1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 300 301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 302 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 303 304 /* PL: allowable cpus for unbound wqs and work items */ 305 static cpumask_var_t wq_unbound_cpumask; 306 307 /* CPU where unbound work was last round robin scheduled from this CPU */ 308 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 309 310 /* 311 * Local execution of unbound work items is no longer guaranteed. The 312 * following always forces round-robin CPU selection on unbound work items 313 * to uncover usages which depend on it. 314 */ 315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 316 static bool wq_debug_force_rr_cpu = true; 317 #else 318 static bool wq_debug_force_rr_cpu = false; 319 #endif 320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 321 322 /* the per-cpu worker pools */ 323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 324 325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 326 327 /* PL: hash of all unbound pools keyed by pool->attrs */ 328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 329 330 /* I: attributes used when instantiating standard unbound pools on demand */ 331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 332 333 /* I: attributes used when instantiating ordered pools on demand */ 334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 335 336 struct workqueue_struct *system_wq __read_mostly; 337 EXPORT_SYMBOL(system_wq); 338 struct workqueue_struct *system_highpri_wq __read_mostly; 339 EXPORT_SYMBOL_GPL(system_highpri_wq); 340 struct workqueue_struct *system_long_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_long_wq); 342 struct workqueue_struct *system_unbound_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_unbound_wq); 344 struct workqueue_struct *system_freezable_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_freezable_wq); 346 struct workqueue_struct *system_power_efficient_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 350 351 static int worker_thread(void *__worker); 352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 353 354 #define CREATE_TRACE_POINTS 355 #include <trace/events/workqueue.h> 356 357 #define assert_rcu_or_pool_mutex() \ 358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 359 !lockdep_is_held(&wq_pool_mutex), \ 360 "sched RCU or wq_pool_mutex should be held") 361 362 #define assert_rcu_or_wq_mutex(wq) \ 363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 364 !lockdep_is_held(&wq->mutex), \ 365 "sched RCU or wq->mutex should be held") 366 367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 369 !lockdep_is_held(&wq->mutex) && \ 370 !lockdep_is_held(&wq_pool_mutex), \ 371 "sched RCU, wq->mutex or wq_pool_mutex should be held") 372 373 #define for_each_cpu_worker_pool(pool, cpu) \ 374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 376 (pool)++) 377 378 /** 379 * for_each_pool - iterate through all worker_pools in the system 380 * @pool: iteration cursor 381 * @pi: integer used for iteration 382 * 383 * This must be called either with wq_pool_mutex held or sched RCU read 384 * locked. If the pool needs to be used beyond the locking in effect, the 385 * caller is responsible for guaranteeing that the pool stays online. 386 * 387 * The if/else clause exists only for the lockdep assertion and can be 388 * ignored. 389 */ 390 #define for_each_pool(pool, pi) \ 391 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 393 else 394 395 /** 396 * for_each_pool_worker - iterate through all workers of a worker_pool 397 * @worker: iteration cursor 398 * @pool: worker_pool to iterate workers of 399 * 400 * This must be called with @pool->attach_mutex. 401 * 402 * The if/else clause exists only for the lockdep assertion and can be 403 * ignored. 404 */ 405 #define for_each_pool_worker(worker, pool) \ 406 list_for_each_entry((worker), &(pool)->workers, node) \ 407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 408 else 409 410 /** 411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 412 * @pwq: iteration cursor 413 * @wq: the target workqueue 414 * 415 * This must be called either with wq->mutex held or sched RCU read locked. 416 * If the pwq needs to be used beyond the locking in effect, the caller is 417 * responsible for guaranteeing that the pwq stays online. 418 * 419 * The if/else clause exists only for the lockdep assertion and can be 420 * ignored. 421 */ 422 #define for_each_pwq(pwq, wq) \ 423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 425 else 426 427 #ifdef CONFIG_DEBUG_OBJECTS_WORK 428 429 static struct debug_obj_descr work_debug_descr; 430 431 static void *work_debug_hint(void *addr) 432 { 433 return ((struct work_struct *) addr)->func; 434 } 435 436 /* 437 * fixup_init is called when: 438 * - an active object is initialized 439 */ 440 static int work_fixup_init(void *addr, enum debug_obj_state state) 441 { 442 struct work_struct *work = addr; 443 444 switch (state) { 445 case ODEBUG_STATE_ACTIVE: 446 cancel_work_sync(work); 447 debug_object_init(work, &work_debug_descr); 448 return 1; 449 default: 450 return 0; 451 } 452 } 453 454 /* 455 * fixup_activate is called when: 456 * - an active object is activated 457 * - an unknown object is activated (might be a statically initialized object) 458 */ 459 static int work_fixup_activate(void *addr, enum debug_obj_state state) 460 { 461 struct work_struct *work = addr; 462 463 switch (state) { 464 465 case ODEBUG_STATE_NOTAVAILABLE: 466 /* 467 * This is not really a fixup. The work struct was 468 * statically initialized. We just make sure that it 469 * is tracked in the object tracker. 470 */ 471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 472 debug_object_init(work, &work_debug_descr); 473 debug_object_activate(work, &work_debug_descr); 474 return 0; 475 } 476 WARN_ON_ONCE(1); 477 return 0; 478 479 case ODEBUG_STATE_ACTIVE: 480 WARN_ON(1); 481 482 default: 483 return 0; 484 } 485 } 486 487 /* 488 * fixup_free is called when: 489 * - an active object is freed 490 */ 491 static int work_fixup_free(void *addr, enum debug_obj_state state) 492 { 493 struct work_struct *work = addr; 494 495 switch (state) { 496 case ODEBUG_STATE_ACTIVE: 497 cancel_work_sync(work); 498 debug_object_free(work, &work_debug_descr); 499 return 1; 500 default: 501 return 0; 502 } 503 } 504 505 static struct debug_obj_descr work_debug_descr = { 506 .name = "work_struct", 507 .debug_hint = work_debug_hint, 508 .fixup_init = work_fixup_init, 509 .fixup_activate = work_fixup_activate, 510 .fixup_free = work_fixup_free, 511 }; 512 513 static inline void debug_work_activate(struct work_struct *work) 514 { 515 debug_object_activate(work, &work_debug_descr); 516 } 517 518 static inline void debug_work_deactivate(struct work_struct *work) 519 { 520 debug_object_deactivate(work, &work_debug_descr); 521 } 522 523 void __init_work(struct work_struct *work, int onstack) 524 { 525 if (onstack) 526 debug_object_init_on_stack(work, &work_debug_descr); 527 else 528 debug_object_init(work, &work_debug_descr); 529 } 530 EXPORT_SYMBOL_GPL(__init_work); 531 532 void destroy_work_on_stack(struct work_struct *work) 533 { 534 debug_object_free(work, &work_debug_descr); 535 } 536 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 537 538 void destroy_delayed_work_on_stack(struct delayed_work *work) 539 { 540 destroy_timer_on_stack(&work->timer); 541 debug_object_free(&work->work, &work_debug_descr); 542 } 543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 544 545 #else 546 static inline void debug_work_activate(struct work_struct *work) { } 547 static inline void debug_work_deactivate(struct work_struct *work) { } 548 #endif 549 550 /** 551 * worker_pool_assign_id - allocate ID and assing it to @pool 552 * @pool: the pool pointer of interest 553 * 554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 555 * successfully, -errno on failure. 556 */ 557 static int worker_pool_assign_id(struct worker_pool *pool) 558 { 559 int ret; 560 561 lockdep_assert_held(&wq_pool_mutex); 562 563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 564 GFP_KERNEL); 565 if (ret >= 0) { 566 pool->id = ret; 567 return 0; 568 } 569 return ret; 570 } 571 572 /** 573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 574 * @wq: the target workqueue 575 * @node: the node ID 576 * 577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 578 * read locked. 579 * If the pwq needs to be used beyond the locking in effect, the caller is 580 * responsible for guaranteeing that the pwq stays online. 581 * 582 * Return: The unbound pool_workqueue for @node. 583 */ 584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 585 int node) 586 { 587 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 588 589 /* 590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 591 * delayed item is pending. The plan is to keep CPU -> NODE 592 * mapping valid and stable across CPU on/offlines. Once that 593 * happens, this workaround can be removed. 594 */ 595 if (unlikely(node == NUMA_NO_NODE)) 596 return wq->dfl_pwq; 597 598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 599 } 600 601 static unsigned int work_color_to_flags(int color) 602 { 603 return color << WORK_STRUCT_COLOR_SHIFT; 604 } 605 606 static int get_work_color(struct work_struct *work) 607 { 608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 609 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 610 } 611 612 static int work_next_color(int color) 613 { 614 return (color + 1) % WORK_NR_COLORS; 615 } 616 617 /* 618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 619 * contain the pointer to the queued pwq. Once execution starts, the flag 620 * is cleared and the high bits contain OFFQ flags and pool ID. 621 * 622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 623 * and clear_work_data() can be used to set the pwq, pool or clear 624 * work->data. These functions should only be called while the work is 625 * owned - ie. while the PENDING bit is set. 626 * 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 628 * corresponding to a work. Pool is available once the work has been 629 * queued anywhere after initialization until it is sync canceled. pwq is 630 * available only while the work item is queued. 631 * 632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 633 * canceled. While being canceled, a work item may have its PENDING set 634 * but stay off timer and worklist for arbitrarily long and nobody should 635 * try to steal the PENDING bit. 636 */ 637 static inline void set_work_data(struct work_struct *work, unsigned long data, 638 unsigned long flags) 639 { 640 WARN_ON_ONCE(!work_pending(work)); 641 atomic_long_set(&work->data, data | flags | work_static(work)); 642 } 643 644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 645 unsigned long extra_flags) 646 { 647 set_work_data(work, (unsigned long)pwq, 648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 649 } 650 651 static void set_work_pool_and_keep_pending(struct work_struct *work, 652 int pool_id) 653 { 654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 655 WORK_STRUCT_PENDING); 656 } 657 658 static void set_work_pool_and_clear_pending(struct work_struct *work, 659 int pool_id) 660 { 661 /* 662 * The following wmb is paired with the implied mb in 663 * test_and_set_bit(PENDING) and ensures all updates to @work made 664 * here are visible to and precede any updates by the next PENDING 665 * owner. 666 */ 667 smp_wmb(); 668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 669 } 670 671 static void clear_work_data(struct work_struct *work) 672 { 673 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 674 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 675 } 676 677 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 678 { 679 unsigned long data = atomic_long_read(&work->data); 680 681 if (data & WORK_STRUCT_PWQ) 682 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 683 else 684 return NULL; 685 } 686 687 /** 688 * get_work_pool - return the worker_pool a given work was associated with 689 * @work: the work item of interest 690 * 691 * Pools are created and destroyed under wq_pool_mutex, and allows read 692 * access under sched-RCU read lock. As such, this function should be 693 * called under wq_pool_mutex or with preemption disabled. 694 * 695 * All fields of the returned pool are accessible as long as the above 696 * mentioned locking is in effect. If the returned pool needs to be used 697 * beyond the critical section, the caller is responsible for ensuring the 698 * returned pool is and stays online. 699 * 700 * Return: The worker_pool @work was last associated with. %NULL if none. 701 */ 702 static struct worker_pool *get_work_pool(struct work_struct *work) 703 { 704 unsigned long data = atomic_long_read(&work->data); 705 int pool_id; 706 707 assert_rcu_or_pool_mutex(); 708 709 if (data & WORK_STRUCT_PWQ) 710 return ((struct pool_workqueue *) 711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 712 713 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 714 if (pool_id == WORK_OFFQ_POOL_NONE) 715 return NULL; 716 717 return idr_find(&worker_pool_idr, pool_id); 718 } 719 720 /** 721 * get_work_pool_id - return the worker pool ID a given work is associated with 722 * @work: the work item of interest 723 * 724 * Return: The worker_pool ID @work was last associated with. 725 * %WORK_OFFQ_POOL_NONE if none. 726 */ 727 static int get_work_pool_id(struct work_struct *work) 728 { 729 unsigned long data = atomic_long_read(&work->data); 730 731 if (data & WORK_STRUCT_PWQ) 732 return ((struct pool_workqueue *) 733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 734 735 return data >> WORK_OFFQ_POOL_SHIFT; 736 } 737 738 static void mark_work_canceling(struct work_struct *work) 739 { 740 unsigned long pool_id = get_work_pool_id(work); 741 742 pool_id <<= WORK_OFFQ_POOL_SHIFT; 743 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 744 } 745 746 static bool work_is_canceling(struct work_struct *work) 747 { 748 unsigned long data = atomic_long_read(&work->data); 749 750 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 751 } 752 753 /* 754 * Policy functions. These define the policies on how the global worker 755 * pools are managed. Unless noted otherwise, these functions assume that 756 * they're being called with pool->lock held. 757 */ 758 759 static bool __need_more_worker(struct worker_pool *pool) 760 { 761 return !atomic_read(&pool->nr_running); 762 } 763 764 /* 765 * Need to wake up a worker? Called from anything but currently 766 * running workers. 767 * 768 * Note that, because unbound workers never contribute to nr_running, this 769 * function will always return %true for unbound pools as long as the 770 * worklist isn't empty. 771 */ 772 static bool need_more_worker(struct worker_pool *pool) 773 { 774 return !list_empty(&pool->worklist) && __need_more_worker(pool); 775 } 776 777 /* Can I start working? Called from busy but !running workers. */ 778 static bool may_start_working(struct worker_pool *pool) 779 { 780 return pool->nr_idle; 781 } 782 783 /* Do I need to keep working? Called from currently running workers. */ 784 static bool keep_working(struct worker_pool *pool) 785 { 786 return !list_empty(&pool->worklist) && 787 atomic_read(&pool->nr_running) <= 1; 788 } 789 790 /* Do we need a new worker? Called from manager. */ 791 static bool need_to_create_worker(struct worker_pool *pool) 792 { 793 return need_more_worker(pool) && !may_start_working(pool); 794 } 795 796 /* Do we have too many workers and should some go away? */ 797 static bool too_many_workers(struct worker_pool *pool) 798 { 799 bool managing = mutex_is_locked(&pool->manager_arb); 800 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 801 int nr_busy = pool->nr_workers - nr_idle; 802 803 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 804 } 805 806 /* 807 * Wake up functions. 808 */ 809 810 /* Return the first idle worker. Safe with preemption disabled */ 811 static struct worker *first_idle_worker(struct worker_pool *pool) 812 { 813 if (unlikely(list_empty(&pool->idle_list))) 814 return NULL; 815 816 return list_first_entry(&pool->idle_list, struct worker, entry); 817 } 818 819 /** 820 * wake_up_worker - wake up an idle worker 821 * @pool: worker pool to wake worker from 822 * 823 * Wake up the first idle worker of @pool. 824 * 825 * CONTEXT: 826 * spin_lock_irq(pool->lock). 827 */ 828 static void wake_up_worker(struct worker_pool *pool) 829 { 830 struct worker *worker = first_idle_worker(pool); 831 832 if (likely(worker)) 833 wake_up_process(worker->task); 834 } 835 836 /** 837 * wq_worker_waking_up - a worker is waking up 838 * @task: task waking up 839 * @cpu: CPU @task is waking up to 840 * 841 * This function is called during try_to_wake_up() when a worker is 842 * being awoken. 843 * 844 * CONTEXT: 845 * spin_lock_irq(rq->lock) 846 */ 847 void wq_worker_waking_up(struct task_struct *task, int cpu) 848 { 849 struct worker *worker = kthread_data(task); 850 851 if (!(worker->flags & WORKER_NOT_RUNNING)) { 852 WARN_ON_ONCE(worker->pool->cpu != cpu); 853 atomic_inc(&worker->pool->nr_running); 854 } 855 } 856 857 /** 858 * wq_worker_sleeping - a worker is going to sleep 859 * @task: task going to sleep 860 * 861 * This function is called during schedule() when a busy worker is 862 * going to sleep. Worker on the same cpu can be woken up by 863 * returning pointer to its task. 864 * 865 * CONTEXT: 866 * spin_lock_irq(rq->lock) 867 * 868 * Return: 869 * Worker task on @cpu to wake up, %NULL if none. 870 */ 871 struct task_struct *wq_worker_sleeping(struct task_struct *task) 872 { 873 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 874 struct worker_pool *pool; 875 876 /* 877 * Rescuers, which may not have all the fields set up like normal 878 * workers, also reach here, let's not access anything before 879 * checking NOT_RUNNING. 880 */ 881 if (worker->flags & WORKER_NOT_RUNNING) 882 return NULL; 883 884 pool = worker->pool; 885 886 /* this can only happen on the local cpu */ 887 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 888 return NULL; 889 890 /* 891 * The counterpart of the following dec_and_test, implied mb, 892 * worklist not empty test sequence is in insert_work(). 893 * Please read comment there. 894 * 895 * NOT_RUNNING is clear. This means that we're bound to and 896 * running on the local cpu w/ rq lock held and preemption 897 * disabled, which in turn means that none else could be 898 * manipulating idle_list, so dereferencing idle_list without pool 899 * lock is safe. 900 */ 901 if (atomic_dec_and_test(&pool->nr_running) && 902 !list_empty(&pool->worklist)) 903 to_wakeup = first_idle_worker(pool); 904 return to_wakeup ? to_wakeup->task : NULL; 905 } 906 907 /** 908 * worker_set_flags - set worker flags and adjust nr_running accordingly 909 * @worker: self 910 * @flags: flags to set 911 * 912 * Set @flags in @worker->flags and adjust nr_running accordingly. 913 * 914 * CONTEXT: 915 * spin_lock_irq(pool->lock) 916 */ 917 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 918 { 919 struct worker_pool *pool = worker->pool; 920 921 WARN_ON_ONCE(worker->task != current); 922 923 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 924 if ((flags & WORKER_NOT_RUNNING) && 925 !(worker->flags & WORKER_NOT_RUNNING)) { 926 atomic_dec(&pool->nr_running); 927 } 928 929 worker->flags |= flags; 930 } 931 932 /** 933 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 934 * @worker: self 935 * @flags: flags to clear 936 * 937 * Clear @flags in @worker->flags and adjust nr_running accordingly. 938 * 939 * CONTEXT: 940 * spin_lock_irq(pool->lock) 941 */ 942 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 943 { 944 struct worker_pool *pool = worker->pool; 945 unsigned int oflags = worker->flags; 946 947 WARN_ON_ONCE(worker->task != current); 948 949 worker->flags &= ~flags; 950 951 /* 952 * If transitioning out of NOT_RUNNING, increment nr_running. Note 953 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 954 * of multiple flags, not a single flag. 955 */ 956 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 957 if (!