xref: /linux/kernel/workqueue.c (revision 110d3047a3ec033de00322b1a8068b1215efa97a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56 
57 #include "workqueue_internal.h"
58 
59 enum {
60 	/*
61 	 * worker_pool flags
62 	 *
63 	 * A bound pool is either associated or disassociated with its CPU.
64 	 * While associated (!DISASSOCIATED), all workers are bound to the
65 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 	 * is in effect.
67 	 *
68 	 * While DISASSOCIATED, the cpu may be offline and all workers have
69 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 	 * be executing on any CPU.  The pool behaves as an unbound one.
71 	 *
72 	 * Note that DISASSOCIATED should be flipped only while holding
73 	 * wq_pool_attach_mutex to avoid changing binding state while
74 	 * worker_attach_to_pool() is in progress.
75 	 */
76 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
77 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
78 
79 	/* worker flags */
80 	WORKER_DIE		= 1 << 1,	/* die die die */
81 	WORKER_IDLE		= 1 << 2,	/* is idle */
82 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
83 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
84 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
85 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
86 
87 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
88 				  WORKER_UNBOUND | WORKER_REBOUND,
89 
90 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
91 
92 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
93 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
94 
95 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
96 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
97 
98 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
99 						/* call for help after 10ms
100 						   (min two ticks) */
101 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
102 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
103 
104 	/*
105 	 * Rescue workers are used only on emergencies and shared by
106 	 * all cpus.  Give MIN_NICE.
107 	 */
108 	RESCUER_NICE_LEVEL	= MIN_NICE,
109 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
110 
111 	WQ_NAME_LEN		= 24,
112 };
113 
114 /*
115  * Structure fields follow one of the following exclusion rules.
116  *
117  * I: Modifiable by initialization/destruction paths and read-only for
118  *    everyone else.
119  *
120  * P: Preemption protected.  Disabling preemption is enough and should
121  *    only be modified and accessed from the local cpu.
122  *
123  * L: pool->lock protected.  Access with pool->lock held.
124  *
125  * K: Only modified by worker while holding pool->lock. Can be safely read by
126  *    self, while holding pool->lock or from IRQ context if %current is the
127  *    kworker.
128  *
129  * S: Only modified by worker self.
130  *
131  * A: wq_pool_attach_mutex protected.
132  *
133  * PL: wq_pool_mutex protected.
134  *
135  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
136  *
137  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
138  *
139  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
140  *      RCU for reads.
141  *
142  * WQ: wq->mutex protected.
143  *
144  * WR: wq->mutex protected for writes.  RCU protected for reads.
145  *
146  * MD: wq_mayday_lock protected.
147  *
148  * WD: Used internally by the watchdog.
149  */
150 
151 /* struct worker is defined in workqueue_internal.h */
152 
153 struct worker_pool {
154 	raw_spinlock_t		lock;		/* the pool lock */
155 	int			cpu;		/* I: the associated cpu */
156 	int			node;		/* I: the associated node ID */
157 	int			id;		/* I: pool ID */
158 	unsigned int		flags;		/* L: flags */
159 
160 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
161 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
162 
163 	/*
164 	 * The counter is incremented in a process context on the associated CPU
165 	 * w/ preemption disabled, and decremented or reset in the same context
166 	 * but w/ pool->lock held. The readers grab pool->lock and are
167 	 * guaranteed to see if the counter reached zero.
168 	 */
169 	int			nr_running;
170 
171 	struct list_head	worklist;	/* L: list of pending works */
172 
173 	int			nr_workers;	/* L: total number of workers */
174 	int			nr_idle;	/* L: currently idle workers */
175 
176 	struct list_head	idle_list;	/* L: list of idle workers */
177 	struct timer_list	idle_timer;	/* L: worker idle timeout */
178 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
179 
180 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
181 
182 	/* a workers is either on busy_hash or idle_list, or the manager */
183 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
184 						/* L: hash of busy workers */
185 
186 	struct worker		*manager;	/* L: purely informational */
187 	struct list_head	workers;	/* A: attached workers */
188 	struct list_head        dying_workers;  /* A: workers about to die */
189 	struct completion	*detach_completion; /* all workers detached */
190 
191 	struct ida		worker_ida;	/* worker IDs for task name */
192 
193 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
194 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
195 	int			refcnt;		/* PL: refcnt for unbound pools */
196 
197 	/*
198 	 * Destruction of pool is RCU protected to allow dereferences
199 	 * from get_work_pool().
200 	 */
201 	struct rcu_head		rcu;
202 };
203 
204 /*
205  * Per-pool_workqueue statistics. These can be monitored using
206  * tools/workqueue/wq_monitor.py.
207  */
208 enum pool_workqueue_stats {
209 	PWQ_STAT_STARTED,	/* work items started execution */
210 	PWQ_STAT_COMPLETED,	/* work items completed execution */
211 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
212 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
213 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
214 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
215 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
216 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
217 
218 	PWQ_NR_STATS,
219 };
220 
221 /*
222  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
223  * of work_struct->data are used for flags and the remaining high bits
224  * point to the pwq; thus, pwqs need to be aligned at two's power of the
225  * number of flag bits.
226  */
227 struct pool_workqueue {
228 	struct worker_pool	*pool;		/* I: the associated pool */
229 	struct workqueue_struct *wq;		/* I: the owning workqueue */
230 	int			work_color;	/* L: current color */
231 	int			flush_color;	/* L: flushing color */
232 	int			refcnt;		/* L: reference count */
233 	int			nr_in_flight[WORK_NR_COLORS];
234 						/* L: nr of in_flight works */
235 
236 	/*
237 	 * nr_active management and WORK_STRUCT_INACTIVE:
238 	 *
239 	 * When pwq->nr_active >= max_active, new work item is queued to
240 	 * pwq->inactive_works instead of pool->worklist and marked with
241 	 * WORK_STRUCT_INACTIVE.
242 	 *
243 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
244 	 * in pwq->nr_active and all work items in pwq->inactive_works are
245 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
246 	 * work items are in pwq->inactive_works.  Some of them are ready to
247 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
248 	 * only struct wq_barrier which is used for flush_work() and should
249 	 * not participate in pwq->nr_active.  For non-barrier work item, it
250 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
251 	 */
252 	int			nr_active;	/* L: nr of active works */
253 	int			max_active;	/* L: max active works */
254 	struct list_head	inactive_works;	/* L: inactive works */
255 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
256 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
257 
258 	u64			stats[PWQ_NR_STATS];
259 
260 	/*
261 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
262 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
263 	 * RCU protected so that the first pwq can be determined without
264 	 * grabbing wq->mutex.
265 	 */
266 	struct kthread_work	release_work;
267 	struct rcu_head		rcu;
268 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
269 
270 /*
271  * Structure used to wait for workqueue flush.
272  */
273 struct wq_flusher {
274 	struct list_head	list;		/* WQ: list of flushers */
275 	int			flush_color;	/* WQ: flush color waiting for */
276 	struct completion	done;		/* flush completion */
277 };
278 
279 struct wq_device;
280 
281 /*
282  * The externally visible workqueue.  It relays the issued work items to
283  * the appropriate worker_pool through its pool_workqueues.
284  */
285 struct workqueue_struct {
286 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
287 	struct list_head	list;		/* PR: list of all workqueues */
288 
289 	struct mutex		mutex;		/* protects this wq */
290 	int			work_color;	/* WQ: current work color */
291 	int			flush_color;	/* WQ: current flush color */
292 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
293 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
294 	struct list_head	flusher_queue;	/* WQ: flush waiters */
295 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
296 
297 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
298 	struct worker		*rescuer;	/* MD: rescue worker */
299 
300 	int			nr_drainers;	/* WQ: drain in progress */
301 	int			saved_max_active; /* WQ: saved pwq max_active */
302 
303 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
304 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
305 
306 #ifdef CONFIG_SYSFS
307 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
308 #endif
309 #ifdef CONFIG_LOCKDEP
310 	char			*lock_name;
311 	struct lock_class_key	key;
312 	struct lockdep_map	lockdep_map;
313 #endif
314 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
315 
316 	/*
317 	 * Destruction of workqueue_struct is RCU protected to allow walking
318 	 * the workqueues list without grabbing wq_pool_mutex.
319 	 * This is used to dump all workqueues from sysrq.
320 	 */
321 	struct rcu_head		rcu;
322 
323 	/* hot fields used during command issue, aligned to cacheline */
324 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
325 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
326 };
327 
328 static struct kmem_cache *pwq_cache;
329 
330 /*
331  * Each pod type describes how CPUs should be grouped for unbound workqueues.
332  * See the comment above workqueue_attrs->affn_scope.
333  */
334 struct wq_pod_type {
335 	int			nr_pods;	/* number of pods */
336 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
337 	int			*pod_node;	/* pod -> node */
338 	int			*cpu_pod;	/* cpu -> pod */
339 };
340 
341 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
342 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
343 
344 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
345 	[WQ_AFFN_DFL]			= "default",
346 	[WQ_AFFN_CPU]			= "cpu",
347 	[WQ_AFFN_SMT]			= "smt",
348 	[WQ_AFFN_CACHE]			= "cache",
349 	[WQ_AFFN_NUMA]			= "numa",
350 	[WQ_AFFN_SYSTEM]		= "system",
351 };
352 
353 /*
354  * Per-cpu work items which run for longer than the following threshold are
355  * automatically considered CPU intensive and excluded from concurrency
356  * management to prevent them from noticeably delaying other per-cpu work items.
357  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
358  * The actual value is initialized in wq_cpu_intensive_thresh_init().
359  */
360 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
361 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
362 
363 /* see the comment above the definition of WQ_POWER_EFFICIENT */
364 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
365 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
366 
367 static bool wq_online;			/* can kworkers be created yet? */
368 
369 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
370 static struct workqueue_attrs *wq_update_pod_attrs_buf;
371 
372 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
373 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
374 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
375 /* wait for manager to go away */
376 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
377 
378 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
379 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
380 
381 /* PL&A: allowable cpus for unbound wqs and work items */
382 static cpumask_var_t wq_unbound_cpumask;
383 
384 /* PL: user requested unbound cpumask via sysfs */
385 static cpumask_var_t wq_requested_unbound_cpumask;
386 
387 /* PL: isolated cpumask to be excluded from unbound cpumask */
388 static cpumask_var_t wq_isolated_cpumask;
389 
390 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
391 static struct cpumask wq_cmdline_cpumask __initdata;
392 
393 /* CPU where unbound work was last round robin scheduled from this CPU */
394 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
395 
396 /*
397  * Local execution of unbound work items is no longer guaranteed.  The
398  * following always forces round-robin CPU selection on unbound work items
399  * to uncover usages which depend on it.
400  */
401 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
402 static bool wq_debug_force_rr_cpu = true;
403 #else
404 static bool wq_debug_force_rr_cpu = false;
405 #endif
406 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
407 
408 /* the per-cpu worker pools */
409 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
410 
411 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
412 
413 /* PL: hash of all unbound pools keyed by pool->attrs */
414 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
415 
416 /* I: attributes used when instantiating standard unbound pools on demand */
417 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
418 
419 /* I: attributes used when instantiating ordered pools on demand */
420 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
421 
422 /*
423  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
424  * process context while holding a pool lock. Bounce to a dedicated kthread
425  * worker to avoid A-A deadlocks.
426  */
427 static struct kthread_worker *pwq_release_worker __ro_after_init;
428 
429 struct workqueue_struct *system_wq __ro_after_init;
430 EXPORT_SYMBOL(system_wq);
431 struct workqueue_struct *system_highpri_wq __ro_after_init;
432 EXPORT_SYMBOL_GPL(system_highpri_wq);
433 struct workqueue_struct *system_long_wq __ro_after_init;
434 EXPORT_SYMBOL_GPL(system_long_wq);
435 struct workqueue_struct *system_unbound_wq __ro_after_init;
436 EXPORT_SYMBOL_GPL(system_unbound_wq);
437 struct workqueue_struct *system_freezable_wq __ro_after_init;
438 EXPORT_SYMBOL_GPL(system_freezable_wq);
439 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
440 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
441 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
442 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
443 
444 static int worker_thread(void *__worker);
445 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
446 static void show_pwq(struct pool_workqueue *pwq);
447 static void show_one_worker_pool(struct worker_pool *pool);
448 
449 #define CREATE_TRACE_POINTS
450 #include <trace/events/workqueue.h>
451 
452 #define assert_rcu_or_pool_mutex()					\
453 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
454 			 !lockdep_is_held(&wq_pool_mutex),		\
455 			 "RCU or wq_pool_mutex should be held")
456 
457 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
458 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
459 			 !lockdep_is_held(&wq->mutex) &&		\
460 			 !lockdep_is_held(&wq_pool_mutex),		\
461 			 "RCU, wq->mutex or wq_pool_mutex should be held")
462 
463 #define for_each_cpu_worker_pool(pool, cpu)				\
464 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
465 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
466 	     (pool)++)
467 
468 /**
469  * for_each_pool - iterate through all worker_pools in the system
470  * @pool: iteration cursor
471  * @pi: integer used for iteration
472  *
473  * This must be called either with wq_pool_mutex held or RCU read
474  * locked.  If the pool needs to be used beyond the locking in effect, the
475  * caller is responsible for guaranteeing that the pool stays online.
476  *
477  * The if/else clause exists only for the lockdep assertion and can be
478  * ignored.
479  */
480 #define for_each_pool(pool, pi)						\
481 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
482 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
483 		else
484 
485 /**
486  * for_each_pool_worker - iterate through all workers of a worker_pool
487  * @worker: iteration cursor
488  * @pool: worker_pool to iterate workers of
489  *
490  * This must be called with wq_pool_attach_mutex.
491  *
492  * The if/else clause exists only for the lockdep assertion and can be
493  * ignored.
494  */
495 #define for_each_pool_worker(worker, pool)				\
496 	list_for_each_entry((worker), &(pool)->workers, node)		\
497 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
498 		else
499 
500 /**
501  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
502  * @pwq: iteration cursor
503  * @wq: the target workqueue
504  *
505  * This must be called either with wq->mutex held or RCU read locked.
506  * If the pwq needs to be used beyond the locking in effect, the caller is
507  * responsible for guaranteeing that the pwq stays online.
508  *
509  * The if/else clause exists only for the lockdep assertion and can be
510  * ignored.
511  */
512 #define for_each_pwq(pwq, wq)						\
513 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
514 				 lockdep_is_held(&(wq->mutex)))
515 
516 #ifdef CONFIG_DEBUG_OBJECTS_WORK
517 
518 static const struct debug_obj_descr work_debug_descr;
519 
520 static void *work_debug_hint(void *addr)
521 {
522 	return ((struct work_struct *) addr)->func;
523 }
524 
525 static bool work_is_static_object(void *addr)
526 {
527 	struct work_struct *work = addr;
528 
529 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
530 }
531 
532 /*
533  * fixup_init is called when:
534  * - an active object is initialized
535  */
536 static bool work_fixup_init(void *addr, enum debug_obj_state state)
537 {
538 	struct work_struct *work = addr;
539 
540 	switch (state) {
541 	case ODEBUG_STATE_ACTIVE:
542 		cancel_work_sync(work);
543 		debug_object_init(work, &work_debug_descr);
544 		return true;
545 	default:
546 		return false;
547 	}
548 }
549 
550 /*
551  * fixup_free is called when:
552  * - an active object is freed
553  */
554 static bool work_fixup_free(void *addr, enum debug_obj_state state)
555 {
556 	struct work_struct *work = addr;
557 
558 	switch (state) {
559 	case ODEBUG_STATE_ACTIVE:
560 		cancel_work_sync(work);
561 		debug_object_free(work, &work_debug_descr);
562 		return true;
563 	default:
564 		return false;
565 	}
566 }
567 
568 static const struct debug_obj_descr work_debug_descr = {
569 	.name		= "work_struct",
570 	.debug_hint	= work_debug_hint,
571 	.is_static_object = work_is_static_object,
572 	.fixup_init	= work_fixup_init,
573 	.fixup_free	= work_fixup_free,
574 };
575 
576 static inline void debug_work_activate(struct work_struct *work)
577 {
578 	debug_object_activate(work, &work_debug_descr);
579 }
580 
581 static inline void debug_work_deactivate(struct work_struct *work)
582 {
583 	debug_object_deactivate(work, &work_debug_descr);
584 }
585 
586 void __init_work(struct work_struct *work, int onstack)
587 {
588 	if (onstack)
589 		debug_object_init_on_stack(work, &work_debug_descr);
590 	else
591 		debug_object_init(work, &work_debug_descr);
592 }
593 EXPORT_SYMBOL_GPL(__init_work);
594 
595 void destroy_work_on_stack(struct work_struct *work)
596 {
597 	debug_object_free(work, &work_debug_descr);
598 }
599 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
600 
601 void destroy_delayed_work_on_stack(struct delayed_work *work)
602 {
603 	destroy_timer_on_stack(&work->timer);
604 	debug_object_free(&work->work, &work_debug_descr);
605 }
606 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
607 
608 #else
609 static inline void debug_work_activate(struct work_struct *work) { }
610 static inline void debug_work_deactivate(struct work_struct *work) { }
611 #endif
612 
613 /**
614  * worker_pool_assign_id - allocate ID and assign it to @pool
615  * @pool: the pool pointer of interest
616  *
617  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
618  * successfully, -errno on failure.
619  */
620 static int worker_pool_assign_id(struct worker_pool *pool)
621 {
622 	int ret;
623 
624 	lockdep_assert_held(&wq_pool_mutex);
625 
626 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
627 			GFP_KERNEL);
628 	if (ret >= 0) {
629 		pool->id = ret;
630 		return 0;
631 	}
632 	return ret;
633 }
634 
635 static unsigned int work_color_to_flags(int color)
636 {
637 	return color << WORK_STRUCT_COLOR_SHIFT;
638 }
639 
640 static int get_work_color(unsigned long work_data)
641 {
642 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
643 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
644 }
645 
646 static int work_next_color(int color)
647 {
648 	return (color + 1) % WORK_NR_COLORS;
649 }
650 
651 /*
652  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
653  * contain the pointer to the queued pwq.  Once execution starts, the flag
654  * is cleared and the high bits contain OFFQ flags and pool ID.
655  *
656  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
657  * and clear_work_data() can be used to set the pwq, pool or clear
658  * work->data.  These functions should only be called while the work is
659  * owned - ie. while the PENDING bit is set.
660  *
661  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
662  * corresponding to a work.  Pool is available once the work has been
663  * queued anywhere after initialization until it is sync canceled.  pwq is
664  * available only while the work item is queued.
665  *
666  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
667  * canceled.  While being canceled, a work item may have its PENDING set
668  * but stay off timer and worklist for arbitrarily long and nobody should
669  * try to steal the PENDING bit.
670  */
671 static inline void set_work_data(struct work_struct *work, unsigned long data,
672 				 unsigned long flags)
673 {
674 	WARN_ON_ONCE(!work_pending(work));
675 	atomic_long_set(&work->data, data | flags | work_static(work));
676 }
677 
678 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
679 			 unsigned long extra_flags)
680 {
681 	set_work_data(work, (unsigned long)pwq,
682 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
683 }
684 
685 static void set_work_pool_and_keep_pending(struct work_struct *work,
686 					   int pool_id)
687 {
688 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
689 		      WORK_STRUCT_PENDING);
690 }
691 
692 static void set_work_pool_and_clear_pending(struct work_struct *work,
693 					    int pool_id)
694 {
695 	/*
696 	 * The following wmb is paired with the implied mb in
697 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
698 	 * here are visible to and precede any updates by the next PENDING
699 	 * owner.
700 	 */
701 	smp_wmb();
702 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
703 	/*
704 	 * The following mb guarantees that previous clear of a PENDING bit
705 	 * will not be reordered with any speculative LOADS or STORES from
706 	 * work->current_func, which is executed afterwards.  This possible
707 	 * reordering can lead to a missed execution on attempt to queue
708 	 * the same @work.  E.g. consider this case:
709 	 *
710 	 *   CPU#0                         CPU#1
711 	 *   ----------------------------  --------------------------------
712 	 *
713 	 * 1  STORE event_indicated
714 	 * 2  queue_work_on() {
715 	 * 3    test_and_set_bit(PENDING)
716 	 * 4 }                             set_..._and_clear_pending() {
717 	 * 5                                 set_work_data() # clear bit
718 	 * 6                                 smp_mb()
719 	 * 7                               work->current_func() {
720 	 * 8				      LOAD event_indicated
721 	 *				   }
722 	 *
723 	 * Without an explicit full barrier speculative LOAD on line 8 can
724 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
725 	 * CPU#0 observes the PENDING bit is still set and new execution of
726 	 * a @work is not queued in a hope, that CPU#1 will eventually
727 	 * finish the queued @work.  Meanwhile CPU#1 does not see
728 	 * event_indicated is set, because speculative LOAD was executed
729 	 * before actual STORE.
730 	 */
731 	smp_mb();
732 }
733 
734 static void clear_work_data(struct work_struct *work)
735 {
736 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
737 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
738 }
739 
740 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
741 {
742 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
743 }
744 
745 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
746 {
747 	unsigned long data = atomic_long_read(&work->data);
748 
749 	if (data & WORK_STRUCT_PWQ)
750 		return work_struct_pwq(data);
751 	else
752 		return NULL;
753 }
754 
755 /**
756  * get_work_pool - return the worker_pool a given work was associated with
757  * @work: the work item of interest
758  *
759  * Pools are created and destroyed under wq_pool_mutex, and allows read
760  * access under RCU read lock.  As such, this function should be
761  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
762  *
763  * All fields of the returned pool are accessible as long as the above
764  * mentioned locking is in effect.  If the returned pool needs to be used
765  * beyond the critical section, the caller is responsible for ensuring the
766  * returned pool is and stays online.
767  *
768  * Return: The worker_pool @work was last associated with.  %NULL if none.
769  */
770 static struct worker_pool *get_work_pool(struct work_struct *work)
771 {
772 	unsigned long data = atomic_long_read(&work->data);
773 	int pool_id;
774 
775 	assert_rcu_or_pool_mutex();
776 
777 	if (data & WORK_STRUCT_PWQ)
778 		return work_struct_pwq(data)->pool;
779 
780 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
781 	if (pool_id == WORK_OFFQ_POOL_NONE)
782 		return NULL;
783 
784 	return idr_find(&worker_pool_idr, pool_id);
785 }
786 
787 /**
788  * get_work_pool_id - return the worker pool ID a given work is associated with
789  * @work: the work item of interest
790  *
791  * Return: The worker_pool ID @work was last associated with.
792  * %WORK_OFFQ_POOL_NONE if none.
793  */
794 static int get_work_pool_id(struct work_struct *work)
795 {
796 	unsigned long data = atomic_long_read(&work->data);
797 
798 	if (data & WORK_STRUCT_PWQ)
799 		return work_struct_pwq(data)->pool->id;
800 
801 	return data >> WORK_OFFQ_POOL_SHIFT;
802 }
803 
804 static void mark_work_canceling(struct work_struct *work)
805 {
806 	unsigned long pool_id = get_work_pool_id(work);
807 
808 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
809 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
810 }
811 
812 static bool work_is_canceling(struct work_struct *work)
813 {
814 	unsigned long data = atomic_long_read(&work->data);
815 
816 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
817 }
818 
819 /*
820  * Policy functions.  These define the policies on how the global worker
821  * pools are managed.  Unless noted otherwise, these functions assume that
822  * they're being called with pool->lock held.
823  */
824 
825 /*
826  * Need to wake up a worker?  Called from anything but currently
827  * running workers.
828  *
829  * Note that, because unbound workers never contribute to nr_running, this
830  * function will always return %true for unbound pools as long as the
831  * worklist isn't empty.
832  */
833 static bool need_more_worker(struct worker_pool *pool)
834 {
835 	return !list_empty(&pool->worklist) && !pool->nr_running;
836 }
837 
838 /* Can I start working?  Called from busy but !running workers. */
839 static bool may_start_working(struct worker_pool *pool)
840 {
841 	return pool->nr_idle;
842 }
843 
844 /* Do I need to keep working?  Called from currently running workers. */
845 static bool keep_working(struct worker_pool *pool)
846 {
847 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
848 }
849 
850 /* Do we need a new worker?  Called from manager. */
851 static bool need_to_create_worker(struct worker_pool *pool)
852 {
853 	return need_more_worker(pool) && !may_start_working(pool);
854 }
855 
856 /* Do we have too many workers and should some go away? */
857 static bool too_many_workers(struct worker_pool *pool)
858 {
859 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
860 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
861 	int nr_busy = pool->nr_workers - nr_idle;
862 
863 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
864 }
865 
866 /**
867  * worker_set_flags - set worker flags and adjust nr_running accordingly
868  * @worker: self
869  * @flags: flags to set
870  *
871  * Set @flags in @worker->flags and adjust nr_running accordingly.
872  */
873 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
874 {
875 	struct worker_pool *pool = worker->pool;
876 
877 	lockdep_assert_held(&pool->lock);
878 
879 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
880 	if ((flags & WORKER_NOT_RUNNING) &&
881 	    !(worker->flags & WORKER_NOT_RUNNING)) {
882 		pool->nr_running--;
883 	}
884 
885 	worker->flags |= flags;
886 }
887 
888 /**
889  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
890  * @worker: self
891  * @flags: flags to clear
892  *
893  * Clear @flags in @worker->flags and adjust nr_running accordingly.
894  */
895 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
896 {
897 	struct worker_pool *pool = worker->pool;
898 	unsigned int oflags = worker->flags;
899 
900 	lockdep_assert_held(&pool->lock);
901 
902 	worker->flags &= ~flags;
903 
904 	/*
905 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
906 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
907 	 * of multiple flags, not a single flag.
908 	 */
909 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
910 		if (!(worker->flags & WORKER_NOT_RUNNING))
911 			pool->nr_running++;
912 }
913 
914 /* Return the first idle worker.  Called with pool->lock held. */
915 static struct worker *first_idle_worker(struct worker_pool *pool)
916 {
917 	if (unlikely(list_empty(&pool->idle_list)))
918 		return NULL;
919 
920 	return list_first_entry(&pool->idle_list, struct worker, entry);
921 }
922 
923 /**
924  * worker_enter_idle - enter idle state
925  * @worker: worker which is entering idle state
926  *
927  * @worker is entering idle state.  Update stats and idle timer if
928  * necessary.
929  *
930  * LOCKING:
931  * raw_spin_lock_irq(pool->lock).
