1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/workqueue.h> 47 48 #include "workqueue_sched.h" 49 50 enum { 51 /* global_cwq flags */ 52 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 53 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 54 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 55 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 56 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 57 58 /* worker flags */ 59 WORKER_STARTED = 1 << 0, /* started */ 60 WORKER_DIE = 1 << 1, /* die die die */ 61 WORKER_IDLE = 1 << 2, /* is idle */ 62 WORKER_PREP = 1 << 3, /* preparing to run works */ 63 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 64 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 65 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 66 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 67 68 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 69 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 70 71 /* gcwq->trustee_state */ 72 TRUSTEE_START = 0, /* start */ 73 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 74 TRUSTEE_BUTCHER = 2, /* butcher workers */ 75 TRUSTEE_RELEASE = 3, /* release workers */ 76 TRUSTEE_DONE = 4, /* trustee is done */ 77 78 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 79 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 80 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 81 82 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 83 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 84 85 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ 86 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 87 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 88 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 89 90 /* 91 * Rescue workers are used only on emergencies and shared by 92 * all cpus. Give -20. 93 */ 94 RESCUER_NICE_LEVEL = -20, 95 }; 96 97 /* 98 * Structure fields follow one of the following exclusion rules. 99 * 100 * I: Modifiable by initialization/destruction paths and read-only for 101 * everyone else. 102 * 103 * P: Preemption protected. Disabling preemption is enough and should 104 * only be modified and accessed from the local cpu. 105 * 106 * L: gcwq->lock protected. Access with gcwq->lock held. 107 * 108 * X: During normal operation, modification requires gcwq->lock and 109 * should be done only from local cpu. Either disabling preemption 110 * on local cpu or grabbing gcwq->lock is enough for read access. 111 * If GCWQ_DISASSOCIATED is set, it's identical to L. 112 * 113 * F: wq->flush_mutex protected. 114 * 115 * W: workqueue_lock protected. 116 */ 117 118 struct global_cwq; 119 120 /* 121 * The poor guys doing the actual heavy lifting. All on-duty workers 122 * are either serving the manager role, on idle list or on busy hash. 123 */ 124 struct worker { 125 /* on idle list while idle, on busy hash table while busy */ 126 union { 127 struct list_head entry; /* L: while idle */ 128 struct hlist_node hentry; /* L: while busy */ 129 }; 130 131 struct work_struct *current_work; /* L: work being processed */ 132 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 133 struct list_head scheduled; /* L: scheduled works */ 134 struct task_struct *task; /* I: worker task */ 135 struct global_cwq *gcwq; /* I: the associated gcwq */ 136 /* 64 bytes boundary on 64bit, 32 on 32bit */ 137 unsigned long last_active; /* L: last active timestamp */ 138 unsigned int flags; /* X: flags */ 139 int id; /* I: worker id */ 140 struct work_struct rebind_work; /* L: rebind worker to cpu */ 141 }; 142 143 /* 144 * Global per-cpu workqueue. There's one and only one for each cpu 145 * and all works are queued and processed here regardless of their 146 * target workqueues. 147 */ 148 struct global_cwq { 149 spinlock_t lock; /* the gcwq lock */ 150 struct list_head worklist; /* L: list of pending works */ 151 unsigned int cpu; /* I: the associated cpu */ 152 unsigned int flags; /* L: GCWQ_* flags */ 153 154 int nr_workers; /* L: total number of workers */ 155 int nr_idle; /* L: currently idle ones */ 156 157 /* workers are chained either in the idle_list or busy_hash */ 158 struct list_head idle_list; /* X: list of idle workers */ 159 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 160 /* L: hash of busy workers */ 161 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 164 165 struct ida worker_ida; /* L: for worker IDs */ 166 167 struct task_struct *trustee; /* L: for gcwq shutdown */ 168 unsigned int trustee_state; /* L: trustee state */ 169 wait_queue_head_t trustee_wait; /* trustee wait */ 170 struct worker *first_idle; /* L: first idle worker */ 171 } ____cacheline_aligned_in_smp; 172 173 /* 174 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 175 * work_struct->data are used for flags and thus cwqs need to be 176 * aligned at two's power of the number of flag bits. 177 */ 178 struct cpu_workqueue_struct { 179 struct global_cwq *gcwq; /* I: the associated gcwq */ 180 struct workqueue_struct *wq; /* I: the owning workqueue */ 181 int work_color; /* L: current color */ 182 int flush_color; /* L: flushing color */ 183 int nr_in_flight[WORK_NR_COLORS]; 184 /* L: nr of in_flight works */ 185 int nr_active; /* L: nr of active works */ 186 int max_active; /* L: max active works */ 187 struct list_head delayed_works; /* L: delayed works */ 188 }; 189 190 /* 191 * Structure used to wait for workqueue flush. 192 */ 193 struct wq_flusher { 194 struct list_head list; /* F: list of flushers */ 195 int flush_color; /* F: flush color waiting for */ 196 struct completion done; /* flush completion */ 197 }; 198 199 /* 200 * All cpumasks are assumed to be always set on UP and thus can't be 201 * used to determine whether there's something to be done. 202 */ 203 #ifdef CONFIG_SMP 204 typedef cpumask_var_t mayday_mask_t; 205 #define mayday_test_and_set_cpu(cpu, mask) \ 206 cpumask_test_and_set_cpu((cpu), (mask)) 207 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 208 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 209 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 210 #define free_mayday_mask(mask) free_cpumask_var((mask)) 211 #else 212 typedef unsigned long mayday_mask_t; 213 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 214 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 215 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 216 #define alloc_mayday_mask(maskp, gfp) true 217 #define free_mayday_mask(mask) do { } while (0) 218 #endif 219 220 /* 221 * The externally visible workqueue abstraction is an array of 222 * per-CPU workqueues: 223 */ 224 struct workqueue_struct { 225 unsigned int flags; /* I: WQ_* flags */ 226 union { 227 struct cpu_workqueue_struct __percpu *pcpu; 228 struct cpu_workqueue_struct *single; 229 unsigned long v; 230 } cpu_wq; /* I: cwq's */ 231 struct list_head list; /* W: list of all workqueues */ 232 233 struct mutex flush_mutex; /* protects wq flushing */ 234 int work_color; /* F: current work color */ 235 int flush_color; /* F: current flush color */ 236 atomic_t nr_cwqs_to_flush; /* flush in progress */ 237 struct wq_flusher *first_flusher; /* F: first flusher */ 238 struct list_head flusher_queue; /* F: flush waiters */ 239 struct list_head flusher_overflow; /* F: flush overflow list */ 240 241 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 242 struct worker *rescuer; /* I: rescue worker */ 243 244 int saved_max_active; /* W: saved cwq max_active */ 245 const char *name; /* I: workqueue name */ 246 #ifdef CONFIG_LOCKDEP 247 struct lockdep_map lockdep_map; 248 #endif 249 }; 250 251 struct workqueue_struct *system_wq __read_mostly; 252 struct workqueue_struct *system_long_wq __read_mostly; 253 struct workqueue_struct *system_nrt_wq __read_mostly; 254 struct workqueue_struct *system_unbound_wq __read_mostly; 255 EXPORT_SYMBOL_GPL(system_wq); 256 EXPORT_SYMBOL_GPL(system_long_wq); 257 EXPORT_SYMBOL_GPL(system_nrt_wq); 258 EXPORT_SYMBOL_GPL(system_unbound_wq); 259 260 #define for_each_busy_worker(worker, i, pos, gcwq) \ 261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 263 264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 265 unsigned int sw) 266 { 267 if (cpu < nr_cpu_ids) { 268 if (sw & 1) { 269 cpu = cpumask_next(cpu, mask); 270 if (cpu < nr_cpu_ids) 271 return cpu; 272 } 273 if (sw & 2) 274 return WORK_CPU_UNBOUND; 275 } 276 return WORK_CPU_NONE; 277 } 278 279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 280 struct workqueue_struct *wq) 281 { 282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 283 } 284 285 /* 286 * CPU iterators 287 * 288 * An extra gcwq is defined for an invalid cpu number 289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 290 * specific CPU. The following iterators are similar to 291 * for_each_*_cpu() iterators but also considers the unbound gcwq. 292 * 293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 295 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 296 * WORK_CPU_UNBOUND for unbound workqueues 297 */ 298 #define for_each_gcwq_cpu(cpu) \ 299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 300 (cpu) < WORK_CPU_NONE; \ 301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 302 303 #define for_each_online_gcwq_cpu(cpu) \ 304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 305 (cpu) < WORK_CPU_NONE; \ 306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 307 308 #define for_each_cwq_cpu(cpu, wq) \ 309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 310 (cpu) < WORK_CPU_NONE; \ 311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 312 313 #ifdef CONFIG_LOCKDEP 314 /** 315 * in_workqueue_context() - in context of specified workqueue? 316 * @wq: the workqueue of interest 317 * 318 * Checks lockdep state to see if the current task is executing from 319 * within a workqueue item. This function exists only if lockdep is 320 * enabled. 321 */ 322 int in_workqueue_context(struct workqueue_struct *wq) 323 { 324 return lock_is_held(&wq->lockdep_map); 325 } 326 #endif 327 328 #ifdef CONFIG_DEBUG_OBJECTS_WORK 329 330 static struct debug_obj_descr work_debug_descr; 331 332 /* 333 * fixup_init is called when: 334 * - an active object is initialized 335 */ 336 static int work_fixup_init(void *addr, enum debug_obj_state state) 337 { 338 struct work_struct *work = addr; 339 340 switch (state) { 341 case ODEBUG_STATE_ACTIVE: 342 cancel_work_sync(work); 343 debug_object_init(work, &work_debug_descr); 344 return 1; 345 default: 346 return 0; 347 } 348 } 349 350 /* 351 * fixup_activate is called when: 352 * - an active object is activated 353 * - an unknown object is activated (might be a statically initialized object) 354 */ 355 static int work_fixup_activate(void *addr, enum debug_obj_state state) 356 { 357 struct work_struct *work = addr; 358 359 switch (state) { 360 361 case ODEBUG_STATE_NOTAVAILABLE: 362 /* 363 * This is not really a fixup. The work struct was 364 * statically initialized. We just make sure that it 365 * is tracked in the object tracker. 366 */ 367 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 368 debug_object_init(work, &work_debug_descr); 369 debug_object_activate(work, &work_debug_descr); 370 return 0; 371 } 372 WARN_ON_ONCE(1); 373 return 0; 374 375 case ODEBUG_STATE_ACTIVE: 376 WARN_ON(1); 377 378 default: 379 return 0; 380 } 381 } 382 383 /* 384 * fixup_free is called when: 385 * - an active object is freed 386 */ 387 static int work_fixup_free(void *addr, enum debug_obj_state state) 388 { 389 struct work_struct *work = addr; 390 391 switch (state) { 392 case ODEBUG_STATE_ACTIVE: 393 cancel_work_sync(work); 394 debug_object_free(work, &work_debug_descr); 395 return 1; 396 default: 397 return 0; 398 } 399 } 400 401 static struct debug_obj_descr work_debug_descr = { 402 .name = "work_struct", 403 .fixup_init = work_fixup_init, 404 .fixup_activate = work_fixup_activate, 405 .fixup_free = work_fixup_free, 406 }; 407 408 static inline void debug_work_activate(struct work_struct *work) 409 { 410 debug_object_activate(work, &work_debug_descr); 411 } 412 413 static inline void debug_work_deactivate(struct work_struct *work) 414 { 415 debug_object_deactivate(work, &work_debug_descr); 416 } 417 418 void __init_work(struct work_struct *work, int onstack) 419 { 420 if (onstack) 421 debug_object_init_on_stack(work, &work_debug_descr); 422 else 423 debug_object_init(work, &work_debug_descr); 424 } 425 EXPORT_SYMBOL_GPL(__init_work); 426 427 void destroy_work_on_stack(struct work_struct *work) 428 { 429 debug_object_free(work, &work_debug_descr); 430 } 431 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 432 433 #else 434 static inline void debug_work_activate(struct work_struct *work) { } 435 static inline void debug_work_deactivate(struct work_struct *work) { } 436 #endif 437 438 /* Serializes the accesses to the list of workqueues. */ 439 static DEFINE_SPINLOCK(workqueue_lock); 440 static LIST_HEAD(workqueues); 441 static bool workqueue_freezing; /* W: have wqs started freezing? */ 442 443 /* 444 * The almighty global cpu workqueues. nr_running is the only field 445 * which is expected to be used frequently by other cpus via 446 * try_to_wake_up(). Put it in a separate cacheline. 