xref: /linux/kernel/workqueue.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300 
301 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303 
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306 
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309 
310 /*
311  * Local execution of unbound work items is no longer guaranteed.  The
312  * following always forces round-robin CPU selection on unbound work items
313  * to uncover usages which depend on it.
314  */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321 
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324 
325 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
326 
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329 
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332 
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335 
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350 
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353 
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356 
357 #define assert_rcu_or_pool_mutex()					\
358 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
359 			 !lockdep_is_held(&wq_pool_mutex),		\
360 			 "sched RCU or wq_pool_mutex should be held")
361 
362 #define assert_rcu_or_wq_mutex(wq)					\
363 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
364 			 !lockdep_is_held(&wq->mutex),			\
365 			 "sched RCU or wq->mutex should be held")
366 
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
368 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
369 			 !lockdep_is_held(&wq->mutex) &&		\
370 			 !lockdep_is_held(&wq_pool_mutex),		\
371 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372 
373 #define for_each_cpu_worker_pool(pool, cpu)				\
374 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
375 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 	     (pool)++)
377 
378 /**
379  * for_each_pool - iterate through all worker_pools in the system
380  * @pool: iteration cursor
381  * @pi: integer used for iteration
382  *
383  * This must be called either with wq_pool_mutex held or sched RCU read
384  * locked.  If the pool needs to be used beyond the locking in effect, the
385  * caller is responsible for guaranteeing that the pool stays online.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pool(pool, pi)						\
391 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
392 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
393 		else
394 
395 /**
396  * for_each_pool_worker - iterate through all workers of a worker_pool
397  * @worker: iteration cursor
398  * @pool: worker_pool to iterate workers of
399  *
400  * This must be called with @pool->attach_mutex.
401  *
402  * The if/else clause exists only for the lockdep assertion and can be
403  * ignored.
404  */
405 #define for_each_pool_worker(worker, pool)				\
406 	list_for_each_entry((worker), &(pool)->workers, node)		\
407 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 		else
409 
410 /**
411  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412  * @pwq: iteration cursor
413  * @wq: the target workqueue
414  *
415  * This must be called either with wq->mutex held or sched RCU read locked.
416  * If the pwq needs to be used beyond the locking in effect, the caller is
417  * responsible for guaranteeing that the pwq stays online.
418  *
419  * The if/else clause exists only for the lockdep assertion and can be
420  * ignored.
421  */
422 #define for_each_pwq(pwq, wq)						\
423 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
424 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
425 		else
426 
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428 
429 static struct debug_obj_descr work_debug_descr;
430 
431 static void *work_debug_hint(void *addr)
432 {
433 	return ((struct work_struct *) addr)->func;
434 }
435 
436 /*
437  * fixup_init is called when:
438  * - an active object is initialized
439  */
440 static int work_fixup_init(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 	case ODEBUG_STATE_ACTIVE:
446 		cancel_work_sync(work);
447 		debug_object_init(work, &work_debug_descr);
448 		return 1;
449 	default:
450 		return 0;
451 	}
452 }
453 
454 /*
455  * fixup_activate is called when:
456  * - an active object is activated
457  * - an unknown object is activated (might be a statically initialized object)
458  */
459 static int work_fixup_activate(void *addr, enum debug_obj_state state)
460 {
461 	struct work_struct *work = addr;
462 
463 	switch (state) {
464 
465 	case ODEBUG_STATE_NOTAVAILABLE:
466 		/*
467 		 * This is not really a fixup. The work struct was
468 		 * statically initialized. We just make sure that it
469 		 * is tracked in the object tracker.
470 		 */
471 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 			debug_object_init(work, &work_debug_descr);
473 			debug_object_activate(work, &work_debug_descr);
474 			return 0;
475 		}
476 		WARN_ON_ONCE(1);
477 		return 0;
478 
479 	case ODEBUG_STATE_ACTIVE:
480 		WARN_ON(1);
481 
482 	default:
483 		return 0;
484 	}
485 }
486 
487 /*
488  * fixup_free is called when:
489  * - an active object is freed
490  */
491 static int work_fixup_free(void *addr, enum debug_obj_state state)
492 {
493 	struct work_struct *work = addr;
494 
495 	switch (state) {
496 	case ODEBUG_STATE_ACTIVE:
497 		cancel_work_sync(work);
498 		debug_object_free(work, &work_debug_descr);
499 		return 1;
500 	default:
501 		return 0;
502 	}
503 }
504 
505 static struct debug_obj_descr work_debug_descr = {
506 	.name		= "work_struct",
507 	.debug_hint	= work_debug_hint,
508 	.fixup_init	= work_fixup_init,
509 	.fixup_activate	= work_fixup_activate,
510 	.fixup_free	= work_fixup_free,
511 };
512 
513 static inline void debug_work_activate(struct work_struct *work)
514 {
515 	debug_object_activate(work, &work_debug_descr);
516 }
517 
518 static inline void debug_work_deactivate(struct work_struct *work)
519 {
520 	debug_object_deactivate(work, &work_debug_descr);
521 }
522 
523 void __init_work(struct work_struct *work, int onstack)
524 {
525 	if (onstack)
526 		debug_object_init_on_stack(work, &work_debug_descr);
527 	else
528 		debug_object_init(work, &work_debug_descr);
529 }
530 EXPORT_SYMBOL_GPL(__init_work);
531 
532 void destroy_work_on_stack(struct work_struct *work)
533 {
534 	debug_object_free(work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537 
538 void destroy_delayed_work_on_stack(struct delayed_work *work)
539 {
540 	destroy_timer_on_stack(&work->timer);
541 	debug_object_free(&work->work, &work_debug_descr);
542 }
543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544 
545 #else
546 static inline void debug_work_activate(struct work_struct *work) { }
547 static inline void debug_work_deactivate(struct work_struct *work) { }
548 #endif
549 
550 /**
551  * worker_pool_assign_id - allocate ID and assing it to @pool
552  * @pool: the pool pointer of interest
553  *
554  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555  * successfully, -errno on failure.
556  */
557 static int worker_pool_assign_id(struct worker_pool *pool)
558 {
559 	int ret;
560 
561 	lockdep_assert_held(&wq_pool_mutex);
562 
563 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 			GFP_KERNEL);
565 	if (ret >= 0) {
566 		pool->id = ret;
567 		return 0;
568 	}
569 	return ret;
570 }
571 
572 /**
573  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574  * @wq: the target workqueue
575  * @node: the node ID
576  *
577  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578  * read locked.
579  * If the pwq needs to be used beyond the locking in effect, the caller is
580  * responsible for guaranteeing that the pwq stays online.
581  *
582  * Return: The unbound pool_workqueue for @node.
583  */
584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 						  int node)
586 {
587 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588 
589 	/*
590 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 	 * delayed item is pending.  The plan is to keep CPU -> NODE
592 	 * mapping valid and stable across CPU on/offlines.  Once that
593 	 * happens, this workaround can be removed.
594 	 */
595 	if (unlikely(node == NUMA_NO_NODE))
596 		return wq->dfl_pwq;
597 
598 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599 }
600 
601 static unsigned int work_color_to_flags(int color)
602 {
603 	return color << WORK_STRUCT_COLOR_SHIFT;
604 }
605 
606 static int get_work_color(struct work_struct *work)
607 {
608 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
610 }
611 
612 static int work_next_color(int color)
613 {
614 	return (color + 1) % WORK_NR_COLORS;
615 }
616 
617 /*
618  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619  * contain the pointer to the queued pwq.  Once execution starts, the flag
620  * is cleared and the high bits contain OFFQ flags and pool ID.
621  *
622  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623  * and clear_work_data() can be used to set the pwq, pool or clear
624  * work->data.  These functions should only be called while the work is
625  * owned - ie. while the PENDING bit is set.
626  *
627  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628  * corresponding to a work.  Pool is available once the work has been
629  * queued anywhere after initialization until it is sync canceled.  pwq is
630  * available only while the work item is queued.
631  *
632  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633  * canceled.  While being canceled, a work item may have its PENDING set
634  * but stay off timer and worklist for arbitrarily long and nobody should
635  * try to steal the PENDING bit.
636  */
637 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 				 unsigned long flags)
639 {
640 	WARN_ON_ONCE(!work_pending(work));
641 	atomic_long_set(&work->data, data | flags | work_static(work));
642 }
643 
644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 			 unsigned long extra_flags)
646 {
647 	set_work_data(work, (unsigned long)pwq,
648 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 }
650 
651 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 					   int pool_id)
653 {
654 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 		      WORK_STRUCT_PENDING);
656 }
657 
658 static void set_work_pool_and_clear_pending(struct work_struct *work,
659 					    int pool_id)
660 {
661 	/*
662 	 * The following wmb is paired with the implied mb in
663 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 	 * here are visible to and precede any updates by the next PENDING
665 	 * owner.
666 	 */
667 	smp_wmb();
668 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
669 }
670 
671 static void clear_work_data(struct work_struct *work)
672 {
673 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
674 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
675 }
676 
677 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
678 {
679 	unsigned long data = atomic_long_read(&work->data);
680 
681 	if (data & WORK_STRUCT_PWQ)
682 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
683 	else
684 		return NULL;
685 }
686 
687 /**
688  * get_work_pool - return the worker_pool a given work was associated with
689  * @work: the work item of interest
690  *
691  * Pools are created and destroyed under wq_pool_mutex, and allows read
692  * access under sched-RCU read lock.  As such, this function should be
693  * called under wq_pool_mutex or with preemption disabled.
694  *
695  * All fields of the returned pool are accessible as long as the above
696  * mentioned locking is in effect.  If the returned pool needs to be used
697  * beyond the critical section, the caller is responsible for ensuring the
698  * returned pool is and stays online.
699  *
700  * Return: The worker_pool @work was last associated with.  %NULL if none.
701  */
702 static struct worker_pool *get_work_pool(struct work_struct *work)
703 {
704 	unsigned long data = atomic_long_read(&work->data);
705 	int pool_id;
706 
707 	assert_rcu_or_pool_mutex();
708 
709 	if (data & WORK_STRUCT_PWQ)
710 		return ((struct pool_workqueue *)
711 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
712 
713 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
714 	if (pool_id == WORK_OFFQ_POOL_NONE)
715 		return NULL;
716 
717 	return idr_find(&worker_pool_idr, pool_id);
718 }
719 
720 /**
721  * get_work_pool_id - return the worker pool ID a given work is associated with
722  * @work: the work item of interest
723  *
724  * Return: The worker_pool ID @work was last associated with.
725  * %WORK_OFFQ_POOL_NONE if none.
726  */
727 static int get_work_pool_id(struct work_struct *work)
728 {
729 	unsigned long data = atomic_long_read(&work->data);
730 
731 	if (data & WORK_STRUCT_PWQ)
732 		return ((struct pool_workqueue *)
733 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
734 
735 	return data >> WORK_OFFQ_POOL_SHIFT;
736 }
737 
738 static void mark_work_canceling(struct work_struct *work)
739 {
740 	unsigned long pool_id = get_work_pool_id(work);
741 
742 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
743 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
744 }
745 
746 static bool work_is_canceling(struct work_struct *work)
747 {
748 	unsigned long data = atomic_long_read(&work->data);
749 
750 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
751 }
752 
753 /*
754  * Policy functions.  These define the policies on how the global worker
755  * pools are managed.  Unless noted otherwise, these functions assume that
756  * they're being called with pool->lock held.
757  */
758 
759 static bool __need_more_worker(struct worker_pool *pool)
760 {
761 	return !atomic_read(&pool->nr_running);
762 }
763 
764 /*
765  * Need to wake up a worker?  Called from anything but currently
766  * running workers.
767  *
768  * Note that, because unbound workers never contribute to nr_running, this
769  * function will always return %true for unbound pools as long as the
770  * worklist isn't empty.
771  */
772 static bool need_more_worker(struct worker_pool *pool)
773 {
774 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
775 }
776 
777 /* Can I start working?  Called from busy but !running workers. */
778 static bool may_start_working(struct worker_pool *pool)
779 {
780 	return pool->nr_idle;
781 }
782 
783 /* Do I need to keep working?  Called from currently running workers. */
784 static bool keep_working(struct worker_pool *pool)
785 {
786 	return !list_empty(&pool->worklist) &&
787 		atomic_read(&pool->nr_running) <= 1;
788 }
789 
790 /* Do we need a new worker?  Called from manager. */
791 static bool need_to_create_worker(struct worker_pool *pool)
792 {
793 	return need_more_worker(pool) && !may_start_working(pool);
794 }
795 
796 /* Do we have too many workers and should some go away? */
797 static bool too_many_workers(struct worker_pool *pool)
798 {
799 	bool managing = mutex_is_locked(&pool->manager_arb);
800 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
801 	int nr_busy = pool->nr_workers - nr_idle;
802 
803 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
804 }
805 
806 /*
807  * Wake up functions.
808  */
809 
810 /* Return the first idle worker.  Safe with preemption disabled */
811 static struct worker *first_idle_worker(struct worker_pool *pool)
812 {
813 	if (unlikely(list_empty(&pool->idle_list)))
814 		return NULL;
815 
816 	return list_first_entry(&pool->idle_list, struct worker, entry);
817 }
818 
819 /**
820  * wake_up_worker - wake up an idle worker
821  * @pool: worker pool to wake worker from
822  *
823  * Wake up the first idle worker of @pool.
824  *
825  * CONTEXT:
826  * spin_lock_irq(pool->lock).
827  */
828 static void wake_up_worker(struct worker_pool *pool)
829 {
830 	struct worker *worker = first_idle_worker(pool);
831 
832 	if (likely(worker))
833 		wake_up_process(worker->task);
834 }
835 
836 /**
837  * wq_worker_waking_up - a worker is waking up
838  * @task: task waking up
839  * @cpu: CPU @task is waking up to
840  *
841  * This function is called during try_to_wake_up() when a worker is
842  * being awoken.
843  *
844  * CONTEXT:
845  * spin_lock_irq(rq->lock)
846  */
847 void wq_worker_waking_up(struct task_struct *task, int cpu)
848 {
849 	struct worker *worker = kthread_data(task);
850 
851 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
852 		WARN_ON_ONCE(worker->pool->cpu != cpu);
853 		atomic_inc(&worker->pool->nr_running);
854 	}
855 }
856 
857 /**
858  * wq_worker_sleeping - a worker is going to sleep
859  * @task: task going to sleep
860  *
861  * This function is called during schedule() when a busy worker is
862  * going to sleep.  Worker on the same cpu can be woken up by
863  * returning pointer to its task.
864  *
865  * CONTEXT:
866  * spin_lock_irq(rq->lock)
867  *
868  * Return:
869  * Worker task on @cpu to wake up, %NULL if none.
870  */
871 struct task_struct *wq_worker_sleeping(struct task_struct *task)
872 {
873 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
874 	struct worker_pool *pool;
875 
876 	/*
877 	 * Rescuers, which may not have all the fields set up like normal
878 	 * workers, also reach here, let's not access anything before
879 	 * checking NOT_RUNNING.
880 	 */
881 	if (worker->flags & WORKER_NOT_RUNNING)
882 		return NULL;
883 
884 	pool = worker->pool;
885 
886 	/* this can only happen on the local cpu */
887 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
888 		return NULL;
889 
890 	/*
891 	 * The counterpart of the following dec_and_test, implied mb,
892 	 * worklist not empty test sequence is in insert_work().
893 	 * Please read comment there.
894 	 *
895 	 * NOT_RUNNING is clear.  This means that we're bound to and
896 	 * running on the local cpu w/ rq lock held and preemption
897 	 * disabled, which in turn means that none else could be
898 	 * manipulating idle_list, so dereferencing idle_list without pool
899 	 * lock is safe.
900 	 */
901 	if (atomic_dec_and_test(&pool->nr_running) &&
902 	    !list_empty(&pool->worklist))
903 		to_wakeup = first_idle_worker(pool);
904 	return to_wakeup ? to_wakeup->task : NULL;
905 }
906 
907 /**
908  * worker_set_flags - set worker flags and adjust nr_running accordingly
909  * @worker: self
910  * @flags: flags to set
911  *
912  * Set @flags in @worker->flags and adjust nr_running accordingly.
913  *
914  * CONTEXT:
915  * spin_lock_irq(pool->lock)
916  */
917 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
918 {
919 	struct worker_pool *pool = worker->pool;
920 
921 	WARN_ON_ONCE(worker->task != current);
922 
923 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
924 	if ((flags & WORKER_NOT_RUNNING) &&
925 	    !(worker->flags & WORKER_NOT_RUNNING)) {
926 		atomic_dec(&pool->nr_running);
927 	}
928 
929 	worker->flags |= flags;
930 }
931 
932 /**
933  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
934  * @worker: self
935  * @flags: flags to clear
936  *
937  * Clear @flags in @worker->flags and adjust nr_running accordingly.
938  *
939  * CONTEXT:
940  * spin_lock_irq(pool->lock)
941  */
942 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
943 {
944 	struct worker_pool *pool = worker->pool;
945 	unsigned int oflags = worker->flags;
946 
947 	WARN_ON_ONCE(worker->task != current);
948 
949 	worker->flags &= ~flags;
950 
951 	/*
952 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
953 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
954 	 * of multiple flags, not a single flag.
955 	 */
956 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
957 		if (!(worker->flags & WORKER_NOT_RUNNING))
958 			atomic_inc(&pool->nr_running);
959 }
960 
961 /**
962  * find_worker_executing_work - find worker which is executing a work
963  * @pool: pool of interest
964  * @work: work to find worker for
965  *
966  * Find a worker which is executing @work on @pool by searching
967  * @pool->busy_hash which is keyed by the address of @work.  For a worker
968  * to match, its current execution should match the address of @work and
969  * its work function.  This is to avoid unwanted dependency between
970  * unrelated work executions through a work item being recycled while still
971  * being executed.
972  *
973  * This is a bit tricky.  A work item may be freed once its execution
974  * starts and nothing prevents the freed area from being recycled for
975  * another work item.  If the same work item address ends up being reused
976  * before the original execution finishes, workqueue will identify the
977  * recycled work item as currently executing and make it wait until the
978  * current execution finishes, introducing an unwanted dependency.
979  *
980  * This function checks the work item address and work function to avoid
981  * false positives.  Note that this isn't complete as one may construct a
982  * work function which can introduce dependency onto itself through a
983  * recycled work item.  Well, if somebody wants to shoot oneself in the
984  * foot that badly, there's only so much we can do, and if such deadlock
985  * actually occurs, it should be easy to locate the culprit work function.
986  *
987  * CONTEXT:
988  * spin_lock_irq(pool->lock).
989  *
990  * Return:
991  * Pointer to worker which is executing @work if found, %NULL
992  * otherwise.
993  */
994 static struct worker *find_worker_executing_work(struct worker_pool *pool,
995 						 struct work_struct *work)
996 {
997 	struct worker *worker;
998 
999 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1000 			       (unsigned long)work)
1001 		if (worker->current_work == work &&
1002 		    worker->current_func == work->func)
1003 			return worker;
1004 
1005 	return NULL;
1006 }
1007 
1008 /**
1009  * move_linked_works - move linked works to a list
1010  * @work: start of series of works to be scheduled
1011  * @head: target list to append @work to
1012  * @nextp: out parameter for nested worklist walking
1013  *
1014  * Schedule linked works starting from @work to @head.  Work series to
1015  * be scheduled starts at @work and includes any consecutive work with
1016  * WORK_STRUCT_LINKED set in its predecessor.
1017  *
1018  * If @nextp is not NULL, it's updated to point to the next work of
1019  * the last scheduled work.  This allows move_linked_works() to be
1020  * nested inside outer list_for_each_entry_safe().
1021  *
1022  * CONTEXT:
1023  * spin_lock_irq(pool->lock).
1024  */
1025 static void move_linked_works(struct work_struct *work, struct list_head *head,
1026 			      struct work_struct **nextp)
1027 {
1028 	struct work_struct *n;
1029 
1030 	/*
1031 	 * Linked worklist will always end before the end of the list,
1032 	 * use NULL for list head.
1033 	 */
1034 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1035 		list_move_tail(&work->entry, head);
1036 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1037 			break;
1038 	}
1039 
1040 	/*
1041 	 * If we're already inside safe list traversal and have moved
1042 	 * multiple works to the scheduled queue, the next position
1043 	 * needs to be updated.