932  */
933 static void worker_enter_idle(struct worker *worker)
934 {
935 	struct worker_pool *pool = worker->pool;
936 
937 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
938 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
939 			 (worker->hentry.next || worker->hentry.pprev)))
940 		return;
941 
942 	/* can't use worker_set_flags(), also called from create_worker() */
943 	worker->flags |= WORKER_IDLE;
944 	pool->nr_idle++;
945 	worker->last_active = jiffies;
946 
947 	/* idle_list is LIFO */
948 	list_add(&worker->entry, &pool->idle_list);
949 
950 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
951 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
952 
953 	/* Sanity check nr_running. */
954 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
955 }
956 
957 /**
958  * worker_leave_idle - leave idle state
959  * @worker: worker which is leaving idle state
960  *
961  * @worker is leaving idle state.  Update stats.
962  *
963  * LOCKING:
964  * raw_spin_lock_irq(pool->lock).
965  */
966 static void worker_leave_idle(struct worker *worker)
967 {
968 	struct worker_pool *pool = worker->pool;
969 
970 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
971 		return;
972 	worker_clr_flags(worker, WORKER_IDLE);
973 	pool->nr_idle--;
974 	list_del_init(&worker->entry);
975 }
976 
977 /**
978  * find_worker_executing_work - find worker which is executing a work
979  * @pool: pool of interest
980  * @work: work to find worker for
981  *
982  * Find a worker which is executing @work on @pool by searching
983  * @pool->busy_hash which is keyed by the address of @work.  For a worker
984  * to match, its current execution should match the address of @work and
985  * its work function.  This is to avoid unwanted dependency between
986  * unrelated work executions through a work item being recycled while still
987  * being executed.
988  *
989  * This is a bit tricky.  A work item may be freed once its execution
990  * starts and nothing prevents the freed area from being recycled for
991  * another work item.  If the same work item address ends up being reused
992  * before the original execution finishes, workqueue will identify the
993  * recycled work item as currently executing and make it wait until the
994  * current execution finishes, introducing an unwanted dependency.
995  *
996  * This function checks the work item address and work function to avoid
997  * false positives.  Note that this isn't complete as one may construct a
998  * work function which can introduce dependency onto itself through a
999  * recycled work item.  Well, if somebody wants to shoot oneself in the
1000  * foot that badly, there's only so much we can do, and if such deadlock
1001  * actually occurs, it should be easy to locate the culprit work function.
1002  *
1003  * CONTEXT:
1004  * raw_spin_lock_irq(pool->lock).
1005  *
1006  * Return:
1007  * Pointer to worker which is executing @work if found, %NULL
1008  * otherwise.
1009  */
1010 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1011 						 struct work_struct *work)
1012 {
1013 	struct worker *worker;
1014 
1015 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1016 			       (unsigned long)work)
1017 		if (worker->current_work == work &&
1018 		    worker->current_func == work->func)
1019 			return worker;
1020 
1021 	return NULL;
1022 }
1023 
1024 /**
1025  * move_linked_works - move linked works to a list
1026  * @work: start of series of works to be scheduled
1027  * @head: target list to append @work to
1028  * @nextp: out parameter for nested worklist walking
1029  *
1030  * Schedule linked works starting from @work to @head. Work series to be
1031  * scheduled starts at @work and includes any consecutive work with
1032  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1033  * @nextp.
1034  *
1035  * CONTEXT:
1036  * raw_spin_lock_irq(pool->lock).
1037  */
1038 static void move_linked_works(struct work_struct *work, struct list_head *head,
1039 			      struct work_struct **nextp)
1040 {
1041 	struct work_struct *n;
1042 
1043 	/*
1044 	 * Linked worklist will always end before the end of the list,
1045 	 * use NULL for list head.
1046 	 */
1047 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1048 		list_move_tail(&work->entry, head);
1049 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1050 			break;
1051 	}
1052 
1053 	/*
1054 	 * If we're already inside safe list traversal and have moved
1055 	 * multiple works to the scheduled queue, the next position
1056 	 * needs to be updated.
1057 	 */
1058 	if (nextp)
1059 		*nextp = n;
1060 }
1061 
1062 /**
1063  * assign_work - assign a work item and its linked work items to a worker
1064  * @work: work to assign
1065  * @worker: worker to assign to
1066  * @nextp: out parameter for nested worklist walking
1067  *
1068  * Assign @work and its linked work items to @worker. If @work is already being
1069  * executed by another worker in the same pool, it'll be punted there.
1070  *
1071  * If @nextp is not NULL, it's updated to point to the next work of the last
1072  * scheduled work. This allows assign_work() to be nested inside
1073  * list_for_each_entry_safe().
1074  *
1075  * Returns %true if @work was successfully assigned to @worker. %false if @work
1076  * was punted to another worker already executing it.
1077  */
1078 static bool assign_work(struct work_struct *work, struct worker *worker,
1079 			struct work_struct **nextp)
1080 {
1081 	struct worker_pool *pool = worker->pool;
1082 	struct worker *collision;
1083 
1084 	lockdep_assert_held(&pool->lock);
1085 
1086 	/*
1087 	 * A single work shouldn't be executed concurrently by multiple workers.
1088 	 * __queue_work() ensures that @work doesn't jump to a different pool
1089 	 * while still running in the previous pool. Here, we should ensure that
1090 	 * @work is not executed concurrently by multiple workers from the same
1091 	 * pool. Check whether anyone is already processing the work. If so,
1092 	 * defer the work to the currently executing one.
1093 	 */
1094 	collision = find_worker_executing_work(pool, work);
1095 	if (unlikely(collision)) {
1096 		move_linked_works(work, &collision->scheduled, nextp);
1097 		return false;
1098 	}
1099 
1100 	move_linked_works(work, &worker->scheduled, nextp);
1101 	return true;
1102 }
1103 
1104 /**
1105  * kick_pool - wake up an idle worker if necessary
1106  * @pool: pool to kick
1107  *
1108  * @pool may have pending work items. Wake up worker if necessary. Returns
1109  * whether a worker was woken up.
1110  */
1111 static bool kick_pool(struct worker_pool *pool)
1112 {
1113 	struct worker *worker = first_idle_worker(pool);
1114 	struct task_struct *p;
1115 
1116 	lockdep_assert_held(&pool->lock);
1117 
1118 	if (!need_more_worker(pool) || !worker)
1119 		return false;
1120 
1121 	p = worker->task;
1122 
1123 #ifdef CONFIG_SMP
1124 	/*
1125 	 * Idle @worker is about to execute @work and waking up provides an
1126 	 * opportunity to migrate @worker at a lower cost by setting the task's
1127 	 * wake_cpu field. Let's see if we want to move @worker to improve
1128 	 * execution locality.
1129 	 *
1130 	 * We're waking the worker that went idle the latest and there's some
1131 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1132 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1133 	 * optimization and the race window is narrow, let's leave as-is for
1134 	 * now. If this becomes pronounced, we can skip over workers which are
1135 	 * still on cpu when picking an idle worker.
1136 	 *
1137 	 * If @pool has non-strict affinity, @worker might have ended up outside
1138 	 * its affinity scope. Repatriate.
1139 	 */
1140 	if (!pool->attrs->affn_strict &&
1141 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1142 		struct work_struct *work = list_first_entry(&pool->worklist,
1143 						struct work_struct, entry);
1144 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1145 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1146 	}
1147 #endif
1148 	wake_up_process(p);
1149 	return true;
1150 }
1151 
1152 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1153 
1154 /*
1155  * Concurrency-managed per-cpu work items that hog CPU for longer than
1156  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1157  * which prevents them from stalling other concurrency-managed work items. If a
1158  * work function keeps triggering this mechanism, it's likely that the work item
1159  * should be using an unbound workqueue instead.
1160  *
1161  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1162  * and report them so that they can be examined and converted to use unbound
1163  * workqueues as appropriate. To avoid flooding the console, each violating work
1164  * function is tracked and reported with exponential backoff.
1165  */
1166 #define WCI_MAX_ENTS 128
1167 
1168 struct wci_ent {
1169 	work_func_t		func;
1170 	atomic64_t		cnt;
1171 	struct hlist_node	hash_node;
1172 };
1173 
1174 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1175 static int wci_nr_ents;
1176 static DEFINE_RAW_SPINLOCK(wci_lock);
1177 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1178 
1179 static struct wci_ent *wci_find_ent(work_func_t func)
1180 {
1181 	struct wci_ent *ent;
1182 
1183 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1184 				   (unsigned long)func) {
1185 		if (ent->func == func)
1186 			return ent;
1187 	}
1188 	return NULL;
1189 }
1190 
1191 static void wq_cpu_intensive_report(work_func_t func)
1192 {
1193 	struct wci_ent *ent;
1194 
1195 restart:
1196 	ent = wci_find_ent(func);
1197 	if (ent) {
1198 		u64 cnt;
1199 
1200 		/*
1201 		 * Start reporting from the fourth time and back off
1202 		 * exponentially.
1203 		 */
1204 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1205 		if (cnt >= 4 && is_power_of_2(cnt))
1206 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1207 					ent->func, wq_cpu_intensive_thresh_us,
1208 					atomic64_read(&ent->cnt));
1209 		return;
1210 	}
1211 
1212 	/*
1213 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1214 	 * is exhausted, something went really wrong and we probably made enough
1215 	 * noise already.
1216 	 */
1217 	if (wci_nr_ents >= WCI_MAX_ENTS)
1218 		return;
1219 
1220 	raw_spin_lock(&wci_lock);
1221 
1222 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1223 		raw_spin_unlock(&wci_lock);
1224 		return;
1225 	}
1226 
1227 	if (wci_find_ent(func)) {
1228 		raw_spin_unlock(&wci_lock);
1229 		goto restart;
1230 	}
1231 
1232 	ent = &wci_ents[wci_nr_ents++];
1233 	ent->func = func;
1234 	atomic64_set(&ent->cnt, 1);
1235 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1236 
1237 	raw_spin_unlock(&wci_lock);
1238 }
1239 
1240 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1241 static void wq_cpu_intensive_report(work_func_t func) {}
1242 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1243 
1244 /**
1245  * wq_worker_running - a worker is running again
1246  * @task: task waking up
1247  *
1248  * This function is called when a worker returns from schedule()
1249  */
1250 void wq_worker_running(struct task_struct *task)
1251 {
1252 	struct worker *worker = kthread_data(task);
1253 
1254 	if (!READ_ONCE(worker->sleeping))
1255 		return;
1256 
1257 	/*
1258 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1259 	 * and the nr_running increment below, we may ruin the nr_running reset
1260 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1261 	 * pool. Protect against such race.
1262 	 */
1263 	preempt_disable();
1264 	if (!(worker->flags & WORKER_NOT_RUNNING))
1265 		worker->pool->nr_running++;
1266 	preempt_enable();
1267 
1268 	/*
1269 	 * CPU intensive auto-detection cares about how long a work item hogged
1270 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1271 	 */
1272 	worker->current_at = worker->task->se.sum_exec_runtime;
1273 
1274 	WRITE_ONCE(worker->sleeping, 0);
1275 }
1276 
1277 /**
1278  * wq_worker_sleeping - a worker is going to sleep
1279  * @task: task going to sleep
1280  *
1281  * This function is called from schedule() when a busy worker is
1282  * going to sleep.
1283  */
1284 void wq_worker_sleeping(struct task_struct *task)
1285 {
1286 	struct worker *worker = kthread_data(task);
1287 	struct worker_pool *pool;
1288 
1289 	/*
1290 	 * Rescuers, which may not have all the fields set up like normal
1291 	 * workers, also reach here, let's not access anything before
1292 	 * checking NOT_RUNNING.
1293 	 */
1294 	if (worker->flags & WORKER_NOT_RUNNING)
1295 		return;
1296 
1297 	pool = worker->pool;
1298 
1299 	/* Return if preempted before wq_worker_running() was reached */
1300 	if (READ_ONCE(worker->sleeping))
1301 		return;
1302 
1303 	WRITE_ONCE(worker->sleeping, 1);
1304 	raw_spin_lock_irq(&pool->lock);
1305 
1306 	/*
1307 	 * Recheck in case unbind_workers() preempted us. We don't
1308 	 * want to decrement nr_running after the worker is unbound
1309 	 * and nr_running has been reset.
1310 	 */
1311 	if (worker->flags & WORKER_NOT_RUNNING) {
1312 		raw_spin_unlock_irq(&pool->lock);
1313 		return;
1314 	}
1315 
1316 	pool->nr_running--;
1317 	if (kick_pool(pool))
1318 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1319 
1320 	raw_spin_unlock_irq(&pool->lock);
1321 }
1322 
1323 /**
1324  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1325  * @task: task currently running
1326  *
1327  * Called from scheduler_tick(). We're in the IRQ context and the current
1328  * worker's fields which follow the 'K' locking rule can be accessed safely.
1329  */
1330 void wq_worker_tick(struct task_struct *task)
1331 {
1332 	struct worker *worker = kthread_data(task);
1333 	struct pool_workqueue *pwq = worker->current_pwq;
1334 	struct worker_pool *pool = worker->pool;
1335 
1336 	if (!pwq)
1337 		return;
1338 
1339 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1340 
1341 	if (!wq_cpu_intensive_thresh_us)
1342 		return;
1343 
1344 	/*
1345 	 * If the current worker is concurrency managed and hogged the CPU for
1346 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1347 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1348 	 *
1349 	 * Set @worker->sleeping means that @worker is in the process of
1350 	 * switching out voluntarily and won't be contributing to
1351 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1352 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1353 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1354 	 * We probably want to make this prettier in the future.
1355 	 */
1356 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1357 	    worker->task->se.sum_exec_runtime - worker->current_at <
1358 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1359 		return;
1360 
1361 	raw_spin_lock(&pool->lock);
1362 
1363 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1364 	wq_cpu_intensive_report(worker->current_func);
1365 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1366 
1367 	if (kick_pool(pool))
1368 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1369 
1370 	raw_spin_unlock(&pool->lock);
1371 }
1372 
1373 /**
1374  * wq_worker_last_func - retrieve worker's last work function
1375  * @task: Task to retrieve last work function of.
1376  *
1377  * Determine the last function a worker executed. This is called from
1378  * the scheduler to get a worker's last known identity.
1379  *
1380  * CONTEXT:
1381  * raw_spin_lock_irq(rq->lock)
1382  *
1383  * This function is called during schedule() when a kworker is going
1384  * to sleep. It's used by psi to identify aggregation workers during
1385  * dequeuing, to allow periodic aggregation to shut-off when that
1386  * worker is the last task in the system or cgroup to go to sleep.
1387  *
1388  * As this function doesn't involve any workqueue-related locking, it
1389  * only returns stable values when called from inside the scheduler's
1390  * queuing and dequeuing paths, when @task, which must be a kworker,
1391  * is guaranteed to not be processing any works.
1392  *
1393  * Return:
1394  * The last work function %current executed as a worker, NULL if it
1395  * hasn't executed any work yet.
1396  */
1397 work_func_t wq_worker_last_func(struct task_struct *task)
1398 {
1399 	struct worker *worker = kthread_data(task);
1400 
1401 	return worker->last_func;
1402 }
1403 
1404 /**
1405  * get_pwq - get an extra reference on the specified pool_workqueue
1406  * @pwq: pool_workqueue to get
1407  *
1408  * Obtain an extra reference on @pwq.  The caller should guarantee that
1409  * @pwq has positive refcnt and be holding the matching pool->lock.
1410  */
1411 static void get_pwq(struct pool_workqueue *pwq)
1412 {
1413 	lockdep_assert_held(&pwq->pool->lock);
1414 	WARN_ON_ONCE(pwq->refcnt <= 0);
1415 	pwq->refcnt++;
1416 }
1417 
1418 /**
1419  * put_pwq - put a pool_workqueue reference
1420  * @pwq: pool_workqueue to put
1421  *
1422  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1423  * destruction.  The caller should be holding the matching pool->lock.
1424  */
1425 static void put_pwq(struct pool_workqueue *pwq)
1426 {
1427 	lockdep_assert_held(&pwq->pool->lock);
1428 	if (likely(--pwq->refcnt))
1429 		return;
1430 	/*
1431 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1432 	 * kthread_worker to avoid A-A deadlocks.
1433 	 */
1434 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1435 }
1436 
1437 /**
1438  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1439  * @pwq: pool_workqueue to put (can be %NULL)
1440  *
1441  * put_pwq() with locking.  This function also allows %NULL @pwq.
1442  */
1443 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1444 {
1445 	if (pwq) {
1446 		/*
1447 		 * As both pwqs and pools are RCU protected, the
1448 		 * following lock operations are safe.
1449 		 */
1450 		raw_spin_lock_irq(&pwq->pool->lock);
1451 		put_pwq(pwq);
1452 		raw_spin_unlock_irq(&pwq->pool->lock);
1453 	}
1454 }
1455 
1456 static void pwq_activate_inactive_work(struct work_struct *work)
1457 {
1458 	struct pool_workqueue *pwq = get_work_pwq(work);
1459 
1460 	trace_workqueue_activate_work(work);
1461 	if (list_empty(&pwq->pool->worklist))
1462 		pwq->pool->watchdog_ts = jiffies;
1463 	move_linked_works(work, &pwq->pool->worklist, NULL);
1464 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1465 	pwq->nr_active++;
1466 }
1467 
1468 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1469 {
1470 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1471 						    struct work_struct, entry);
1472 
1473 	pwq_activate_inactive_work(work);
1474 }
1475 
1476 /**
1477  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1478  * @pwq: pwq of interest
1479  * @work_data: work_data of work which left the queue
1480  *
1481  * A work either has completed or is removed from pending queue,
1482  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1483  *
1484  * CONTEXT:
1485  * raw_spin_lock_irq(pool->lock).
1486  */
1487 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1488 {
1489 	int color = get_work_color(work_data);
1490 
1491 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1492 		pwq->nr_active--;
1493 		if (!list_empty(&pwq->inactive_works)) {
1494 			/* one down, submit an inactive one */
1495 			if (pwq->nr_active < pwq->max_active)
1496 				pwq_activate_first_inactive(pwq);
1497 		}
1498 	}
1499 
1500 	pwq->nr_in_flight[color]--;
1501 
1502 	/* is flush in progress and are we at the flushing tip? */
1503 	if (likely(pwq->flush_color != color))
1504 		goto out_put;
1505 
1506 	/* are there still in-flight works? */
1507 	if (pwq->nr_in_flight[color])
1508 		goto out_put;
1509 
1510 	/* this pwq is done, clear flush_color */
1511 	pwq->flush_color = -1;
1512 
1513 	/*
1514 	 * If this was the last pwq, wake up the first flusher.  It
1515 	 * will handle the rest.
1516 	 */
1517 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1518 		complete(&pwq->wq->first_flusher->done);
1519 out_put:
1520 	put_pwq(pwq);
1521 }
1522 
1523 /**
1524  * try_to_grab_pending - steal work item from worklist and disable irq
1525  * @work: work item to steal
1526  * @is_dwork: @work is a delayed_work
1527  * @flags: place to store irq state
1528  *
1529  * Try to grab PENDING bit of @work.  This function can handle @work in any
1530  * stable state - idle, on timer or on worklist.
1531  *
1532  * Return:
1533  *
1534  *  ========	================================================================
1535  *  1		if @work was pending and we successfully stole PENDING
1536  *  0		if @work was idle and we claimed PENDING
1537  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1538  *  -ENOENT	if someone else is canceling @work, this state may persist
1539  *		for arbitrarily long
1540  *  ========	================================================================
1541  *
1542  * Note:
1543  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1544  * interrupted while holding PENDING and @work off queue, irq must be
1545  * disabled on entry.  This, combined with delayed_work->timer being
1546  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1547  *
1548  * On successful return, >= 0, irq is disabled and the caller is
1549  * responsible for releasing it using local_irq_restore(*@flags).
1550  *
1551  * This function is safe to call from any context including IRQ handler.
1552  */
1553 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1554 			       unsigned long *flags)
1555 {
1556 	struct worker_pool *pool;
1557 	struct pool_workqueue *pwq;
1558 
1559 	local_irq_save(*flags);
1560 
1561 	/* try to steal the timer if it exists */
1562 	if (is_dwork) {
1563 		struct delayed_work *dwork = to_delayed_work(work);
1564 
1565 		/*
1566 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1567 		 * guaranteed that the timer is not queued anywhere and not
1568 		 * running on the local CPU.
1569 		 */
1570 		if (likely(del_timer(&dwork->timer)))
1571 			return 1;
1572 	}
1573 
1574 	/* try to claim PENDING the normal way */
1575 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1576 		return 0;
1577 
1578 	rcu_read_lock();
1579 	/*
1580 	 * The queueing is in progress, or it is already queued. Try to
1581 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1582 	 */
1583 	pool = get_work_pool(work);
1584 	if (!pool)
1585 		goto fail;
1586 
1587 	raw_spin_lock(&pool->lock);
1588 	/*
1589 	 * work->data is guaranteed to point to pwq only while the work
1590 	 * item is queued on pwq->wq, and both updating work->data to point
1591 	 * to pwq on queueing and to pool on dequeueing are done under
1592 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1593 	 * points to pwq which is associated with a locked pool, the work
1594 	 * item is currently queued on that pool.
1595 	 */
1596 	pwq = get_work_pwq(work);
1597 	if (pwq && pwq->pool == pool) {
1598 		debug_work_deactivate(work);
1599 
1600 		/*
1601 		 * A cancelable inactive work item must be in the
1602 		 * pwq->inactive_works since a queued barrier can't be
1603 		 * canceled (see the comments in insert_wq_barrier()).
1604 		 *
1605 		 * An inactive work item cannot be grabbed directly because
1606 		 * it might have linked barrier work items which, if left
1607 		 * on the inactive_works list, will confuse pwq->nr_active
1608 		 * management later on and cause stall.  Make sure the work
1609 		 * item is activated before grabbing.
1610 		 */
1611 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1612 			pwq_activate_inactive_work(work);
1613 
1614 		list_del_init(&work->entry);
1615 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1616 
1617 		/* work->data points to pwq iff queued, point to pool */
1618 		set_work_pool_and_keep_pending(work, pool->id);
1619 
1620 		raw_spin_unlock(&pool->lock);
1621 		rcu_read_unlock();
1622 		return 1;
1623 	}
1624 	raw_spin_unlock(&pool->lock);
1625 fail:
1626 	rcu_read_unlock();
1627 	local_irq_restore(*flags);
1628 	if (work_is_canceling(work))
1629 		return -ENOENT;
1630 	cpu_relax();
1631 	return -EAGAIN;
1632 }
1633 
1634 /**
1635  * insert_work - insert a work into a pool
1636  * @pwq: pwq @work belongs to
1637  * @work: work to insert
1638  * @head: insertion point
1639  * @extra_flags: extra WORK_STRUCT_* flags to set
1640  *
1641  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1642  * work_struct flags.
1643  *
1644  * CONTEXT:
1645  * raw_spin_lock_irq(pool->lock).
1646  */
1647 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1648 			struct list_head *head, unsigned int extra_flags)
1649 {
1650 	debug_work_activate(work);
1651 
1652 	/* record the work call stack in order to print it in KASAN reports */
1653 	kasan_record_aux_stack_noalloc(work);
1654 
1655 	/* we own @work, set data and link */
1656 	set_work_pwq(work, pwq, extra_flags);
1657 	list_add_tail(&work->entry, head);
1658 	get_pwq(pwq);
1659 }
1660 
1661 /*
1662  * Test whether @work is being queued from another work executing on the
1663  * same workqueue.
1664  */
1665 static bool is_chained_work(struct workqueue_struct *wq)
1666 {
1667 	struct worker *worker;
1668 
1669 	worker = current_wq_worker();
1670 	/*
1671 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1672 	 * I'm @worker, it's safe to dereference it without locking.
1673 	 */
1674 	return worker && worker->current_pwq->wq == wq;
1675 }
1676 
1677 /*
1678  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1679  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1680  * avoid perturbing sensitive tasks.
1681  */
1682 static int wq_select_unbound_cpu(int cpu)
1683 {
1684 	int new_cpu;
1685 
1686 	if (likely(!wq_debug_force_rr_cpu)) {
1687 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1688 			return cpu;
1689 	} else {
1690 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1691 	}
1692 
1693 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1694 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1695 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1696 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1697 		if (unlikely(new_cpu >= nr_cpu_ids))
1698 			return cpu;
1699 	}
1700 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1701 
1702 	return new_cpu;
1703 }
1704 
1705 static void __queue_work(int cpu, struct workqueue_struct *wq,
1706 			 struct work_struct *work)
1707 {
1708 	struct pool_workqueue *pwq;
1709 	struct worker_pool *last_pool, *pool;
1710 	unsigned int work_flags;
1711 	unsigned int req_cpu = cpu;
1712 
1713 	/*
1714 	 * While a work item is PENDING && off queue, a task trying to
1715 	 * steal the PENDING will busy-loop waiting for it to either get
1716 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1717 	 * happen with IRQ disabled.
1718 	 */
1719 	lockdep_assert_irqs_disabled();
1720 
1721 
1722 	/*
1723 	 * For a draining wq, only works from the same workqueue are
1724 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1725 	 * queues a new work item to a wq after destroy_workqueue(wq).
1726 	 */
1727 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1728 		     WARN_ON_ONCE(!is_chained_work(wq))))
1729 		return;
1730 	rcu_read_lock();
1731 retry:
1732 	/* pwq which will be used unless @work is executing elsewhere */
1733 	if (req_cpu == WORK_CPU_UNBOUND) {
1734 		if (wq->flags & WQ_UNBOUND)
1735 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1736 		else
1737 			cpu = raw_smp_processor_id();
1738 	}
1739 
1740 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1741 	pool = pwq->pool;
1742 
1743 	/*
1744 	 * If @work was previously on a different pool, it might still be
1745 	 * running there, in which case the work needs to be queued on that
1746 	 * pool to guarantee non-reentrancy.
1747 	 */
1748 	last_pool = get_work_pool(work);
1749 	if (last_pool && last_pool != pool) {
1750 		struct worker *worker;
1751 
1752 		raw_spin_lock(&last_pool->lock);
1753 
1754 		worker = find_worker_executing_work(last_pool, work);
1755 
1756 		if (worker && worker->current_pwq->wq == wq) {
1757 			pwq = worker->current_pwq;
1758 			pool = pwq->pool;
1759 			WARN_ON_ONCE(pool != last_pool);
1760 		} else {
1761 			/* meh... not running there, queue here */
1762 			raw_spin_unlock(&last_pool->lock);
1763 			raw_spin_lock(&pool->lock);
1764 		}
1765 	} else {
1766 		raw_spin_lock(&pool->lock);
1767 	}
1768 
1769 	/*
1770 	 * pwq is determined and locked. For unbound pools, we could have raced
1771 	 * with pwq release and it could already be dead. If its refcnt is zero,
1772 	 * repeat pwq selection. Note that unbound pwqs never die without
1773 	 * another pwq replacing it in cpu_pwq or while work items are executing
1774 	 * on it, so the retrying is guaranteed to make forward-progress.