447 */ 448 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 449 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 450 451 /* 452 * Global cpu workqueue and nr_running counter for unbound gcwq. The 453 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 454 * workers have WORKER_UNBOUND set. 455 */ 456 static struct global_cwq unbound_global_cwq; 457 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 458 459 static int worker_thread(void *__worker); 460 461 static struct global_cwq *get_gcwq(unsigned int cpu) 462 { 463 if (cpu != WORK_CPU_UNBOUND) 464 return &per_cpu(global_cwq, cpu); 465 else 466 return &unbound_global_cwq; 467 } 468 469 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 470 { 471 if (cpu != WORK_CPU_UNBOUND) 472 return &per_cpu(gcwq_nr_running, cpu); 473 else 474 return &unbound_gcwq_nr_running; 475 } 476 477 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 478 struct workqueue_struct *wq) 479 { 480 if (!(wq->flags & WQ_UNBOUND)) { 481 if (likely(cpu < nr_cpu_ids)) { 482 #ifdef CONFIG_SMP 483 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 484 #else 485 return wq->cpu_wq.single; 486 #endif 487 } 488 } else if (likely(cpu == WORK_CPU_UNBOUND)) 489 return wq->cpu_wq.single; 490 return NULL; 491 } 492 493 static unsigned int work_color_to_flags(int color) 494 { 495 return color << WORK_STRUCT_COLOR_SHIFT; 496 } 497 498 static int get_work_color(struct work_struct *work) 499 { 500 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 501 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 502 } 503 504 static int work_next_color(int color) 505 { 506 return (color + 1) % WORK_NR_COLORS; 507 } 508 509 /* 510 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 511 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 512 * cleared and the work data contains the cpu number it was last on. 513 * 514 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 515 * cwq, cpu or clear work->data. These functions should only be 516 * called while the work is owned - ie. while the PENDING bit is set. 517 * 518 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 519 * corresponding to a work. gcwq is available once the work has been 520 * queued anywhere after initialization. cwq is available only from 521 * queueing until execution starts. 522 */ 523 static inline void set_work_data(struct work_struct *work, unsigned long data, 524 unsigned long flags) 525 { 526 BUG_ON(!work_pending(work)); 527 atomic_long_set(&work->data, data | flags | work_static(work)); 528 } 529 530 static void set_work_cwq(struct work_struct *work, 531 struct cpu_workqueue_struct *cwq, 532 unsigned long extra_flags) 533 { 534 set_work_data(work, (unsigned long)cwq, 535 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 536 } 537 538 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 539 { 540 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 541 } 542 543 static void clear_work_data(struct work_struct *work) 544 { 545 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 546 } 547 548 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 549 { 550 unsigned long data = atomic_long_read(&work->data); 551 552 if (data & WORK_STRUCT_CWQ) 553 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 554 else 555 return NULL; 556 } 557 558 static struct global_cwq *get_work_gcwq(struct work_struct *work) 559 { 560 unsigned long data = atomic_long_read(&work->data); 561 unsigned int cpu; 562 563 if (data & WORK_STRUCT_CWQ) 564 return ((struct cpu_workqueue_struct *) 565 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 566 567 cpu = data >> WORK_STRUCT_FLAG_BITS; 568 if (cpu == WORK_CPU_NONE) 569 return NULL; 570 571 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 572 return get_gcwq(cpu); 573 } 574 575 /* 576 * Policy functions. These define the policies on how the global 577 * worker pool is managed. Unless noted otherwise, these functions 578 * assume that they're being called with gcwq->lock held. 579 */ 580 581 static bool __need_more_worker(struct global_cwq *gcwq) 582 { 583 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 584 gcwq->flags & GCWQ_HIGHPRI_PENDING; 585 } 586 587 /* 588 * Need to wake up a worker? Called from anything but currently 589 * running workers. 590 */ 591 static bool need_more_worker(struct global_cwq *gcwq) 592 { 593 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 594 } 595 596 /* Can I start working? Called from busy but !running workers. */ 597 static bool may_start_working(struct global_cwq *gcwq) 598 { 599 return gcwq->nr_idle; 600 } 601 602 /* Do I need to keep working? Called from currently running workers. */ 603 static bool keep_working(struct global_cwq *gcwq) 604 { 605 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 606 607 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1; 608 } 609 610 /* Do we need a new worker? Called from manager. */ 611 static bool need_to_create_worker(struct global_cwq *gcwq) 612 { 613 return need_more_worker(gcwq) && !may_start_working(gcwq); 614 } 615 616 /* Do I need to be the manager? */ 617 static bool need_to_manage_workers(struct global_cwq *gcwq) 618 { 619 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 620 } 621 622 /* Do we have too many workers and should some go away? */ 623 static bool too_many_workers(struct global_cwq *gcwq) 624 { 625 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 626 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 627 int nr_busy = gcwq->nr_workers - nr_idle; 628 629 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 630 } 631 632 /* 633 * Wake up functions. 634 */ 635 636 /* Return the first worker. Safe with preemption disabled */ 637 static struct worker *first_worker(struct global_cwq *gcwq) 638 { 639 if (unlikely(list_empty(&gcwq->idle_list))) 640 return NULL; 641 642 return list_first_entry(&gcwq->idle_list, struct worker, entry); 643 } 644 645 /** 646 * wake_up_worker - wake up an idle worker 647 * @gcwq: gcwq to wake worker for 648 * 649 * Wake up the first idle worker of @gcwq. 650 * 651 * CONTEXT: 652 * spin_lock_irq(gcwq->lock). 653 */ 654 static void wake_up_worker(struct global_cwq *gcwq) 655 { 656 struct worker *worker = first_worker(gcwq); 657 658 if (likely(worker)) 659 wake_up_process(worker->task); 660 } 661 662 /** 663 * wq_worker_waking_up - a worker is waking up 664 * @task: task waking up 665 * @cpu: CPU @task is waking up to 666 * 667 * This function is called during try_to_wake_up() when a worker is 668 * being awoken. 669 * 670 * CONTEXT: 671 * spin_lock_irq(rq->lock) 672 */ 673 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 674 { 675 struct worker *worker = kthread_data(task); 676 677 if (likely(!(worker->flags & WORKER_NOT_RUNNING))) 678 atomic_inc(get_gcwq_nr_running(cpu)); 679 } 680 681 /** 682 * wq_worker_sleeping - a worker is going to sleep 683 * @task: task going to sleep 684 * @cpu: CPU in question, must be the current CPU number 685 * 686 * This function is called during schedule() when a busy worker is 687 * going to sleep. Worker on the same cpu can be woken up by 688 * returning pointer to its task. 689 * 690 * CONTEXT: 691 * spin_lock_irq(rq->lock) 692 * 693 * RETURNS: 694 * Worker task on @cpu to wake up, %NULL if none. 695 */ 696 struct task_struct *wq_worker_sleeping(struct task_struct *task, 697 unsigned int cpu) 698 { 699 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 700 struct global_cwq *gcwq = get_gcwq(cpu); 701 atomic_t *nr_running = get_gcwq_nr_running(cpu); 702 703 if (unlikely(worker->flags & WORKER_NOT_RUNNING)) 704 return NULL; 705 706 /* this can only happen on the local cpu */ 707 BUG_ON(cpu != raw_smp_processor_id()); 708 709 /* 710 * The counterpart of the following dec_and_test, implied mb, 711 * worklist not empty test sequence is in insert_work(). 712 * Please read comment there. 713 * 714 * NOT_RUNNING is clear. This means that trustee is not in 715 * charge and we're running on the local cpu w/ rq lock held 716 * and preemption disabled, which in turn means that none else 717 * could be manipulating idle_list, so dereferencing idle_list 718 * without gcwq lock is safe. 719 */ 720 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 721 to_wakeup = first_worker(gcwq); 722 return to_wakeup ? to_wakeup->task : NULL; 723 } 724 725 /** 726 * worker_set_flags - set worker flags and adjust nr_running accordingly 727 * @worker: self 728 * @flags: flags to set 729 * @wakeup: wakeup an idle worker if necessary 730 * 731 * Set @flags in @worker->flags and adjust nr_running accordingly. If 732 * nr_running becomes zero and @wakeup is %true, an idle worker is 733 * woken up. 734 * 735 * CONTEXT: 736 * spin_lock_irq(gcwq->lock) 737 */ 738 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 739 bool wakeup) 740 { 741 struct global_cwq *gcwq = worker->gcwq; 742 743 WARN_ON_ONCE(worker->task != current); 744 745 /* 746 * If transitioning into NOT_RUNNING, adjust nr_running and 747 * wake up an idle worker as necessary if requested by 748 * @wakeup. 749 */ 750 if ((flags & WORKER_NOT_RUNNING) && 751 !(worker->flags & WORKER_NOT_RUNNING)) { 752 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 753 754 if (wakeup) { 755 if (atomic_dec_and_test(nr_running) && 756 !list_empty(&gcwq->worklist)) 757 wake_up_worker(gcwq); 758 } else 759 atomic_dec(nr_running); 760 } 761 762 worker->flags |= flags; 763 } 764 765 /** 766 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 767 * @worker: self 768 * @flags: flags to clear 769 * 770 * Clear @flags in @worker->flags and adjust nr_running accordingly. 771 * 772 * CONTEXT: 773 * spin_lock_irq(gcwq->lock) 774 */ 775 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 776 { 777 struct global_cwq *gcwq = worker->gcwq; 778 unsigned int oflags = worker->flags; 779 780 WARN_ON_ONCE(worker->task != current); 781 782 worker->flags &= ~flags; 783 784 /* if transitioning out of NOT_RUNNING, increment nr_running */ 785 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 786 if (!(worker->flags & WORKER_NOT_RUNNING)) 787 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 788 } 789 790 /** 791 * busy_worker_head - return the busy hash head for a work 792 * @gcwq: gcwq of interest 793 * @work: work to be hashed 794 * 795 * Return hash head of @gcwq for @work. 796 * 797 * CONTEXT: 798 * spin_lock_irq(gcwq->lock). 799 * 800 * RETURNS: 801 * Pointer to the hash head. 802 */ 803 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 804 struct work_struct *work) 805 { 806 const int base_shift = ilog2(sizeof(struct work_struct)); 807 unsigned long v = (unsigned long)work; 808 809 /* simple shift and fold hash, do we need something better? */ 810 v >>= base_shift; 811 v += v >> BUSY_WORKER_HASH_ORDER; 812 v &= BUSY_WORKER_HASH_MASK; 813 814 return &gcwq->busy_hash[v]; 815 } 816 817 /** 818 * __find_worker_executing_work - find worker which is executing a work 819 * @gcwq: gcwq of interest 820 * @bwh: hash head as returned by busy_worker_head() 821 * @work: work to find worker for 822 * 823 * Find a worker which is executing @work on @gcwq. @bwh should be 824 * the hash head obtained by calling busy_worker_head() with the same 825 * work. 826 * 827 * CONTEXT: 828 * spin_lock_irq(gcwq->lock). 829 * 830 * RETURNS: 831 * Pointer to worker which is executing @work if found, NULL 832 * otherwise. 833 */ 834 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 835 struct hlist_head *bwh, 836 struct work_struct *work) 837 { 838 struct worker *worker; 839 struct hlist_node *tmp; 840 841 hlist_for_each_entry(worker, tmp, bwh, hentry) 842 if (worker->current_work == work) 843 return worker; 844 return NULL; 845 } 846 847 /** 848 * find_worker_executing_work - find worker which is executing a work 849 * @gcwq: gcwq of interest 850 * @work: work to find worker for 851 * 852 * Find a worker which is executing @work on @gcwq. This function is 853 * identical to __find_worker_executing_work() except that this 854 * function calculates @bwh itself. 855 * 856 * CONTEXT: 857 * spin_lock_irq(gcwq->lock). 858 * 859 * RETURNS: 860 * Pointer to worker which is executing @work if found, NULL 861 * otherwise. 862 */ 863 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 864 struct work_struct *work) 865 { 866 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 867 work); 868 } 869 870 /** 871 * gcwq_determine_ins_pos - find insertion position 872 * @gcwq: gcwq of interest 873 * @cwq: cwq a work is being queued for 874 * 875 * A work for @cwq is about to be queued on @gcwq, determine insertion 876 * position for the work. If @cwq is for HIGHPRI wq, the work is 877 * queued at the head of the queue but in FIFO order with respect to 878 * other HIGHPRI works; otherwise, at the end of the queue. This 879 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 880 * there are HIGHPRI works pending. 881 * 882 * CONTEXT: 883 * spin_lock_irq(gcwq->lock). 884 * 885 * RETURNS: 886 * Pointer to inserstion position. 887 */ 888 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 889 struct cpu_workqueue_struct *cwq) 890 { 891 struct work_struct *twork; 892 893 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 894 return &gcwq->worklist; 895 896 list_for_each_entry(twork, &gcwq->worklist, entry) { 897 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 898 899 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 900 break; 901 } 902 903 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 904 return &twork->entry; 905 } 906 907 /** 908 * insert_work - insert a work into gcwq 909 * @cwq: cwq @work belongs to 910 * @work: work to insert 911 * @head: insertion point 912 * @extra_flags: extra WORK_STRUCT_* flags to set 913 * 914 * Insert @work which belongs to @cwq into @gcwq after @head. 915 * @extra_flags is or'd to work_struct flags. 916 * 917 * CONTEXT: 918 * spin_lock_irq(gcwq->lock). 