208  *		knows that there will be no new works on the worklist
3209  *		and once the worklist is empty it can proceed to
3210  *		killing idle workers.
3211  *
3212  * RELEASE	Command state which is set by the cpu callback if the
3213  *		cpu down has been canceled or it has come online
3214  *		again.  After recognizing this state, trustee stops
3215  *		trying to drain or butcher and clears ROGUE, rebinds
3216  *		all remaining workers back to the cpu and releases
3217  *		manager role.
3218  *
3219  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3220  *		is complete.
3221  *
3222  *          trustee                 CPU                draining
3223  *         took over                down               complete
3224  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3225  *                        |                     |                  ^
3226  *                        | CPU is back online  v   return workers |
3227  *                         ----------------> RELEASE --------------
3228  */
3229 
3230 /**
3231  * trustee_wait_event_timeout - timed event wait for trustee
3232  * @cond: condition to wait for
3233  * @timeout: timeout in jiffies
3234  *
3235  * wait_event_timeout() for trustee to use.  Handles locking and
3236  * checks for RELEASE request.
3237  *
3238  * CONTEXT:
3239  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3240  * multiple times.  To be used by trustee.
3241  *
3242  * RETURNS:
3243  * Positive indicating left time if @cond is satisfied, 0 if timed
3244  * out, -1 if canceled.
3245  */
3246 #define trustee_wait_event_timeout(cond, timeout) ({			\
3247 	long __ret = (timeout);						\
3248 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3249 	       __ret) {							\
3250 		spin_unlock_irq(&gcwq->lock);				\
3251 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3252 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3253 			__ret);						\
3254 		spin_lock_irq(&gcwq->lock);				\
3255 	}								\
3256 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3257 })
3258 
3259 /**
3260  * trustee_wait_event - event wait for trustee
3261  * @cond: condition to wait for
3262  *
3263  * wait_event() for trustee to use.  Automatically handles locking and
3264  * checks for CANCEL request.
3265  *
3266  * CONTEXT:
3267  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3268  * multiple times.  To be used by trustee.
3269  *
3270  * RETURNS:
3271  * 0 if @cond is satisfied, -1 if canceled.
3272  */
3273 #define trustee_wait_event(cond) ({					\
3274 	long __ret1;							\
3275 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3276 	__ret1 < 0 ? -1 : 0;						\
3277 })
3278 
3279 static int __cpuinit trustee_thread(void *__gcwq)
3280 {
3281 	struct global_cwq *gcwq = __gcwq;
3282 	struct worker *worker;
3283 	struct work_struct *work;
3284 	struct hlist_node *pos;
3285 	long rc;
3286 	int i;
3287 
3288 	BUG_ON(gcwq->cpu != smp_processor_id());
3289 
3290 	spin_lock_irq(&gcwq->lock);
3291 	/*
3292 	 * Claim the manager position and make all workers rogue.
3293 	 * Trustee must be bound to the target cpu and can't be
3294 	 * cancelled.
3295 	 */
3296 	BUG_ON(gcwq->cpu != smp_processor_id());
3297 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3298 	BUG_ON(rc < 0);
3299 
3300 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3301 
3302 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3303 		worker->flags |= WORKER_ROGUE;
3304 
3305 	for_each_busy_worker(worker, i, pos, gcwq)
3306 		worker->flags |= WORKER_ROGUE;
3307 
3308 	/*
3309 	 * Call schedule() so that we cross rq->lock and thus can
3310 	 * guarantee sched callbacks see the rogue flag.  This is
3311 	 * necessary as scheduler callbacks may be invoked from other
3312 	 * cpus.
3313 	 */
3314 	spin_unlock_irq(&gcwq->lock);
3315 	schedule();
3316 	spin_lock_irq(&gcwq->lock);
3317 
3318 	/*
3319 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3320 	 * this, nr_running stays zero and need_more_worker() and
3321 	 * keep_working() are always true as long as the worklist is
3322 	 * not empty.