1044 	 */
1045 	if (nextp)
1046 		*nextp = n;
1047 }
1048 
1049 /**
1050  * get_pwq - get an extra reference on the specified pool_workqueue
1051  * @pwq: pool_workqueue to get
1052  *
1053  * Obtain an extra reference on @pwq.  The caller should guarantee that
1054  * @pwq has positive refcnt and be holding the matching pool->lock.
1055  */
1056 static void get_pwq(struct pool_workqueue *pwq)
1057 {
1058 	lockdep_assert_held(&pwq->pool->lock);
1059 	WARN_ON_ONCE(pwq->refcnt <= 0);
1060 	pwq->refcnt++;
1061 }
1062 
1063 /**
1064  * put_pwq - put a pool_workqueue reference
1065  * @pwq: pool_workqueue to put
1066  *
1067  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1068  * destruction.  The caller should be holding the matching pool->lock.
1069  */
1070 static void put_pwq(struct pool_workqueue *pwq)
1071 {
1072 	lockdep_assert_held(&pwq->pool->lock);
1073 	if (likely(--pwq->refcnt))
1074 		return;
1075 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1076 		return;
1077 	/*
1078 	 * @pwq can't be released under pool->lock, bounce to
1079 	 * pwq_unbound_release_workfn().  This never recurses on the same
1080 	 * pool->lock as this path is taken only for unbound workqueues and
1081 	 * the release work item is scheduled on a per-cpu workqueue.  To
1082 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1083 	 * subclass of 1 in get_unbound_pool().
1084 	 */
1085 	schedule_work(&pwq->unbound_release_work);
1086 }
1087 
1088 /**
1089  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1090  * @pwq: pool_workqueue to put (can be %NULL)
1091  *
1092  * put_pwq() with locking.  This function also allows %NULL @pwq.
1093  */
1094 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1095 {
1096 	if (pwq) {
1097 		/*
1098 		 * As both pwqs and pools are sched-RCU protected, the
1099 		 * following lock operations are safe.
1100 		 */
1101 		spin_lock_irq(&pwq->pool->lock);
1102 		put_pwq(pwq);
1103 		spin_unlock_irq(&pwq->pool->lock);
1104 	}
1105 }
1106 
1107 static void pwq_activate_delayed_work(struct work_struct *work)
1108 {
1109 	struct pool_workqueue *pwq = get_work_pwq(work);
1110 
1111 	trace_workqueue_activate_work(work);
1112 	if (list_empty(&pwq->pool->worklist))
1113 		pwq->pool->watchdog_ts = jiffies;
1114 	move_linked_works(work, &pwq->pool->worklist, NULL);
1115 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1116 	pwq->nr_active++;
1117 }
1118 
1119 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1120 {
1121 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1122 						    struct work_struct, entry);
1123 
1124 	pwq_activate_delayed_work(work);
1125 }
1126 
1127 /**
1128  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1129  * @pwq: pwq of interest
1130  * @color: color of work which left the queue
1131  *
1132  * A work either has completed or is removed from pending queue,
1133  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1134  *
1135  * CONTEXT:
1136  * spin_lock_irq(pool->lock).
1137  */
1138 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1139 {
1140 	/* uncolored work items don't participate in flushing or nr_active */
1141 	if (color == WORK_NO_COLOR)
1142 		goto out_put;
1143 
1144 	pwq->nr_in_flight[color]--;
1145 
1146 	pwq->nr_active--;
1147 	if (!list_empty(&pwq->delayed_works)) {
1148 		/* one down, submit a delayed one */
1149 		if (pwq->nr_active < pwq->max_active)
1150 			pwq_activate_first_delayed(pwq);
1151 	}
1152 
1153 	/* is flush in progress and are we at the flushing tip? */
1154 	if (likely(pwq->flush_color != color))
1155 		goto out_put;
1156 
1157 	/* are there still in-flight works? */
1158 	if (pwq->nr_in_flight[color])
1159 		goto out_put;
1160 
1161 	/* this pwq is done, clear flush_color */
1162 	pwq->flush_color = -1;
1163 
1164 	/*
1165 	 * If this was the last pwq, wake up the first flusher.  It
1166 	 * will handle the rest.
1167 	 */
1168 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1169 		complete(&pwq->wq->first_flusher->done);
1170 out_put:
1171 	put_pwq(pwq);
1172 }
1173 
1174 /**
1175  * try_to_grab_pending - steal work item from worklist and disable irq
1176  * @work: work item to steal
1177  * @is_dwork: @work is a delayed_work
1178  * @flags: place to store irq state
1179  *
1180  * Try to grab PENDING bit of @work.  This function can handle @work in any
1181  * stable state - idle, on timer or on worklist.
1182  *
1183  * Return:
1184  *  1		if @work was pending and we successfully stole PENDING
1185  *  0		if @work was idle and we claimed PENDING
1186  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1187  *  -ENOENT	if someone else is canceling @work, this state may persist
1188  *		for arbitrarily long
1189  *
1190  * Note:
1191  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1192  * interrupted while holding PENDING and @work off queue, irq must be
1193  * disabled on entry.  This, combined with delayed_work->timer being
1194  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1195  *
1196  * On successful return, >= 0, irq is disabled and the caller is
1197  * responsible for releasing it using local_irq_restore(*@flags).
1198  *
1199  * This function is safe to call from any context including IRQ handler.
1200  */
1201 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1202 			       unsigned long *flags)
1203 {
1204 	struct worker_pool *pool;
1205 	struct pool_workqueue *pwq;
1206 
1207 	local_irq_save(*flags);
1208 
1209 	/* try to steal the timer if it exists */
1210 	if (is_dwork) {
1211 		struct delayed_work *dwork = to_delayed_work(work);
1212 
1213 		/*
1214 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1215 		 * guaranteed that the timer is not queued anywhere and not
1216 		 * running on the local CPU.
1217 		 */
1218 		if (likely(del_timer(&dwork->timer)))
1219 			return 1;
1220 	}
1221 
1222 	/* try to claim PENDING the normal way */
1223 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1224 		return 0;
1225 
1226 	/*
1227 	 * The queueing is in progress, or it is already queued. Try to
1228 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1229 	 */
1230 	pool = get_work_pool(work);
1231 	if (!pool)
1232 		goto fail;
1233 
1234 	spin_lock(&pool->lock);
1235 	/*
1236 	 * work->data is guaranteed to point to pwq only while the work
1237 	 * item is queued on pwq->wq, and both updating work->data to point
1238 	 * to pwq on queueing and to pool on dequeueing are done under
1239 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1240 	 * points to pwq which is associated with a locked pool, the work
1241 	 * item is currently queued on that pool.
1242 	 */
1243 	pwq = get_work_pwq(work);
1244 	if (pwq && pwq->pool == pool) {
1245 		debug_work_deactivate(work);
1246 
1247 		/*
1248 		 * A delayed work item cannot be grabbed directly because
1249 		 * it might have linked NO_COLOR work items which, if left
1250 		 * on the delayed_list, will confuse pwq->nr_active
1251 		 * management later on and cause stall.  Make sure the work
1252 		 * item is activated before grabbing.
1253 		 */
1254 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1255 			pwq_activate_delayed_work(work);
1256 
1257 		list_del_init(&work->entry);
1258 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1259 
1260 		/* work->data points to pwq iff queued, point to pool */
1261 		set_work_pool_and_keep_pending(work, pool->id);
1262 
1263 		spin_unlock(&pool->lock);
1264 		return 1;
1265 	}
1266 	spin_unlock(&pool->lock);
1267 fail:
1268 	local_irq_restore(*flags);
1269 	if (work_is_canceling(work))
1270 		return -ENOENT;
1271 	cpu_relax();
1272 	return -EAGAIN;
1273 }
1274 
1275 /**
1276  * insert_work - insert a work into a pool
1277  * @pwq: pwq @work belongs to
1278  * @work: work to insert
1279  * @head: insertion point
1280  * @extra_flags: extra WORK_STRUCT_* flags to set
1281  *
1282  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1283  * work_struct flags.
1284  *
1285  * CONTEXT:
1286  * spin_lock_irq(pool->lock).
1287  */
1288 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1289 			struct list_head *head, unsigned int extra_flags)
1290 {
1291 	struct worker_pool *pool = pwq->pool;
1292 
1293 	/* we own @work, set data and link */
1294 	set_work_pwq(work, pwq, extra_flags);
1295 	list_add_tail(&work->entry, head);
1296 	get_pwq(pwq);
1297 
1298 	/*
1299 	 * Ensure either wq_worker_sleeping() sees the above
1300 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1301 	 * around lazily while there are works to be processed.
1302 	 */
1303 	smp_mb();
1304 
1305 	if (__need_more_worker(pool))
1306 		wake_up_worker(pool);
1307 }
1308 
1309 /*
1310  * Test whether @work is being queued from another work executing on the
1311  * same workqueue.
1312  */
1313 static bool is_chained_work(struct workqueue_struct *wq)
1314 {
1315 	struct worker *worker;
1316 
1317 	worker = current_wq_worker();
1318 	/*
1319 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1320 	 * I'm @worker, it's safe to dereference it without locking.
1321 	 */
1322 	return worker && worker->current_pwq->wq == wq;
1323 }
1324 
1325 /*
1326  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1327  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1328  * avoid perturbing sensitive tasks.
1329  */
1330 static int wq_select_unbound_cpu(int cpu)
1331 {
1332 	static bool printed_dbg_warning;
1333 	int new_cpu;
1334 
1335 	if (likely(!wq_debug_force_rr_cpu)) {
1336 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1337 			return cpu;
1338 	} else if (!printed_dbg_warning) {
1339 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1340 		printed_dbg_warning = true;
1341 	}
1342 
1343 	if (cpumask_empty(wq_unbound_cpumask))
1344 		return cpu;
1345 
1346 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1347 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1348 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1349 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1350 		if (unlikely(new_cpu >= nr_cpu_ids))
1351 			return cpu;
1352 	}
1353 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1354 
1355 	return new_cpu;
1356 }
1357 
1358 static void __queue_work(int cpu, struct workqueue_struct *wq,
1359 			 struct work_struct *work)
1360 {
1361 	struct pool_workqueue *pwq;
1362 	struct worker_pool *last_pool;
1363 	struct list_head *worklist;
1364 	unsigned int work_flags;
1365 	unsigned int req_cpu = cpu;
1366 
1367 	/*
1368 	 * While a work item is PENDING && off queue, a task trying to
1369 	 * steal the PENDING will busy-loop waiting for it to either get
1370 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1371 	 * happen with IRQ disabled.
1372 	 */
1373 	WARN_ON_ONCE(!irqs_disabled());
1374 
1375 	debug_work_activate(work);
1376 
1377 	/* if draining, only works from the same workqueue are allowed */
1378 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1379 	    WARN_ON_ONCE(!is_chained_work(wq)))
1380 		return;
1381 retry:
1382 	if (req_cpu == WORK_CPU_UNBOUND)
1383 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1384 
1385 	/* pwq which will be used unless @work is executing elsewhere */
1386 	if (!(wq->flags & WQ_UNBOUND))
1387 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1388 	else
1389 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1390 
1391 	/*
1392 	 * If @work was previously on a different pool, it might still be
1393 	 * running there, in which case the work needs to be queued on that
1394 	 * pool to guarantee non-reentrancy.
1395 	 */
1396 	last_pool = get_work_pool(work);
1397 	if (last_pool && last_pool != pwq->pool) {
1398 		struct worker *worker;
1399 
1400 		spin_lock(&last_pool->lock);
1401 
1402 		worker = find_worker_executing_work(last_pool, work);
1403 
1404 		if (worker && worker->current_pwq->wq == wq) {
1405 			pwq = worker->current_pwq;
1406 		} else {
1407 			/* meh... not running there, queue here */
1408 			spin_unlock(&last_pool->lock);
1409 			spin_lock(&pwq->pool->lock);
1410 		}
1411 	} else {
1412 		spin_lock(&pwq->pool->lock);
1413 	}
1414 
1415 	/*
1416 	 * pwq is determined and locked.  For unbound pools, we could have
1417 	 * raced with pwq release and it could already be dead.  If its
1418 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1419 	 * without another pwq replacing it in the numa_pwq_tbl or while
1420 	 * work items are executing on it, so the retrying is guaranteed to
1421 	 * make forward-progress.
1422 	 */
1423 	if (unlikely(!pwq->refcnt)) {
1424 		if (wq->flags & WQ_UNBOUND) {
1425 			spin_unlock(&pwq->pool->lock);
1426 			cpu_relax();
1427 			goto retry;
1428 		}
1429 		/* oops */
1430 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1431 			  wq->name, cpu);
1432 	}
1433 
1434 	/* pwq determined, queue */
1435 	trace_workqueue_queue_work(req_cpu, pwq, work);
1436 
1437 	if (WARN_ON(!list_empty(&work->entry))) {
1438 		spin_unlock(&pwq->pool->lock);
1439 		return;
1440 	}
1441 
1442 	pwq->nr_in_flight[pwq->work_color]++;
1443 	work_flags = work_color_to_flags(pwq->work_color);
1444 
1445 	if (likely(pwq->nr_active < pwq->max_active)) {
1446 		trace_workqueue_activate_work(work);
1447 		pwq->nr_active++;
1448 		worklist = &pwq->pool->worklist;
1449 		if (list_empty(worklist))
1450 			pwq->pool->watchdog_ts = jiffies;
1451 	} else {
1452 		work_flags |= WORK_STRUCT_DELAYED;
1453 		worklist = &pwq->delayed_works;
1454 	}
1455 
1456 	insert_work(pwq, work, worklist, work_flags);
1457 
1458 	spin_unlock(&pwq->pool->lock);
1459 }
1460 
1461 /**
1462  * queue_work_on - queue work on specific cpu
1463  * @cpu: CPU number to execute work on
1464  * @wq: workqueue to use
1465  * @work: work to queue
1466  *
1467  * We queue the work to a specific CPU, the caller must ensure it
1468  * can't go away.
1469  *
1470  * Return: %false if @work was already on a queue, %true otherwise.
1471  */
1472 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1473 		   struct work_struct *work)
1474 {
1475 	bool ret = false;
1476 	unsigned long flags;
1477 
1478 	local_irq_save(flags);
1479 
1480 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1481 		__queue_work(cpu, wq, work);
1482 		ret = true;
1483 	}
1484 
1485 	local_irq_restore(flags);
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(queue_work_on);
1489 
1490 void delayed_work_timer_fn(unsigned long __data)
1491 {
1492 	struct delayed_work *dwork = (struct delayed_work *)__data;
1493 
1494 	/* should have been called from irqsafe timer with irq already off */
1495 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1496 }
1497 EXPORT_SYMBOL(delayed_work_timer_fn);
1498 
1499 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1500 				struct delayed_work *dwork, unsigned long delay)
1501 {
1502 	struct timer_list *timer = &dwork->timer;
1503 	struct work_struct *work = &dwork->work;
1504 
1505 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1506 		     timer->data != (unsigned long)dwork);
1507 	WARN_ON_ONCE(timer_pending(timer));
1508 	WARN_ON_ONCE(!list_empty(&work->entry));
1509 
1510 	/*
1511 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1512 	 * both optimization and correctness.  The earliest @timer can
1513 	 * expire is on the closest next tick and delayed_work users depend
1514 	 * on that there's no such delay when @delay is 0.
1515 	 */
1516 	if (!delay) {
1517 		__queue_work(cpu, wq, &dwork->work);
1518 		return;
1519 	}
1520 
1521 	timer_stats_timer_set_start_info(&dwork->timer);
1522 
1523 	dwork->wq = wq;
1524 	dwork->cpu = cpu;
1525 	timer->expires = jiffies + delay;
1526 
1527 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1528 		add_timer_on(timer, cpu);
1529 	else
1530 		add_timer(timer);
1531 }
1532 
1533 /**
1534  * queue_delayed_work_on - queue work on specific CPU after delay
1535  * @cpu: CPU number to execute work on
1536  * @wq: workqueue to use
1537  * @dwork: work to queue
1538  * @delay: number of jiffies to wait before queueing
1539  *
1540  * Return: %false if @work was already on a queue, %true otherwise.  If
1541  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1542  * execution.
1543  */
1544 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1545 			   struct delayed_work *dwork, unsigned long delay)
1546 {
1547 	struct work_struct *work = &dwork->work;
1548 	bool ret = false;
1549 	unsigned long flags;
1550 
1551 	/* read the comment in __queue_work() */
1552 	local_irq_save(flags);
1553 
1554 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1555 		__queue_delayed_work(cpu, wq, dwork, delay);
1556 		ret = true;
1557 	}
1558 
1559 	local_irq_restore(flags);
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL(queue_delayed_work_on);
1563 
1564 /**
1565  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1566  * @cpu: CPU number to execute work on
1567  * @wq: workqueue to use
1568  * @dwork: work to queue
1569  * @delay: number of jiffies to wait before queueing
1570  *
1571  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1572  * modify @dwork's timer so that it expires after @delay.  If @delay is
1573  * zero, @work is guaranteed to be scheduled immediately regardless of its
1574  * current state.
1575  *
1576  * Return: %false if @dwork was idle and queued, %true if @dwork was
1577  * pending and its timer was modified.
1578  *
1579  * This function is safe to call from any context including IRQ handler.
1580  * See try_to_grab_pending() for details.
1581  */
1582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1583 			 struct delayed_work *dwork, unsigned long delay)
1584 {
1585 	unsigned long flags;
1586 	int ret;
1587 
1588 	do {
1589 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1590 	} while (unlikely(ret == -EAGAIN));
1591 
1592 	if (likely(ret >= 0)) {
1593 		__queue_delayed_work(cpu, wq, dwork, delay);
1594 		local_irq_restore(flags);
1595 	}
1596 
1597 	/* -ENOENT from try_to_grab_pending() becomes %true */
1598 	return ret;
1599 }
1600 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1601 
1602 /**
1603  * worker_enter_idle - enter idle state
1604  * @worker: worker which is entering idle state
1605  *
1606  * @worker is entering idle state.  Update stats and idle timer if
1607  * necessary.
1608  *
1609  * LOCKING:
1610  * spin_lock_irq(pool->lock).
1611  */
1612 static void worker_enter_idle(struct worker *worker)
1613 {
1614 	struct worker_pool *pool = worker->pool;
1615 
1616 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1617 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1618 			 (worker->hentry.next || worker->hentry.pprev)))
1619 		return;
1620 
1621 	/* can't use worker_set_flags(), also called from create_worker() */
1622 	worker->flags |= WORKER_IDLE;
1623 	pool->nr_idle++;
1624 	worker->last_active = jiffies;
1625 
1626 	/* idle_list is LIFO */
1627 	list_add(&worker->entry, &pool->idle_list);
1628 
1629 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1630 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1631 
1632 	/*
1633 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1634 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1635 	 * nr_running, the warning may trigger spuriously.  Check iff
1636 	 * unbind is not in progress.
1637 	 */
1638 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1639 		     pool->nr_workers == pool->nr_idle &&
1640 		     atomic_read(&pool->nr_running));
1641 }
1642 
1643 /**
1644  * worker_leave_idle - leave idle state
1645  * @worker: worker which is leaving idle state
1646  *
1647  * @worker is leaving idle state.  Update stats.
1648  *
1649  * LOCKING:
1650  * spin_lock_irq(pool->lock).
1651  */
1652 static void worker_leave_idle(struct worker *worker)
1653 {
1654 	struct worker_pool *pool = worker->pool;
1655 
1656 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1657 		return;
1658 	worker_clr_flags(worker, WORKER_IDLE);
1659 	pool->nr_idle--;
1660 	list_del_init(&worker->entry);
1661 }
1662 
1663 static struct worker *alloc_worker(int node)
1664 {
1665 	struct worker *worker;
1666 
1667 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1668 	if (worker) {
1669 		INIT_LIST_HEAD(&worker->entry);
1670 		INIT_LIST_HEAD(&worker->scheduled);
1671 		INIT_LIST_HEAD(&worker->node);
1672 		/* on creation a worker is in !idle && prep state */
1673 		worker->flags = WORKER_PREP;
1674 	}
1675 	return worker;
1676 }
1677 
1678 /**
1679  * worker_attach_to_pool() - attach a worker to a pool
1680  * @worker: worker to be attached
1681  * @pool: the target pool
1682  *
1683  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1684  * cpu-binding of @worker are kept coordinated with the pool across
1685  * cpu-[un]hotplugs.