919 */ 920 static void insert_work(struct cpu_workqueue_struct *cwq, 921 struct work_struct *work, struct list_head *head, 922 unsigned int extra_flags) 923 { 924 struct global_cwq *gcwq = cwq->gcwq; 925 926 /* we own @work, set data and link */ 927 set_work_cwq(work, cwq, extra_flags); 928 929 /* 930 * Ensure that we get the right work->data if we see the 931 * result of list_add() below, see try_to_grab_pending(). 932 */ 933 smp_wmb(); 934 935 list_add_tail(&work->entry, head); 936 937 /* 938 * Ensure either worker_sched_deactivated() sees the above 939 * list_add_tail() or we see zero nr_running to avoid workers 940 * lying around lazily while there are works to be processed. 941 */ 942 smp_mb(); 943 944 if (__need_more_worker(gcwq)) 945 wake_up_worker(gcwq); 946 } 947 948 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 949 struct work_struct *work) 950 { 951 struct global_cwq *gcwq; 952 struct cpu_workqueue_struct *cwq; 953 struct list_head *worklist; 954 unsigned int work_flags; 955 unsigned long flags; 956 957 debug_work_activate(work); 958 959 if (WARN_ON_ONCE(wq->flags & WQ_DYING)) 960 return; 961 962 /* determine gcwq to use */ 963 if (!(wq->flags & WQ_UNBOUND)) { 964 struct global_cwq *last_gcwq; 965 966 if (unlikely(cpu == WORK_CPU_UNBOUND)) 967 cpu = raw_smp_processor_id(); 968 969 /* 970 * It's multi cpu. If @wq is non-reentrant and @work 971 * was previously on a different cpu, it might still 972 * be running there, in which case the work needs to 973 * be queued on that cpu to guarantee non-reentrance. 974 */ 975 gcwq = get_gcwq(cpu); 976 if (wq->flags & WQ_NON_REENTRANT && 977 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 978 struct worker *worker; 979 980 spin_lock_irqsave(&last_gcwq->lock, flags); 981 982 worker = find_worker_executing_work(last_gcwq, work); 983 984 if (worker && worker->current_cwq->wq == wq) 985 gcwq = last_gcwq; 986 else { 987 /* meh... not running there, queue here */ 988 spin_unlock_irqrestore(&last_gcwq->lock, flags); 989 spin_lock_irqsave(&gcwq->lock, flags); 990 } 991 } else 992 spin_lock_irqsave(&gcwq->lock, flags); 993 } else { 994 gcwq = get_gcwq(WORK_CPU_UNBOUND); 995 spin_lock_irqsave(&gcwq->lock, flags); 996 } 997 998 /* gcwq determined, get cwq and queue */ 999 cwq = get_cwq(gcwq->cpu, wq); 1000 1001 BUG_ON(!list_empty(&work->entry)); 1002 1003 cwq->nr_in_flight[cwq->work_color]++; 1004 work_flags = work_color_to_flags(cwq->work_color); 1005 1006 if (likely(cwq->nr_active < cwq->max_active)) { 1007 cwq->nr_active++; 1008 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1009 } else { 1010 work_flags |= WORK_STRUCT_DELAYED; 1011 worklist = &cwq->delayed_works; 1012 } 1013 1014 insert_work(cwq, work, worklist, work_flags); 1015 1016 spin_unlock_irqrestore(&gcwq->lock, flags); 1017 } 1018 1019 /** 1020 * queue_work - queue work on a workqueue 1021 * @wq: workqueue to use 1022 * @work: work to queue 1023 * 1024 * Returns 0 if @work was already on a queue, non-zero otherwise. 1025 * 1026 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1027 * it can be processed by another CPU. 1028 */ 1029 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1030 { 1031 int ret; 1032 1033 ret = queue_work_on(get_cpu(), wq, work); 1034 put_cpu(); 1035 1036 return ret; 1037 } 1038 EXPORT_SYMBOL_GPL(queue_work); 1039 1040 /** 1041 * queue_work_on - queue work on specific cpu 1042 * @cpu: CPU number to execute work on 1043 * @wq: workqueue to use 1044 * @work: work to queue 1045 * 1046 * Returns 0 if @work was already on a queue, non-zero otherwise. 1047 * 1048 * We queue the work to a specific CPU, the caller must ensure it 1049 * can't go away. 1050 */ 1051 int 1052 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1053 { 1054 int ret = 0; 1055 1056 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1057 __queue_work(cpu, wq, work); 1058 ret = 1; 1059 } 1060 return ret; 1061 } 1062 EXPORT_SYMBOL_GPL(queue_work_on); 1063 1064 static void delayed_work_timer_fn(unsigned long __data) 1065 { 1066 struct delayed_work *dwork = (struct delayed_work *)__data; 1067 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1068 1069 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1070 } 1071 1072 /** 1073 * queue_delayed_work - queue work on a workqueue after delay 1074 * @wq: workqueue to use 1075 * @dwork: delayable work to queue 1076 * @delay: number of jiffies to wait before queueing 1077 * 1078 * Returns 0 if @work was already on a queue, non-zero otherwise. 1079 */ 1080 int queue_delayed_work(struct workqueue_struct *wq, 1081 struct delayed_work *dwork, unsigned long delay) 1082 { 1083 if (delay == 0) 1084 return queue_work(wq, &dwork->work); 1085 1086 return queue_delayed_work_on(-1, wq, dwork, delay); 1087 } 1088 EXPORT_SYMBOL_GPL(queue_delayed_work); 1089 1090 /** 1091 * queue_delayed_work_on - queue work on specific CPU after delay 1092 * @cpu: CPU number to execute work on 1093 * @wq: workqueue to use 1094 * @dwork: work to queue 1095 * @delay: number of jiffies to wait before queueing 1096 * 1097 * Returns 0 if @work was already on a queue, non-zero otherwise. 1098 */ 1099 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1100 struct delayed_work *dwork, unsigned long delay) 1101 { 1102 int ret = 0; 1103 struct timer_list *timer = &dwork->timer; 1104 struct work_struct *work = &dwork->work; 1105 1106 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1107 unsigned int lcpu; 1108 1109 BUG_ON(timer_pending(timer)); 1110 BUG_ON(!list_empty(&work->entry)); 1111 1112 timer_stats_timer_set_start_info(&dwork->timer); 1113 1114 /* 1115 * This stores cwq for the moment, for the timer_fn. 1116 * Note that the work's gcwq is preserved to allow 1117 * reentrance detection for delayed works. 1118 */ 1119 if (!(wq->flags & WQ_UNBOUND)) { 1120 struct global_cwq *gcwq = get_work_gcwq(work); 1121 1122 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1123 lcpu = gcwq->cpu; 1124 else 1125 lcpu = raw_smp_processor_id(); 1126 } else 1127 lcpu = WORK_CPU_UNBOUND; 1128 1129 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1130 1131 timer->expires = jiffies + delay; 1132 timer->data = (unsigned long)dwork; 1133 timer->function = delayed_work_timer_fn; 1134 1135 if (unlikely(cpu >= 0)) 1136 add_timer_on(timer, cpu); 1137 else 1138 add_timer(timer); 1139 ret = 1; 1140 } 1141 return ret; 1142 } 1143 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1144 1145 /** 1146 * worker_enter_idle - enter idle state 1147 * @worker: worker which is entering idle state 1148 * 1149 * @worker is entering idle state. Update stats and idle timer if 1150 * necessary. 1151 * 1152 * LOCKING: 1153 * spin_lock_irq(gcwq->lock). 1154 */ 1155 static void worker_enter_idle(struct worker *worker) 1156 { 1157 struct global_cwq *gcwq = worker->gcwq; 1158 1159 BUG_ON(worker->flags & WORKER_IDLE); 1160 BUG_ON(!list_empty(&worker->entry) && 1161 (worker->hentry.next || worker->hentry.pprev)); 1162 1163 /* can't use worker_set_flags(), also called from start_worker() */ 1164 worker->flags |= WORKER_IDLE; 1165 gcwq->nr_idle++; 1166 worker->last_active = jiffies; 1167 1168 /* idle_list is LIFO */ 1169 list_add(&worker->entry, &gcwq->idle_list); 1170 1171 if (likely(!(worker->flags & WORKER_ROGUE))) { 1172 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1173 mod_timer(&gcwq->idle_timer, 1174 jiffies + IDLE_WORKER_TIMEOUT); 1175 } else 1176 wake_up_all(&gcwq->trustee_wait); 1177 1178 /* sanity check nr_running */ 1179 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1180 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1181 } 1182 1183 /** 1184 * worker_leave_idle - leave idle state 1185 * @worker: worker which is leaving idle state 1186 * 1187 * @worker is leaving idle state. Update stats. 1188 * 1189 * LOCKING: 1190 * spin_lock_irq(gcwq->lock). 1191 */ 1192 static void worker_leave_idle(struct worker *worker) 1193 { 1194 struct global_cwq *gcwq = worker->gcwq; 1195 1196 BUG_ON(!(worker->flags & WORKER_IDLE)); 1197 worker_clr_flags(worker, WORKER_IDLE); 1198 gcwq->nr_idle--; 1199 list_del_init(&worker->entry); 1200 } 1201 1202 /** 1203 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1204 * @worker: self 1205 * 1206 * Works which are scheduled while the cpu is online must at least be 1207 * scheduled to a worker which is bound to the cpu so that if they are 1208 * flushed from cpu callbacks while cpu is going down, they are 1209 * guaranteed to execute on the cpu. 1210 * 1211 * This function is to be used by rogue workers and rescuers to bind 1212 * themselves to the target cpu and may race with cpu going down or 1213 * coming online. kthread_bind() can't be used because it may put the 1214 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1215 * verbatim as it's best effort and blocking and gcwq may be 1216 * [dis]associated in the meantime. 1217 * 1218 * This function tries set_cpus_allowed() and locks gcwq and verifies 1219 * the binding against GCWQ_DISASSOCIATED which is set during 1220 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1221 * idle state or fetches works without dropping lock, it can guarantee 1222 * the scheduling requirement described in the first paragraph. 1223 * 1224 * CONTEXT: 1225 * Might sleep. Called without any lock but returns with gcwq->lock 1226 * held. 1227 * 1228 * RETURNS: 1229 * %true if the associated gcwq is online (@worker is successfully 1230 * bound), %false if offline. 1231 */ 1232 static bool worker_maybe_bind_and_lock(struct worker *worker) 1233 __acquires(&gcwq->lock) 1234 { 1235 struct global_cwq *gcwq = worker->gcwq; 1236 struct task_struct *task = worker->task; 1237 1238 while (true) { 1239 /* 1240 * The following call may fail, succeed or succeed 1241 * without actually migrating the task to the cpu if 1242 * it races with cpu hotunplug operation. Verify 1243 * against GCWQ_DISASSOCIATED. 1244 */ 1245 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1246 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1247 1248 spin_lock_irq(&gcwq->lock); 1249 if (gcwq->flags & GCWQ_DISASSOCIATED) 1250 return false; 1251 if (task_cpu(task) == gcwq->cpu && 1252 cpumask_equal(¤t->cpus_allowed, 1253 get_cpu_mask(gcwq->cpu))) 1254 return true; 1255 spin_unlock_irq(&gcwq->lock); 1256 1257 /* CPU has come up inbetween, retry migration */ 1258 cpu_relax(); 1259 } 1260 } 1261 1262 /* 1263 * Function for worker->rebind_work used to rebind rogue busy workers 1264 * to the associated cpu which is coming back online. This is 1265 * scheduled by cpu up but can race with other cpu hotplug operations 1266 * and may be executed twice without intervening cpu down. 1267 */ 1268 static void worker_rebind_fn(struct work_struct *work) 1269 { 1270 struct worker *worker = container_of(work, struct worker, rebind_work); 1271 struct global_cwq *gcwq = worker->gcwq; 1272 1273 if (worker_maybe_bind_and_lock(worker)) 1274 worker_clr_flags(worker, WORKER_REBIND); 1275 1276 spin_unlock_irq(&gcwq->lock); 1277 } 1278 1279 static struct worker *alloc_worker(void) 1280 { 1281 struct worker *worker; 1282 1283 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1284 if (worker) { 1285 INIT_LIST_HEAD(&worker->entry); 1286 INIT_LIST_HEAD(&worker->scheduled); 1287 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1288 /* on creation a worker is in !idle && prep state */ 1289 worker->flags = WORKER_PREP; 1290 } 1291 return worker; 1292 } 1293 1294 /** 1295 * create_worker - create a new workqueue worker 1296 * @gcwq: gcwq the new worker will belong to 1297 * @bind: whether to set affinity to @cpu or not 1298 * 1299 * Create a new worker which is bound to @gcwq. The returned worker 1300 * can be started by calling start_worker() or destroyed using 1301 * destroy_worker(). 1302 * 1303 * CONTEXT: 1304 * Might sleep. Does GFP_KERNEL allocations. 1305 * 1306 * RETURNS: 1307 * Pointer to the newly created worker. 1308 */ 1309 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1310 { 1311 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1312 struct worker *worker = NULL; 1313 int id = -1; 1314 1315 spin_lock_irq(&gcwq->lock); 1316 while (ida_get_new(&gcwq->worker_ida, &id)) { 1317 spin_unlock_irq(&gcwq->lock); 1318 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1319 goto fail; 1320 spin_lock_irq(&gcwq->lock); 1321 } 1322 spin_unlock_irq(&gcwq->lock); 1323 1324 worker = alloc_worker(); 1325 if (!worker) 1326 goto fail; 1327 1328 worker->gcwq = gcwq; 1329 worker->id = id; 1330 1331 if (!on_unbound_cpu) 1332 worker->task = kthread_create(worker_thread, worker, 1333 "kworker/%u:%d", gcwq->cpu, id); 1334 else 1335 worker->task = kthread_create(worker_thread, worker, 1336 "kworker/u:%d", id); 1337 if (IS_ERR(worker->task)) 1338 goto fail; 1339 1340 /* 1341 * A rogue worker will become a regular one if CPU comes 1342 * online later on. Make sure every worker has 1343 * PF_THREAD_BOUND set. 1344 */ 1345 if (bind && !on_unbound_cpu) 1346 kthread_bind(worker->task, gcwq->cpu); 1347 else { 1348 worker->task->flags |= PF_THREAD_BOUND; 1349 if (on_unbound_cpu) 1350 worker->flags |= WORKER_UNBOUND; 1351 } 1352 1353 return worker; 1354 fail: 1355 if (id >= 0) { 1356 spin_lock_irq(&gcwq->lock); 1357 ida_remove(&gcwq->worker_ida, id); 1358 spin_unlock_irq(&gcwq->lock); 1359 } 1360 kfree(worker); 1361 return NULL; 1362 } 1363 1364 /** 1365 * start_worker - start a newly created worker 1366 * @worker: worker to start 1367 * 1368 * Make the gcwq aware of @worker and start it. 1369 * 1370 * CONTEXT: 1371 * spin_lock_irq(gcwq->lock). 