1775 	 */
1776 	if (unlikely(!pwq->refcnt)) {
1777 		if (wq->flags & WQ_UNBOUND) {
1778 			raw_spin_unlock(&pool->lock);
1779 			cpu_relax();
1780 			goto retry;
1781 		}
1782 		/* oops */
1783 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1784 			  wq->name, cpu);
1785 	}
1786 
1787 	/* pwq determined, queue */
1788 	trace_workqueue_queue_work(req_cpu, pwq, work);
1789 
1790 	if (WARN_ON(!list_empty(&work->entry)))
1791 		goto out;
1792 
1793 	pwq->nr_in_flight[pwq->work_color]++;
1794 	work_flags = work_color_to_flags(pwq->work_color);
1795 
1796 	if (likely(pwq->nr_active < pwq->max_active)) {
1797 		if (list_empty(&pool->worklist))
1798 			pool->watchdog_ts = jiffies;
1799 
1800 		trace_workqueue_activate_work(work);
1801 		pwq->nr_active++;
1802 		insert_work(pwq, work, &pool->worklist, work_flags);
1803 		kick_pool(pool);
1804 	} else {
1805 		work_flags |= WORK_STRUCT_INACTIVE;
1806 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
1807 	}
1808 
1809 out:
1810 	raw_spin_unlock(&pool->lock);
1811 	rcu_read_unlock();
1812 }
1813 
1814 /**
1815  * queue_work_on - queue work on specific cpu
1816  * @cpu: CPU number to execute work on
1817  * @wq: workqueue to use
1818  * @work: work to queue
1819  *
1820  * We queue the work to a specific CPU, the caller must ensure it
1821  * can't go away.  Callers that fail to ensure that the specified
1822  * CPU cannot go away will execute on a randomly chosen CPU.
1823  * But note well that callers specifying a CPU that never has been
1824  * online will get a splat.
1825  *
1826  * Return: %false if @work was already on a queue, %true otherwise.
1827  */
1828 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1829 		   struct work_struct *work)
1830 {
1831 	bool ret = false;
1832 	unsigned long flags;
1833 
1834 	local_irq_save(flags);
1835 
1836 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1837 		__queue_work(cpu, wq, work);
1838 		ret = true;
1839 	}
1840 
1841 	local_irq_restore(flags);
1842 	return ret;
1843 }
1844 EXPORT_SYMBOL(queue_work_on);
1845 
1846 /**
1847  * select_numa_node_cpu - Select a CPU based on NUMA node
1848  * @node: NUMA node ID that we want to select a CPU from
1849  *
1850  * This function will attempt to find a "random" cpu available on a given
1851  * node. If there are no CPUs available on the given node it will return
1852  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1853  * available CPU if we need to schedule this work.
1854  */
1855 static int select_numa_node_cpu(int node)
1856 {
1857 	int cpu;
1858 
1859 	/* Delay binding to CPU if node is not valid or online */
1860 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1861 		return WORK_CPU_UNBOUND;
1862 
1863 	/* Use local node/cpu if we are already there */
1864 	cpu = raw_smp_processor_id();
1865 	if (node == cpu_to_node(cpu))
1866 		return cpu;
1867 
1868 	/* Use "random" otherwise know as "first" online CPU of node */
1869 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1870 
1871 	/* If CPU is valid return that, otherwise just defer */
1872 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1873 }
1874 
1875 /**
1876  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1877  * @node: NUMA node that we are targeting the work for
1878  * @wq: workqueue to use
1879  * @work: work to queue
1880  *
1881  * We queue the work to a "random" CPU within a given NUMA node. The basic
1882  * idea here is to provide a way to somehow associate work with a given
1883  * NUMA node.
1884  *
1885  * This function will only make a best effort attempt at getting this onto
1886  * the right NUMA node. If no node is requested or the requested node is
1887  * offline then we just fall back to standard queue_work behavior.
1888  *
1889  * Currently the "random" CPU ends up being the first available CPU in the
1890  * intersection of cpu_online_mask and the cpumask of the node, unless we
1891  * are running on the node. In that case we just use the current CPU.
1892  *
1893  * Return: %false if @work was already on a queue, %true otherwise.
1894  */
1895 bool queue_work_node(int node, struct workqueue_struct *wq,
1896 		     struct work_struct *work)
1897 {
1898 	unsigned long flags;
1899 	bool ret = false;
1900 
1901 	/*
1902 	 * This current implementation is specific to unbound workqueues.
1903 	 * Specifically we only return the first available CPU for a given
1904 	 * node instead of cycling through individual CPUs within the node.
1905 	 *
1906 	 * If this is used with a per-cpu workqueue then the logic in
1907 	 * workqueue_select_cpu_near would need to be updated to allow for
1908 	 * some round robin type logic.
1909 	 */
1910 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1911 
1912 	local_irq_save(flags);
1913 
1914 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1915 		int cpu = select_numa_node_cpu(node);
1916 
1917 		__queue_work(cpu, wq, work);
1918 		ret = true;
1919 	}
1920 
1921 	local_irq_restore(flags);
1922 	return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(queue_work_node);
1925 
1926 void delayed_work_timer_fn(struct timer_list *t)
1927 {
1928 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1929 
1930 	/* should have been called from irqsafe timer with irq already off */
1931 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1932 }
1933 EXPORT_SYMBOL(delayed_work_timer_fn);
1934 
1935 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1936 				struct delayed_work *dwork, unsigned long delay)
1937 {
1938 	struct timer_list *timer = &dwork->timer;
1939 	struct work_struct *work = &dwork->work;
1940 
1941 	WARN_ON_ONCE(!wq);
1942 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1943 	WARN_ON_ONCE(timer_pending(timer));
1944 	WARN_ON_ONCE(!list_empty(&work->entry));
1945 
1946 	/*
1947 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1948 	 * both optimization and correctness.  The earliest @timer can
1949 	 * expire is on the closest next tick and delayed_work users depend
1950 	 * on that there's no such delay when @delay is 0.
1951 	 */
1952 	if (!delay) {
1953 		__queue_work(cpu, wq, &dwork->work);
1954 		return;
1955 	}
1956 
1957 	dwork->wq = wq;
1958 	dwork->cpu = cpu;
1959 	timer->expires = jiffies + delay;
1960 
1961 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1962 		add_timer_on(timer, cpu);
1963 	else
1964 		add_timer(timer);
1965 }
1966 
1967 /**
1968  * queue_delayed_work_on - queue work on specific CPU after delay
1969  * @cpu: CPU number to execute work on
1970  * @wq: workqueue to use
1971  * @dwork: work to queue
1972  * @delay: number of jiffies to wait before queueing
1973  *
1974  * Return: %false if @work was already on a queue, %true otherwise.  If
1975  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1976  * execution.
1977  */
1978 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1979 			   struct delayed_work *dwork, unsigned long delay)
1980 {
1981 	struct work_struct *work = &dwork->work;
1982 	bool ret = false;
1983 	unsigned long flags;
1984 
1985 	/* read the comment in __queue_work() */
1986 	local_irq_save(flags);
1987 
1988 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1989 		__queue_delayed_work(cpu, wq, dwork, delay);
1990 		ret = true;
1991 	}
1992 
1993 	local_irq_restore(flags);
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL(queue_delayed_work_on);
1997 
1998 /**
1999  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2000  * @cpu: CPU number to execute work on
2001  * @wq: workqueue to use
2002  * @dwork: work to queue
2003  * @delay: number of jiffies to wait before queueing
2004  *
2005  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2006  * modify @dwork's timer so that it expires after @delay.  If @delay is
2007  * zero, @work is guaranteed to be scheduled immediately regardless of its
2008  * current state.
2009  *
2010  * Return: %false if @dwork was idle and queued, %true if @dwork was
2011  * pending and its timer was modified.
2012  *
2013  * This function is safe to call from any context including IRQ handler.
2014  * See try_to_grab_pending() for details.
2015  */
2016 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2017 			 struct delayed_work *dwork, unsigned long delay)
2018 {
2019 	unsigned long flags;
2020 	int ret;
2021 
2022 	do {
2023 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2024 	} while (unlikely(ret == -EAGAIN));
2025 
2026 	if (likely(ret >= 0)) {
2027 		__queue_delayed_work(cpu, wq, dwork, delay);
2028 		local_irq_restore(flags);
2029 	}
2030 
2031 	/* -ENOENT from try_to_grab_pending() becomes %true */
2032 	return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2035 
2036 static void rcu_work_rcufn(struct rcu_head *rcu)
2037 {
2038 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2039 
2040 	/* read the comment in __queue_work() */
2041 	local_irq_disable();
2042 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2043 	local_irq_enable();
2044 }
2045 
2046 /**
2047  * queue_rcu_work - queue work after a RCU grace period
2048  * @wq: workqueue to use
2049  * @rwork: work to queue
2050  *
2051  * Return: %false if @rwork was already pending, %true otherwise.  Note
2052  * that a full RCU grace period is guaranteed only after a %true return.
2053  * While @rwork is guaranteed to be executed after a %false return, the
2054  * execution may happen before a full RCU grace period has passed.
2055  */
2056 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2057 {
2058 	struct work_struct *work = &rwork->work;
2059 
2060 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2061 		rwork->wq = wq;
2062 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2063 		return true;
2064 	}
2065 
2066 	return false;
2067 }
2068 EXPORT_SYMBOL(queue_rcu_work);
2069 
2070 static struct worker *alloc_worker(int node)
2071 {
2072 	struct worker *worker;
2073 
2074 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2075 	if (worker) {
2076 		INIT_LIST_HEAD(&worker->entry);
2077 		INIT_LIST_HEAD(&worker->scheduled);
2078 		INIT_LIST_HEAD(&worker->node);
2079 		/* on creation a worker is in !idle && prep state */
2080 		worker->flags = WORKER_PREP;
2081 	}
2082 	return worker;
2083 }
2084 
2085 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2086 {
2087 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2088 		return pool->attrs->__pod_cpumask;
2089 	else
2090 		return pool->attrs->cpumask;
2091 }
2092 
2093 /**
2094  * worker_attach_to_pool() - attach a worker to a pool
2095  * @worker: worker to be attached
2096  * @pool: the target pool
2097  *
2098  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2099  * cpu-binding of @worker are kept coordinated with the pool across
2100  * cpu-[un]hotplugs.
2101  */
2102 static void worker_attach_to_pool(struct worker *worker,
2103 				   struct worker_pool *pool)
2104 {
2105 	mutex_lock(&wq_pool_attach_mutex);
2106 
2107 	/*
2108 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2109 	 * stable across this function.  See the comments above the flag
2110 	 * definition for details.
2111 	 */
2112 	if (pool->flags & POOL_DISASSOCIATED)
2113 		worker->flags |= WORKER_UNBOUND;
2114 	else
2115 		kthread_set_per_cpu(worker->task, pool->cpu);
2116 
2117 	if (worker->rescue_wq)
2118 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2119 
2120 	list_add_tail(&worker->node, &pool->workers);
2121 	worker->pool = pool;
2122 
2123 	mutex_unlock(&wq_pool_attach_mutex);
2124 }
2125 
2126 /**
2127  * worker_detach_from_pool() - detach a worker from its pool
2128  * @worker: worker which is attached to its pool
2129  *
2130  * Undo the attaching which had been done in worker_attach_to_pool().  The
2131  * caller worker shouldn't access to the pool after detached except it has
2132  * other reference to the pool.
2133  */
2134 static void worker_detach_from_pool(struct worker *worker)
2135 {
2136 	struct worker_pool *pool = worker->pool;
2137 	struct completion *detach_completion = NULL;
2138 
2139 	mutex_lock(&wq_pool_attach_mutex);
2140 
2141 	kthread_set_per_cpu(worker->task, -1);
2142 	list_del(&worker->node);
2143 	worker->pool = NULL;
2144 
2145 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2146 		detach_completion = pool->detach_completion;
2147 	mutex_unlock(&wq_pool_attach_mutex);
2148 
2149 	/* clear leftover flags without pool->lock after it is detached */
2150 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2151 
2152 	if (detach_completion)
2153 		complete(detach_completion);
2154 }
2155 
2156 /**
2157  * create_worker - create a new workqueue worker
2158  * @pool: pool the new worker will belong to
2159  *
2160  * Create and start a new worker which is attached to @pool.
2161  *
2162  * CONTEXT:
2163  * Might sleep.  Does GFP_KERNEL allocations.
2164  *
2165  * Return:
2166  * Pointer to the newly created worker.
2167  */
2168 static struct worker *create_worker(struct worker_pool *pool)
2169 {
2170 	struct worker *worker;
2171 	int id;
2172 	char id_buf[23];
2173 
2174 	/* ID is needed to determine kthread name */
2175 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2176 	if (id < 0) {
2177 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2178 			    ERR_PTR(id));
2179 		return NULL;
2180 	}
2181 
2182 	worker = alloc_worker(pool->node);
2183 	if (!worker) {
2184 		pr_err_once("workqueue: Failed to allocate a worker\n");
2185 		goto fail;
2186 	}
2187 
2188 	worker->id = id;
2189 
2190 	if (pool->cpu >= 0)
2191 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2192 			 pool->attrs->nice < 0  ? "H" : "");
2193 	else
2194 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2195 
2196 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2197 					      "kworker/%s", id_buf);
2198 	if (IS_ERR(worker->task)) {
2199 		if (PTR_ERR(worker->task) == -EINTR) {
2200 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2201 			       id_buf);
2202 		} else {
2203 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2204 				    worker->task);
2205 		}
2206 		goto fail;
2207 	}
2208 
2209 	set_user_nice(worker->task, pool->attrs->nice);
2210 	kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2211 
2212 	/* successful, attach the worker to the pool */
2213 	worker_attach_to_pool(worker, pool);
2214 
2215 	/* start the newly created worker */
2216 	raw_spin_lock_irq(&pool->lock);
2217 
2218 	worker->pool->nr_workers++;
2219 	worker_enter_idle(worker);
2220 	kick_pool(pool);
2221 
2222 	/*
2223 	 * @worker is waiting on a completion in kthread() and will trigger hung
2224 	 * check if not woken up soon. As kick_pool() might not have waken it
2225 	 * up, wake it up explicitly once more.
2226 	 */
2227 	wake_up_process(worker->task);
2228 
2229 	raw_spin_unlock_irq(&pool->lock);
2230 
2231 	return worker;
2232 
2233 fail:
2234 	ida_free(&pool->worker_ida, id);
2235 	kfree(worker);
2236 	return NULL;
2237 }
2238 
2239 static void unbind_worker(struct worker *worker)
2240 {
2241 	lockdep_assert_held(&wq_pool_attach_mutex);
2242 
2243 	kthread_set_per_cpu(worker->task, -1);
2244 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2245 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2246 	else
2247 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2248 }
2249 
2250 static void wake_dying_workers(struct list_head *cull_list)
2251 {
2252 	struct worker *worker, *tmp;
2253 
2254 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2255 		list_del_init(&worker->entry);
2256 		unbind_worker(worker);
2257 		/*
2258 		 * If the worker was somehow already running, then it had to be
2259 		 * in pool->idle_list when set_worker_dying() happened or we
2260 		 * wouldn't have gotten here.
2261 		 *
2262 		 * Thus, the worker must either have observed the WORKER_DIE
2263 		 * flag, or have set its state to TASK_IDLE. Either way, the
2264 		 * below will be observed by the worker and is safe to do
2265 		 * outside of pool->lock.
2266 		 */
2267 		wake_up_process(worker->task);
2268 	}
2269 }
2270 
2271 /**
2272  * set_worker_dying - Tag a worker for destruction
2273  * @worker: worker to be destroyed
2274  * @list: transfer worker away from its pool->idle_list and into list
2275  *
2276  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2277  * should be idle.
2278  *
2279  * CONTEXT:
2280  * raw_spin_lock_irq(pool->lock).
2281  */
2282 static void set_worker_dying(struct worker *worker, struct list_head *list)
2283 {
2284 	struct worker_pool *pool = worker->pool;
2285 
2286 	lockdep_assert_held(&pool->lock);
2287 	lockdep_assert_held(&wq_pool_attach_mutex);
2288 
2289 	/* sanity check frenzy */
2290 	if (WARN_ON(worker->current_work) ||
2291 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2292 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2293 		return;
2294 
2295 	pool->nr_workers--;
2296 	pool->nr_idle--;
2297 
2298 	worker->flags |= WORKER_DIE;
2299 
2300 	list_move(&worker->entry, list);
2301 	list_move(&worker->node, &pool->dying_workers);
2302 }
2303 
2304 /**
2305  * idle_worker_timeout - check if some idle workers can now be deleted.
2306  * @t: The pool's idle_timer that just expired
2307  *
2308  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2309  * worker_leave_idle(), as a worker flicking between idle and active while its
2310  * pool is at the too_many_workers() tipping point would cause too much timer
2311  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2312  * it expire and re-evaluate things from there.
2313  */
2314 static void idle_worker_timeout(struct timer_list *t)
2315 {
2316 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2317 	bool do_cull = false;
2318 
2319 	if (work_pending(&pool->idle_cull_work))
2320 		return;
2321 
2322 	raw_spin_lock_irq(&pool->lock);
2323 
2324 	if (too_many_workers(pool)) {
2325 		struct worker *worker;
2326 		unsigned long expires;
2327 
2328 		/* idle_list is kept in LIFO order, check the last one */
2329 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2330 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2331 		do_cull = !time_before(jiffies, expires);
2332 
2333 		if (!do_cull)
2334 			mod_timer(&pool->idle_timer, expires);
2335 	}
2336 	raw_spin_unlock_irq(&pool->lock);
2337 
2338 	if (do_cull)
2339 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2340 }
2341 
2342 /**
2343  * idle_cull_fn - cull workers that have been idle for too long.
2344  * @work: the pool's work for handling these idle workers
2345  *
2346  * This goes through a pool's idle workers and gets rid of those that have been
2347  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2348  *
2349  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2350  * culled, so this also resets worker affinity. This requires a sleepable
2351  * context, hence the split between timer callback and work item.
2352  */
2353 static void idle_cull_fn(struct work_struct *work)
2354 {
2355 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2356 	LIST_HEAD(cull_list);
2357 
2358 	/*
2359 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2360 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2361 	 * path. This is required as a previously-preempted worker could run after
2362 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2363 	 */
2364 	mutex_lock(&wq_pool_attach_mutex);
2365 	raw_spin_lock_irq(&pool->lock);
2366 
2367 	while (too_many_workers(pool)) {
2368 		struct worker *worker;
2369 		unsigned long expires;
2370 
2371 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2372 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2373 
2374 		if (time_before(jiffies, expires)) {
2375 			mod_timer(&pool->idle_timer, expires);
2376 			break;
2377 		}
2378 
2379 		set_worker_dying(worker, &cull_list);
2380 	}
2381 
2382 	raw_spin_unlock_irq(&pool->lock);
2383 	wake_dying_workers(&cull_list);
2384 	mutex_unlock(&wq_pool_attach_mutex);
2385 }
2386 
2387 static void send_mayday(struct work_struct *work)
2388 {
2389 	struct pool_workqueue *pwq = get_work_pwq(work);
2390 	struct workqueue_struct *wq = pwq->wq;
2391 
2392 	lockdep_assert_held(&wq_mayday_lock);
2393 
2394 	if (!wq->rescuer)
2395 		return;
2396 
2397 	/* mayday mayday mayday */
2398 	if (list_empty(&pwq->mayday_node)) {
2399 		/*
2400 		 * If @pwq is for an unbound wq, its base ref may be put at
2401 		 * any time due to an attribute change.  Pin @pwq until the
2402 		 * rescuer is done with it.
2403 		 */
2404 		get_pwq(pwq);
2405 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2406 		wake_up_process(wq->rescuer->task);
2407 		pwq->stats[PWQ_STAT_MAYDAY]++;
2408 	}
2409 }
2410 
2411 static void pool_mayday_timeout(struct timer_list *t)
2412 {
2413 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2414 	struct work_struct *work;
2415 
2416 	raw_spin_lock_irq(&pool->lock);
2417 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2418 
2419 	if (need_to_create_worker(pool)) {
2420 		/*
2421 		 * We've been trying to create a new worker but
2422 		 * haven't been successful.  We might be hitting an
2423 		 * allocation deadlock.  Send distress signals to
2424 		 * rescuers.
2425 		 */
2426 		list_for_each_entry(work, &pool->worklist, entry)
2427 			send_mayday(work);
2428 	}
2429 
2430 	raw_spin_unlock(&wq_mayday_lock);
2431 	raw_spin_unlock_irq(&pool->lock);
2432 
2433 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2434 }
2435 
2436 /**
2437  * maybe_create_worker - create a new worker if necessary
2438  * @pool: pool to create a new worker for
2439  *
2440  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2441  * have at least one idle worker on return from this function.  If
2442  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2443  * sent to all rescuers with works scheduled on @pool to resolve
2444  * possible allocation deadlock.
2445  *
2446  * On return, need_to_create_worker() is guaranteed to be %false and
2447  * may_start_working() %true.
2448  *
2449  * LOCKING:
2450  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2451  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2452  * manager.
2453  */
2454 static void maybe_create_worker(struct worker_pool *pool)
2455 __releases(&pool->lock)
2456 __acquires(&pool->lock)
2457 {
2458 restart:
2459 	raw_spin_unlock_irq(&pool->lock);
2460 
2461 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2462 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2463 
2464 	while (true) {
2465 		if (create_worker(pool) || !need_to_create_worker(pool))
2466 			break;
2467 
2468 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2469 
2470 		if (!need_to_create_worker(pool))
2471 			break;
2472 	}
2473 
2474 	del_timer_sync(&pool->mayday_timer);
2475 	raw_spin_lock_irq(&pool->lock);
2476 	/*
2477 	 * This is necessary even after a new worker was just successfully
2478 	 * created as @pool->lock was dropped and the new worker might have
2479 	 * already become busy.
2480 	 */
2481 	if (need_to_create_worker(pool))
2482 		goto restart;
2483 }
2484 
2485 /**
2486  * manage_workers - manage worker pool
2487  * @worker: self
2488  *
2489  * Assume the manager role and manage the worker pool @worker belongs
2490  * to.  At any given time, there can be only zero or one manager per
2491  * pool.  The exclusion is handled automatically by this function.
2492  *
2493  * The caller can safely start processing works on false return.  On
2494  * true return, it's guaranteed that need_to_create_worker() is false
2495  * and may_start_working() is true.
2496  *
2497  * CONTEXT:
2498  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2499  * multiple times.  Does GFP_KERNEL allocations.
2500  *
2501  * Return:
2502  * %false if the pool doesn't need management and the caller can safely
2503  * start processing works, %true if management function was performed and
2504  * the conditions that the caller verified before calling the function may
2505  * no longer be true.
2506  */
2507 static bool manage_workers(struct worker *worker)
2508 {
2509 	struct worker_pool *pool = worker->pool;
2510 
2511 	if (pool->flags & POOL_MANAGER_ACTIVE)
2512 		return false;
2513 
2514 	pool->flags |= POOL_MANAGER_ACTIVE;
2515 	pool->manager = worker;
2516 
2517 	maybe_create_worker(pool);
2518 
2519 	pool->manager = NULL;
2520 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2521 	rcuwait_wake_up(&manager_wait);
2522 	return true;
2523 }
2524 
2525 /**
2526  * process_one_work - process single work
2527  * @worker: self
2528  * @work: work to process
2529  *
2530  * Process @work.  This function contains all the logics necessary to
2531  * process a single work including synchronization against and
2532  * interaction with other workers on the same cpu, queueing and
2533  * flushing.  As long as context requirement is met, any worker can
2534  * call this function to process a work.
2535  *
2536  * CONTEXT:
2537  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2538  */
2539 static void process_one_work(struct worker *worker, struct work_struct *work)
2540 __releases(&pool->lock)
2541 __acquires(&pool->lock)
2542 {
2543 	struct pool_workqueue *pwq = get_work_pwq(work);
2544 	struct worker_pool *pool = worker->pool;
2545 	unsigned long work_data;
2546 #ifdef CONFIG_LOCKDEP
2547 	/*
2548 	 * It is permissible to free the struct work_struct from
2549 	 * inside the function that is called from it, this we need to
2550 	 * take into account for lockdep too.  To avoid bogus "held
2551 	 * lock freed" warnings as well as problems when looking into
2552 	 * work->lockdep_map, make a copy and use that here.
2553 	 */
2554 	struct lockdep_map lockdep_map;
2555 
2556 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2557 #endif
2558 	/* ensure we're on the correct CPU */
2559 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2560 		     raw_smp_processor_id() != pool->cpu);
2561 
2562 	/* claim and dequeue */
2563 	debug_work_deactivate(work);
2564 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2565 	worker->current_work = work;
2566 	worker->current_func = work->func;
2567 	worker->current_pwq = pwq;
2568 	worker->current_at = worker->task->se.sum_exec_runtime;
2569 	work_data = *work_data_bits(work);
2570 	worker->current_color = get_work_color(work_data);
2571 
2572 	/*
2573 	 * Record wq name for cmdline and debug reporting, may get
2574 	 * overridden through set_worker_desc().
2575 	 */
2576 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2577 
2578 	list_del_init(&work->entry);
2579 
2580 	/*
2581 	 * CPU intensive works don't participate in concurrency management.
2582 	 * They're the scheduler's responsibility.  This takes @worker out
2583 	 * of concurrency management and the next code block will chain
2584 	 * execution of the pending work items.
2585 	 */
2586 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2587 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2588 
2589 	/*
2590 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2591 	 * since nr_running would always be >= 1 at this point. This is used to
2592 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
2593 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2594 	 */
2595 	kick_pool(pool);
2596 
2597 	/*
2598 	 * Record the last pool and clear PENDING which should be the last
2599 	 * update to @work.  Also, do this inside @pool->lock so that
2600 	 * PENDING and queued state changes happen together while IRQ is
2601 	 * disabled.
2602 	 */
2603 	set_work_pool_and_clear_pending(work, pool->id);
2604 
2605 	pwq->stats[PWQ_STAT_STARTED]++;
2606 	raw_spin_unlock_irq(&pool->lock);
2607 
2608 	lock_map_acquire(&pwq->wq->lockdep_map);
2609 	lock_map_acquire(&lockdep_map);
2610 	/*
2611 	 * Strictly speaking we should mark the invariant state without holding
2612 	 * any locks, that is, before these two lock_map_acquire()'s.