(worker->flags & WORKER_NOT_RUNNING)) 958 atomic_inc(&pool->nr_running); 959 } 960 961 /** 962 * find_worker_executing_work - find worker which is executing a work 963 * @pool: pool of interest 964 * @work: work to find worker for 965 * 966 * Find a worker which is executing @work on @pool by searching 967 * @pool->busy_hash which is keyed by the address of @work. For a worker 968 * to match, its current execution should match the address of @work and 969 * its work function. This is to avoid unwanted dependency between 970 * unrelated work executions through a work item being recycled while still 971 * being executed. 972 * 973 * This is a bit tricky. A work item may be freed once its execution 974 * starts and nothing prevents the freed area from being recycled for 975 * another work item. If the same work item address ends up being reused 976 * before the original execution finishes, workqueue will identify the 977 * recycled work item as currently executing and make it wait until the 978 * current execution finishes, introducing an unwanted dependency. 979 * 980 * This function checks the work item address and work function to avoid 981 * false positives. Note that this isn't complete as one may construct a 982 * work function which can introduce dependency onto itself through a 983 * recycled work item. Well, if somebody wants to shoot oneself in the 984 * foot that badly, there's only so much we can do, and if such deadlock 985 * actually occurs, it should be easy to locate the culprit work function. 986 * 987 * CONTEXT: 988 * spin_lock_irq(pool->lock). 989 * 990 * Return: 991 * Pointer to worker which is executing @work if found, %NULL 992 * otherwise. 993 */ 994 static struct worker *find_worker_executing_work(struct worker_pool *pool, 995 struct work_struct *work) 996 { 997 struct worker *worker; 998 999 hash_for_each_possible(pool->busy_hash, worker, hentry, 1000 (unsigned long)work) 1001 if (worker->current_work == work && 1002 worker->current_func == work->func) 1003 return worker; 1004 1005 return NULL; 1006 } 1007 1008 /** 1009 * move_linked_works - move linked works to a list 1010 * @work: start of series of works to be scheduled 1011 * @head: target list to append @work to 1012 * @nextp: out parameter for nested worklist walking 1013 * 1014 * Schedule linked works starting from @work to @head. Work series to 1015 * be scheduled starts at @work and includes any consecutive work with 1016 * WORK_STRUCT_LINKED set in its predecessor. 1017 * 1018 * If @nextp is not NULL, it's updated to point to the next work of 1019 * the last scheduled work. This allows move_linked_works() to be 1020 * nested inside outer list_for_each_entry_safe(). 1021 * 1022 * CONTEXT: 1023 * spin_lock_irq(pool->lock). 1024 */ 1025 static void move_linked_works(struct work_struct *work, struct list_head *head, 1026 struct work_struct **nextp) 1027 { 1028 struct work_struct *n; 1029 1030 /* 1031 * Linked worklist will always end before the end of the list, 1032 * use NULL for list head. 1033 */ 1034 list_for_each_entry_safe_from(work, n, NULL, entry) { 1035 list_move_tail(&work->entry, head); 1036 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1037 break; 1038 } 1039 1040 /* 1041 * If we're already inside safe list traversal and have moved 1042 * multiple works to the scheduled queue, the next position 1043 * needs to be updated. 1044 */ 1045 if (nextp) 1046 *nextp = n; 1047 } 1048 1049 /** 1050 * get_pwq - get an extra reference on the specified pool_workqueue 1051 * @pwq: pool_workqueue to get 1052 * 1053 * Obtain an extra reference on @pwq. The caller should guarantee that 1054 * @pwq has positive refcnt and be holding the matching pool->lock. 1055 */ 1056 static void get_pwq(struct pool_workqueue *pwq) 1057 { 1058 lockdep_assert_held(&pwq->pool->lock); 1059 WARN_ON_ONCE(pwq->refcnt <= 0); 1060 pwq->refcnt++; 1061 } 1062 1063 /** 1064 * put_pwq - put a pool_workqueue reference 1065 * @pwq: pool_workqueue to put 1066 * 1067 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1068 * destruction. The caller should be holding the matching pool->lock. 1069 */ 1070 static void put_pwq(struct pool_workqueue *pwq) 1071 { 1072 lockdep_assert_held(&pwq->pool->lock); 1073 if (likely(--pwq->refcnt)) 1074 return; 1075 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1076 return; 1077 /* 1078 * @pwq can't be released under pool->lock, bounce to 1079 * pwq_unbound_release_workfn(). This never recurses on the same 1080 * pool->lock as this path is taken only for unbound workqueues and 1081 * the release work item is scheduled on a per-cpu workqueue. To 1082 * avoid lockdep warning, unbound pool->locks are given lockdep 1083 * subclass of 1 in get_unbound_pool(). 1084 */ 1085 schedule_work(&pwq->unbound_release_work); 1086 } 1087 1088 /** 1089 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1090 * @pwq: pool_workqueue to put (can be %NULL) 1091 * 1092 * put_pwq() with locking. This function also allows %NULL @pwq. 1093 */ 1094 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1095 { 1096 if (pwq) { 1097 /* 1098 * As both pwqs and pools are sched-RCU protected, the 1099 * following lock operations are safe. 1100 */ 1101 spin_lock_irq(&pwq->pool->lock); 1102 put_pwq(pwq); 1103 spin_unlock_irq(&pwq->pool->lock); 1104 } 1105 } 1106 1107 static void pwq_activate_delayed_work(struct work_struct *work) 1108 { 1109 struct pool_workqueue *pwq = get_work_pwq(work); 1110 1111 trace_workqueue_activate_work(work); 1112 if (list_empty(&pwq->pool->worklist)) 1113 pwq->pool->watchdog_ts = jiffies; 1114 move_linked_works(work, &pwq->pool->worklist, NULL); 1115 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1116 pwq->nr_active++; 1117 } 1118 1119 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1120 { 1121 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1122 struct work_struct, entry); 1123 1124 pwq_activate_delayed_work(work); 1125 } 1126 1127 /** 1128 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1129 * @pwq: pwq of interest 1130 * @color: color of work which left the queue 1131 * 1132 * A work either has completed or is removed from pending queue, 1133 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1134 * 1135 * CONTEXT: 1136 * spin_lock_irq(pool->lock). 1137 */ 1138 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1139 { 1140 /* uncolored work items don't participate in flushing or nr_active */ 1141 if (color == WORK_NO_COLOR) 1142 goto out_put; 1143 1144 pwq->nr_in_flight[color]--; 1145 1146 pwq->nr_active--; 1147 if (!list_empty(&pwq->delayed_works)) { 1148 /* one down, submit a delayed one */ 1149 if (pwq->nr_active < pwq->max_active) 1150 pwq_activate_first_delayed(pwq); 1151 } 1152 1153 /* is flush in progress and are we at the flushing tip? */ 1154 if (likely(pwq->flush_color != color)) 1155 goto out_put; 1156 1157 /* are there still in-flight works? */ 1158 if (pwq->nr_in_flight[color]) 1159 goto out_put; 1160 1161 /* this pwq is done, clear flush_color */ 1162 pwq->flush_color = -1; 1163 1164 /* 1165 * If this was the last pwq, wake up the first flusher. It 1166 * will handle the rest. 1167 */ 1168 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1169 complete(&pwq->wq->first_flusher->done); 1170 out_put: 1171 put_pwq(pwq); 1172 } 1173 1174 /** 1175 * try_to_grab_pending - steal work item from worklist and disable irq 1176 * @work: work item to steal 1177 * @is_dwork: @work is a delayed_work 1178 * @flags: place to store irq state 1179 * 1180 * Try to grab PENDING bit of @work. This function can handle @work in any 1181 * stable state - idle, on timer or on worklist. 1182 * 1183 * Return: 1184 * 1 if @work was pending and we successfully stole PENDING 1185 * 0 if @work was idle and we claimed PENDING 1186 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1187 * -ENOENT if someone else is canceling @work, this state may persist 1188 * for arbitrarily long 1189 * 1190 * Note: 1191 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1192 * interrupted while holding PENDING and @work off queue, irq must be 1193 * disabled on entry. This, combined with delayed_work->timer being 1194 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1195 * 1196 * On successful return, >= 0, irq is disabled and the caller is 1197 * responsible for releasing it using local_irq_restore(*@flags). 1198 * 1199 * This function is safe to call from any context including IRQ handler. 1200 */ 1201 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1202 unsigned long *flags) 1203 { 1204 struct worker_pool *pool; 1205 struct pool_workqueue *pwq; 1206 1207 local_irq_save(*flags); 1208 1209 /* try to steal the timer if it exists */ 1210 if (is_dwork) { 1211 struct delayed_work *dwork = to_delayed_work(work); 1212 1213 /* 1214 * dwork->timer is irqsafe. If del_timer() fails, it's 1215 * guaranteed that the timer is not queued anywhere and not 1216 * running on the local CPU. 1217 */ 1218 if (likely(del_timer(&dwork->timer))) 1219 return 1; 1220 } 1221 1222 /* try to claim PENDING the normal way */ 1223 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1224 return 0; 1225 1226 /* 1227 * The queueing is in progress, or it is already queued. Try to 1228 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1229 */ 1230 pool = get_work_pool(work); 1231 if (!pool) 1232 goto fail; 1233 1234 spin_lock(&pool->lock); 1235 /* 1236 * work->data is guaranteed to point to pwq only while the work 1237 * item is queued on pwq->wq, and both updating work->data to point 1238 * to pwq on queueing and to pool on dequeueing are done under 1239 * pwq->pool->lock. This in turn guarantees that, if work->data 1240 * points to pwq which is associated with a locked pool, the work 1241 * item is currently queued on that pool. 1242 */ 1243 pwq = get_work_pwq(work); 1244 if (pwq && pwq->pool == pool) { 1245 debug_work_deactivate(work); 1246 1247 /* 1248 * A delayed work item cannot be grabbed directly because 1249 * it might have linked NO_COLOR work items which, if left 1250 * on the delayed_list, will confuse pwq->nr_active 1251 * management later on and cause stall. Make sure the work 1252 * item is activated before grabbing. 1253 */ 1254 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1255 pwq_activate_delayed_work(work); 1256 1257 list_del_init(&work->entry); 1258 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1259 1260 /* work->data points to pwq iff queued, point to pool */ 1261 set_work_pool_and_keep_pending(work, pool->id); 1262 1263 spin_unlock(&pool->lock); 1264 return 1; 1265 } 1266 spin_unlock(&pool->lock); 1267 fail: 1268 local_irq_restore(*flags); 1269 if (work_is_canceling(work)) 1270 return -ENOENT; 1271 cpu_relax(); 1272 return -EAGAIN; 1273 } 1274 1275 /** 1276 * insert_work - insert a work into a pool 1277 * @pwq: pwq @work belongs to 1278 * @work: work to insert 1279 * @head: insertion point 1280 * @extra_flags: extra WORK_STRUCT_* flags to set 1281 * 1282 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1283 * work_struct flags. 1284 * 1285 * CONTEXT: 1286 * spin_lock_irq(pool->lock). 1287 */ 1288 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1289 struct list_head *head, unsigned int extra_flags) 1290 { 1291 struct worker_pool *pool = pwq->pool; 1292 1293 /* we own @work, set data and link */ 1294 set_work_pwq(work, pwq, extra_flags); 1295 list_add_tail(&work->entry, head); 1296 get_pwq(pwq); 1297 1298 /* 1299 * Ensure either wq_worker_sleeping() sees the above 1300 * list_add_tail() or we see zero nr_running to avoid workers lying 1301 * around lazily while there are works to be processed. 1302 */ 1303 smp_mb(); 1304 1305 if (__need_more_worker(pool)) 1306 wake_up_worker(pool); 1307 } 1308 1309 /* 1310 * Test whether @work is being queued from another work executing on the 1311 * same workqueue. 1312 */ 1313 static bool is_chained_work(struct workqueue_struct *wq) 1314 { 1315 struct worker *worker; 1316 1317 worker = current_wq_worker(); 1318 /* 1319 * Return %true iff I'm a worker execuing a work item on @wq. If 1320 * I'm @worker, it's safe to dereference it without locking. 1321 */ 1322 return worker && worker->current_pwq->wq == wq; 1323 } 1324 1325 /* 1326 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1327 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1328 * avoid perturbing sensitive tasks. 1329 */ 1330 static int wq_select_unbound_cpu(int cpu) 1331 { 1332 static bool printed_dbg_warning; 1333 int new_cpu; 1334 1335 if (likely(!wq_debug_force_rr_cpu)) { 1336 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1337 return cpu; 1338 } else if (!printed_dbg_warning) { 1339 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1340 printed_dbg_warning = true; 1341 } 1342 1343 if (cpumask_empty(wq_unbound_cpumask)) 1344 return cpu; 1345 1346 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1347 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1348 if (unlikely(new_cpu >= nr_cpu_ids)) { 1349 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1350 if (unlikely(new_cpu >= nr_cpu_ids)) 1351 return cpu; 1352 } 1353 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1354 1355 return new_cpu; 1356 } 1357 1358 static void __queue_work(int cpu, struct workqueue_struct *wq, 1359 struct work_struct *work) 1360 { 1361 struct pool_workqueue *pwq; 1362 struct worker_pool *last_pool; 1363 struct list_head *worklist; 1364 unsigned int work_flags; 1365 unsigned int req_cpu = cpu; 1366 1367 /* 1368 * While a work item is PENDING && off queue, a task trying to 1369 * steal the PENDING will busy-loop waiting for it to either get 1370 * queued or lose PENDING. Grabbing PENDING and queueing should 1371 * happen with IRQ disabled. 1372 */ 1373 WARN_ON_ONCE(!irqs_disabled()); 1374 1375 debug_work_activate(work); 1376 1377 /* if draining, only works from the same workqueue are allowed */ 1378 if (unlikely(wq->flags & __WQ_DRAINING) && 1379 WARN_ON_ONCE(!is_chained_work(wq))) 1380 return; 1381 retry: 1382 if (req_cpu == WORK_CPU_UNBOUND) 1383 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1384 1385 /* pwq which will be used unless @work is executing elsewhere */ 1386 if (!(wq->flags & WQ_UNBOUND)) 1387 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1388 else 1389 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1390 1391 /* 1392 * If @work was previously on a different pool, it might still be 1393 * running there, in which case the work needs to be queued on that 1394 * pool to guarantee non-reentrancy. 1395 */ 1396 last_pool = get_work_pool(work); 1397 if (last_pool && last_pool != pwq->pool) { 1398 struct worker *worker; 1399 1400 spin_lock(&last_pool->lock); 1401 1402 worker = find_worker_executing_work(last_pool, work); 1403 1404 if (worker && worker->current_pwq->wq == wq) { 1405 pwq = worker->current_pwq; 1406 } else { 1407 /* meh... not running there, queue here */ 1408 spin_unlock(&last_pool->lock); 1409 spin_lock(&pwq->pool->lock); 1410 } 1411 } else { 1412 spin_lock(&pwq->pool->lock); 1413 } 1414 1415 /* 1416 * pwq is determined and locked. For unbound pools, we could have 1417 * raced with pwq release and it could already be dead. If its 1418 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1419 * without another pwq replacing it in the numa_pwq_tbl or while 1420 * work items are executing on it, so the retrying is guaranteed to 1421 * make forward-progress. 1422 */ 1423 if (unlikely(!pwq->refcnt)) { 1424 if (wq->flags & WQ_UNBOUND) { 1425 spin_unlock(&pwq->pool->lock); 1426 cpu_relax(); 1427 goto retry; 1428 } 1429 /* oops */ 1430 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1431 wq->name, cpu); 1432 } 1433 1434 /* pwq determined, queue */ 1435 trace_workqueue_queue_work(req_cpu, pwq, work); 1436 1437 if (WARN_ON(!list_empty(&work->entry))) { 1438 spin_unlock(&pwq->pool->lock); 1439 return; 1440 } 1441 1442 pwq->nr_in_flight[pwq->work_color]++; 1443 work_flags = work_color_to_flags(pwq->work_color); 1444 1445 if (likely(pwq->nr_active < pwq->max_active)) { 1446 trace_workqueue_activate_work(work); 1447 pwq->nr_active++; 1448 worklist = &pwq->pool->worklist; 1449 if (list_empty(worklist)) 1450 pwq->pool->watchdog_ts = jiffies; 1451 } else { 1452 work_flags |= WORK_STRUCT_DELAYED; 1453 worklist = &pwq->delayed_works; 1454 } 1455 1456 insert_work(pwq, work, worklist, work_flags); 1457 1458 spin_unlock(&pwq->pool->lock); 1459 } 1460 1461 /** 1462 * queue_work_on - queue work on specific cpu 1463 * @cpu: CPU number to execute work on 1464 * @wq: workqueue to use 1465 * @work: work to queue 1466 * 1467 * We queue the work to a specific CPU, the caller must ensure it 1468 * can't go away. 1469 * 1470 * Return: %false if @work was already on a queue, %true otherwise. 1471 */ 1472 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1473 struct work_struct *work) 1474 { 1475 bool ret = false; 1476 unsigned long flags; 1477 1478 local_irq_save(flags); 1479 1480 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1481 __queue_work(cpu, wq, work); 1482 ret = true; 1483 } 1484 1485 local_irq_restore(flags); 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(queue_work_on); 1489 1490 void delayed_work_timer_fn(unsigned long __data) 1491 { 1492 struct delayed_work *dwork = (struct delayed_work *)__data; 1493 1494 /* should have been called from irqsafe timer with irq already off */ 1495 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1496 } 1497 EXPORT_SYMBOL(delayed_work_timer_fn); 1498 1499 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1500 struct delayed_work *dwork, unsigned long delay) 1501 { 1502 struct timer_list *timer = &dwork->timer; 1503 struct work_struct *work = &dwork->work; 1504 1505 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1506 timer->data != (unsigned long)dwork); 1507 WARN_ON_ONCE(timer_pending(timer)); 1508 WARN_ON_ONCE(!list_empty(&work->entry)); 1509 1510 /* 1511 * If @delay is 0, queue @dwork->work immediately. This is for 1512 * both optimization and correctness. The earliest @timer can 1513 * expire is on the closest next tick and delayed_work users depend 1514 * on that there's no such delay when @delay is 0. 1515 */ 1516 if (!delay) { 1517 __queue_work(cpu, wq, &dwork->work); 1518 return; 1519 } 1520 1521 timer_stats_timer_set_start_info(&dwork->timer); 1522 1523 dwork->wq = wq; 1524 dwork->cpu = cpu; 1525 timer->expires = jiffies + delay; 1526 1527 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1528 add_timer_on(timer, cpu); 1529 else 1530 add_timer(timer); 1531 } 1532 1533 /** 1534 * queue_delayed_work_on - queue work on specific CPU after delay 1535 * @cpu: CPU number to execute work on 1536 * @wq: workqueue to use 1537 * @dwork: work to queue 1538 * @delay: number of jiffies to wait before queueing 1539 * 1540 * Return: %false if @work was already on a queue, %true otherwise. If 1541 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1542 * execution. 1543 */ 1544 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1545 struct delayed_work *dwork, unsigned long delay) 1546 { 1547 struct work_struct *work = &dwork->work; 1548 bool ret = false; 1549 unsigned long flags; 1550 1551 /* read the comment in __queue_work() */ 1552 local_irq_save(flags); 1553 1554 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1555 __queue_delayed_work(cpu, wq, dwork, delay); 1556 ret = true; 1557 } 1558 1559 local_irq_restore(flags); 1560 return ret; 1561 } 1562 EXPORT_SYMBOL(queue_delayed_work_on); 1563 1564 /** 1565 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1566 * @cpu: CPU number to execute work on 1567 * @wq: workqueue to use 1568 * @dwork: work to queue 1569 * @delay: number of jiffies to wait before queueing 1570 * 1571 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1572 * modify @dwork's timer so that it expires after @delay. If @delay is 1573 * zero, @work is guaranteed to be scheduled immediately regardless of its 1574 * current state. 