xref: /linux/kernel/workqueue.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/workqueue.h>
47 
48 #include "workqueue_sched.h"
49 
50 enum {
51 	/* global_cwq flags */
52 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
53 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
54 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
55 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
56 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
57 
58 	/* worker flags */
59 	WORKER_STARTED		= 1 << 0,	/* started */
60 	WORKER_DIE		= 1 << 1,	/* die die die */
61 	WORKER_IDLE		= 1 << 2,	/* is idle */
62 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
63 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
64 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
65 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
66 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
67 
68 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
69 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
70 
71 	/* gcwq->trustee_state */
72 	TRUSTEE_START		= 0,		/* start */
73 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
74 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
75 	TRUSTEE_RELEASE		= 3,		/* release workers */
76 	TRUSTEE_DONE		= 4,		/* trustee is done */
77 
78 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
79 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
80 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
81 
82 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
83 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
84 
85 	MAYDAY_INITIAL_TIMEOUT	= HZ / 100,	/* call for help after 10ms */
86 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
87 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
88 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
89 
90 	/*
91 	 * Rescue workers are used only on emergencies and shared by
92 	 * all cpus.  Give -20.
93 	 */
94 	RESCUER_NICE_LEVEL	= -20,
95 };
96 
97 /*
98  * Structure fields follow one of the following exclusion rules.
99  *
100  * I: Modifiable by initialization/destruction paths and read-only for
101  *    everyone else.
102  *
103  * P: Preemption protected.  Disabling preemption is enough and should
104  *    only be modified and accessed from the local cpu.
105  *
106  * L: gcwq->lock protected.  Access with gcwq->lock held.
107  *
108  * X: During normal operation, modification requires gcwq->lock and
109  *    should be done only from local cpu.  Either disabling preemption
110  *    on local cpu or grabbing gcwq->lock is enough for read access.
111  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
112  *
113  * F: wq->flush_mutex protected.
114  *
115  * W: workqueue_lock protected.
116  */
117 
118 struct global_cwq;
119 
120 /*
121  * The poor guys doing the actual heavy lifting.  All on-duty workers
122  * are either serving the manager role, on idle list or on busy hash.
123  */
124 struct worker {
125 	/* on idle list while idle, on busy hash table while busy */
126 	union {
127 		struct list_head	entry;	/* L: while idle */
128 		struct hlist_node	hentry;	/* L: while busy */
129 	};
130 
131 	struct work_struct	*current_work;	/* L: work being processed */
132 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
133 	struct list_head	scheduled;	/* L: scheduled works */
134 	struct task_struct	*task;		/* I: worker task */
135 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
136 	/* 64 bytes boundary on 64bit, 32 on 32bit */
137 	unsigned long		last_active;	/* L: last active timestamp */
138 	unsigned int		flags;		/* X: flags */
139 	int			id;		/* I: worker id */
140 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
141 };
142 
143 /*
144  * Global per-cpu workqueue.  There's one and only one for each cpu
145  * and all works are queued and processed here regardless of their
146  * target workqueues.
147  */
148 struct global_cwq {
149 	spinlock_t		lock;		/* the gcwq lock */
150 	struct list_head	worklist;	/* L: list of pending works */
151 	unsigned int		cpu;		/* I: the associated cpu */
152 	unsigned int		flags;		/* L: GCWQ_* flags */
153 
154 	int			nr_workers;	/* L: total number of workers */
155 	int			nr_idle;	/* L: currently idle ones */
156 
157 	/* workers are chained either in the idle_list or busy_hash */
158 	struct list_head	idle_list;	/* X: list of idle workers */
159 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
160 						/* L: hash of busy workers */
161 
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
164 
165 	struct ida		worker_ida;	/* L: for worker IDs */
166 
167 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
168 	unsigned int		trustee_state;	/* L: trustee state */
169 	wait_queue_head_t	trustee_wait;	/* trustee wait */
170 	struct worker		*first_idle;	/* L: first idle worker */
171 } ____cacheline_aligned_in_smp;
172 
173 /*
174  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
175  * work_struct->data are used for flags and thus cwqs need to be
176  * aligned at two's power of the number of flag bits.