3323 	 */
3324 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3325 
3326 	spin_unlock_irq(&gcwq->lock);
3327 	del_timer_sync(&gcwq->idle_timer);
3328 	spin_lock_irq(&gcwq->lock);
3329 
3330 	/*
3331 	 * We're now in charge.  Notify and proceed to drain.  We need
3332 	 * to keep the gcwq running during the whole CPU down
3333 	 * procedure as other cpu hotunplug callbacks may need to
3334 	 * flush currently running tasks.
3335 	 */
3336 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3337 	wake_up_all(&gcwq->trustee_wait);
3338 
3339 	/*
3340 	 * The original cpu is in the process of dying and may go away
3341 	 * anytime now.  When that happens, we and all workers would
3342 	 * be migrated to other cpus.  Try draining any left work.  We
3343 	 * want to get it over with ASAP - spam rescuers, wake up as
3344 	 * many idlers as necessary and create new ones till the
3345 	 * worklist is empty.  Note that if the gcwq is frozen, there
3346 	 * may be frozen works in freezable cwqs.  Don't declare
3347 	 * completion while frozen.
3348 	 */
3349 	while (gcwq->nr_workers != gcwq->nr_idle ||
3350 	       gcwq->flags & GCWQ_FREEZING ||
3351 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3352 		int nr_works = 0;
3353 
3354 		list_for_each_entry(work, &gcwq->worklist, entry) {
3355 			send_mayday(work);
3356 			nr_works++;
3357 		}
3358 
3359 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3360 			if (!nr_works--)
3361 				break;
3362 			wake_up_process(worker->task);
3363 		}
3364 
3365 		if (need_to_create_worker(gcwq)) {
3366 			spin_unlock_irq(&gcwq->lock);
3367 			worker = create_worker(gcwq, false);
3368 			spin_lock_irq(&gcwq->lock);
3369 			if (worker) {
3370 				worker->flags |= WORKER_ROGUE;
3371 				start_worker(worker);
3372 			}
3373 		}
3374 
3375 		/* give a breather */
3376 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3377 			break;
3378 	}
3379 
3380 	/*
3381 	 * Either all works have been scheduled and cpu is down, or
3382 	 * cpu down has already been canceled.  Wait for and butcher
3383 	 * all workers till we're canceled.
3384 	 */
3385 	do {
3386 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3387 		while (!list_empty(&gcwq->idle_list))
3388 			destroy_worker(list_first_entry(&gcwq->idle_list,
3389 							struct worker, entry));
3390 	} while (gcwq->nr_workers && rc >= 0);
3391 
3392 	/*
3393 	 * At this point, either draining has completed and no worker
3394 	 * is left, or cpu down has been canceled or the cpu is being
3395 	 * brought back up.  There shouldn't be any idle one left.
3396 	 * Tell the remaining busy ones to rebind once it finishes the
3397 	 * currently scheduled works by scheduling the rebind_work.
3398 	 */
3399 	WARN_ON(!list_empty(&gcwq->idle_list));
3400 
3401 	for_each_busy_worker(worker, i, pos, gcwq) {
3402 		struct work_struct *rebind_work = &worker->rebind_work;
3403 
3404 		/*
3405 		 * Rebind_work may race with future cpu hotplug
3406 		 * operations.  Use a separate flag to mark that
3407 		 * rebinding is scheduled.
3408 		 */
3409 		worker->flags |= WORKER_REBIND;
3410 		worker->flags &= ~WORKER_ROGUE;
3411 
3412 		/* queue rebind_work, wq doesn't matter, use the default one */
3413 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3414 				     work_data_bits(rebind_work)))
3415 			continue;
3416 
3417 		debug_work_activate(rebind_work);
3418 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3419 			    worker->scheduled.next,
3420 			    work_color_to_flags(WORK_NO_COLOR));
3421 	}
3422 
3423 	/* relinquish manager role */
3424 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3425 
3426 	/* notify completion */
3427 	gcwq->trustee = NULL;
3428 	gcwq->trustee_state = TRUSTEE_DONE;
3429 	wake_up_all(&gcwq->trustee_wait);
3430 	spin_unlock_irq(&gcwq->lock);
3431 	return 0;
3432 }
3433 
3434 /**
3435  * wait_trustee_state - wait for trustee to enter the specified state
3436  * @gcwq: gcwq the trustee of interest belongs to
3437  * @state: target state to wait for
3438  *
3439  * Wait for the trustee to reach @state.  DONE is already matched.