1575 * 1576 * Return: %false if @dwork was idle and queued, %true if @dwork was 1577 * pending and its timer was modified. 1578 * 1579 * This function is safe to call from any context including IRQ handler. 1580 * See try_to_grab_pending() for details. 1581 */ 1582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1583 struct delayed_work *dwork, unsigned long delay) 1584 { 1585 unsigned long flags; 1586 int ret; 1587 1588 do { 1589 ret = try_to_grab_pending(&dwork->work, true, &flags); 1590 } while (unlikely(ret == -EAGAIN)); 1591 1592 if (likely(ret >= 0)) { 1593 __queue_delayed_work(cpu, wq, dwork, delay); 1594 local_irq_restore(flags); 1595 } 1596 1597 /* -ENOENT from try_to_grab_pending() becomes %true */ 1598 return ret; 1599 } 1600 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1601 1602 /** 1603 * worker_enter_idle - enter idle state 1604 * @worker: worker which is entering idle state 1605 * 1606 * @worker is entering idle state. Update stats and idle timer if 1607 * necessary. 1608 * 1609 * LOCKING: 1610 * spin_lock_irq(pool->lock). 1611 */ 1612 static void worker_enter_idle(struct worker *worker) 1613 { 1614 struct worker_pool *pool = worker->pool; 1615 1616 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1617 WARN_ON_ONCE(!list_empty(&worker->entry) && 1618 (worker->hentry.next || worker->hentry.pprev))) 1619 return; 1620 1621 /* can't use worker_set_flags(), also called from create_worker() */ 1622 worker->flags |= WORKER_IDLE; 1623 pool->nr_idle++; 1624 worker->last_active = jiffies; 1625 1626 /* idle_list is LIFO */ 1627 list_add(&worker->entry, &pool->idle_list); 1628 1629 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1630 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1631 1632 /* 1633 * Sanity check nr_running. Because wq_unbind_fn() releases 1634 * pool->lock between setting %WORKER_UNBOUND and zapping 1635 * nr_running, the warning may trigger spuriously. Check iff 1636 * unbind is not in progress. 1637 */ 1638 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1639 pool->nr_workers == pool->nr_idle && 1640 atomic_read(&pool->nr_running)); 1641 } 1642 1643 /** 1644 * worker_leave_idle - leave idle state 1645 * @worker: worker which is leaving idle state 1646 * 1647 * @worker is leaving idle state. Update stats. 1648 * 1649 * LOCKING: 1650 * spin_lock_irq(pool->lock). 1651 */ 1652 static void worker_leave_idle(struct worker *worker) 1653 { 1654 struct worker_pool *pool = worker->pool; 1655 1656 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1657 return; 1658 worker_clr_flags(worker, WORKER_IDLE); 1659 pool->nr_idle--; 1660 list_del_init(&worker->entry); 1661 } 1662 1663 static struct worker *alloc_worker(int node) 1664 { 1665 struct worker *worker; 1666 1667 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1668 if (worker) { 1669 INIT_LIST_HEAD(&worker->entry); 1670 INIT_LIST_HEAD(&worker->scheduled); 1671 INIT_LIST_HEAD(&worker->node); 1672 /* on creation a worker is in !idle && prep state */ 1673 worker->flags = WORKER_PREP; 1674 } 1675 return worker; 1676 } 1677 1678 /** 1679 * worker_attach_to_pool() - attach a worker to a pool 1680 * @worker: worker to be attached 1681 * @pool: the target pool 1682 * 1683 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1684 * cpu-binding of @worker are kept coordinated with the pool across 1685 * cpu-[un]hotplugs. 1686 */ 1687 static void worker_attach_to_pool(struct worker *worker, 1688 struct worker_pool *pool) 1689 { 1690 mutex_lock(&pool->attach_mutex); 1691 1692 /* 1693 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1694 * online CPUs. It'll be re-applied when any of the CPUs come up. 1695 */ 1696 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1697 1698 /* 1699 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1700 * stable across this function. See the comments above the 1701 * flag definition for details. 1702 */ 1703 if (pool->flags & POOL_DISASSOCIATED) 1704 worker->flags |= WORKER_UNBOUND; 1705 1706 list_add_tail(&worker->node, &pool->workers); 1707 1708 mutex_unlock(&pool->attach_mutex); 1709 } 1710 1711 /** 1712 * worker_detach_from_pool() - detach a worker from its pool 1713 * @worker: worker which is attached to its pool 1714 * @pool: the pool @worker is attached to 1715 * 1716 * Undo the attaching which had been done in worker_attach_to_pool(). The 1717 * caller worker shouldn't access to the pool after detached except it has 1718 * other reference to the pool. 1719 */ 1720 static void worker_detach_from_pool(struct worker *worker, 1721 struct worker_pool *pool) 1722 { 1723 struct completion *detach_completion = NULL; 1724 1725 mutex_lock(&pool->attach_mutex); 1726 list_del(&worker->node); 1727 if (list_empty(&pool->workers)) 1728 detach_completion = pool->detach_completion; 1729 mutex_unlock(&pool->attach_mutex); 1730 1731 /* clear leftover flags without pool->lock after it is detached */ 1732 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1733 1734 if (detach_completion) 1735 complete(detach_completion); 1736 } 1737 1738 /** 1739 * create_worker - create a new workqueue worker 1740 * @pool: pool the new worker will belong to 1741 * 1742 * Create and start a new worker which is attached to @pool. 1743 * 1744 * CONTEXT: 1745 * Might sleep. Does GFP_KERNEL allocations. 1746 * 1747 * Return: 1748 * Pointer to the newly created worker. 1749 */ 1750 static struct worker *create_worker(struct worker_pool *pool) 1751 { 1752 struct worker *worker = NULL; 1753 int id = -1; 1754 char id_buf[16]; 1755 1756 /* ID is needed to determine kthread name */ 1757 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1758 if (id < 0) 1759 goto fail; 1760 1761 worker = alloc_worker(pool->node); 1762 if (!worker) 1763 goto fail; 1764 1765 worker->pool = pool; 1766 worker->id = id; 1767 1768 if (pool->cpu >= 0) 1769 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1770 pool->attrs->nice < 0 ? "H" : ""); 1771 else 1772 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1773 1774 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1775 "kworker/%s", id_buf); 1776 if (IS_ERR(worker->task)) 1777 goto fail; 1778 1779 set_user_nice(worker->task, pool->attrs->nice); 1780 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1781 1782 /* successful, attach the worker to the pool */ 1783 worker_attach_to_pool(worker, pool); 1784 1785 /* start the newly created worker */ 1786 spin_lock_irq(&pool->lock); 1787 worker->pool->nr_workers++; 1788 worker_enter_idle(worker); 1789 wake_up_process(worker->task); 1790 spin_unlock_irq(&pool->lock); 1791 1792 return worker; 1793 1794 fail: 1795 if (id >= 0) 1796 ida_simple_remove(&pool->worker_ida, id); 1797 kfree(worker); 1798 return NULL; 1799 } 1800 1801 /** 1802 * destroy_worker - destroy a workqueue worker 1803 * @worker: worker to be destroyed 1804 * 1805 * Destroy @worker and adjust @pool stats accordingly. The worker should 1806 * be idle. 1807 * 1808 * CONTEXT: 1809 * spin_lock_irq(pool->lock). 1810 */ 1811 static void destroy_worker(struct worker *worker) 1812 { 1813 struct worker_pool *pool = worker->pool; 1814 1815 lockdep_assert_held(&pool->lock); 1816 1817 /* sanity check frenzy */ 1818 if (WARN_ON(worker->current_work) || 1819 WARN_ON(!list_empty(&worker->scheduled)) || 1820 WARN_ON(!(worker->flags & WORKER_IDLE))) 1821 return; 1822 1823 pool->nr_workers--; 1824 pool->nr_idle--; 1825 1826 list_del_init(&worker->entry); 1827 worker->flags |= WORKER_DIE; 1828 wake_up_process(worker->task); 1829 } 1830 1831 static void idle_worker_timeout(unsigned long __pool) 1832 { 1833 struct worker_pool *pool = (void *)__pool; 1834 1835 spin_lock_irq(&pool->lock); 1836 1837 while (too_many_workers(pool)) { 1838 struct worker *worker; 1839 unsigned long expires; 1840 1841 /* idle_list is kept in LIFO order, check the last one */ 1842 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1843 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1844 1845 if (time_before(jiffies, expires)) { 1846 mod_timer(&pool->idle_timer, expires); 1847 break; 1848 } 1849 1850 destroy_worker(worker); 1851 } 1852 1853 spin_unlock_irq(&pool->lock); 1854 } 1855 1856 static void send_mayday(struct work_struct *work) 1857 { 1858 struct pool_workqueue *pwq = get_work_pwq(work); 1859 struct workqueue_struct *wq = pwq->wq; 1860 1861 lockdep_assert_held(&wq_mayday_lock); 1862 1863 if (!wq->rescuer) 1864 return; 1865 1866 /* mayday mayday mayday */ 1867 if (list_empty(&pwq->mayday_node)) { 1868 /* 1869 * If @pwq is for an unbound wq, its base ref may be put at 1870 * any time due to an attribute change. Pin @pwq until the 1871 * rescuer is done with it. 1872 */ 1873 get_pwq(pwq); 1874 list_add_tail(&pwq->mayday_node, &wq->maydays); 1875 wake_up_process(wq->rescuer->task); 1876 } 1877 } 1878 1879 static void pool_mayday_timeout(unsigned long __pool) 1880 { 1881 struct worker_pool *pool = (void *)__pool; 1882 struct work_struct *work; 1883 1884 spin_lock_irq(&pool->lock); 1885 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1886 1887 if (need_to_create_worker(pool)) { 1888 /* 1889 * We've been trying to create a new worker but 1890 * haven't been successful. We might be hitting an 1891 * allocation deadlock. Send distress signals to 1892 * rescuers. 1893 */ 1894 list_for_each_entry(work, &pool->worklist, entry) 1895 send_mayday(work); 1896 } 1897 1898 spin_unlock(&wq_mayday_lock); 1899 spin_unlock_irq(&pool->lock); 1900 1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1902 } 1903 1904 /** 1905 * maybe_create_worker - create a new worker if necessary 1906 * @pool: pool to create a new worker for 1907 * 1908 * Create a new worker for @pool if necessary. @pool is guaranteed to 1909 * have at least one idle worker on return from this function. If 1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1911 * sent to all rescuers with works scheduled on @pool to resolve 1912 * possible allocation deadlock. 1913 * 1914 * On return, need_to_create_worker() is guaranteed to be %false and 1915 * may_start_working() %true. 1916 * 1917 * LOCKING: 1918 * spin_lock_irq(pool->lock) which may be released and regrabbed 1919 * multiple times. Does GFP_KERNEL allocations. Called only from 1920 * manager. 1921 */ 1922 static void maybe_create_worker(struct worker_pool *pool) 1923 __releases(&pool->lock) 1924 __acquires(&pool->lock) 1925 { 1926 restart: 1927 spin_unlock_irq(&pool->lock); 1928 1929 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1930 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1931 1932 while (true) { 1933 if (create_worker(pool) || !need_to_create_worker(pool)) 1934 break; 1935 1936 schedule_timeout_interruptible(CREATE_COOLDOWN); 1937 1938 if (!need_to_create_worker(pool)) 1939 break; 1940 } 1941 1942 del_timer_sync(&pool->mayday_timer); 1943 spin_lock_irq(&pool->lock); 1944 /* 1945 * This is necessary even after a new worker was just successfully 1946 * created as @pool->lock was dropped and the new worker might have 1947 * already become busy. 1948 */ 1949 if (need_to_create_worker(pool)) 1950 goto restart; 1951 } 1952 1953 /** 1954 * manage_workers - manage worker pool 1955 * @worker: self 1956 * 1957 * Assume the manager role and manage the worker pool @worker belongs 1958 * to. At any given time, there can be only zero or one manager per 1959 * pool. The exclusion is handled automatically by this function. 1960 * 1961 * The caller can safely start processing works on false return. On 1962 * true return, it's guaranteed that need_to_create_worker() is false 1963 * and may_start_working() is true. 1964 * 1965 * CONTEXT: 1966 * spin_lock_irq(pool->lock) which may be released and regrabbed 1967 * multiple times. Does GFP_KERNEL allocations. 1968 * 1969 * Return: 1970 * %false if the pool doesn't need management and the caller can safely 1971 * start processing works, %true if management function was performed and 1972 * the conditions that the caller verified before calling the function may 1973 * no longer be true. 1974 */ 1975 static bool manage_workers(struct worker *worker) 1976 { 1977 struct worker_pool *pool = worker->pool; 1978 1979 /* 1980 * Anyone who successfully grabs manager_arb wins the arbitration 1981 * and becomes the manager. mutex_trylock() on pool->manager_arb 1982 * failure while holding pool->lock reliably indicates that someone 1983 * else is managing the pool and the worker which failed trylock 1984 * can proceed to executing work items. This means that anyone 1985 * grabbing manager_arb is responsible for actually performing 1986 * manager duties. If manager_arb is grabbed and released without 1987 * actual management, the pool may stall indefinitely. 1988 */ 1989 if (!mutex_trylock(&pool->manager_arb)) 1990 return false; 1991 pool->manager = worker; 1992 1993 maybe_create_worker(pool); 1994 1995 pool->manager = NULL; 1996 mutex_unlock(&pool->manager_arb); 1997 return true; 1998 } 1999 2000 /** 2001 * process_one_work - process single work 2002 * @worker: self 2003 * @work: work to process 2004 * 2005 * Process @work. This function contains all the logics necessary to 2006 * process a single work including synchronization against and 2007 * interaction with other workers on the same cpu, queueing and 2008 * flushing. As long as context requirement is met, any worker can 2009 * call this function to process a work. 2010 * 2011 * CONTEXT: 2012 * spin_lock_irq(pool->lock) which is released and regrabbed. 2013 */ 2014 static void process_one_work(struct worker *worker, struct work_struct *work) 2015 __releases(&pool->lock) 2016 __acquires(&pool->lock) 2017 { 2018 struct pool_workqueue *pwq = get_work_pwq(work); 2019 struct worker_pool *pool = worker->pool; 2020 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2021 int work_color; 2022 struct worker *collision; 2023 #ifdef CONFIG_LOCKDEP 2024 /* 2025 * It is permissible to free the struct work_struct from 2026 * inside the function that is called from it, this we need to 2027 * take into account for lockdep too. To avoid bogus "held 2028 * lock freed" warnings as well as problems when looking into 2029 * work->lockdep_map, make a copy and use that here. 2030 */ 2031 struct lockdep_map lockdep_map; 2032 2033 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2034 #endif 2035 /* ensure we're on the correct CPU */ 2036 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2037 raw_smp_processor_id() != pool->cpu); 2038 2039 /* 2040 * A single work shouldn't be executed concurrently by 2041 * multiple workers on a single cpu. Check whether anyone is 2042 * already processing the work. If so, defer the work to the 2043 * currently executing one. 2044 */ 2045 collision = find_worker_executing_work(pool, work); 2046 if (unlikely(collision)) { 2047 move_linked_works(work, &collision->scheduled, NULL); 2048 return; 2049 } 2050 2051 /* claim and dequeue */ 2052 debug_work_deactivate(work); 2053 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2054 worker->current_work = work; 2055 worker->current_func = work->func; 2056 worker->current_pwq = pwq; 2057 work_color = get_work_color(work); 2058 2059 list_del_init(&work->entry); 2060 2061 /* 2062 * CPU intensive works don't participate in concurrency management. 2063 * They're the scheduler's responsibility. This takes @worker out 2064 * of concurrency management and the next code block will chain 2065 * execution of the pending work items. 2066 */ 2067 if (unlikely(cpu_intensive)) 2068 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2069 2070 /* 2071 * Wake up another worker if necessary. The condition is always 2072 * false for normal per-cpu workers since nr_running would always 2073 * be >= 1 at this point. This is used to chain execution of the 2074 * pending work items for WORKER_NOT_RUNNING workers such as the 2075 * UNBOUND and CPU_INTENSIVE ones. 2076 */ 2077 if (need_more_worker(pool)) 2078 wake_up_worker(pool); 2079 2080 /* 2081 * Record the last pool and clear PENDING which should be the last 2082 * update to @work. Also, do this inside @pool->lock so that 2083 * PENDING and queued state changes happen together while IRQ is 2084 * disabled. 2085 */ 2086 set_work_pool_and_clear_pending(work, pool->id); 2087 2088 spin_unlock_irq(&pool->lock); 2089 2090 lock_map_acquire_read(&pwq->wq->lockdep_map); 2091 lock_map_acquire(&lockdep_map); 2092 trace_workqueue_execute_start(work); 2093 worker->current_func(work); 2094 /* 2095 * While we must be careful to not use "work" after this, the trace 2096 * point will only record its address. 2097 */ 2098 trace_workqueue_execute_end(work); 2099 lock_map_release(&lockdep_map); 2100 lock_map_release(&pwq->wq->lockdep_map); 2101 2102 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2103 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2104 " last function: %pf\n", 2105 current->comm, preempt_count(), task_pid_nr(current), 2106 worker->current_func); 2107 debug_show_held_locks(current); 2108 dump_stack(); 2109 } 2110 2111 /* 2112 * The following prevents a kworker from hogging CPU on !PREEMPT 2113 * kernels, where a requeueing work item waiting for something to 2114 * happen could deadlock with stop_machine as such work item could 2115 * indefinitely requeue itself while all other CPUs are trapped in 2116 * stop_machine. At the same time, report a quiescent RCU state so 2117 * the same condition doesn't freeze RCU. 2118 */ 2119 cond_resched_rcu_qs(); 2120 2121 spin_lock_irq(&pool->lock); 2122 2123 /* clear cpu intensive status */ 2124 if (unlikely(cpu_intensive)) 2125 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2126 2127 /* we're done with it, release */ 2128 hash_del(&worker->hentry); 2129 worker->current_work = NULL; 2130 worker->current_func = NULL; 2131 worker->current_pwq = NULL; 2132 worker->desc_valid = false; 2133 pwq_dec_nr_in_flight(pwq, work_color); 2134 } 2135 2136 /** 2137 * process_scheduled_works - process scheduled works 2138 * @worker: self 2139 * 2140 * Process all scheduled works. Please note that the scheduled list 2141 * may change while processing a work, so this function repeatedly 2142 * fetches a work from the top and executes it. 2143 * 2144 * CONTEXT: 2145 * spin_lock_irq(pool->lock) which may be released and regrabbed 2146 * multiple times. 2147 */ 2148 static void process_scheduled_works(struct worker *worker) 2149 { 2150 while (!list_empty(&worker->scheduled)) { 2151 struct work_struct *work = list_first_entry(&worker->scheduled, 2152 struct work_struct, entry); 2153 process_one_work(worker, work); 2154 } 2155 } 2156 2157 /** 2158 * worker_thread - the worker thread function 2159 * @__worker: self 2160 * 2161 * The worker thread function. All workers belong to a worker_pool - 2162 * either a per-cpu one or dynamic unbound one. These workers process all 2163 * work items regardless of their specific target workqueue. The only 2164 * exception is work items which belong to workqueues with a rescuer which 2165 * will be explained in rescuer_thread(). 2166 * 2167 * Return: 0 2168 */ 2169 static int worker_thread(void *__worker) 2170 { 2171 struct worker *worker = __worker; 2172 struct worker_pool *pool = worker->pool; 2173 2174 /* tell the scheduler that this is a workqueue worker */ 2175 worker->task->flags |= PF_WQ_WORKER; 2176 woke_up: 2177 spin_lock_irq(&pool->lock); 2178 2179 /* am I supposed to die? */ 2180 if (unlikely(worker->flags & WORKER_DIE)) { 2181 spin_unlock_irq(&pool->lock); 2182 WARN_ON_ONCE(!list_empty(&worker->entry)); 2183 worker->task->flags &= ~PF_WQ_WORKER; 2184 2185 set_task_comm(worker->task, "kworker/dying"); 2186 ida_simple_remove(&pool->worker_ida, worker->id); 2187 worker_detach_from_pool(worker, pool); 2188 kfree(worker); 2189 return 0; 2190 } 2191 2192 worker_leave_idle(worker); 2193 recheck: 2194 /* no more worker necessary? */ 2195 if (!need_more_worker(pool)) 2196 goto sleep; 2197 2198 /* do we need to manage? */ 2199 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2200 goto recheck; 2201 2202 /* 2203 * ->scheduled list can only be filled while a worker is 2204 * preparing to process a work or actually processing it. 2205 * Make sure nobody diddled with it while I was sleeping. 