2613 	 *
2614 	 * However, that would result in:
2615 	 *
2616 	 *   A(W1)
2617 	 *   WFC(C)
2618 	 *		A(W1)
2619 	 *		C(C)
2620 	 *
2621 	 * Which would create W1->C->W1 dependencies, even though there is no
2622 	 * actual deadlock possible. There are two solutions, using a
2623 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2624 	 * hit the lockdep limitation on recursive locks, or simply discard
2625 	 * these locks.
2626 	 *
2627 	 * AFAICT there is no possible deadlock scenario between the
2628 	 * flush_work() and complete() primitives (except for single-threaded
2629 	 * workqueues), so hiding them isn't a problem.
2630 	 */
2631 	lockdep_invariant_state(true);
2632 	trace_workqueue_execute_start(work);
2633 	worker->current_func(work);
2634 	/*
2635 	 * While we must be careful to not use "work" after this, the trace
2636 	 * point will only record its address.
2637 	 */
2638 	trace_workqueue_execute_end(work, worker->current_func);
2639 	pwq->stats[PWQ_STAT_COMPLETED]++;
2640 	lock_map_release(&lockdep_map);
2641 	lock_map_release(&pwq->wq->lockdep_map);
2642 
2643 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2644 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2645 		       "     last function: %ps\n",
2646 		       current->comm, preempt_count(), task_pid_nr(current),
2647 		       worker->current_func);
2648 		debug_show_held_locks(current);
2649 		dump_stack();
2650 	}
2651 
2652 	/*
2653 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2654 	 * kernels, where a requeueing work item waiting for something to
2655 	 * happen could deadlock with stop_machine as such work item could
2656 	 * indefinitely requeue itself while all other CPUs are trapped in
2657 	 * stop_machine. At the same time, report a quiescent RCU state so
2658 	 * the same condition doesn't freeze RCU.
2659 	 */
2660 	cond_resched();
2661 
2662 	raw_spin_lock_irq(&pool->lock);
2663 
2664 	/*
2665 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2666 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2667 	 * wq_cpu_intensive_thresh_us. Clear it.
2668 	 */
2669 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2670 
2671 	/* tag the worker for identification in schedule() */
2672 	worker->last_func = worker->current_func;
2673 
2674 	/* we're done with it, release */
2675 	hash_del(&worker->hentry);
2676 	worker->current_work = NULL;
2677 	worker->current_func = NULL;
2678 	worker->current_pwq = NULL;
2679 	worker->current_color = INT_MAX;
2680 	pwq_dec_nr_in_flight(pwq, work_data);
2681 }
2682 
2683 /**
2684  * process_scheduled_works - process scheduled works
2685  * @worker: self
2686  *
2687  * Process all scheduled works.  Please note that the scheduled list
2688  * may change while processing a work, so this function repeatedly
2689  * fetches a work from the top and executes it.
2690  *
2691  * CONTEXT:
2692  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2693  * multiple times.
2694  */
2695 static void process_scheduled_works(struct worker *worker)
2696 {
2697 	struct work_struct *work;
2698 	bool first = true;
2699 
2700 	while ((work = list_first_entry_or_null(&worker->scheduled,
2701 						struct work_struct, entry))) {
2702 		if (first) {
2703 			worker->pool->watchdog_ts = jiffies;
2704 			first = false;
2705 		}
2706 		process_one_work(worker, work);
2707 	}
2708 }
2709 
2710 static void set_pf_worker(bool val)
2711 {
2712 	mutex_lock(&wq_pool_attach_mutex);
2713 	if (val)
2714 		current->flags |= PF_WQ_WORKER;
2715 	else
2716 		current->flags &= ~PF_WQ_WORKER;
2717 	mutex_unlock(&wq_pool_attach_mutex);
2718 }
2719 
2720 /**
2721  * worker_thread - the worker thread function
2722  * @__worker: self
2723  *
2724  * The worker thread function.  All workers belong to a worker_pool -
2725  * either a per-cpu one or dynamic unbound one.  These workers process all
2726  * work items regardless of their specific target workqueue.  The only
2727  * exception is work items which belong to workqueues with a rescuer which
2728  * will be explained in rescuer_thread().
2729  *
2730  * Return: 0
2731  */
2732 static int worker_thread(void *__worker)
2733 {
2734 	struct worker *worker = __worker;
2735 	struct worker_pool *pool = worker->pool;
2736 
2737 	/* tell the scheduler that this is a workqueue worker */
2738 	set_pf_worker(true);
2739 woke_up:
2740 	raw_spin_lock_irq(&pool->lock);
2741 
2742 	/* am I supposed to die? */
2743 	if (unlikely(worker->flags & WORKER_DIE)) {
2744 		raw_spin_unlock_irq(&pool->lock);
2745 		set_pf_worker(false);
2746 
2747 		set_task_comm(worker->task, "kworker/dying");
2748 		ida_free(&pool->worker_ida, worker->id);
2749 		worker_detach_from_pool(worker);
2750 		WARN_ON_ONCE(!list_empty(&worker->entry));
2751 		kfree(worker);
2752 		return 0;
2753 	}
2754 
2755 	worker_leave_idle(worker);
2756 recheck:
2757 	/* no more worker necessary? */
2758 	if (!need_more_worker(pool))
2759 		goto sleep;
2760 
2761 	/* do we need to manage? */
2762 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2763 		goto recheck;
2764 
2765 	/*
2766 	 * ->scheduled list can only be filled while a worker is
2767 	 * preparing to process a work or actually processing it.
2768 	 * Make sure nobody diddled with it while I was sleeping.
2769 	 */
2770 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2771 
2772 	/*
2773 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2774 	 * worker or that someone else has already assumed the manager
2775 	 * role.  This is where @worker starts participating in concurrency
2776 	 * management if applicable and concurrency management is restored
2777 	 * after being rebound.  See rebind_workers() for details.
2778 	 */
2779 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2780 
2781 	do {
2782 		struct work_struct *work =
2783 			list_first_entry(&pool->worklist,
2784 					 struct work_struct, entry);
2785 
2786 		if (assign_work(work, worker, NULL))
2787 			process_scheduled_works(worker);
2788 	} while (keep_working(pool));
2789 
2790 	worker_set_flags(worker, WORKER_PREP);
2791 sleep:
2792 	/*
2793 	 * pool->lock is held and there's no work to process and no need to
2794 	 * manage, sleep.  Workers are woken up only while holding
2795 	 * pool->lock or from local cpu, so setting the current state
2796 	 * before releasing pool->lock is enough to prevent losing any
2797 	 * event.
2798 	 */
2799 	worker_enter_idle(worker);
2800 	__set_current_state(TASK_IDLE);
2801 	raw_spin_unlock_irq(&pool->lock);
2802 	schedule();
2803 	goto woke_up;
2804 }
2805 
2806 /**
2807  * rescuer_thread - the rescuer thread function
2808  * @__rescuer: self
2809  *
2810  * Workqueue rescuer thread function.  There's one rescuer for each
2811  * workqueue which has WQ_MEM_RECLAIM set.
2812  *
2813  * Regular work processing on a pool may block trying to create a new
2814  * worker which uses GFP_KERNEL allocation which has slight chance of
2815  * developing into deadlock if some works currently on the same queue
2816  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2817  * the problem rescuer solves.
2818  *
2819  * When such condition is possible, the pool summons rescuers of all
2820  * workqueues which have works queued on the pool and let them process
2821  * those works so that forward progress can be guaranteed.
2822  *
2823  * This should happen rarely.
2824  *
2825  * Return: 0
2826  */
2827 static int rescuer_thread(void *__rescuer)
2828 {
2829 	struct worker *rescuer = __rescuer;
2830 	struct workqueue_struct *wq = rescuer->rescue_wq;
2831 	bool should_stop;
2832 
2833 	set_user_nice(current, RESCUER_NICE_LEVEL);
2834 
2835 	/*
2836 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2837 	 * doesn't participate in concurrency management.
2838 	 */
2839 	set_pf_worker(true);
2840 repeat:
2841 	set_current_state(TASK_IDLE);
2842 
2843 	/*
2844 	 * By the time the rescuer is requested to stop, the workqueue
2845 	 * shouldn't have any work pending, but @wq->maydays may still have
2846 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2847 	 * all the work items before the rescuer got to them.  Go through
2848 	 * @wq->maydays processing before acting on should_stop so that the
2849 	 * list is always empty on exit.
2850 	 */
2851 	should_stop = kthread_should_stop();
2852 
2853 	/* see whether any pwq is asking for help */
2854 	raw_spin_lock_irq(&wq_mayday_lock);
2855 
2856 	while (!list_empty(&wq->maydays)) {
2857 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2858 					struct pool_workqueue, mayday_node);
2859 		struct worker_pool *pool = pwq->pool;
2860 		struct work_struct *work, *n;
2861 
2862 		__set_current_state(TASK_RUNNING);
2863 		list_del_init(&pwq->mayday_node);
2864 
2865 		raw_spin_unlock_irq(&wq_mayday_lock);
2866 
2867 		worker_attach_to_pool(rescuer, pool);
2868 
2869 		raw_spin_lock_irq(&pool->lock);
2870 
2871 		/*
2872 		 * Slurp in all works issued via this workqueue and
2873 		 * process'em.
2874 		 */
2875 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2876 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2877 			if (get_work_pwq(work) == pwq &&
2878 			    assign_work(work, rescuer, &n))
2879 				pwq->stats[PWQ_STAT_RESCUED]++;
2880 		}
2881 
2882 		if (!list_empty(&rescuer->scheduled)) {
2883 			process_scheduled_works(rescuer);
2884 
2885 			/*
2886 			 * The above execution of rescued work items could
2887 			 * have created more to rescue through
2888 			 * pwq_activate_first_inactive() or chained
2889 			 * queueing.  Let's put @pwq back on mayday list so
2890 			 * that such back-to-back work items, which may be
2891 			 * being used to relieve memory pressure, don't
2892 			 * incur MAYDAY_INTERVAL delay inbetween.
2893 			 */
2894 			if (pwq->nr_active && need_to_create_worker(pool)) {
2895 				raw_spin_lock(&wq_mayday_lock);
2896 				/*
2897 				 * Queue iff we aren't racing destruction
2898 				 * and somebody else hasn't queued it already.
2899 				 */
2900 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2901 					get_pwq(pwq);
2902 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2903 				}
2904 				raw_spin_unlock(&wq_mayday_lock);
2905 			}
2906 		}
2907 
2908 		/*
2909 		 * Put the reference grabbed by send_mayday().  @pool won't
2910 		 * go away while we're still attached to it.
2911 		 */
2912 		put_pwq(pwq);
2913 
2914 		/*
2915 		 * Leave this pool. Notify regular workers; otherwise, we end up
2916 		 * with 0 concurrency and stalling the execution.
2917 		 */
2918 		kick_pool(pool);
2919 
2920 		raw_spin_unlock_irq(&pool->lock);
2921 
2922 		worker_detach_from_pool(rescuer);
2923 
2924 		raw_spin_lock_irq(&wq_mayday_lock);
2925 	}
2926 
2927 	raw_spin_unlock_irq(&wq_mayday_lock);
2928 
2929 	if (should_stop) {
2930 		__set_current_state(TASK_RUNNING);
2931 		set_pf_worker(false);
2932 		return 0;
2933 	}
2934 
2935 	/* rescuers should never participate in concurrency management */
2936 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2937 	schedule();
2938 	goto repeat;
2939 }
2940 
2941 /**
2942  * check_flush_dependency - check for flush dependency sanity
2943  * @target_wq: workqueue being flushed
2944  * @target_work: work item being flushed (NULL for workqueue flushes)
2945  *
2946  * %current is trying to flush the whole @target_wq or @target_work on it.
2947  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2948  * reclaiming memory or running on a workqueue which doesn't have
2949  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2950  * a deadlock.
2951  */
2952 static void check_flush_dependency(struct workqueue_struct *target_wq,
2953 				   struct work_struct *target_work)
2954 {
2955 	work_func_t target_func = target_work ? target_work->func : NULL;
2956 	struct worker *worker;
2957 
2958 	if (target_wq->flags & WQ_MEM_RECLAIM)
2959 		return;
2960 
2961 	worker = current_wq_worker();
2962 
2963 	WARN_ONCE(current->flags & PF_MEMALLOC,
2964 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2965 		  current->pid, current->comm, target_wq->name, target_func);
2966 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2967 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2968 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2969 		  worker->current_pwq->wq->name, worker->current_func,
2970 		  target_wq->name, target_func);
2971 }
2972 
2973 struct wq_barrier {
2974 	struct work_struct	work;
2975 	struct completion	done;
2976 	struct task_struct	*task;	/* purely informational */
2977 };
2978 
2979 static void wq_barrier_func(struct work_struct *work)
2980 {
2981 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2982 	complete(&barr->done);
2983 }
2984 
2985 /**
2986  * insert_wq_barrier - insert a barrier work
2987  * @pwq: pwq to insert barrier into
2988  * @barr: wq_barrier to insert
2989  * @target: target work to attach @barr to
2990  * @worker: worker currently executing @target, NULL if @target is not executing
2991  *
2992  * @barr is linked to @target such that @barr is completed only after
2993  * @target finishes execution.  Please note that the ordering
2994  * guarantee is observed only with respect to @target and on the local
2995  * cpu.
2996  *
2997  * Currently, a queued barrier can't be canceled.  This is because
2998  * try_to_grab_pending() can't determine whether the work to be
2999  * grabbed is at the head of the queue and thus can't clear LINKED
3000  * flag of the previous work while there must be a valid next work
3001  * after a work with LINKED flag set.
3002  *
3003  * Note that when @worker is non-NULL, @target may be modified
3004  * underneath us, so we can't reliably determine pwq from @target.
3005  *
3006  * CONTEXT:
3007  * raw_spin_lock_irq(pool->lock).
3008  */
3009 static void insert_wq_barrier(struct pool_workqueue *pwq,
3010 			      struct wq_barrier *barr,
3011 			      struct work_struct *target, struct worker *worker)
3012 {
3013 	unsigned int work_flags = 0;
3014 	unsigned int work_color;
3015 	struct list_head *head;
3016 
3017 	/*
3018 	 * debugobject calls are safe here even with pool->lock locked
3019 	 * as we know for sure that this will not trigger any of the
3020 	 * checks and call back into the fixup functions where we
3021 	 * might deadlock.
3022 	 */
3023 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3024 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3025 
3026 	init_completion_map(&barr->done, &target->lockdep_map);
3027 
3028 	barr->task = current;
3029 
3030 	/* The barrier work item does not participate in pwq->nr_active. */
3031 	work_flags |= WORK_STRUCT_INACTIVE;
3032 
3033 	/*
3034 	 * If @target is currently being executed, schedule the
3035 	 * barrier to the worker; otherwise, put it after @target.
3036 	 */
3037 	if (worker) {
3038 		head = worker->scheduled.next;
3039 		work_color = worker->current_color;
3040 	} else {
3041 		unsigned long *bits = work_data_bits(target);
3042 
3043 		head = target->entry.next;
3044 		/* there can already be other linked works, inherit and set */
3045 		work_flags |= *bits & WORK_STRUCT_LINKED;
3046 		work_color = get_work_color(*bits);
3047 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3048 	}
3049 
3050 	pwq->nr_in_flight[work_color]++;
3051 	work_flags |= work_color_to_flags(work_color);
3052 
3053 	insert_work(pwq, &barr->work, head, work_flags);
3054 }
3055 
3056 /**
3057  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3058  * @wq: workqueue being flushed
3059  * @flush_color: new flush color, < 0 for no-op
3060  * @work_color: new work color, < 0 for no-op
3061  *
3062  * Prepare pwqs for workqueue flushing.
3063  *
3064  * If @flush_color is non-negative, flush_color on all pwqs should be
3065  * -1.  If no pwq has in-flight commands at the specified color, all
3066  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3067  * has in flight commands, its pwq->flush_color is set to
3068  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3069  * wakeup logic is armed and %true is returned.
3070  *
3071  * The caller should have initialized @wq->first_flusher prior to
3072  * calling this function with non-negative @flush_color.  If
3073  * @flush_color is negative, no flush color update is done and %false
3074  * is returned.
3075  *
3076  * If @work_color is non-negative, all pwqs should have the same
3077  * work_color which is previous to @work_color and all will be
3078  * advanced to @work_color.
3079  *
3080  * CONTEXT:
3081  * mutex_lock(wq->mutex).
3082  *
3083  * Return:
3084  * %true if @flush_color >= 0 and there's something to flush.  %false
3085  * otherwise.
3086  */
3087 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3088 				      int flush_color, int work_color)
3089 {
3090 	bool wait = false;
3091 	struct pool_workqueue *pwq;
3092 
3093 	if (flush_color >= 0) {
3094 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3095 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3096 	}
3097 
3098 	for_each_pwq(pwq, wq) {
3099 		struct worker_pool *pool = pwq->pool;
3100 
3101 		raw_spin_lock_irq(&pool->lock);
3102 
3103 		if (flush_color >= 0) {
3104 			WARN_ON_ONCE(pwq->flush_color != -1);
3105 
3106 			if (pwq->nr_in_flight[flush_color]) {
3107 				pwq->flush_color = flush_color;
3108 				atomic_inc(&wq->nr_pwqs_to_flush);
3109 				wait = true;
3110 			}
3111 		}
3112 
3113 		if (work_color >= 0) {
3114 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3115 			pwq->work_color = work_color;
3116 		}
3117 
3118 		raw_spin_unlock_irq(&pool->lock);
3119 	}
3120 
3121 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3122 		complete(&wq->first_flusher->done);
3123 
3124 	return wait;
3125 }
3126 
3127 /**
3128  * __flush_workqueue - ensure that any scheduled work has run to completion.
3129  * @wq: workqueue to flush
3130  *
3131  * This function sleeps until all work items which were queued on entry
3132  * have finished execution, but it is not livelocked by new incoming ones.
3133  */
3134 void __flush_workqueue(struct workqueue_struct *wq)
3135 {
3136 	struct wq_flusher this_flusher = {
3137 		.list = LIST_HEAD_INIT(this_flusher.list),
3138 		.flush_color = -1,
3139 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3140 	};
3141 	int next_color;
3142 
3143 	if (WARN_ON(!wq_online))
3144 		return;
3145 
3146 	lock_map_acquire(&wq->lockdep_map);
3147 	lock_map_release(&wq->lockdep_map);
3148 
3149 	mutex_lock(&wq->mutex);
3150 
3151 	/*
3152 	 * Start-to-wait phase
3153 	 */
3154 	next_color = work_next_color(wq->work_color);
3155 
3156 	if (next_color != wq->flush_color) {
3157 		/*
3158 		 * Color space is not full.  The current work_color
3159 		 * becomes our flush_color and work_color is advanced
3160 		 * by one.
3161 		 */
3162 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3163 		this_flusher.flush_color = wq->work_color;
3164 		wq->work_color = next_color;
3165 
3166 		if (!wq->first_flusher) {
3167 			/* no flush in progress, become the first flusher */
3168 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3169 
3170 			wq->first_flusher = &this_flusher;
3171 
3172 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3173 						       wq->work_color)) {
3174 				/* nothing to flush, done */
3175 				wq->flush_color = next_color;
3176 				wq->first_flusher = NULL;
3177 				goto out_unlock;
3178 			}
3179 		} else {
3180 			/* wait in queue */
3181 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3182 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3183 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3184 		}
3185 	} else {
3186 		/*
3187 		 * Oops, color space is full, wait on overflow queue.
3188 		 * The next flush completion will assign us
3189 		 * flush_color and transfer to flusher_queue.
3190 		 */
3191 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3192 	}
3193 
3194 	check_flush_dependency(wq, NULL);
3195 
3196 	mutex_unlock(&wq->mutex);
3197 
3198 	wait_for_completion(&this_flusher.done);
3199 
3200 	/*
3201 	 * Wake-up-and-cascade phase
3202 	 *
3203 	 * First flushers are responsible for cascading flushes and
3204 	 * handling overflow.  Non-first flushers can simply return.
3205 	 */
3206 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3207 		return;
3208 
3209 	mutex_lock(&wq->mutex);
3210 
3211 	/* we might have raced, check again with mutex held */
3212 	if (wq->first_flusher != &this_flusher)
3213 		goto out_unlock;
3214 
3215 	WRITE_ONCE(wq->first_flusher, NULL);
3216 
3217 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3218 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3219 
3220 	while (true) {
3221 		struct wq_flusher *next, *tmp;
3222 
3223 		/* complete all the flushers sharing the current flush color */
3224 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3225 			if (next->flush_color != wq->flush_color)
3226 				break;
3227 			list_del_init(&next->list);
3228 			complete(&next->done);
3229 		}
3230 
3231 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3232 			     wq->flush_color != work_next_color(wq->work_color));
3233 
3234 		/* this flush_color is finished, advance by one */
3235 		wq->flush_color = work_next_color(wq->flush_color);
3236 
3237 		/* one color has been freed, handle overflow queue */
3238 		if (!list_empty(&wq->flusher_overflow)) {
3239 			/*
3240 			 * Assign the same color to all overflowed
3241 			 * flushers, advance work_color and append to
3242 			 * flusher_queue.  This is the start-to-wait
3243 			 * phase for these overflowed flushers.
3244 			 */
3245 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3246 				tmp->flush_color = wq->work_color;
3247 
3248 			wq->work_color = work_next_color(wq->work_color);
3249 
3250 			list_splice_tail_init(&wq->flusher_overflow,
3251 					      &wq->flusher_queue);
3252 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3253 		}
3254 
3255 		if (list_empty(&wq->flusher_queue)) {
3256 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3257 			break;
3258 		}
3259 
3260 		/*
3261 		 * Need to flush more colors.  Make the next flusher
3262 		 * the new first flusher and arm pwqs.
3263 		 */
3264 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3265 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3266 
3267 		list_del_init(&next->list);
3268 		wq->first_flusher = next;
3269 
3270 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3271 			break;
3272 
3273 		/*
3274 		 * Meh... this color is already done, clear first
3275 		 * flusher and repeat cascading.
3276 		 */
3277 		wq->first_flusher = NULL;
3278 	}
3279 
3280 out_unlock:
3281 	mutex_unlock(&wq->mutex);
3282 }
3283 EXPORT_SYMBOL(__flush_workqueue);
3284 
3285 /**
3286  * drain_workqueue - drain a workqueue
3287  * @wq: workqueue to drain
3288  *
3289  * Wait until the workqueue becomes empty.  While draining is in progress,
3290  * only chain queueing is allowed.  IOW, only currently pending or running
3291  * work items on @wq can queue further work items on it.  @wq is flushed
3292  * repeatedly until it becomes empty.  The number of flushing is determined
3293  * by the depth of chaining and should be relatively short.  Whine if it
3294  * takes too long.
3295  */
3296 void drain_workqueue(struct workqueue_struct *wq)
3297 {
3298 	unsigned int flush_cnt = 0;
3299 	struct pool_workqueue *pwq;
3300 
3301 	/*
3302 	 * __queue_work() needs to test whether there are drainers, is much
3303 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3304 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3305 	 */
3306 	mutex_lock(&wq->mutex);
3307 	if (!wq->nr_drainers++)
3308 		wq->flags |= __WQ_DRAINING;
3309 	mutex_unlock(&wq->mutex);
3310 reflush:
3311 	__flush_workqueue(wq);
3312 
3313 	mutex_lock(&wq->mutex);
3314 
3315 	for_each_pwq(pwq, wq) {
3316 		bool drained;
3317 
3318 		raw_spin_lock_irq(&pwq->pool->lock);
3319 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3320 		raw_spin_unlock_irq(&pwq->pool->lock);
3321 
3322 		if (drained)
3323 			continue;
3324 
3325 		if (++flush_cnt == 10 ||
3326 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3327 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3328 				wq->name, __func__, flush_cnt);
3329 
3330 		mutex_unlock(&wq->mutex);
3331 		goto reflush;
3332 	}
3333 
3334 	if (!--wq->nr_drainers)
3335 		wq->flags &= ~__WQ_DRAINING;
3336 	mutex_unlock(&wq->mutex);
3337 }
3338 EXPORT_SYMBOL_GPL(drain_workqueue);
3339 
3340 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3341 			     bool from_cancel)
3342 {
3343 	struct worker *worker = NULL;
3344 	struct worker_pool *pool;
3345 	struct pool_workqueue *pwq;
3346 
3347 	might_sleep();
3348 
3349 	rcu_read_lock();
3350 	pool = get_work_pool(work);
3351 	if (!pool) {
3352 		rcu_read_unlock();
3353 		return false;
3354 	}
3355 
3356 	raw_spin_lock_irq(&pool->lock);
3357 	/* see the comment in try_to_grab_pending() with the same code */
3358 	pwq = get_work_pwq(work);
3359 	if (pwq) {
3360 		if (unlikely(pwq->pool != pool))
3361 			goto already_gone;
3362 	} else {
3363 		worker = find_worker_executing_work(pool, work);
3364 		if (!worker)
3365 			goto already_gone;
3366 		pwq = worker->current_pwq;
3367 	}
3368 
3369 	check_flush_dependency(pwq->wq, work);
3370 
3371 	insert_wq_barrier(pwq, barr, work, worker);
3372 	raw_spin_unlock_irq(&pool->lock);
3373 
3374 	/*
3375 	 * Force a lock recursion deadlock when using flush_work() inside a
3376 	 * single-threaded or rescuer equipped workqueue.
3377 	 *
3378 	 * For single threaded workqueues the deadlock happens when the work
3379 	 * is after the work issuing the flush_work(). For rescuer equipped
3380 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3381 	 * forward progress.
3382 	 */
3383 	if (!from_cancel &&
3384 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3385 		lock_map_acquire(&pwq->wq->lockdep_map);
3386 		lock_map_release(&pwq->wq->lockdep_map);
3387 	}
3388 	rcu_read_unlock();
3389 	return true;
3390 already_gone:
3391 	raw_spin_unlock_irq(&pool->lock);
3392 	rcu_read_unlock();
3393 	return false;
3394 }
3395 
3396 static bool __flush_work(struct work_struct *work, bool from_cancel)
3397 {
3398 	struct wq_barrier barr;
3399 
3400 	if (WARN_ON(!wq_online))
3401 		return false;
3402 
3403 	if (WARN_ON(!work->func))
3404 		return false;
3405 
3406 	lock_map_acquire(&work->lockdep_map);
3407 	lock_map_release(&work->lockdep_map);
3408 
3409 	if (start_flush_work(work, &barr, from_cancel)) {
3410 		wait_for_completion(&barr.done);
3411 		destroy_work_on_stack(&barr.work);
3412 		return true;
3413 	} else {
3414 		return false;
3415 	}
3416 }
3417 
3418 /**
3419  * flush_work - wait for a work to finish executing the last queueing instance
3420  * @work: the work to flush
3421  *
3422  * Wait until @work has finished execution.  @work is guaranteed to be idle
3423  * on return if it hasn't been requeued since flush started.