177  */
178 struct cpu_workqueue_struct {
179 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
180 	struct workqueue_struct *wq;		/* I: the owning workqueue */
181 	int			work_color;	/* L: current color */
182 	int			flush_color;	/* L: flushing color */
183 	int			nr_in_flight[WORK_NR_COLORS];
184 						/* L: nr of in_flight works */
185 	int			nr_active;	/* L: nr of active works */
186 	int			max_active;	/* L: max active works */
187 	struct list_head	delayed_works;	/* L: delayed works */
188 };
189 
190 /*
191  * Structure used to wait for workqueue flush.
192  */
193 struct wq_flusher {
194 	struct list_head	list;		/* F: list of flushers */
195 	int			flush_color;	/* F: flush color waiting for */
196 	struct completion	done;		/* flush completion */
197 };
198 
199 /*
200  * All cpumasks are assumed to be always set on UP and thus can't be
201  * used to determine whether there's something to be done.
202  */
203 #ifdef CONFIG_SMP
204 typedef cpumask_var_t mayday_mask_t;
205 #define mayday_test_and_set_cpu(cpu, mask)	\
206 	cpumask_test_and_set_cpu((cpu), (mask))
207 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
208 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
209 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
210 #define free_mayday_mask(mask)			free_cpumask_var((mask))
211 #else
212 typedef unsigned long mayday_mask_t;
213 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
214 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
215 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
216 #define alloc_mayday_mask(maskp, gfp)		true
217 #define free_mayday_mask(mask)			do { } while (0)
218 #endif
219 
220 /*
221  * The externally visible workqueue abstraction is an array of
222  * per-CPU workqueues:
223  */
224 struct workqueue_struct {
225 	unsigned int		flags;		/* I: WQ_* flags */
226 	union {
227 		struct cpu_workqueue_struct __percpu	*pcpu;
228 		struct cpu_workqueue_struct		*single;
229 		unsigned long				v;
230 	} cpu_wq;				/* I: cwq's */
231 	struct list_head	list;		/* W: list of all workqueues */
232 
233 	struct mutex		flush_mutex;	/* protects wq flushing */
234 	int			work_color;	/* F: current work color */
235 	int			flush_color;	/* F: current flush color */
236 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
237 	struct wq_flusher	*first_flusher;	/* F: first flusher */
238 	struct list_head	flusher_queue;	/* F: flush waiters */
239 	struct list_head	flusher_overflow; /* F: flush overflow list */
240 
241 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
242 	struct worker		*rescuer;	/* I: rescue worker */
243 
244 	int			saved_max_active; /* W: saved cwq max_active */
245 	const char		*name;		/* I: workqueue name */
246 #ifdef CONFIG_LOCKDEP
247 	struct lockdep_map	lockdep_map;
248 #endif
249 };
250 
251 struct workqueue_struct *system_wq __read_mostly;
252 struct workqueue_struct *system_long_wq __read_mostly;
253 struct workqueue_struct *system_nrt_wq __read_mostly;
254 struct workqueue_struct *system_unbound_wq __read_mostly;
255 EXPORT_SYMBOL_GPL(system_wq);
256 EXPORT_SYMBOL_GPL(system_long_wq);
257 EXPORT_SYMBOL_GPL(system_nrt_wq);
258 EXPORT_SYMBOL_GPL(system_unbound_wq);
259 
260 #define for_each_busy_worker(worker, i, pos, gcwq)			\
261 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
262 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
263 
264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 				  unsigned int sw)
266 {
267 	if (cpu < nr_cpu_ids) {
268 		if (sw & 1) {
269 			cpu = cpumask_next(cpu, mask);
270 			if (cpu < nr_cpu_ids)
271 				return cpu;
272 		}
273 		if (sw & 2)
274 			return WORK_CPU_UNBOUND;
275 	}
276 	return WORK_CPU_NONE;
277 }
278 
279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 				struct workqueue_struct *wq)
281 {
282 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283 }
284 
285 /*
286  * CPU iterators
287  *
288  * An extra gcwq is defined for an invalid cpu number
289  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290  * specific CPU.  The following iterators are similar to
291  * for_each_*_cpu() iterators but also considers the unbound gcwq.