2206 */ 2207 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2208 2209 /* 2210 * Finish PREP stage. We're guaranteed to have at least one idle 2211 * worker or that someone else has already assumed the manager 2212 * role. This is where @worker starts participating in concurrency 2213 * management if applicable and concurrency management is restored 2214 * after being rebound. See rebind_workers() for details. 2215 */ 2216 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2217 2218 do { 2219 struct work_struct *work = 2220 list_first_entry(&pool->worklist, 2221 struct work_struct, entry); 2222 2223 pool->watchdog_ts = jiffies; 2224 2225 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2226 /* optimization path, not strictly necessary */ 2227 process_one_work(worker, work); 2228 if (unlikely(!list_empty(&worker->scheduled))) 2229 process_scheduled_works(worker); 2230 } else { 2231 move_linked_works(work, &worker->scheduled, NULL); 2232 process_scheduled_works(worker); 2233 } 2234 } while (keep_working(pool)); 2235 2236 worker_set_flags(worker, WORKER_PREP); 2237 sleep: 2238 /* 2239 * pool->lock is held and there's no work to process and no need to 2240 * manage, sleep. Workers are woken up only while holding 2241 * pool->lock or from local cpu, so setting the current state 2242 * before releasing pool->lock is enough to prevent losing any 2243 * event. 2244 */ 2245 worker_enter_idle(worker); 2246 __set_current_state(TASK_INTERRUPTIBLE); 2247 spin_unlock_irq(&pool->lock); 2248 schedule(); 2249 goto woke_up; 2250 } 2251 2252 /** 2253 * rescuer_thread - the rescuer thread function 2254 * @__rescuer: self 2255 * 2256 * Workqueue rescuer thread function. There's one rescuer for each 2257 * workqueue which has WQ_MEM_RECLAIM set. 2258 * 2259 * Regular work processing on a pool may block trying to create a new 2260 * worker which uses GFP_KERNEL allocation which has slight chance of 2261 * developing into deadlock if some works currently on the same queue 2262 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2263 * the problem rescuer solves. 2264 * 2265 * When such condition is possible, the pool summons rescuers of all 2266 * workqueues which have works queued on the pool and let them process 2267 * those works so that forward progress can be guaranteed. 2268 * 2269 * This should happen rarely. 2270 * 2271 * Return: 0 2272 */ 2273 static int rescuer_thread(void *__rescuer) 2274 { 2275 struct worker *rescuer = __rescuer; 2276 struct workqueue_struct *wq = rescuer->rescue_wq; 2277 struct list_head *scheduled = &rescuer->scheduled; 2278 bool should_stop; 2279 2280 set_user_nice(current, RESCUER_NICE_LEVEL); 2281 2282 /* 2283 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2284 * doesn't participate in concurrency management. 2285 */ 2286 rescuer->task->flags |= PF_WQ_WORKER; 2287 repeat: 2288 set_current_state(TASK_INTERRUPTIBLE); 2289 2290 /* 2291 * By the time the rescuer is requested to stop, the workqueue 2292 * shouldn't have any work pending, but @wq->maydays may still have 2293 * pwq(s) queued. This can happen by non-rescuer workers consuming 2294 * all the work items before the rescuer got to them. Go through 2295 * @wq->maydays processing before acting on should_stop so that the 2296 * list is always empty on exit. 2297 */ 2298 should_stop = kthread_should_stop(); 2299 2300 /* see whether any pwq is asking for help */ 2301 spin_lock_irq(&wq_mayday_lock); 2302 2303 while (!list_empty(&wq->maydays)) { 2304 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2305 struct pool_workqueue, mayday_node); 2306 struct worker_pool *pool = pwq->pool; 2307 struct work_struct *work, *n; 2308 bool first = true; 2309 2310 __set_current_state(TASK_RUNNING); 2311 list_del_init(&pwq->mayday_node); 2312 2313 spin_unlock_irq(&wq_mayday_lock); 2314 2315 worker_attach_to_pool(rescuer, pool); 2316 2317 spin_lock_irq(&pool->lock); 2318 rescuer->pool = pool; 2319 2320 /* 2321 * Slurp in all works issued via this workqueue and 2322 * process'em. 2323 */ 2324 WARN_ON_ONCE(!list_empty(scheduled)); 2325 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2326 if (get_work_pwq(work) == pwq) { 2327 if (first) 2328 pool->watchdog_ts = jiffies; 2329 move_linked_works(work, scheduled, &n); 2330 } 2331 first = false; 2332 } 2333 2334 if (!list_empty(scheduled)) { 2335 process_scheduled_works(rescuer); 2336 2337 /* 2338 * The above execution of rescued work items could 2339 * have created more to rescue through 2340 * pwq_activate_first_delayed() or chained 2341 * queueing. Let's put @pwq back on mayday list so 2342 * that such back-to-back work items, which may be 2343 * being used to relieve memory pressure, don't 2344 * incur MAYDAY_INTERVAL delay inbetween. 2345 */ 2346 if (need_to_create_worker(pool)) { 2347 spin_lock(&wq_mayday_lock); 2348 get_pwq(pwq); 2349 list_move_tail(&pwq->mayday_node, &wq->maydays); 2350 spin_unlock(&wq_mayday_lock); 2351 } 2352 } 2353 2354 /* 2355 * Put the reference grabbed by send_mayday(). @pool won't 2356 * go away while we're still attached to it. 2357 */ 2358 put_pwq(pwq); 2359 2360 /* 2361 * Leave this pool. If need_more_worker() is %true, notify a 2362 * regular worker; otherwise, we end up with 0 concurrency 2363 * and stalling the execution. 2364 */ 2365 if (need_more_worker(pool)) 2366 wake_up_worker(pool); 2367 2368 rescuer->pool = NULL; 2369 spin_unlock_irq(&pool->lock); 2370 2371 worker_detach_from_pool(rescuer, pool); 2372 2373 spin_lock_irq(&wq_mayday_lock); 2374 } 2375 2376 spin_unlock_irq(&wq_mayday_lock); 2377 2378 if (should_stop) { 2379 __set_current_state(TASK_RUNNING); 2380 rescuer->task->flags &= ~PF_WQ_WORKER; 2381 return 0; 2382 } 2383 2384 /* rescuers should never participate in concurrency management */ 2385 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2386 schedule(); 2387 goto repeat; 2388 } 2389 2390 /** 2391 * check_flush_dependency - check for flush dependency sanity 2392 * @target_wq: workqueue being flushed 2393 * @target_work: work item being flushed (NULL for workqueue flushes) 2394 * 2395 * %current is trying to flush the whole @target_wq or @target_work on it. 2396 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2397 * reclaiming memory or running on a workqueue which doesn't have 2398 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2399 * a deadlock. 2400 */ 2401 static void check_flush_dependency(struct workqueue_struct *target_wq, 2402 struct work_struct *target_work) 2403 { 2404 work_func_t target_func = target_work ? target_work->func : NULL; 2405 struct worker *worker; 2406 2407 if (target_wq->flags & WQ_MEM_RECLAIM) 2408 return; 2409 2410 worker = current_wq_worker(); 2411 2412 WARN_ONCE(current->flags & PF_MEMALLOC, 2413 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2414 current->pid, current->comm, target_wq->name, target_func); 2415 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2416 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2417 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2418 worker->current_pwq->wq->name, worker->current_func, 2419 target_wq->name, target_func); 2420 } 2421 2422 struct wq_barrier { 2423 struct work_struct work; 2424 struct completion done; 2425 struct task_struct *task; /* purely informational */ 2426 }; 2427 2428 static void wq_barrier_func(struct work_struct *work) 2429 { 2430 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2431 complete(&barr->done); 2432 } 2433 2434 /** 2435 * insert_wq_barrier - insert a barrier work 2436 * @pwq: pwq to insert barrier into 2437 * @barr: wq_barrier to insert 2438 * @target: target work to attach @barr to 2439 * @worker: worker currently executing @target, NULL if @target is not executing 2440 * 2441 * @barr is linked to @target such that @barr is completed only after 2442 * @target finishes execution. Please note that the ordering 2443 * guarantee is observed only with respect to @target and on the local 2444 * cpu. 2445 * 2446 * Currently, a queued barrier can't be canceled. This is because 2447 * try_to_grab_pending() can't determine whether the work to be 2448 * grabbed is at the head of the queue and thus can't clear LINKED 2449 * flag of the previous work while there must be a valid next work 2450 * after a work with LINKED flag set. 2451 * 2452 * Note that when @worker is non-NULL, @target may be modified 2453 * underneath us, so we can't reliably determine pwq from @target. 2454 * 2455 * CONTEXT: 2456 * spin_lock_irq(pool->lock). 2457 */ 2458 static void insert_wq_barrier(struct pool_workqueue *pwq, 2459 struct wq_barrier *barr, 2460 struct work_struct *target, struct worker *worker) 2461 { 2462 struct list_head *head; 2463 unsigned int linked = 0; 2464 2465 /* 2466 * debugobject calls are safe here even with pool->lock locked 2467 * as we know for sure that this will not trigger any of the 2468 * checks and call back into the fixup functions where we 2469 * might deadlock. 2470 */ 2471 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2472 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2473 init_completion(&barr->done); 2474 barr->task = current; 2475 2476 /* 2477 * If @target is currently being executed, schedule the 2478 * barrier to the worker; otherwise, put it after @target. 2479 */ 2480 if (worker) 2481 head = worker->scheduled.next; 2482 else { 2483 unsigned long *bits = work_data_bits(target); 2484 2485 head = target->entry.next; 2486 /* there can already be other linked works, inherit and set */ 2487 linked = *bits & WORK_STRUCT_LINKED; 2488 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2489 } 2490 2491 debug_work_activate(&barr->work); 2492 insert_work(pwq, &barr->work, head, 2493 work_color_to_flags(WORK_NO_COLOR) | linked); 2494 } 2495 2496 /** 2497 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2498 * @wq: workqueue being flushed 2499 * @flush_color: new flush color, < 0 for no-op 2500 * @work_color: new work color, < 0 for no-op 2501 * 2502 * Prepare pwqs for workqueue flushing. 2503 * 2504 * If @flush_color is non-negative, flush_color on all pwqs should be 2505 * -1. If no pwq has in-flight commands at the specified color, all 2506 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2507 * has in flight commands, its pwq->flush_color is set to 2508 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2509 * wakeup logic is armed and %true is returned. 2510 * 2511 * The caller should have initialized @wq->first_flusher prior to 2512 * calling this function with non-negative @flush_color. If 2513 * @flush_color is negative, no flush color update is done and %false 2514 * is returned. 2515 * 2516 * If @work_color is non-negative, all pwqs should have the same 2517 * work_color which is previous to @work_color and all will be 2518 * advanced to @work_color. 2519 * 2520 * CONTEXT: 2521 * mutex_lock(wq->mutex). 2522 * 2523 * Return: 2524 * %true if @flush_color >= 0 and there's something to flush. %false 2525 * otherwise. 2526 */ 2527 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2528 int flush_color, int work_color) 2529 { 2530 bool wait = false; 2531 struct pool_workqueue *pwq; 2532 2533 if (flush_color >= 0) { 2534 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2535 atomic_set(&wq->nr_pwqs_to_flush, 1); 2536 } 2537 2538 for_each_pwq(pwq, wq) { 2539 struct worker_pool *pool = pwq->pool; 2540 2541 spin_lock_irq(&pool->lock); 2542 2543 if (flush_color >= 0) { 2544 WARN_ON_ONCE(pwq->flush_color != -1); 2545 2546 if (pwq->nr_in_flight[flush_color]) { 2547 pwq->flush_color = flush_color; 2548 atomic_inc(&wq->nr_pwqs_to_flush); 2549 wait = true; 2550 } 2551 } 2552 2553 if (work_color >= 0) { 2554 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2555 pwq->work_color = work_color; 2556 } 2557 2558 spin_unlock_irq(&pool->lock); 2559 } 2560 2561 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2562 complete(&wq->first_flusher->done); 2563 2564 return wait; 2565 } 2566 2567 /** 2568 * flush_workqueue - ensure that any scheduled work has run to completion. 2569 * @wq: workqueue to flush 2570 * 2571 * This function sleeps until all work items which were queued on entry 2572 * have finished execution, but it is not livelocked by new incoming ones. 2573 */ 2574 void flush_workqueue(struct workqueue_struct *wq) 2575 { 2576 struct wq_flusher this_flusher = { 2577 .list = LIST_HEAD_INIT(this_flusher.list), 2578 .flush_color = -1, 2579 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2580 }; 2581 int next_color; 2582 2583 lock_map_acquire(&wq->lockdep_map); 2584 lock_map_release(&wq->lockdep_map); 2585 2586 mutex_lock(&wq->mutex); 2587 2588 /* 2589 * Start-to-wait phase 2590 */ 2591 next_color = work_next_color(wq->work_color); 2592 2593 if (next_color != wq->flush_color) { 2594 /* 2595 * Color space is not full. The current work_color 2596 * becomes our flush_color and work_color is advanced 2597 * by one. 2598 */ 2599 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2600 this_flusher.flush_color = wq->work_color; 2601 wq->work_color = next_color; 2602 2603 if (!wq->first_flusher) { 2604 /* no flush in progress, become the first flusher */ 2605 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2606 2607 wq->first_flusher = &this_flusher; 2608 2609 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2610 wq->work_color)) { 2611 /* nothing to flush, done */ 2612 wq->flush_color = next_color; 2613 wq->first_flusher = NULL; 2614 goto out_unlock; 2615 } 2616 } else { 2617 /* wait in queue */ 2618 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2619 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2620 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2621 } 2622 } else { 2623 /* 2624 * Oops, color space is full, wait on overflow queue. 2625 * The next flush completion will assign us 2626 * flush_color and transfer to flusher_queue. 2627 */ 2628 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2629 } 2630 2631 check_flush_dependency(wq, NULL); 2632 2633 mutex_unlock(&wq->mutex); 2634 2635 wait_for_completion(&this_flusher.done); 2636 2637 /* 2638 * Wake-up-and-cascade phase 2639 * 2640 * First flushers are responsible for cascading flushes and 2641 * handling overflow. Non-first flushers can simply return. 2642 */ 2643 if (wq->first_flusher != &this_flusher) 2644 return; 2645 2646 mutex_lock(&wq->mutex); 2647 2648 /* we might have raced, check again with mutex held */ 2649 if (wq->first_flusher != &this_flusher) 2650 goto out_unlock; 2651 2652 wq->first_flusher = NULL; 2653 2654 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2655 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2656 2657 while (true) { 2658 struct wq_flusher *next, *tmp; 2659 2660 /* complete all the flushers sharing the current flush color */ 2661 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2662 if (next->flush_color != wq->flush_color) 2663 break; 2664 list_del_init(&next->list); 2665 complete(&next->done); 2666 } 2667 2668 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2669 wq->flush_color != work_next_color(wq->work_color)); 2670 2671 /* this flush_color is finished, advance by one */ 2672 wq->flush_color = work_next_color(wq->flush_color); 2673 2674 /* one color has been freed, handle overflow queue */ 2675 if (!list_empty(&wq->flusher_overflow)) { 2676 /* 2677 * Assign the same color to all overflowed 2678 * flushers, advance work_color and append to 2679 * flusher_queue. This is the start-to-wait 2680 * phase for these overflowed flushers. 2681 */ 2682 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2683 tmp->flush_color = wq->work_color; 2684 2685 wq->work_color = work_next_color(wq->work_color); 2686 2687 list_splice_tail_init(&wq->flusher_overflow, 2688 &wq->flusher_queue); 2689 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2690 } 2691 2692 if (list_empty(&wq->flusher_queue)) { 2693 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2694 break; 2695 } 2696 2697 /* 2698 * Need to flush more colors. Make the next flusher 2699 * the new first flusher and arm pwqs. 2700 */ 2701 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2702 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2703 2704 list_del_init(&next->list); 2705 wq->first_flusher = next; 2706 2707 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2708 break; 2709 2710 /* 2711 * Meh... this color is already done, clear first 2712 * flusher and repeat cascading. 2713 */ 2714 wq->first_flusher = NULL; 2715 } 2716 2717 out_unlock: 2718 mutex_unlock(&wq->mutex); 2719 } 2720 EXPORT_SYMBOL(flush_workqueue); 2721 2722 /** 2723 * drain_workqueue - drain a workqueue 2724 * @wq: workqueue to drain 2725 * 2726 * Wait until the workqueue becomes empty. While draining is in progress, 2727 * only chain queueing is allowed. IOW, only currently pending or running 2728 * work items on @wq can queue further work items on it. @wq is flushed 2729 * repeatedly until it becomes empty. The number of flushing is determined 2730 * by the depth of chaining and should be relatively short. Whine if it 2731 * takes too long. 2732 */ 2733 void drain_workqueue(struct workqueue_struct *wq) 2734 { 2735 unsigned int flush_cnt = 0; 2736 struct pool_workqueue *pwq; 2737 2738 /* 2739 * __queue_work() needs to test whether there are drainers, is much 2740 * hotter than drain_workqueue() and already looks at @wq->flags. 2741 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2742 */ 2743 mutex_lock(&wq->mutex); 2744 if (!wq->nr_drainers++) 2745 wq->flags |= __WQ_DRAINING; 2746 mutex_unlock(&wq->mutex); 2747 reflush: 2748 flush_workqueue(wq); 2749 2750 mutex_lock(&wq->mutex); 2751 2752 for_each_pwq(pwq, wq) { 2753 bool drained; 2754 2755 spin_lock_irq(&pwq->pool->lock); 2756 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2757 spin_unlock_irq(&pwq->pool->lock); 2758 2759 if (drained) 2760 continue; 2761 2762 if (++flush_cnt == 10 || 2763 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2764 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2765 wq->name, flush_cnt); 2766 2767 mutex_unlock(&wq->mutex); 2768 goto reflush; 2769 } 2770 2771 if (!--wq->nr_drainers) 2772 wq->flags &= ~__WQ_DRAINING; 2773 mutex_unlock(&wq->mutex); 2774 } 2775 EXPORT_SYMBOL_GPL(drain_workqueue); 2776 2777 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2778 { 2779 struct worker *worker = NULL; 2780 struct worker_pool *pool; 2781 struct pool_workqueue *pwq; 2782 2783 might_sleep(); 2784 2785 local_irq_disable(); 2786 pool = get_work_pool(work); 2787 if (!pool) { 2788 local_irq_enable(); 2789 return false; 2790 } 2791 2792 spin_lock(&pool->lock); 2793 /* see the comment in try_to_grab_pending() with the same code */ 2794 pwq = get_work_pwq(work); 2795 if (pwq) { 2796 if (unlikely(pwq->pool != pool)) 2797 goto already_gone; 2798 } else { 2799 worker = find_worker_executing_work(pool, work); 2800 if (!worker) 2801 goto already_gone; 2802 pwq = worker->current_pwq; 2803 } 2804 2805 check_flush_dependency(pwq->wq, work); 2806 2807 insert_wq_barrier(pwq, barr, work, worker); 2808 spin_unlock_irq(&pool->lock); 2809 2810 /* 2811 * If @max_active is 1 or rescuer is in use, flushing another work 2812 * item on the same workqueue may lead to deadlock. Make sure the 2813 * flusher is not running on the same workqueue by verifying write 2814 * access. 