3424  *
3425  * Return:
3426  * %true if flush_work() waited for the work to finish execution,
3427  * %false if it was already idle.
3428  */
3429 bool flush_work(struct work_struct *work)
3430 {
3431 	return __flush_work(work, false);
3432 }
3433 EXPORT_SYMBOL_GPL(flush_work);
3434 
3435 struct cwt_wait {
3436 	wait_queue_entry_t		wait;
3437 	struct work_struct	*work;
3438 };
3439 
3440 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3441 {
3442 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3443 
3444 	if (cwait->work != key)
3445 		return 0;
3446 	return autoremove_wake_function(wait, mode, sync, key);
3447 }
3448 
3449 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3450 {
3451 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3452 	unsigned long flags;
3453 	int ret;
3454 
3455 	do {
3456 		ret = try_to_grab_pending(work, is_dwork, &flags);
3457 		/*
3458 		 * If someone else is already canceling, wait for it to
3459 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3460 		 * because we may get scheduled between @work's completion
3461 		 * and the other canceling task resuming and clearing
3462 		 * CANCELING - flush_work() will return false immediately
3463 		 * as @work is no longer busy, try_to_grab_pending() will
3464 		 * return -ENOENT as @work is still being canceled and the
3465 		 * other canceling task won't be able to clear CANCELING as
3466 		 * we're hogging the CPU.
3467 		 *
3468 		 * Let's wait for completion using a waitqueue.  As this
3469 		 * may lead to the thundering herd problem, use a custom
3470 		 * wake function which matches @work along with exclusive
3471 		 * wait and wakeup.
3472 		 */
3473 		if (unlikely(ret == -ENOENT)) {
3474 			struct cwt_wait cwait;
3475 
3476 			init_wait(&cwait.wait);
3477 			cwait.wait.func = cwt_wakefn;
3478 			cwait.work = work;
3479 
3480 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3481 						  TASK_UNINTERRUPTIBLE);
3482 			if (work_is_canceling(work))
3483 				schedule();
3484 			finish_wait(&cancel_waitq, &cwait.wait);
3485 		}
3486 	} while (unlikely(ret < 0));
3487 
3488 	/* tell other tasks trying to grab @work to back off */
3489 	mark_work_canceling(work);
3490 	local_irq_restore(flags);
3491 
3492 	/*
3493 	 * This allows canceling during early boot.  We know that @work
3494 	 * isn't executing.
3495 	 */
3496 	if (wq_online)
3497 		__flush_work(work, true);
3498 
3499 	clear_work_data(work);
3500 
3501 	/*
3502 	 * Paired with prepare_to_wait() above so that either
3503 	 * waitqueue_active() is visible here or !work_is_canceling() is
3504 	 * visible there.
3505 	 */
3506 	smp_mb();
3507 	if (waitqueue_active(&cancel_waitq))
3508 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3509 
3510 	return ret;
3511 }
3512 
3513 /**
3514  * cancel_work_sync - cancel a work and wait for it to finish
3515  * @work: the work to cancel
3516  *
3517  * Cancel @work and wait for its execution to finish.  This function
3518  * can be used even if the work re-queues itself or migrates to
3519  * another workqueue.  On return from this function, @work is
3520  * guaranteed to be not pending or executing on any CPU.
3521  *
3522  * cancel_work_sync(&delayed_work->work) must not be used for
3523  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3524  *
3525  * The caller must ensure that the workqueue on which @work was last
3526  * queued can't be destroyed before this function returns.
3527  *
3528  * Return:
3529  * %true if @work was pending, %false otherwise.
3530  */
3531 bool cancel_work_sync(struct work_struct *work)
3532 {
3533 	return __cancel_work_timer(work, false);
3534 }
3535 EXPORT_SYMBOL_GPL(cancel_work_sync);
3536 
3537 /**
3538  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3539  * @dwork: the delayed work to flush
3540  *
3541  * Delayed timer is cancelled and the pending work is queued for
3542  * immediate execution.  Like flush_work(), this function only
3543  * considers the last queueing instance of @dwork.
3544  *
3545  * Return:
3546  * %true if flush_work() waited for the work to finish execution,
3547  * %false if it was already idle.
3548  */
3549 bool flush_delayed_work(struct delayed_work *dwork)
3550 {
3551 	local_irq_disable();
3552 	if (del_timer_sync(&dwork->timer))
3553 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3554 	local_irq_enable();
3555 	return flush_work(&dwork->work);
3556 }
3557 EXPORT_SYMBOL(flush_delayed_work);
3558 
3559 /**
3560  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3561  * @rwork: the rcu work to flush
3562  *
3563  * Return:
3564  * %true if flush_rcu_work() waited for the work to finish execution,
3565  * %false if it was already idle.
3566  */
3567 bool flush_rcu_work(struct rcu_work *rwork)
3568 {
3569 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3570 		rcu_barrier();
3571 		flush_work(&rwork->work);
3572 		return true;
3573 	} else {
3574 		return flush_work(&rwork->work);
3575 	}
3576 }
3577 EXPORT_SYMBOL(flush_rcu_work);
3578 
3579 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3580 {
3581 	unsigned long flags;
3582 	int ret;
3583 
3584 	do {
3585 		ret = try_to_grab_pending(work, is_dwork, &flags);
3586 	} while (unlikely(ret == -EAGAIN));
3587 
3588 	if (unlikely(ret < 0))
3589 		return false;
3590 
3591 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3592 	local_irq_restore(flags);
3593 	return ret;
3594 }
3595 
3596 /*
3597  * See cancel_delayed_work()
3598  */
3599 bool cancel_work(struct work_struct *work)
3600 {
3601 	return __cancel_work(work, false);
3602 }
3603 EXPORT_SYMBOL(cancel_work);
3604 
3605 /**
3606  * cancel_delayed_work - cancel a delayed work
3607  * @dwork: delayed_work to cancel
3608  *
3609  * Kill off a pending delayed_work.
3610  *
3611  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3612  * pending.
3613  *
3614  * Note:
3615  * The work callback function may still be running on return, unless
3616  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3617  * use cancel_delayed_work_sync() to wait on it.
3618  *
3619  * This function is safe to call from any context including IRQ handler.
3620  */
3621 bool cancel_delayed_work(struct delayed_work *dwork)
3622 {
3623 	return __cancel_work(&dwork->work, true);
3624 }
3625 EXPORT_SYMBOL(cancel_delayed_work);
3626 
3627 /**
3628  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3629  * @dwork: the delayed work cancel
3630  *
3631  * This is cancel_work_sync() for delayed works.
3632  *
3633  * Return:
3634  * %true if @dwork was pending, %false otherwise.
3635  */
3636 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3637 {
3638 	return __cancel_work_timer(&dwork->work, true);
3639 }
3640 EXPORT_SYMBOL(cancel_delayed_work_sync);
3641 
3642 /**
3643  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3644  * @func: the function to call
3645  *
3646  * schedule_on_each_cpu() executes @func on each online CPU using the
3647  * system workqueue and blocks until all CPUs have completed.
3648  * schedule_on_each_cpu() is very slow.
3649  *
3650  * Return:
3651  * 0 on success, -errno on failure.
3652  */
3653 int schedule_on_each_cpu(work_func_t func)
3654 {
3655 	int cpu;
3656 	struct work_struct __percpu *works;
3657 
3658 	works = alloc_percpu(struct work_struct);
3659 	if (!works)
3660 		return -ENOMEM;
3661 
3662 	cpus_read_lock();
3663 
3664 	for_each_online_cpu(cpu) {
3665 		struct work_struct *work = per_cpu_ptr(works, cpu);
3666 
3667 		INIT_WORK(work, func);
3668 		schedule_work_on(cpu, work);
3669 	}
3670 
3671 	for_each_online_cpu(cpu)
3672 		flush_work(per_cpu_ptr(works, cpu));
3673 
3674 	cpus_read_unlock();
3675 	free_percpu(works);
3676 	return 0;
3677 }
3678 
3679 /**
3680  * execute_in_process_context - reliably execute the routine with user context
3681  * @fn:		the function to execute
3682  * @ew:		guaranteed storage for the execute work structure (must
3683  *		be available when the work executes)
3684  *
3685  * Executes the function immediately if process context is available,
3686  * otherwise schedules the function for delayed execution.
3687  *
3688  * Return:	0 - function was executed
3689  *		1 - function was scheduled for execution
3690  */
3691 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3692 {
3693 	if (!in_interrupt()) {
3694 		fn(&ew->work);
3695 		return 0;
3696 	}
3697 
3698 	INIT_WORK(&ew->work, fn);
3699 	schedule_work(&ew->work);
3700 
3701 	return 1;
3702 }
3703 EXPORT_SYMBOL_GPL(execute_in_process_context);
3704 
3705 /**
3706  * free_workqueue_attrs - free a workqueue_attrs
3707  * @attrs: workqueue_attrs to free
3708  *
3709  * Undo alloc_workqueue_attrs().
3710  */
3711 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3712 {
3713 	if (attrs) {
3714 		free_cpumask_var(attrs->cpumask);
3715 		free_cpumask_var(attrs->__pod_cpumask);
3716 		kfree(attrs);
3717 	}
3718 }
3719 
3720 /**
3721  * alloc_workqueue_attrs - allocate a workqueue_attrs
3722  *
3723  * Allocate a new workqueue_attrs, initialize with default settings and
3724  * return it.
3725  *
3726  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3727  */
3728 struct workqueue_attrs *alloc_workqueue_attrs(void)
3729 {
3730 	struct workqueue_attrs *attrs;
3731 
3732 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3733 	if (!attrs)
3734 		goto fail;
3735 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3736 		goto fail;
3737 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3738 		goto fail;
3739 
3740 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3741 	attrs->affn_scope = WQ_AFFN_DFL;
3742 	return attrs;
3743 fail:
3744 	free_workqueue_attrs(attrs);
3745 	return NULL;
3746 }
3747 
3748 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3749 				 const struct workqueue_attrs *from)
3750 {
3751 	to->nice = from->nice;
3752 	cpumask_copy(to->cpumask, from->cpumask);
3753 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3754 	to->affn_strict = from->affn_strict;
3755 
3756 	/*
3757 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
3758 	 * fields as copying is used for both pool and wq attrs. Instead,
3759 	 * get_unbound_pool() explicitly clears the fields.
3760 	 */
3761 	to->affn_scope = from->affn_scope;
3762 	to->ordered = from->ordered;
3763 }
3764 
3765 /*
3766  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3767  * comments in 'struct workqueue_attrs' definition.
3768  */
3769 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3770 {
3771 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
3772 	attrs->ordered = false;
3773 }
3774 
3775 /* hash value of the content of @attr */
3776 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3777 {
3778 	u32 hash = 0;
3779 
3780 	hash = jhash_1word(attrs->nice, hash);
3781 	hash = jhash(cpumask_bits(attrs->cpumask),
3782 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3783 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3784 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3785 	hash = jhash_1word(attrs->affn_strict, hash);
3786 	return hash;
3787 }
3788 
3789 /* content equality test */
3790 static bool wqattrs_equal(const struct workqueue_attrs *a,
3791 			  const struct workqueue_attrs *b)
3792 {
3793 	if (a->nice != b->nice)
3794 		return false;
3795 	if (!cpumask_equal(a->cpumask, b->cpumask))
3796 		return false;
3797 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3798 		return false;
3799 	if (a->affn_strict != b->affn_strict)
3800 		return false;
3801 	return true;
3802 }
3803 
3804 /* Update @attrs with actually available CPUs */
3805 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3806 				      const cpumask_t *unbound_cpumask)
3807 {
3808 	/*
3809 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3810 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3811 	 * @unbound_cpumask.
3812 	 */
3813 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3814 	if (unlikely(cpumask_empty(attrs->cpumask)))
3815 		cpumask_copy(attrs->cpumask, unbound_cpumask);
3816 }
3817 
3818 /* find wq_pod_type to use for @attrs */
3819 static const struct wq_pod_type *
3820 wqattrs_pod_type(const struct workqueue_attrs *attrs)
3821 {
3822 	enum wq_affn_scope scope;
3823 	struct wq_pod_type *pt;
3824 
3825 	/* to synchronize access to wq_affn_dfl */
3826 	lockdep_assert_held(&wq_pool_mutex);
3827 
3828 	if (attrs->affn_scope == WQ_AFFN_DFL)
3829 		scope = wq_affn_dfl;
3830 	else
3831 		scope = attrs->affn_scope;
3832 
3833 	pt = &wq_pod_types[scope];
3834 
3835 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3836 	    likely(pt->nr_pods))
3837 		return pt;
3838 
3839 	/*
3840 	 * Before workqueue_init_topology(), only SYSTEM is available which is
3841 	 * initialized in workqueue_init_early().
3842 	 */
3843 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3844 	BUG_ON(!pt->nr_pods);
3845 	return pt;
3846 }
3847 
3848 /**
3849  * init_worker_pool - initialize a newly zalloc'd worker_pool
3850  * @pool: worker_pool to initialize
3851  *
3852  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3853  *
3854  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3855  * inside @pool proper are initialized and put_unbound_pool() can be called
3856  * on @pool safely to release it.
3857  */
3858 static int init_worker_pool(struct worker_pool *pool)
3859 {
3860 	raw_spin_lock_init(&pool->lock);
3861 	pool->id = -1;
3862 	pool->cpu = -1;
3863 	pool->node = NUMA_NO_NODE;
3864 	pool->flags |= POOL_DISASSOCIATED;
3865 	pool->watchdog_ts = jiffies;
3866 	INIT_LIST_HEAD(&pool->worklist);
3867 	INIT_LIST_HEAD(&pool->idle_list);
3868 	hash_init(pool->busy_hash);
3869 
3870 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3871 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3872 
3873 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3874 
3875 	INIT_LIST_HEAD(&pool->workers);
3876 	INIT_LIST_HEAD(&pool->dying_workers);
3877 
3878 	ida_init(&pool->worker_ida);
3879 	INIT_HLIST_NODE(&pool->hash_node);
3880 	pool->refcnt = 1;
3881 
3882 	/* shouldn't fail above this point */
3883 	pool->attrs = alloc_workqueue_attrs();
3884 	if (!pool->attrs)
3885 		return -ENOMEM;
3886 
3887 	wqattrs_clear_for_pool(pool->attrs);
3888 
3889 	return 0;
3890 }
3891 
3892 #ifdef CONFIG_LOCKDEP
3893 static void wq_init_lockdep(struct workqueue_struct *wq)
3894 {
3895 	char *lock_name;
3896 
3897 	lockdep_register_key(&wq->key);
3898 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3899 	if (!lock_name)
3900 		lock_name = wq->name;
3901 
3902 	wq->lock_name = lock_name;
3903 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3904 }
3905 
3906 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3907 {
3908 	lockdep_unregister_key(&wq->key);
3909 }
3910 
3911 static void wq_free_lockdep(struct workqueue_struct *wq)
3912 {
3913 	if (wq->lock_name != wq->name)
3914 		kfree(wq->lock_name);
3915 }
3916 #else
3917 static void wq_init_lockdep(struct workqueue_struct *wq)
3918 {
3919 }
3920 
3921 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3922 {
3923 }
3924 
3925 static void wq_free_lockdep(struct workqueue_struct *wq)
3926 {
3927 }
3928 #endif
3929 
3930 static void rcu_free_wq(struct rcu_head *rcu)
3931 {
3932 	struct workqueue_struct *wq =
3933 		container_of(rcu, struct workqueue_struct, rcu);
3934 
3935 	wq_free_lockdep(wq);
3936 	free_percpu(wq->cpu_pwq);
3937 	free_workqueue_attrs(wq->unbound_attrs);
3938 	kfree(wq);
3939 }
3940 
3941 static void rcu_free_pool(struct rcu_head *rcu)
3942 {
3943 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3944 
3945 	ida_destroy(&pool->worker_ida);
3946 	free_workqueue_attrs(pool->attrs);
3947 	kfree(pool);
3948 }
3949 
3950 /**
3951  * put_unbound_pool - put a worker_pool
3952  * @pool: worker_pool to put
3953  *
3954  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3955  * safe manner.  get_unbound_pool() calls this function on its failure path
3956  * and this function should be able to release pools which went through,
3957  * successfully or not, init_worker_pool().
3958  *
3959  * Should be called with wq_pool_mutex held.
3960  */
3961 static void put_unbound_pool(struct worker_pool *pool)
3962 {
3963 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3964 	struct worker *worker;
3965 	LIST_HEAD(cull_list);
3966 
3967 	lockdep_assert_held(&wq_pool_mutex);
3968 
3969 	if (--pool->refcnt)
3970 		return;
3971 
3972 	/* sanity checks */
3973 	if (WARN_ON(!(pool->cpu < 0)) ||
3974 	    WARN_ON(!list_empty(&pool->worklist)))
3975 		return;
3976 
3977 	/* release id and unhash */
3978 	if (pool->id >= 0)
3979 		idr_remove(&worker_pool_idr, pool->id);
3980 	hash_del(&pool->hash_node);
3981 
3982 	/*
3983 	 * Become the manager and destroy all workers.  This prevents
3984 	 * @pool's workers from blocking on attach_mutex.  We're the last
3985 	 * manager and @pool gets freed with the flag set.
3986 	 *
3987 	 * Having a concurrent manager is quite unlikely to happen as we can
3988 	 * only get here with
3989 	 *   pwq->refcnt == pool->refcnt == 0
3990 	 * which implies no work queued to the pool, which implies no worker can
3991 	 * become the manager. However a worker could have taken the role of
3992 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3993 	 * drops pool->lock
3994 	 */
3995 	while (true) {
3996 		rcuwait_wait_event(&manager_wait,
3997 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3998 				   TASK_UNINTERRUPTIBLE);
3999 
4000 		mutex_lock(&wq_pool_attach_mutex);
4001 		raw_spin_lock_irq(&pool->lock);
4002 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4003 			pool->flags |= POOL_MANAGER_ACTIVE;
4004 			break;
4005 		}
4006 		raw_spin_unlock_irq(&pool->lock);
4007 		mutex_unlock(&wq_pool_attach_mutex);
4008 	}
4009 
4010 	while ((worker = first_idle_worker(pool)))
4011 		set_worker_dying(worker, &cull_list);
4012 	WARN_ON(pool->nr_workers || pool->nr_idle);
4013 	raw_spin_unlock_irq(&pool->lock);
4014 
4015 	wake_dying_workers(&cull_list);
4016 
4017 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4018 		pool->detach_completion = &detach_completion;
4019 	mutex_unlock(&wq_pool_attach_mutex);
4020 
4021 	if (pool->detach_completion)
4022 		wait_for_completion(pool->detach_completion);
4023 
4024 	/* shut down the timers */
4025 	del_timer_sync(&pool->idle_timer);
4026 	cancel_work_sync(&pool->idle_cull_work);
4027 	del_timer_sync(&pool->mayday_timer);
4028 
4029 	/* RCU protected to allow dereferences from get_work_pool() */
4030 	call_rcu(&pool->rcu, rcu_free_pool);
4031 }
4032 
4033 /**
4034  * get_unbound_pool - get a worker_pool with the specified attributes
4035  * @attrs: the attributes of the worker_pool to get
4036  *
4037  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4038  * reference count and return it.  If there already is a matching
4039  * worker_pool, it will be used; otherwise, this function attempts to
4040  * create a new one.
4041  *
4042  * Should be called with wq_pool_mutex held.
4043  *
4044  * Return: On success, a worker_pool with the same attributes as @attrs.
4045  * On failure, %NULL.
4046  */
4047 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4048 {
4049 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4050 	u32 hash = wqattrs_hash(attrs);
4051 	struct worker_pool *pool;
4052 	int pod, node = NUMA_NO_NODE;
4053 
4054 	lockdep_assert_held(&wq_pool_mutex);
4055 
4056 	/* do we already have a matching pool? */
4057 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4058 		if (wqattrs_equal(pool->attrs, attrs)) {
4059 			pool->refcnt++;
4060 			return pool;
4061 		}
4062 	}
4063 
4064 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4065 	for (pod = 0; pod < pt->nr_pods; pod++) {
4066 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4067 			node = pt->pod_node[pod];
4068 			break;
4069 		}
4070 	}
4071 
4072 	/* nope, create a new one */
4073 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4074 	if (!pool || init_worker_pool(pool) < 0)
4075 		goto fail;
4076 
4077 	pool->node = node;
4078 	copy_workqueue_attrs(pool->attrs, attrs);
4079 	wqattrs_clear_for_pool(pool->attrs);
4080 
4081 	if (worker_pool_assign_id(pool) < 0)
4082 		goto fail;
4083 
4084 	/* create and start the initial worker */
4085 	if (wq_online && !create_worker(pool))
4086 		goto fail;
4087 
4088 	/* install */
4089 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4090 
4091 	return pool;
4092 fail:
4093 	if (pool)
4094 		put_unbound_pool(pool);
4095 	return NULL;
4096 }
4097 
4098 static void rcu_free_pwq(struct rcu_head *rcu)
4099 {
4100 	kmem_cache_free(pwq_cache,
4101 			container_of(rcu, struct pool_workqueue, rcu));
4102 }
4103 
4104 /*
4105  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4106  * refcnt and needs to be destroyed.
4107  */
4108 static void pwq_release_workfn(struct kthread_work *work)
4109 {
4110 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4111 						  release_work);
4112 	struct workqueue_struct *wq = pwq->wq;
4113 	struct worker_pool *pool = pwq->pool;
4114 	bool is_last = false;
4115 
4116 	/*
4117 	 * When @pwq is not linked, it doesn't hold any reference to the
4118 	 * @wq, and @wq is invalid to access.
4119 	 */
4120 	if (!list_empty(&pwq->pwqs_node)) {
4121 		mutex_lock(&wq->mutex);
4122 		list_del_rcu(&pwq->pwqs_node);
4123 		is_last = list_empty(&wq->pwqs);
4124 		mutex_unlock(&wq->mutex);
4125 	}
4126 
4127 	if (wq->flags & WQ_UNBOUND) {
4128 		mutex_lock(&wq_pool_mutex);
4129 		put_unbound_pool(pool);
4130 		mutex_unlock(&wq_pool_mutex);
4131 	}
4132 
4133 	call_rcu(&pwq->rcu, rcu_free_pwq);
4134 
4135 	/*
4136 	 * If we're the last pwq going away, @wq is already dead and no one
4137 	 * is gonna access it anymore.  Schedule RCU free.
4138 	 */
4139 	if (is_last) {
4140 		wq_unregister_lockdep(wq);
4141 		call_rcu(&wq->rcu, rcu_free_wq);
4142 	}
4143 }
4144 
4145 /**
4146  * pwq_adjust_max_active - update a pwq's max_active to the current setting
4147  * @pwq: target pool_workqueue
4148  *
4149  * If @pwq isn't freezing, set @pwq->max_active to the associated
4150  * workqueue's saved_max_active and activate inactive work items
4151  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
4152  */
4153 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4154 {
4155 	struct workqueue_struct *wq = pwq->wq;
4156 	bool freezable = wq->flags & WQ_FREEZABLE;
4157 	unsigned long flags;
4158 
4159 	/* for @wq->saved_max_active */
4160 	lockdep_assert_held(&wq->mutex);
4161 
4162 	/* fast exit for non-freezable wqs */
4163 	if (!freezable && pwq->max_active == wq->saved_max_active)
4164 		return;
4165 
4166 	/* this function can be called during early boot w/ irq disabled */
4167 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4168 
4169 	/*
4170 	 * During [un]freezing, the caller is responsible for ensuring that
4171 	 * this function is called at least once after @workqueue_freezing
4172 	 * is updated and visible.
4173 	 */
4174 	if (!freezable || !workqueue_freezing) {
4175 		pwq->max_active = wq->saved_max_active;
4176 
4177 		while (!list_empty(&pwq->inactive_works) &&
4178 		       pwq->nr_active < pwq->max_active)
4179 			pwq_activate_first_inactive(pwq);
4180 
4181 		kick_pool(pwq->pool);
4182 	} else {
4183 		pwq->max_active = 0;
4184 	}
4185 
4186 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4187 }
4188 
4189 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4190 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4191 		     struct worker_pool *pool)
4192 {
4193 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4194 
4195 	memset(pwq, 0, sizeof(*pwq));
4196 
4197 	pwq->pool = pool;
4198 	pwq->wq = wq;
4199 	pwq->flush_color = -1;
4200 	pwq->refcnt = 1;
4201 	INIT_LIST_HEAD(&pwq->inactive_works);
4202 	INIT_LIST_HEAD(&pwq->pwqs_node);
4203 	INIT_LIST_HEAD(&pwq->mayday_node);
4204 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4205 }
4206 
4207 /* sync @pwq with the current state of its associated wq and link it */
4208 static void link_pwq(struct pool_workqueue *pwq)
4209 {
4210 	struct workqueue_struct *wq = pwq->wq;
4211 
4212 	lockdep_assert_held(&wq->mutex);
4213 
4214 	/* may be called multiple times, ignore if already linked */
4215 	if (!list_empty(&pwq->pwqs_node))
4216 		return;
4217 
4218 	/* set the matching work_color */
4219 	pwq->work_color = wq->work_color;
4220 
4221 	/* sync max_active to the current setting */
4222 	pwq_adjust_max_active(pwq);
4223 
4224 	/* link in @pwq */
4225 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4226 }
4227 
4228 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4229 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4230 					const struct workqueue_attrs *attrs)
4231 {
4232 	struct worker_pool *pool;
4233 	struct pool_workqueue *pwq;
4234 
4235 	lockdep_assert_held(&wq_pool_mutex);
4236 
4237 	pool = get_unbound_pool(attrs);
4238 	if (!pool)
4239 		return NULL;
4240 
4241 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4242 	if (!pwq) {
4243 		put_unbound_pool(pool);
4244 		return NULL;
4245 	}
4246 
4247 	init_pwq(pwq, wq, pool);
4248 	return pwq;
4249 }
4250 
4251 /**
4252  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4253  * @attrs: the wq_attrs of the default pwq of the target workqueue
4254  * @cpu: the target CPU
4255  * @cpu_going_down: if >= 0, the CPU to consider as offline
4256  *
4257  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4258  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4259  * The result is stored in @attrs->__pod_cpumask.