292  *
293  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
294  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
295  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
296  *				  WORK_CPU_UNBOUND for unbound workqueues
297  */
298 #define for_each_gcwq_cpu(cpu)						\
299 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
300 	     (cpu) < WORK_CPU_NONE;					\
301 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
302 
303 #define for_each_online_gcwq_cpu(cpu)					\
304 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
305 	     (cpu) < WORK_CPU_NONE;					\
306 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
307 
308 #define for_each_cwq_cpu(cpu, wq)					\
309 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
310 	     (cpu) < WORK_CPU_NONE;					\
311 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
312 
313 #ifdef CONFIG_LOCKDEP
314 /**
315  * in_workqueue_context() - in context of specified workqueue?
316  * @wq: the workqueue of interest
317  *
318  * Checks lockdep state to see if the current task is executing from
319  * within a workqueue item.  This function exists only if lockdep is
320  * enabled.
321  */
322 int in_workqueue_context(struct workqueue_struct *wq)
323 {
324 	return lock_is_held(&wq->lockdep_map);
325 }
326 #endif
327 
328 #ifdef CONFIG_DEBUG_OBJECTS_WORK
329 
330 static struct debug_obj_descr work_debug_descr;
331 
332 /*
333  * fixup_init is called when:
334  * - an active object is initialized
335  */
336 static int work_fixup_init(void *addr, enum debug_obj_state state)
337 {
338 	struct work_struct *work = addr;
339 
340 	switch (state) {
341 	case ODEBUG_STATE_ACTIVE:
342 		cancel_work_sync(work);
343 		debug_object_init(work, &work_debug_descr);
344 		return 1;
345 	default:
346 		return 0;
347 	}
348 }
349 
350 /*
351  * fixup_activate is called when:
352  * - an active object is activated
353  * - an unknown object is activated (might be a statically initialized object)
354  */
355 static int work_fixup_activate(void *addr, enum debug_obj_state state)
356 {
357 	struct work_struct *work = addr;
358 
359 	switch (state) {
360 
361 	case ODEBUG_STATE_NOTAVAILABLE:
362 		/*
363 		 * This is not really a fixup. The work struct was
364 		 * statically initialized. We just make sure that it
365 		 * is tracked in the object tracker.
366 		 */
367 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
368 			debug_object_init(work, &work_debug_descr);
369 			debug_object_activate(work, &work_debug_descr);
370 			return 0;
371 		}
372 		WARN_ON_ONCE(1);
373 		return 0;
374 
375 	case ODEBUG_STATE_ACTIVE:
376 		WARN_ON(1);
377 
378 	default:
379 		return 0;
380 	}
381 }
382 
383 /*
384  * fixup_free is called when:
385  * - an active object is freed
386  */
387 static int work_fixup_free(void *addr, enum debug_obj_state state)
388 {
389 	struct work_struct *work = addr;
390 
391 	switch (state) {
392 	case ODEBUG_STATE_ACTIVE:
393 		cancel_work_sync(work);
394 		debug_object_free(work, &work_debug_descr);
395 		return 1;
396 	default:
397 		return 0;
398 	}
399 }
400 
401 static struct debug_obj_descr work_debug_descr = {
402 	.name		= "work_struct",
403 	.fixup_init	= work_fixup_init,
404 	.fixup_activate	= work_fixup_activate,
405 	.fixup_free	= work_fixup_free,
406 };
407 
408 static inline void debug_work_activate(struct work_struct *work)
409 {
410 	debug_object_activate(work, &work_debug_descr);
411 }
412 
413 static inline void debug_work_deactivate(struct work_struct *work)
414 {
415 	debug_object_deactivate(work, &work_debug_descr);
416 }
417 
418 void __init_work(struct work_struct *work, int onstack)
419 {
420 	if (onstack)
421 		debug_object_init_on_stack(work, &work_debug_descr);
422 	else
423 		debug_object_init(work, &work_debug_descr);
424 }
425 EXPORT_SYMBOL_GPL(__init_work);
426 
427 void destroy_work_on_stack(struct work_struct *work)
428 {
429 	debug_object_free(work, &work_debug_descr);
430 }
431 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
432 
433 #else
434 static inline void debug_work_activate(struct work_struct *work) { }
435 static inline void debug_work_deactivate(struct work_struct *work) { }
436 #endif
437 
438 /* Serializes the accesses to the list of workqueues. */
439 static DEFINE_SPINLOCK(workqueue_lock);
440 static LIST_HEAD(workqueues);
441 static bool workqueue_freezing;		/* W: have wqs started freezing? */
442 
443 /*
444  * The almighty global cpu workqueues.  nr_running is the only field
445  * which is expected to be used frequently by other cpus via
446  * try_to_wake_up().  Put it in a separate cacheline.