2815 */ 2816 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2817 lock_map_acquire(&pwq->wq->lockdep_map); 2818 else 2819 lock_map_acquire_read(&pwq->wq->lockdep_map); 2820 lock_map_release(&pwq->wq->lockdep_map); 2821 2822 return true; 2823 already_gone: 2824 spin_unlock_irq(&pool->lock); 2825 return false; 2826 } 2827 2828 /** 2829 * flush_work - wait for a work to finish executing the last queueing instance 2830 * @work: the work to flush 2831 * 2832 * Wait until @work has finished execution. @work is guaranteed to be idle 2833 * on return if it hasn't been requeued since flush started. 2834 * 2835 * Return: 2836 * %true if flush_work() waited for the work to finish execution, 2837 * %false if it was already idle. 2838 */ 2839 bool flush_work(struct work_struct *work) 2840 { 2841 struct wq_barrier barr; 2842 2843 lock_map_acquire(&work->lockdep_map); 2844 lock_map_release(&work->lockdep_map); 2845 2846 if (start_flush_work(work, &barr)) { 2847 wait_for_completion(&barr.done); 2848 destroy_work_on_stack(&barr.work); 2849 return true; 2850 } else { 2851 return false; 2852 } 2853 } 2854 EXPORT_SYMBOL_GPL(flush_work); 2855 2856 struct cwt_wait { 2857 wait_queue_t wait; 2858 struct work_struct *work; 2859 }; 2860 2861 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2862 { 2863 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2864 2865 if (cwait->work != key) 2866 return 0; 2867 return autoremove_wake_function(wait, mode, sync, key); 2868 } 2869 2870 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2871 { 2872 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2873 unsigned long flags; 2874 int ret; 2875 2876 do { 2877 ret = try_to_grab_pending(work, is_dwork, &flags); 2878 /* 2879 * If someone else is already canceling, wait for it to 2880 * finish. flush_work() doesn't work for PREEMPT_NONE 2881 * because we may get scheduled between @work's completion 2882 * and the other canceling task resuming and clearing 2883 * CANCELING - flush_work() will return false immediately 2884 * as @work is no longer busy, try_to_grab_pending() will 2885 * return -ENOENT as @work is still being canceled and the 2886 * other canceling task won't be able to clear CANCELING as 2887 * we're hogging the CPU. 2888 * 2889 * Let's wait for completion using a waitqueue. As this 2890 * may lead to the thundering herd problem, use a custom 2891 * wake function which matches @work along with exclusive 2892 * wait and wakeup. 2893 */ 2894 if (unlikely(ret == -ENOENT)) { 2895 struct cwt_wait cwait; 2896 2897 init_wait(&cwait.wait); 2898 cwait.wait.func = cwt_wakefn; 2899 cwait.work = work; 2900 2901 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2902 TASK_UNINTERRUPTIBLE); 2903 if (work_is_canceling(work)) 2904 schedule(); 2905 finish_wait(&cancel_waitq, &cwait.wait); 2906 } 2907 } while (unlikely(ret < 0)); 2908 2909 /* tell other tasks trying to grab @work to back off */ 2910 mark_work_canceling(work); 2911 local_irq_restore(flags); 2912 2913 flush_work(work); 2914 clear_work_data(work); 2915 2916 /* 2917 * Paired with prepare_to_wait() above so that either 2918 * waitqueue_active() is visible here or !work_is_canceling() is 2919 * visible there. 2920 */ 2921 smp_mb(); 2922 if (waitqueue_active(&cancel_waitq)) 2923 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2924 2925 return ret; 2926 } 2927 2928 /** 2929 * cancel_work_sync - cancel a work and wait for it to finish 2930 * @work: the work to cancel 2931 * 2932 * Cancel @work and wait for its execution to finish. This function 2933 * can be used even if the work re-queues itself or migrates to 2934 * another workqueue. On return from this function, @work is 2935 * guaranteed to be not pending or executing on any CPU. 2936 * 2937 * cancel_work_sync(&delayed_work->work) must not be used for 2938 * delayed_work's. Use cancel_delayed_work_sync() instead. 2939 * 2940 * The caller must ensure that the workqueue on which @work was last 2941 * queued can't be destroyed before this function returns. 2942 * 2943 * Return: 2944 * %true if @work was pending, %false otherwise. 2945 */ 2946 bool cancel_work_sync(struct work_struct *work) 2947 { 2948 return __cancel_work_timer(work, false); 2949 } 2950 EXPORT_SYMBOL_GPL(cancel_work_sync); 2951 2952 /** 2953 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2954 * @dwork: the delayed work to flush 2955 * 2956 * Delayed timer is cancelled and the pending work is queued for 2957 * immediate execution. Like flush_work(), this function only 2958 * considers the last queueing instance of @dwork. 2959 * 2960 * Return: 2961 * %true if flush_work() waited for the work to finish execution, 2962 * %false if it was already idle. 2963 */ 2964 bool flush_delayed_work(struct delayed_work *dwork) 2965 { 2966 local_irq_disable(); 2967 if (del_timer_sync(&dwork->timer)) 2968 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2969 local_irq_enable(); 2970 return flush_work(&dwork->work); 2971 } 2972 EXPORT_SYMBOL(flush_delayed_work); 2973 2974 /** 2975 * cancel_delayed_work - cancel a delayed work 2976 * @dwork: delayed_work to cancel 2977 * 2978 * Kill off a pending delayed_work. 2979 * 2980 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2981 * pending. 2982 * 2983 * Note: 2984 * The work callback function may still be running on return, unless 2985 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2986 * use cancel_delayed_work_sync() to wait on it. 2987 * 2988 * This function is safe to call from any context including IRQ handler. 2989 */ 2990 bool cancel_delayed_work(struct delayed_work *dwork) 2991 { 2992 unsigned long flags; 2993 int ret; 2994 2995 do { 2996 ret = try_to_grab_pending(&dwork->work, true, &flags); 2997 } while (unlikely(ret == -EAGAIN)); 2998 2999 if (unlikely(ret < 0)) 3000 return false; 3001 3002 set_work_pool_and_clear_pending(&dwork->work, 3003 get_work_pool_id(&dwork->work)); 3004 local_irq_restore(flags); 3005 return ret; 3006 } 3007 EXPORT_SYMBOL(cancel_delayed_work); 3008 3009 /** 3010 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3011 * @dwork: the delayed work cancel 3012 * 3013 * This is cancel_work_sync() for delayed works. 3014 * 3015 * Return: 3016 * %true if @dwork was pending, %false otherwise. 3017 */ 3018 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3019 { 3020 return __cancel_work_timer(&dwork->work, true); 3021 } 3022 EXPORT_SYMBOL(cancel_delayed_work_sync); 3023 3024 /** 3025 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3026 * @func: the function to call 3027 * 3028 * schedule_on_each_cpu() executes @func on each online CPU using the 3029 * system workqueue and blocks until all CPUs have completed. 3030 * schedule_on_each_cpu() is very slow. 3031 * 3032 * Return: 3033 * 0 on success, -errno on failure. 3034 */ 3035 int schedule_on_each_cpu(work_func_t func) 3036 { 3037 int cpu; 3038 struct work_struct __percpu *works; 3039 3040 works = alloc_percpu(struct work_struct); 3041 if (!works) 3042 return -ENOMEM; 3043 3044 get_online_cpus(); 3045 3046 for_each_online_cpu(cpu) { 3047 struct work_struct *work = per_cpu_ptr(works, cpu); 3048 3049 INIT_WORK(work, func); 3050 schedule_work_on(cpu, work); 3051 } 3052 3053 for_each_online_cpu(cpu) 3054 flush_work(per_cpu_ptr(works, cpu)); 3055 3056 put_online_cpus(); 3057 free_percpu(works); 3058 return 0; 3059 } 3060 3061 /** 3062 * execute_in_process_context - reliably execute the routine with user context 3063 * @fn: the function to execute 3064 * @ew: guaranteed storage for the execute work structure (must 3065 * be available when the work executes) 3066 * 3067 * Executes the function immediately if process context is available, 3068 * otherwise schedules the function for delayed execution. 3069 * 3070 * Return: 0 - function was executed 3071 * 1 - function was scheduled for execution 3072 */ 3073 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3074 { 3075 if (!in_interrupt()) { 3076 fn(&ew->work); 3077 return 0; 3078 } 3079 3080 INIT_WORK(&ew->work, fn); 3081 schedule_work(&ew->work); 3082 3083 return 1; 3084 } 3085 EXPORT_SYMBOL_GPL(execute_in_process_context); 3086 3087 /** 3088 * free_workqueue_attrs - free a workqueue_attrs 3089 * @attrs: workqueue_attrs to free 3090 * 3091 * Undo alloc_workqueue_attrs(). 3092 */ 3093 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3094 { 3095 if (attrs) { 3096 free_cpumask_var(attrs->cpumask); 3097 kfree(attrs); 3098 } 3099 } 3100 3101 /** 3102 * alloc_workqueue_attrs - allocate a workqueue_attrs 3103 * @gfp_mask: allocation mask to use 3104 * 3105 * Allocate a new workqueue_attrs, initialize with default settings and 3106 * return it. 3107 * 3108 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3109 */ 3110 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3111 { 3112 struct workqueue_attrs *attrs; 3113 3114 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3115 if (!attrs) 3116 goto fail; 3117 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3118 goto fail; 3119 3120 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3121 return attrs; 3122 fail: 3123 free_workqueue_attrs(attrs); 3124 return NULL; 3125 } 3126 3127 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3128 const struct workqueue_attrs *from) 3129 { 3130 to->nice = from->nice; 3131 cpumask_copy(to->cpumask, from->cpumask); 3132 /* 3133 * Unlike hash and equality test, this function doesn't ignore 3134 * ->no_numa as it is used for both pool and wq attrs. Instead, 3135 * get_unbound_pool() explicitly clears ->no_numa after copying. 3136 */ 3137 to->no_numa = from->no_numa; 3138 } 3139 3140 /* hash value of the content of @attr */ 3141 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3142 { 3143 u32 hash = 0; 3144 3145 hash = jhash_1word(attrs->nice, hash); 3146 hash = jhash(cpumask_bits(attrs->cpumask), 3147 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3148 return hash; 3149 } 3150 3151 /* content equality test */ 3152 static bool wqattrs_equal(const struct workqueue_attrs *a, 3153 const struct workqueue_attrs *b) 3154 { 3155 if (a->nice != b->nice) 3156 return false; 3157 if (!cpumask_equal(a->cpumask, b->cpumask)) 3158 return false; 3159 return true; 3160 } 3161 3162 /** 3163 * init_worker_pool - initialize a newly zalloc'd worker_pool 3164 * @pool: worker_pool to initialize 3165 * 3166 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3167 * 3168 * Return: 0 on success, -errno on failure. Even on failure, all fields 3169 * inside @pool proper are initialized and put_unbound_pool() can be called 3170 * on @pool safely to release it. 3171 */ 3172 static int init_worker_pool(struct worker_pool *pool) 3173 { 3174 spin_lock_init(&pool->lock); 3175 pool->id = -1; 3176 pool->cpu = -1; 3177 pool->node = NUMA_NO_NODE; 3178 pool->flags |= POOL_DISASSOCIATED; 3179 pool->watchdog_ts = jiffies; 3180 INIT_LIST_HEAD(&pool->worklist); 3181 INIT_LIST_HEAD(&pool->idle_list); 3182 hash_init(pool->busy_hash); 3183 3184 init_timer_deferrable(&pool->idle_timer); 3185 pool->idle_timer.function = idle_worker_timeout; 3186 pool->idle_timer.data = (unsigned long)pool; 3187 3188 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3189 (unsigned long)pool); 3190 3191 mutex_init(&pool->manager_arb); 3192 mutex_init(&pool->attach_mutex); 3193 INIT_LIST_HEAD(&pool->workers); 3194 3195 ida_init(&pool->worker_ida); 3196 INIT_HLIST_NODE(&pool->hash_node); 3197 pool->refcnt = 1; 3198 3199 /* shouldn't fail above this point */ 3200 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3201 if (!pool->attrs) 3202 return -ENOMEM; 3203 return 0; 3204 } 3205 3206 static void rcu_free_wq(struct rcu_head *rcu) 3207 { 3208 struct workqueue_struct *wq = 3209 container_of(rcu, struct workqueue_struct, rcu); 3210 3211 if (!(wq->flags & WQ_UNBOUND)) 3212 free_percpu(wq->cpu_pwqs); 3213 else 3214 free_workqueue_attrs(wq->unbound_attrs); 3215 3216 kfree(wq->rescuer); 3217 kfree(wq); 3218 } 3219 3220 static void rcu_free_pool(struct rcu_head *rcu) 3221 { 3222 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3223 3224 ida_destroy(&pool->worker_ida); 3225 free_workqueue_attrs(pool->attrs); 3226 kfree(pool); 3227 } 3228 3229 /** 3230 * put_unbound_pool - put a worker_pool 3231 * @pool: worker_pool to put 3232 * 3233 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3234 * safe manner. get_unbound_pool() calls this function on its failure path 3235 * and this function should be able to release pools which went through, 3236 * successfully or not, init_worker_pool(). 3237 * 3238 * Should be called with wq_pool_mutex held. 3239 */ 3240 static void put_unbound_pool(struct worker_pool *pool) 3241 { 3242 DECLARE_COMPLETION_ONSTACK(detach_completion); 3243 struct worker *worker; 3244 3245 lockdep_assert_held(&wq_pool_mutex); 3246 3247 if (--pool->refcnt) 3248 return; 3249 3250 /* sanity checks */ 3251 if (WARN_ON(!(pool->cpu < 0)) || 3252 WARN_ON(!list_empty(&pool->worklist))) 3253 return; 3254 3255 /* release id and unhash */ 3256 if (pool->id >= 0) 3257 idr_remove(&worker_pool_idr, pool->id); 3258 hash_del(&pool->hash_node); 3259 3260 /* 3261 * Become the manager and destroy all workers. Grabbing 3262 * manager_arb prevents @pool's workers from blocking on 3263 * attach_mutex. 3264 */ 3265 mutex_lock(&pool->manager_arb); 3266 3267 spin_lock_irq(&pool->lock); 3268 while ((worker = first_idle_worker(pool))) 3269 destroy_worker(worker); 3270 WARN_ON(pool->nr_workers || pool->nr_idle); 3271 spin_unlock_irq(&pool->lock); 3272 3273 mutex_lock(&pool->attach_mutex); 3274 if (!list_empty(&pool->workers)) 3275 pool->detach_completion = &detach_completion; 3276 mutex_unlock(&pool->attach_mutex); 3277 3278 if (pool->detach_completion) 3279 wait_for_completion(pool->detach_completion); 3280 3281 mutex_unlock(&pool->manager_arb); 3282 3283 /* shut down the timers */ 3284 del_timer_sync(&pool->idle_timer); 3285 del_timer_sync(&pool->mayday_timer); 3286 3287 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3288 call_rcu_sched(&pool->rcu, rcu_free_pool); 3289 } 3290 3291 /** 3292 * get_unbound_pool - get a worker_pool with the specified attributes 3293 * @attrs: the attributes of the worker_pool to get 3294 * 3295 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3296 * reference count and return it. If there already is a matching 3297 * worker_pool, it will be used; otherwise, this function attempts to 3298 * create a new one. 3299 * 3300 * Should be called with wq_pool_mutex held. 3301 * 3302 * Return: On success, a worker_pool with the same attributes as @attrs. 3303 * On failure, %NULL. 3304 */ 3305 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3306 { 3307 u32 hash = wqattrs_hash(attrs); 3308 struct worker_pool *pool; 3309 int node; 3310 int target_node = NUMA_NO_NODE; 3311 3312 lockdep_assert_held(&wq_pool_mutex); 3313 3314 /* do we already have a matching pool? */ 3315 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3316 if (wqattrs_equal(pool->attrs, attrs)) { 3317 pool->refcnt++; 3318 return pool; 3319 } 3320 } 3321 3322 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3323 if (wq_numa_enabled) { 3324 for_each_node(node) { 3325 if (cpumask_subset(attrs->cpumask, 3326 wq_numa_possible_cpumask[node])) { 3327 target_node = node; 3328 break; 3329 } 3330 } 3331 } 3332 3333 /* nope, create a new one */ 3334 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3335 if (!pool || init_worker_pool(pool) < 0) 3336 goto fail; 3337 3338 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3339 copy_workqueue_attrs(pool->attrs, attrs); 3340 pool->node = target_node; 3341 3342 /* 3343 * no_numa isn't a worker_pool attribute, always clear it. See 3344 * 'struct workqueue_attrs' comments for detail. 3345 */ 3346 pool->attrs->no_numa = false; 3347 3348 if (worker_pool_assign_id(pool) < 0) 3349 goto fail; 3350 3351 /* create and start the initial worker */ 3352 if (!create_worker(pool)) 3353 goto fail; 3354 3355 /* install */ 3356 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3357 3358 return pool; 3359 fail: 3360 if (pool) 3361 put_unbound_pool(pool); 3362 return NULL; 3363 } 3364 3365 static void rcu_free_pwq(struct rcu_head *rcu) 3366 { 3367 kmem_cache_free(pwq_cache, 3368 container_of(rcu, struct pool_workqueue, rcu)); 3369 } 3370 3371 /* 3372 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3373 * and needs to be destroyed. 3374 */ 3375 static void pwq_unbound_release_workfn(struct work_struct *work) 3376 { 3377 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3378 unbound_release_work); 3379 struct workqueue_struct *wq = pwq->wq; 3380 struct worker_pool *pool = pwq->pool; 3381 bool is_last; 3382 3383 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3384 return; 3385 3386 mutex_lock(&wq->mutex); 3387 list_del_rcu(&pwq->pwqs_node); 3388 is_last = list_empty(&wq->pwqs); 3389 mutex_unlock(&wq->mutex); 3390 3391 mutex_lock(&wq_pool_mutex); 3392 put_unbound_pool(pool); 3393 mutex_unlock(&wq_pool_mutex); 3394 3395 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3396 3397 /* 3398 * If we're the last pwq going away, @wq is already dead and no one 3399 * is gonna access it anymore. Schedule RCU free. 3400 */ 3401 if (is_last) 3402 call_rcu_sched(&wq->rcu, rcu_free_wq); 3403 } 3404 3405 /** 3406 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3407 * @pwq: target pool_workqueue 3408 * 3409 * If @pwq isn't freezing, set @pwq->max_active to the associated 3410 * workqueue's saved_max_active and activate delayed work items 3411 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3412 */ 3413 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3414 { 3415 struct workqueue_struct *wq = pwq->wq; 3416 bool freezable = wq->flags & WQ_FREEZABLE; 3417 3418 /* for @wq->saved_max_active */ 3419 lockdep_assert_held(&wq->mutex); 3420 3421 /* fast exit for non-freezable wqs */ 3422 if (!freezable && pwq->max_active == wq->saved_max_active) 3423 return; 3424 3425 spin_lock_irq(&pwq->pool->lock); 3426 3427 /* 3428 * During [un]freezing, the caller is responsible for ensuring that 3429 * this function is called at least once after @workqueue_freezing 3430 * is updated and visible. 3431 */ 3432 if (!freezable || !workqueue_freezing) { 3433 pwq->max_active = wq->saved_max_active; 3434 3435 while (!list_empty(&pwq->delayed_works) && 3436 pwq->nr_active < pwq->max_active) 3437 pwq_activate_first_delayed(pwq); 3438 3439 /* 3440 * Need to kick a worker after thawed or an unbound wq's 3441 * max_active is bumped. It's a slow path. Do it always. 3442 */ 3443 wake_up_worker(pwq->pool); 3444 } else { 3445 pwq->max_active = 0; 3446 } 3447 3448 spin_unlock_irq(&pwq->pool->lock); 3449 } 3450 3451 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3452 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3453 struct worker_pool *pool) 3454 { 3455 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3456 3457 memset(pwq, 0, sizeof(*pwq)); 3458 3459 pwq->pool = pool; 3460 pwq->wq = wq; 3461 pwq->flush_color = -1; 3462 pwq->refcnt = 1; 3463 INIT_LIST_HEAD(&pwq->delayed_works); 3464 INIT_LIST_HEAD(&pwq->pwqs_node); 3465 INIT_LIST_HEAD(&pwq->mayday_node); 3466 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3467 } 3468 3469 /* sync @pwq with the current state of its associated wq and link it */ 3470 static void link_pwq(struct pool_workqueue *pwq) 3471 { 3472 struct workqueue_struct *wq = pwq->wq; 3473 3474 lockdep_assert_held(&wq->mutex); 3475 3476 /* may be called multiple times, ignore if already linked */ 3477 if (!list_empty(&pwq->pwqs_node)) 3478 return; 3479 3480 /* set the matching work_color */ 3481 pwq->work_color = wq->work_color; 3482 3483 /* sync max_active to the current setting */ 3484 pwq_adjust_max_active(pwq); 3485 3486 /* link in @pwq */ 3487 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3488 } 3489 3490 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3491 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3492 const struct workqueue_attrs *attrs) 3493 { 3494 struct worker_pool *pool; 3495 struct pool_workqueue *pwq; 3496 3497 lockdep_assert_held(&wq_pool_mutex); 3498 3499 pool = get_unbound_pool(attrs); 3500 if (!pool) 3501 return NULL; 3502 3503 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3504 if (!pwq) { 3505 put_unbound_pool(pool); 3506 return NULL; 3507 } 3508 3509 init_pwq(pwq, wq, pool); 3510 return pwq; 3511 } 3512 3513 /** 3514 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3515 * @attrs: the wq_attrs of the default pwq of the target workqueue 3516 * @node: the target NUMA node 3517 * @cpu_going_down: if >= 0, the CPU to consider as offline 3518 * @cpumask: outarg, the resulting cpumask 3519 * 3520 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3521 * @cpu_going_down is >= 0, that cpu is considered offline during 3522 * calculation. The result is stored in @cpumask. 