1686  */
1687 static void worker_attach_to_pool(struct worker *worker,
1688 				   struct worker_pool *pool)
1689 {
1690 	mutex_lock(&pool->attach_mutex);
1691 
1692 	/*
1693 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1694 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1695 	 */
1696 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1697 
1698 	/*
1699 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1700 	 * stable across this function.  See the comments above the
1701 	 * flag definition for details.
1702 	 */
1703 	if (pool->flags & POOL_DISASSOCIATED)
1704 		worker->flags |= WORKER_UNBOUND;
1705 
1706 	list_add_tail(&worker->node, &pool->workers);
1707 
1708 	mutex_unlock(&pool->attach_mutex);
1709 }
1710 
1711 /**
1712  * worker_detach_from_pool() - detach a worker from its pool
1713  * @worker: worker which is attached to its pool
1714  * @pool: the pool @worker is attached to
1715  *
1716  * Undo the attaching which had been done in worker_attach_to_pool().  The
1717  * caller worker shouldn't access to the pool after detached except it has
1718  * other reference to the pool.
1719  */
1720 static void worker_detach_from_pool(struct worker *worker,
1721 				    struct worker_pool *pool)
1722 {
1723 	struct completion *detach_completion = NULL;
1724 
1725 	mutex_lock(&pool->attach_mutex);
1726 	list_del(&worker->node);
1727 	if (list_empty(&pool->workers))
1728 		detach_completion = pool->detach_completion;
1729 	mutex_unlock(&pool->attach_mutex);
1730 
1731 	/* clear leftover flags without pool->lock after it is detached */
1732 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1733 
1734 	if (detach_completion)
1735 		complete(detach_completion);
1736 }
1737 
1738 /**
1739  * create_worker - create a new workqueue worker
1740  * @pool: pool the new worker will belong to
1741  *
1742  * Create and start a new worker which is attached to @pool.
1743  *
1744  * CONTEXT:
1745  * Might sleep.  Does GFP_KERNEL allocations.
1746  *
1747  * Return:
1748  * Pointer to the newly created worker.
1749  */
1750 static struct worker *create_worker(struct worker_pool *pool)
1751 {
1752 	struct worker *worker = NULL;
1753 	int id = -1;
1754 	char id_buf[16];
1755 
1756 	/* ID is needed to determine kthread name */
1757 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1758 	if (id < 0)
1759 		goto fail;
1760 
1761 	worker = alloc_worker(pool->node);
1762 	if (!worker)
1763 		goto fail;
1764 
1765 	worker->pool = pool;
1766 	worker->id = id;
1767 
1768 	if (pool->cpu >= 0)
1769 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1770 			 pool->attrs->nice < 0  ? "H" : "");
1771 	else
1772 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1773 
1774 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1775 					      "kworker/%s", id_buf);
1776 	if (IS_ERR(worker->task))
1777 		goto fail;
1778 
1779 	set_user_nice(worker->task, pool->attrs->nice);
1780 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1781 
1782 	/* successful, attach the worker to the pool */
1783 	worker_attach_to_pool(worker, pool);
1784 
1785 	/* start the newly created worker */
1786 	spin_lock_irq(&pool->lock);
1787 	worker->pool->nr_workers++;
1788 	worker_enter_idle(worker);
1789 	wake_up_process(worker->task);
1790 	spin_unlock_irq(&pool->lock);
1791 
1792 	return worker;
1793 
1794 fail:
1795 	if (id >= 0)
1796 		ida_simple_remove(&pool->worker_ida, id);
1797 	kfree(worker);
1798 	return NULL;
1799 }
1800 
1801 /**
1802  * destroy_worker - destroy a workqueue worker
1803  * @worker: worker to be destroyed
1804  *
1805  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1806  * be idle.
1807  *
1808  * CONTEXT:
1809  * spin_lock_irq(pool->lock).
1810  */
1811 static void destroy_worker(struct worker *worker)
1812 {
1813 	struct worker_pool *pool = worker->pool;
1814 
1815 	lockdep_assert_held(&pool->lock);
1816 
1817 	/* sanity check frenzy */
1818 	if (WARN_ON(worker->current_work) ||
1819 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1820 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1821 		return;
1822 
1823 	pool->nr_workers--;
1824 	pool->nr_idle--;
1825 
1826 	list_del_init(&worker->entry);
1827 	worker->flags |= WORKER_DIE;
1828 	wake_up_process(worker->task);
1829 }
1830 
1831 static void idle_worker_timeout(unsigned long __pool)
1832 {
1833 	struct worker_pool *pool = (void *)__pool;
1834 
1835 	spin_lock_irq(&pool->lock);
1836 
1837 	while (too_many_workers(pool)) {
1838 		struct worker *worker;
1839 		unsigned long expires;
1840 
1841 		/* idle_list is kept in LIFO order, check the last one */
1842 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1843 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1844 
1845 		if (time_before(jiffies, expires)) {
1846 			mod_timer(&pool->idle_timer, expires);
1847 			break;
1848 		}
1849 
1850 		destroy_worker(worker);
1851 	}
1852 
1853 	spin_unlock_irq(&pool->lock);
1854 }
1855 
1856 static void send_mayday(struct work_struct *work)
1857 {
1858 	struct pool_workqueue *pwq = get_work_pwq(work);
1859 	struct workqueue_struct *wq = pwq->wq;
1860 
1861 	lockdep_assert_held(&wq_mayday_lock);
1862 
1863 	if (!wq->rescuer)
1864 		return;
1865 
1866 	/* mayday mayday mayday */
1867 	if (list_empty(&pwq->mayday_node)) {
1868 		/*
1869 		 * If @pwq is for an unbound wq, its base ref may be put at
1870 		 * any time due to an attribute change.  Pin @pwq until the
1871 		 * rescuer is done with it.
1872 		 */
1873 		get_pwq(pwq);
1874 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1875 		wake_up_process(wq->rescuer->task);
1876 	}
1877 }
1878 
1879 static void pool_mayday_timeout(unsigned long __pool)
1880 {
1881 	struct worker_pool *pool = (void *)__pool;
1882 	struct work_struct *work;
1883 
1884 	spin_lock_irq(&pool->lock);
1885 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1886 
1887 	if (need_to_create_worker(pool)) {
1888 		/*
1889 		 * We've been trying to create a new worker but
1890 		 * haven't been successful.  We might be hitting an
1891 		 * allocation deadlock.  Send distress signals to
1892 		 * rescuers.
1893 		 */
1894 		list_for_each_entry(work, &pool->worklist, entry)
1895 			send_mayday(work);
1896 	}
1897 
1898 	spin_unlock(&wq_mayday_lock);
1899 	spin_unlock_irq(&pool->lock);
1900 
1901 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1902 }
1903 
1904 /**
1905  * maybe_create_worker - create a new worker if necessary
1906  * @pool: pool to create a new worker for
1907  *
1908  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1909  * have at least one idle worker on return from this function.  If
1910  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1911  * sent to all rescuers with works scheduled on @pool to resolve
1912  * possible allocation deadlock.
1913  *
1914  * On return, need_to_create_worker() is guaranteed to be %false and
1915  * may_start_working() %true.
1916  *
1917  * LOCKING:
1918  * spin_lock_irq(pool->lock) which may be released and regrabbed
1919  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1920  * manager.
1921  */
1922 static void maybe_create_worker(struct worker_pool *pool)
1923 __releases(&pool->lock)
1924 __acquires(&pool->lock)
1925 {
1926 restart:
1927 	spin_unlock_irq(&pool->lock);
1928 
1929 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1930 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1931 
1932 	while (true) {
1933 		if (create_worker(pool) || !need_to_create_worker(pool))
1934 			break;
1935 
1936 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1937 
1938 		if (!need_to_create_worker(pool))
1939 			break;
1940 	}
1941 
1942 	del_timer_sync(&pool->mayday_timer);
1943 	spin_lock_irq(&pool->lock);
1944 	/*
1945 	 * This is necessary even after a new worker was just successfully
1946 	 * created as @pool->lock was dropped and the new worker might have
1947 	 * already become busy.
1948 	 */
1949 	if (need_to_create_worker(pool))
1950 		goto restart;
1951 }
1952 
1953 /**
1954  * manage_workers - manage worker pool
1955  * @worker: self
1956  *
1957  * Assume the manager role and manage the worker pool @worker belongs
1958  * to.  At any given time, there can be only zero or one manager per
1959  * pool.  The exclusion is handled automatically by this function.
1960  *
1961  * The caller can safely start processing works on false return.  On
1962  * true return, it's guaranteed that need_to_create_worker() is false
1963  * and may_start_working() is true.
1964  *
1965  * CONTEXT:
1966  * spin_lock_irq(pool->lock) which may be released and regrabbed
1967  * multiple times.  Does GFP_KERNEL allocations.
1968  *
1969  * Return:
1970  * %false if the pool doesn't need management and the caller can safely
1971  * start processing works, %true if management function was performed and
1972  * the conditions that the caller verified before calling the function may
1973  * no longer be true.
1974  */
1975 static bool manage_workers(struct worker *worker)
1976 {
1977 	struct worker_pool *pool = worker->pool;
1978 
1979 	/*
1980 	 * Anyone who successfully grabs manager_arb wins the arbitration
1981 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1982 	 * failure while holding pool->lock reliably indicates that someone
1983 	 * else is managing the pool and the worker which failed trylock
1984 	 * can proceed to executing work items.  This means that anyone
1985 	 * grabbing manager_arb is responsible for actually performing
1986 	 * manager duties.  If manager_arb is grabbed and released without
1987 	 * actual management, the pool may stall indefinitely.
1988 	 */
1989 	if (!mutex_trylock(&pool->manager_arb))
1990 		return false;
1991 	pool->manager = worker;
1992 
1993 	maybe_create_worker(pool);
1994 
1995 	pool->manager = NULL;
1996 	mutex_unlock(&pool->manager_arb);
1997 	return true;
1998 }
1999 
2000 /**
2001  * process_one_work - process single work
2002  * @worker: self
2003  * @work: work to process
2004  *
2005  * Process @work.  This function contains all the logics necessary to
2006  * process a single work including synchronization against and
2007  * interaction with other workers on the same cpu, queueing and
2008  * flushing.  As long as context requirement is met, any worker can
2009  * call this function to process a work.
2010  *
2011  * CONTEXT:
2012  * spin_lock_irq(pool->lock) which is released and regrabbed.
2013  */
2014 static void process_one_work(struct worker *worker, struct work_struct *work)
2015 __releases(&pool->lock)
2016 __acquires(&pool->lock)
2017 {
2018 	struct pool_workqueue *pwq = get_work_pwq(work);
2019 	struct worker_pool *pool = worker->pool;
2020 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2021 	int work_color;
2022 	struct worker *collision;
2023 #ifdef CONFIG_LOCKDEP
2024 	/*
2025 	 * It is permissible to free the struct work_struct from
2026 	 * inside the function that is called from it, this we need to
2027 	 * take into account for lockdep too.  To avoid bogus "held
2028 	 * lock freed" warnings as well as problems when looking into
2029 	 * work->lockdep_map, make a copy and use that here.
2030 	 */
2031 	struct lockdep_map lockdep_map;
2032 
2033 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2034 #endif
2035 	/* ensure we're on the correct CPU */
2036 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2037 		     raw_smp_processor_id() != pool->cpu);
2038 
2039 	/*
2040 	 * A single work shouldn't be executed concurrently by
2041 	 * multiple workers on a single cpu.  Check whether anyone is
2042 	 * already processing the work.  If so, defer the work to the
2043 	 * currently executing one.
2044 	 */
2045 	collision = find_worker_executing_work(pool, work);
2046 	if (unlikely(collision)) {
2047 		move_linked_works(work, &collision->scheduled, NULL);
2048 		return;
2049 	}
2050 
2051 	/* claim and dequeue */
2052 	debug_work_deactivate(work);
2053 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2054 	worker->current_work = work;
2055 	worker->current_func = work->func;
2056 	worker->current_pwq = pwq;
2057 	work_color = get_work_color(work);
2058 
2059 	list_del_init(&work->entry);
2060 
2061 	/*
2062 	 * CPU intensive works don't participate in concurrency management.
2063 	 * They're the scheduler's responsibility.  This takes @worker out
2064 	 * of concurrency management and the next code block will chain
2065 	 * execution of the pending work items.
2066 	 */
2067 	if (unlikely(cpu_intensive))
2068 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2069 
2070 	/*
2071 	 * Wake up another worker if necessary.  The condition is always
2072 	 * false for normal per-cpu workers since nr_running would always
2073 	 * be >= 1 at this point.  This is used to chain execution of the
2074 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2075 	 * UNBOUND and CPU_INTENSIVE ones.
2076 	 */
2077 	if (need_more_worker(pool))
2078 		wake_up_worker(pool);
2079 
2080 	/*
2081 	 * Record the last pool and clear PENDING which should be the last
2082 	 * update to @work.  Also, do this inside @pool->lock so that
2083 	 * PENDING and queued state changes happen together while IRQ is
2084 	 * disabled.
2085 	 */
2086 	set_work_pool_and_clear_pending(work, pool->id);
2087 
2088 	spin_unlock_irq(&pool->lock);
2089 
2090 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2091 	lock_map_acquire(&lockdep_map);
2092 	trace_workqueue_execute_start(work);
2093 	worker->current_func(work);
2094 	/*
2095 	 * While we must be careful to not use "work" after this, the trace
2096 	 * point will only record its address.
2097 	 */
2098 	trace_workqueue_execute_end(work);
2099 	lock_map_release(&lockdep_map);
2100 	lock_map_release(&pwq->wq->lockdep_map);
2101 
2102 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2103 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2104 		       "     last function: %pf\n",
2105 		       current->comm, preempt_count(), task_pid_nr(current),
2106 		       worker->current_func);
2107 		debug_show_held_locks(current);
2108 		dump_stack();
2109 	}
2110 
2111 	/*
2112 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2113 	 * kernels, where a requeueing work item waiting for something to
2114 	 * happen could deadlock with stop_machine as such work item could
2115 	 * indefinitely requeue itself while all other CPUs are trapped in
2116 	 * stop_machine. At the same time, report a quiescent RCU state so
2117 	 * the same condition doesn't freeze RCU.
2118 	 */
2119 	cond_resched_rcu_qs();
2120 
2121 	spin_lock_irq(&pool->lock);
2122 
2123 	/* clear cpu intensive status */
2124 	if (unlikely(cpu_intensive))
2125 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2126 
2127 	/* we're done with it, release */
2128 	hash_del(&worker->hentry);
2129 	worker->current_work = NULL;
2130 	worker->current_func = NULL;
2131 	worker->current_pwq = NULL;
2132 	worker->desc_valid = false;
2133 	pwq_dec_nr_in_flight(pwq, work_color);
2134 }
2135 
2136 /**
2137  * process_scheduled_works - process scheduled works
2138  * @worker: self
2139  *
2140  * Process all scheduled works.  Please note that the scheduled list
2141  * may change while processing a work, so this function repeatedly
2142  * fetches a work from the top and executes it.
2143  *
2144  * CONTEXT:
2145  * spin_lock_irq(pool->lock) which may be released and regrabbed
2146  * multiple times.
2147  */
2148 static void process_scheduled_works(struct worker *worker)
2149 {
2150 	while (!list_empty(&worker->scheduled)) {
2151 		struct work_struct *work = list_first_entry(&worker->scheduled,
2152 						struct work_struct, entry);
2153 		process_one_work(worker, work);
2154 	}
2155 }
2156 
2157 /**
2158  * worker_thread - the worker thread function
2159  * @__worker: self
2160  *
2161  * The worker thread function.  All workers belong to a worker_pool -
2162  * either a per-cpu one or dynamic unbound one.  These workers process all
2163  * work items regardless of their specific target workqueue.  The only
2164  * exception is work items which belong to workqueues with a rescuer which
2165  * will be explained in rescuer_thread().
2166  *
2167  * Return: 0
2168  */
2169 static int worker_thread(void *__worker)
2170 {
2171 	struct worker *worker = __worker;
2172 	struct worker_pool *pool = worker->pool;
2173 
2174 	/* tell the scheduler that this is a workqueue worker */
2175 	worker->task->flags |= PF_WQ_WORKER;
2176 woke_up:
2177 	spin_lock_irq(&pool->lock);
2178 
2179 	/* am I supposed to die? */
2180 	if (unlikely(worker->flags & WORKER_DIE)) {
2181 		spin_unlock_irq(&pool->lock);
2182 		WARN_ON_ONCE(!list_empty(&worker->entry));
2183 		worker->task->flags &= ~PF_WQ_WORKER;
2184 
2185 		set_task_comm(worker->task, "kworker/dying");
2186 		ida_simple_remove(&pool->worker_ida, worker->id);
2187 		worker_detach_from_pool(worker, pool);
2188 		kfree(worker);
2189 		return 0;
2190 	}
2191 
2192 	worker_leave_idle(worker);
2193 recheck:
2194 	/* no more worker necessary? */
2195 	if (!need_more_worker(pool))
2196 		goto sleep;
2197 
2198 	/* do we need to manage? */
2199 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2200 		goto recheck;
2201 
2202 	/*
2203 	 * ->scheduled list can only be filled while a worker is
2204 	 * preparing to process a work or actually processing it.
2205 	 * Make sure nobody diddled with it while I was sleeping.
2206 	 */
2207 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2208 
2209 	/*
2210 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2211 	 * worker or that someone else has already assumed the manager
2212 	 * role.  This is where @worker starts participating in concurrency
2213 	 * management if applicable and concurrency management is restored
2214 	 * after being rebound.  See rebind_workers() for details.
2215 	 */
2216 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2217 
2218 	do {
2219 		struct work_struct *work =
2220 			list_first_entry(&pool->worklist,
2221 					 struct work_struct, entry);
2222 
2223 		pool->watchdog_ts = jiffies;
2224 
2225 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2226 			/* optimization path, not strictly necessary */
2227 			process_one_work(worker, work);
2228 			if (unlikely(!list_empty(&worker->scheduled)))
2229 				process_scheduled_works(worker);
2230 		} else {
2231 			move_linked_works(work, &worker->scheduled, NULL);
2232 			process_scheduled_works(worker);
2233 		}
2234 	} while (keep_working(pool));
2235 
2236 	worker_set_flags(worker, WORKER_PREP);
2237 sleep:
2238 	/*
2239 	 * pool->lock is held and there's no work to process and no need to
2240 	 * manage, sleep.  Workers are woken up only while holding
2241 	 * pool->lock or from local cpu, so setting the current state
2242 	 * before releasing pool->lock is enough to prevent losing any
2243 	 * event.
2244 	 */
2245 	worker_enter_idle(worker);
2246 	__set_current_state(TASK_INTERRUPTIBLE);
2247 	spin_unlock_irq(&pool->lock);
2248 	schedule();
2249 	goto woke_up;
2250 }
2251 
2252 /**
2253  * rescuer_thread - the rescuer thread function
2254  * @__rescuer: self
2255  *
2256  * Workqueue rescuer thread function.  There's one rescuer for each
2257  * workqueue which has WQ_MEM_RECLAIM set.
2258  *
2259  * Regular work processing on a pool may block trying to create a new
2260  * worker which uses GFP_KERNEL allocation which has slight chance of
2261  * developing into deadlock if some works currently on the same queue
2262  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2263  * the problem rescuer solves.
2264  *
2265  * When such condition is possible, the pool summons rescuers of all
2266  * workqueues which have works queued on the pool and let them process
2267  * those works so that forward progress can be guaranteed.
2268  *
2269  * This should happen rarely.
2270  *
2271  * Return: 0
2272  */
2273 static int rescuer_thread(void *__rescuer)
2274 {
2275 	struct worker *rescuer = __rescuer;
2276 	struct workqueue_struct *wq = rescuer->rescue_wq;
2277 	struct list_head *scheduled = &rescuer->scheduled;
2278 	bool should_stop;
2279 
2280 	set_user_nice(current, RESCUER_NICE_LEVEL);
2281 
2282 	/*
2283 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2284 	 * doesn't participate in concurrency management.
2285 	 */
2286 	rescuer->task->flags |= PF_WQ_WORKER;
2287 repeat:
2288 	set_current_state(TASK_INTERRUPTIBLE);
2289 
2290 	/*
2291 	 * By the time the rescuer is requested to stop, the workqueue
2292 	 * shouldn't have any work pending, but @wq->maydays may still have
2293 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2294 	 * all the work items before the rescuer got to them.  Go through
2295 	 * @wq->maydays processing before acting on should_stop so that the
2296 	 * list is always empty on exit.