4260  *
4261  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4262  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4263  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4264  *
4265  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4266  */
4267 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4268 				int cpu_going_down)
4269 {
4270 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4271 	int pod = pt->cpu_pod[cpu];
4272 
4273 	/* does @pod have any online CPUs @attrs wants? */
4274 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4275 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4276 	if (cpu_going_down >= 0)
4277 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4278 
4279 	if (cpumask_empty(attrs->__pod_cpumask)) {
4280 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4281 		return;
4282 	}
4283 
4284 	/* yeap, return possible CPUs in @pod that @attrs wants */
4285 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4286 
4287 	if (cpumask_empty(attrs->__pod_cpumask))
4288 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4289 				"possible intersect\n");
4290 }
4291 
4292 /* install @pwq into @wq's cpu_pwq and return the old pwq */
4293 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4294 					int cpu, struct pool_workqueue *pwq)
4295 {
4296 	struct pool_workqueue *old_pwq;
4297 
4298 	lockdep_assert_held(&wq_pool_mutex);
4299 	lockdep_assert_held(&wq->mutex);
4300 
4301 	/* link_pwq() can handle duplicate calls */
4302 	link_pwq(pwq);
4303 
4304 	old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4305 	rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4306 	return old_pwq;
4307 }
4308 
4309 /* context to store the prepared attrs & pwqs before applying */
4310 struct apply_wqattrs_ctx {
4311 	struct workqueue_struct	*wq;		/* target workqueue */
4312 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4313 	struct list_head	list;		/* queued for batching commit */
4314 	struct pool_workqueue	*dfl_pwq;
4315 	struct pool_workqueue	*pwq_tbl[];
4316 };
4317 
4318 /* free the resources after success or abort */
4319 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4320 {
4321 	if (ctx) {
4322 		int cpu;
4323 
4324 		for_each_possible_cpu(cpu)
4325 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4326 		put_pwq_unlocked(ctx->dfl_pwq);
4327 
4328 		free_workqueue_attrs(ctx->attrs);
4329 
4330 		kfree(ctx);
4331 	}
4332 }
4333 
4334 /* allocate the attrs and pwqs for later installation */
4335 static struct apply_wqattrs_ctx *
4336 apply_wqattrs_prepare(struct workqueue_struct *wq,
4337 		      const struct workqueue_attrs *attrs,
4338 		      const cpumask_var_t unbound_cpumask)
4339 {
4340 	struct apply_wqattrs_ctx *ctx;
4341 	struct workqueue_attrs *new_attrs;
4342 	int cpu;
4343 
4344 	lockdep_assert_held(&wq_pool_mutex);
4345 
4346 	if (WARN_ON(attrs->affn_scope < 0 ||
4347 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4348 		return ERR_PTR(-EINVAL);
4349 
4350 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4351 
4352 	new_attrs = alloc_workqueue_attrs();
4353 	if (!ctx || !new_attrs)
4354 		goto out_free;
4355 
4356 	/*
4357 	 * If something goes wrong during CPU up/down, we'll fall back to
4358 	 * the default pwq covering whole @attrs->cpumask.  Always create
4359 	 * it even if we don't use it immediately.
4360 	 */
4361 	copy_workqueue_attrs(new_attrs, attrs);
4362 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4363 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4364 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4365 	if (!ctx->dfl_pwq)
4366 		goto out_free;
4367 
4368 	for_each_possible_cpu(cpu) {
4369 		if (new_attrs->ordered) {
4370 			ctx->dfl_pwq->refcnt++;
4371 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4372 		} else {
4373 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4374 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4375 			if (!ctx->pwq_tbl[cpu])
4376 				goto out_free;
4377 		}
4378 	}
4379 
4380 	/* save the user configured attrs and sanitize it. */
4381 	copy_workqueue_attrs(new_attrs, attrs);
4382 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4383 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4384 	ctx->attrs = new_attrs;
4385 
4386 	ctx->wq = wq;
4387 	return ctx;
4388 
4389 out_free:
4390 	free_workqueue_attrs(new_attrs);
4391 	apply_wqattrs_cleanup(ctx);
4392 	return ERR_PTR(-ENOMEM);
4393 }
4394 
4395 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4396 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4397 {
4398 	int cpu;
4399 
4400 	/* all pwqs have been created successfully, let's install'em */
4401 	mutex_lock(&ctx->wq->mutex);
4402 
4403 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4404 
4405 	/* save the previous pwq and install the new one */
4406 	for_each_possible_cpu(cpu)
4407 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4408 							ctx->pwq_tbl[cpu]);
4409 
4410 	/* @dfl_pwq might not have been used, ensure it's linked */
4411 	link_pwq(ctx->dfl_pwq);
4412 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4413 
4414 	mutex_unlock(&ctx->wq->mutex);
4415 }
4416 
4417 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4418 					const struct workqueue_attrs *attrs)
4419 {
4420 	struct apply_wqattrs_ctx *ctx;
4421 
4422 	/* only unbound workqueues can change attributes */
4423 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4424 		return -EINVAL;
4425 
4426 	/* creating multiple pwqs breaks ordering guarantee */
4427 	if (!list_empty(&wq->pwqs)) {
4428 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4429 			return -EINVAL;
4430 
4431 		wq->flags &= ~__WQ_ORDERED;
4432 	}
4433 
4434 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4435 	if (IS_ERR(ctx))
4436 		return PTR_ERR(ctx);
4437 
4438 	/* the ctx has been prepared successfully, let's commit it */
4439 	apply_wqattrs_commit(ctx);
4440 	apply_wqattrs_cleanup(ctx);
4441 
4442 	return 0;
4443 }
4444 
4445 /**
4446  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4447  * @wq: the target workqueue
4448  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4449  *
4450  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4451  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4452  * work items are affine to the pod it was issued on. Older pwqs are released as
4453  * in-flight work items finish. Note that a work item which repeatedly requeues
4454  * itself back-to-back will stay on its current pwq.
4455  *
4456  * Performs GFP_KERNEL allocations.
4457  *
4458  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4459  *
4460  * Return: 0 on success and -errno on failure.
4461  */
4462 int apply_workqueue_attrs(struct workqueue_struct *wq,
4463 			  const struct workqueue_attrs *attrs)
4464 {
4465 	int ret;
4466 
4467 	lockdep_assert_cpus_held();
4468 
4469 	mutex_lock(&wq_pool_mutex);
4470 	ret = apply_workqueue_attrs_locked(wq, attrs);
4471 	mutex_unlock(&wq_pool_mutex);
4472 
4473 	return ret;
4474 }
4475 
4476 /**
4477  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4478  * @wq: the target workqueue
4479  * @cpu: the CPU to update pool association for
4480  * @hotplug_cpu: the CPU coming up or going down
4481  * @online: whether @cpu is coming up or going down
4482  *
4483  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4484  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4485  * @wq accordingly.
4486  *
4487  *
4488  * If pod affinity can't be adjusted due to memory allocation failure, it falls
4489  * back to @wq->dfl_pwq which may not be optimal but is always correct.
4490  *
4491  * Note that when the last allowed CPU of a pod goes offline for a workqueue
4492  * with a cpumask spanning multiple pods, the workers which were already
4493  * executing the work items for the workqueue will lose their CPU affinity and
4494  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4495  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4496  * responsibility to flush the work item from CPU_DOWN_PREPARE.
4497  */
4498 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4499 			  int hotplug_cpu, bool online)
4500 {
4501 	int off_cpu = online ? -1 : hotplug_cpu;
4502 	struct pool_workqueue *old_pwq = NULL, *pwq;
4503 	struct workqueue_attrs *target_attrs;
4504 
4505 	lockdep_assert_held(&wq_pool_mutex);
4506 
4507 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4508 		return;
4509 
4510 	/*
4511 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4512 	 * Let's use a preallocated one.  The following buf is protected by
4513 	 * CPU hotplug exclusion.
4514 	 */
4515 	target_attrs = wq_update_pod_attrs_buf;
4516 
4517 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4518 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4519 
4520 	/* nothing to do if the target cpumask matches the current pwq */
4521 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4522 	pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4523 					lockdep_is_held(&wq_pool_mutex));
4524 	if (wqattrs_equal(target_attrs, pwq->pool->attrs))
4525 		return;
4526 
4527 	/* create a new pwq */
4528 	pwq = alloc_unbound_pwq(wq, target_attrs);
4529 	if (!pwq) {
4530 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4531 			wq->name);
4532 		goto use_dfl_pwq;
4533 	}
4534 
4535 	/* Install the new pwq. */
4536 	mutex_lock(&wq->mutex);
4537 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4538 	goto out_unlock;
4539 
4540 use_dfl_pwq:
4541 	mutex_lock(&wq->mutex);
4542 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4543 	get_pwq(wq->dfl_pwq);
4544 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4545 	old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4546 out_unlock:
4547 	mutex_unlock(&wq->mutex);
4548 	put_pwq_unlocked(old_pwq);
4549 }
4550 
4551 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4552 {
4553 	bool highpri = wq->flags & WQ_HIGHPRI;
4554 	int cpu, ret;
4555 
4556 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4557 	if (!wq->cpu_pwq)
4558 		goto enomem;
4559 
4560 	if (!(wq->flags & WQ_UNBOUND)) {
4561 		for_each_possible_cpu(cpu) {
4562 			struct pool_workqueue **pwq_p =
4563 				per_cpu_ptr(wq->cpu_pwq, cpu);
4564 			struct worker_pool *pool =
4565 				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4566 
4567 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4568 						       pool->node);
4569 			if (!*pwq_p)
4570 				goto enomem;
4571 
4572 			init_pwq(*pwq_p, wq, pool);
4573 
4574 			mutex_lock(&wq->mutex);
4575 			link_pwq(*pwq_p);
4576 			mutex_unlock(&wq->mutex);
4577 		}
4578 		return 0;
4579 	}
4580 
4581 	cpus_read_lock();
4582 	if (wq->flags & __WQ_ORDERED) {
4583 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4584 		/* there should only be single pwq for ordering guarantee */
4585 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4586 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4587 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4588 	} else {
4589 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4590 	}
4591 	cpus_read_unlock();
4592 
4593 	/* for unbound pwq, flush the pwq_release_worker ensures that the
4594 	 * pwq_release_workfn() completes before calling kfree(wq).
4595 	 */
4596 	if (ret)
4597 		kthread_flush_worker(pwq_release_worker);
4598 
4599 	return ret;
4600 
4601 enomem:
4602 	if (wq->cpu_pwq) {
4603 		for_each_possible_cpu(cpu) {
4604 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4605 
4606 			if (pwq)
4607 				kmem_cache_free(pwq_cache, pwq);
4608 		}
4609 		free_percpu(wq->cpu_pwq);
4610 		wq->cpu_pwq = NULL;
4611 	}
4612 	return -ENOMEM;
4613 }
4614 
4615 static int wq_clamp_max_active(int max_active, unsigned int flags,
4616 			       const char *name)
4617 {
4618 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4619 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4620 			max_active, name, 1, WQ_MAX_ACTIVE);
4621 
4622 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4623 }
4624 
4625 /*
4626  * Workqueues which may be used during memory reclaim should have a rescuer
4627  * to guarantee forward progress.
4628  */
4629 static int init_rescuer(struct workqueue_struct *wq)
4630 {
4631 	struct worker *rescuer;
4632 	int ret;
4633 
4634 	if (!(wq->flags & WQ_MEM_RECLAIM))
4635 		return 0;
4636 
4637 	rescuer = alloc_worker(NUMA_NO_NODE);
4638 	if (!rescuer) {
4639 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4640 		       wq->name);
4641 		return -ENOMEM;
4642 	}
4643 
4644 	rescuer->rescue_wq = wq;
4645 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4646 	if (IS_ERR(rescuer->task)) {
4647 		ret = PTR_ERR(rescuer->task);
4648 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4649 		       wq->name, ERR_PTR(ret));
4650 		kfree(rescuer);
4651 		return ret;
4652 	}
4653 
4654 	wq->rescuer = rescuer;
4655 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4656 	wake_up_process(rescuer->task);
4657 
4658 	return 0;
4659 }
4660 
4661 __printf(1, 4)
4662 struct workqueue_struct *alloc_workqueue(const char *fmt,
4663 					 unsigned int flags,
4664 					 int max_active, ...)
4665 {
4666 	va_list args;
4667 	struct workqueue_struct *wq;
4668 	struct pool_workqueue *pwq;
4669 
4670 	/*
4671 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
4672 	 * the case on many machines due to per-pod pools. While
4673 	 * alloc_ordered_workqueue() is the right way to create an ordered
4674 	 * workqueue, keep the previous behavior to avoid subtle breakages.
4675 	 */
4676 	if ((flags & WQ_UNBOUND) && max_active == 1)
4677 		flags |= __WQ_ORDERED;
4678 
4679 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4680 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4681 		flags |= WQ_UNBOUND;
4682 
4683 	/* allocate wq and format name */
4684 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4685 	if (!wq)
4686 		return NULL;
4687 
4688 	if (flags & WQ_UNBOUND) {
4689 		wq->unbound_attrs = alloc_workqueue_attrs();
4690 		if (!wq->unbound_attrs)
4691 			goto err_free_wq;
4692 	}
4693 
4694 	va_start(args, max_active);
4695 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4696 	va_end(args);
4697 
4698 	max_active = max_active ?: WQ_DFL_ACTIVE;
4699 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4700 
4701 	/* init wq */
4702 	wq->flags = flags;
4703 	wq->saved_max_active = max_active;
4704 	mutex_init(&wq->mutex);
4705 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4706 	INIT_LIST_HEAD(&wq->pwqs);
4707 	INIT_LIST_HEAD(&wq->flusher_queue);
4708 	INIT_LIST_HEAD(&wq->flusher_overflow);
4709 	INIT_LIST_HEAD(&wq->maydays);
4710 
4711 	wq_init_lockdep(wq);
4712 	INIT_LIST_HEAD(&wq->list);
4713 
4714 	if (alloc_and_link_pwqs(wq) < 0)
4715 		goto err_unreg_lockdep;
4716 
4717 	if (wq_online && init_rescuer(wq) < 0)
4718 		goto err_destroy;
4719 
4720 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4721 		goto err_destroy;
4722 
4723 	/*
4724 	 * wq_pool_mutex protects global freeze state and workqueues list.
4725 	 * Grab it, adjust max_active and add the new @wq to workqueues
4726 	 * list.
4727 	 */
4728 	mutex_lock(&wq_pool_mutex);
4729 
4730 	mutex_lock(&wq->mutex);
4731 	for_each_pwq(pwq, wq)
4732 		pwq_adjust_max_active(pwq);
4733 	mutex_unlock(&wq->mutex);
4734 
4735 	list_add_tail_rcu(&wq->list, &workqueues);
4736 
4737 	mutex_unlock(&wq_pool_mutex);
4738 
4739 	return wq;
4740 
4741 err_unreg_lockdep:
4742 	wq_unregister_lockdep(wq);
4743 	wq_free_lockdep(wq);
4744 err_free_wq:
4745 	free_workqueue_attrs(wq->unbound_attrs);
4746 	kfree(wq);
4747 	return NULL;
4748 err_destroy:
4749 	destroy_workqueue(wq);
4750 	return NULL;
4751 }
4752 EXPORT_SYMBOL_GPL(alloc_workqueue);
4753 
4754 static bool pwq_busy(struct pool_workqueue *pwq)
4755 {
4756 	int i;
4757 
4758 	for (i = 0; i < WORK_NR_COLORS; i++)
4759 		if (pwq->nr_in_flight[i])
4760 			return true;
4761 
4762 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4763 		return true;
4764 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4765 		return true;
4766 
4767 	return false;
4768 }
4769 
4770 /**
4771  * destroy_workqueue - safely terminate a workqueue
4772  * @wq: target workqueue
4773  *
4774  * Safely destroy a workqueue. All work currently pending will be done first.
4775  */
4776 void destroy_workqueue(struct workqueue_struct *wq)
4777 {
4778 	struct pool_workqueue *pwq;
4779 	int cpu;
4780 
4781 	/*
4782 	 * Remove it from sysfs first so that sanity check failure doesn't
4783 	 * lead to sysfs name conflicts.
4784 	 */
4785 	workqueue_sysfs_unregister(wq);
4786 
4787 	/* mark the workqueue destruction is in progress */
4788 	mutex_lock(&wq->mutex);
4789 	wq->flags |= __WQ_DESTROYING;
4790 	mutex_unlock(&wq->mutex);
4791 
4792 	/* drain it before proceeding with destruction */
4793 	drain_workqueue(wq);
4794 
4795 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4796 	if (wq->rescuer) {
4797 		struct worker *rescuer = wq->rescuer;
4798 
4799 		/* this prevents new queueing */
4800 		raw_spin_lock_irq(&wq_mayday_lock);
4801 		wq->rescuer = NULL;
4802 		raw_spin_unlock_irq(&wq_mayday_lock);
4803 
4804 		/* rescuer will empty maydays list before exiting */
4805 		kthread_stop(rescuer->task);
4806 		kfree(rescuer);
4807 	}
4808 
4809 	/*
4810 	 * Sanity checks - grab all the locks so that we wait for all
4811 	 * in-flight operations which may do put_pwq().
4812 	 */
4813 	mutex_lock(&wq_pool_mutex);
4814 	mutex_lock(&wq->mutex);
4815 	for_each_pwq(pwq, wq) {
4816 		raw_spin_lock_irq(&pwq->pool->lock);
4817 		if (WARN_ON(pwq_busy(pwq))) {
4818 			pr_warn("%s: %s has the following busy pwq\n",
4819 				__func__, wq->name);
4820 			show_pwq(pwq);
4821 			raw_spin_unlock_irq(&pwq->pool->lock);
4822 			mutex_unlock(&wq->mutex);
4823 			mutex_unlock(&wq_pool_mutex);
4824 			show_one_workqueue(wq);
4825 			return;
4826 		}
4827 		raw_spin_unlock_irq(&pwq->pool->lock);
4828 	}
4829 	mutex_unlock(&wq->mutex);
4830 
4831 	/*
4832 	 * wq list is used to freeze wq, remove from list after
4833 	 * flushing is complete in case freeze races us.
4834 	 */
4835 	list_del_rcu(&wq->list);
4836 	mutex_unlock(&wq_pool_mutex);
4837 
4838 	/*
4839 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4840 	 * to put the base refs. @wq will be auto-destroyed from the last
4841 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
4842 	 */
4843 	rcu_read_lock();
4844 
4845 	for_each_possible_cpu(cpu) {
4846 		pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4847 		RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4848 		put_pwq_unlocked(pwq);
4849 	}
4850 
4851 	put_pwq_unlocked(wq->dfl_pwq);
4852 	wq->dfl_pwq = NULL;
4853 
4854 	rcu_read_unlock();
4855 }
4856 EXPORT_SYMBOL_GPL(destroy_workqueue);
4857 
4858 /**
4859  * workqueue_set_max_active - adjust max_active of a workqueue
4860  * @wq: target workqueue
4861  * @max_active: new max_active value.
4862  *
4863  * Set max_active of @wq to @max_active.
4864  *
4865  * CONTEXT:
4866  * Don't call from IRQ context.
4867  */
4868 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4869 {
4870 	struct pool_workqueue *pwq;
4871 
4872 	/* disallow meddling with max_active for ordered workqueues */
4873 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4874 		return;
4875 
4876 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4877 
4878 	mutex_lock(&wq->mutex);
4879 
4880 	wq->flags &= ~__WQ_ORDERED;
4881 	wq->saved_max_active = max_active;
4882 
4883 	for_each_pwq(pwq, wq)
4884 		pwq_adjust_max_active(pwq);
4885 
4886 	mutex_unlock(&wq->mutex);
4887 }
4888 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4889 
4890 /**
4891  * current_work - retrieve %current task's work struct
4892  *
4893  * Determine if %current task is a workqueue worker and what it's working on.
4894  * Useful to find out the context that the %current task is running in.
4895  *
4896  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4897  */
4898 struct work_struct *current_work(void)
4899 {
4900 	struct worker *worker = current_wq_worker();
4901 
4902 	return worker ? worker->current_work : NULL;
4903 }
4904 EXPORT_SYMBOL(current_work);
4905 
4906 /**
4907  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4908  *
4909  * Determine whether %current is a workqueue rescuer.  Can be used from
4910  * work functions to determine whether it's being run off the rescuer task.
4911  *
4912  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4913  */
4914 bool current_is_workqueue_rescuer(void)
4915 {
4916 	struct worker *worker = current_wq_worker();
4917 
4918 	return worker && worker->rescue_wq;
4919 }
4920 
4921 /**
4922  * workqueue_congested - test whether a workqueue is congested
4923  * @cpu: CPU in question
4924  * @wq: target workqueue
4925  *
4926  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4927  * no synchronization around this function and the test result is
4928  * unreliable and only useful as advisory hints or for debugging.
4929  *
4930  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4931  *
4932  * With the exception of ordered workqueues, all workqueues have per-cpu
4933  * pool_workqueues, each with its own congested state. A workqueue being
4934  * congested on one CPU doesn't mean that the workqueue is contested on any
4935  * other CPUs.
4936  *
4937  * Return:
4938  * %true if congested, %false otherwise.
4939  */
4940 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4941 {
4942 	struct pool_workqueue *pwq;
4943 	bool ret;
4944 
4945 	rcu_read_lock();
4946 	preempt_disable();
4947 
4948 	if (cpu == WORK_CPU_UNBOUND)
4949 		cpu = smp_processor_id();
4950 
4951 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4952 	ret = !list_empty(&pwq->inactive_works);
4953 
4954 	preempt_enable();
4955 	rcu_read_unlock();
4956 
4957 	return ret;
4958 }
4959 EXPORT_SYMBOL_GPL(workqueue_congested);
4960 
4961 /**
4962  * work_busy - test whether a work is currently pending or running
4963  * @work: the work to be tested
4964  *
4965  * Test whether @work is currently pending or running.  There is no
4966  * synchronization around this function and the test result is
4967  * unreliable and only useful as advisory hints or for debugging.
4968  *
4969  * Return:
4970  * OR'd bitmask of WORK_BUSY_* bits.
4971  */
4972 unsigned int work_busy(struct work_struct *work)
4973 {
4974 	struct worker_pool *pool;
4975 	unsigned long flags;
4976 	unsigned int ret = 0;
4977 
4978 	if (work_pending(work))
4979 		ret |= WORK_BUSY_PENDING;
4980 
4981 	rcu_read_lock();
4982 	pool = get_work_pool(work);
4983 	if (pool) {
4984 		raw_spin_lock_irqsave(&pool->lock, flags);
4985 		if (find_worker_executing_work(pool, work))
4986 			ret |= WORK_BUSY_RUNNING;
4987 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4988 	}
4989 	rcu_read_unlock();
4990 
4991 	return ret;
4992 }
4993 EXPORT_SYMBOL_GPL(work_busy);
4994 
4995 /**
4996  * set_worker_desc - set description for the current work item
4997  * @fmt: printf-style format string
4998  * @...: arguments for the format string
4999  *
5000  * This function can be called by a running work function to describe what
5001  * the work item is about.  If the worker task gets dumped, this
5002  * information will be printed out together to help debugging.  The
5003  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5004  */
5005 void set_worker_desc(const char *fmt, ...)
5006 {
5007 	struct worker *worker = current_wq_worker();
5008 	va_list args;
5009 
5010 	if (worker) {
5011 		va_start(args, fmt);
5012 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5013 		va_end(args);
5014 	}
5015 }
5016 EXPORT_SYMBOL_GPL(set_worker_desc);
5017 
5018 /**
5019  * print_worker_info - print out worker information and description
5020  * @log_lvl: the log level to use when printing
5021  * @task: target task
5022  *
5023  * If @task is a worker and currently executing a work item, print out the
5024  * name of the workqueue being serviced and worker description set with
5025  * set_worker_desc() by the currently executing work item.
5026  *
5027  * This function can be safely called on any task as long as the
5028  * task_struct itself is accessible.  While safe, this function isn't
5029  * synchronized and may print out mixups or garbages of limited length.
5030  */
5031 void print_worker_info(const char *log_lvl, struct task_struct *task)
5032 {
5033 	work_func_t *fn = NULL;
5034 	char name[WQ_NAME_LEN] = { };
5035 	char desc[WORKER_DESC_LEN] = { };
5036 	struct pool_workqueue *pwq = NULL;
5037 	struct workqueue_struct *wq = NULL;
5038 	struct worker *worker;
5039 
5040 	if (!(task->flags & PF_WQ_WORKER))
5041 		return;
5042 
5043 	/*
5044 	 * This function is called without any synchronization and @task
5045 	 * could be in any state.  Be careful with dereferences.
5046 	 */
5047 	worker = kthread_probe_data(task);
5048 
5049 	/*
5050 	 * Carefully copy the associated workqueue's workfn, name and desc.
5051 	 * Keep the original last '\0' in case the original is garbage.