3523 * 3524 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3525 * enabled and @node has online CPUs requested by @attrs, the returned 3526 * cpumask is the intersection of the possible CPUs of @node and 3527 * @attrs->cpumask. 3528 * 3529 * The caller is responsible for ensuring that the cpumask of @node stays 3530 * stable. 3531 * 3532 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3533 * %false if equal. 3534 */ 3535 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3536 int cpu_going_down, cpumask_t *cpumask) 3537 { 3538 if (!wq_numa_enabled || attrs->no_numa) 3539 goto use_dfl; 3540 3541 /* does @node have any online CPUs @attrs wants? */ 3542 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3543 if (cpu_going_down >= 0) 3544 cpumask_clear_cpu(cpu_going_down, cpumask); 3545 3546 if (cpumask_empty(cpumask)) 3547 goto use_dfl; 3548 3549 /* yeap, return possible CPUs in @node that @attrs wants */ 3550 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3551 return !cpumask_equal(cpumask, attrs->cpumask); 3552 3553 use_dfl: 3554 cpumask_copy(cpumask, attrs->cpumask); 3555 return false; 3556 } 3557 3558 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3559 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3560 int node, 3561 struct pool_workqueue *pwq) 3562 { 3563 struct pool_workqueue *old_pwq; 3564 3565 lockdep_assert_held(&wq_pool_mutex); 3566 lockdep_assert_held(&wq->mutex); 3567 3568 /* link_pwq() can handle duplicate calls */ 3569 link_pwq(pwq); 3570 3571 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3572 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3573 return old_pwq; 3574 } 3575 3576 /* context to store the prepared attrs & pwqs before applying */ 3577 struct apply_wqattrs_ctx { 3578 struct workqueue_struct *wq; /* target workqueue */ 3579 struct workqueue_attrs *attrs; /* attrs to apply */ 3580 struct list_head list; /* queued for batching commit */ 3581 struct pool_workqueue *dfl_pwq; 3582 struct pool_workqueue *pwq_tbl[]; 3583 }; 3584 3585 /* free the resources after success or abort */ 3586 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3587 { 3588 if (ctx) { 3589 int node; 3590 3591 for_each_node(node) 3592 put_pwq_unlocked(ctx->pwq_tbl[node]); 3593 put_pwq_unlocked(ctx->dfl_pwq); 3594 3595 free_workqueue_attrs(ctx->attrs); 3596 3597 kfree(ctx); 3598 } 3599 } 3600 3601 /* allocate the attrs and pwqs for later installation */ 3602 static struct apply_wqattrs_ctx * 3603 apply_wqattrs_prepare(struct workqueue_struct *wq, 3604 const struct workqueue_attrs *attrs) 3605 { 3606 struct apply_wqattrs_ctx *ctx; 3607 struct workqueue_attrs *new_attrs, *tmp_attrs; 3608 int node; 3609 3610 lockdep_assert_held(&wq_pool_mutex); 3611 3612 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3613 GFP_KERNEL); 3614 3615 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3616 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3617 if (!ctx || !new_attrs || !tmp_attrs) 3618 goto out_free; 3619 3620 /* 3621 * Calculate the attrs of the default pwq. 3622 * If the user configured cpumask doesn't overlap with the 3623 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3624 */ 3625 copy_workqueue_attrs(new_attrs, attrs); 3626 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3627 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3628 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3629 3630 /* 3631 * We may create multiple pwqs with differing cpumasks. Make a 3632 * copy of @new_attrs which will be modified and used to obtain 3633 * pools. 3634 */ 3635 copy_workqueue_attrs(tmp_attrs, new_attrs); 3636 3637 /* 3638 * If something goes wrong during CPU up/down, we'll fall back to 3639 * the default pwq covering whole @attrs->cpumask. Always create 3640 * it even if we don't use it immediately. 3641 */ 3642 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3643 if (!ctx->dfl_pwq) 3644 goto out_free; 3645 3646 for_each_node(node) { 3647 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3648 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3649 if (!ctx->pwq_tbl[node]) 3650 goto out_free; 3651 } else { 3652 ctx->dfl_pwq->refcnt++; 3653 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3654 } 3655 } 3656 3657 /* save the user configured attrs and sanitize it. */ 3658 copy_workqueue_attrs(new_attrs, attrs); 3659 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3660 ctx->attrs = new_attrs; 3661 3662 ctx->wq = wq; 3663 free_workqueue_attrs(tmp_attrs); 3664 return ctx; 3665 3666 out_free: 3667 free_workqueue_attrs(tmp_attrs); 3668 free_workqueue_attrs(new_attrs); 3669 apply_wqattrs_cleanup(ctx); 3670 return NULL; 3671 } 3672 3673 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3674 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3675 { 3676 int node; 3677 3678 /* all pwqs have been created successfully, let's install'em */ 3679 mutex_lock(&ctx->wq->mutex); 3680 3681 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3682 3683 /* save the previous pwq and install the new one */ 3684 for_each_node(node) 3685 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3686 ctx->pwq_tbl[node]); 3687 3688 /* @dfl_pwq might not have been used, ensure it's linked */ 3689 link_pwq(ctx->dfl_pwq); 3690 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3691 3692 mutex_unlock(&ctx->wq->mutex); 3693 } 3694 3695 static void apply_wqattrs_lock(void) 3696 { 3697 /* CPUs should stay stable across pwq creations and installations */ 3698 get_online_cpus(); 3699 mutex_lock(&wq_pool_mutex); 3700 } 3701 3702 static void apply_wqattrs_unlock(void) 3703 { 3704 mutex_unlock(&wq_pool_mutex); 3705 put_online_cpus(); 3706 } 3707 3708 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3709 const struct workqueue_attrs *attrs) 3710 { 3711 struct apply_wqattrs_ctx *ctx; 3712 3713 /* only unbound workqueues can change attributes */ 3714 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3715 return -EINVAL; 3716 3717 /* creating multiple pwqs breaks ordering guarantee */ 3718 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3719 return -EINVAL; 3720 3721 ctx = apply_wqattrs_prepare(wq, attrs); 3722 if (!ctx) 3723 return -ENOMEM; 3724 3725 /* the ctx has been prepared successfully, let's commit it */ 3726 apply_wqattrs_commit(ctx); 3727 apply_wqattrs_cleanup(ctx); 3728 3729 return 0; 3730 } 3731 3732 /** 3733 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3734 * @wq: the target workqueue 3735 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3736 * 3737 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3738 * machines, this function maps a separate pwq to each NUMA node with 3739 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3740 * NUMA node it was issued on. Older pwqs are released as in-flight work 3741 * items finish. Note that a work item which repeatedly requeues itself 3742 * back-to-back will stay on its current pwq. 3743 * 3744 * Performs GFP_KERNEL allocations. 3745 * 3746 * Return: 0 on success and -errno on failure. 3747 */ 3748 int apply_workqueue_attrs(struct workqueue_struct *wq, 3749 const struct workqueue_attrs *attrs) 3750 { 3751 int ret; 3752 3753 apply_wqattrs_lock(); 3754 ret = apply_workqueue_attrs_locked(wq, attrs); 3755 apply_wqattrs_unlock(); 3756 3757 return ret; 3758 } 3759 3760 /** 3761 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3762 * @wq: the target workqueue 3763 * @cpu: the CPU coming up or going down 3764 * @online: whether @cpu is coming up or going down 3765 * 3766 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3767 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3768 * @wq accordingly. 3769 * 3770 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3771 * falls back to @wq->dfl_pwq which may not be optimal but is always 3772 * correct. 3773 * 3774 * Note that when the last allowed CPU of a NUMA node goes offline for a 3775 * workqueue with a cpumask spanning multiple nodes, the workers which were 3776 * already executing the work items for the workqueue will lose their CPU 3777 * affinity and may execute on any CPU. This is similar to how per-cpu 3778 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3779 * affinity, it's the user's responsibility to flush the work item from 3780 * CPU_DOWN_PREPARE. 3781 */ 3782 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3783 bool online) 3784 { 3785 int node = cpu_to_node(cpu); 3786 int cpu_off = online ? -1 : cpu; 3787 struct pool_workqueue *old_pwq = NULL, *pwq; 3788 struct workqueue_attrs *target_attrs; 3789 cpumask_t *cpumask; 3790 3791 lockdep_assert_held(&wq_pool_mutex); 3792 3793 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3794 wq->unbound_attrs->no_numa) 3795 return; 3796 3797 /* 3798 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3799 * Let's use a preallocated one. The following buf is protected by 3800 * CPU hotplug exclusion. 3801 */ 3802 target_attrs = wq_update_unbound_numa_attrs_buf; 3803 cpumask = target_attrs->cpumask; 3804 3805 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3806 pwq = unbound_pwq_by_node(wq, node); 3807 3808 /* 3809 * Let's determine what needs to be done. If the target cpumask is 3810 * different from the default pwq's, we need to compare it to @pwq's 3811 * and create a new one if they don't match. If the target cpumask 3812 * equals the default pwq's, the default pwq should be used. 3813 */ 3814 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3815 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3816 return; 3817 } else { 3818 goto use_dfl_pwq; 3819 } 3820 3821 /* create a new pwq */ 3822 pwq = alloc_unbound_pwq(wq, target_attrs); 3823 if (!pwq) { 3824 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3825 wq->name); 3826 goto use_dfl_pwq; 3827 } 3828 3829 /* Install the new pwq. */ 3830 mutex_lock(&wq->mutex); 3831 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3832 goto out_unlock; 3833 3834 use_dfl_pwq: 3835 mutex_lock(&wq->mutex); 3836 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3837 get_pwq(wq->dfl_pwq); 3838 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3839 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3840 out_unlock: 3841 mutex_unlock(&wq->mutex); 3842 put_pwq_unlocked(old_pwq); 3843 } 3844 3845 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3846 { 3847 bool highpri = wq->flags & WQ_HIGHPRI; 3848 int cpu, ret; 3849 3850 if (!(wq->flags & WQ_UNBOUND)) { 3851 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3852 if (!wq->cpu_pwqs) 3853 return -ENOMEM; 3854 3855 for_each_possible_cpu(cpu) { 3856 struct pool_workqueue *pwq = 3857 per_cpu_ptr(wq->cpu_pwqs, cpu); 3858 struct worker_pool *cpu_pools = 3859 per_cpu(cpu_worker_pools, cpu); 3860 3861 init_pwq(pwq, wq, &cpu_pools[highpri]); 3862 3863 mutex_lock(&wq->mutex); 3864 link_pwq(pwq); 3865 mutex_unlock(&wq->mutex); 3866 } 3867 return 0; 3868 } else if (wq->flags & __WQ_ORDERED) { 3869 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3870 /* there should only be single pwq for ordering guarantee */ 3871 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3872 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3873 "ordering guarantee broken for workqueue %s\n", wq->name); 3874 return ret; 3875 } else { 3876 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3877 } 3878 } 3879 3880 static int wq_clamp_max_active(int max_active, unsigned int flags, 3881 const char *name) 3882 { 3883 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3884 3885 if (max_active < 1 || max_active > lim) 3886 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3887 max_active, name, 1, lim); 3888 3889 return clamp_val(max_active, 1, lim); 3890 } 3891 3892 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3893 unsigned int flags, 3894 int max_active, 3895 struct lock_class_key *key, 3896 const char *lock_name, ...) 3897 { 3898 size_t tbl_size = 0; 3899 va_list args; 3900 struct workqueue_struct *wq; 3901 struct pool_workqueue *pwq; 3902 3903 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3904 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3905 flags |= WQ_UNBOUND; 3906 3907 /* allocate wq and format name */ 3908 if (flags & WQ_UNBOUND) 3909 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3910 3911 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3912 if (!wq) 3913 return NULL; 3914 3915 if (flags & WQ_UNBOUND) { 3916 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3917 if (!wq->unbound_attrs) 3918 goto err_free_wq; 3919 } 3920 3921 va_start(args, lock_name); 3922 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3923 va_end(args); 3924 3925 max_active = max_active ?: WQ_DFL_ACTIVE; 3926 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3927 3928 /* init wq */ 3929 wq->flags = flags; 3930 wq->saved_max_active = max_active; 3931 mutex_init(&wq->mutex); 3932 atomic_set(&wq->nr_pwqs_to_flush, 0); 3933 INIT_LIST_HEAD(&wq->pwqs); 3934 INIT_LIST_HEAD(&wq->flusher_queue); 3935 INIT_LIST_HEAD(&wq->flusher_overflow); 3936 INIT_LIST_HEAD(&wq->maydays); 3937 3938 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3939 INIT_LIST_HEAD(&wq->list); 3940 3941 if (alloc_and_link_pwqs(wq) < 0) 3942 goto err_free_wq; 3943 3944 /* 3945 * Workqueues which may be used during memory reclaim should 3946 * have a rescuer to guarantee forward progress. 3947 */ 3948 if (flags & WQ_MEM_RECLAIM) { 3949 struct worker *rescuer; 3950 3951 rescuer = alloc_worker(NUMA_NO_NODE); 3952 if (!rescuer) 3953 goto err_destroy; 3954 3955 rescuer->rescue_wq = wq; 3956 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3957 wq->name); 3958 if (IS_ERR(rescuer->task)) { 3959 kfree(rescuer); 3960 goto err_destroy; 3961 } 3962 3963 wq->rescuer = rescuer; 3964 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3965 wake_up_process(rescuer->task); 3966 } 3967 3968 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3969 goto err_destroy; 3970 3971 /* 3972 * wq_pool_mutex protects global freeze state and workqueues list. 3973 * Grab it, adjust max_active and add the new @wq to workqueues 3974 * list. 3975 */ 3976 mutex_lock(&wq_pool_mutex); 3977 3978 mutex_lock(&wq->mutex); 3979 for_each_pwq(pwq, wq) 3980 pwq_adjust_max_active(pwq); 3981 mutex_unlock(&wq->mutex); 3982 3983 list_add_tail_rcu(&wq->list, &workqueues); 3984 3985 mutex_unlock(&wq_pool_mutex); 3986 3987 return wq; 3988 3989 err_free_wq: 3990 free_workqueue_attrs(wq->unbound_attrs); 3991 kfree(wq); 3992 return NULL; 3993 err_destroy: 3994 destroy_workqueue(wq); 3995 return NULL; 3996 } 3997 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3998 3999 /** 4000 * destroy_workqueue - safely terminate a workqueue 4001 * @wq: target workqueue 4002 * 4003 * Safely destroy a workqueue. All work currently pending will be done first. 4004 */ 4005 void destroy_workqueue(struct workqueue_struct *wq) 4006 { 4007 struct pool_workqueue *pwq; 4008 int node; 4009 4010 /* drain it before proceeding with destruction */ 4011 drain_workqueue(wq); 4012 4013 /* sanity checks */ 4014 mutex_lock(&wq->mutex); 4015 for_each_pwq(pwq, wq) { 4016 int i; 4017 4018 for (i = 0; i < WORK_NR_COLORS; i++) { 4019 if (WARN_ON(pwq->nr_in_flight[i])) { 4020 mutex_unlock(&wq->mutex); 4021 return; 4022 } 4023 } 4024 4025 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4026 WARN_ON(pwq->nr_active) || 4027 WARN_ON(!list_empty(&pwq->delayed_works))) { 4028 mutex_unlock(&wq->mutex); 4029 return; 4030 } 4031 } 4032 mutex_unlock(&wq->mutex); 4033 4034 /* 4035 * wq list is used to freeze wq, remove from list after 4036 * flushing is complete in case freeze races us. 4037 */ 4038 mutex_lock(&wq_pool_mutex); 4039 list_del_rcu(&wq->list); 4040 mutex_unlock(&wq_pool_mutex); 4041 4042 workqueue_sysfs_unregister(wq); 4043 4044 if (wq->rescuer) 4045 kthread_stop(wq->rescuer->task); 4046 4047 if (!(wq->flags & WQ_UNBOUND)) { 4048 /* 4049 * The base ref is never dropped on per-cpu pwqs. Directly 4050 * schedule RCU free. 4051 */ 4052 call_rcu_sched(&wq->rcu, rcu_free_wq); 4053 } else { 4054 /* 4055 * We're the sole accessor of @wq at this point. Directly 4056 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4057 * @wq will be freed when the last pwq is released. 4058 */ 4059 for_each_node(node) { 4060 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4061 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4062 put_pwq_unlocked(pwq); 4063 } 4064 4065 /* 4066 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4067 * put. Don't access it afterwards. 4068 */ 4069 pwq = wq->dfl_pwq; 4070 wq->dfl_pwq = NULL; 4071 put_pwq_unlocked(pwq); 4072 } 4073 } 4074 EXPORT_SYMBOL_GPL(destroy_workqueue); 4075 4076 /** 4077 * workqueue_set_max_active - adjust max_active of a workqueue 4078 * @wq: target workqueue 4079 * @max_active: new max_active value. 4080 * 4081 * Set max_active of @wq to @max_active. 4082 * 4083 * CONTEXT: 4084 * Don't call from IRQ context. 4085 */ 4086 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4087 { 4088 struct pool_workqueue *pwq; 4089 4090 /* disallow meddling with max_active for ordered workqueues */ 4091 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4092 return; 4093 4094 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4095 4096 mutex_lock(&wq->mutex); 4097 4098 wq->saved_max_active = max_active; 4099 4100 for_each_pwq(pwq, wq) 4101 pwq_adjust_max_active(pwq); 4102 4103 mutex_unlock(&wq->mutex); 4104 } 4105 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4106 4107 /** 4108 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4109 * 4110 * Determine whether %current is a workqueue rescuer. Can be used from 4111 * work functions to determine whether it's being run off the rescuer task. 4112 * 4113 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4114 */ 4115 bool current_is_workqueue_rescuer(void) 4116 { 4117 struct worker *worker = current_wq_worker(); 4118 4119 return worker && worker->rescue_wq; 4120 } 4121 4122 /** 4123 * workqueue_congested - test whether a workqueue is congested 4124 * @cpu: CPU in question 4125 * @wq: target workqueue 4126 * 4127 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4128 * no synchronization around this function and the test result is 4129 * unreliable and only useful as advisory hints or for debugging. 4130 * 4131 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4132 * Note that both per-cpu and unbound workqueues may be associated with 4133 * multiple pool_workqueues which have separate congested states. A 4134 * workqueue being congested on one CPU doesn't mean the workqueue is also 4135 * contested on other CPUs / NUMA nodes. 4136 * 4137 * Return: 4138 * %true if congested, %false otherwise. 4139 */ 4140 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4141 { 4142 struct pool_workqueue *pwq; 4143 bool ret; 4144 4145 rcu_read_lock_sched(); 4146 4147 if (cpu == WORK_CPU_UNBOUND) 4148 cpu = smp_processor_id(); 4149 4150 if (!(wq->flags & WQ_UNBOUND)) 4151 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4152 else 4153 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4154 4155 ret = !list_empty(&pwq->delayed_works); 4156 rcu_read_unlock_sched(); 4157 4158 return ret; 4159 } 4160 EXPORT_SYMBOL_GPL(workqueue_congested); 4161 4162 /** 4163 * work_busy - test whether a work is currently pending or running 4164 * @work: the work to be tested 4165 * 4166 * Test whether @work is currently pending or running. There is no 4167 * synchronization around this function and the test result is 4168 * unreliable and only useful as advisory hints or for debugging. 