2297 	 */
2298 	should_stop = kthread_should_stop();
2299 
2300 	/* see whether any pwq is asking for help */
2301 	spin_lock_irq(&wq_mayday_lock);
2302 
2303 	while (!list_empty(&wq->maydays)) {
2304 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2305 					struct pool_workqueue, mayday_node);
2306 		struct worker_pool *pool = pwq->pool;
2307 		struct work_struct *work, *n;
2308 		bool first = true;
2309 
2310 		__set_current_state(TASK_RUNNING);
2311 		list_del_init(&pwq->mayday_node);
2312 
2313 		spin_unlock_irq(&wq_mayday_lock);
2314 
2315 		worker_attach_to_pool(rescuer, pool);
2316 
2317 		spin_lock_irq(&pool->lock);
2318 		rescuer->pool = pool;
2319 
2320 		/*
2321 		 * Slurp in all works issued via this workqueue and
2322 		 * process'em.
2323 		 */
2324 		WARN_ON_ONCE(!list_empty(scheduled));
2325 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2326 			if (get_work_pwq(work) == pwq) {
2327 				if (first)
2328 					pool->watchdog_ts = jiffies;
2329 				move_linked_works(work, scheduled, &n);
2330 			}
2331 			first = false;
2332 		}
2333 
2334 		if (!list_empty(scheduled)) {
2335 			process_scheduled_works(rescuer);
2336 
2337 			/*
2338 			 * The above execution of rescued work items could
2339 			 * have created more to rescue through
2340 			 * pwq_activate_first_delayed() or chained
2341 			 * queueing.  Let's put @pwq back on mayday list so
2342 			 * that such back-to-back work items, which may be
2343 			 * being used to relieve memory pressure, don't
2344 			 * incur MAYDAY_INTERVAL delay inbetween.
2345 			 */
2346 			if (need_to_create_worker(pool)) {
2347 				spin_lock(&wq_mayday_lock);
2348 				get_pwq(pwq);
2349 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2350 				spin_unlock(&wq_mayday_lock);
2351 			}
2352 		}
2353 
2354 		/*
2355 		 * Put the reference grabbed by send_mayday().  @pool won't
2356 		 * go away while we're still attached to it.
2357 		 */
2358 		put_pwq(pwq);
2359 
2360 		/*
2361 		 * Leave this pool.  If need_more_worker() is %true, notify a
2362 		 * regular worker; otherwise, we end up with 0 concurrency
2363 		 * and stalling the execution.
2364 		 */
2365 		if (need_more_worker(pool))
2366 			wake_up_worker(pool);
2367 
2368 		rescuer->pool = NULL;
2369 		spin_unlock_irq(&pool->lock);
2370 
2371 		worker_detach_from_pool(rescuer, pool);
2372 
2373 		spin_lock_irq(&wq_mayday_lock);
2374 	}
2375 
2376 	spin_unlock_irq(&wq_mayday_lock);
2377 
2378 	if (should_stop) {
2379 		__set_current_state(TASK_RUNNING);
2380 		rescuer->task->flags &= ~PF_WQ_WORKER;
2381 		return 0;
2382 	}
2383 
2384 	/* rescuers should never participate in concurrency management */
2385 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2386 	schedule();
2387 	goto repeat;
2388 }
2389 
2390 /**
2391  * check_flush_dependency - check for flush dependency sanity
2392  * @target_wq: workqueue being flushed
2393  * @target_work: work item being flushed (NULL for workqueue flushes)
2394  *
2395  * %current is trying to flush the whole @target_wq or @target_work on it.
2396  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2397  * reclaiming memory or running on a workqueue which doesn't have
2398  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2399  * a deadlock.
2400  */
2401 static void check_flush_dependency(struct workqueue_struct *target_wq,
2402 				   struct work_struct *target_work)
2403 {
2404 	work_func_t target_func = target_work ? target_work->func : NULL;
2405 	struct worker *worker;
2406 
2407 	if (target_wq->flags & WQ_MEM_RECLAIM)
2408 		return;
2409 
2410 	worker = current_wq_worker();
2411 
2412 	WARN_ONCE(current->flags & PF_MEMALLOC,
2413 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2414 		  current->pid, current->comm, target_wq->name, target_func);
2415 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2416 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2417 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2418 		  worker->current_pwq->wq->name, worker->current_func,
2419 		  target_wq->name, target_func);
2420 }
2421 
2422 struct wq_barrier {
2423 	struct work_struct	work;
2424 	struct completion	done;
2425 	struct task_struct	*task;	/* purely informational */
2426 };
2427 
2428 static void wq_barrier_func(struct work_struct *work)
2429 {
2430 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2431 	complete(&barr->done);
2432 }
2433 
2434 /**
2435  * insert_wq_barrier - insert a barrier work
2436  * @pwq: pwq to insert barrier into
2437  * @barr: wq_barrier to insert
2438  * @target: target work to attach @barr to
2439  * @worker: worker currently executing @target, NULL if @target is not executing
2440  *
2441  * @barr is linked to @target such that @barr is completed only after
2442  * @target finishes execution.  Please note that the ordering
2443  * guarantee is observed only with respect to @target and on the local
2444  * cpu.
2445  *
2446  * Currently, a queued barrier can't be canceled.  This is because
2447  * try_to_grab_pending() can't determine whether the work to be
2448  * grabbed is at the head of the queue and thus can't clear LINKED
2449  * flag of the previous work while there must be a valid next work
2450  * after a work with LINKED flag set.
2451  *
2452  * Note that when @worker is non-NULL, @target may be modified
2453  * underneath us, so we can't reliably determine pwq from @target.
2454  *
2455  * CONTEXT:
2456  * spin_lock_irq(pool->lock).
2457  */
2458 static void insert_wq_barrier(struct pool_workqueue *pwq,
2459 			      struct wq_barrier *barr,
2460 			      struct work_struct *target, struct worker *worker)
2461 {
2462 	struct list_head *head;
2463 	unsigned int linked = 0;
2464 
2465 	/*
2466 	 * debugobject calls are safe here even with pool->lock locked
2467 	 * as we know for sure that this will not trigger any of the
2468 	 * checks and call back into the fixup functions where we
2469 	 * might deadlock.
2470 	 */
2471 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2472 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2473 	init_completion(&barr->done);
2474 	barr->task = current;
2475 
2476 	/*
2477 	 * If @target is currently being executed, schedule the
2478 	 * barrier to the worker; otherwise, put it after @target.
2479 	 */
2480 	if (worker)
2481 		head = worker->scheduled.next;
2482 	else {
2483 		unsigned long *bits = work_data_bits(target);
2484 
2485 		head = target->entry.next;
2486 		/* there can already be other linked works, inherit and set */
2487 		linked = *bits & WORK_STRUCT_LINKED;
2488 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2489 	}
2490 
2491 	debug_work_activate(&barr->work);
2492 	insert_work(pwq, &barr->work, head,
2493 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2494 }
2495 
2496 /**
2497  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2498  * @wq: workqueue being flushed
2499  * @flush_color: new flush color, < 0 for no-op
2500  * @work_color: new work color, < 0 for no-op
2501  *
2502  * Prepare pwqs for workqueue flushing.
2503  *
2504  * If @flush_color is non-negative, flush_color on all pwqs should be
2505  * -1.  If no pwq has in-flight commands at the specified color, all
2506  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2507  * has in flight commands, its pwq->flush_color is set to
2508  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2509  * wakeup logic is armed and %true is returned.
2510  *
2511  * The caller should have initialized @wq->first_flusher prior to
2512  * calling this function with non-negative @flush_color.  If
2513  * @flush_color is negative, no flush color update is done and %false
2514  * is returned.
2515  *
2516  * If @work_color is non-negative, all pwqs should have the same
2517  * work_color which is previous to @work_color and all will be
2518  * advanced to @work_color.
2519  *
2520  * CONTEXT:
2521  * mutex_lock(wq->mutex).
2522  *
2523  * Return:
2524  * %true if @flush_color >= 0 and there's something to flush.  %false
2525  * otherwise.
2526  */
2527 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2528 				      int flush_color, int work_color)
2529 {
2530 	bool wait = false;
2531 	struct pool_workqueue *pwq;
2532 
2533 	if (flush_color >= 0) {
2534 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2535 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2536 	}
2537 
2538 	for_each_pwq(pwq, wq) {
2539 		struct worker_pool *pool = pwq->pool;
2540 
2541 		spin_lock_irq(&pool->lock);
2542 
2543 		if (flush_color >= 0) {
2544 			WARN_ON_ONCE(pwq->flush_color != -1);
2545 
2546 			if (pwq->nr_in_flight[flush_color]) {
2547 				pwq->flush_color = flush_color;
2548 				atomic_inc(&wq->nr_pwqs_to_flush);
2549 				wait = true;
2550 			}
2551 		}
2552 
2553 		if (work_color >= 0) {
2554 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2555 			pwq->work_color = work_color;
2556 		}
2557 
2558 		spin_unlock_irq(&pool->lock);
2559 	}
2560 
2561 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2562 		complete(&wq->first_flusher->done);
2563 
2564 	return wait;
2565 }
2566 
2567 /**
2568  * flush_workqueue - ensure that any scheduled work has run to completion.
2569  * @wq: workqueue to flush
2570  *
2571  * This function sleeps until all work items which were queued on entry
2572  * have finished execution, but it is not livelocked by new incoming ones.
2573  */
2574 void flush_workqueue(struct workqueue_struct *wq)
2575 {
2576 	struct wq_flusher this_flusher = {
2577 		.list = LIST_HEAD_INIT(this_flusher.list),
2578 		.flush_color = -1,
2579 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2580 	};
2581 	int next_color;
2582 
2583 	lock_map_acquire(&wq->lockdep_map);
2584 	lock_map_release(&wq->lockdep_map);
2585 
2586 	mutex_lock(&wq->mutex);
2587 
2588 	/*
2589 	 * Start-to-wait phase
2590 	 */
2591 	next_color = work_next_color(wq->work_color);
2592 
2593 	if (next_color != wq->flush_color) {
2594 		/*
2595 		 * Color space is not full.  The current work_color
2596 		 * becomes our flush_color and work_color is advanced
2597 		 * by one.
2598 		 */
2599 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2600 		this_flusher.flush_color = wq->work_color;
2601 		wq->work_color = next_color;
2602 
2603 		if (!wq->first_flusher) {
2604 			/* no flush in progress, become the first flusher */
2605 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2606 
2607 			wq->first_flusher = &this_flusher;
2608 
2609 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2610 						       wq->work_color)) {
2611 				/* nothing to flush, done */
2612 				wq->flush_color = next_color;
2613 				wq->first_flusher = NULL;
2614 				goto out_unlock;
2615 			}
2616 		} else {
2617 			/* wait in queue */
2618 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2619 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2620 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2621 		}
2622 	} else {
2623 		/*
2624 		 * Oops, color space is full, wait on overflow queue.
2625 		 * The next flush completion will assign us
2626 		 * flush_color and transfer to flusher_queue.
2627 		 */
2628 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2629 	}
2630 
2631 	check_flush_dependency(wq, NULL);
2632 
2633 	mutex_unlock(&wq->mutex);
2634 
2635 	wait_for_completion(&this_flusher.done);
2636 
2637 	/*
2638 	 * Wake-up-and-cascade phase
2639 	 *
2640 	 * First flushers are responsible for cascading flushes and
2641 	 * handling overflow.  Non-first flushers can simply return.
2642 	 */
2643 	if (wq->first_flusher != &this_flusher)
2644 		return;
2645 
2646 	mutex_lock(&wq->mutex);
2647 
2648 	/* we might have raced, check again with mutex held */
2649 	if (wq->first_flusher != &this_flusher)
2650 		goto out_unlock;
2651 
2652 	wq->first_flusher = NULL;
2653 
2654 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2655 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2656 
2657 	while (true) {
2658 		struct wq_flusher *next, *tmp;
2659 
2660 		/* complete all the flushers sharing the current flush color */
2661 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2662 			if (next->flush_color != wq->flush_color)
2663 				break;
2664 			list_del_init(&next->list);
2665 			complete(&next->done);
2666 		}
2667 
2668 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2669 			     wq->flush_color != work_next_color(wq->work_color));
2670 
2671 		/* this flush_color is finished, advance by one */
2672 		wq->flush_color = work_next_color(wq->flush_color);
2673 
2674 		/* one color has been freed, handle overflow queue */
2675 		if (!list_empty(&wq->flusher_overflow)) {
2676 			/*
2677 			 * Assign the same color to all overflowed
2678 			 * flushers, advance work_color and append to
2679 			 * flusher_queue.  This is the start-to-wait
2680 			 * phase for these overflowed flushers.
2681 			 */
2682 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2683 				tmp->flush_color = wq->work_color;
2684 
2685 			wq->work_color = work_next_color(wq->work_color);
2686 
2687 			list_splice_tail_init(&wq->flusher_overflow,
2688 					      &wq->flusher_queue);
2689 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2690 		}
2691 
2692 		if (list_empty(&wq->flusher_queue)) {
2693 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2694 			break;
2695 		}
2696 
2697 		/*
2698 		 * Need to flush more colors.  Make the next flusher
2699 		 * the new first flusher and arm pwqs.
2700 		 */
2701 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2702 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2703 
2704 		list_del_init(&next->list);
2705 		wq->first_flusher = next;
2706 
2707 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2708 			break;
2709 
2710 		/*
2711 		 * Meh... this color is already done, clear first
2712 		 * flusher and repeat cascading.
2713 		 */
2714 		wq->first_flusher = NULL;
2715 	}
2716 
2717 out_unlock:
2718 	mutex_unlock(&wq->mutex);
2719 }
2720 EXPORT_SYMBOL(flush_workqueue);
2721 
2722 /**
2723  * drain_workqueue - drain a workqueue
2724  * @wq: workqueue to drain
2725  *
2726  * Wait until the workqueue becomes empty.  While draining is in progress,
2727  * only chain queueing is allowed.  IOW, only currently pending or running
2728  * work items on @wq can queue further work items on it.  @wq is flushed
2729  * repeatedly until it becomes empty.  The number of flushing is determined
2730  * by the depth of chaining and should be relatively short.  Whine if it
2731  * takes too long.
2732  */
2733 void drain_workqueue(struct workqueue_struct *wq)
2734 {
2735 	unsigned int flush_cnt = 0;
2736 	struct pool_workqueue *pwq;
2737 
2738 	/*
2739 	 * __queue_work() needs to test whether there are drainers, is much
2740 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2741 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2742 	 */
2743 	mutex_lock(&wq->mutex);
2744 	if (!wq->nr_drainers++)
2745 		wq->flags |= __WQ_DRAINING;
2746 	mutex_unlock(&wq->mutex);
2747 reflush:
2748 	flush_workqueue(wq);
2749 
2750 	mutex_lock(&wq->mutex);
2751 
2752 	for_each_pwq(pwq, wq) {
2753 		bool drained;
2754 
2755 		spin_lock_irq(&pwq->pool->lock);
2756 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2757 		spin_unlock_irq(&pwq->pool->lock);
2758 
2759 		if (drained)
2760 			continue;
2761 
2762 		if (++flush_cnt == 10 ||
2763 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2764 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2765 				wq->name, flush_cnt);
2766 
2767 		mutex_unlock(&wq->mutex);
2768 		goto reflush;
2769 	}
2770 
2771 	if (!--wq->nr_drainers)
2772 		wq->flags &= ~__WQ_DRAINING;
2773 	mutex_unlock(&wq->mutex);
2774 }
2775 EXPORT_SYMBOL_GPL(drain_workqueue);
2776 
2777 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2778 {
2779 	struct worker *worker = NULL;
2780 	struct worker_pool *pool;
2781 	struct pool_workqueue *pwq;
2782 
2783 	might_sleep();
2784 
2785 	local_irq_disable();
2786 	pool = get_work_pool(work);
2787 	if (!pool) {
2788 		local_irq_enable();
2789 		return false;
2790 	}
2791 
2792 	spin_lock(&pool->lock);
2793 	/* see the comment in try_to_grab_pending() with the same code */
2794 	pwq = get_work_pwq(work);
2795 	if (pwq) {
2796 		if (unlikely(pwq->pool != pool))
2797 			goto already_gone;
2798 	} else {
2799 		worker = find_worker_executing_work(pool, work);
2800 		if (!worker)
2801 			goto already_gone;
2802 		pwq = worker->current_pwq;
2803 	}
2804 
2805 	check_flush_dependency(pwq->wq, work);
2806 
2807 	insert_wq_barrier(pwq, barr, work, worker);
2808 	spin_unlock_irq(&pool->lock);
2809 
2810 	/*
2811 	 * If @max_active is 1 or rescuer is in use, flushing another work
2812 	 * item on the same workqueue may lead to deadlock.  Make sure the
2813 	 * flusher is not running on the same workqueue by verifying write
2814 	 * access.
2815 	 */
2816 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2817 		lock_map_acquire(&pwq->wq->lockdep_map);
2818 	else
2819 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2820 	lock_map_release(&pwq->wq->lockdep_map);
2821 
2822 	return true;
2823 already_gone:
2824 	spin_unlock_irq(&pool->lock);
2825 	return false;
2826 }
2827 
2828 /**
2829  * flush_work - wait for a work to finish executing the last queueing instance
2830  * @work: the work to flush
2831  *
2832  * Wait until @work has finished execution.  @work is guaranteed to be idle
2833  * on return if it hasn't been requeued since flush started.
2834  *
2835  * Return:
2836  * %true if flush_work() waited for the work to finish execution,
2837  * %false if it was already idle.
2838  */
2839 bool flush_work(struct work_struct *work)
2840 {
2841 	struct wq_barrier barr;
2842 
2843 	lock_map_acquire(&work->lockdep_map);
2844 	lock_map_release(&work->lockdep_map);
2845 
2846 	if (start_flush_work(work, &barr)) {
2847 		wait_for_completion(&barr.done);
2848 		destroy_work_on_stack(&barr.work);
2849 		return true;
2850 	} else {
2851 		return false;
2852 	}
2853 }
2854 EXPORT_SYMBOL_GPL(flush_work);
2855 
2856 struct cwt_wait {
2857 	wait_queue_t		wait;
2858 	struct work_struct	*work;
2859 };
2860 
2861 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2862 {
2863 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2864 
2865 	if (cwait->work != key)
2866 		return 0;
2867 	return autoremove_wake_function(wait, mode, sync, key);
2868 }
2869 
2870 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2871 {
2872 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2873 	unsigned long flags;
2874 	int ret;
2875 
2876 	do {
2877 		ret = try_to_grab_pending(work, is_dwork, &flags);
2878 		/*
2879 		 * If someone else is already canceling, wait for it to
2880 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2881 		 * because we may get scheduled between @work's completion
2882 		 * and the other canceling task resuming and clearing
2883 		 * CANCELING - flush_work() will return false immediately
2884 		 * as @work is no longer busy, try_to_grab_pending() will
2885 		 * return -ENOENT as @work is still being canceled and the
2886 		 * other canceling task won't be able to clear CANCELING as
2887 		 * we're hogging the CPU.
2888 		 *
2889 		 * Let's wait for completion using a waitqueue.  As this
2890 		 * may lead to the thundering herd problem, use a custom
2891 		 * wake function which matches @work along with exclusive
2892 		 * wait and wakeup.
2893 		 */
2894 		if (unlikely(ret == -ENOENT)) {
2895 			struct cwt_wait cwait;
2896 
2897 			init_wait(&cwait.wait);
2898 			cwait.wait.func = cwt_wakefn;
2899 			cwait.work = work;
2900 
2901 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2902 						  TASK_UNINTERRUPTIBLE);
2903 			if (work_is_canceling(work))
2904 				schedule();
2905 			finish_wait(&cancel_waitq, &cwait.wait);
2906 		}
2907 	} while (unlikely(ret < 0));
2908 
2909 	/* tell other tasks trying to grab @work to back off */
2910 	mark_work_canceling(work);
2911 	local_irq_restore(flags);
2912 
2913 	flush_work(work);
2914 	clear_work_data(work);
2915 
2916 	/*
2917 	 * Paired with prepare_to_wait() above so that either
2918 	 * waitqueue_active() is visible here or !work_is_canceling() is
2919 	 * visible there.