447  */
448 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
449 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
450 
451 /*
452  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
453  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
454  * workers have WORKER_UNBOUND set.
455  */
456 static struct global_cwq unbound_global_cwq;
457 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
458 
459 static int worker_thread(void *__worker);
460 
461 static struct global_cwq *get_gcwq(unsigned int cpu)
462 {
463 	if (cpu != WORK_CPU_UNBOUND)
464 		return &per_cpu(global_cwq, cpu);
465 	else
466 		return &unbound_global_cwq;
467 }
468 
469 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
470 {
471 	if (cpu != WORK_CPU_UNBOUND)
472 		return &per_cpu(gcwq_nr_running, cpu);
473 	else
474 		return &unbound_gcwq_nr_running;
475 }
476 
477 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
478 					    struct workqueue_struct *wq)
479 {
480 	if (!(wq->flags & WQ_UNBOUND)) {
481 		if (likely(cpu < nr_cpu_ids)) {
482 #ifdef CONFIG_SMP
483 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
484 #else
485 			return wq->cpu_wq.single;
486 #endif
487 		}
488 	} else if (likely(cpu == WORK_CPU_UNBOUND))
489 		return wq->cpu_wq.single;
490 	return NULL;
491 }
492 
493 static unsigned int work_color_to_flags(int color)
494 {
495 	return color << WORK_STRUCT_COLOR_SHIFT;
496 }
497 
498 static int get_work_color(struct work_struct *work)
499 {
500 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
501 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
502 }
503 
504 static int work_next_color(int color)
505 {
506 	return (color + 1) % WORK_NR_COLORS;
507 }
508 
509 /*
510  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
511  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
512  * cleared and the work data contains the cpu number it was last on.
513  *
514  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
515  * cwq, cpu or clear work->data.  These functions should only be
516  * called while the work is owned - ie. while the PENDING bit is set.
517  *
518  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
519  * corresponding to a work.  gcwq is available once the work has been
520  * queued anywhere after initialization.  cwq is available only from
521  * queueing until execution starts.
522  */
523 static inline void set_work_data(struct work_struct *work, unsigned long data,
524 				 unsigned long flags)
525 {
526 	BUG_ON(!work_pending(work));
527 	atomic_long_set(&work->data, data | flags | work_static(work));
528 }
529 
530 static void set_work_cwq(struct work_struct *work,
531 			 struct cpu_workqueue_struct *cwq,
532 			 unsigned long extra_flags)
533 {
534 	set_work_data(work, (unsigned long)cwq,
535 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
536 }
537 
538 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
539 {
540 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
541 }
542 
543 static void clear_work_data(struct work_struct *work)
544 {
545 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
546 }
547 
548 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
549 {
550 	unsigned long data = atomic_long_read(&work->data);
551 
552 	if (data & WORK_STRUCT_CWQ)
553 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
554 	else
555 		return NULL;
556 }
557 
558 static struct global_cwq *get_work_gcwq(struct work_struct *work)
559 {
560 	unsigned long data = atomic_long_read(&work->data);
561 	unsigned int cpu;
562 
563 	if (data & WORK_STRUCT_CWQ)
564 		return ((struct cpu_workqueue_struct *)
565 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
566 
567 	cpu = data >> WORK_STRUCT_FLAG_BITS;
568 	if (cpu == WORK_CPU_NONE)
569 		return NULL;
570 
571 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
572 	return get_gcwq(cpu);
573 }
574 
575 /*
576  * Policy functions.  These define the policies on how the global
577  * worker pool is managed.  Unless noted otherwise, these functions
578  * assume that they're being called with gcwq->lock held.
579  */
580 
581 static bool __need_more_worker(struct global_cwq *gcwq)
582 {
583 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
584 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
585 }
586 
587 /*
588  * Need to wake up a worker?  Called from anything but currently
589  * running workers.