4169 * 4170 * Return: 4171 * OR'd bitmask of WORK_BUSY_* bits. 4172 */ 4173 unsigned int work_busy(struct work_struct *work) 4174 { 4175 struct worker_pool *pool; 4176 unsigned long flags; 4177 unsigned int ret = 0; 4178 4179 if (work_pending(work)) 4180 ret |= WORK_BUSY_PENDING; 4181 4182 local_irq_save(flags); 4183 pool = get_work_pool(work); 4184 if (pool) { 4185 spin_lock(&pool->lock); 4186 if (find_worker_executing_work(pool, work)) 4187 ret |= WORK_BUSY_RUNNING; 4188 spin_unlock(&pool->lock); 4189 } 4190 local_irq_restore(flags); 4191 4192 return ret; 4193 } 4194 EXPORT_SYMBOL_GPL(work_busy); 4195 4196 /** 4197 * set_worker_desc - set description for the current work item 4198 * @fmt: printf-style format string 4199 * @...: arguments for the format string 4200 * 4201 * This function can be called by a running work function to describe what 4202 * the work item is about. If the worker task gets dumped, this 4203 * information will be printed out together to help debugging. The 4204 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4205 */ 4206 void set_worker_desc(const char *fmt, ...) 4207 { 4208 struct worker *worker = current_wq_worker(); 4209 va_list args; 4210 4211 if (worker) { 4212 va_start(args, fmt); 4213 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4214 va_end(args); 4215 worker->desc_valid = true; 4216 } 4217 } 4218 4219 /** 4220 * print_worker_info - print out worker information and description 4221 * @log_lvl: the log level to use when printing 4222 * @task: target task 4223 * 4224 * If @task is a worker and currently executing a work item, print out the 4225 * name of the workqueue being serviced and worker description set with 4226 * set_worker_desc() by the currently executing work item. 4227 * 4228 * This function can be safely called on any task as long as the 4229 * task_struct itself is accessible. While safe, this function isn't 4230 * synchronized and may print out mixups or garbages of limited length. 4231 */ 4232 void print_worker_info(const char *log_lvl, struct task_struct *task) 4233 { 4234 work_func_t *fn = NULL; 4235 char name[WQ_NAME_LEN] = { }; 4236 char desc[WORKER_DESC_LEN] = { }; 4237 struct pool_workqueue *pwq = NULL; 4238 struct workqueue_struct *wq = NULL; 4239 bool desc_valid = false; 4240 struct worker *worker; 4241 4242 if (!(task->flags & PF_WQ_WORKER)) 4243 return; 4244 4245 /* 4246 * This function is called without any synchronization and @task 4247 * could be in any state. Be careful with dereferences. 4248 */ 4249 worker = probe_kthread_data(task); 4250 4251 /* 4252 * Carefully copy the associated workqueue's workfn and name. Keep 4253 * the original last '\0' in case the original contains garbage. 4254 */ 4255 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4256 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4257 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4258 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4259 4260 /* copy worker description */ 4261 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4262 if (desc_valid) 4263 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4264 4265 if (fn || name[0] || desc[0]) { 4266 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4267 if (desc[0]) 4268 pr_cont(" (%s)", desc); 4269 pr_cont("\n"); 4270 } 4271 } 4272 4273 static void pr_cont_pool_info(struct worker_pool *pool) 4274 { 4275 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4276 if (pool->node != NUMA_NO_NODE) 4277 pr_cont(" node=%d", pool->node); 4278 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4279 } 4280 4281 static void pr_cont_work(bool comma, struct work_struct *work) 4282 { 4283 if (work->func == wq_barrier_func) { 4284 struct wq_barrier *barr; 4285 4286 barr = container_of(work, struct wq_barrier, work); 4287 4288 pr_cont("%s BAR(%d)", comma ? "," : "", 4289 task_pid_nr(barr->task)); 4290 } else { 4291 pr_cont("%s %pf", comma ? "," : "", work->func); 4292 } 4293 } 4294 4295 static void show_pwq(struct pool_workqueue *pwq) 4296 { 4297 struct worker_pool *pool = pwq->pool; 4298 struct work_struct *work; 4299 struct worker *worker; 4300 bool has_in_flight = false, has_pending = false; 4301 int bkt; 4302 4303 pr_info(" pwq %d:", pool->id); 4304 pr_cont_pool_info(pool); 4305 4306 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4307 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4308 4309 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4310 if (worker->current_pwq == pwq) { 4311 has_in_flight = true; 4312 break; 4313 } 4314 } 4315 if (has_in_flight) { 4316 bool comma = false; 4317 4318 pr_info(" in-flight:"); 4319 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4320 if (worker->current_pwq != pwq) 4321 continue; 4322 4323 pr_cont("%s %d%s:%pf", comma ? "," : "", 4324 task_pid_nr(worker->task), 4325 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4326 worker->current_func); 4327 list_for_each_entry(work, &worker->scheduled, entry) 4328 pr_cont_work(false, work); 4329 comma = true; 4330 } 4331 pr_cont("\n"); 4332 } 4333 4334 list_for_each_entry(work, &pool->worklist, entry) { 4335 if (get_work_pwq(work) == pwq) { 4336 has_pending = true; 4337 break; 4338 } 4339 } 4340 if (has_pending) { 4341 bool comma = false; 4342 4343 pr_info(" pending:"); 4344 list_for_each_entry(work, &pool->worklist, entry) { 4345 if (get_work_pwq(work) != pwq) 4346 continue; 4347 4348 pr_cont_work(comma, work); 4349 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4350 } 4351 pr_cont("\n"); 4352 } 4353 4354 if (!list_empty(&pwq->delayed_works)) { 4355 bool comma = false; 4356 4357 pr_info(" delayed:"); 4358 list_for_each_entry(work, &pwq->delayed_works, entry) { 4359 pr_cont_work(comma, work); 4360 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4361 } 4362 pr_cont("\n"); 4363 } 4364 } 4365 4366 /** 4367 * show_workqueue_state - dump workqueue state 4368 * 4369 * Called from a sysrq handler and prints out all busy workqueues and 4370 * pools. 4371 */ 4372 void show_workqueue_state(void) 4373 { 4374 struct workqueue_struct *wq; 4375 struct worker_pool *pool; 4376 unsigned long flags; 4377 int pi; 4378 4379 rcu_read_lock_sched(); 4380 4381 pr_info("Showing busy workqueues and worker pools:\n"); 4382 4383 list_for_each_entry_rcu(wq, &workqueues, list) { 4384 struct pool_workqueue *pwq; 4385 bool idle = true; 4386 4387 for_each_pwq(pwq, wq) { 4388 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4389 idle = false; 4390 break; 4391 } 4392 } 4393 if (idle) 4394 continue; 4395 4396 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4397 4398 for_each_pwq(pwq, wq) { 4399 spin_lock_irqsave(&pwq->pool->lock, flags); 4400 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4401 show_pwq(pwq); 4402 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4403 } 4404 } 4405 4406 for_each_pool(pool, pi) { 4407 struct worker *worker; 4408 bool first = true; 4409 4410 spin_lock_irqsave(&pool->lock, flags); 4411 if (pool->nr_workers == pool->nr_idle) 4412 goto next_pool; 4413 4414 pr_info("pool %d:", pool->id); 4415 pr_cont_pool_info(pool); 4416 pr_cont(" hung=%us workers=%d", 4417 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4418 pool->nr_workers); 4419 if (pool->manager) 4420 pr_cont(" manager: %d", 4421 task_pid_nr(pool->manager->task)); 4422 list_for_each_entry(worker, &pool->idle_list, entry) { 4423 pr_cont(" %s%d", first ? "idle: " : "", 4424 task_pid_nr(worker->task)); 4425 first = false; 4426 } 4427 pr_cont("\n"); 4428 next_pool: 4429 spin_unlock_irqrestore(&pool->lock, flags); 4430 } 4431 4432 rcu_read_unlock_sched(); 4433 } 4434 4435 /* 4436 * CPU hotplug. 4437 * 4438 * There are two challenges in supporting CPU hotplug. Firstly, there 4439 * are a lot of assumptions on strong associations among work, pwq and 4440 * pool which make migrating pending and scheduled works very 4441 * difficult to implement without impacting hot paths. Secondly, 4442 * worker pools serve mix of short, long and very long running works making 4443 * blocked draining impractical. 4444 * 4445 * This is solved by allowing the pools to be disassociated from the CPU 4446 * running as an unbound one and allowing it to be reattached later if the 4447 * cpu comes back online. 4448 */ 4449 4450 static void wq_unbind_fn(struct work_struct *work) 4451 { 4452 int cpu = smp_processor_id(); 4453 struct worker_pool *pool; 4454 struct worker *worker; 4455 4456 for_each_cpu_worker_pool(pool, cpu) { 4457 mutex_lock(&pool->attach_mutex); 4458 spin_lock_irq(&pool->lock); 4459 4460 /* 4461 * We've blocked all attach/detach operations. Make all workers 4462 * unbound and set DISASSOCIATED. Before this, all workers 4463 * except for the ones which are still executing works from 4464 * before the last CPU down must be on the cpu. After 4465 * this, they may become diasporas. 4466 */ 4467 for_each_pool_worker(worker, pool) 4468 worker->flags |= WORKER_UNBOUND; 4469 4470 pool->flags |= POOL_DISASSOCIATED; 4471 4472 spin_unlock_irq(&pool->lock); 4473 mutex_unlock(&pool->attach_mutex); 4474 4475 /* 4476 * Call schedule() so that we cross rq->lock and thus can 4477 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4478 * This is necessary as scheduler callbacks may be invoked 4479 * from other cpus. 4480 */ 4481 schedule(); 4482 4483 /* 4484 * Sched callbacks are disabled now. Zap nr_running. 4485 * After this, nr_running stays zero and need_more_worker() 4486 * and keep_working() are always true as long as the 4487 * worklist is not empty. This pool now behaves as an 4488 * unbound (in terms of concurrency management) pool which 4489 * are served by workers tied to the pool. 4490 */ 4491 atomic_set(&pool->nr_running, 0); 4492 4493 /* 4494 * With concurrency management just turned off, a busy 4495 * worker blocking could lead to lengthy stalls. Kick off 4496 * unbound chain execution of currently pending work items. 4497 */ 4498 spin_lock_irq(&pool->lock); 4499 wake_up_worker(pool); 4500 spin_unlock_irq(&pool->lock); 4501 } 4502 } 4503 4504 /** 4505 * rebind_workers - rebind all workers of a pool to the associated CPU 4506 * @pool: pool of interest 4507 * 4508 * @pool->cpu is coming online. Rebind all workers to the CPU. 4509 */ 4510 static void rebind_workers(struct worker_pool *pool) 4511 { 4512 struct worker *worker; 4513 4514 lockdep_assert_held(&pool->attach_mutex); 4515 4516 /* 4517 * Restore CPU affinity of all workers. As all idle workers should 4518 * be on the run-queue of the associated CPU before any local 4519 * wake-ups for concurrency management happen, restore CPU affinity 4520 * of all workers first and then clear UNBOUND. As we're called 4521 * from CPU_ONLINE, the following shouldn't fail. 4522 */ 4523 for_each_pool_worker(worker, pool) 4524 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4525 pool->attrs->cpumask) < 0); 4526 4527 spin_lock_irq(&pool->lock); 4528 pool->flags &= ~POOL_DISASSOCIATED; 4529 4530 for_each_pool_worker(worker, pool) { 4531 unsigned int worker_flags = worker->flags; 4532 4533 /* 4534 * A bound idle worker should actually be on the runqueue 4535 * of the associated CPU for local wake-ups targeting it to 4536 * work. Kick all idle workers so that they migrate to the 4537 * associated CPU. Doing this in the same loop as 4538 * replacing UNBOUND with REBOUND is safe as no worker will 4539 * be bound before @pool->lock is released. 4540 */ 4541 if (worker_flags & WORKER_IDLE) 4542 wake_up_process(worker->task); 4543 4544 /* 4545 * We want to clear UNBOUND but can't directly call 4546 * worker_clr_flags() or adjust nr_running. Atomically 4547 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4548 * @worker will clear REBOUND using worker_clr_flags() when 4549 * it initiates the next execution cycle thus restoring 4550 * concurrency management. Note that when or whether 4551 * @worker clears REBOUND doesn't affect correctness. 4552 * 4553 * ACCESS_ONCE() is necessary because @worker->flags may be 4554 * tested without holding any lock in 4555 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4556 * fail incorrectly leading to premature concurrency 4557 * management operations. 4558 */ 4559 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4560 worker_flags |= WORKER_REBOUND; 4561 worker_flags &= ~WORKER_UNBOUND; 4562 ACCESS_ONCE(worker->flags) = worker_flags; 4563 } 4564 4565 spin_unlock_irq(&pool->lock); 4566 } 4567 4568 /** 4569 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4570 * @pool: unbound pool of interest 4571 * @cpu: the CPU which is coming up 4572 * 4573 * An unbound pool may end up with a cpumask which doesn't have any online 4574 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4575 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4576 * online CPU before, cpus_allowed of all its workers should be restored. 4577 */ 4578 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4579 { 4580 static cpumask_t cpumask; 4581 struct worker *worker; 4582 4583 lockdep_assert_held(&pool->attach_mutex); 4584 4585 /* is @cpu allowed for @pool? */ 4586 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4587 return; 4588 4589 /* is @cpu the only online CPU? */ 4590 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4591 if (cpumask_weight(&cpumask) != 1) 4592 return; 4593 4594 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4595 for_each_pool_worker(worker, pool) 4596 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4597 pool->attrs->cpumask) < 0); 4598 } 4599 4600 /* 4601 * Workqueues should be brought up before normal priority CPU notifiers. 4602 * This will be registered high priority CPU notifier. 4603 */ 4604 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4605 unsigned long action, 4606 void *hcpu) 4607 { 4608 int cpu = (unsigned long)hcpu; 4609 struct worker_pool *pool; 4610 struct workqueue_struct *wq; 4611 int pi; 4612 4613 switch (action & ~CPU_TASKS_FROZEN) { 4614 case CPU_UP_PREPARE: 4615 for_each_cpu_worker_pool(pool, cpu) { 4616 if (pool->nr_workers) 4617 continue; 4618 if (!create_worker(pool)) 4619 return NOTIFY_BAD; 4620 } 4621 break; 4622 4623 case CPU_DOWN_FAILED: 4624 case CPU_ONLINE: 4625 mutex_lock(&wq_pool_mutex); 4626 4627 for_each_pool(pool, pi) { 4628 mutex_lock(&pool->attach_mutex); 4629 4630 if (pool->cpu == cpu) 4631 rebind_workers(pool); 4632 else if (pool->cpu < 0) 4633 restore_unbound_workers_cpumask(pool, cpu); 4634 4635 mutex_unlock(&pool->attach_mutex); 4636 } 4637 4638 /* update NUMA affinity of unbound workqueues */ 4639 list_for_each_entry(wq, &workqueues, list) 4640 wq_update_unbound_numa(wq, cpu, true); 4641 4642 mutex_unlock(&wq_pool_mutex); 4643 break; 4644 } 4645 return NOTIFY_OK; 4646 } 4647 4648 /* 4649 * Workqueues should be brought down after normal priority CPU notifiers. 4650 * This will be registered as low priority CPU notifier. 4651 */ 4652 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4653 unsigned long action, 4654 void *hcpu) 4655 { 4656 int cpu = (unsigned long)hcpu; 4657 struct work_struct unbind_work; 4658 struct workqueue_struct *wq; 4659 4660 switch (action & ~CPU_TASKS_FROZEN) { 4661 case CPU_DOWN_PREPARE: 4662 /* unbinding per-cpu workers should happen on the local CPU */ 4663 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4664 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4665 4666 /* update NUMA affinity of unbound workqueues */ 4667 mutex_lock(&wq_pool_mutex); 4668 list_for_each_entry(wq, &workqueues, list) 4669 wq_update_unbound_numa(wq, cpu, false); 4670 mutex_unlock(&wq_pool_mutex); 4671 4672 /* wait for per-cpu unbinding to finish */ 4673 flush_work(&unbind_work); 4674 destroy_work_on_stack(&unbind_work); 4675 break; 4676 } 4677 return NOTIFY_OK; 4678 } 4679 4680 #ifdef CONFIG_SMP 4681 4682 struct work_for_cpu { 4683 struct work_struct work; 4684 long (*fn)(void *); 4685 void *arg; 4686 long ret; 4687 }; 4688 4689 static void work_for_cpu_fn(struct work_struct *work) 4690 { 4691 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4692 4693 wfc->ret = wfc->fn(wfc->arg); 4694 } 4695 4696 /** 4697 * work_on_cpu - run a function in thread context on a particular cpu 4698 * @cpu: the cpu to run on 4699 * @fn: the function to run 4700 * @arg: the function arg 4701 * 4702 * It is up to the caller to ensure that the cpu doesn't go offline. 4703 * The caller must not hold any locks which would prevent @fn from completing. 4704 * 4705 * Return: The value @fn returns. 4706 */ 4707 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4708 { 4709 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4710 4711 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4712 schedule_work_on(cpu, &wfc.work); 4713 flush_work(&wfc.work); 4714 destroy_work_on_stack(&wfc.work); 4715 return wfc.ret; 4716 } 4717 EXPORT_SYMBOL_GPL(work_on_cpu); 4718 #endif /* CONFIG_SMP */ 4719 4720 #ifdef CONFIG_FREEZER 4721 4722 /** 4723 * freeze_workqueues_begin - begin freezing workqueues 4724 * 4725 * Start freezing workqueues. After this function returns, all freezable 4726 * workqueues will queue new works to their delayed_works list instead of 4727 * pool->worklist. 4728 * 4729 * CONTEXT: 4730 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4731 */ 4732 void freeze_workqueues_begin(void) 4733 { 4734 struct workqueue_struct *wq; 4735 struct pool_workqueue *pwq; 4736 4737 mutex_lock(&wq_pool_mutex); 4738 4739 WARN_ON_ONCE(workqueue_freezing); 4740 workqueue_freezing = true; 4741 4742 list_for_each_entry(wq, &workqueues, list) { 4743 mutex_lock(&wq->mutex); 4744 for_each_pwq(pwq, wq) 4745 pwq_adjust_max_active(pwq); 4746 mutex_unlock(&wq->mutex); 4747 } 4748 4749 mutex_unlock(&wq_pool_mutex); 4750 } 4751 4752 /** 4753 * freeze_workqueues_busy - are freezable workqueues still busy? 4754 * 4755 * Check whether freezing is complete. This function must be called 4756 * between freeze_workqueues_begin() and thaw_workqueues(). 4757 * 4758 * CONTEXT: 4759 * Grabs and releases wq_pool_mutex. 4760 * 4761 * Return: 4762 * %true if some freezable workqueues are still busy. %false if freezing 4763 * is complete. 4764 */ 4765 bool freeze_workqueues_busy(void) 4766 { 4767 bool busy = false; 4768 struct workqueue_struct *wq; 4769 struct pool_workqueue *pwq; 4770 4771 mutex_lock(&wq_pool_mutex); 4772 4773 WARN_ON_ONCE(!workqueue_freezing); 4774 4775 list_for_each_entry(wq, &workqueues, list) { 4776 if (!(wq->flags & WQ_FREEZABLE)) 4777 continue; 4778 /* 4779 * nr_active is monotonically decreasing. It's safe 4780 * to peek without lock. 4781 */ 4782 rcu_read_lock_sched(); 4783 for_each_pwq(pwq, wq) { 4784 WARN_ON_ONCE(pwq->nr_active < 0); 4785 if (pwq->nr_active) { 4786 busy = true; 4787 rcu_read_unlock_sched(); 4788 goto out_unlock; 4789 } 4790 } 4791 rcu_read_unlock_sched(); 4792 } 4793 out_unlock: 4794 mutex_unlock(&wq_pool_mutex); 4795 return busy; 4796 } 4797 4798 /** 4799 * thaw_workqueues - thaw workqueues 4800 * 4801 * Thaw workqueues. Normal queueing is restored and all collected 4802 * frozen works are transferred to their respective pool worklists. 4803 * 4804 * CONTEXT: 4805 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4806 */ 4807 void thaw_workqueues(void) 4808 { 4809 struct workqueue_struct *wq; 4810 struct pool_workqueue *pwq; 4811 4812 mutex_lock(&wq_pool_mutex); 4813 4814 if (!workqueue_freezing) 4815 goto out_unlock; 4816 4817 workqueue_freezing = false; 4818 4819 /* restore max_active and repopulate worklist */ 4820 list_for_each_entry(wq, &workqueues, list) { 4821 mutex_lock(&wq->mutex); 4822 for_each_pwq(pwq, wq) 4823 pwq_adjust_max_active(pwq); 4824 mutex_unlock(&wq->mutex); 4825 } 4826 4827 out_unlock: 4828 mutex_unlock(&wq_pool_mutex); 4829 } 4830 #endif /* CONFIG_FREEZER */ 4831 4832 static int workqueue_apply_unbound_cpumask(void) 4833 { 4834 LIST_HEAD(ctxs); 4835 int ret = 0; 4836 struct workqueue_struct *wq; 4837 struct apply_wqattrs_ctx *ctx, *n; 4838 4839 lockdep_assert_held(&wq_pool_mutex); 4840 4841 list_for_each_entry(wq, &workqueues, list) { 4842 if (!