2920 	 */
2921 	smp_mb();
2922 	if (waitqueue_active(&cancel_waitq))
2923 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2924 
2925 	return ret;
2926 }
2927 
2928 /**
2929  * cancel_work_sync - cancel a work and wait for it to finish
2930  * @work: the work to cancel
2931  *
2932  * Cancel @work and wait for its execution to finish.  This function
2933  * can be used even if the work re-queues itself or migrates to
2934  * another workqueue.  On return from this function, @work is
2935  * guaranteed to be not pending or executing on any CPU.
2936  *
2937  * cancel_work_sync(&delayed_work->work) must not be used for
2938  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2939  *
2940  * The caller must ensure that the workqueue on which @work was last
2941  * queued can't be destroyed before this function returns.
2942  *
2943  * Return:
2944  * %true if @work was pending, %false otherwise.
2945  */
2946 bool cancel_work_sync(struct work_struct *work)
2947 {
2948 	return __cancel_work_timer(work, false);
2949 }
2950 EXPORT_SYMBOL_GPL(cancel_work_sync);
2951 
2952 /**
2953  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2954  * @dwork: the delayed work to flush
2955  *
2956  * Delayed timer is cancelled and the pending work is queued for
2957  * immediate execution.  Like flush_work(), this function only
2958  * considers the last queueing instance of @dwork.
2959  *
2960  * Return:
2961  * %true if flush_work() waited for the work to finish execution,
2962  * %false if it was already idle.
2963  */
2964 bool flush_delayed_work(struct delayed_work *dwork)
2965 {
2966 	local_irq_disable();
2967 	if (del_timer_sync(&dwork->timer))
2968 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2969 	local_irq_enable();
2970 	return flush_work(&dwork->work);
2971 }
2972 EXPORT_SYMBOL(flush_delayed_work);
2973 
2974 /**
2975  * cancel_delayed_work - cancel a delayed work
2976  * @dwork: delayed_work to cancel
2977  *
2978  * Kill off a pending delayed_work.
2979  *
2980  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2981  * pending.
2982  *
2983  * Note:
2984  * The work callback function may still be running on return, unless
2985  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2986  * use cancel_delayed_work_sync() to wait on it.
2987  *
2988  * This function is safe to call from any context including IRQ handler.
2989  */
2990 bool cancel_delayed_work(struct delayed_work *dwork)
2991 {
2992 	unsigned long flags;
2993 	int ret;
2994 
2995 	do {
2996 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2997 	} while (unlikely(ret == -EAGAIN));
2998 
2999 	if (unlikely(ret < 0))
3000 		return false;
3001 
3002 	set_work_pool_and_clear_pending(&dwork->work,
3003 					get_work_pool_id(&dwork->work));
3004 	local_irq_restore(flags);
3005 	return ret;
3006 }
3007 EXPORT_SYMBOL(cancel_delayed_work);
3008 
3009 /**
3010  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3011  * @dwork: the delayed work cancel
3012  *
3013  * This is cancel_work_sync() for delayed works.
3014  *
3015  * Return:
3016  * %true if @dwork was pending, %false otherwise.
3017  */
3018 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3019 {
3020 	return __cancel_work_timer(&dwork->work, true);
3021 }
3022 EXPORT_SYMBOL(cancel_delayed_work_sync);
3023 
3024 /**
3025  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3026  * @func: the function to call
3027  *
3028  * schedule_on_each_cpu() executes @func on each online CPU using the
3029  * system workqueue and blocks until all CPUs have completed.
3030  * schedule_on_each_cpu() is very slow.
3031  *
3032  * Return:
3033  * 0 on success, -errno on failure.
3034  */
3035 int schedule_on_each_cpu(work_func_t func)
3036 {
3037 	int cpu;
3038 	struct work_struct __percpu *works;
3039 
3040 	works = alloc_percpu(struct work_struct);
3041 	if (!works)
3042 		return -ENOMEM;
3043 
3044 	get_online_cpus();
3045 
3046 	for_each_online_cpu(cpu) {
3047 		struct work_struct *work = per_cpu_ptr(works, cpu);
3048 
3049 		INIT_WORK(work, func);
3050 		schedule_work_on(cpu, work);
3051 	}
3052 
3053 	for_each_online_cpu(cpu)
3054 		flush_work(per_cpu_ptr(works, cpu));
3055 
3056 	put_online_cpus();
3057 	free_percpu(works);
3058 	return 0;
3059 }
3060 
3061 /**
3062  * execute_in_process_context - reliably execute the routine with user context
3063  * @fn:		the function to execute
3064  * @ew:		guaranteed storage for the execute work structure (must
3065  *		be available when the work executes)
3066  *
3067  * Executes the function immediately if process context is available,
3068  * otherwise schedules the function for delayed execution.
3069  *
3070  * Return:	0 - function was executed
3071  *		1 - function was scheduled for execution
3072  */
3073 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3074 {
3075 	if (!in_interrupt()) {
3076 		fn(&ew->work);
3077 		return 0;
3078 	}
3079 
3080 	INIT_WORK(&ew->work, fn);
3081 	schedule_work(&ew->work);
3082 
3083 	return 1;
3084 }
3085 EXPORT_SYMBOL_GPL(execute_in_process_context);
3086 
3087 /**
3088  * free_workqueue_attrs - free a workqueue_attrs
3089  * @attrs: workqueue_attrs to free
3090  *
3091  * Undo alloc_workqueue_attrs().
3092  */
3093 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3094 {
3095 	if (attrs) {
3096 		free_cpumask_var(attrs->cpumask);
3097 		kfree(attrs);
3098 	}
3099 }
3100 
3101 /**
3102  * alloc_workqueue_attrs - allocate a workqueue_attrs
3103  * @gfp_mask: allocation mask to use
3104  *
3105  * Allocate a new workqueue_attrs, initialize with default settings and
3106  * return it.
3107  *
3108  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3109  */
3110 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3111 {
3112 	struct workqueue_attrs *attrs;
3113 
3114 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3115 	if (!attrs)
3116 		goto fail;
3117 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3118 		goto fail;
3119 
3120 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3121 	return attrs;
3122 fail:
3123 	free_workqueue_attrs(attrs);
3124 	return NULL;
3125 }
3126 
3127 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3128 				 const struct workqueue_attrs *from)
3129 {
3130 	to->nice = from->nice;
3131 	cpumask_copy(to->cpumask, from->cpumask);
3132 	/*
3133 	 * Unlike hash and equality test, this function doesn't ignore
3134 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3135 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3136 	 */
3137 	to->no_numa = from->no_numa;
3138 }
3139 
3140 /* hash value of the content of @attr */
3141 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3142 {
3143 	u32 hash = 0;
3144 
3145 	hash = jhash_1word(attrs->nice, hash);
3146 	hash = jhash(cpumask_bits(attrs->cpumask),
3147 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3148 	return hash;
3149 }
3150 
3151 /* content equality test */
3152 static bool wqattrs_equal(const struct workqueue_attrs *a,
3153 			  const struct workqueue_attrs *b)
3154 {
3155 	if (a->nice != b->nice)
3156 		return false;
3157 	if (!cpumask_equal(a->cpumask, b->cpumask))
3158 		return false;
3159 	return true;
3160 }
3161 
3162 /**
3163  * init_worker_pool - initialize a newly zalloc'd worker_pool
3164  * @pool: worker_pool to initialize
3165  *
3166  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3167  *
3168  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3169  * inside @pool proper are initialized and put_unbound_pool() can be called
3170  * on @pool safely to release it.
3171  */
3172 static int init_worker_pool(struct worker_pool *pool)
3173 {
3174 	spin_lock_init(&pool->lock);
3175 	pool->id = -1;
3176 	pool->cpu = -1;
3177 	pool->node = NUMA_NO_NODE;
3178 	pool->flags |= POOL_DISASSOCIATED;
3179 	pool->watchdog_ts = jiffies;
3180 	INIT_LIST_HEAD(&pool->worklist);
3181 	INIT_LIST_HEAD(&pool->idle_list);
3182 	hash_init(pool->busy_hash);
3183 
3184 	init_timer_deferrable(&pool->idle_timer);
3185 	pool->idle_timer.function = idle_worker_timeout;
3186 	pool->idle_timer.data = (unsigned long)pool;
3187 
3188 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3189 		    (unsigned long)pool);
3190 
3191 	mutex_init(&pool->manager_arb);
3192 	mutex_init(&pool->attach_mutex);
3193 	INIT_LIST_HEAD(&pool->workers);
3194 
3195 	ida_init(&pool->worker_ida);
3196 	INIT_HLIST_NODE(&pool->hash_node);
3197 	pool->refcnt = 1;
3198 
3199 	/* shouldn't fail above this point */
3200 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3201 	if (!pool->attrs)
3202 		return -ENOMEM;
3203 	return 0;
3204 }
3205 
3206 static void rcu_free_wq(struct rcu_head *rcu)
3207 {
3208 	struct workqueue_struct *wq =
3209 		container_of(rcu, struct workqueue_struct, rcu);
3210 
3211 	if (!(wq->flags & WQ_UNBOUND))
3212 		free_percpu(wq->cpu_pwqs);
3213 	else
3214 		free_workqueue_attrs(wq->unbound_attrs);
3215 
3216 	kfree(wq->rescuer);
3217 	kfree(wq);
3218 }
3219 
3220 static void rcu_free_pool(struct rcu_head *rcu)
3221 {
3222 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3223 
3224 	ida_destroy(&pool->worker_ida);
3225 	free_workqueue_attrs(pool->attrs);
3226 	kfree(pool);
3227 }
3228 
3229 /**
3230  * put_unbound_pool - put a worker_pool
3231  * @pool: worker_pool to put
3232  *
3233  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3234  * safe manner.  get_unbound_pool() calls this function on its failure path
3235  * and this function should be able to release pools which went through,
3236  * successfully or not, init_worker_pool().
3237  *
3238  * Should be called with wq_pool_mutex held.
3239  */
3240 static void put_unbound_pool(struct worker_pool *pool)
3241 {
3242 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3243 	struct worker *worker;
3244 
3245 	lockdep_assert_held(&wq_pool_mutex);
3246 
3247 	if (--pool->refcnt)
3248 		return;
3249 
3250 	/* sanity checks */
3251 	if (WARN_ON(!(pool->cpu < 0)) ||
3252 	    WARN_ON(!list_empty(&pool->worklist)))
3253 		return;
3254 
3255 	/* release id and unhash */
3256 	if (pool->id >= 0)
3257 		idr_remove(&worker_pool_idr, pool->id);
3258 	hash_del(&pool->hash_node);
3259 
3260 	/*
3261 	 * Become the manager and destroy all workers.  Grabbing
3262 	 * manager_arb prevents @pool's workers from blocking on
3263 	 * attach_mutex.
3264 	 */
3265 	mutex_lock(&pool->manager_arb);
3266 
3267 	spin_lock_irq(&pool->lock);
3268 	while ((worker = first_idle_worker(pool)))
3269 		destroy_worker(worker);
3270 	WARN_ON(pool->nr_workers || pool->nr_idle);
3271 	spin_unlock_irq(&pool->lock);
3272 
3273 	mutex_lock(&pool->attach_mutex);
3274 	if (!list_empty(&pool->workers))
3275 		pool->detach_completion = &detach_completion;
3276 	mutex_unlock(&pool->attach_mutex);
3277 
3278 	if (pool->detach_completion)
3279 		wait_for_completion(pool->detach_completion);
3280 
3281 	mutex_unlock(&pool->manager_arb);
3282 
3283 	/* shut down the timers */
3284 	del_timer_sync(&pool->idle_timer);
3285 	del_timer_sync(&pool->mayday_timer);
3286 
3287 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3288 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3289 }
3290 
3291 /**
3292  * get_unbound_pool - get a worker_pool with the specified attributes
3293  * @attrs: the attributes of the worker_pool to get
3294  *
3295  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3296  * reference count and return it.  If there already is a matching
3297  * worker_pool, it will be used; otherwise, this function attempts to
3298  * create a new one.
3299  *
3300  * Should be called with wq_pool_mutex held.
3301  *
3302  * Return: On success, a worker_pool with the same attributes as @attrs.
3303  * On failure, %NULL.
3304  */
3305 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3306 {
3307 	u32 hash = wqattrs_hash(attrs);
3308 	struct worker_pool *pool;
3309 	int node;
3310 	int target_node = NUMA_NO_NODE;
3311 
3312 	lockdep_assert_held(&wq_pool_mutex);
3313 
3314 	/* do we already have a matching pool? */
3315 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3316 		if (wqattrs_equal(pool->attrs, attrs)) {
3317 			pool->refcnt++;
3318 			return pool;
3319 		}
3320 	}
3321 
3322 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3323 	if (wq_numa_enabled) {
3324 		for_each_node(node) {
3325 			if (cpumask_subset(attrs->cpumask,
3326 					   wq_numa_possible_cpumask[node])) {
3327 				target_node = node;
3328 				break;
3329 			}
3330 		}
3331 	}
3332 
3333 	/* nope, create a new one */
3334 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3335 	if (!pool || init_worker_pool(pool) < 0)
3336 		goto fail;
3337 
3338 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3339 	copy_workqueue_attrs(pool->attrs, attrs);
3340 	pool->node = target_node;
3341 
3342 	/*
3343 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3344 	 * 'struct workqueue_attrs' comments for detail.
3345 	 */
3346 	pool->attrs->no_numa = false;
3347 
3348 	if (worker_pool_assign_id(pool) < 0)
3349 		goto fail;
3350 
3351 	/* create and start the initial worker */
3352 	if (!create_worker(pool))
3353 		goto fail;
3354 
3355 	/* install */
3356 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3357 
3358 	return pool;
3359 fail:
3360 	if (pool)
3361 		put_unbound_pool(pool);
3362 	return NULL;
3363 }
3364 
3365 static void rcu_free_pwq(struct rcu_head *rcu)
3366 {
3367 	kmem_cache_free(pwq_cache,
3368 			container_of(rcu, struct pool_workqueue, rcu));
3369 }
3370 
3371 /*
3372  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3373  * and needs to be destroyed.
3374  */
3375 static void pwq_unbound_release_workfn(struct work_struct *work)
3376 {
3377 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3378 						  unbound_release_work);
3379 	struct workqueue_struct *wq = pwq->wq;
3380 	struct worker_pool *pool = pwq->pool;
3381 	bool is_last;
3382 
3383 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3384 		return;
3385 
3386 	mutex_lock(&wq->mutex);
3387 	list_del_rcu(&pwq->pwqs_node);
3388 	is_last = list_empty(&wq->pwqs);
3389 	mutex_unlock(&wq->mutex);
3390 
3391 	mutex_lock(&wq_pool_mutex);
3392 	put_unbound_pool(pool);
3393 	mutex_unlock(&wq_pool_mutex);
3394 
3395 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3396 
3397 	/*
3398 	 * If we're the last pwq going away, @wq is already dead and no one
3399 	 * is gonna access it anymore.  Schedule RCU free.
3400 	 */
3401 	if (is_last)
3402 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3403 }
3404 
3405 /**
3406  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3407  * @pwq: target pool_workqueue
3408  *
3409  * If @pwq isn't freezing, set @pwq->max_active to the associated
3410  * workqueue's saved_max_active and activate delayed work items
3411  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3412  */
3413 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3414 {
3415 	struct workqueue_struct *wq = pwq->wq;
3416 	bool freezable = wq->flags & WQ_FREEZABLE;
3417 
3418 	/* for @wq->saved_max_active */
3419 	lockdep_assert_held(&wq->mutex);
3420 
3421 	/* fast exit for non-freezable wqs */
3422 	if (!freezable && pwq->max_active == wq->saved_max_active)
3423 		return;
3424 
3425 	spin_lock_irq(&pwq->pool->lock);
3426 
3427 	/*
3428 	 * During [un]freezing, the caller is responsible for ensuring that
3429 	 * this function is called at least once after @workqueue_freezing
3430 	 * is updated and visible.
3431 	 */
3432 	if (!freezable || !workqueue_freezing) {
3433 		pwq->max_active = wq->saved_max_active;
3434 
3435 		while (!list_empty(&pwq->delayed_works) &&
3436 		       pwq->nr_active < pwq->max_active)
3437 			pwq_activate_first_delayed(pwq);
3438 
3439 		/*
3440 		 * Need to kick a worker after thawed or an unbound wq's
3441 		 * max_active is bumped.  It's a slow path.  Do it always.
3442 		 */
3443 		wake_up_worker(pwq->pool);
3444 	} else {
3445 		pwq->max_active = 0;
3446 	}
3447 
3448 	spin_unlock_irq(&pwq->pool->lock);
3449 }
3450 
3451 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3452 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3453 		     struct worker_pool *pool)
3454 {
3455 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3456 
3457 	memset(pwq, 0, sizeof(*pwq));
3458 
3459 	pwq->pool = pool;
3460 	pwq->wq = wq;
3461 	pwq->flush_color = -1;
3462 	pwq->refcnt = 1;
3463 	INIT_LIST_HEAD(&pwq->delayed_works);
3464 	INIT_LIST_HEAD(&pwq->pwqs_node);
3465 	INIT_LIST_HEAD(&pwq->mayday_node);
3466 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3467 }
3468 
3469 /* sync @pwq with the current state of its associated wq and link it */
3470 static void link_pwq(struct pool_workqueue *pwq)
3471 {
3472 	struct workqueue_struct *wq = pwq->wq;
3473 
3474 	lockdep_assert_held(&wq->mutex);
3475 
3476 	/* may be called multiple times, ignore if already linked */
3477 	if (!list_empty(&pwq->pwqs_node))
3478 		return;
3479 
3480 	/* set the matching work_color */
3481 	pwq->work_color = wq->work_color;
3482 
3483 	/* sync max_active to the current setting */
3484 	pwq_adjust_max_active(pwq);
3485 
3486 	/* link in @pwq */
3487 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3488 }
3489 
3490 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3491 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3492 					const struct workqueue_attrs *attrs)
3493 {
3494 	struct worker_pool *pool;
3495 	struct pool_workqueue *pwq;
3496 
3497 	lockdep_assert_held(&wq_pool_mutex);
3498 
3499 	pool = get_unbound_pool(attrs);
3500 	if (!pool)
3501 		return NULL;
3502 
3503 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3504 	if (!pwq) {
3505 		put_unbound_pool(pool);
3506 		return NULL;
3507 	}
3508 
3509 	init_pwq(pwq, wq, pool);
3510 	return pwq;
3511 }
3512 
3513 /**
3514  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3515  * @attrs: the wq_attrs of the default pwq of the target workqueue
3516  * @node: the target NUMA node
3517  * @cpu_going_down: if >= 0, the CPU to consider as offline
3518  * @cpumask: outarg, the resulting cpumask
3519  *
3520  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3521  * @cpu_going_down is >= 0, that cpu is considered offline during
3522  * calculation.  The result is stored in @cpumask.
3523  *
3524  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3525  * enabled and @node has online CPUs requested by @attrs, the returned
3526  * cpumask is the intersection of the possible CPUs of @node and
3527  * @attrs->cpumask.
3528  *
3529  * The caller is responsible for ensuring that the cpumask of @node stays
3530  * stable.
3531  *
3532  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3533  * %false if equal.