590  */
591 static bool need_more_worker(struct global_cwq *gcwq)
592 {
593 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
594 }
595 
596 /* Can I start working?  Called from busy but !running workers. */
597 static bool may_start_working(struct global_cwq *gcwq)
598 {
599 	return gcwq->nr_idle;
600 }
601 
602 /* Do I need to keep working?  Called from currently running workers. */
603 static bool keep_working(struct global_cwq *gcwq)
604 {
605 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
606 
607 	return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
608 }
609 
610 /* Do we need a new worker?  Called from manager. */
611 static bool need_to_create_worker(struct global_cwq *gcwq)
612 {
613 	return need_more_worker(gcwq) && !may_start_working(gcwq);
614 }
615 
616 /* Do I need to be the manager? */
617 static bool need_to_manage_workers(struct global_cwq *gcwq)
618 {
619 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
620 }
621 
622 /* Do we have too many workers and should some go away? */
623 static bool too_many_workers(struct global_cwq *gcwq)
624 {
625 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
626 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
627 	int nr_busy = gcwq->nr_workers - nr_idle;
628 
629 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
630 }
631 
632 /*
633  * Wake up functions.
634  */
635 
636 /* Return the first worker.  Safe with preemption disabled */
637 static struct worker *first_worker(struct global_cwq *gcwq)
638 {
639 	if (unlikely(list_empty(&gcwq->idle_list)))
640 		return NULL;
641 
642 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
643 }
644 
645 /**
646  * wake_up_worker - wake up an idle worker
647  * @gcwq: gcwq to wake worker for
648  *
649  * Wake up the first idle worker of @gcwq.
650  *
651  * CONTEXT:
652  * spin_lock_irq(gcwq->lock).
653  */
654 static void wake_up_worker(struct global_cwq *gcwq)
655 {
656 	struct worker *worker = first_worker(gcwq);
657 
658 	if (likely(worker))
659 		wake_up_process(worker->task);
660 }
661 
662 /**
663  * wq_worker_waking_up - a worker is waking up
664  * @task: task waking up
665  * @cpu: CPU @task is waking up to
666  *
667  * This function is called during try_to_wake_up() when a worker is
668  * being awoken.
669  *
670  * CONTEXT:
671  * spin_lock_irq(rq->lock)
672  */
673 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
674 {
675 	struct worker *worker = kthread_data(task);
676 
677 	if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
678 		atomic_inc(get_gcwq_nr_running(cpu));
679 }
680 
681 /**
682  * wq_worker_sleeping - a worker is going to sleep
683  * @task: task going to sleep
684  * @cpu: CPU in question, must be the current CPU number
685  *
686  * This function is called during schedule() when a busy worker is
687  * going to sleep.  Worker on the same cpu can be woken up by
688  * returning pointer to its task.
689  *
690  * CONTEXT:
691  * spin_lock_irq(rq->lock)
692  *
693  * RETURNS:
694  * Worker task on @cpu to wake up, %NULL if none.
695  */
696 struct task_struct *wq_worker_sleeping(struct task_struct *task,
697 				       unsigned int cpu)
698 {
699 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
700 	struct global_cwq *gcwq = get_gcwq(cpu);
701 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
702 
703 	if (unlikely(worker->flags & WORKER_NOT_RUNNING))
704 		return NULL;
705 
706 	/* this can only happen on the local cpu */
707 	BUG_ON(cpu != raw_smp_processor_id());
708 
709 	/*
710 	 * The counterpart of the following dec_and_test, implied mb,
711 	 * worklist not empty test sequence is in insert_work().
712 	 * Please read comment there.
713 	 *
714 	 * NOT_RUNNING is clear.  This means that trustee is not in
715 	 * charge and we're running on the local cpu w/ rq lock held
716 	 * and preemption disabled, which in turn means that none else
717 	 * could be manipulating idle_list, so dereferencing idle_list
718 	 * without gcwq lock is safe.
719 	 */
720 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
721 		to_wakeup = first_worker(gcwq);
722 	return to_wakeup ? to_wakeup->task : NULL;
723 }
724 
725 /**
726  * worker_set_flags - set worker flags and adjust nr_running accordingly
727  * @worker: self
728  * @flags: flags to set
729  * @wakeup: wakeup an idle worker if necessary
730  *
731  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
732  * nr_running becomes zero and @wakeup is %true, an idle worker is
733  * woken up.