5052 	 */
5053 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5054 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5055 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5056 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5057 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5058 
5059 	if (fn || name[0] || desc[0]) {
5060 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5061 		if (strcmp(name, desc))
5062 			pr_cont(" (%s)", desc);
5063 		pr_cont("\n");
5064 	}
5065 }
5066 
5067 static void pr_cont_pool_info(struct worker_pool *pool)
5068 {
5069 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5070 	if (pool->node != NUMA_NO_NODE)
5071 		pr_cont(" node=%d", pool->node);
5072 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5073 }
5074 
5075 struct pr_cont_work_struct {
5076 	bool comma;
5077 	work_func_t func;
5078 	long ctr;
5079 };
5080 
5081 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5082 {
5083 	if (!pcwsp->ctr)
5084 		goto out_record;
5085 	if (func == pcwsp->func) {
5086 		pcwsp->ctr++;
5087 		return;
5088 	}
5089 	if (pcwsp->ctr == 1)
5090 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5091 	else
5092 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5093 	pcwsp->ctr = 0;
5094 out_record:
5095 	if ((long)func == -1L)
5096 		return;
5097 	pcwsp->comma = comma;
5098 	pcwsp->func = func;
5099 	pcwsp->ctr = 1;
5100 }
5101 
5102 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5103 {
5104 	if (work->func == wq_barrier_func) {
5105 		struct wq_barrier *barr;
5106 
5107 		barr = container_of(work, struct wq_barrier, work);
5108 
5109 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5110 		pr_cont("%s BAR(%d)", comma ? "," : "",
5111 			task_pid_nr(barr->task));
5112 	} else {
5113 		if (!comma)
5114 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5115 		pr_cont_work_flush(comma, work->func, pcwsp);
5116 	}
5117 }
5118 
5119 static void show_pwq(struct pool_workqueue *pwq)
5120 {
5121 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5122 	struct worker_pool *pool = pwq->pool;
5123 	struct work_struct *work;
5124 	struct worker *worker;
5125 	bool has_in_flight = false, has_pending = false;
5126 	int bkt;
5127 
5128 	pr_info("  pwq %d:", pool->id);
5129 	pr_cont_pool_info(pool);
5130 
5131 	pr_cont(" active=%d/%d refcnt=%d%s\n",
5132 		pwq->nr_active, pwq->max_active, pwq->refcnt,
5133 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5134 
5135 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5136 		if (worker->current_pwq == pwq) {
5137 			has_in_flight = true;
5138 			break;
5139 		}
5140 	}
5141 	if (has_in_flight) {
5142 		bool comma = false;
5143 
5144 		pr_info("    in-flight:");
5145 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5146 			if (worker->current_pwq != pwq)
5147 				continue;
5148 
5149 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5150 				task_pid_nr(worker->task),
5151 				worker->rescue_wq ? "(RESCUER)" : "",
5152 				worker->current_func);
5153 			list_for_each_entry(work, &worker->scheduled, entry)
5154 				pr_cont_work(false, work, &pcws);
5155 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5156 			comma = true;
5157 		}
5158 		pr_cont("\n");
5159 	}
5160 
5161 	list_for_each_entry(work, &pool->worklist, entry) {
5162 		if (get_work_pwq(work) == pwq) {
5163 			has_pending = true;
5164 			break;
5165 		}
5166 	}
5167 	if (has_pending) {
5168 		bool comma = false;
5169 
5170 		pr_info("    pending:");
5171 		list_for_each_entry(work, &pool->worklist, entry) {
5172 			if (get_work_pwq(work) != pwq)
5173 				continue;
5174 
5175 			pr_cont_work(comma, work, &pcws);
5176 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5177 		}
5178 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5179 		pr_cont("\n");
5180 	}
5181 
5182 	if (!list_empty(&pwq->inactive_works)) {
5183 		bool comma = false;
5184 
5185 		pr_info("    inactive:");
5186 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5187 			pr_cont_work(comma, work, &pcws);
5188 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5189 		}
5190 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5191 		pr_cont("\n");
5192 	}
5193 }
5194 
5195 /**
5196  * show_one_workqueue - dump state of specified workqueue
5197  * @wq: workqueue whose state will be printed
5198  */
5199 void show_one_workqueue(struct workqueue_struct *wq)
5200 {
5201 	struct pool_workqueue *pwq;
5202 	bool idle = true;
5203 	unsigned long flags;
5204 
5205 	for_each_pwq(pwq, wq) {
5206 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5207 			idle = false;
5208 			break;
5209 		}
5210 	}
5211 	if (idle) /* Nothing to print for idle workqueue */
5212 		return;
5213 
5214 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5215 
5216 	for_each_pwq(pwq, wq) {
5217 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5218 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5219 			/*
5220 			 * Defer printing to avoid deadlocks in console
5221 			 * drivers that queue work while holding locks
5222 			 * also taken in their write paths.
5223 			 */
5224 			printk_deferred_enter();
5225 			show_pwq(pwq);
5226 			printk_deferred_exit();
5227 		}
5228 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5229 		/*
5230 		 * We could be printing a lot from atomic context, e.g.
5231 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5232 		 * hard lockup.
5233 		 */
5234 		touch_nmi_watchdog();
5235 	}
5236 
5237 }
5238 
5239 /**
5240  * show_one_worker_pool - dump state of specified worker pool
5241  * @pool: worker pool whose state will be printed
5242  */
5243 static void show_one_worker_pool(struct worker_pool *pool)
5244 {
5245 	struct worker *worker;
5246 	bool first = true;
5247 	unsigned long flags;
5248 	unsigned long hung = 0;
5249 
5250 	raw_spin_lock_irqsave(&pool->lock, flags);
5251 	if (pool->nr_workers == pool->nr_idle)
5252 		goto next_pool;
5253 
5254 	/* How long the first pending work is waiting for a worker. */
5255 	if (!list_empty(&pool->worklist))
5256 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5257 
5258 	/*
5259 	 * Defer printing to avoid deadlocks in console drivers that
5260 	 * queue work while holding locks also taken in their write
5261 	 * paths.
5262 	 */
5263 	printk_deferred_enter();
5264 	pr_info("pool %d:", pool->id);
5265 	pr_cont_pool_info(pool);
5266 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5267 	if (pool->manager)
5268 		pr_cont(" manager: %d",
5269 			task_pid_nr(pool->manager->task));
5270 	list_for_each_entry(worker, &pool->idle_list, entry) {
5271 		pr_cont(" %s%d", first ? "idle: " : "",
5272 			task_pid_nr(worker->task));
5273 		first = false;
5274 	}
5275 	pr_cont("\n");
5276 	printk_deferred_exit();
5277 next_pool:
5278 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5279 	/*
5280 	 * We could be printing a lot from atomic context, e.g.
5281 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5282 	 * hard lockup.
5283 	 */
5284 	touch_nmi_watchdog();
5285 
5286 }
5287 
5288 /**
5289  * show_all_workqueues - dump workqueue state
5290  *
5291  * Called from a sysrq handler and prints out all busy workqueues and pools.
5292  */
5293 void show_all_workqueues(void)
5294 {
5295 	struct workqueue_struct *wq;
5296 	struct worker_pool *pool;
5297 	int pi;
5298 
5299 	rcu_read_lock();
5300 
5301 	pr_info("Showing busy workqueues and worker pools:\n");
5302 
5303 	list_for_each_entry_rcu(wq, &workqueues, list)
5304 		show_one_workqueue(wq);
5305 
5306 	for_each_pool(pool, pi)
5307 		show_one_worker_pool(pool);
5308 
5309 	rcu_read_unlock();
5310 }
5311 
5312 /**
5313  * show_freezable_workqueues - dump freezable workqueue state
5314  *
5315  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5316  * still busy.
5317  */
5318 void show_freezable_workqueues(void)
5319 {
5320 	struct workqueue_struct *wq;
5321 
5322 	rcu_read_lock();
5323 
5324 	pr_info("Showing freezable workqueues that are still busy:\n");
5325 
5326 	list_for_each_entry_rcu(wq, &workqueues, list) {
5327 		if (!(wq->flags & WQ_FREEZABLE))
5328 			continue;
5329 		show_one_workqueue(wq);
5330 	}
5331 
5332 	rcu_read_unlock();
5333 }
5334 
5335 /* used to show worker information through /proc/PID/{comm,stat,status} */
5336 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5337 {
5338 	int off;
5339 
5340 	/* always show the actual comm */
5341 	off = strscpy(buf, task->comm, size);
5342 	if (off < 0)
5343 		return;
5344 
5345 	/* stabilize PF_WQ_WORKER and worker pool association */
5346 	mutex_lock(&wq_pool_attach_mutex);
5347 
5348 	if (task->flags & PF_WQ_WORKER) {
5349 		struct worker *worker = kthread_data(task);
5350 		struct worker_pool *pool = worker->pool;
5351 
5352 		if (pool) {
5353 			raw_spin_lock_irq(&pool->lock);
5354 			/*
5355 			 * ->desc tracks information (wq name or
5356 			 * set_worker_desc()) for the latest execution.  If
5357 			 * current, prepend '+', otherwise '-'.
5358 			 */
5359 			if (worker->desc[0] != '\0') {
5360 				if (worker->current_work)
5361 					scnprintf(buf + off, size - off, "+%s",
5362 						  worker->desc);
5363 				else
5364 					scnprintf(buf + off, size - off, "-%s",
5365 						  worker->desc);
5366 			}
5367 			raw_spin_unlock_irq(&pool->lock);
5368 		}
5369 	}
5370 
5371 	mutex_unlock(&wq_pool_attach_mutex);
5372 }
5373 
5374 #ifdef CONFIG_SMP
5375 
5376 /*
5377  * CPU hotplug.
5378  *
5379  * There are two challenges in supporting CPU hotplug.  Firstly, there
5380  * are a lot of assumptions on strong associations among work, pwq and
5381  * pool which make migrating pending and scheduled works very
5382  * difficult to implement without impacting hot paths.  Secondly,
5383  * worker pools serve mix of short, long and very long running works making
5384  * blocked draining impractical.
5385  *
5386  * This is solved by allowing the pools to be disassociated from the CPU
5387  * running as an unbound one and allowing it to be reattached later if the
5388  * cpu comes back online.
5389  */
5390 
5391 static void unbind_workers(int cpu)
5392 {
5393 	struct worker_pool *pool;
5394 	struct worker *worker;
5395 
5396 	for_each_cpu_worker_pool(pool, cpu) {
5397 		mutex_lock(&wq_pool_attach_mutex);
5398 		raw_spin_lock_irq(&pool->lock);
5399 
5400 		/*
5401 		 * We've blocked all attach/detach operations. Make all workers
5402 		 * unbound and set DISASSOCIATED.  Before this, all workers
5403 		 * must be on the cpu.  After this, they may become diasporas.
5404 		 * And the preemption disabled section in their sched callbacks
5405 		 * are guaranteed to see WORKER_UNBOUND since the code here
5406 		 * is on the same cpu.
5407 		 */
5408 		for_each_pool_worker(worker, pool)
5409 			worker->flags |= WORKER_UNBOUND;
5410 
5411 		pool->flags |= POOL_DISASSOCIATED;
5412 
5413 		/*
5414 		 * The handling of nr_running in sched callbacks are disabled
5415 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5416 		 * need_more_worker() and keep_working() are always true as
5417 		 * long as the worklist is not empty.  This pool now behaves as
5418 		 * an unbound (in terms of concurrency management) pool which
5419 		 * are served by workers tied to the pool.
5420 		 */
5421 		pool->nr_running = 0;
5422 
5423 		/*
5424 		 * With concurrency management just turned off, a busy
5425 		 * worker blocking could lead to lengthy stalls.  Kick off
5426 		 * unbound chain execution of currently pending work items.
5427 		 */
5428 		kick_pool(pool);
5429 
5430 		raw_spin_unlock_irq(&pool->lock);
5431 
5432 		for_each_pool_worker(worker, pool)
5433 			unbind_worker(worker);
5434 
5435 		mutex_unlock(&wq_pool_attach_mutex);
5436 	}
5437 }
5438 
5439 /**
5440  * rebind_workers - rebind all workers of a pool to the associated CPU
5441  * @pool: pool of interest
5442  *
5443  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5444  */
5445 static void rebind_workers(struct worker_pool *pool)
5446 {
5447 	struct worker *worker;
5448 
5449 	lockdep_assert_held(&wq_pool_attach_mutex);
5450 
5451 	/*
5452 	 * Restore CPU affinity of all workers.  As all idle workers should
5453 	 * be on the run-queue of the associated CPU before any local
5454 	 * wake-ups for concurrency management happen, restore CPU affinity
5455 	 * of all workers first and then clear UNBOUND.  As we're called
5456 	 * from CPU_ONLINE, the following shouldn't fail.
5457 	 */
5458 	for_each_pool_worker(worker, pool) {
5459 		kthread_set_per_cpu(worker->task, pool->cpu);
5460 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5461 						  pool_allowed_cpus(pool)) < 0);
5462 	}
5463 
5464 	raw_spin_lock_irq(&pool->lock);
5465 
5466 	pool->flags &= ~POOL_DISASSOCIATED;
5467 
5468 	for_each_pool_worker(worker, pool) {
5469 		unsigned int worker_flags = worker->flags;
5470 
5471 		/*
5472 		 * We want to clear UNBOUND but can't directly call
5473 		 * worker_clr_flags() or adjust nr_running.  Atomically
5474 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5475 		 * @worker will clear REBOUND using worker_clr_flags() when
5476 		 * it initiates the next execution cycle thus restoring
5477 		 * concurrency management.  Note that when or whether
5478 		 * @worker clears REBOUND doesn't affect correctness.
5479 		 *
5480 		 * WRITE_ONCE() is necessary because @worker->flags may be
5481 		 * tested without holding any lock in
5482 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5483 		 * fail incorrectly leading to premature concurrency
5484 		 * management operations.
5485 		 */
5486 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5487 		worker_flags |= WORKER_REBOUND;
5488 		worker_flags &= ~WORKER_UNBOUND;
5489 		WRITE_ONCE(worker->flags, worker_flags);
5490 	}
5491 
5492 	raw_spin_unlock_irq(&pool->lock);
5493 }
5494 
5495 /**
5496  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5497  * @pool: unbound pool of interest
5498  * @cpu: the CPU which is coming up
5499  *
5500  * An unbound pool may end up with a cpumask which doesn't have any online
5501  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5502  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5503  * online CPU before, cpus_allowed of all its workers should be restored.
5504  */
5505 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5506 {
5507 	static cpumask_t cpumask;
5508 	struct worker *worker;
5509 
5510 	lockdep_assert_held(&wq_pool_attach_mutex);
5511 
5512 	/* is @cpu allowed for @pool? */
5513 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5514 		return;
5515 
5516 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5517 
5518 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5519 	for_each_pool_worker(worker, pool)
5520 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5521 }
5522 
5523 int workqueue_prepare_cpu(unsigned int cpu)
5524 {
5525 	struct worker_pool *pool;
5526 
5527 	for_each_cpu_worker_pool(pool, cpu) {
5528 		if (pool->nr_workers)
5529 			continue;
5530 		if (!create_worker(pool))
5531 			return -ENOMEM;
5532 	}
5533 	return 0;
5534 }
5535 
5536 int workqueue_online_cpu(unsigned int cpu)
5537 {
5538 	struct worker_pool *pool;
5539 	struct workqueue_struct *wq;
5540 	int pi;
5541 
5542 	mutex_lock(&wq_pool_mutex);
5543 
5544 	for_each_pool(pool, pi) {
5545 		mutex_lock(&wq_pool_attach_mutex);
5546 
5547 		if (pool->cpu == cpu)
5548 			rebind_workers(pool);
5549 		else if (pool->cpu < 0)
5550 			restore_unbound_workers_cpumask(pool, cpu);
5551 
5552 		mutex_unlock(&wq_pool_attach_mutex);
5553 	}
5554 
5555 	/* update pod affinity of unbound workqueues */
5556 	list_for_each_entry(wq, &workqueues, list) {
5557 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5558 
5559 		if (attrs) {
5560 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5561 			int tcpu;
5562 
5563 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5564 				wq_update_pod(wq, tcpu, cpu, true);
5565 		}
5566 	}
5567 
5568 	mutex_unlock(&wq_pool_mutex);
5569 	return 0;
5570 }
5571 
5572 int workqueue_offline_cpu(unsigned int cpu)
5573 {
5574 	struct workqueue_struct *wq;
5575 
5576 	/* unbinding per-cpu workers should happen on the local CPU */
5577 	if (WARN_ON(cpu != smp_processor_id()))
5578 		return -1;
5579 
5580 	unbind_workers(cpu);
5581 
5582 	/* update pod affinity of unbound workqueues */
5583 	mutex_lock(&wq_pool_mutex);
5584 	list_for_each_entry(wq, &workqueues, list) {
5585 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5586 
5587 		if (attrs) {
5588 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5589 			int tcpu;
5590 
5591 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5592 				wq_update_pod(wq, tcpu, cpu, false);
5593 		}
5594 	}
5595 	mutex_unlock(&wq_pool_mutex);
5596 
5597 	return 0;
5598 }
5599 
5600 struct work_for_cpu {
5601 	struct work_struct work;
5602 	long (*fn)(void *);
5603 	void *arg;
5604 	long ret;
5605 };
5606 
5607 static void work_for_cpu_fn(struct work_struct *work)
5608 {
5609 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5610 
5611 	wfc->ret = wfc->fn(wfc->arg);
5612 }
5613 
5614 /**
5615  * work_on_cpu_key - run a function in thread context on a particular cpu
5616  * @cpu: the cpu to run on
5617  * @fn: the function to run
5618  * @arg: the function arg
5619  * @key: The lock class key for lock debugging purposes
5620  *
5621  * It is up to the caller to ensure that the cpu doesn't go offline.
5622  * The caller must not hold any locks which would prevent @fn from completing.
5623  *
5624  * Return: The value @fn returns.
5625  */
5626 long work_on_cpu_key(int cpu, long (*fn)(void *),
5627 		     void *arg, struct lock_class_key *key)
5628 {
5629 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5630 
5631 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5632 	schedule_work_on(cpu, &wfc.work);
5633 	flush_work(&wfc.work);
5634 	destroy_work_on_stack(&wfc.work);
5635 	return wfc.ret;
5636 }
5637 EXPORT_SYMBOL_GPL(work_on_cpu_key);
5638 
5639 /**
5640  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5641  * @cpu: the cpu to run on
5642  * @fn:  the function to run
5643  * @arg: the function argument
5644  * @key: The lock class key for lock debugging purposes
5645  *
5646  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5647  * any locks which would prevent @fn from completing.
5648  *
5649  * Return: The value @fn returns.
5650  */
5651 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5652 			  void *arg, struct lock_class_key *key)
5653 {
5654 	long ret = -ENODEV;
5655 
5656 	cpus_read_lock();
5657 	if (cpu_online(cpu))
5658 		ret = work_on_cpu_key(cpu, fn, arg, key);
5659 	cpus_read_unlock();
5660 	return ret;
5661 }
5662 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5663 #endif /* CONFIG_SMP */
5664 
5665 #ifdef CONFIG_FREEZER
5666 
5667 /**
5668  * freeze_workqueues_begin - begin freezing workqueues
5669  *
5670  * Start freezing workqueues.  After this function returns, all freezable
5671  * workqueues will queue new works to their inactive_works list instead of
5672  * pool->worklist.
5673  *
5674  * CONTEXT:
5675  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5676  */
5677 void freeze_workqueues_begin(void)
5678 {
5679 	struct workqueue_struct *wq;
5680 	struct pool_workqueue *pwq;
5681 
5682 	mutex_lock(&wq_pool_mutex);
5683 
5684 	WARN_ON_ONCE(workqueue_freezing);
5685 	workqueue_freezing = true;
5686 
5687 	list_for_each_entry(wq, &workqueues, list) {
5688 		mutex_lock(&wq->mutex);
5689 		for_each_pwq(pwq, wq)
5690 			pwq_adjust_max_active(pwq);
5691 		mutex_unlock(&wq->mutex);
5692 	}
5693 
5694 	mutex_unlock(&wq_pool_mutex);
5695 }
5696 
5697 /**
5698  * freeze_workqueues_busy - are freezable workqueues still busy?
5699  *
5700  * Check whether freezing is complete.  This function must be called
5701  * between freeze_workqueues_begin() and thaw_workqueues().
5702  *
5703  * CONTEXT:
5704  * Grabs and releases wq_pool_mutex.
5705  *
5706  * Return:
5707  * %true if some freezable workqueues are still busy.  %false if freezing
5708  * is complete.
5709  */
5710 bool freeze_workqueues_busy(void)
5711 {
5712 	bool busy = false;
5713 	struct workqueue_struct *wq;
5714 	struct pool_workqueue *pwq;
5715 
5716 	mutex_lock(&wq_pool_mutex);
5717 
5718 	WARN_ON_ONCE(!workqueue_freezing);
5719 
5720 	list_for_each_entry(wq, &workqueues, list) {
5721 		if (!(wq->flags & WQ_FREEZABLE))
5722 			continue;
5723 		/*
5724 		 * nr_active is monotonically decreasing.  It's safe
5725 		 * to peek without lock.
5726 		 */
5727 		rcu_read_lock();
5728 		for_each_pwq(pwq, wq) {
5729 			WARN_ON_ONCE(pwq->nr_active < 0);
5730 			if (pwq->nr_active) {
5731 				busy = true;
5732 				rcu_read_unlock();
5733 				goto out_unlock;
5734 			}
5735 		}
5736 		rcu_read_unlock();
5737 	}
5738 out_unlock:
5739 	mutex_unlock(&wq_pool_mutex);
5740 	return busy;
5741 }
5742 
5743 /**
5744  * thaw_workqueues - thaw workqueues
5745  *
5746  * Thaw workqueues.  Normal queueing is restored and all collected
5747  * frozen works are transferred to their respective pool worklists.
5748  *
5749  * CONTEXT:
5750  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5751  */
5752 void thaw_workqueues(void)
5753 {
5754 	struct workqueue_struct *wq;
5755 	struct pool_workqueue *pwq;
5756 
5757 	mutex_lock(&wq_pool_mutex);
5758 
5759 	if (!workqueue_freezing)
5760 		goto out_unlock;
5761 
5762 	workqueue_freezing = false;
5763 
5764 	/* restore max_active and repopulate worklist */
5765 	list_for_each_entry(wq, &workqueues, list) {
5766 		mutex_lock(&wq->mutex);
5767 		for_each_pwq(pwq, wq)
5768 			pwq_adjust_max_active(pwq);
5769 		mutex_unlock(&wq->mutex);
5770 	}
5771 
5772 out_unlock:
5773 	mutex_unlock(&wq_pool_mutex);
5774 }
5775 #endif /* CONFIG_FREEZER */
5776 
5777 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5778 {
5779 	LIST_HEAD(ctxs);
5780 	int ret = 0;
5781 	struct workqueue_struct *wq;
5782 	struct apply_wqattrs_ctx *ctx, *n;
5783 
5784 	lockdep_assert_held(&wq_pool_mutex);
5785 
5786 	list_for_each_entry(wq, &workqueues, list) {
5787 		if (!(wq->flags & WQ_UNBOUND))
5788 			continue;
5789 
5790 		/* creating multiple pwqs breaks ordering guarantee */
5791 		if (!list_empty(&wq->pwqs)) {
5792 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5793 				continue;
5794 			wq->flags &= ~__WQ_ORDERED;
5795 		}
5796 
5797 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5798 		if (IS_ERR(ctx)) {
5799 			ret = PTR_ERR(ctx);
5800 			break;
5801 		}
5802 
5803 		list_add_tail(&ctx->list, &ctxs);
5804 	}
5805 
5806 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5807 		if (!ret)
5808 			apply_wqattrs_commit(ctx);
5809 		apply_wqattrs_cleanup(ctx);
5810 	}
5811 
5812 	if (!ret) {
5813 		mutex_lock(&wq_pool_attach_mutex);
5814 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5815 		mutex_unlock(&wq_pool_attach_mutex);
5816 	}
5817 	return ret;
5818 }
5819 
5820 /**
5821  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
5822  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
5823  *
5824  * This function can be called from cpuset code to provide a set of isolated
5825  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
5826  * either cpus_read_lock or cpus_write_lock.
5827  */
5828 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
5829 {
5830 	cpumask_var_t cpumask;
5831 	int ret = 0;
5832 
5833 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5834 		return -ENOMEM;
5835 
5836 	lockdep_assert_cpus_held();
5837 	mutex_lock(&wq_pool_mutex);
5838 
5839 	/* Save the current isolated cpumask & export it via sysfs */
5840 	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
5841 
5842 	/*
5843 	 * If the operation fails, it will fall back to
5844 	 * wq_requested_unbound_cpumask which is initially set to
5845 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
5846 	 * by any subsequent write to workqueue/cpumask sysfs file.
5847 	 */
5848 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
5849 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
5850 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
5851 		ret = workqueue_apply_unbound_cpumask(cpumask);
5852 
5853 	mutex_unlock(&wq_pool_mutex);
5854 	free_cpumask_var(cpumask);
5855 	return ret;
5856 }
5857 
5858 static int parse_affn_scope(const char *val)
5859 {
5860 	int i;
5861 
5862 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5863 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5864 			return i;
5865 	}
5866 	return -EINVAL;
5867 }
5868 
5869 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5870 {
5871 	struct workqueue_struct *wq;
5872 	int affn, cpu;
5873 
5874 	affn = parse_affn_scope(val);
5875 	if (affn < 0)
5876 		return affn;
5877 	if (affn == WQ_AFFN_DFL)
5878 		return -EINVAL;
5879 
5880 	cpus_read_lock();
5881 	mutex_lock(&wq_pool_mutex);
5882 
5883 	wq_affn_dfl = affn;
5884 
5885 	list_for_each_entry(wq, &workqueues, list) {
5886 		for_each_online_cpu(cpu) {
5887 			wq_update_pod(wq, cpu, cpu, true);
5888 		}
5889 	}
5890 
5891 	mutex_unlock(&wq_pool_mutex);
5892 	cpus_read_unlock();
5893 
5894 	return 0;
5895 }
5896 
5897 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5898 {
5899 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
5900 }
5901 
5902 static const struct kernel_param_ops wq_affn_dfl_ops = {
5903 	.set	= wq_affn_dfl_set,
5904 	.get	= wq_affn_dfl_get,
5905 };
5906 
5907 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5908 
5909 #ifdef CONFIG_SYSFS
5910 /*
5911  * Workqueues with WQ_SYSFS flag set is visible to userland via
5912  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5913  * following attributes.
5914  *
5915  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
5916  *  max_active		RW int	: maximum number of in-flight work items
5917  *
5918  * Unbound workqueues have the following extra attributes.