3534  */
3535 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3536 				 int cpu_going_down, cpumask_t *cpumask)
3537 {
3538 	if (!wq_numa_enabled || attrs->no_numa)
3539 		goto use_dfl;
3540 
3541 	/* does @node have any online CPUs @attrs wants? */
3542 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3543 	if (cpu_going_down >= 0)
3544 		cpumask_clear_cpu(cpu_going_down, cpumask);
3545 
3546 	if (cpumask_empty(cpumask))
3547 		goto use_dfl;
3548 
3549 	/* yeap, return possible CPUs in @node that @attrs wants */
3550 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3551 	return !cpumask_equal(cpumask, attrs->cpumask);
3552 
3553 use_dfl:
3554 	cpumask_copy(cpumask, attrs->cpumask);
3555 	return false;
3556 }
3557 
3558 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3559 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3560 						   int node,
3561 						   struct pool_workqueue *pwq)
3562 {
3563 	struct pool_workqueue *old_pwq;
3564 
3565 	lockdep_assert_held(&wq_pool_mutex);
3566 	lockdep_assert_held(&wq->mutex);
3567 
3568 	/* link_pwq() can handle duplicate calls */
3569 	link_pwq(pwq);
3570 
3571 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3572 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3573 	return old_pwq;
3574 }
3575 
3576 /* context to store the prepared attrs & pwqs before applying */
3577 struct apply_wqattrs_ctx {
3578 	struct workqueue_struct	*wq;		/* target workqueue */
3579 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3580 	struct list_head	list;		/* queued for batching commit */
3581 	struct pool_workqueue	*dfl_pwq;
3582 	struct pool_workqueue	*pwq_tbl[];
3583 };
3584 
3585 /* free the resources after success or abort */
3586 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3587 {
3588 	if (ctx) {
3589 		int node;
3590 
3591 		for_each_node(node)
3592 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3593 		put_pwq_unlocked(ctx->dfl_pwq);
3594 
3595 		free_workqueue_attrs(ctx->attrs);
3596 
3597 		kfree(ctx);
3598 	}
3599 }
3600 
3601 /* allocate the attrs and pwqs for later installation */
3602 static struct apply_wqattrs_ctx *
3603 apply_wqattrs_prepare(struct workqueue_struct *wq,
3604 		      const struct workqueue_attrs *attrs)
3605 {
3606 	struct apply_wqattrs_ctx *ctx;
3607 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3608 	int node;
3609 
3610 	lockdep_assert_held(&wq_pool_mutex);
3611 
3612 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3613 		      GFP_KERNEL);
3614 
3615 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3616 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3617 	if (!ctx || !new_attrs || !tmp_attrs)
3618 		goto out_free;
3619 
3620 	/*
3621 	 * Calculate the attrs of the default pwq.
3622 	 * If the user configured cpumask doesn't overlap with the
3623 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3624 	 */
3625 	copy_workqueue_attrs(new_attrs, attrs);
3626 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3627 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3628 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3629 
3630 	/*
3631 	 * We may create multiple pwqs with differing cpumasks.  Make a
3632 	 * copy of @new_attrs which will be modified and used to obtain
3633 	 * pools.
3634 	 */
3635 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3636 
3637 	/*
3638 	 * If something goes wrong during CPU up/down, we'll fall back to
3639 	 * the default pwq covering whole @attrs->cpumask.  Always create
3640 	 * it even if we don't use it immediately.
3641 	 */
3642 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3643 	if (!ctx->dfl_pwq)
3644 		goto out_free;
3645 
3646 	for_each_node(node) {
3647 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3648 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3649 			if (!ctx->pwq_tbl[node])
3650 				goto out_free;
3651 		} else {
3652 			ctx->dfl_pwq->refcnt++;
3653 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3654 		}
3655 	}
3656 
3657 	/* save the user configured attrs and sanitize it. */
3658 	copy_workqueue_attrs(new_attrs, attrs);
3659 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3660 	ctx->attrs = new_attrs;
3661 
3662 	ctx->wq = wq;
3663 	free_workqueue_attrs(tmp_attrs);
3664 	return ctx;
3665 
3666 out_free:
3667 	free_workqueue_attrs(tmp_attrs);
3668 	free_workqueue_attrs(new_attrs);
3669 	apply_wqattrs_cleanup(ctx);
3670 	return NULL;
3671 }
3672 
3673 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3674 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3675 {
3676 	int node;
3677 
3678 	/* all pwqs have been created successfully, let's install'em */
3679 	mutex_lock(&ctx->wq->mutex);
3680 
3681 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3682 
3683 	/* save the previous pwq and install the new one */
3684 	for_each_node(node)
3685 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3686 							  ctx->pwq_tbl[node]);
3687 
3688 	/* @dfl_pwq might not have been used, ensure it's linked */
3689 	link_pwq(ctx->dfl_pwq);
3690 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3691 
3692 	mutex_unlock(&ctx->wq->mutex);
3693 }
3694 
3695 static void apply_wqattrs_lock(void)
3696 {
3697 	/* CPUs should stay stable across pwq creations and installations */
3698 	get_online_cpus();
3699 	mutex_lock(&wq_pool_mutex);
3700 }
3701 
3702 static void apply_wqattrs_unlock(void)
3703 {
3704 	mutex_unlock(&wq_pool_mutex);
3705 	put_online_cpus();
3706 }
3707 
3708 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3709 					const struct workqueue_attrs *attrs)
3710 {
3711 	struct apply_wqattrs_ctx *ctx;
3712 
3713 	/* only unbound workqueues can change attributes */
3714 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3715 		return -EINVAL;
3716 
3717 	/* creating multiple pwqs breaks ordering guarantee */
3718 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3719 		return -EINVAL;
3720 
3721 	ctx = apply_wqattrs_prepare(wq, attrs);
3722 	if (!ctx)
3723 		return -ENOMEM;
3724 
3725 	/* the ctx has been prepared successfully, let's commit it */
3726 	apply_wqattrs_commit(ctx);
3727 	apply_wqattrs_cleanup(ctx);
3728 
3729 	return 0;
3730 }
3731 
3732 /**
3733  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3734  * @wq: the target workqueue
3735  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3736  *
3737  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3738  * machines, this function maps a separate pwq to each NUMA node with
3739  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3740  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3741  * items finish.  Note that a work item which repeatedly requeues itself
3742  * back-to-back will stay on its current pwq.
3743  *
3744  * Performs GFP_KERNEL allocations.
3745  *
3746  * Return: 0 on success and -errno on failure.
3747  */
3748 int apply_workqueue_attrs(struct workqueue_struct *wq,
3749 			  const struct workqueue_attrs *attrs)
3750 {
3751 	int ret;
3752 
3753 	apply_wqattrs_lock();
3754 	ret = apply_workqueue_attrs_locked(wq, attrs);
3755 	apply_wqattrs_unlock();
3756 
3757 	return ret;
3758 }
3759 
3760 /**
3761  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3762  * @wq: the target workqueue
3763  * @cpu: the CPU coming up or going down
3764  * @online: whether @cpu is coming up or going down
3765  *
3766  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3767  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3768  * @wq accordingly.
3769  *
3770  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3771  * falls back to @wq->dfl_pwq which may not be optimal but is always
3772  * correct.
3773  *
3774  * Note that when the last allowed CPU of a NUMA node goes offline for a
3775  * workqueue with a cpumask spanning multiple nodes, the workers which were
3776  * already executing the work items for the workqueue will lose their CPU
3777  * affinity and may execute on any CPU.  This is similar to how per-cpu
3778  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3779  * affinity, it's the user's responsibility to flush the work item from
3780  * CPU_DOWN_PREPARE.
3781  */
3782 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3783 				   bool online)
3784 {
3785 	int node = cpu_to_node(cpu);
3786 	int cpu_off = online ? -1 : cpu;
3787 	struct pool_workqueue *old_pwq = NULL, *pwq;
3788 	struct workqueue_attrs *target_attrs;
3789 	cpumask_t *cpumask;
3790 
3791 	lockdep_assert_held(&wq_pool_mutex);
3792 
3793 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3794 	    wq->unbound_attrs->no_numa)
3795 		return;
3796 
3797 	/*
3798 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3799 	 * Let's use a preallocated one.  The following buf is protected by
3800 	 * CPU hotplug exclusion.
3801 	 */
3802 	target_attrs = wq_update_unbound_numa_attrs_buf;
3803 	cpumask = target_attrs->cpumask;
3804 
3805 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3806 	pwq = unbound_pwq_by_node(wq, node);
3807 
3808 	/*
3809 	 * Let's determine what needs to be done.  If the target cpumask is
3810 	 * different from the default pwq's, we need to compare it to @pwq's
3811 	 * and create a new one if they don't match.  If the target cpumask
3812 	 * equals the default pwq's, the default pwq should be used.
3813 	 */
3814 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3815 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3816 			return;
3817 	} else {
3818 		goto use_dfl_pwq;
3819 	}
3820 
3821 	/* create a new pwq */
3822 	pwq = alloc_unbound_pwq(wq, target_attrs);
3823 	if (!pwq) {
3824 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3825 			wq->name);
3826 		goto use_dfl_pwq;
3827 	}
3828 
3829 	/* Install the new pwq. */
3830 	mutex_lock(&wq->mutex);
3831 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3832 	goto out_unlock;
3833 
3834 use_dfl_pwq:
3835 	mutex_lock(&wq->mutex);
3836 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3837 	get_pwq(wq->dfl_pwq);
3838 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3839 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3840 out_unlock:
3841 	mutex_unlock(&wq->mutex);
3842 	put_pwq_unlocked(old_pwq);
3843 }
3844 
3845 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3846 {
3847 	bool highpri = wq->flags & WQ_HIGHPRI;
3848 	int cpu, ret;
3849 
3850 	if (!(wq->flags & WQ_UNBOUND)) {
3851 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3852 		if (!wq->cpu_pwqs)
3853 			return -ENOMEM;
3854 
3855 		for_each_possible_cpu(cpu) {
3856 			struct pool_workqueue *pwq =
3857 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3858 			struct worker_pool *cpu_pools =
3859 				per_cpu(cpu_worker_pools, cpu);
3860 
3861 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3862 
3863 			mutex_lock(&wq->mutex);
3864 			link_pwq(pwq);
3865 			mutex_unlock(&wq->mutex);
3866 		}
3867 		return 0;
3868 	} else if (wq->flags & __WQ_ORDERED) {
3869 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3870 		/* there should only be single pwq for ordering guarantee */
3871 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3872 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3873 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3874 		return ret;
3875 	} else {
3876 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3877 	}
3878 }
3879 
3880 static int wq_clamp_max_active(int max_active, unsigned int flags,
3881 			       const char *name)
3882 {
3883 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3884 
3885 	if (max_active < 1 || max_active > lim)
3886 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3887 			max_active, name, 1, lim);
3888 
3889 	return clamp_val(max_active, 1, lim);
3890 }
3891 
3892 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3893 					       unsigned int flags,
3894 					       int max_active,
3895 					       struct lock_class_key *key,
3896 					       const char *lock_name, ...)
3897 {
3898 	size_t tbl_size = 0;
3899 	va_list args;
3900 	struct workqueue_struct *wq;
3901 	struct pool_workqueue *pwq;
3902 
3903 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3904 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3905 		flags |= WQ_UNBOUND;
3906 
3907 	/* allocate wq and format name */
3908 	if (flags & WQ_UNBOUND)
3909 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3910 
3911 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3912 	if (!wq)
3913 		return NULL;
3914 
3915 	if (flags & WQ_UNBOUND) {
3916 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3917 		if (!wq->unbound_attrs)
3918 			goto err_free_wq;
3919 	}
3920 
3921 	va_start(args, lock_name);
3922 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3923 	va_end(args);
3924 
3925 	max_active = max_active ?: WQ_DFL_ACTIVE;
3926 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3927 
3928 	/* init wq */
3929 	wq->flags = flags;
3930 	wq->saved_max_active = max_active;
3931 	mutex_init(&wq->mutex);
3932 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3933 	INIT_LIST_HEAD(&wq->pwqs);
3934 	INIT_LIST_HEAD(&wq->flusher_queue);
3935 	INIT_LIST_HEAD(&wq->flusher_overflow);
3936 	INIT_LIST_HEAD(&wq->maydays);
3937 
3938 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3939 	INIT_LIST_HEAD(&wq->list);
3940 
3941 	if (alloc_and_link_pwqs(wq) < 0)
3942 		goto err_free_wq;
3943 
3944 	/*
3945 	 * Workqueues which may be used during memory reclaim should
3946 	 * have a rescuer to guarantee forward progress.
3947 	 */
3948 	if (flags & WQ_MEM_RECLAIM) {
3949 		struct worker *rescuer;
3950 
3951 		rescuer = alloc_worker(NUMA_NO_NODE);
3952 		if (!rescuer)
3953 			goto err_destroy;
3954 
3955 		rescuer->rescue_wq = wq;
3956 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3957 					       wq->name);
3958 		if (IS_ERR(rescuer->task)) {
3959 			kfree(rescuer);
3960 			goto err_destroy;
3961 		}
3962 
3963 		wq->rescuer = rescuer;
3964 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3965 		wake_up_process(rescuer->task);
3966 	}
3967 
3968 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3969 		goto err_destroy;
3970 
3971 	/*
3972 	 * wq_pool_mutex protects global freeze state and workqueues list.
3973 	 * Grab it, adjust max_active and add the new @wq to workqueues
3974 	 * list.
3975 	 */
3976 	mutex_lock(&wq_pool_mutex);
3977 
3978 	mutex_lock(&wq->mutex);
3979 	for_each_pwq(pwq, wq)
3980 		pwq_adjust_max_active(pwq);
3981 	mutex_unlock(&wq->mutex);
3982 
3983 	list_add_tail_rcu(&wq->list, &workqueues);
3984 
3985 	mutex_unlock(&wq_pool_mutex);
3986 
3987 	return wq;
3988 
3989 err_free_wq:
3990 	free_workqueue_attrs(wq->unbound_attrs);
3991 	kfree(wq);
3992 	return NULL;
3993 err_destroy:
3994 	destroy_workqueue(wq);
3995 	return NULL;
3996 }
3997 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3998 
3999 /**
4000  * destroy_workqueue - safely terminate a workqueue
4001  * @wq: target workqueue
4002  *
4003  * Safely destroy a workqueue. All work currently pending will be done first.
4004  */
4005 void destroy_workqueue(struct workqueue_struct *wq)
4006 {
4007 	struct pool_workqueue *pwq;
4008 	int node;
4009 
4010 	/* drain it before proceeding with destruction */
4011 	drain_workqueue(wq);
4012 
4013 	/* sanity checks */
4014 	mutex_lock(&wq->mutex);
4015 	for_each_pwq(pwq, wq) {
4016 		int i;
4017 
4018 		for (i = 0; i < WORK_NR_COLORS; i++) {
4019 			if (WARN_ON(pwq->nr_in_flight[i])) {
4020 				mutex_unlock(&wq->mutex);
4021 				return;
4022 			}
4023 		}
4024 
4025 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4026 		    WARN_ON(pwq->nr_active) ||
4027 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4028 			mutex_unlock(&wq->mutex);
4029 			return;
4030 		}
4031 	}
4032 	mutex_unlock(&wq->mutex);
4033 
4034 	/*
4035 	 * wq list is used to freeze wq, remove from list after
4036 	 * flushing is complete in case freeze races us.
4037 	 */
4038 	mutex_lock(&wq_pool_mutex);
4039 	list_del_rcu(&wq->list);
4040 	mutex_unlock(&wq_pool_mutex);
4041 
4042 	workqueue_sysfs_unregister(wq);
4043 
4044 	if (wq->rescuer)
4045 		kthread_stop(wq->rescuer->task);
4046 
4047 	if (!(wq->flags & WQ_UNBOUND)) {
4048 		/*
4049 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4050 		 * schedule RCU free.
4051 		 */
4052 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4053 	} else {
4054 		/*
4055 		 * We're the sole accessor of @wq at this point.  Directly
4056 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4057 		 * @wq will be freed when the last pwq is released.
4058 		 */
4059 		for_each_node(node) {
4060 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4061 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4062 			put_pwq_unlocked(pwq);
4063 		}
4064 
4065 		/*
4066 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4067 		 * put.  Don't access it afterwards.
4068 		 */
4069 		pwq = wq->dfl_pwq;
4070 		wq->dfl_pwq = NULL;
4071 		put_pwq_unlocked(pwq);
4072 	}
4073 }
4074 EXPORT_SYMBOL_GPL(destroy_workqueue);
4075 
4076 /**
4077  * workqueue_set_max_active - adjust max_active of a workqueue
4078  * @wq: target workqueue
4079  * @max_active: new max_active value.
4080  *
4081  * Set max_active of @wq to @max_active.
4082  *
4083  * CONTEXT:
4084  * Don't call from IRQ context.
4085  */
4086 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4087 {
4088 	struct pool_workqueue *pwq;
4089 
4090 	/* disallow meddling with max_active for ordered workqueues */
4091 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4092 		return;
4093 
4094 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4095 
4096 	mutex_lock(&wq->mutex);
4097 
4098 	wq->saved_max_active = max_active;
4099 
4100 	for_each_pwq(pwq, wq)
4101 		pwq_adjust_max_active(pwq);
4102 
4103 	mutex_unlock(&wq->mutex);
4104 }
4105 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4106 
4107 /**
4108  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4109  *
4110  * Determine whether %current is a workqueue rescuer.  Can be used from
4111  * work functions to determine whether it's being run off the rescuer task.
4112  *
4113  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4114  */
4115 bool current_is_workqueue_rescuer(void)
4116 {
4117 	struct worker *worker = current_wq_worker();
4118 
4119 	return worker && worker->rescue_wq;
4120 }
4121 
4122 /**
4123  * workqueue_congested - test whether a workqueue is congested
4124  * @cpu: CPU in question
4125  * @wq: target workqueue
4126  *
4127  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4128  * no synchronization around this function and the test result is
4129  * unreliable and only useful as advisory hints or for debugging.
4130  *
4131  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4132  * Note that both per-cpu and unbound workqueues may be associated with
4133  * multiple pool_workqueues which have separate congested states.  A
4134  * workqueue being congested on one CPU doesn't mean the workqueue is also
4135  * contested on other CPUs / NUMA nodes.
4136  *
4137  * Return:
4138  * %true if congested, %false otherwise.
4139  */
4140 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4141 {
4142 	struct pool_workqueue *pwq;
4143 	bool ret;
4144 
4145 	rcu_read_lock_sched();
4146 
4147 	if (cpu == WORK_CPU_UNBOUND)
4148 		cpu = smp_processor_id();
4149 
4150 	if (!(wq->flags & WQ_UNBOUND))
4151 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4152 	else
4153 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4154 
4155 	ret = !list_empty(&pwq->delayed_works);
4156 	rcu_read_unlock_sched();
4157 
4158 	return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(workqueue_congested);
4161 
4162 /**
4163  * work_busy - test whether a work is currently pending or running
4164  * @work: the work to be tested
4165  *
4166  * Test whether @work is currently pending or running.  There is no
4167  * synchronization around this function and the test result is
4168  * unreliable and only useful as advisory hints or for debugging.
4169  *
4170  * Return:
4171  * OR'd bitmask of WORK_BUSY_* bits.
4172  */
4173 unsigned int work_busy(struct work_struct *work)
4174 {
4175 	struct worker_pool *pool;
4176 	unsigned long flags;
4177 	unsigned int ret = 0;
4178 
4179 	if (work_pending(work))
4180 		ret |= WORK_BUSY_PENDING;
4181 
4182 	local_irq_save(flags);
4183 	pool = get_work_pool(work);
4184 	if (pool) {
4185 		spin_lock(&pool->lock);
4186 		if (find_worker_executing_work(pool, work))
4187 			ret |= WORK_BUSY_RUNNING;
4188 		spin_unlock(&pool->lock);
4189 	}
4190 	local_irq_restore(flags);
4191 
4192 	return ret;
4193 }
4194 EXPORT_SYMBOL_GPL(work_busy);
4195 
4196 /**
4197  * set_worker_desc - set description for the current work item
4198  * @fmt: printf-style format string
4199  * @...: arguments for the format string
4200  *
4201  * This function can be called by a running work function to describe what
4202  * the work item is about.  If the worker task gets dumped, this
4203  * information will be printed out together to help debugging.  The
4204  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4205  */
4206 void set_worker_desc(const char *fmt, ...)
4207 {
4208 	struct worker *worker = current_wq_worker();
4209 	va_list args;
4210 
4211 	if (worker) {
4212 		va_start(args, fmt);
4213 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4214 		va_end(args);
4215 		worker->desc_valid = true;
4216 	}
4217 }
4218 
4219 /**
4220  * print_worker_info - print out worker information and description
4221  * @log_lvl: the log level to use when printing
4222  * @task: target task
4223  *
4224  * If @task is a worker and currently executing a work item, print out the
4225  * name of the workqueue being serviced and worker description set with
4226  * set_worker_desc() by the currently executing work item.
4227  *
4228  * This function can be safely called on any task as long as the
4229  * task_struct itself is accessible.  While safe, this function isn't
4230  * synchronized and may print out mixups or garbages of limited length.