3440  *
3441  * CONTEXT:
3442  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3443  * multiple times.  To be used by cpu_callback.
3444  */
3445 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3446 __releases(&gcwq->lock)
3447 __acquires(&gcwq->lock)
3448 {
3449 	if (!(gcwq->trustee_state == state ||
3450 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3451 		spin_unlock_irq(&gcwq->lock);
3452 		__wait_event(gcwq->trustee_wait,
3453 			     gcwq->trustee_state == state ||
3454 			     gcwq->trustee_state == TRUSTEE_DONE);
3455 		spin_lock_irq(&gcwq->lock);
3456 	}
3457 }
3458 
3459 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3460 						unsigned long action,
3461 						void *hcpu)
3462 {
3463 	unsigned int cpu = (unsigned long)hcpu;
3464 	struct global_cwq *gcwq = get_gcwq(cpu);
3465 	struct task_struct *new_trustee = NULL;
3466 	struct worker *uninitialized_var(new_worker);
3467 	unsigned long flags;
3468 
3469 	action &= ~CPU_TASKS_FROZEN;
3470 
3471 	switch (action) {
3472 	case CPU_DOWN_PREPARE:
3473 		new_trustee = kthread_create(trustee_thread, gcwq,
3474 					     "workqueue_trustee/%d\n", cpu);
3475 		if (IS_ERR(new_trustee))
3476 			return notifier_from_errno(PTR_ERR(new_trustee));
3477 		kthread_bind(new_trustee, cpu);
3478 		/* fall through */
3479 	case CPU_UP_PREPARE:
3480 		BUG_ON(gcwq->first_idle);
3481 		new_worker = create_worker(gcwq, false);
3482 		if (!new_worker) {
3483 			if (new_trustee)
3484 				kthread_stop(new_trustee);
3485 			return NOTIFY_BAD;
3486 		}
3487 	}
3488 
3489 	/* some are called w/ irq disabled, don't disturb irq status */
3490 	spin_lock_irqsave(&gcwq->lock, flags);
3491 
3492 	switch (action) {
3493 	case CPU_DOWN_PREPARE:
3494 		/* initialize trustee and tell it to acquire the gcwq */
3495 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3496 		gcwq->trustee = new_trustee;
3497 		gcwq->trustee_state = TRUSTEE_START;
3498 		wake_up_process(gcwq->trustee);
3499 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3500 		/* fall through */
3501 	case CPU_UP_PREPARE:
3502 		BUG_ON(gcwq->first_idle);
3503 		gcwq->first_idle = new_worker;
3504 		break;
3505 
3506 	case CPU_DYING:
3507 		/*
3508 		 * Before this, the trustee and all workers except for
3509 		 * the ones which are still executing works from
3510 		 * before the last CPU down must be on the cpu.  After
3511 		 * this, they'll all be diasporas.
3512 		 */
3513 		gcwq->flags |= GCWQ_DISASSOCIATED;
3514 		break;
3515 
3516 	case CPU_POST_DEAD:
3517 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3518 		/* fall through */
3519 	case CPU_UP_CANCELED:
3520 		destroy_worker(gcwq->first_idle);
3521 		gcwq->first_idle = NULL;
3522 		break;
3523 
3524 	case CPU_DOWN_FAILED:
3525 	case CPU_ONLINE:
3526 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3527 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3528 			gcwq->trustee_state = TRUSTEE_RELEASE;
3529 			wake_up_process(gcwq->trustee);
3530 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3531 		}
3532 
3533 		/*
3534 		 * Trustee is done and there might be no worker left.
3535 		 * Put the first_idle in and request a real manager to
3536 		 * take a look.