1372 */ 1373 static void start_worker(struct worker *worker) 1374 { 1375 worker->flags |= WORKER_STARTED; 1376 worker->gcwq->nr_workers++; 1377 worker_enter_idle(worker); 1378 wake_up_process(worker->task); 1379 } 1380 1381 /** 1382 * destroy_worker - destroy a workqueue worker 1383 * @worker: worker to be destroyed 1384 * 1385 * Destroy @worker and adjust @gcwq stats accordingly. 1386 * 1387 * CONTEXT: 1388 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1389 */ 1390 static void destroy_worker(struct worker *worker) 1391 { 1392 struct global_cwq *gcwq = worker->gcwq; 1393 int id = worker->id; 1394 1395 /* sanity check frenzy */ 1396 BUG_ON(worker->current_work); 1397 BUG_ON(!list_empty(&worker->scheduled)); 1398 1399 if (worker->flags & WORKER_STARTED) 1400 gcwq->nr_workers--; 1401 if (worker->flags & WORKER_IDLE) 1402 gcwq->nr_idle--; 1403 1404 list_del_init(&worker->entry); 1405 worker->flags |= WORKER_DIE; 1406 1407 spin_unlock_irq(&gcwq->lock); 1408 1409 kthread_stop(worker->task); 1410 kfree(worker); 1411 1412 spin_lock_irq(&gcwq->lock); 1413 ida_remove(&gcwq->worker_ida, id); 1414 } 1415 1416 static void idle_worker_timeout(unsigned long __gcwq) 1417 { 1418 struct global_cwq *gcwq = (void *)__gcwq; 1419 1420 spin_lock_irq(&gcwq->lock); 1421 1422 if (too_many_workers(gcwq)) { 1423 struct worker *worker; 1424 unsigned long expires; 1425 1426 /* idle_list is kept in LIFO order, check the last one */ 1427 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1428 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1429 1430 if (time_before(jiffies, expires)) 1431 mod_timer(&gcwq->idle_timer, expires); 1432 else { 1433 /* it's been idle for too long, wake up manager */ 1434 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1435 wake_up_worker(gcwq); 1436 } 1437 } 1438 1439 spin_unlock_irq(&gcwq->lock); 1440 } 1441 1442 static bool send_mayday(struct work_struct *work) 1443 { 1444 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1445 struct workqueue_struct *wq = cwq->wq; 1446 unsigned int cpu; 1447 1448 if (!(wq->flags & WQ_RESCUER)) 1449 return false; 1450 1451 /* mayday mayday mayday */ 1452 cpu = cwq->gcwq->cpu; 1453 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1454 if (cpu == WORK_CPU_UNBOUND) 1455 cpu = 0; 1456 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1457 wake_up_process(wq->rescuer->task); 1458 return true; 1459 } 1460 1461 static void gcwq_mayday_timeout(unsigned long __gcwq) 1462 { 1463 struct global_cwq *gcwq = (void *)__gcwq; 1464 struct work_struct *work; 1465 1466 spin_lock_irq(&gcwq->lock); 1467 1468 if (need_to_create_worker(gcwq)) { 1469 /* 1470 * We've been trying to create a new worker but 1471 * haven't been successful. We might be hitting an 1472 * allocation deadlock. Send distress signals to 1473 * rescuers. 1474 */ 1475 list_for_each_entry(work, &gcwq->worklist, entry) 1476 send_mayday(work); 1477 } 1478 1479 spin_unlock_irq(&gcwq->lock); 1480 1481 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1482 } 1483 1484 /** 1485 * maybe_create_worker - create a new worker if necessary 1486 * @gcwq: gcwq to create a new worker for 1487 * 1488 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1489 * have at least one idle worker on return from this function. If 1490 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1491 * sent to all rescuers with works scheduled on @gcwq to resolve 1492 * possible allocation deadlock. 1493 * 1494 * On return, need_to_create_worker() is guaranteed to be false and 1495 * may_start_working() true. 1496 * 1497 * LOCKING: 1498 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1499 * multiple times. Does GFP_KERNEL allocations. Called only from 1500 * manager. 1501 * 1502 * RETURNS: 1503 * false if no action was taken and gcwq->lock stayed locked, true 1504 * otherwise. 1505 */ 1506 static bool maybe_create_worker(struct global_cwq *gcwq) 1507 __releases(&gcwq->lock) 1508 __acquires(&gcwq->lock) 1509 { 1510 if (!need_to_create_worker(gcwq)) 1511 return false; 1512 restart: 1513 spin_unlock_irq(&gcwq->lock); 1514 1515 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1516 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1517 1518 while (true) { 1519 struct worker *worker; 1520 1521 worker = create_worker(gcwq, true); 1522 if (worker) { 1523 del_timer_sync(&gcwq->mayday_timer); 1524 spin_lock_irq(&gcwq->lock); 1525 start_worker(worker); 1526 BUG_ON(need_to_create_worker(gcwq)); 1527 return true; 1528 } 1529 1530 if (!need_to_create_worker(gcwq)) 1531 break; 1532 1533 __set_current_state(TASK_INTERRUPTIBLE); 1534 schedule_timeout(CREATE_COOLDOWN); 1535 1536 if (!need_to_create_worker(gcwq)) 1537 break; 1538 } 1539 1540 del_timer_sync(&gcwq->mayday_timer); 1541 spin_lock_irq(&gcwq->lock); 1542 if (need_to_create_worker(gcwq)) 1543 goto restart; 1544 return true; 1545 } 1546 1547 /** 1548 * maybe_destroy_worker - destroy workers which have been idle for a while 1549 * @gcwq: gcwq to destroy workers for 1550 * 1551 * Destroy @gcwq workers which have been idle for longer than 1552 * IDLE_WORKER_TIMEOUT. 1553 * 1554 * LOCKING: 1555 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1556 * multiple times. Called only from manager. 1557 * 1558 * RETURNS: 1559 * false if no action was taken and gcwq->lock stayed locked, true 1560 * otherwise. 1561 */ 1562 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1563 { 1564 bool ret = false; 1565 1566 while (too_many_workers(gcwq)) { 1567 struct worker *worker; 1568 unsigned long expires; 1569 1570 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1571 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1572 1573 if (time_before(jiffies, expires)) { 1574 mod_timer(&gcwq->idle_timer, expires); 1575 break; 1576 } 1577 1578 destroy_worker(worker); 1579 ret = true; 1580 } 1581 1582 return ret; 1583 } 1584 1585 /** 1586 * manage_workers - manage worker pool 1587 * @worker: self 1588 * 1589 * Assume the manager role and manage gcwq worker pool @worker belongs 1590 * to. At any given time, there can be only zero or one manager per 1591 * gcwq. The exclusion is handled automatically by this function. 1592 * 1593 * The caller can safely start processing works on false return. On 1594 * true return, it's guaranteed that need_to_create_worker() is false 1595 * and may_start_working() is true. 1596 * 1597 * CONTEXT: 1598 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1599 * multiple times. Does GFP_KERNEL allocations. 1600 * 1601 * RETURNS: 1602 * false if no action was taken and gcwq->lock stayed locked, true if 1603 * some action was taken. 1604 */ 1605 static bool manage_workers(struct worker *worker) 1606 { 1607 struct global_cwq *gcwq = worker->gcwq; 1608 bool ret = false; 1609 1610 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1611 return ret; 1612 1613 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1614 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1615 1616 /* 1617 * Destroy and then create so that may_start_working() is true 1618 * on return. 1619 */ 1620 ret |= maybe_destroy_workers(gcwq); 1621 ret |= maybe_create_worker(gcwq); 1622 1623 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1624 1625 /* 1626 * The trustee might be waiting to take over the manager 1627 * position, tell it we're done. 1628 */ 1629 if (unlikely(gcwq->trustee)) 1630 wake_up_all(&gcwq->trustee_wait); 1631 1632 return ret; 1633 } 1634 1635 /** 1636 * move_linked_works - move linked works to a list 1637 * @work: start of series of works to be scheduled 1638 * @head: target list to append @work to 1639 * @nextp: out paramter for nested worklist walking 1640 * 1641 * Schedule linked works starting from @work to @head. Work series to 1642 * be scheduled starts at @work and includes any consecutive work with 1643 * WORK_STRUCT_LINKED set in its predecessor. 1644 * 1645 * If @nextp is not NULL, it's updated to point to the next work of 1646 * the last scheduled work. This allows move_linked_works() to be 1647 * nested inside outer list_for_each_entry_safe(). 1648 * 1649 * CONTEXT: 1650 * spin_lock_irq(gcwq->lock). 1651 */ 1652 static void move_linked_works(struct work_struct *work, struct list_head *head, 1653 struct work_struct **nextp) 1654 { 1655 struct work_struct *n; 1656 1657 /* 1658 * Linked worklist will always end before the end of the list, 1659 * use NULL for list head. 1660 */ 1661 list_for_each_entry_safe_from(work, n, NULL, entry) { 1662 list_move_tail(&work->entry, head); 1663 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1664 break; 1665 } 1666 1667 /* 1668 * If we're already inside safe list traversal and have moved 1669 * multiple works to the scheduled queue, the next position 1670 * needs to be updated. 1671 */ 1672 if (nextp) 1673 *nextp = n; 1674 } 1675 1676 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1677 { 1678 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1679 struct work_struct, entry); 1680 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1681 1682 move_linked_works(work, pos, NULL); 1683 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1684 cwq->nr_active++; 1685 } 1686 1687 /** 1688 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1689 * @cwq: cwq of interest 1690 * @color: color of work which left the queue 1691 * @delayed: for a delayed work 1692 * 1693 * A work either has completed or is removed from pending queue, 1694 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1695 * 1696 * CONTEXT: 1697 * spin_lock_irq(gcwq->lock). 1698 */ 1699 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1700 bool delayed) 1701 { 1702 /* ignore uncolored works */ 1703 if (color == WORK_NO_COLOR) 1704 return; 1705 1706 cwq->nr_in_flight[color]--; 1707 1708 if (!delayed) { 1709 cwq->nr_active--; 1710 if (!list_empty(&cwq->delayed_works)) { 1711 /* one down, submit a delayed one */ 1712 if (cwq->nr_active < cwq->max_active) 1713 cwq_activate_first_delayed(cwq); 1714 } 1715 } 1716 1717 /* is flush in progress and are we at the flushing tip? */ 1718 if (likely(cwq->flush_color != color)) 1719 return; 1720 1721 /* are there still in-flight works? */ 1722 if (cwq->nr_in_flight[color]) 1723 return; 1724 1725 /* this cwq is done, clear flush_color */ 1726 cwq->flush_color = -1; 1727 1728 /* 1729 * If this was the last cwq, wake up the first flusher. It 1730 * will handle the rest. 1731 */ 1732 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1733 complete(&cwq->wq->first_flusher->done); 1734 } 1735 1736 /** 1737 * process_one_work - process single work 1738 * @worker: self 1739 * @work: work to process 1740 * 1741 * Process @work. This function contains all the logics necessary to 1742 * process a single work including synchronization against and 1743 * interaction with other workers on the same cpu, queueing and 1744 * flushing. As long as context requirement is met, any worker can 1745 * call this function to process a work. 1746 * 1747 * CONTEXT: 1748 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1749 */ 1750 static void process_one_work(struct worker *worker, struct work_struct *work) 1751 __releases(&gcwq->lock) 1752 __acquires(&gcwq->lock) 1753 { 1754 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1755 struct global_cwq *gcwq = cwq->gcwq; 1756 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1757 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1758 work_func_t f = work->func; 1759 int work_color; 1760 struct worker *collision; 1761 #ifdef CONFIG_LOCKDEP 1762 /* 1763 * It is permissible to free the struct work_struct from 1764 * inside the function that is called from it, this we need to 1765 * take into account for lockdep too. To avoid bogus "held 1766 * lock freed" warnings as well as problems when looking into 1767 * work->lockdep_map, make a copy and use that here. 1768 */ 1769 struct lockdep_map lockdep_map = work->lockdep_map; 1770 #endif 1771 /* 1772 * A single work shouldn't be executed concurrently by 1773 * multiple workers on a single cpu. Check whether anyone is 1774 * already processing the work. If so, defer the work to the 1775 * currently executing one. 1776 */ 1777 collision = __find_worker_executing_work(gcwq, bwh, work); 1778 if (unlikely(collision)) { 1779 move_linked_works(work, &collision->scheduled, NULL); 1780 return; 1781 } 1782 1783 /* claim and process */ 1784 debug_work_deactivate(work); 1785 hlist_add_head(&worker->hentry, bwh); 1786 worker->current_work = work; 1787 worker->current_cwq = cwq; 1788 work_color = get_work_color(work); 1789 1790 /* record the current cpu number in the work data and dequeue */ 1791 set_work_cpu(work, gcwq->cpu); 1792 list_del_init(&work->entry); 1793 1794 /* 1795 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1796 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1797 */ 1798 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1799 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1800 struct work_struct, entry); 1801 1802 if (!list_empty(&gcwq->worklist) && 1803 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1804 wake_up_worker(gcwq); 1805 else 1806 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1807 } 1808 1809 /* 1810 * CPU intensive works don't participate in concurrency 1811 * management. They're the scheduler's responsibility. 1812 */ 1813 if (unlikely(cpu_intensive)) 1814 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1815 1816 spin_unlock_irq(&gcwq->lock); 1817 1818 work_clear_pending(work); 1819 lock_map_acquire(&cwq->wq->lockdep_map); 1820 lock_map_acquire(&lockdep_map); 1821 trace_workqueue_execute_start(work); 1822 f(work); 1823 /* 1824 * While we must be careful to not use "work" after this, the trace 1825 * point will only record its address. 