4231  */
4232 void print_worker_info(const char *log_lvl, struct task_struct *task)
4233 {
4234 	work_func_t *fn = NULL;
4235 	char name[WQ_NAME_LEN] = { };
4236 	char desc[WORKER_DESC_LEN] = { };
4237 	struct pool_workqueue *pwq = NULL;
4238 	struct workqueue_struct *wq = NULL;
4239 	bool desc_valid = false;
4240 	struct worker *worker;
4241 
4242 	if (!(task->flags & PF_WQ_WORKER))
4243 		return;
4244 
4245 	/*
4246 	 * This function is called without any synchronization and @task
4247 	 * could be in any state.  Be careful with dereferences.
4248 	 */
4249 	worker = probe_kthread_data(task);
4250 
4251 	/*
4252 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4253 	 * the original last '\0' in case the original contains garbage.
4254 	 */
4255 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4256 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4257 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4258 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4259 
4260 	/* copy worker description */
4261 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4262 	if (desc_valid)
4263 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4264 
4265 	if (fn || name[0] || desc[0]) {
4266 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4267 		if (desc[0])
4268 			pr_cont(" (%s)", desc);
4269 		pr_cont("\n");
4270 	}
4271 }
4272 
4273 static void pr_cont_pool_info(struct worker_pool *pool)
4274 {
4275 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4276 	if (pool->node != NUMA_NO_NODE)
4277 		pr_cont(" node=%d", pool->node);
4278 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4279 }
4280 
4281 static void pr_cont_work(bool comma, struct work_struct *work)
4282 {
4283 	if (work->func == wq_barrier_func) {
4284 		struct wq_barrier *barr;
4285 
4286 		barr = container_of(work, struct wq_barrier, work);
4287 
4288 		pr_cont("%s BAR(%d)", comma ? "," : "",
4289 			task_pid_nr(barr->task));
4290 	} else {
4291 		pr_cont("%s %pf", comma ? "," : "", work->func);
4292 	}
4293 }
4294 
4295 static void show_pwq(struct pool_workqueue *pwq)
4296 {
4297 	struct worker_pool *pool = pwq->pool;
4298 	struct work_struct *work;
4299 	struct worker *worker;
4300 	bool has_in_flight = false, has_pending = false;
4301 	int bkt;
4302 
4303 	pr_info("  pwq %d:", pool->id);
4304 	pr_cont_pool_info(pool);
4305 
4306 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4307 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4308 
4309 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4310 		if (worker->current_pwq == pwq) {
4311 			has_in_flight = true;
4312 			break;
4313 		}
4314 	}
4315 	if (has_in_flight) {
4316 		bool comma = false;
4317 
4318 		pr_info("    in-flight:");
4319 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4320 			if (worker->current_pwq != pwq)
4321 				continue;
4322 
4323 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4324 				task_pid_nr(worker->task),
4325 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4326 				worker->current_func);
4327 			list_for_each_entry(work, &worker->scheduled, entry)
4328 				pr_cont_work(false, work);
4329 			comma = true;
4330 		}
4331 		pr_cont("\n");
4332 	}
4333 
4334 	list_for_each_entry(work, &pool->worklist, entry) {
4335 		if (get_work_pwq(work) == pwq) {
4336 			has_pending = true;
4337 			break;
4338 		}
4339 	}
4340 	if (has_pending) {
4341 		bool comma = false;
4342 
4343 		pr_info("    pending:");
4344 		list_for_each_entry(work, &pool->worklist, entry) {
4345 			if (get_work_pwq(work) != pwq)
4346 				continue;
4347 
4348 			pr_cont_work(comma, work);
4349 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4350 		}
4351 		pr_cont("\n");
4352 	}
4353 
4354 	if (!list_empty(&pwq->delayed_works)) {
4355 		bool comma = false;
4356 
4357 		pr_info("    delayed:");
4358 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4359 			pr_cont_work(comma, work);
4360 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4361 		}
4362 		pr_cont("\n");
4363 	}
4364 }
4365 
4366 /**
4367  * show_workqueue_state - dump workqueue state
4368  *
4369  * Called from a sysrq handler and prints out all busy workqueues and
4370  * pools.
4371  */
4372 void show_workqueue_state(void)
4373 {
4374 	struct workqueue_struct *wq;
4375 	struct worker_pool *pool;
4376 	unsigned long flags;
4377 	int pi;
4378 
4379 	rcu_read_lock_sched();
4380 
4381 	pr_info("Showing busy workqueues and worker pools:\n");
4382 
4383 	list_for_each_entry_rcu(wq, &workqueues, list) {
4384 		struct pool_workqueue *pwq;
4385 		bool idle = true;
4386 
4387 		for_each_pwq(pwq, wq) {
4388 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4389 				idle = false;
4390 				break;
4391 			}
4392 		}
4393 		if (idle)
4394 			continue;
4395 
4396 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4397 
4398 		for_each_pwq(pwq, wq) {
4399 			spin_lock_irqsave(&pwq->pool->lock, flags);
4400 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4401 				show_pwq(pwq);
4402 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4403 		}
4404 	}
4405 
4406 	for_each_pool(pool, pi) {
4407 		struct worker *worker;
4408 		bool first = true;
4409 
4410 		spin_lock_irqsave(&pool->lock, flags);
4411 		if (pool->nr_workers == pool->nr_idle)
4412 			goto next_pool;
4413 
4414 		pr_info("pool %d:", pool->id);
4415 		pr_cont_pool_info(pool);
4416 		pr_cont(" hung=%us workers=%d",
4417 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4418 			pool->nr_workers);
4419 		if (pool->manager)
4420 			pr_cont(" manager: %d",
4421 				task_pid_nr(pool->manager->task));
4422 		list_for_each_entry(worker, &pool->idle_list, entry) {
4423 			pr_cont(" %s%d", first ? "idle: " : "",
4424 				task_pid_nr(worker->task));
4425 			first = false;
4426 		}
4427 		pr_cont("\n");
4428 	next_pool:
4429 		spin_unlock_irqrestore(&pool->lock, flags);
4430 	}
4431 
4432 	rcu_read_unlock_sched();
4433 }
4434 
4435 /*
4436  * CPU hotplug.
4437  *
4438  * There are two challenges in supporting CPU hotplug.  Firstly, there
4439  * are a lot of assumptions on strong associations among work, pwq and
4440  * pool which make migrating pending and scheduled works very
4441  * difficult to implement without impacting hot paths.  Secondly,
4442  * worker pools serve mix of short, long and very long running works making
4443  * blocked draining impractical.
4444  *
4445  * This is solved by allowing the pools to be disassociated from the CPU
4446  * running as an unbound one and allowing it to be reattached later if the
4447  * cpu comes back online.
4448  */
4449 
4450 static void wq_unbind_fn(struct work_struct *work)
4451 {
4452 	int cpu = smp_processor_id();
4453 	struct worker_pool *pool;
4454 	struct worker *worker;
4455 
4456 	for_each_cpu_worker_pool(pool, cpu) {
4457 		mutex_lock(&pool->attach_mutex);
4458 		spin_lock_irq(&pool->lock);
4459 
4460 		/*
4461 		 * We've blocked all attach/detach operations. Make all workers
4462 		 * unbound and set DISASSOCIATED.  Before this, all workers
4463 		 * except for the ones which are still executing works from
4464 		 * before the last CPU down must be on the cpu.  After
4465 		 * this, they may become diasporas.
4466 		 */
4467 		for_each_pool_worker(worker, pool)
4468 			worker->flags |= WORKER_UNBOUND;
4469 
4470 		pool->flags |= POOL_DISASSOCIATED;
4471 
4472 		spin_unlock_irq(&pool->lock);
4473 		mutex_unlock(&pool->attach_mutex);
4474 
4475 		/*
4476 		 * Call schedule() so that we cross rq->lock and thus can
4477 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4478 		 * This is necessary as scheduler callbacks may be invoked
4479 		 * from other cpus.
4480 		 */
4481 		schedule();
4482 
4483 		/*
4484 		 * Sched callbacks are disabled now.  Zap nr_running.
4485 		 * After this, nr_running stays zero and need_more_worker()
4486 		 * and keep_working() are always true as long as the
4487 		 * worklist is not empty.  This pool now behaves as an
4488 		 * unbound (in terms of concurrency management) pool which
4489 		 * are served by workers tied to the pool.
4490 		 */
4491 		atomic_set(&pool->nr_running, 0);
4492 
4493 		/*
4494 		 * With concurrency management just turned off, a busy
4495 		 * worker blocking could lead to lengthy stalls.  Kick off
4496 		 * unbound chain execution of currently pending work items.
4497 		 */
4498 		spin_lock_irq(&pool->lock);
4499 		wake_up_worker(pool);
4500 		spin_unlock_irq(&pool->lock);
4501 	}
4502 }
4503 
4504 /**
4505  * rebind_workers - rebind all workers of a pool to the associated CPU
4506  * @pool: pool of interest
4507  *
4508  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4509  */
4510 static void rebind_workers(struct worker_pool *pool)
4511 {
4512 	struct worker *worker;
4513 
4514 	lockdep_assert_held(&pool->attach_mutex);
4515 
4516 	/*
4517 	 * Restore CPU affinity of all workers.  As all idle workers should
4518 	 * be on the run-queue of the associated CPU before any local
4519 	 * wake-ups for concurrency management happen, restore CPU affinity
4520 	 * of all workers first and then clear UNBOUND.  As we're called
4521 	 * from CPU_ONLINE, the following shouldn't fail.
4522 	 */
4523 	for_each_pool_worker(worker, pool)
4524 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4525 						  pool->attrs->cpumask) < 0);
4526 
4527 	spin_lock_irq(&pool->lock);
4528 	pool->flags &= ~POOL_DISASSOCIATED;
4529 
4530 	for_each_pool_worker(worker, pool) {
4531 		unsigned int worker_flags = worker->flags;
4532 
4533 		/*
4534 		 * A bound idle worker should actually be on the runqueue
4535 		 * of the associated CPU for local wake-ups targeting it to
4536 		 * work.  Kick all idle workers so that they migrate to the
4537 		 * associated CPU.  Doing this in the same loop as
4538 		 * replacing UNBOUND with REBOUND is safe as no worker will
4539 		 * be bound before @pool->lock is released.
4540 		 */
4541 		if (worker_flags & WORKER_IDLE)
4542 			wake_up_process(worker->task);
4543 
4544 		/*
4545 		 * We want to clear UNBOUND but can't directly call
4546 		 * worker_clr_flags() or adjust nr_running.  Atomically
4547 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4548 		 * @worker will clear REBOUND using worker_clr_flags() when
4549 		 * it initiates the next execution cycle thus restoring
4550 		 * concurrency management.  Note that when or whether
4551 		 * @worker clears REBOUND doesn't affect correctness.
4552 		 *
4553 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4554 		 * tested without holding any lock in
4555 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4556 		 * fail incorrectly leading to premature concurrency
4557 		 * management operations.
4558 		 */
4559 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4560 		worker_flags |= WORKER_REBOUND;
4561 		worker_flags &= ~WORKER_UNBOUND;
4562 		ACCESS_ONCE(worker->flags) = worker_flags;
4563 	}
4564 
4565 	spin_unlock_irq(&pool->lock);
4566 }
4567 
4568 /**
4569  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4570  * @pool: unbound pool of interest
4571  * @cpu: the CPU which is coming up
4572  *
4573  * An unbound pool may end up with a cpumask which doesn't have any online
4574  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4575  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4576  * online CPU before, cpus_allowed of all its workers should be restored.
4577  */
4578 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4579 {
4580 	static cpumask_t cpumask;
4581 	struct worker *worker;
4582 
4583 	lockdep_assert_held(&pool->attach_mutex);
4584 
4585 	/* is @cpu allowed for @pool? */
4586 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4587 		return;
4588 
4589 	/* is @cpu the only online CPU? */
4590 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4591 	if (cpumask_weight(&cpumask) != 1)
4592 		return;
4593 
4594 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4595 	for_each_pool_worker(worker, pool)
4596 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4597 						  pool->attrs->cpumask) < 0);
4598 }
4599 
4600 /*
4601  * Workqueues should be brought up before normal priority CPU notifiers.
4602  * This will be registered high priority CPU notifier.
4603  */
4604 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4605 					       unsigned long action,
4606 					       void *hcpu)
4607 {
4608 	int cpu = (unsigned long)hcpu;
4609 	struct worker_pool *pool;
4610 	struct workqueue_struct *wq;
4611 	int pi;
4612 
4613 	switch (action & ~CPU_TASKS_FROZEN) {
4614 	case CPU_UP_PREPARE:
4615 		for_each_cpu_worker_pool(pool, cpu) {
4616 			if (pool->nr_workers)
4617 				continue;
4618 			if (!create_worker(pool))
4619 				return NOTIFY_BAD;
4620 		}
4621 		break;
4622 
4623 	case CPU_DOWN_FAILED:
4624 	case CPU_ONLINE:
4625 		mutex_lock(&wq_pool_mutex);
4626 
4627 		for_each_pool(pool, pi) {
4628 			mutex_lock(&pool->attach_mutex);
4629 
4630 			if (pool->cpu == cpu)
4631 				rebind_workers(pool);
4632 			else if (pool->cpu < 0)
4633 				restore_unbound_workers_cpumask(pool, cpu);
4634 
4635 			mutex_unlock(&pool->attach_mutex);
4636 		}
4637 
4638 		/* update NUMA affinity of unbound workqueues */
4639 		list_for_each_entry(wq, &workqueues, list)
4640 			wq_update_unbound_numa(wq, cpu, true);
4641 
4642 		mutex_unlock(&wq_pool_mutex);
4643 		break;
4644 	}
4645 	return NOTIFY_OK;
4646 }
4647 
4648 /*
4649  * Workqueues should be brought down after normal priority CPU notifiers.
4650  * This will be registered as low priority CPU notifier.
4651  */
4652 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4653 						 unsigned long action,
4654 						 void *hcpu)
4655 {
4656 	int cpu = (unsigned long)hcpu;
4657 	struct work_struct unbind_work;
4658 	struct workqueue_struct *wq;
4659 
4660 	switch (action & ~CPU_TASKS_FROZEN) {
4661 	case CPU_DOWN_PREPARE:
4662 		/* unbinding per-cpu workers should happen on the local CPU */
4663 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4664 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4665 
4666 		/* update NUMA affinity of unbound workqueues */
4667 		mutex_lock(&wq_pool_mutex);
4668 		list_for_each_entry(wq, &workqueues, list)
4669 			wq_update_unbound_numa(wq, cpu, false);
4670 		mutex_unlock(&wq_pool_mutex);
4671 
4672 		/* wait for per-cpu unbinding to finish */
4673 		flush_work(&unbind_work);
4674 		destroy_work_on_stack(&unbind_work);
4675 		break;
4676 	}
4677 	return NOTIFY_OK;
4678 }
4679 
4680 #ifdef CONFIG_SMP
4681 
4682 struct work_for_cpu {
4683 	struct work_struct work;
4684 	long (*fn)(void *);
4685 	void *arg;
4686 	long ret;
4687 };
4688 
4689 static void work_for_cpu_fn(struct work_struct *work)
4690 {
4691 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4692 
4693 	wfc->ret = wfc->fn(wfc->arg);
4694 }
4695 
4696 /**
4697  * work_on_cpu - run a function in thread context on a particular cpu
4698  * @cpu: the cpu to run on
4699  * @fn: the function to run
4700  * @arg: the function arg
4701  *
4702  * It is up to the caller to ensure that the cpu doesn't go offline.
4703  * The caller must not hold any locks which would prevent @fn from completing.
4704  *
4705  * Return: The value @fn returns.
4706  */
4707 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4708 {
4709 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4710 
4711 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4712 	schedule_work_on(cpu, &wfc.work);
4713 	flush_work(&wfc.work);
4714 	destroy_work_on_stack(&wfc.work);
4715 	return wfc.ret;
4716 }
4717 EXPORT_SYMBOL_GPL(work_on_cpu);
4718 #endif /* CONFIG_SMP */
4719 
4720 #ifdef CONFIG_FREEZER
4721 
4722 /**
4723  * freeze_workqueues_begin - begin freezing workqueues
4724  *
4725  * Start freezing workqueues.  After this function returns, all freezable
4726  * workqueues will queue new works to their delayed_works list instead of
4727  * pool->worklist.
4728  *
4729  * CONTEXT:
4730  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4731  */
4732 void freeze_workqueues_begin(void)
4733 {
4734 	struct workqueue_struct *wq;
4735 	struct pool_workqueue *pwq;
4736 
4737 	mutex_lock(&wq_pool_mutex);
4738 
4739 	WARN_ON_ONCE(workqueue_freezing);
4740 	workqueue_freezing = true;
4741 
4742 	list_for_each_entry(wq, &workqueues, list) {
4743 		mutex_lock(&wq->mutex);
4744 		for_each_pwq(pwq, wq)
4745 			pwq_adjust_max_active(pwq);
4746 		mutex_unlock(&wq->mutex);
4747 	}
4748 
4749 	mutex_unlock(&wq_pool_mutex);
4750 }
4751 
4752 /**
4753  * freeze_workqueues_busy - are freezable workqueues still busy?
4754  *
4755  * Check whether freezing is complete.  This function must be called
4756  * between freeze_workqueues_begin() and thaw_workqueues().
4757  *
4758  * CONTEXT:
4759  * Grabs and releases wq_pool_mutex.
4760  *
4761  * Return:
4762  * %true if some freezable workqueues are still busy.  %false if freezing
4763  * is complete.
4764  */
4765 bool freeze_workqueues_busy(void)
4766 {
4767 	bool busy = false;
4768 	struct workqueue_struct *wq;
4769 	struct pool_workqueue *pwq;
4770 
4771 	mutex_lock(&wq_pool_mutex);
4772 
4773 	WARN_ON_ONCE(!workqueue_freezing);
4774 
4775 	list_for_each_entry(wq, &workqueues, list) {
4776 		if (!(wq->flags & WQ_FREEZABLE))
4777 			continue;
4778 		/*
4779 		 * nr_active is monotonically decreasing.  It's safe
4780 		 * to peek without lock.
4781 		 */
4782 		rcu_read_lock_sched();
4783 		for_each_pwq(pwq, wq) {
4784 			WARN_ON_ONCE(pwq->nr_active < 0);
4785 			if (pwq->nr_active) {
4786 				busy = true;
4787 				rcu_read_unlock_sched();
4788 				goto out_unlock;
4789 			}
4790 		}
4791 		rcu_read_unlock_sched();
4792 	}
4793 out_unlock:
4794 	mutex_unlock(&wq_pool_mutex);
4795 	return busy;
4796 }
4797 
4798 /**
4799  * thaw_workqueues - thaw workqueues
4800  *
4801  * Thaw workqueues.  Normal queueing is restored and all collected
4802  * frozen works are transferred to their respective pool worklists.
4803  *
4804  * CONTEXT:
4805  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4806  */
4807 void thaw_workqueues(void)
4808 {
4809 	struct workqueue_struct *wq;
4810 	struct pool_workqueue *pwq;
4811 
4812 	mutex_lock(&wq_pool_mutex);
4813 
4814 	if (!workqueue_freezing)
4815 		goto out_unlock;
4816 
4817 	workqueue_freezing = false;
4818 
4819 	/* restore max_active and repopulate worklist */
4820 	list_for_each_entry(wq, &workqueues, list) {
4821 		mutex_lock(&wq->mutex);
4822 		for_each_pwq(pwq, wq)
4823 			pwq_adjust_max_active(pwq);
4824 		mutex_unlock(&wq->mutex);
4825 	}
4826 
4827 out_unlock:
4828 	mutex_unlock(&wq_pool_mutex);
4829 }
4830 #endif /* CONFIG_FREEZER */
4831 
4832 static int workqueue_apply_unbound_cpumask(void)
4833 {
4834 	LIST_HEAD(ctxs);
4835 	int ret = 0;
4836 	struct workqueue_struct *wq;
4837 	struct apply_wqattrs_ctx *ctx, *n;
4838 
4839 	lockdep_assert_held(&wq_pool_mutex);
4840 
4841 	list_for_each_entry(wq, &workqueues, list) {
4842 		if (!(wq->flags & WQ_UNBOUND))
4843 			continue;
4844 		/* creating multiple pwqs breaks ordering guarantee */
4845 		if (wq->flags & __WQ_ORDERED)
4846 			continue;
4847 
4848 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4849 		if (!ctx) {
4850 			ret = -ENOMEM;
4851 			break;
4852 		}
4853 
4854 		list_add_tail(&ctx->list, &ctxs);
4855 	}
4856 
4857 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4858 		if (!ret)
4859 			apply_wqattrs_commit(ctx);
4860 		apply_wqattrs_cleanup(ctx);
4861 	}
4862 
4863 	return ret;
4864 }
4865 
4866 /**
4867  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4868  *  @cpumask: the cpumask to set
4869  *
4870  *  The low-level workqueues cpumask is a global cpumask that limits
4871  *  the affinity of all unbound workqueues.  This function check the @cpumask
4872  *  and apply it to all unbound workqueues and updates all pwqs of them.