5919  *
5920  *  nice		RW int	: nice value of the workers
5921  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
5922  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
5923  *  affinity_strict	RW bool : worker CPU affinity is strict
5924  */
5925 struct wq_device {
5926 	struct workqueue_struct		*wq;
5927 	struct device			dev;
5928 };
5929 
5930 static struct workqueue_struct *dev_to_wq(struct device *dev)
5931 {
5932 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5933 
5934 	return wq_dev->wq;
5935 }
5936 
5937 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5938 			    char *buf)
5939 {
5940 	struct workqueue_struct *wq = dev_to_wq(dev);
5941 
5942 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5943 }
5944 static DEVICE_ATTR_RO(per_cpu);
5945 
5946 static ssize_t max_active_show(struct device *dev,
5947 			       struct device_attribute *attr, char *buf)
5948 {
5949 	struct workqueue_struct *wq = dev_to_wq(dev);
5950 
5951 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5952 }
5953 
5954 static ssize_t max_active_store(struct device *dev,
5955 				struct device_attribute *attr, const char *buf,
5956 				size_t count)
5957 {
5958 	struct workqueue_struct *wq = dev_to_wq(dev);
5959 	int val;
5960 
5961 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5962 		return -EINVAL;
5963 
5964 	workqueue_set_max_active(wq, val);
5965 	return count;
5966 }
5967 static DEVICE_ATTR_RW(max_active);
5968 
5969 static struct attribute *wq_sysfs_attrs[] = {
5970 	&dev_attr_per_cpu.attr,
5971 	&dev_attr_max_active.attr,
5972 	NULL,
5973 };
5974 ATTRIBUTE_GROUPS(wq_sysfs);
5975 
5976 static void apply_wqattrs_lock(void)
5977 {
5978 	/* CPUs should stay stable across pwq creations and installations */
5979 	cpus_read_lock();
5980 	mutex_lock(&wq_pool_mutex);
5981 }
5982 
5983 static void apply_wqattrs_unlock(void)
5984 {
5985 	mutex_unlock(&wq_pool_mutex);
5986 	cpus_read_unlock();
5987 }
5988 
5989 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5990 			    char *buf)
5991 {
5992 	struct workqueue_struct *wq = dev_to_wq(dev);
5993 	int written;
5994 
5995 	mutex_lock(&wq->mutex);
5996 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5997 	mutex_unlock(&wq->mutex);
5998 
5999 	return written;
6000 }
6001 
6002 /* prepare workqueue_attrs for sysfs store operations */
6003 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6004 {
6005 	struct workqueue_attrs *attrs;
6006 
6007 	lockdep_assert_held(&wq_pool_mutex);
6008 
6009 	attrs = alloc_workqueue_attrs();
6010 	if (!attrs)
6011 		return NULL;
6012 
6013 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6014 	return attrs;
6015 }
6016 
6017 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6018 			     const char *buf, size_t count)
6019 {
6020 	struct workqueue_struct *wq = dev_to_wq(dev);
6021 	struct workqueue_attrs *attrs;
6022 	int ret = -ENOMEM;
6023 
6024 	apply_wqattrs_lock();
6025 
6026 	attrs = wq_sysfs_prep_attrs(wq);
6027 	if (!attrs)
6028 		goto out_unlock;
6029 
6030 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6031 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6032 		ret = apply_workqueue_attrs_locked(wq, attrs);
6033 	else
6034 		ret = -EINVAL;
6035 
6036 out_unlock:
6037 	apply_wqattrs_unlock();
6038 	free_workqueue_attrs(attrs);
6039 	return ret ?: count;
6040 }
6041 
6042 static ssize_t wq_cpumask_show(struct device *dev,
6043 			       struct device_attribute *attr, char *buf)
6044 {
6045 	struct workqueue_struct *wq = dev_to_wq(dev);
6046 	int written;
6047 
6048 	mutex_lock(&wq->mutex);
6049 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6050 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6051 	mutex_unlock(&wq->mutex);
6052 	return written;
6053 }
6054 
6055 static ssize_t wq_cpumask_store(struct device *dev,
6056 				struct device_attribute *attr,
6057 				const char *buf, size_t count)
6058 {
6059 	struct workqueue_struct *wq = dev_to_wq(dev);
6060 	struct workqueue_attrs *attrs;
6061 	int ret = -ENOMEM;
6062 
6063 	apply_wqattrs_lock();
6064 
6065 	attrs = wq_sysfs_prep_attrs(wq);
6066 	if (!attrs)
6067 		goto out_unlock;
6068 
6069 	ret = cpumask_parse(buf, attrs->cpumask);
6070 	if (!ret)
6071 		ret = apply_workqueue_attrs_locked(wq, attrs);
6072 
6073 out_unlock:
6074 	apply_wqattrs_unlock();
6075 	free_workqueue_attrs(attrs);
6076 	return ret ?: count;
6077 }
6078 
6079 static ssize_t wq_affn_scope_show(struct device *dev,
6080 				  struct device_attribute *attr, char *buf)
6081 {
6082 	struct workqueue_struct *wq = dev_to_wq(dev);
6083 	int written;
6084 
6085 	mutex_lock(&wq->mutex);
6086 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6087 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6088 				    wq_affn_names[WQ_AFFN_DFL],
6089 				    wq_affn_names[wq_affn_dfl]);
6090 	else
6091 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6092 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6093 	mutex_unlock(&wq->mutex);
6094 
6095 	return written;
6096 }
6097 
6098 static ssize_t wq_affn_scope_store(struct device *dev,
6099 				   struct device_attribute *attr,
6100 				   const char *buf, size_t count)
6101 {
6102 	struct workqueue_struct *wq = dev_to_wq(dev);
6103 	struct workqueue_attrs *attrs;
6104 	int affn, ret = -ENOMEM;
6105 
6106 	affn = parse_affn_scope(buf);
6107 	if (affn < 0)
6108 		return affn;
6109 
6110 	apply_wqattrs_lock();
6111 	attrs = wq_sysfs_prep_attrs(wq);
6112 	if (attrs) {
6113 		attrs->affn_scope = affn;
6114 		ret = apply_workqueue_attrs_locked(wq, attrs);
6115 	}
6116 	apply_wqattrs_unlock();
6117 	free_workqueue_attrs(attrs);
6118 	return ret ?: count;
6119 }
6120 
6121 static ssize_t wq_affinity_strict_show(struct device *dev,
6122 				       struct device_attribute *attr, char *buf)
6123 {
6124 	struct workqueue_struct *wq = dev_to_wq(dev);
6125 
6126 	return scnprintf(buf, PAGE_SIZE, "%d\n",
6127 			 wq->unbound_attrs->affn_strict);
6128 }
6129 
6130 static ssize_t wq_affinity_strict_store(struct device *dev,
6131 					struct device_attribute *attr,
6132 					const char *buf, size_t count)
6133 {
6134 	struct workqueue_struct *wq = dev_to_wq(dev);
6135 	struct workqueue_attrs *attrs;
6136 	int v, ret = -ENOMEM;
6137 
6138 	if (sscanf(buf, "%d", &v) != 1)
6139 		return -EINVAL;
6140 
6141 	apply_wqattrs_lock();
6142 	attrs = wq_sysfs_prep_attrs(wq);
6143 	if (attrs) {
6144 		attrs->affn_strict = (bool)v;
6145 		ret = apply_workqueue_attrs_locked(wq, attrs);
6146 	}
6147 	apply_wqattrs_unlock();
6148 	free_workqueue_attrs(attrs);
6149 	return ret ?: count;
6150 }
6151 
6152 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6153 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6154 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6155 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6156 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6157 	__ATTR_NULL,
6158 };
6159 
6160 static struct bus_type wq_subsys = {
6161 	.name				= "workqueue",
6162 	.dev_groups			= wq_sysfs_groups,
6163 };
6164 
6165 /**
6166  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6167  *  @cpumask: the cpumask to set
6168  *
6169  *  The low-level workqueues cpumask is a global cpumask that limits
6170  *  the affinity of all unbound workqueues.  This function check the @cpumask
6171  *  and apply it to all unbound workqueues and updates all pwqs of them.
6172  *
6173  *  Return:	0	- Success
6174  *		-EINVAL	- Invalid @cpumask
6175  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
6176  */
6177 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6178 {
6179 	int ret = -EINVAL;
6180 
6181 	/*
6182 	 * Not excluding isolated cpus on purpose.
6183 	 * If the user wishes to include them, we allow that.
6184 	 */
6185 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
6186 	if (!cpumask_empty(cpumask)) {
6187 		apply_wqattrs_lock();
6188 		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6189 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6190 			ret = 0;
6191 			goto out_unlock;
6192 		}
6193 
6194 		ret = workqueue_apply_unbound_cpumask(cpumask);
6195 
6196 out_unlock:
6197 		apply_wqattrs_unlock();
6198 	}
6199 
6200 	return ret;
6201 }
6202 
6203 static ssize_t __wq_cpumask_show(struct device *dev,
6204 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
6205 {
6206 	int written;
6207 
6208 	mutex_lock(&wq_pool_mutex);
6209 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
6210 	mutex_unlock(&wq_pool_mutex);
6211 
6212 	return written;
6213 }
6214 
6215 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6216 		struct device_attribute *attr, char *buf)
6217 {
6218 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6219 }
6220 
6221 static ssize_t wq_requested_cpumask_show(struct device *dev,
6222 		struct device_attribute *attr, char *buf)
6223 {
6224 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6225 }
6226 
6227 static ssize_t wq_isolated_cpumask_show(struct device *dev,
6228 		struct device_attribute *attr, char *buf)
6229 {
6230 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6231 }
6232 
6233 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6234 		struct device_attribute *attr, const char *buf, size_t count)
6235 {
6236 	cpumask_var_t cpumask;
6237 	int ret;
6238 
6239 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6240 		return -ENOMEM;
6241 
6242 	ret = cpumask_parse(buf, cpumask);
6243 	if (!ret)
6244 		ret = workqueue_set_unbound_cpumask(cpumask);
6245 
6246 	free_cpumask_var(cpumask);
6247 	return ret ? ret : count;
6248 }
6249 
6250 static struct device_attribute wq_sysfs_cpumask_attrs[] = {
6251 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6252 	       wq_unbound_cpumask_store),
6253 	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6254 	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6255 	__ATTR_NULL,
6256 };
6257 
6258 static int __init wq_sysfs_init(void)
6259 {
6260 	struct device *dev_root;
6261 	int err;
6262 
6263 	err = subsys_virtual_register(&wq_subsys, NULL);
6264 	if (err)
6265 		return err;
6266 
6267 	dev_root = bus_get_dev_root(&wq_subsys);
6268 	if (dev_root) {
6269 		struct device_attribute *attr;
6270 
6271 		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6272 			err = device_create_file(dev_root, attr);
6273 			if (err)
6274 				break;
6275 		}
6276 		put_device(dev_root);
6277 	}
6278 	return err;
6279 }
6280 core_initcall(wq_sysfs_init);
6281 
6282 static void wq_device_release(struct device *dev)
6283 {
6284 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6285 
6286 	kfree(wq_dev);
6287 }
6288 
6289 /**
6290  * workqueue_sysfs_register - make a workqueue visible in sysfs
6291  * @wq: the workqueue to register
6292  *
6293  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6294  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6295  * which is the preferred method.
6296  *
6297  * Workqueue user should use this function directly iff it wants to apply
6298  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6299  * apply_workqueue_attrs() may race against userland updating the
6300  * attributes.
6301  *
6302  * Return: 0 on success, -errno on failure.
6303  */
6304 int workqueue_sysfs_register(struct workqueue_struct *wq)
6305 {
6306 	struct wq_device *wq_dev;
6307 	int ret;
6308 
6309 	/*
6310 	 * Adjusting max_active or creating new pwqs by applying
6311 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6312 	 * workqueues.
6313 	 */
6314 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6315 		return -EINVAL;
6316 
6317 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6318 	if (!wq_dev)
6319 		return -ENOMEM;
6320 
6321 	wq_dev->wq = wq;
6322 	wq_dev->dev.bus = &wq_subsys;
6323 	wq_dev->dev.release = wq_device_release;
6324 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6325 
6326 	/*
6327 	 * unbound_attrs are created separately.  Suppress uevent until
6328 	 * everything is ready.
6329 	 */
6330 	dev_set_uevent_suppress(&wq_dev->dev, true);
6331 
6332 	ret = device_register(&wq_dev->dev);
6333 	if (ret) {
6334 		put_device(&wq_dev->dev);
6335 		wq->wq_dev = NULL;
6336 		return ret;
6337 	}
6338 
6339 	if (wq->flags & WQ_UNBOUND) {
6340 		struct device_attribute *attr;
6341 
6342 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6343 			ret = device_create_file(&wq_dev->dev, attr);
6344 			if (ret) {
6345 				device_unregister(&wq_dev->dev);
6346 				wq->wq_dev = NULL;
6347 				return ret;
6348 			}
6349 		}
6350 	}
6351 
6352 	dev_set_uevent_suppress(&wq_dev->dev, false);
6353 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6354 	return 0;
6355 }
6356 
6357 /**
6358  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6359  * @wq: the workqueue to unregister
6360  *
6361  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6362  */
6363 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6364 {
6365 	struct wq_device *wq_dev = wq->wq_dev;
6366 
6367 	if (!wq->wq_dev)
6368 		return;
6369 
6370 	wq->wq_dev = NULL;
6371 	device_unregister(&wq_dev->dev);
6372 }
6373 #else	/* CONFIG_SYSFS */
6374 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6375 #endif	/* CONFIG_SYSFS */
6376 
6377 /*
6378  * Workqueue watchdog.
6379  *
6380  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6381  * flush dependency, a concurrency managed work item which stays RUNNING
6382  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6383  * usual warning mechanisms don't trigger and internal workqueue state is
6384  * largely opaque.
6385  *
6386  * Workqueue watchdog monitors all worker pools periodically and dumps
6387  * state if some pools failed to make forward progress for a while where
6388  * forward progress is defined as the first item on ->worklist changing.
6389  *
6390  * This mechanism is controlled through the kernel parameter
6391  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6392  * corresponding sysfs parameter file.
6393  */
6394 #ifdef CONFIG_WQ_WATCHDOG
6395 
6396 static unsigned long wq_watchdog_thresh = 30;
6397 static struct timer_list wq_watchdog_timer;
6398 
6399 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6400 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6401 
6402 /*
6403  * Show workers that might prevent the processing of pending work items.
6404  * The only candidates are CPU-bound workers in the running state.
6405  * Pending work items should be handled by another idle worker
6406  * in all other situations.
6407  */
6408 static void show_cpu_pool_hog(struct worker_pool *pool)
6409 {
6410 	struct worker *worker;
6411 	unsigned long flags;
6412 	int bkt;
6413 
6414 	raw_spin_lock_irqsave(&pool->lock, flags);
6415 
6416 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6417 		if (task_is_running(worker->task)) {
6418 			/*
6419 			 * Defer printing to avoid deadlocks in console
6420 			 * drivers that queue work while holding locks
6421 			 * also taken in their write paths.
6422 			 */
6423 			printk_deferred_enter();
6424 
6425 			pr_info("pool %d:\n", pool->id);
6426 			sched_show_task(worker->task);
6427 
6428 			printk_deferred_exit();
6429 		}
6430 	}
6431 
6432 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6433 }
6434 
6435 static void show_cpu_pools_hogs(void)
6436 {
6437 	struct worker_pool *pool;
6438 	int pi;
6439 
6440 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6441 
6442 	rcu_read_lock();
6443 
6444 	for_each_pool(pool, pi) {
6445 		if (pool->cpu_stall)
6446 			show_cpu_pool_hog(pool);
6447 
6448 	}
6449 
6450 	rcu_read_unlock();
6451 }
6452 
6453 static void wq_watchdog_reset_touched(void)
6454 {
6455 	int cpu;
6456 
6457 	wq_watchdog_touched = jiffies;
6458 	for_each_possible_cpu(cpu)
6459 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6460 }
6461 
6462 static void wq_watchdog_timer_fn(struct timer_list *unused)
6463 {
6464 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6465 	bool lockup_detected = false;
6466 	bool cpu_pool_stall = false;
6467 	unsigned long now = jiffies;
6468 	struct worker_pool *pool;
6469 	int pi;
6470 
6471 	if (!thresh)
6472 		return;
6473 
6474 	rcu_read_lock();
6475 
6476 	for_each_pool(pool, pi) {
6477 		unsigned long pool_ts, touched, ts;
6478 
6479 		pool->cpu_stall = false;
6480 		if (list_empty(&pool->worklist))
6481 			continue;
6482 
6483 		/*
6484 		 * If a virtual machine is stopped by the host it can look to
6485 		 * the watchdog like a stall.
6486 		 */
6487 		kvm_check_and_clear_guest_paused();
6488 
6489 		/* get the latest of pool and touched timestamps */
6490 		if (pool->cpu >= 0)
6491 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6492 		else
6493 			touched = READ_ONCE(wq_watchdog_touched);
6494 		pool_ts = READ_ONCE(pool->watchdog_ts);
6495 
6496 		if (time_after(pool_ts, touched))
6497 			ts = pool_ts;
6498 		else
6499 			ts = touched;
6500 
6501 		/* did we stall? */
6502 		if (time_after(now, ts + thresh)) {
6503 			lockup_detected = true;
6504 			if (pool->cpu >= 0) {
6505 				pool->cpu_stall = true;
6506 				cpu_pool_stall = true;
6507 			}
6508 			pr_emerg("BUG: workqueue lockup - pool");
6509 			pr_cont_pool_info(pool);
6510 			pr_cont(" stuck for %us!\n",
6511 				jiffies_to_msecs(now - pool_ts) / 1000);
6512 		}
6513 
6514 
6515 	}
6516 
6517 	rcu_read_unlock();
6518 
6519 	if (lockup_detected)
6520 		show_all_workqueues();
6521 
6522 	if (cpu_pool_stall)
6523 		show_cpu_pools_hogs();
6524 
6525 	wq_watchdog_reset_touched();
6526 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6527 }
6528 
6529 notrace void wq_watchdog_touch(int cpu)
6530 {
6531 	if (cpu >= 0)
6532 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6533 
6534 	wq_watchdog_touched = jiffies;
6535 }
6536 
6537 static void wq_watchdog_set_thresh(unsigned long thresh)
6538 {
6539 	wq_watchdog_thresh = 0;
6540 	del_timer_sync(&wq_watchdog_timer);
6541 
6542 	if (thresh) {
6543 		wq_watchdog_thresh = thresh;
6544 		wq_watchdog_reset_touched();
6545 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6546 	}
6547 }
6548 
6549 static int wq_watchdog_param_set_thresh(const char *val,
6550 					const struct kernel_param *kp)
6551 {
6552 	unsigned long thresh;
6553 	int ret;
6554 
6555 	ret = kstrtoul(val, 0, &thresh);
6556 	if (ret)
6557 		return ret;
6558 
6559 	if (system_wq)
6560 		wq_watchdog_set_thresh(thresh);
6561 	else
6562 		wq_watchdog_thresh = thresh;
6563 
6564 	return 0;
6565 }
6566 
6567 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6568 	.set	= wq_watchdog_param_set_thresh,
6569 	.get	= param_get_ulong,
6570 };
6571 
6572 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6573 		0644);
6574 
6575 static void wq_watchdog_init(void)
6576 {
6577 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6578 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6579 }
6580 
6581 #else	/* CONFIG_WQ_WATCHDOG */
6582 
6583 static inline void wq_watchdog_init(void) { }
6584 
6585 #endif	/* CONFIG_WQ_WATCHDOG */
6586 
6587 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
6588 {
6589 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
6590 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
6591 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
6592 		return;
6593 	}
6594 
6595 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
6596 }
6597 
6598 /**
6599  * workqueue_init_early - early init for workqueue subsystem
6600  *
6601  * This is the first step of three-staged workqueue subsystem initialization and
6602  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6603  * up. It sets up all the data structures and system workqueues and allows early
6604  * boot code to create workqueues and queue/cancel work items. Actual work item
6605  * execution starts only after kthreads can be created and scheduled right
6606  * before early initcalls.
6607  */
6608 void __init workqueue_init_early(void)
6609 {
6610 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6611 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6612 	int i, cpu;
6613 
6614 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6615 
6616 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6617 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
6618 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
6619 
6620 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
6621 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
6622 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
6623 	if (!cpumask_empty(&wq_cmdline_cpumask))
6624 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
6625 
6626 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
6627 
6628 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6629 
6630 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6631 	BUG_ON(!wq_update_pod_attrs_buf);
6632 
6633 	/* initialize WQ_AFFN_SYSTEM pods */
6634 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6635 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6636 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6637 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6638 
6639 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6640 
6641 	pt->nr_pods = 1;
6642 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6643 	pt->pod_node[0] = NUMA_NO_NODE;
6644 	pt->cpu_pod[0] = 0;
6645 
6646 	/* initialize CPU pools */
6647 	for_each_possible_cpu(cpu) {
6648 		struct worker_pool *pool;
6649 
6650 		i = 0;
6651 		for_each_cpu_worker_pool(pool, cpu) {
6652 			BUG_ON(init_worker_pool(pool));
6653 			pool->cpu = cpu;
6654 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6655 			cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6656 			pool->attrs->nice = std_nice[i++];
6657 			pool->attrs->affn_strict = true;
6658 			pool->node = cpu_to_node(cpu);
6659 
6660 			/* alloc pool ID */
6661 			mutex_lock(&wq_pool_mutex);
6662 			BUG_ON(worker_pool_assign_id(pool));
6663 			mutex_unlock(&wq_pool_mutex);
6664 		}
6665 	}
6666 
6667 	/* create default unbound and ordered wq attrs */
6668 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6669 		struct workqueue_attrs *attrs;
6670 
6671 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6672 		attrs->nice = std_nice[i];
6673 		unbound_std_wq_attrs[i] = attrs;
6674 
6675 		/*
6676 		 * An ordered wq should have only one pwq as ordering is
6677 		 * guaranteed by max_active which is enforced by pwqs.
6678 		 */
6679 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6680 		attrs->nice = std_nice[i];
6681 		attrs->ordered = true;
6682 		ordered_wq_attrs[i] = attrs;
6683 	}
6684 
6685 	system_wq = alloc_workqueue("events", 0, 0);
6686 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6687 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6688 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6689 					    WQ_MAX_ACTIVE);
6690 	system_freezable_wq = alloc_workqueue("events_freezable",
6691 					      WQ_FREEZABLE, 0);
6692 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6693 					      WQ_POWER_EFFICIENT, 0);
6694 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6695 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6696 					      0);
6697 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6698 	       !system_unbound_wq || !system_freezable_wq ||
6699 	       !system_power_efficient_wq ||
6700 	       !system_freezable_power_efficient_wq);
6701 }
6702 
6703 static void __init wq_cpu_intensive_thresh_init(void)
6704 {
6705 	unsigned long thresh;
6706 	unsigned long bogo;
6707 
6708 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6709 	BUG_ON(IS_ERR(pwq_release_worker));
6710 
6711 	/* if the user set it to a specific value, keep it */
6712 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6713 		return;
6714 
6715 	/*
6716 	 * The default of 10ms is derived from the fact that most modern (as of
6717 	 * 2023) processors can do a lot in 10ms and that it's just below what
6718 	 * most consider human-perceivable. However, the kernel also runs on a
6719 	 * lot slower CPUs including microcontrollers where the threshold is way
6720 	 * too low.
6721 	 *
6722 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6723 	 * This is by no means accurate but it doesn't have to be. The mechanism
6724 	 * is still useful even when the threshold is fully scaled up. Also, as
6725 	 * the reports would usually be applicable to everyone, some machines
6726 	 * operating on longer thresholds won't significantly diminish their
6727 	 * usefulness.
6728 	 */
6729 	thresh = 10 * USEC_PER_MSEC;
6730 
6731 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
6732 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6733 	if (bogo < 4000)
6734 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6735 
6736 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6737 		 loops_per_jiffy, bogo, thresh);
6738 
6739 	wq_cpu_intensive_thresh_us = thresh;
6740 }
6741 
6742 /**
6743  * workqueue_init - bring workqueue subsystem fully online
6744  *
6745  * This is the second step of three-staged workqueue subsystem initialization
6746  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6747  * been created and work items queued on them, but there are no kworkers
6748  * executing the work items yet. Populate the worker pools with the initial
6749  * workers and enable future kworker creations.
6750  */
6751 void __init workqueue_init(void)
6752 {
6753 	struct workqueue_struct *wq;
6754 	struct worker_pool *pool;
6755 	int cpu, bkt;
6756 
6757 	wq_cpu_intensive_thresh_init();
6758 
6759 	mutex_lock(&wq_pool_mutex);
6760 
6761 	/*
6762 	 * Per-cpu pools created earlier could be missing node hint. Fix them
6763 	 * up. Also, create a rescuer for workqueues that requested it.
6764 	 */
6765 	for_each_possible_cpu(cpu) {
6766 		for_each_cpu_worker_pool(pool, cpu) {
6767 			pool->node = cpu_to_node(cpu);
6768 		}
6769 	}
6770 
6771 	list_for_each_entry(wq, &workqueues, list) {
6772 		WARN(init_rescuer(wq),
6773 		     "workqueue: failed to create early rescuer for %s",
6774 		     wq->name);
6775 	}
6776 
6777 	mutex_unlock(&wq_pool_mutex);
6778 
6779 	/* create the initial workers */
6780 	for_each_online_cpu(cpu) {
6781 		for_each_cpu_worker_pool(pool, cpu) {
6782 			pool->flags &= ~POOL_DISASSOCIATED;
6783 			BUG_ON(!create_worker(pool));
6784 		}
6785 	}
6786 
6787 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6788 		BUG_ON(!create_worker(pool));
6789 
6790 	wq_online = true;
6791 	wq_watchdog_init();
6792 }
6793 
6794 /*
6795  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6796  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6797  * and consecutive pod ID. The rest of @pt is initialized accordingly.
6798  */
6799 static void __init init_pod_type(struct wq_pod_type *pt,
6800 				 bool (*cpus_share_pod)(int, int))
6801 {
6802 	int cur, pre, cpu, pod;
6803 
6804 	pt->nr_pods = 0;
6805 
6806 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
6807 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6808 	BUG_ON(!pt->cpu_pod);
6809 
6810 	for_each_possible_cpu(cur) {
6811 		for_each_possible_cpu(pre) {
6812 			if (pre >= cur) {
6813 				pt->cpu_pod[cur] = pt->nr_pods++;
6814 				break;
6815 			}
6816 			if (cpus_share_pod(cur, pre)) {
6817 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
6818 				break;
6819 			}
6820 		}
6821 	}
6822 
6823 	/* init the rest to match @pt->cpu_pod[] */
6824 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6825 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6826 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
6827 
6828 	for (pod = 0; pod < pt->nr_pods; pod++)
6829 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6830 
6831 	for_each_possible_cpu(cpu) {
6832 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6833 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6834 	}
6835 }
6836 
6837 static bool __init cpus_dont_share(int cpu0, int cpu1)
6838 {
6839 	return false;
6840 }
6841 
6842 static bool __init cpus_share_smt(int cpu0, int cpu1)
6843 {
6844 #ifdef CONFIG_SCHED_SMT
6845 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6846 #else
6847 	return false;
6848 #endif
6849 }
6850 
6851 static bool __init cpus_share_numa(int cpu0, int cpu1)
6852 {
6853 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6854 }
6855 
6856 /**
6857  * workqueue_init_topology - initialize CPU pods for unbound workqueues
6858  *
6859  * This is the third step of there-staged workqueue subsystem initialization and
6860  * invoked after SMP and topology information are fully initialized. It
6861  * initializes the unbound CPU pods accordingly.
6862  */
6863 void __init workqueue_init_topology(void)
6864 {
6865 	struct workqueue_struct *wq;
6866 	int cpu;
6867 
6868 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6869 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6870 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6871 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6872 
6873 	mutex_lock(&wq_pool_mutex);
6874 
6875 	/*
6876 	 * Workqueues allocated earlier would have all CPUs sharing the default
6877 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6878 	 * combinations to apply per-pod sharing.
6879 	 */
6880 	list_for_each_entry(wq, &workqueues, list) {
6881 		for_each_online_cpu(cpu) {
6882 			wq_update_pod(wq, cpu, cpu, true);
6883 		}
6884 	}
6885 
6886 	mutex_unlock(&wq_pool_mutex);
6887 }
6888 
6889 void __warn_flushing_systemwide_wq(void)
6890 {
6891 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6892 	dump_stack();
6893 }
6894 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6895 
6896 static int __init workqueue_unbound_cpus_setup(char *str)
6897 {
6898 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6899 		cpumask_clear(&wq_cmdline_cpumask);
6900 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6901 	}
6902 
6903 	return 1;
6904 }
6905 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6906