1826 */ 1827 trace_workqueue_execute_end(work); 1828 lock_map_release(&lockdep_map); 1829 lock_map_release(&cwq->wq->lockdep_map); 1830 1831 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1832 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1833 "%s/0x%08x/%d\n", 1834 current->comm, preempt_count(), task_pid_nr(current)); 1835 printk(KERN_ERR " last function: "); 1836 print_symbol("%s\n", (unsigned long)f); 1837 debug_show_held_locks(current); 1838 dump_stack(); 1839 } 1840 1841 spin_lock_irq(&gcwq->lock); 1842 1843 /* clear cpu intensive status */ 1844 if (unlikely(cpu_intensive)) 1845 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1846 1847 /* we're done with it, release */ 1848 hlist_del_init(&worker->hentry); 1849 worker->current_work = NULL; 1850 worker->current_cwq = NULL; 1851 cwq_dec_nr_in_flight(cwq, work_color, false); 1852 } 1853 1854 /** 1855 * process_scheduled_works - process scheduled works 1856 * @worker: self 1857 * 1858 * Process all scheduled works. Please note that the scheduled list 1859 * may change while processing a work, so this function repeatedly 1860 * fetches a work from the top and executes it. 1861 * 1862 * CONTEXT: 1863 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1864 * multiple times. 1865 */ 1866 static void process_scheduled_works(struct worker *worker) 1867 { 1868 while (!list_empty(&worker->scheduled)) { 1869 struct work_struct *work = list_first_entry(&worker->scheduled, 1870 struct work_struct, entry); 1871 process_one_work(worker, work); 1872 } 1873 } 1874 1875 /** 1876 * worker_thread - the worker thread function 1877 * @__worker: self 1878 * 1879 * The gcwq worker thread function. There's a single dynamic pool of 1880 * these per each cpu. These workers process all works regardless of 1881 * their specific target workqueue. The only exception is works which 1882 * belong to workqueues with a rescuer which will be explained in 1883 * rescuer_thread(). 1884 */ 1885 static int worker_thread(void *__worker) 1886 { 1887 struct worker *worker = __worker; 1888 struct global_cwq *gcwq = worker->gcwq; 1889 1890 /* tell the scheduler that this is a workqueue worker */ 1891 worker->task->flags |= PF_WQ_WORKER; 1892 woke_up: 1893 spin_lock_irq(&gcwq->lock); 1894 1895 /* DIE can be set only while we're idle, checking here is enough */ 1896 if (worker->flags & WORKER_DIE) { 1897 spin_unlock_irq(&gcwq->lock); 1898 worker->task->flags &= ~PF_WQ_WORKER; 1899 return 0; 1900 } 1901 1902 worker_leave_idle(worker); 1903 recheck: 1904 /* no more worker necessary? */ 1905 if (!need_more_worker(gcwq)) 1906 goto sleep; 1907 1908 /* do we need to manage? */ 1909 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1910 goto recheck; 1911 1912 /* 1913 * ->scheduled list can only be filled while a worker is 1914 * preparing to process a work or actually processing it. 1915 * Make sure nobody diddled with it while I was sleeping. 1916 */ 1917 BUG_ON(!list_empty(&worker->scheduled)); 1918 1919 /* 1920 * When control reaches this point, we're guaranteed to have 1921 * at least one idle worker or that someone else has already 1922 * assumed the manager role. 1923 */ 1924 worker_clr_flags(worker, WORKER_PREP); 1925 1926 do { 1927 struct work_struct *work = 1928 list_first_entry(&gcwq->worklist, 1929 struct work_struct, entry); 1930 1931 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1932 /* optimization path, not strictly necessary */ 1933 process_one_work(worker, work); 1934 if (unlikely(!list_empty(&worker->scheduled))) 1935 process_scheduled_works(worker); 1936 } else { 1937 move_linked_works(work, &worker->scheduled, NULL); 1938 process_scheduled_works(worker); 1939 } 1940 } while (keep_working(gcwq)); 1941 1942 worker_set_flags(worker, WORKER_PREP, false); 1943 sleep: 1944 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1945 goto recheck; 1946 1947 /* 1948 * gcwq->lock is held and there's no work to process and no 1949 * need to manage, sleep. Workers are woken up only while 1950 * holding gcwq->lock or from local cpu, so setting the 1951 * current state before releasing gcwq->lock is enough to 1952 * prevent losing any event. 1953 */ 1954 worker_enter_idle(worker); 1955 __set_current_state(TASK_INTERRUPTIBLE); 1956 spin_unlock_irq(&gcwq->lock); 1957 schedule(); 1958 goto woke_up; 1959 } 1960 1961 /** 1962 * rescuer_thread - the rescuer thread function 1963 * @__wq: the associated workqueue 1964 * 1965 * Workqueue rescuer thread function. There's one rescuer for each 1966 * workqueue which has WQ_RESCUER set. 1967 * 1968 * Regular work processing on a gcwq may block trying to create a new 1969 * worker which uses GFP_KERNEL allocation which has slight chance of 1970 * developing into deadlock if some works currently on the same queue 1971 * need to be processed to satisfy the GFP_KERNEL allocation. This is 1972 * the problem rescuer solves. 1973 * 1974 * When such condition is possible, the gcwq summons rescuers of all 1975 * workqueues which have works queued on the gcwq and let them process 1976 * those works so that forward progress can be guaranteed. 1977 * 1978 * This should happen rarely. 1979 */ 1980 static int rescuer_thread(void *__wq) 1981 { 1982 struct workqueue_struct *wq = __wq; 1983 struct worker *rescuer = wq->rescuer; 1984 struct list_head *scheduled = &rescuer->scheduled; 1985 bool is_unbound = wq->flags & WQ_UNBOUND; 1986 unsigned int cpu; 1987 1988 set_user_nice(current, RESCUER_NICE_LEVEL); 1989 repeat: 1990 set_current_state(TASK_INTERRUPTIBLE); 1991 1992 if (kthread_should_stop()) 1993 return 0; 1994 1995 /* 1996 * See whether any cpu is asking for help. Unbounded 1997 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 1998 */ 1999 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2000 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2001 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2002 struct global_cwq *gcwq = cwq->gcwq; 2003 struct work_struct *work, *n; 2004 2005 __set_current_state(TASK_RUNNING); 2006 mayday_clear_cpu(cpu, wq->mayday_mask); 2007 2008 /* migrate to the target cpu if possible */ 2009 rescuer->gcwq = gcwq; 2010 worker_maybe_bind_and_lock(rescuer); 2011 2012 /* 2013 * Slurp in all works issued via this workqueue and 2014 * process'em. 2015 */ 2016 BUG_ON(!list_empty(&rescuer->scheduled)); 2017 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2018 if (get_work_cwq(work) == cwq) 2019 move_linked_works(work, scheduled, &n); 2020 2021 process_scheduled_works(rescuer); 2022 spin_unlock_irq(&gcwq->lock); 2023 } 2024 2025 schedule(); 2026 goto repeat; 2027 } 2028 2029 struct wq_barrier { 2030 struct work_struct work; 2031 struct completion done; 2032 }; 2033 2034 static void wq_barrier_func(struct work_struct *work) 2035 { 2036 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2037 complete(&barr->done); 2038 } 2039 2040 /** 2041 * insert_wq_barrier - insert a barrier work 2042 * @cwq: cwq to insert barrier into 2043 * @barr: wq_barrier to insert 2044 * @target: target work to attach @barr to 2045 * @worker: worker currently executing @target, NULL if @target is not executing 2046 * 2047 * @barr is linked to @target such that @barr is completed only after 2048 * @target finishes execution. Please note that the ordering 2049 * guarantee is observed only with respect to @target and on the local 2050 * cpu. 2051 * 2052 * Currently, a queued barrier can't be canceled. This is because 2053 * try_to_grab_pending() can't determine whether the work to be 2054 * grabbed is at the head of the queue and thus can't clear LINKED 2055 * flag of the previous work while there must be a valid next work 2056 * after a work with LINKED flag set. 2057 * 2058 * Note that when @worker is non-NULL, @target may be modified 2059 * underneath us, so we can't reliably determine cwq from @target. 2060 * 2061 * CONTEXT: 2062 * spin_lock_irq(gcwq->lock). 2063 */ 2064 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2065 struct wq_barrier *barr, 2066 struct work_struct *target, struct worker *worker) 2067 { 2068 struct list_head *head; 2069 unsigned int linked = 0; 2070 2071 /* 2072 * debugobject calls are safe here even with gcwq->lock locked 2073 * as we know for sure that this will not trigger any of the 2074 * checks and call back into the fixup functions where we 2075 * might deadlock. 2076 */ 2077 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); 2078 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2079 init_completion(&barr->done); 2080 2081 /* 2082 * If @target is currently being executed, schedule the 2083 * barrier to the worker; otherwise, put it after @target. 2084 */ 2085 if (worker) 2086 head = worker->scheduled.next; 2087 else { 2088 unsigned long *bits = work_data_bits(target); 2089 2090 head = target->entry.next; 2091 /* there can already be other linked works, inherit and set */ 2092 linked = *bits & WORK_STRUCT_LINKED; 2093 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2094 } 2095 2096 debug_work_activate(&barr->work); 2097 insert_work(cwq, &barr->work, head, 2098 work_color_to_flags(WORK_NO_COLOR) | linked); 2099 } 2100 2101 /** 2102 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2103 * @wq: workqueue being flushed 2104 * @flush_color: new flush color, < 0 for no-op 2105 * @work_color: new work color, < 0 for no-op 2106 * 2107 * Prepare cwqs for workqueue flushing. 2108 * 2109 * If @flush_color is non-negative, flush_color on all cwqs should be 2110 * -1. If no cwq has in-flight commands at the specified color, all 2111 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2112 * has in flight commands, its cwq->flush_color is set to 2113 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2114 * wakeup logic is armed and %true is returned. 2115 * 2116 * The caller should have initialized @wq->first_flusher prior to 2117 * calling this function with non-negative @flush_color. If 2118 * @flush_color is negative, no flush color update is done and %false 2119 * is returned. 2120 * 2121 * If @work_color is non-negative, all cwqs should have the same 2122 * work_color which is previous to @work_color and all will be 2123 * advanced to @work_color. 2124 * 2125 * CONTEXT: 2126 * mutex_lock(wq->flush_mutex). 2127 * 2128 * RETURNS: 2129 * %true if @flush_color >= 0 and there's something to flush. %false 2130 * otherwise. 2131 */ 2132 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2133 int flush_color, int work_color) 2134 { 2135 bool wait = false; 2136 unsigned int cpu; 2137 2138 if (flush_color >= 0) { 2139 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2140 atomic_set(&wq->nr_cwqs_to_flush, 1); 2141 } 2142 2143 for_each_cwq_cpu(cpu, wq) { 2144 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2145 struct global_cwq *gcwq = cwq->gcwq; 2146 2147 spin_lock_irq(&gcwq->lock); 2148 2149 if (flush_color >= 0) { 2150 BUG_ON(cwq->flush_color != -1); 2151 2152 if (cwq->nr_in_flight[flush_color]) { 2153 cwq->flush_color = flush_color; 2154 atomic_inc(&wq->nr_cwqs_to_flush); 2155 wait = true; 2156 } 2157 } 2158 2159 if (work_color >= 0) { 2160 BUG_ON(work_color != work_next_color(cwq->work_color)); 2161 cwq->work_color = work_color; 2162 } 2163 2164 spin_unlock_irq(&gcwq->lock); 2165 } 2166 2167 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2168 complete(&wq->first_flusher->done); 2169 2170 return wait; 2171 } 2172 2173 /** 2174 * flush_workqueue - ensure that any scheduled work has run to completion. 2175 * @wq: workqueue to flush 2176 * 2177 * Forces execution of the workqueue and blocks until its completion. 2178 * This is typically used in driver shutdown handlers. 2179 * 2180 * We sleep until all works which were queued on entry have been handled, 2181 * but we are not livelocked by new incoming ones. 2182 */ 2183 void flush_workqueue(struct workqueue_struct *wq) 2184 { 2185 struct wq_flusher this_flusher = { 2186 .list = LIST_HEAD_INIT(this_flusher.list), 2187 .flush_color = -1, 2188 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2189 }; 2190 int next_color; 2191 2192 lock_map_acquire(&wq->lockdep_map); 2193 lock_map_release(&wq->lockdep_map); 2194 2195 mutex_lock(&wq->flush_mutex); 2196 2197 /* 2198 * Start-to-wait phase 2199 */ 2200 next_color = work_next_color(wq->work_color); 2201 2202 if (next_color != wq->flush_color) { 2203 /* 2204 * Color space is not full. The current work_color 2205 * becomes our flush_color and work_color is advanced 2206 * by one. 2207 */ 2208 BUG_ON(!list_empty(&wq->flusher_overflow)); 2209 this_flusher.flush_color = wq->work_color; 2210 wq->work_color = next_color; 2211 2212 if (!wq->first_flusher) { 2213 /* no flush in progress, become the first flusher */ 2214 BUG_ON(wq->flush_color != this_flusher.flush_color); 2215 2216 wq->first_flusher = &this_flusher; 2217 2218 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2219 wq->work_color)) { 2220 /* nothing to flush, done */ 2221 wq->flush_color = next_color; 2222 wq->first_flusher = NULL; 2223 goto out_unlock; 2224 } 2225 } else { 2226 /* wait in queue */ 2227 BUG_ON(wq->flush_color == this_flusher.flush_color); 2228 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2229 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2230 } 2231 } else { 2232 /* 2233 * Oops, color space is full, wait on overflow queue. 2234 * The next flush completion will assign us 2235 * flush_color and transfer to flusher_queue. 2236 */ 2237 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2238 } 2239 2240 mutex_unlock(&wq->flush_mutex); 2241 2242 wait_for_completion(&this_flusher.done); 2243 2244 /* 2245 * Wake-up-and-cascade phase 2246 * 2247 * First flushers are responsible for cascading flushes and 2248 * handling overflow. Non-first flushers can simply return. 