734  *
735  * CONTEXT:
736  * spin_lock_irq(gcwq->lock)
737  */
738 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
739 				    bool wakeup)
740 {
741 	struct global_cwq *gcwq = worker->gcwq;
742 
743 	WARN_ON_ONCE(worker->task != current);
744 
745 	/*
746 	 * If transitioning into NOT_RUNNING, adjust nr_running and
747 	 * wake up an idle worker as necessary if requested by
748 	 * @wakeup.
749 	 */
750 	if ((flags & WORKER_NOT_RUNNING) &&
751 	    !(worker->flags & WORKER_NOT_RUNNING)) {
752 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
753 
754 		if (wakeup) {
755 			if (atomic_dec_and_test(nr_running) &&
756 			    !list_empty(&gcwq->worklist))
757 				wake_up_worker(gcwq);
758 		} else
759 			atomic_dec(nr_running);
760 	}
761 
762 	worker->flags |= flags;
763 }
764 
765 /**
766  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
767  * @worker: self
768  * @flags: flags to clear
769  *
770  * Clear @flags in @worker->flags and adjust nr_running accordingly.
771  *
772  * CONTEXT:
773  * spin_lock_irq(gcwq->lock)
774  */
775 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
776 {
777 	struct global_cwq *gcwq = worker->gcwq;
778 	unsigned int oflags = worker->flags;
779 
780 	WARN_ON_ONCE(worker->task != current);
781 
782 	worker->flags &= ~flags;
783 
784 	/* if transitioning out of NOT_RUNNING, increment nr_running */
785 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
786 		if (!(worker->flags & WORKER_NOT_RUNNING))
787 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
788 }
789 
790 /**
791  * busy_worker_head - return the busy hash head for a work
792  * @gcwq: gcwq of interest
793  * @work: work to be hashed
794  *
795  * Return hash head of @gcwq for @work.
796  *
797  * CONTEXT:
798  * spin_lock_irq(gcwq->lock).
799  *
800  * RETURNS:
801  * Pointer to the hash head.
802  */
803 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
804 					   struct work_struct *work)
805 {
806 	const int base_shift = ilog2(sizeof(struct work_struct));
807 	unsigned long v = (unsigned long)work;
808 
809 	/* simple shift and fold hash, do we need something better? */
810 	v >>= base_shift;
811 	v += v >> BUSY_WORKER_HASH_ORDER;
812 	v &= BUSY_WORKER_HASH_MASK;
813 
814 	return &gcwq->busy_hash[v];
815 }
816 
817 /**
818  * __find_worker_executing_work - find worker which is executing a work
819  * @gcwq: gcwq of interest
820  * @bwh: hash head as returned by busy_worker_head()
821  * @work: work to find worker for
822  *
823  * Find a worker which is executing @work on @gcwq.  @bwh should be
824  * the hash head obtained by calling busy_worker_head() with the same
825  * work.
826  *
827  * CONTEXT:
828  * spin_lock_irq(gcwq->lock).
829  *
830  * RETURNS:
831  * Pointer to worker which is executing @work if found, NULL
832  * otherwise.
833  */
834 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
835 						   struct hlist_head *bwh,
836 						   struct work_struct *work)
837 {
838 	struct worker *worker;
839 	struct hlist_node *tmp;
840 
841 	hlist_for_each_entry(worker, tmp, bwh, hentry)
842 		if (worker->current_work == work)
843 			return worker;
844 	return NULL;
845 }
846 
847 /**
848  * find_worker_executing_work - find worker which is executing a work
849  * @gcwq: gcwq of interest
850  * @work: work to find worker for
851  *
852  * Find a worker which is executing @work on @gcwq.  This function is
853  * identical to __find_worker_executing_work() except that this
854  * function calculates @bwh itself.
855  *
856  * CONTEXT:
857  * spin_lock_irq(gcwq->lock).
858  *
859  * RETURNS:
860  * Pointer to worker which is executing @work if found, NULL
861  * otherwise.