(wq->flags & WQ_UNBOUND)) 4843 continue; 4844 /* creating multiple pwqs breaks ordering guarantee */ 4845 if (wq->flags & __WQ_ORDERED) 4846 continue; 4847 4848 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4849 if (!ctx) { 4850 ret = -ENOMEM; 4851 break; 4852 } 4853 4854 list_add_tail(&ctx->list, &ctxs); 4855 } 4856 4857 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4858 if (!ret) 4859 apply_wqattrs_commit(ctx); 4860 apply_wqattrs_cleanup(ctx); 4861 } 4862 4863 return ret; 4864 } 4865 4866 /** 4867 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4868 * @cpumask: the cpumask to set 4869 * 4870 * The low-level workqueues cpumask is a global cpumask that limits 4871 * the affinity of all unbound workqueues. This function check the @cpumask 4872 * and apply it to all unbound workqueues and updates all pwqs of them. 4873 * 4874 * Retun: 0 - Success 4875 * -EINVAL - Invalid @cpumask 4876 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4877 */ 4878 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4879 { 4880 int ret = -EINVAL; 4881 cpumask_var_t saved_cpumask; 4882 4883 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4884 return -ENOMEM; 4885 4886 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4887 if (!cpumask_empty(cpumask)) { 4888 apply_wqattrs_lock(); 4889 4890 /* save the old wq_unbound_cpumask. */ 4891 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4892 4893 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4894 cpumask_copy(wq_unbound_cpumask, cpumask); 4895 ret = workqueue_apply_unbound_cpumask(); 4896 4897 /* restore the wq_unbound_cpumask when failed. */ 4898 if (ret < 0) 4899 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4900 4901 apply_wqattrs_unlock(); 4902 } 4903 4904 free_cpumask_var(saved_cpumask); 4905 return ret; 4906 } 4907 4908 #ifdef CONFIG_SYSFS 4909 /* 4910 * Workqueues with WQ_SYSFS flag set is visible to userland via 4911 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4912 * following attributes. 4913 * 4914 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4915 * max_active RW int : maximum number of in-flight work items 4916 * 4917 * Unbound workqueues have the following extra attributes. 4918 * 4919 * id RO int : the associated pool ID 4920 * nice RW int : nice value of the workers 4921 * cpumask RW mask : bitmask of allowed CPUs for the workers 4922 */ 4923 struct wq_device { 4924 struct workqueue_struct *wq; 4925 struct device dev; 4926 }; 4927 4928 static struct workqueue_struct *dev_to_wq(struct device *dev) 4929 { 4930 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4931 4932 return wq_dev->wq; 4933 } 4934 4935 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4936 char *buf) 4937 { 4938 struct workqueue_struct *wq = dev_to_wq(dev); 4939 4940 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4941 } 4942 static DEVICE_ATTR_RO(per_cpu); 4943 4944 static ssize_t max_active_show(struct device *dev, 4945 struct device_attribute *attr, char *buf) 4946 { 4947 struct workqueue_struct *wq = dev_to_wq(dev); 4948 4949 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4950 } 4951 4952 static ssize_t max_active_store(struct device *dev, 4953 struct device_attribute *attr, const char *buf, 4954 size_t count) 4955 { 4956 struct workqueue_struct *wq = dev_to_wq(dev); 4957 int val; 4958 4959 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4960 return -EINVAL; 4961 4962 workqueue_set_max_active(wq, val); 4963 return count; 4964 } 4965 static DEVICE_ATTR_RW(max_active); 4966 4967 static struct attribute *wq_sysfs_attrs[] = { 4968 &dev_attr_per_cpu.attr, 4969 &dev_attr_max_active.attr, 4970 NULL, 4971 }; 4972 ATTRIBUTE_GROUPS(wq_sysfs); 4973 4974 static ssize_t wq_pool_ids_show(struct device *dev, 4975 struct device_attribute *attr, char *buf) 4976 { 4977 struct workqueue_struct *wq = dev_to_wq(dev); 4978 const char *delim = ""; 4979 int node, written = 0; 4980 4981 rcu_read_lock_sched(); 4982 for_each_node(node) { 4983 written += scnprintf(buf + written, PAGE_SIZE - written, 4984 "%s%d:%d", delim, node, 4985 unbound_pwq_by_node(wq, node)->pool->id); 4986 delim = " "; 4987 } 4988 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4989 rcu_read_unlock_sched(); 4990 4991 return written; 4992 } 4993 4994 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4995 char *buf) 4996 { 4997 struct workqueue_struct *wq = dev_to_wq(dev); 4998 int written; 4999 5000 mutex_lock(&wq->mutex); 5001 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5002 mutex_unlock(&wq->mutex); 5003 5004 return written; 5005 } 5006 5007 /* prepare workqueue_attrs for sysfs store operations */ 5008 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5009 { 5010 struct workqueue_attrs *attrs; 5011 5012 lockdep_assert_held(&wq_pool_mutex); 5013 5014 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5015 if (!attrs) 5016 return NULL; 5017 5018 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5019 return attrs; 5020 } 5021 5022 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5023 const char *buf, size_t count) 5024 { 5025 struct workqueue_struct *wq = dev_to_wq(dev); 5026 struct workqueue_attrs *attrs; 5027 int ret = -ENOMEM; 5028 5029 apply_wqattrs_lock(); 5030 5031 attrs = wq_sysfs_prep_attrs(wq); 5032 if (!attrs) 5033 goto out_unlock; 5034 5035 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5036 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5037 ret = apply_workqueue_attrs_locked(wq, attrs); 5038 else 5039 ret = -EINVAL; 5040 5041 out_unlock: 5042 apply_wqattrs_unlock(); 5043 free_workqueue_attrs(attrs); 5044 return ret ?: count; 5045 } 5046 5047 static ssize_t wq_cpumask_show(struct device *dev, 5048 struct device_attribute *attr, char *buf) 5049 { 5050 struct workqueue_struct *wq = dev_to_wq(dev); 5051 int written; 5052 5053 mutex_lock(&wq->mutex); 5054 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5055 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5056 mutex_unlock(&wq->mutex); 5057 return written; 5058 } 5059 5060 static ssize_t wq_cpumask_store(struct device *dev, 5061 struct device_attribute *attr, 5062 const char *buf, size_t count) 5063 { 5064 struct workqueue_struct *wq = dev_to_wq(dev); 5065 struct workqueue_attrs *attrs; 5066 int ret = -ENOMEM; 5067 5068 apply_wqattrs_lock(); 5069 5070 attrs = wq_sysfs_prep_attrs(wq); 5071 if (!attrs) 5072 goto out_unlock; 5073 5074 ret = cpumask_parse(buf, attrs->cpumask); 5075 if (!ret) 5076 ret = apply_workqueue_attrs_locked(wq, attrs); 5077 5078 out_unlock: 5079 apply_wqattrs_unlock(); 5080 free_workqueue_attrs(attrs); 5081 return ret ?: count; 5082 } 5083 5084 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5085 char *buf) 5086 { 5087 struct workqueue_struct *wq = dev_to_wq(dev); 5088 int written; 5089 5090 mutex_lock(&wq->mutex); 5091 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5092 !wq->unbound_attrs->no_numa); 5093 mutex_unlock(&wq->mutex); 5094 5095 return written; 5096 } 5097 5098 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5099 const char *buf, size_t count) 5100 { 5101 struct workqueue_struct *wq = dev_to_wq(dev); 5102 struct workqueue_attrs *attrs; 5103 int v, ret = -ENOMEM; 5104 5105 apply_wqattrs_lock(); 5106 5107 attrs = wq_sysfs_prep_attrs(wq); 5108 if (!attrs) 5109 goto out_unlock; 5110 5111 ret = -EINVAL; 5112 if (sscanf(buf, "%d", &v) == 1) { 5113 attrs->no_numa = !v; 5114 ret = apply_workqueue_attrs_locked(wq, attrs); 5115 } 5116 5117 out_unlock: 5118 apply_wqattrs_unlock(); 5119 free_workqueue_attrs(attrs); 5120 return ret ?: count; 5121 } 5122 5123 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5124 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5125 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5126 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5127 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5128 __ATTR_NULL, 5129 }; 5130 5131 static struct bus_type wq_subsys = { 5132 .name = "workqueue", 5133 .dev_groups = wq_sysfs_groups, 5134 }; 5135 5136 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5137 struct device_attribute *attr, char *buf) 5138 { 5139 int written; 5140 5141 mutex_lock(&wq_pool_mutex); 5142 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5143 cpumask_pr_args(wq_unbound_cpumask)); 5144 mutex_unlock(&wq_pool_mutex); 5145 5146 return written; 5147 } 5148 5149 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5150 struct device_attribute *attr, const char *buf, size_t count) 5151 { 5152 cpumask_var_t cpumask; 5153 int ret; 5154 5155 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5156 return -ENOMEM; 5157 5158 ret = cpumask_parse(buf, cpumask); 5159 if (!ret) 5160 ret = workqueue_set_unbound_cpumask(cpumask); 5161 5162 free_cpumask_var(cpumask); 5163 return ret ? ret : count; 5164 } 5165 5166 static struct device_attribute wq_sysfs_cpumask_attr = 5167 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5168 wq_unbound_cpumask_store); 5169 5170 static int __init wq_sysfs_init(void) 5171 { 5172 int err; 5173 5174 err = subsys_virtual_register(&wq_subsys, NULL); 5175 if (err) 5176 return err; 5177 5178 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5179 } 5180 core_initcall(wq_sysfs_init); 5181 5182 static void wq_device_release(struct device *dev) 5183 { 5184 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5185 5186 kfree(wq_dev); 5187 } 5188 5189 /** 5190 * workqueue_sysfs_register - make a workqueue visible in sysfs 5191 * @wq: the workqueue to register 5192 * 5193 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5194 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5195 * which is the preferred method. 5196 * 5197 * Workqueue user should use this function directly iff it wants to apply 5198 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5199 * apply_workqueue_attrs() may race against userland updating the 5200 * attributes. 5201 * 5202 * Return: 0 on success, -errno on failure. 5203 */ 5204 int workqueue_sysfs_register(struct workqueue_struct *wq) 5205 { 5206 struct wq_device *wq_dev; 5207 int ret; 5208 5209 /* 5210 * Adjusting max_active or creating new pwqs by applying 5211 * attributes breaks ordering guarantee. Disallow exposing ordered 5212 * workqueues. 5213 */ 5214 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5215 return -EINVAL; 5216 5217 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5218 if (!wq_dev) 5219 return -ENOMEM; 5220 5221 wq_dev->wq = wq; 5222 wq_dev->dev.bus = &wq_subsys; 5223 wq_dev->dev.release = wq_device_release; 5224 dev_set_name(&wq_dev->dev, "%s", wq->name); 5225 5226 /* 5227 * unbound_attrs are created separately. Suppress uevent until 5228 * everything is ready. 5229 */ 5230 dev_set_uevent_suppress(&wq_dev->dev, true); 5231 5232 ret = device_register(&wq_dev->dev); 5233 if (ret) { 5234 kfree(wq_dev); 5235 wq->wq_dev = NULL; 5236 return ret; 5237 } 5238 5239 if (wq->flags & WQ_UNBOUND) { 5240 struct device_attribute *attr; 5241 5242 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5243 ret = device_create_file(&wq_dev->dev, attr); 5244 if (ret) { 5245 device_unregister(&wq_dev->dev); 5246 wq->wq_dev = NULL; 5247 return ret; 5248 } 5249 } 5250 } 5251 5252 dev_set_uevent_suppress(&wq_dev->dev, false); 5253 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5254 return 0; 5255 } 5256 5257 /** 5258 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5259 * @wq: the workqueue to unregister 5260 * 5261 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5262 */ 5263 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5264 { 5265 struct wq_device *wq_dev = wq->wq_dev; 5266 5267 if (!wq->wq_dev) 5268 return; 5269 5270 wq->wq_dev = NULL; 5271 device_unregister(&wq_dev->dev); 5272 } 5273 #else /* CONFIG_SYSFS */ 5274 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5275 #endif /* CONFIG_SYSFS */ 5276 5277 /* 5278 * Workqueue watchdog. 5279 * 5280 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5281 * flush dependency, a concurrency managed work item which stays RUNNING 5282 * indefinitely. Workqueue stalls can be very difficult to debug as the 5283 * usual warning mechanisms don't trigger and internal workqueue state is 5284 * largely opaque. 5285 * 5286 * Workqueue watchdog monitors all worker pools periodically and dumps 5287 * state if some pools failed to make forward progress for a while where 5288 * forward progress is defined as the first item on ->worklist changing. 5289 * 5290 * This mechanism is controlled through the kernel parameter 5291 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5292 * corresponding sysfs parameter file. 5293 */ 5294 #ifdef CONFIG_WQ_WATCHDOG 5295 5296 static void wq_watchdog_timer_fn(unsigned long data); 5297 5298 static unsigned long wq_watchdog_thresh = 30; 5299 static struct timer_list wq_watchdog_timer = 5300 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5301 5302 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5303 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5304 5305 static void wq_watchdog_reset_touched(void) 5306 { 5307 int cpu; 5308 5309 wq_watchdog_touched = jiffies; 5310 for_each_possible_cpu(cpu) 5311 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5312 } 5313 5314 static void wq_watchdog_timer_fn(unsigned long data) 5315 { 5316 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5317 bool lockup_detected = false; 5318 struct worker_pool *pool; 5319 int pi; 5320 5321 if (!thresh) 5322 return; 5323 5324 rcu_read_lock(); 5325 5326 for_each_pool(pool, pi) { 5327 unsigned long pool_ts, touched, ts; 5328 5329 if (list_empty(&pool->worklist)) 5330 continue; 5331 5332 /* get the latest of pool and touched timestamps */ 5333 pool_ts = READ_ONCE(pool->watchdog_ts); 5334 touched = READ_ONCE(wq_watchdog_touched); 5335 5336 if (time_after(pool_ts, touched)) 5337 ts = pool_ts; 5338 else 5339 ts = touched; 5340 5341 if (pool->cpu >= 0) { 5342 unsigned long cpu_touched = 5343 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5344 pool->cpu)); 5345 if (time_after(cpu_touched, ts)) 5346 ts = cpu_touched; 5347 } 5348 5349 /* did we stall? */ 5350 if (time_after(jiffies, ts + thresh)) { 5351 lockup_detected = true; 5352 pr_emerg("BUG: workqueue lockup - pool"); 5353 pr_cont_pool_info(pool); 5354 pr_cont(" stuck for %us!\n", 5355 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5356 } 5357 } 5358 5359 rcu_read_unlock(); 5360 5361 if (lockup_detected) 5362 show_workqueue_state(); 5363 5364 wq_watchdog_reset_touched(); 5365 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5366 } 5367 5368 void wq_watchdog_touch(int cpu) 5369 { 5370 if (cpu >= 0) 5371 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5372 else 5373 wq_watchdog_touched = jiffies; 5374 } 5375 5376 static void wq_watchdog_set_thresh(unsigned long thresh) 5377 { 5378 wq_watchdog_thresh = 0; 5379 del_timer_sync(&wq_watchdog_timer); 5380 5381 if (thresh) { 5382 wq_watchdog_thresh = thresh; 5383 wq_watchdog_reset_touched(); 5384 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5385 } 5386 } 5387 5388 static int wq_watchdog_param_set_thresh(const char *val, 5389 const struct kernel_param *kp) 5390 { 5391 unsigned long thresh; 5392 int ret; 5393 5394 ret = kstrtoul(val, 0, &thresh); 5395 if (ret) 5396 return ret; 5397 5398 if (system_wq) 5399 wq_watchdog_set_thresh(thresh); 5400 else 5401 wq_watchdog_thresh = thresh; 5402 5403 return 0; 5404 } 5405 5406 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5407 .set = wq_watchdog_param_set_thresh, 5408 .get = param_get_ulong, 5409 }; 5410 5411 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5412 0644); 5413 5414 static void wq_watchdog_init(void) 5415 { 5416 wq_watchdog_set_thresh(wq_watchdog_thresh); 5417 } 5418 5419 #else /* CONFIG_WQ_WATCHDOG */ 5420 5421 static inline void wq_watchdog_init(void) { } 5422 5423 #endif /* CONFIG_WQ_WATCHDOG */ 5424 5425 static void __init wq_numa_init(void) 5426 { 5427 cpumask_var_t *tbl; 5428 int node, cpu; 5429 5430 if (num_possible_nodes() <= 1) 5431 return; 5432 5433 if (wq_disable_numa) { 5434 pr_info("workqueue: NUMA affinity support disabled\n"); 5435 return; 5436 } 5437 5438 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5439 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5440 5441 /* 5442 * We want masks of possible CPUs of each node which isn't readily 5443 * available. Build one from cpu_to_node() which should have been 5444 * fully initialized by now. 5445 */ 5446 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5447 BUG_ON(!tbl); 5448 5449 for_each_node(node) 5450 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5451 node_online(node) ? node : NUMA_NO_NODE)); 5452 5453 for_each_possible_cpu(cpu) { 5454 node = cpu_to_node(cpu); 5455 if (WARN_ON(node == NUMA_NO_NODE)) { 5456 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5457 /* happens iff arch is bonkers, let's just proceed */ 5458 return; 5459 } 5460 cpumask_set_cpu(cpu, tbl[node]); 5461 } 5462 5463 wq_numa_possible_cpumask = tbl; 5464 wq_numa_enabled = true; 5465 } 5466 5467 static int __init init_workqueues(void) 5468 { 5469 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5470 int i, cpu; 5471 5472 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5473 5474 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5475 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5476 5477 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5478 5479 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5480 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5481 5482 wq_numa_init(); 5483 5484 /* initialize CPU pools */ 5485 for_each_possible_cpu(cpu) { 5486 struct worker_pool *pool; 5487 5488 i = 0; 5489 for_each_cpu_worker_pool(pool, cpu) { 5490 BUG_ON(init_worker_pool(pool)); 5491 pool->cpu = cpu; 5492 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5493 pool->attrs->nice = std_nice[i++]; 5494 pool->node = cpu_to_node(cpu); 5495 5496 /* alloc pool ID */ 5497 mutex_lock(&wq_pool_mutex); 5498 BUG_ON(worker_pool_assign_id(pool)); 5499 mutex_unlock(&wq_pool_mutex); 5500 } 5501 } 5502 5503 /* create the initial worker */ 5504 for_each_online_cpu(cpu) { 5505 struct worker_pool *pool; 5506 5507 for_each_cpu_worker_pool(pool, cpu) { 5508 pool->flags &= ~POOL_DISASSOCIATED; 5509 BUG_ON(!create_worker(pool)); 5510 } 5511 } 5512 5513 /* create default unbound and ordered wq attrs */ 5514 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5515 struct workqueue_attrs *attrs; 5516 5517 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5518 attrs->nice = std_nice[i]; 5519 unbound_std_wq_attrs[i] = attrs; 5520 5521 /* 5522 * An ordered wq should have only one pwq as ordering is 5523 * guaranteed by max_active which is enforced by pwqs. 5524 * Turn off NUMA so that dfl_pwq is used for all nodes. 5525 */ 5526 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5527 attrs->nice = std_nice[i]; 5528 attrs->no_numa = true; 5529 ordered_wq_attrs[i] = attrs; 5530 } 5531 5532 system_wq = alloc_workqueue("events", 0, 0); 5533 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5534 system_long_wq = alloc_workqueue("events_long", 0, 0); 5535 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5536 WQ_UNBOUND_MAX_ACTIVE); 5537 system_freezable_wq = alloc_workqueue("events_freezable", 5538 WQ_FREEZABLE, 0); 5539 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5540 WQ_POWER_EFFICIENT, 0); 5541 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5542 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5543 0); 5544 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5545 !system_unbound_wq || !system_freezable_wq || 5546 !system_power_efficient_wq || 5547 !system_freezable_power_efficient_wq); 5548 5549 wq_watchdog_init(); 5550 5551 return 0; 5552 } 5553 early_initcall(init_workqueues); 5554