3537 		 */
3538 		spin_unlock_irq(&gcwq->lock);
3539 		kthread_bind(gcwq->first_idle->task, cpu);
3540 		spin_lock_irq(&gcwq->lock);
3541 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3542 		start_worker(gcwq->first_idle);
3543 		gcwq->first_idle = NULL;
3544 		break;
3545 	}
3546 
3547 	spin_unlock_irqrestore(&gcwq->lock, flags);
3548 
3549 	return notifier_from_errno(0);
3550 }
3551 
3552 #ifdef CONFIG_SMP
3553 
3554 struct work_for_cpu {
3555 	struct completion completion;
3556 	long (*fn)(void *);
3557 	void *arg;
3558 	long ret;
3559 };
3560 
3561 static int do_work_for_cpu(void *_wfc)
3562 {
3563 	struct work_for_cpu *wfc = _wfc;
3564 	wfc->ret = wfc->fn(wfc->arg);
3565 	complete(&wfc->completion);
3566 	return 0;
3567 }
3568 
3569 /**
3570  * work_on_cpu - run a function in user context on a particular cpu
3571  * @cpu: the cpu to run on
3572  * @fn: the function to run
3573  * @arg: the function arg
3574  *
3575  * This will return the value @fn returns.
3576  * It is up to the caller to ensure that the cpu doesn't go offline.
3577  * The caller must not hold any locks which would prevent @fn from completing.
3578  */
3579 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3580 {
3581 	struct task_struct *sub_thread;
3582 	struct work_for_cpu wfc = {
3583 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3584 		.fn = fn,
3585 		.arg = arg,
3586 	};
3587 
3588 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3589 	if (IS_ERR(sub_thread))
3590 		return PTR_ERR(sub_thread);
3591 	kthread_bind(sub_thread, cpu);
3592 	wake_up_process(sub_thread);
3593 	wait_for_completion(&wfc.completion);
3594 	return wfc.ret;
3595 }
3596 EXPORT_SYMBOL_GPL(work_on_cpu);
3597 #endif /* CONFIG_SMP */
3598 
3599 #ifdef CONFIG_FREEZER
3600 
3601 /**
3602  * freeze_workqueues_begin - begin freezing workqueues
3603  *
3604  * Start freezing workqueues.  After this function returns, all freezable
3605  * workqueues will queue new works to their frozen_works list instead of
3606  * gcwq->worklist.
3607  *
3608  * CONTEXT:
3609  * Grabs and releases workqueue_lock and gcwq->lock's.
3610  */
3611 void freeze_workqueues_begin(void)
3612 {
3613 	unsigned int cpu;
3614 
3615 	spin_lock(&workqueue_lock);
3616 
3617 	BUG_ON(workqueue_freezing);
3618 	workqueue_freezing = true;
3619 
3620 	for_each_gcwq_cpu(cpu) {
3621 		struct global_cwq *gcwq = get_gcwq(cpu);
3622 		struct workqueue_struct *wq;
3623 
3624 		spin_lock_irq(&gcwq->lock);
3625 
3626 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3627 		gcwq->flags |= GCWQ_FREEZING;
3628 
3629 		list_for_each_entry(wq, &workqueues, list) {
3630 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3631 
3632 			if (cwq && wq->flags & WQ_FREEZABLE)
3633 				cwq->max_active = 0;
3634 		}
3635 
3636 		spin_unlock_irq(&gcwq->lock);
3637 	}
3638 
3639 	spin_unlock(&workqueue_lock);
3640 }
3641 
3642 /**
3643  * freeze_workqueues_busy - are freezable workqueues still busy?
3644  *
3645  * Check whether freezing is complete.  This function must be called
3646  * between freeze_workqueues_begin() and thaw_workqueues().
3647  *
3648  * CONTEXT:
3649  * Grabs and releases workqueue_lock.
3650  *
3651  * RETURNS:
3652  * %true if some freezable workqueues are still busy.  %false if freezing
3653  * is complete.
3654  */
3655 bool freeze_workqueues_busy(void)
3656 {
3657 	unsigned int cpu;
3658 	bool busy = false;
3659 
3660 	spin_lock(&workqueue_lock);
3661 
3662 	BUG_ON(!workqueue_freezing);
3663 
3664 	for_each_gcwq_cpu(cpu) {
3665 		struct workqueue_struct *wq;
3666 		/*
3667 		 * nr_active is monotonically decreasing.  It's safe
3668 		 * to peek without lock.