862  */
863 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
864 						 struct work_struct *work)
865 {
866 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
867 					    work);
868 }
869 
870 /**
871  * gcwq_determine_ins_pos - find insertion position
872  * @gcwq: gcwq of interest
873  * @cwq: cwq a work is being queued for
874  *
875  * A work for @cwq is about to be queued on @gcwq, determine insertion
876  * position for the work.  If @cwq is for HIGHPRI wq, the work is
877  * queued at the head of the queue but in FIFO order with respect to
878  * other HIGHPRI works; otherwise, at the end of the queue.  This
879  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
880  * there are HIGHPRI works pending.
881  *
882  * CONTEXT:
883  * spin_lock_irq(gcwq->lock).
884  *
885  * RETURNS:
886  * Pointer to inserstion position.
887  */
888 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
889 					       struct cpu_workqueue_struct *cwq)
890 {
891 	struct work_struct *twork;
892 
893 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
894 		return &gcwq->worklist;
895 
896 	list_for_each_entry(twork, &gcwq->worklist, entry) {
897 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
898 
899 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
900 			break;
901 	}
902 
903 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
904 	return &twork->entry;
905 }
906 
907 /**
908  * insert_work - insert a work into gcwq
909  * @cwq: cwq @work belongs to
910  * @work: work to insert
911  * @head: insertion point
912  * @extra_flags: extra WORK_STRUCT_* flags to set
913  *
914  * Insert @work which belongs to @cwq into @gcwq after @head.
915  * @extra_flags is or'd to work_struct flags.
916  *
917  * CONTEXT:
918  * spin_lock_irq(gcwq->lock).
919  */
920 static void insert_work(struct cpu_workqueue_struct *cwq,
921 			struct work_struct *work, struct list_head *head,
922 			unsigned int extra_flags)
923 {
924 	struct global_cwq *gcwq = cwq->gcwq;
925 
926 	/* we own @work, set data and link */
927 	set_work_cwq(work, cwq, extra_flags);
928 
929 	/*
930 	 * Ensure that we get the right work->data if we see the
931 	 * result of list_add() below, see try_to_grab_pending().
932 	 */
933 	smp_wmb();
934 
935 	list_add_tail(&work->entry, head);
936 
937 	/*
938 	 * Ensure either worker_sched_deactivated() sees the above
939 	 * list_add_tail() or we see zero nr_running to avoid workers
940 	 * lying around lazily while there are works to be processed.
941 	 */
942 	smp_mb();
943 
944 	if (__need_more_worker(gcwq))
945 		wake_up_worker(gcwq);
946 }
947 
948 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
949 			 struct work_struct *work)
950 {
951 	struct global_cwq *gcwq;
952 	struct cpu_workqueue_struct *cwq;
953 	struct list_head *worklist;
954 	unsigned int work_flags;
955 	unsigned long flags;
956 
957 	debug_work_activate(work);
958 
959 	if (WARN_ON_ONCE(wq->flags & WQ_DYING))
960 		return;
961 
962 	/* determine gcwq to use */
963 	if (!(wq->flags & WQ_UNBOUND)) {
964 		struct global_cwq *last_gcwq;
965 
966 		if (unlikely(cpu == WORK_CPU_UNBOUND))
967 			cpu = raw_smp_processor_id();
968 
969 		/*
970 		 * It's multi cpu.  If @wq is non-reentrant and @work
971 		 * was previously on a different cpu, it might still
972 		 * be running there, in which case the work needs to
973 		 * be queued on that cpu to guarantee non-reentrance.