2249 */ 2250 if (wq->first_flusher != &this_flusher) 2251 return; 2252 2253 mutex_lock(&wq->flush_mutex); 2254 2255 /* we might have raced, check again with mutex held */ 2256 if (wq->first_flusher != &this_flusher) 2257 goto out_unlock; 2258 2259 wq->first_flusher = NULL; 2260 2261 BUG_ON(!list_empty(&this_flusher.list)); 2262 BUG_ON(wq->flush_color != this_flusher.flush_color); 2263 2264 while (true) { 2265 struct wq_flusher *next, *tmp; 2266 2267 /* complete all the flushers sharing the current flush color */ 2268 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2269 if (next->flush_color != wq->flush_color) 2270 break; 2271 list_del_init(&next->list); 2272 complete(&next->done); 2273 } 2274 2275 BUG_ON(!list_empty(&wq->flusher_overflow) && 2276 wq->flush_color != work_next_color(wq->work_color)); 2277 2278 /* this flush_color is finished, advance by one */ 2279 wq->flush_color = work_next_color(wq->flush_color); 2280 2281 /* one color has been freed, handle overflow queue */ 2282 if (!list_empty(&wq->flusher_overflow)) { 2283 /* 2284 * Assign the same color to all overflowed 2285 * flushers, advance work_color and append to 2286 * flusher_queue. This is the start-to-wait 2287 * phase for these overflowed flushers. 2288 */ 2289 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2290 tmp->flush_color = wq->work_color; 2291 2292 wq->work_color = work_next_color(wq->work_color); 2293 2294 list_splice_tail_init(&wq->flusher_overflow, 2295 &wq->flusher_queue); 2296 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2297 } 2298 2299 if (list_empty(&wq->flusher_queue)) { 2300 BUG_ON(wq->flush_color != wq->work_color); 2301 break; 2302 } 2303 2304 /* 2305 * Need to flush more colors. Make the next flusher 2306 * the new first flusher and arm cwqs. 2307 */ 2308 BUG_ON(wq->flush_color == wq->work_color); 2309 BUG_ON(wq->flush_color != next->flush_color); 2310 2311 list_del_init(&next->list); 2312 wq->first_flusher = next; 2313 2314 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2315 break; 2316 2317 /* 2318 * Meh... this color is already done, clear first 2319 * flusher and repeat cascading. 2320 */ 2321 wq->first_flusher = NULL; 2322 } 2323 2324 out_unlock: 2325 mutex_unlock(&wq->flush_mutex); 2326 } 2327 EXPORT_SYMBOL_GPL(flush_workqueue); 2328 2329 /** 2330 * flush_work - block until a work_struct's callback has terminated 2331 * @work: the work which is to be flushed 2332 * 2333 * Returns false if @work has already terminated. 2334 * 2335 * It is expected that, prior to calling flush_work(), the caller has 2336 * arranged for the work to not be requeued, otherwise it doesn't make 2337 * sense to use this function. 2338 */ 2339 int flush_work(struct work_struct *work) 2340 { 2341 struct worker *worker = NULL; 2342 struct global_cwq *gcwq; 2343 struct cpu_workqueue_struct *cwq; 2344 struct wq_barrier barr; 2345 2346 might_sleep(); 2347 gcwq = get_work_gcwq(work); 2348 if (!gcwq) 2349 return 0; 2350 2351 spin_lock_irq(&gcwq->lock); 2352 if (!list_empty(&work->entry)) { 2353 /* 2354 * See the comment near try_to_grab_pending()->smp_rmb(). 2355 * If it was re-queued to a different gcwq under us, we 2356 * are not going to wait. 2357 */ 2358 smp_rmb(); 2359 cwq = get_work_cwq(work); 2360 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2361 goto already_gone; 2362 } else { 2363 worker = find_worker_executing_work(gcwq, work); 2364 if (!worker) 2365 goto already_gone; 2366 cwq = worker->current_cwq; 2367 } 2368 2369 insert_wq_barrier(cwq, &barr, work, worker); 2370 spin_unlock_irq(&gcwq->lock); 2371 2372 lock_map_acquire(&cwq->wq->lockdep_map); 2373 lock_map_release(&cwq->wq->lockdep_map); 2374 2375 wait_for_completion(&barr.done); 2376 destroy_work_on_stack(&barr.work); 2377 return 1; 2378 already_gone: 2379 spin_unlock_irq(&gcwq->lock); 2380 return 0; 2381 } 2382 EXPORT_SYMBOL_GPL(flush_work); 2383 2384 /* 2385 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2386 * so this work can't be re-armed in any way. 2387 */ 2388 static int try_to_grab_pending(struct work_struct *work) 2389 { 2390 struct global_cwq *gcwq; 2391 int ret = -1; 2392 2393 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2394 return 0; 2395 2396 /* 2397 * The queueing is in progress, or it is already queued. Try to 2398 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2399 */ 2400 gcwq = get_work_gcwq(work); 2401 if (!gcwq) 2402 return ret; 2403 2404 spin_lock_irq(&gcwq->lock); 2405 if (!list_empty(&work->entry)) { 2406 /* 2407 * This work is queued, but perhaps we locked the wrong gcwq. 2408 * In that case we must see the new value after rmb(), see 2409 * insert_work()->wmb(). 2410 */ 2411 smp_rmb(); 2412 if (gcwq == get_work_gcwq(work)) { 2413 debug_work_deactivate(work); 2414 list_del_init(&work->entry); 2415 cwq_dec_nr_in_flight(get_work_cwq(work), 2416 get_work_color(work), 2417 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2418 ret = 1; 2419 } 2420 } 2421 spin_unlock_irq(&gcwq->lock); 2422 2423 return ret; 2424 } 2425 2426 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2427 { 2428 struct wq_barrier barr; 2429 struct worker *worker; 2430 2431 spin_lock_irq(&gcwq->lock); 2432 2433 worker = find_worker_executing_work(gcwq, work); 2434 if (unlikely(worker)) 2435 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2436 2437 spin_unlock_irq(&gcwq->lock); 2438 2439 if (unlikely(worker)) { 2440 wait_for_completion(&barr.done); 2441 destroy_work_on_stack(&barr.work); 2442 } 2443 } 2444 2445 static void wait_on_work(struct work_struct *work) 2446 { 2447 int cpu; 2448 2449 might_sleep(); 2450 2451 lock_map_acquire(&work->lockdep_map); 2452 lock_map_release(&work->lockdep_map); 2453 2454 for_each_gcwq_cpu(cpu) 2455 wait_on_cpu_work(get_gcwq(cpu), work); 2456 } 2457 2458 static int __cancel_work_timer(struct work_struct *work, 2459 struct timer_list* timer) 2460 { 2461 int ret; 2462 2463 do { 2464 ret = (timer && likely(del_timer(timer))); 2465 if (!ret) 2466 ret = try_to_grab_pending(work); 2467 wait_on_work(work); 2468 } while (unlikely(ret < 0)); 2469 2470 clear_work_data(work); 2471 return ret; 2472 } 2473 2474 /** 2475 * cancel_work_sync - block until a work_struct's callback has terminated 2476 * @work: the work which is to be flushed 2477 * 2478 * Returns true if @work was pending. 2479 * 2480 * cancel_work_sync() will cancel the work if it is queued. If the work's 2481 * callback appears to be running, cancel_work_sync() will block until it 2482 * has completed. 2483 * 2484 * It is possible to use this function if the work re-queues itself. It can 2485 * cancel the work even if it migrates to another workqueue, however in that 2486 * case it only guarantees that work->func() has completed on the last queued 2487 * workqueue. 2488 * 2489 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 2490 * pending, otherwise it goes into a busy-wait loop until the timer expires. 2491 * 2492 * The caller must ensure that workqueue_struct on which this work was last 2493 * queued can't be destroyed before this function returns. 2494 */ 2495 int cancel_work_sync(struct work_struct *work) 2496 { 2497 return __cancel_work_timer(work, NULL); 2498 } 2499 EXPORT_SYMBOL_GPL(cancel_work_sync); 2500 2501 /** 2502 * cancel_delayed_work_sync - reliably kill off a delayed work. 2503 * @dwork: the delayed work struct 2504 * 2505 * Returns true if @dwork was pending. 2506 * 2507 * It is possible to use this function if @dwork rearms itself via queue_work() 2508 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 2509 */ 2510 int cancel_delayed_work_sync(struct delayed_work *dwork) 2511 { 2512 return __cancel_work_timer(&dwork->work, &dwork->timer); 2513 } 2514 EXPORT_SYMBOL(cancel_delayed_work_sync); 2515 2516 /** 2517 * schedule_work - put work task in global workqueue 2518 * @work: job to be done 2519 * 2520 * Returns zero if @work was already on the kernel-global workqueue and 2521 * non-zero otherwise. 2522 * 2523 * This puts a job in the kernel-global workqueue if it was not already 2524 * queued and leaves it in the same position on the kernel-global 2525 * workqueue otherwise. 2526 */ 2527 int schedule_work(struct work_struct *work) 2528 { 2529 return queue_work(system_wq, work); 2530 } 2531 EXPORT_SYMBOL(schedule_work); 2532 2533 /* 2534 * schedule_work_on - put work task on a specific cpu 2535 * @cpu: cpu to put the work task on 2536 * @work: job to be done 2537 * 2538 * This puts a job on a specific cpu 2539 */ 2540 int schedule_work_on(int cpu, struct work_struct *work) 2541 { 2542 return queue_work_on(cpu, system_wq, work); 2543 } 2544 EXPORT_SYMBOL(schedule_work_on); 2545 2546 /** 2547 * schedule_delayed_work - put work task in global workqueue after delay 2548 * @dwork: job to be done 2549 * @delay: number of jiffies to wait or 0 for immediate execution 2550 * 2551 * After waiting for a given time this puts a job in the kernel-global 2552 * workqueue. 2553 */ 2554 int schedule_delayed_work(struct delayed_work *dwork, 2555 unsigned long delay) 2556 { 2557 return queue_delayed_work(system_wq, dwork, delay); 2558 } 2559 EXPORT_SYMBOL(schedule_delayed_work); 2560 2561 /** 2562 * flush_delayed_work - block until a dwork_struct's callback has terminated 2563 * @dwork: the delayed work which is to be flushed 2564 * 2565 * Any timeout is cancelled, and any pending work is run immediately. 2566 */ 2567 void flush_delayed_work(struct delayed_work *dwork) 2568 { 2569 if (del_timer_sync(&dwork->timer)) { 2570 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq, 2571 &dwork->work); 2572 put_cpu(); 2573 } 2574 flush_work(&dwork->work); 2575 } 2576 EXPORT_SYMBOL(flush_delayed_work); 2577 2578 /** 2579 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2580 * @cpu: cpu to use 2581 * @dwork: job to be done 2582 * @delay: number of jiffies to wait 2583 * 2584 * After waiting for a given time this puts a job in the kernel-global 2585 * workqueue on the specified CPU. 2586 */ 2587 int schedule_delayed_work_on(int cpu, 2588 struct delayed_work *dwork, unsigned long delay) 2589 { 2590 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2591 } 2592 EXPORT_SYMBOL(schedule_delayed_work_on); 2593 2594 /** 2595 * schedule_on_each_cpu - call a function on each online CPU from keventd 2596 * @func: the function to call 2597 * 2598 * Returns zero on success. 2599 * Returns -ve errno on failure. 2600 * 2601 * schedule_on_each_cpu() is very slow. 2602 */ 2603 int schedule_on_each_cpu(work_func_t func) 2604 { 2605 int cpu; 2606 struct work_struct __percpu *works; 2607 2608 works = alloc_percpu(struct work_struct); 2609 if (!works) 2610 return -ENOMEM; 2611 2612 get_online_cpus(); 2613 2614 for_each_online_cpu(cpu) { 2615 struct work_struct *work = per_cpu_ptr(works, cpu); 2616 2617 INIT_WORK(work, func); 2618 schedule_work_on(cpu, work); 2619 } 2620 2621 for_each_online_cpu(cpu) 2622 flush_work(per_cpu_ptr(works, cpu)); 2623 2624 put_online_cpus(); 2625 free_percpu(works); 2626 return 0; 2627 } 2628 2629 /** 2630 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2631 * 2632 * Forces execution of the kernel-global workqueue and blocks until its 2633 * completion. 2634 * 2635 * Think twice before calling this function! It's very easy to get into 2636 * trouble if you don't take great care. Either of the following situations 2637 * will lead to deadlock: 2638 * 2639 * One of the work items currently on the workqueue needs to acquire 2640 * a lock held by your code or its caller. 2641 * 2642 * Your code is running in the context of a work routine. 2643 * 2644 * They will be detected by lockdep when they occur, but the first might not 2645 * occur very often. It depends on what work items are on the workqueue and 2646 * what locks they need, which you have no control over. 2647 * 2648 * In most situations flushing the entire workqueue is overkill; you merely 2649 * need to know that a particular work item isn't queued and isn't running. 2650 * In such cases you should use cancel_delayed_work_sync() or 2651 * cancel_work_sync() instead. 2652 */ 2653 void flush_scheduled_work(void) 2654 { 2655 flush_workqueue(system_wq); 2656 } 2657 EXPORT_SYMBOL(flush_scheduled_work); 2658 2659 /** 2660 * execute_in_process_context - reliably execute the routine with user context 2661 * @fn: the function to execute 2662 * @ew: guaranteed storage for the execute work structure (must 2663 * be available when the work executes) 2664 * 2665 * Executes the function immediately if process context is available, 2666 * otherwise schedules the function for delayed execution. 2667 * 2668 * Returns: 0 - function was executed 2669 * 1 - function was scheduled for execution 2670 */ 2671 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2672 { 2673 if (!in_interrupt()) { 2674 fn(&ew->work); 2675 return 0; 2676 } 2677 2678 INIT_WORK(&ew->work, fn); 2679 schedule_work(&ew->work); 2680 2681 return 1; 2682 } 2683 EXPORT_SYMBOL_GPL(execute_in_process_context); 2684 2685 int keventd_up(void) 2686 { 2687 return system_wq != NULL; 2688 } 2689 2690 static int alloc_cwqs(struct workqueue_struct *wq) 2691 { 2692 /* 2693 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2694 * Make sure that the alignment isn't lower than that of 2695 * unsigned long long. 2696 */ 2697 const size_t size = sizeof(struct cpu_workqueue_struct); 2698 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2699 __alignof__(unsigned long long)); 2700 #ifdef CONFIG_SMP 2701 bool percpu = !