3669 		 */
3670 		list_for_each_entry(wq, &workqueues, list) {
3671 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3672 
3673 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3674 				continue;
3675 
3676 			BUG_ON(cwq->nr_active < 0);
3677 			if (cwq->nr_active) {
3678 				busy = true;
3679 				goto out_unlock;
3680 			}
3681 		}
3682 	}
3683 out_unlock:
3684 	spin_unlock(&workqueue_lock);
3685 	return busy;
3686 }
3687 
3688 /**
3689  * thaw_workqueues - thaw workqueues
3690  *
3691  * Thaw workqueues.  Normal queueing is restored and all collected
3692  * frozen works are transferred to their respective gcwq worklists.
3693  *
3694  * CONTEXT:
3695  * Grabs and releases workqueue_lock and gcwq->lock's.
3696  */
3697 void thaw_workqueues(void)
3698 {
3699 	unsigned int cpu;
3700 
3701 	spin_lock(&workqueue_lock);
3702 
3703 	if (!workqueue_freezing)
3704 		goto out_unlock;
3705 
3706 	for_each_gcwq_cpu(cpu) {
3707 		struct global_cwq *gcwq = get_gcwq(cpu);
3708 		struct workqueue_struct *wq;
3709 
3710 		spin_lock_irq(&gcwq->lock);
3711 
3712 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3713 		gcwq->flags &= ~GCWQ_FREEZING;
3714 
3715 		list_for_each_entry(wq, &workqueues, list) {
3716 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3717 
3718 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3719 				continue;
3720 
3721 			/* restore max_active and repopulate worklist */
3722 			cwq->max_active = wq->saved_max_active;
3723 
3724 			while (!list_empty(&cwq->delayed_works) &&
3725 			       cwq->nr_active < cwq->max_active)
3726 				cwq_activate_first_delayed(cwq);
3727 		}
3728 
3729 		wake_up_worker(gcwq);
3730 
3731 		spin_unlock_irq(&gcwq->lock);
3732 	}
3733 
3734 	workqueue_freezing = false;
3735 out_unlock:
3736 	spin_unlock(&workqueue_lock);
3737 }
3738 #endif /* CONFIG_FREEZER */
3739 
3740 static int __init init_workqueues(void)
3741 {
3742 	unsigned int cpu;
3743 	int i;
3744 
3745 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3746 
3747 	/* initialize gcwqs */
3748 	for_each_gcwq_cpu(cpu) {
3749 		struct global_cwq *gcwq = get_gcwq(cpu);
3750 
3751 		spin_lock_init(&gcwq->lock);
3752 		INIT_LIST_HEAD(&gcwq->worklist);
3753 		gcwq->cpu = cpu;
3754 		gcwq->flags |= GCWQ_DISASSOCIATED;
3755 
3756 		INIT_LIST_HEAD(&gcwq->idle_list);
3757 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3758 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3759 
3760 		init_timer_deferrable(&gcwq->idle_timer);
3761 		gcwq->idle_timer.function = idle_worker_timeout;
3762 		gcwq->idle_timer.data = (unsigned long)gcwq;
3763 
3764 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3765 			    (unsigned long)gcwq);
3766 
3767 		ida_init(&gcwq->worker_ida);
3768 
3769 		gcwq->trustee_state = TRUSTEE_DONE;
3770 		init_waitqueue_head(&gcwq->trustee_wait);
3771 	}
3772 
3773 	/* create the initial worker */
3774 	for_each_online_gcwq_cpu(cpu) {
3775 		struct global_cwq *gcwq = get_gcwq(cpu);
3776 		struct worker *worker;
3777 
3778 		if (cpu != WORK_CPU_UNBOUND)
3779 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3780 		worker = create_worker(gcwq, true);
3781 		BUG_ON(!worker);
3782 		spin_lock_irq(&gcwq->lock);
3783 		start_worker(worker);
3784 		spin_unlock_irq(&gcwq->lock);
3785 	}
3786 
3787 	system_wq = alloc_workqueue("events", 0, 0);
3788 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3789 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3790 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3791 					    WQ_UNBOUND_MAX_ACTIVE);
3792 	system_freezable_wq = alloc_workqueue("events_freezable",
3793 					      WQ_FREEZABLE, 0);
3794 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3795 	       !system_unbound_wq || !system_freezable_wq);
3796 	return 0;
3797 }
3798 early_initcall(init_workqueues);
3799