4873  *
4874  *  Retun:	0	- Success
4875  *  		-EINVAL	- Invalid @cpumask
4876  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4877  */
4878 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4879 {
4880 	int ret = -EINVAL;
4881 	cpumask_var_t saved_cpumask;
4882 
4883 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4884 		return -ENOMEM;
4885 
4886 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4887 	if (!cpumask_empty(cpumask)) {
4888 		apply_wqattrs_lock();
4889 
4890 		/* save the old wq_unbound_cpumask. */
4891 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4892 
4893 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4894 		cpumask_copy(wq_unbound_cpumask, cpumask);
4895 		ret = workqueue_apply_unbound_cpumask();
4896 
4897 		/* restore the wq_unbound_cpumask when failed. */
4898 		if (ret < 0)
4899 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4900 
4901 		apply_wqattrs_unlock();
4902 	}
4903 
4904 	free_cpumask_var(saved_cpumask);
4905 	return ret;
4906 }
4907 
4908 #ifdef CONFIG_SYSFS
4909 /*
4910  * Workqueues with WQ_SYSFS flag set is visible to userland via
4911  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4912  * following attributes.
4913  *
4914  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4915  *  max_active	RW int	: maximum number of in-flight work items
4916  *
4917  * Unbound workqueues have the following extra attributes.
4918  *
4919  *  id		RO int	: the associated pool ID
4920  *  nice	RW int	: nice value of the workers
4921  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4922  */
4923 struct wq_device {
4924 	struct workqueue_struct		*wq;
4925 	struct device			dev;
4926 };
4927 
4928 static struct workqueue_struct *dev_to_wq(struct device *dev)
4929 {
4930 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4931 
4932 	return wq_dev->wq;
4933 }
4934 
4935 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4936 			    char *buf)
4937 {
4938 	struct workqueue_struct *wq = dev_to_wq(dev);
4939 
4940 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4941 }
4942 static DEVICE_ATTR_RO(per_cpu);
4943 
4944 static ssize_t max_active_show(struct device *dev,
4945 			       struct device_attribute *attr, char *buf)
4946 {
4947 	struct workqueue_struct *wq = dev_to_wq(dev);
4948 
4949 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4950 }
4951 
4952 static ssize_t max_active_store(struct device *dev,
4953 				struct device_attribute *attr, const char *buf,
4954 				size_t count)
4955 {
4956 	struct workqueue_struct *wq = dev_to_wq(dev);
4957 	int val;
4958 
4959 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4960 		return -EINVAL;
4961 
4962 	workqueue_set_max_active(wq, val);
4963 	return count;
4964 }
4965 static DEVICE_ATTR_RW(max_active);
4966 
4967 static struct attribute *wq_sysfs_attrs[] = {
4968 	&dev_attr_per_cpu.attr,
4969 	&dev_attr_max_active.attr,
4970 	NULL,
4971 };
4972 ATTRIBUTE_GROUPS(wq_sysfs);
4973 
4974 static ssize_t wq_pool_ids_show(struct device *dev,
4975 				struct device_attribute *attr, char *buf)
4976 {
4977 	struct workqueue_struct *wq = dev_to_wq(dev);
4978 	const char *delim = "";
4979 	int node, written = 0;
4980 
4981 	rcu_read_lock_sched();
4982 	for_each_node(node) {
4983 		written += scnprintf(buf + written, PAGE_SIZE - written,
4984 				     "%s%d:%d", delim, node,
4985 				     unbound_pwq_by_node(wq, node)->pool->id);
4986 		delim = " ";
4987 	}
4988 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4989 	rcu_read_unlock_sched();
4990 
4991 	return written;
4992 }
4993 
4994 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4995 			    char *buf)
4996 {
4997 	struct workqueue_struct *wq = dev_to_wq(dev);
4998 	int written;
4999 
5000 	mutex_lock(&wq->mutex);
5001 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5002 	mutex_unlock(&wq->mutex);
5003 
5004 	return written;
5005 }
5006 
5007 /* prepare workqueue_attrs for sysfs store operations */
5008 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5009 {
5010 	struct workqueue_attrs *attrs;
5011 
5012 	lockdep_assert_held(&wq_pool_mutex);
5013 
5014 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5015 	if (!attrs)
5016 		return NULL;
5017 
5018 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5019 	return attrs;
5020 }
5021 
5022 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5023 			     const char *buf, size_t count)
5024 {
5025 	struct workqueue_struct *wq = dev_to_wq(dev);
5026 	struct workqueue_attrs *attrs;
5027 	int ret = -ENOMEM;
5028 
5029 	apply_wqattrs_lock();
5030 
5031 	attrs = wq_sysfs_prep_attrs(wq);
5032 	if (!attrs)
5033 		goto out_unlock;
5034 
5035 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5036 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5037 		ret = apply_workqueue_attrs_locked(wq, attrs);
5038 	else
5039 		ret = -EINVAL;
5040 
5041 out_unlock:
5042 	apply_wqattrs_unlock();
5043 	free_workqueue_attrs(attrs);
5044 	return ret ?: count;
5045 }
5046 
5047 static ssize_t wq_cpumask_show(struct device *dev,
5048 			       struct device_attribute *attr, char *buf)
5049 {
5050 	struct workqueue_struct *wq = dev_to_wq(dev);
5051 	int written;
5052 
5053 	mutex_lock(&wq->mutex);
5054 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5055 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5056 	mutex_unlock(&wq->mutex);
5057 	return written;
5058 }
5059 
5060 static ssize_t wq_cpumask_store(struct device *dev,
5061 				struct device_attribute *attr,
5062 				const char *buf, size_t count)
5063 {
5064 	struct workqueue_struct *wq = dev_to_wq(dev);
5065 	struct workqueue_attrs *attrs;
5066 	int ret = -ENOMEM;
5067 
5068 	apply_wqattrs_lock();
5069 
5070 	attrs = wq_sysfs_prep_attrs(wq);
5071 	if (!attrs)
5072 		goto out_unlock;
5073 
5074 	ret = cpumask_parse(buf, attrs->cpumask);
5075 	if (!ret)
5076 		ret = apply_workqueue_attrs_locked(wq, attrs);
5077 
5078 out_unlock:
5079 	apply_wqattrs_unlock();
5080 	free_workqueue_attrs(attrs);
5081 	return ret ?: count;
5082 }
5083 
5084 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5085 			    char *buf)
5086 {
5087 	struct workqueue_struct *wq = dev_to_wq(dev);
5088 	int written;
5089 
5090 	mutex_lock(&wq->mutex);
5091 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5092 			    !wq->unbound_attrs->no_numa);
5093 	mutex_unlock(&wq->mutex);
5094 
5095 	return written;
5096 }
5097 
5098 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5099 			     const char *buf, size_t count)
5100 {
5101 	struct workqueue_struct *wq = dev_to_wq(dev);
5102 	struct workqueue_attrs *attrs;
5103 	int v, ret = -ENOMEM;
5104 
5105 	apply_wqattrs_lock();
5106 
5107 	attrs = wq_sysfs_prep_attrs(wq);
5108 	if (!attrs)
5109 		goto out_unlock;
5110 
5111 	ret = -EINVAL;
5112 	if (sscanf(buf, "%d", &v) == 1) {
5113 		attrs->no_numa = !v;
5114 		ret = apply_workqueue_attrs_locked(wq, attrs);
5115 	}
5116 
5117 out_unlock:
5118 	apply_wqattrs_unlock();
5119 	free_workqueue_attrs(attrs);
5120 	return ret ?: count;
5121 }
5122 
5123 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5124 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5125 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5126 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5127 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5128 	__ATTR_NULL,
5129 };
5130 
5131 static struct bus_type wq_subsys = {
5132 	.name				= "workqueue",
5133 	.dev_groups			= wq_sysfs_groups,
5134 };
5135 
5136 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5137 		struct device_attribute *attr, char *buf)
5138 {
5139 	int written;
5140 
5141 	mutex_lock(&wq_pool_mutex);
5142 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5143 			    cpumask_pr_args(wq_unbound_cpumask));
5144 	mutex_unlock(&wq_pool_mutex);
5145 
5146 	return written;
5147 }
5148 
5149 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5150 		struct device_attribute *attr, const char *buf, size_t count)
5151 {
5152 	cpumask_var_t cpumask;
5153 	int ret;
5154 
5155 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5156 		return -ENOMEM;
5157 
5158 	ret = cpumask_parse(buf, cpumask);
5159 	if (!ret)
5160 		ret = workqueue_set_unbound_cpumask(cpumask);
5161 
5162 	free_cpumask_var(cpumask);
5163 	return ret ? ret : count;
5164 }
5165 
5166 static struct device_attribute wq_sysfs_cpumask_attr =
5167 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5168 	       wq_unbound_cpumask_store);
5169 
5170 static int __init wq_sysfs_init(void)
5171 {
5172 	int err;
5173 
5174 	err = subsys_virtual_register(&wq_subsys, NULL);
5175 	if (err)
5176 		return err;
5177 
5178 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5179 }
5180 core_initcall(wq_sysfs_init);
5181 
5182 static void wq_device_release(struct device *dev)
5183 {
5184 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5185 
5186 	kfree(wq_dev);
5187 }
5188 
5189 /**
5190  * workqueue_sysfs_register - make a workqueue visible in sysfs
5191  * @wq: the workqueue to register
5192  *
5193  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5194  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5195  * which is the preferred method.
5196  *
5197  * Workqueue user should use this function directly iff it wants to apply
5198  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5199  * apply_workqueue_attrs() may race against userland updating the
5200  * attributes.
5201  *
5202  * Return: 0 on success, -errno on failure.
5203  */
5204 int workqueue_sysfs_register(struct workqueue_struct *wq)
5205 {
5206 	struct wq_device *wq_dev;
5207 	int ret;
5208 
5209 	/*
5210 	 * Adjusting max_active or creating new pwqs by applying
5211 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5212 	 * workqueues.
5213 	 */
5214 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5215 		return -EINVAL;
5216 
5217 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5218 	if (!wq_dev)
5219 		return -ENOMEM;
5220 
5221 	wq_dev->wq = wq;
5222 	wq_dev->dev.bus = &wq_subsys;
5223 	wq_dev->dev.release = wq_device_release;
5224 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5225 
5226 	/*
5227 	 * unbound_attrs are created separately.  Suppress uevent until
5228 	 * everything is ready.
5229 	 */
5230 	dev_set_uevent_suppress(&wq_dev->dev, true);
5231 
5232 	ret = device_register(&wq_dev->dev);
5233 	if (ret) {
5234 		kfree(wq_dev);
5235 		wq->wq_dev = NULL;
5236 		return ret;
5237 	}
5238 
5239 	if (wq->flags & WQ_UNBOUND) {
5240 		struct device_attribute *attr;
5241 
5242 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5243 			ret = device_create_file(&wq_dev->dev, attr);
5244 			if (ret) {
5245 				device_unregister(&wq_dev->dev);
5246 				wq->wq_dev = NULL;
5247 				return ret;
5248 			}
5249 		}
5250 	}
5251 
5252 	dev_set_uevent_suppress(&wq_dev->dev, false);
5253 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5254 	return 0;
5255 }
5256 
5257 /**
5258  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5259  * @wq: the workqueue to unregister
5260  *
5261  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5262  */
5263 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5264 {
5265 	struct wq_device *wq_dev = wq->wq_dev;
5266 
5267 	if (!wq->wq_dev)
5268 		return;
5269 
5270 	wq->wq_dev = NULL;
5271 	device_unregister(&wq_dev->dev);
5272 }
5273 #else	/* CONFIG_SYSFS */
5274 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5275 #endif	/* CONFIG_SYSFS */
5276 
5277 /*
5278  * Workqueue watchdog.
5279  *
5280  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5281  * flush dependency, a concurrency managed work item which stays RUNNING
5282  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5283  * usual warning mechanisms don't trigger and internal workqueue state is
5284  * largely opaque.
5285  *
5286  * Workqueue watchdog monitors all worker pools periodically and dumps
5287  * state if some pools failed to make forward progress for a while where
5288  * forward progress is defined as the first item on ->worklist changing.
5289  *
5290  * This mechanism is controlled through the kernel parameter
5291  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5292  * corresponding sysfs parameter file.
5293  */
5294 #ifdef CONFIG_WQ_WATCHDOG
5295 
5296 static void wq_watchdog_timer_fn(unsigned long data);
5297 
5298 static unsigned long wq_watchdog_thresh = 30;
5299 static struct timer_list wq_watchdog_timer =
5300 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5301 
5302 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5303 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5304 
5305 static void wq_watchdog_reset_touched(void)
5306 {
5307 	int cpu;
5308 
5309 	wq_watchdog_touched = jiffies;
5310 	for_each_possible_cpu(cpu)
5311 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5312 }
5313 
5314 static void wq_watchdog_timer_fn(unsigned long data)
5315 {
5316 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5317 	bool lockup_detected = false;
5318 	struct worker_pool *pool;
5319 	int pi;
5320 
5321 	if (!thresh)
5322 		return;
5323 
5324 	rcu_read_lock();
5325 
5326 	for_each_pool(pool, pi) {
5327 		unsigned long pool_ts, touched, ts;
5328 
5329 		if (list_empty(&pool->worklist))
5330 			continue;
5331 
5332 		/* get the latest of pool and touched timestamps */
5333 		pool_ts = READ_ONCE(pool->watchdog_ts);
5334 		touched = READ_ONCE(wq_watchdog_touched);
5335 
5336 		if (time_after(pool_ts, touched))
5337 			ts = pool_ts;
5338 		else
5339 			ts = touched;
5340 
5341 		if (pool->cpu >= 0) {
5342 			unsigned long cpu_touched =
5343 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5344 						  pool->cpu));
5345 			if (time_after(cpu_touched, ts))
5346 				ts = cpu_touched;
5347 		}
5348 
5349 		/* did we stall? */
5350 		if (time_after(jiffies, ts + thresh)) {
5351 			lockup_detected = true;
5352 			pr_emerg("BUG: workqueue lockup - pool");
5353 			pr_cont_pool_info(pool);
5354 			pr_cont(" stuck for %us!\n",
5355 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5356 		}
5357 	}
5358 
5359 	rcu_read_unlock();
5360 
5361 	if (lockup_detected)
5362 		show_workqueue_state();
5363 
5364 	wq_watchdog_reset_touched();
5365 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5366 }
5367 
5368 void wq_watchdog_touch(int cpu)
5369 {
5370 	if (cpu >= 0)
5371 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5372 	else
5373 		wq_watchdog_touched = jiffies;
5374 }
5375 
5376 static void wq_watchdog_set_thresh(unsigned long thresh)
5377 {
5378 	wq_watchdog_thresh = 0;
5379 	del_timer_sync(&wq_watchdog_timer);
5380 
5381 	if (thresh) {
5382 		wq_watchdog_thresh = thresh;
5383 		wq_watchdog_reset_touched();
5384 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5385 	}
5386 }
5387 
5388 static int wq_watchdog_param_set_thresh(const char *val,
5389 					const struct kernel_param *kp)
5390 {
5391 	unsigned long thresh;
5392 	int ret;
5393 
5394 	ret = kstrtoul(val, 0, &thresh);
5395 	if (ret)
5396 		return ret;
5397 
5398 	if (system_wq)
5399 		wq_watchdog_set_thresh(thresh);
5400 	else
5401 		wq_watchdog_thresh = thresh;
5402 
5403 	return 0;
5404 }
5405 
5406 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5407 	.set	= wq_watchdog_param_set_thresh,
5408 	.get	= param_get_ulong,
5409 };
5410 
5411 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5412 		0644);
5413 
5414 static void wq_watchdog_init(void)
5415 {
5416 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5417 }
5418 
5419 #else	/* CONFIG_WQ_WATCHDOG */
5420 
5421 static inline void wq_watchdog_init(void) { }
5422 
5423 #endif	/* CONFIG_WQ_WATCHDOG */
5424 
5425 static void __init wq_numa_init(void)
5426 {
5427 	cpumask_var_t *tbl;
5428 	int node, cpu;
5429 
5430 	if (num_possible_nodes() <= 1)
5431 		return;
5432 
5433 	if (wq_disable_numa) {
5434 		pr_info("workqueue: NUMA affinity support disabled\n");
5435 		return;
5436 	}
5437 
5438 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5439 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5440 
5441 	/*
5442 	 * We want masks of possible CPUs of each node which isn't readily
5443 	 * available.  Build one from cpu_to_node() which should have been
5444 	 * fully initialized by now.
5445 	 */
5446 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5447 	BUG_ON(!tbl);
5448 
5449 	for_each_node(node)
5450 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5451 				node_online(node) ? node : NUMA_NO_NODE));
5452 
5453 	for_each_possible_cpu(cpu) {
5454 		node = cpu_to_node(cpu);
5455 		if (WARN_ON(node == NUMA_NO_NODE)) {
5456 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5457 			/* happens iff arch is bonkers, let's just proceed */
5458 			return;
5459 		}
5460 		cpumask_set_cpu(cpu, tbl[node]);
5461 	}
5462 
5463 	wq_numa_possible_cpumask = tbl;
5464 	wq_numa_enabled = true;
5465 }
5466 
5467 static int __init init_workqueues(void)
5468 {
5469 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5470 	int i, cpu;
5471 
5472 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5473 
5474 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5475 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5476 
5477 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5478 
5479 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5480 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5481 
5482 	wq_numa_init();
5483 
5484 	/* initialize CPU pools */
5485 	for_each_possible_cpu(cpu) {
5486 		struct worker_pool *pool;
5487 
5488 		i = 0;
5489 		for_each_cpu_worker_pool(pool, cpu) {
5490 			BUG_ON(init_worker_pool(pool));
5491 			pool->cpu = cpu;
5492 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5493 			pool->attrs->nice = std_nice[i++];
5494 			pool->node = cpu_to_node(cpu);
5495 
5496 			/* alloc pool ID */
5497 			mutex_lock(&wq_pool_mutex);
5498 			BUG_ON(worker_pool_assign_id(pool));
5499 			mutex_unlock(&wq_pool_mutex);
5500 		}
5501 	}
5502 
5503 	/* create the initial worker */
5504 	for_each_online_cpu(cpu) {
5505 		struct worker_pool *pool;
5506 
5507 		for_each_cpu_worker_pool(pool, cpu) {
5508 			pool->flags &= ~POOL_DISASSOCIATED;
5509 			BUG_ON(!create_worker(pool));
5510 		}
5511 	}
5512 
5513 	/* create default unbound and ordered wq attrs */
5514 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5515 		struct workqueue_attrs *attrs;
5516 
5517 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5518 		attrs->nice = std_nice[i];
5519 		unbound_std_wq_attrs[i] = attrs;
5520 
5521 		/*
5522 		 * An ordered wq should have only one pwq as ordering is
5523 		 * guaranteed by max_active which is enforced by pwqs.
5524 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5525 		 */
5526 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5527 		attrs->nice = std_nice[i];
5528 		attrs->no_numa = true;
5529 		ordered_wq_attrs[i] = attrs;
5530 	}
5531 
5532 	system_wq = alloc_workqueue("events", 0, 0);
5533 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5534 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5535 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5536 					    WQ_UNBOUND_MAX_ACTIVE);
5537 	system_freezable_wq = alloc_workqueue("events_freezable",
5538 					      WQ_FREEZABLE, 0);
5539 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5540 					      WQ_POWER_EFFICIENT, 0);
5541 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5542 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5543 					      0);
5544 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5545 	       !system_unbound_wq || !system_freezable_wq ||
5546 	       !system_power_efficient_wq ||
5547 	       !system_freezable_power_efficient_wq);
5548 
5549 	wq_watchdog_init();
5550 
5551 	return 0;
5552 }
5553 early_initcall(init_workqueues);
5554