(wq->flags & WQ_UNBOUND); 2702 #else 2703 bool percpu = false; 2704 #endif 2705 2706 if (percpu) 2707 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2708 else { 2709 void *ptr; 2710 2711 /* 2712 * Allocate enough room to align cwq and put an extra 2713 * pointer at the end pointing back to the originally 2714 * allocated pointer which will be used for free. 2715 */ 2716 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2717 if (ptr) { 2718 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2719 *(void **)(wq->cpu_wq.single + 1) = ptr; 2720 } 2721 } 2722 2723 /* just in case, make sure it's actually aligned */ 2724 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2725 return wq->cpu_wq.v ? 0 : -ENOMEM; 2726 } 2727 2728 static void free_cwqs(struct workqueue_struct *wq) 2729 { 2730 #ifdef CONFIG_SMP 2731 bool percpu = !(wq->flags & WQ_UNBOUND); 2732 #else 2733 bool percpu = false; 2734 #endif 2735 2736 if (percpu) 2737 free_percpu(wq->cpu_wq.pcpu); 2738 else if (wq->cpu_wq.single) { 2739 /* the pointer to free is stored right after the cwq */ 2740 kfree(*(void **)(wq->cpu_wq.single + 1)); 2741 } 2742 } 2743 2744 static int wq_clamp_max_active(int max_active, unsigned int flags, 2745 const char *name) 2746 { 2747 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2748 2749 if (max_active < 1 || max_active > lim) 2750 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2751 "is out of range, clamping between %d and %d\n", 2752 max_active, name, 1, lim); 2753 2754 return clamp_val(max_active, 1, lim); 2755 } 2756 2757 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2758 unsigned int flags, 2759 int max_active, 2760 struct lock_class_key *key, 2761 const char *lock_name) 2762 { 2763 struct workqueue_struct *wq; 2764 unsigned int cpu; 2765 2766 /* 2767 * Unbound workqueues aren't concurrency managed and should be 2768 * dispatched to workers immediately. 2769 */ 2770 if (flags & WQ_UNBOUND) 2771 flags |= WQ_HIGHPRI; 2772 2773 max_active = max_active ?: WQ_DFL_ACTIVE; 2774 max_active = wq_clamp_max_active(max_active, flags, name); 2775 2776 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2777 if (!wq) 2778 goto err; 2779 2780 wq->flags = flags; 2781 wq->saved_max_active = max_active; 2782 mutex_init(&wq->flush_mutex); 2783 atomic_set(&wq->nr_cwqs_to_flush, 0); 2784 INIT_LIST_HEAD(&wq->flusher_queue); 2785 INIT_LIST_HEAD(&wq->flusher_overflow); 2786 2787 wq->name = name; 2788 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2789 INIT_LIST_HEAD(&wq->list); 2790 2791 if (alloc_cwqs(wq) < 0) 2792 goto err; 2793 2794 for_each_cwq_cpu(cpu, wq) { 2795 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2796 struct global_cwq *gcwq = get_gcwq(cpu); 2797 2798 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2799 cwq->gcwq = gcwq; 2800 cwq->wq = wq; 2801 cwq->flush_color = -1; 2802 cwq->max_active = max_active; 2803 INIT_LIST_HEAD(&cwq->delayed_works); 2804 } 2805 2806 if (flags & WQ_RESCUER) { 2807 struct worker *rescuer; 2808 2809 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2810 goto err; 2811 2812 wq->rescuer = rescuer = alloc_worker(); 2813 if (!rescuer) 2814 goto err; 2815 2816 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2817 if (IS_ERR(rescuer->task)) 2818 goto err; 2819 2820 rescuer->task->flags |= PF_THREAD_BOUND; 2821 wake_up_process(rescuer->task); 2822 } 2823 2824 /* 2825 * workqueue_lock protects global freeze state and workqueues 2826 * list. Grab it, set max_active accordingly and add the new 2827 * workqueue to workqueues list. 2828 */ 2829 spin_lock(&workqueue_lock); 2830 2831 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) 2832 for_each_cwq_cpu(cpu, wq) 2833 get_cwq(cpu, wq)->max_active = 0; 2834 2835 list_add(&wq->list, &workqueues); 2836 2837 spin_unlock(&workqueue_lock); 2838 2839 return wq; 2840 err: 2841 if (wq) { 2842 free_cwqs(wq); 2843 free_mayday_mask(wq->mayday_mask); 2844 kfree(wq->rescuer); 2845 kfree(wq); 2846 } 2847 return NULL; 2848 } 2849 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 2850 2851 /** 2852 * destroy_workqueue - safely terminate a workqueue 2853 * @wq: target workqueue 2854 * 2855 * Safely destroy a workqueue. All work currently pending will be done first. 2856 */ 2857 void destroy_workqueue(struct workqueue_struct *wq) 2858 { 2859 unsigned int cpu; 2860 2861 wq->flags |= WQ_DYING; 2862 flush_workqueue(wq); 2863 2864 /* 2865 * wq list is used to freeze wq, remove from list after 2866 * flushing is complete in case freeze races us. 2867 */ 2868 spin_lock(&workqueue_lock); 2869 list_del(&wq->list); 2870 spin_unlock(&workqueue_lock); 2871 2872 /* sanity check */ 2873 for_each_cwq_cpu(cpu, wq) { 2874 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2875 int i; 2876 2877 for (i = 0; i < WORK_NR_COLORS; i++) 2878 BUG_ON(cwq->nr_in_flight[i]); 2879 BUG_ON(cwq->nr_active); 2880 BUG_ON(!list_empty(&cwq->delayed_works)); 2881 } 2882 2883 if (wq->flags & WQ_RESCUER) { 2884 kthread_stop(wq->rescuer->task); 2885 free_mayday_mask(wq->mayday_mask); 2886 kfree(wq->rescuer); 2887 } 2888 2889 free_cwqs(wq); 2890 kfree(wq); 2891 } 2892 EXPORT_SYMBOL_GPL(destroy_workqueue); 2893 2894 /** 2895 * workqueue_set_max_active - adjust max_active of a workqueue 2896 * @wq: target workqueue 2897 * @max_active: new max_active value. 2898 * 2899 * Set max_active of @wq to @max_active. 2900 * 2901 * CONTEXT: 2902 * Don't call from IRQ context. 2903 */ 2904 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 2905 { 2906 unsigned int cpu; 2907 2908 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 2909 2910 spin_lock(&workqueue_lock); 2911 2912 wq->saved_max_active = max_active; 2913 2914 for_each_cwq_cpu(cpu, wq) { 2915 struct global_cwq *gcwq = get_gcwq(cpu); 2916 2917 spin_lock_irq(&gcwq->lock); 2918 2919 if (!(wq->flags & WQ_FREEZEABLE) || 2920 !(gcwq->flags & GCWQ_FREEZING)) 2921 get_cwq(gcwq->cpu, wq)->max_active = max_active; 2922 2923 spin_unlock_irq(&gcwq->lock); 2924 } 2925 2926 spin_unlock(&workqueue_lock); 2927 } 2928 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 2929 2930 /** 2931 * workqueue_congested - test whether a workqueue is congested 2932 * @cpu: CPU in question 2933 * @wq: target workqueue 2934 * 2935 * Test whether @wq's cpu workqueue for @cpu is congested. There is 2936 * no synchronization around this function and the test result is 2937 * unreliable and only useful as advisory hints or for debugging. 2938 * 2939 * RETURNS: 2940 * %true if congested, %false otherwise. 2941 */ 2942 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 2943 { 2944 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2945 2946 return !list_empty(&cwq->delayed_works); 2947 } 2948 EXPORT_SYMBOL_GPL(workqueue_congested); 2949 2950 /** 2951 * work_cpu - return the last known associated cpu for @work 2952 * @work: the work of interest 2953 * 2954 * RETURNS: 2955 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 2956 */ 2957 unsigned int work_cpu(struct work_struct *work) 2958 { 2959 struct global_cwq *gcwq = get_work_gcwq(work); 2960 2961 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 2962 } 2963 EXPORT_SYMBOL_GPL(work_cpu); 2964 2965 /** 2966 * work_busy - test whether a work is currently pending or running 2967 * @work: the work to be tested 2968 * 2969 * Test whether @work is currently pending or running. There is no 2970 * synchronization around this function and the test result is 2971 * unreliable and only useful as advisory hints or for debugging. 2972 * Especially for reentrant wqs, the pending state might hide the 2973 * running state. 2974 * 2975 * RETURNS: 2976 * OR'd bitmask of WORK_BUSY_* bits. 2977 */ 2978 unsigned int work_busy(struct work_struct *work) 2979 { 2980 struct global_cwq *gcwq = get_work_gcwq(work); 2981 unsigned long flags; 2982 unsigned int ret = 0; 2983 2984 if (!gcwq) 2985 return false; 2986 2987 spin_lock_irqsave(&gcwq->lock, flags); 2988 2989 if (work_pending(work)) 2990 ret |= WORK_BUSY_PENDING; 2991 if (find_worker_executing_work(gcwq, work)) 2992 ret |= WORK_BUSY_RUNNING; 2993 2994 spin_unlock_irqrestore(&gcwq->lock, flags); 2995 2996 return ret; 2997 } 2998 EXPORT_SYMBOL_GPL(work_busy); 2999 3000 /* 3001 * CPU hotplug. 3002 * 3003 * There are two challenges in supporting CPU hotplug. Firstly, there 3004 * are a lot of assumptions on strong associations among work, cwq and 3005 * gcwq which make migrating pending and scheduled works very 3006 * difficult to implement without impacting hot paths. Secondly, 3007 * gcwqs serve mix of short, long and very long running works making 3008 * blocked draining impractical. 3009 * 3010 * This is solved by allowing a gcwq to be detached from CPU, running 3011 * it with unbound (rogue) workers and allowing it to be reattached 3012 * later if the cpu comes back online. A separate thread is created 3013 * to govern a gcwq in such state and is called the trustee of the 3014 * gcwq. 3015 * 3016 * Trustee states and their descriptions. 3017 * 3018 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3019 * new trustee is started with this state. 3020 * 3021 * IN_CHARGE Once started, trustee will enter this state after 3022 * assuming the manager role and making all existing 3023 * workers rogue. DOWN_PREPARE waits for trustee to 3024 * enter this state. After reaching IN_CHARGE, trustee 3025 * tries to execute the pending worklist until it's empty 3026 * and the state is set to BUTCHER, or the state is set 3027 * to RELEASE. 3028 * 3029 * BUTCHER Command state which is set by the cpu callback after 3030 * the cpu has went down. Once this state is set trustee 3031 * knows that there will be no new works on the worklist 3032 * and once the worklist is empty it can proceed to 3033 * killing idle workers. 3034 * 3035 * RELEASE Command state which is set by the cpu callback if the 3036 * cpu down has been canceled or it has come online 3037 * again. After recognizing this state, trustee stops 3038 * trying to drain or butcher and clears ROGUE, rebinds 3039 * all remaining workers back to the cpu and releases 3040 * manager role. 3041 * 3042 * DONE Trustee will enter this state after BUTCHER or RELEASE 3043 * is complete. 3044 * 3045 * trustee CPU draining 3046 * took over down complete 3047 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3048 * | | ^ 3049 * | CPU is back online v return workers | 3050 * ----------------> RELEASE -------------- 3051 */ 3052 3053 /** 3054 * trustee_wait_event_timeout - timed event wait for trustee 3055 * @cond: condition to wait for 3056 * @timeout: timeout in jiffies 3057 * 3058 * wait_event_timeout() for trustee to use. Handles locking and 3059 * checks for RELEASE request. 3060 * 3061 * CONTEXT: 3062 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3063 * multiple times. To be used by trustee. 3064 * 3065 * RETURNS: 3066 * Positive indicating left time if @cond is satisfied, 0 if timed 3067 * out, -1 if canceled. 3068 */ 3069 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3070 long __ret = (timeout); \ 3071 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3072 __ret) { \ 3073 spin_unlock_irq(&gcwq->lock); \ 3074 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3075 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3076 __ret); \ 3077 spin_lock_irq(&gcwq->lock); \ 3078 } \ 3079 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3080 }) 3081 3082 /** 3083 * trustee_wait_event - event wait for trustee 3084 * @cond: condition to wait for 3085 * 3086 * wait_event() for trustee to use. Automatically handles locking and 3087 * checks for CANCEL request. 3088 * 3089 * CONTEXT: 3090 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3091 * multiple times. To be used by trustee. 3092 * 3093 * RETURNS: 3094 * 0 if @cond is satisfied, -1 if canceled. 3095 */ 3096 #define trustee_wait_event(cond) ({ \ 3097 long __ret1; \ 3098 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3099 __ret1 < 0 ? -1 : 0; \ 3100 }) 3101 3102 static int __cpuinit trustee_thread(void *__gcwq) 3103 { 3104 struct global_cwq *gcwq = __gcwq; 3105 struct worker *worker; 3106 struct work_struct *work; 3107 struct hlist_node *pos; 3108 long rc; 3109 int i; 3110 3111 BUG_ON(gcwq->cpu != smp_processor_id()); 3112 3113 spin_lock_irq(&gcwq->lock); 3114 /* 3115 * Claim the manager position and make all workers rogue. 3116 * Trustee must be bound to the target cpu and can't be 3117 * cancelled. 3118 */ 3119 BUG_ON(gcwq->cpu != smp_processor_id()); 3120 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3121 BUG_ON(rc < 0); 3122 3123 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3124 3125 list_for_each_entry(worker, &gcwq->idle_list, entry) 3126 worker->flags |= WORKER_ROGUE; 3127 3128 for_each_busy_worker(worker, i, pos, gcwq) 3129 worker->flags |= WORKER_ROGUE; 3130 3131 /* 3132 * Call schedule() so that we cross rq->lock and thus can 3133 * guarantee sched callbacks see the rogue flag. This is 3134 * necessary as scheduler callbacks may be invoked from other 3135 * cpus. 3136 */ 3137 spin_unlock_irq(&gcwq->lock); 3138 schedule(); 3139 spin_lock_irq(&gcwq->lock); 3140 3141 /* 3142 * Sched callbacks are disabled now. Zap nr_running. After 3143 * this, nr_running stays zero and need_more_worker() and 3144 * keep_working() are always true as long as the worklist is 3145 * not empty. 3146 */ 3147 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3148 3149 spin_unlock_irq(&gcwq->lock); 3150 del_timer_sync(&gcwq->idle_timer); 3151 spin_lock_irq(&gcwq->lock); 3152 3153 /* 3154 * We're now in charge. Notify and proceed to drain. We need 3155 * to keep the gcwq running during the whole CPU down 3156 * procedure as other cpu hotunplug callbacks may need to 3157 * flush currently running tasks. 3158 */ 3159 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3160 wake_up_all(&gcwq->trustee_wait); 3161 3162 /* 3163 * The original cpu is in the process of dying and may go away 3164 * anytime now. When that happens, we and all workers would 3165 * be migrated to other cpus. Try draining any left work. We 3166 * want to get it over with ASAP - spam rescuers, wake up as 3167 * many idlers as necessary and create new ones till the 3168 * worklist is empty. Note that if the gcwq is frozen, there 3169 * may be frozen works in freezeable cwqs. Don't declare 3170 * completion while frozen. 3171 */ 3172 while (gcwq->nr_workers != gcwq->nr_idle || 3173 gcwq->flags & GCWQ_FREEZING || 3174 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3175 int nr_works = 0; 3176 3177 list_for_each_entry(work, &gcwq->worklist, entry) { 3178 send_mayday(work); 3179 nr_works++; 3180 } 3181 3182 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3183 if (!nr_works--) 3184 break; 3185 wake_up_process(worker->task); 3186 } 3187 3188 if (need_to_create_worker(gcwq)) { 3189 spin_unlock_irq(&gcwq->lock); 3190 worker = create_worker(gcwq, false); 3191 spin_lock_irq(&gcwq->lock); 3192 if (worker) { 3193 worker->flags |= WORKER_ROGUE; 3194 start_worker(worker); 3195 } 3196 } 3197 3198 /* give a breather */ 3199 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3200 break; 3201 } 3202 3203 /* 3204 * Either all works have been scheduled and cpu is down, or 3205 * cpu down has already been canceled. Wait for and butcher 3206 * all workers till we're canceled. 3207 */ 3208 do { 3209 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3210 while (!list_empty(&gcwq->idle_list)) 3211 destroy_worker(list_first_entry(&gcwq->idle_list, 3212 struct worker, entry)); 3213 } while (gcwq->nr_workers && rc >= 0); 3214 3215 /* 3216 * At this point, either draining has completed and no worker 3217 * is left, or cpu down has been canceled or the cpu is being 3218 * brought back up. There shouldn't be any idle one left. 3219 * Tell the remaining busy ones to rebind once it finishes the 3220 * currently scheduled works by scheduling the rebind_work. 3221 */ 3222 WARN_ON(!list_empty(&gcwq->idle_list)); 3223 3224 for_each_busy_worker(worker, i, pos, gcwq) { 3225 struct work_struct *rebind_work = &worker->rebind_work; 3226 3227 /* 3228 * Rebind_work may race with future cpu hotplug 3229 * operations. Use a separate flag to mark that 3230 * rebinding is scheduled. 3231 */ 3232 worker->flags |= WORKER_REBIND; 3233 worker->flags &= ~WORKER_ROGUE; 3234 3235 /* queue rebind_work, wq doesn't matter, use the default one */ 3236 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3237 work_data_bits(rebind_work))) 3238 continue; 3239 3240 debug_work_activate(rebind_work); 3241 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3242 worker->scheduled.next, 3243 work_color_to_flags(WORK_NO_COLOR)); 3244 } 3245 3246 /* relinquish manager role */ 3247 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3248 3249 /* notify completion */ 3250 gcwq->trustee = NULL; 3251 gcwq->trustee_state = TRUSTEE_DONE; 3252 wake_up_all(&gcwq->trustee_wait); 3253 spin_unlock_irq(&gcwq->lock); 3254 return 0; 3255 } 3256 3257 /** 3258 * wait_trustee_state - wait for trustee to enter the specified state 3259 * @gcwq: gcwq the trustee of interest belongs to 3260 * @state: target state to wait for 3261 * 3262 * Wait for the trustee to reach @state. DONE is already matched. 3263 * 3264 * CONTEXT: 3265 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3266 * multiple times. To be used by cpu_callback. 3267 */ 3268 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3269 __releases(&gcwq->lock) 3270 __acquires(&gcwq->lock) 3271 { 3272 if (!(gcwq->trustee_state == state || 3273 gcwq->trustee_state == TRUSTEE_DONE)) { 3274 spin_unlock_irq(&gcwq->lock); 3275 __wait_event(gcwq->trustee_wait, 3276 gcwq->trustee_state == state || 3277 gcwq->trustee_state == TRUSTEE_DONE); 3278 spin_lock_irq(&gcwq->lock); 3279 } 3280 } 3281 3282 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3283 unsigned long action, 3284 void *hcpu) 3285 { 3286 unsigned int cpu = (unsigned long)hcpu; 3287 struct global_cwq *gcwq = get_gcwq(cpu); 3288 struct task_struct *new_trustee = NULL; 3289 struct worker *uninitialized_var(new_worker); 3290 unsigned long flags; 3291 3292 action &= ~CPU_TASKS_FROZEN; 3293 3294 switch (action) { 3295 case CPU_DOWN_PREPARE: 3296 new_trustee = kthread_create(trustee_thread, gcwq, 3297 "workqueue_trustee/%d\n", cpu); 3298 if (IS_ERR(new_trustee)) 3299 return notifier_from_errno(PTR_ERR(new_trustee)); 3300 kthread_bind(new_trustee, cpu); 3301 /* fall through */ 3302 case CPU_UP_PREPARE: 3303 BUG_ON(gcwq->first_idle); 3304 new_worker = create_worker(gcwq, false); 3305 if (!new_worker) { 3306 if (new_trustee) 3307 kthread_stop(new_trustee); 3308 return NOTIFY_BAD; 3309 } 3310 } 3311 3312 /* some are called w/ irq disabled, don't disturb irq status */ 3313 spin_lock_irqsave(&gcwq->lock, flags); 3314 3315 switch (action) { 3316 case CPU_DOWN_PREPARE: 3317 /* initialize trustee and tell it to acquire the gcwq */ 3318 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3319 gcwq->trustee = new_trustee; 3320 gcwq->trustee_state = TRUSTEE_START; 3321 wake_up_process(gcwq->trustee); 3322 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3323 /* fall through */ 3324 case CPU_UP_PREPARE: 3325 BUG_ON(gcwq->first_idle); 3326 gcwq->first_idle = new_worker; 3327 break; 3328 3329 case CPU_DYING: 3330 /* 3331 * Before this, the trustee and all workers except for 3332 * the ones which are still executing works from 3333 * before the last CPU down must be on the cpu. After 3334 * this, they'll all be diasporas. 3335 */ 3336 gcwq->flags |= GCWQ_DISASSOCIATED; 3337 break; 3338 3339 case CPU_POST_DEAD: 3340 gcwq->trustee_state = TRUSTEE_BUTCHER; 3341 /* fall through */ 3342 case CPU_UP_CANCELED: 3343 destroy_worker(gcwq->first_idle); 3344 gcwq->first_idle = NULL; 3345 break; 3346 3347 case CPU_DOWN_FAILED: 3348 case CPU_ONLINE: 3349 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3350 if (gcwq->trustee_state != TRUSTEE_DONE) { 3351 gcwq->trustee_state = TRUSTEE_RELEASE; 3352 wake_up_process(gcwq->trustee); 3353 wait_trustee_state(gcwq, TRUSTEE_DONE); 3354 } 3355 3356 /* 3357 * Trustee is done and there might be no worker left. 3358 * Put the first_idle in and request a real manager to 3359 * take a look. 3360 */ 3361 spin_unlock_irq(&gcwq->lock); 3362 kthread_bind(gcwq->first_idle->task, cpu); 3363 spin_lock_irq(&gcwq->lock); 3364 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3365 start_worker(gcwq->first_idle); 3366 gcwq->first_idle = NULL; 3367 break; 3368 } 3369 3370 spin_unlock_irqrestore(&gcwq->lock, flags); 3371 3372 return notifier_from_errno(0); 3373 } 3374 3375 #ifdef CONFIG_SMP 3376 3377 struct work_for_cpu { 3378 struct completion completion; 3379 long (*fn)(void *); 3380 void *arg; 3381 long ret; 3382 }; 3383 3384 static int do_work_for_cpu(void *_wfc) 3385 { 3386 struct work_for_cpu *wfc = _wfc; 3387 wfc->ret = wfc->fn(wfc->arg); 3388 complete(&wfc->completion); 3389 return 0; 3390 } 3391 3392 /** 3393 * work_on_cpu - run a function in user context on a particular cpu 3394 * @cpu: the cpu to run on 3395 * @fn: the function to run 3396 * @arg: the function arg 3397 * 3398 * This will return the value @fn returns. 3399 * It is up to the caller to ensure that the cpu doesn't go offline. 3400 * The caller must not hold any locks which would prevent @fn from completing. 3401 */ 3402 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3403 { 3404 struct task_struct *sub_thread; 3405 struct work_for_cpu wfc = { 3406 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3407 .fn = fn, 3408 .arg = arg, 3409 }; 3410 3411 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3412 if (IS_ERR(sub_thread)) 3413 return PTR_ERR(sub_thread); 3414 kthread_bind(sub_thread, cpu); 3415 wake_up_process(sub_thread); 3416 wait_for_completion(&wfc.completion); 3417 return wfc.ret; 3418 } 3419 EXPORT_SYMBOL_GPL(work_on_cpu); 3420 #endif /* CONFIG_SMP */ 3421 3422 #ifdef CONFIG_FREEZER 3423 3424 /** 3425 * freeze_workqueues_begin - begin freezing workqueues 3426 * 3427 * Start freezing workqueues. After this function returns, all 3428 * freezeable workqueues will queue new works to their frozen_works 3429 * list instead of gcwq->worklist. 3430 * 3431 * CONTEXT: 3432 * Grabs and releases workqueue_lock and gcwq->lock's. 3433 */ 3434 void freeze_workqueues_begin(void) 3435 { 3436 unsigned int cpu; 3437 3438 spin_lock(&workqueue_lock); 3439 3440 BUG_ON(workqueue_freezing); 3441 workqueue_freezing = true; 3442 3443 for_each_gcwq_cpu(cpu) { 3444 struct global_cwq *gcwq = get_gcwq(cpu); 3445 struct workqueue_struct *wq; 3446 3447 spin_lock_irq(&gcwq->lock); 3448 3449 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3450 gcwq->flags |= GCWQ_FREEZING; 3451 3452 list_for_each_entry(wq, &workqueues, list) { 3453 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3454 3455 if (cwq && wq->flags & WQ_FREEZEABLE) 3456 cwq->max_active = 0; 3457 } 3458 3459 spin_unlock_irq(&gcwq->lock); 3460 } 3461 3462 spin_unlock(&workqueue_lock); 3463 } 3464 3465 /** 3466 * freeze_workqueues_busy - are freezeable workqueues still busy? 3467 * 3468 * Check whether freezing is complete. This function must be called 3469 * between freeze_workqueues_begin() and thaw_workqueues(). 3470 * 3471 * CONTEXT: 3472 * Grabs and releases workqueue_lock. 3473 * 3474 * RETURNS: 3475 * %true if some freezeable workqueues are still busy. %false if 3476 * freezing is complete. 3477 */ 3478 bool freeze_workqueues_busy(void) 3479 { 3480 unsigned int cpu; 3481 bool busy = false; 3482 3483 spin_lock(&workqueue_lock); 3484 3485 BUG_ON(!workqueue_freezing); 3486 3487 for_each_gcwq_cpu(cpu) { 3488 struct workqueue_struct *wq; 3489 /* 3490 * nr_active is monotonically decreasing. It's safe 3491 * to peek without lock. 3492 */ 3493 list_for_each_entry(wq, &workqueues, list) { 3494 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3495 3496 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3497 continue; 3498 3499 BUG_ON(cwq->nr_active < 0); 3500 if (cwq->nr_active) { 3501 busy = true; 3502 goto out_unlock; 3503 } 3504 } 3505 } 3506 out_unlock: 3507 spin_unlock(&workqueue_lock); 3508 return busy; 3509 } 3510 3511 /** 3512 * thaw_workqueues - thaw workqueues 3513 * 3514 * Thaw workqueues. Normal queueing is restored and all collected 3515 * frozen works are transferred to their respective gcwq worklists. 3516 * 3517 * CONTEXT: 3518 * Grabs and releases workqueue_lock and gcwq->lock's. 3519 */ 3520 void thaw_workqueues(void) 3521 { 3522 unsigned int cpu; 3523 3524 spin_lock(&workqueue_lock); 3525 3526 if (!workqueue_freezing) 3527 goto out_unlock; 3528 3529 for_each_gcwq_cpu(cpu) { 3530 struct global_cwq *gcwq = get_gcwq(cpu); 3531 struct workqueue_struct *wq; 3532 3533 spin_lock_irq(&gcwq->lock); 3534 3535 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3536 gcwq->flags &= ~GCWQ_FREEZING; 3537 3538 list_for_each_entry(wq, &workqueues, list) { 3539 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3540 3541 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3542 continue; 3543 3544 /* restore max_active and repopulate worklist */ 3545 cwq->max_active = wq->saved_max_active; 3546 3547 while (!list_empty(&cwq->delayed_works) && 3548 cwq->nr_active < cwq->max_active) 3549 cwq_activate_first_delayed(cwq); 3550 } 3551 3552 wake_up_worker(gcwq); 3553 3554 spin_unlock_irq(&gcwq->lock); 3555 } 3556 3557 workqueue_freezing = false; 3558 out_unlock: 3559 spin_unlock(&workqueue_lock); 3560 } 3561 #endif /* CONFIG_FREEZER */ 3562 3563 static int __init init_workqueues(void) 3564 { 3565 unsigned int cpu; 3566 int i; 3567 3568 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3569 3570 /* initialize gcwqs */ 3571 for_each_gcwq_cpu(cpu) { 3572 struct global_cwq *gcwq = get_gcwq(cpu); 3573 3574 spin_lock_init(&gcwq->lock); 3575 INIT_LIST_HEAD(&gcwq->worklist); 3576 gcwq->cpu = cpu; 3577 gcwq->flags |= GCWQ_DISASSOCIATED; 3578 3579 INIT_LIST_HEAD(&gcwq->idle_list); 3580 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3581 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3582 3583 init_timer_deferrable(&gcwq->idle_timer); 3584 gcwq->idle_timer.function = idle_worker_timeout; 3585 gcwq->idle_timer.data = (unsigned long)gcwq; 3586 3587 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3588 (unsigned long)gcwq); 3589 3590 ida_init(&gcwq->worker_ida); 3591 3592 gcwq->trustee_state = TRUSTEE_DONE; 3593 init_waitqueue_head(&gcwq->trustee_wait); 3594 } 3595 3596 /* create the initial worker */ 3597 for_each_online_gcwq_cpu(cpu) { 3598 struct global_cwq *gcwq = get_gcwq(cpu); 3599 struct worker *worker; 3600 3601 if (cpu != WORK_CPU_UNBOUND) 3602 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3603 worker = create_worker(gcwq, true); 3604 BUG_ON(!worker); 3605 spin_lock_irq(&gcwq->lock); 3606 start_worker(worker); 3607 spin_unlock_irq(&gcwq->lock); 3608 } 3609 3610 system_wq = alloc_workqueue("events", 0, 0); 3611 system_long_wq = alloc_workqueue("events_long", 0, 0); 3612 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3613 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3614 WQ_UNBOUND_MAX_ACTIVE); 3615 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq); 3616 return 0; 3617 } 3618 early_initcall(init_workqueues); 3619