974 		 */
975 		gcwq = get_gcwq(cpu);
976 		if (wq->flags & WQ_NON_REENTRANT &&
977 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
978 			struct worker *worker;
979 
980 			spin_lock_irqsave(&last_gcwq->lock, flags);
981 
982 			worker = find_worker_executing_work(last_gcwq, work);
983 
984 			if (worker && worker->current_cwq->wq == wq)
985 				gcwq = last_gcwq;
986 			else {
987 				/* meh... not running there, queue here */
988 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
989 				spin_lock_irqsave(&gcwq->lock, flags);
990 			}
991 		} else
992 			spin_lock_irqsave(&gcwq->lock, flags);
993 	} else {
994 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
995 		spin_lock_irqsave(&gcwq->lock, flags);
996 	}
997 
998 	/* gcwq determined, get cwq and queue */
999 	cwq = get_cwq(gcwq->cpu, wq);
1000 
1001 	BUG_ON(!list_empty(&work->entry));
1002 
1003 	cwq->nr_in_flight[cwq->work_color]++;
1004 	work_flags = work_color_to_flags(cwq->work_color);
1005 
1006 	if (likely(cwq->nr_active < cwq->max_active)) {
1007 		cwq->nr_active++;
1008 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1009 	} else {
1010 		work_flags |= WORK_STRUCT_DELAYED;
1011 		worklist = &cwq->delayed_works;
1012 	}
1013 
1014 	insert_work(cwq, work, worklist, work_flags);
1015 
1016 	spin_unlock_irqrestore(&gcwq->lock, flags);
1017 }
1018 
1019 /**
1020  * queue_work - queue work on a workqueue
1021  * @wq: workqueue to use
1022  * @work: work to queue
1023  *
1024  * Returns 0 if @work was already on a queue, non-zero otherwise.
1025  *
1026  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1027  * it can be processed by another CPU.
1028  */
1029 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1030 {
1031 	int ret;
1032 
1033 	ret = queue_work_on(get_cpu(), wq, work);
1034 	put_cpu();
1035 
1036 	return ret;
1037 }
1038 EXPORT_SYMBOL_GPL(queue_work);
1039 
1040 /**
1041  * queue_work_on - queue work on specific cpu
1042  * @cpu: CPU number to execute work on
1043  * @wq: workqueue to use
1044  * @work: work to queue
1045  *
1046  * Returns 0 if @work was already on a queue, non-zero otherwise.
1047  *
1048  * We queue the work to a specific CPU, the caller must ensure it
1049  * can't go away.
1050  */
1051 int
1052 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1053 {
1054 	int ret = 0;
1055 
1056 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1057 		__queue_work(cpu, wq, work);
1058 		ret = 1;
1059 	}
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL_GPL(queue_work_on);
1063 
1064 static void delayed_work_timer_fn(unsigned long __data)
1065 {
1066 	struct delayed_work *dwork = (struct delayed_work *)__data;
1067 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1068 
1069 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1070 }
1071 
1072 /**
1073  * queue_delayed_work - queue work on a workqueue after delay
1074  * @wq: workqueue to use
1075  * @dwork: delayable work to queue
1076  * @delay: number of jiffies to wait before queueing
1077  *
1078  * Returns 0 if @work was already on a queue, non-zero otherwise.
1079  */
1080 int queue_delayed_work(struct workqueue_struct *wq,
1081 			struct delayed_work *dwork, unsigned long delay)
1082 {
1083 	if (delay == 0)
1084 		return queue_work(wq, &dwork->work);
1085 
1086 	return queue_delayed_work_on(-1, wq, dwork, delay);
1087 }
1088 EXPORT_SYMBOL_GPL(queue_delayed_work);
1089 
1090 /**
1091  * queue_delayed_work_on - queue work on specific CPU after delay
1092  * @cpu: CPU number to execute work on
1093  * @wq: workqueue to use
1094  * @dwork: work to queue
1095  * @delay: number of jiffies to wait before queueing
1096  *
1097  * Returns 0 if @work was already on a queue, non-zero otherwise.
1098  */
1099 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1100 			struct delayed_work *dwork, unsigned long delay)
1101 {
1102 	int ret = 0;
1103 	struct timer_list *timer = &dwork->timer;
1104 	struct work_struct *work = &dwork->work;
1105 
1106 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1107 		unsigned int lcpu;
1108 
1109 		BUG_ON(timer_pending(timer));
1110 		BUG_ON(!list_empty(&work->entry));
1111 
1112 		timer_stats_timer_set_start_info(&dwork->timer);
1113 
1114 		/*
1115 		 * This stores cwq for the moment, for the timer_fn.
1116 		 * Note that the work's gcwq is preserved to allow
1117 		 * reentrance detection for delayed works.
1118 		 */
1119 		if (!(wq->flags & WQ_UNBOUND)) {
1120 			struct global_cwq *gcwq = get_work_gcwq(work);
1121 
1122 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1123 				lcpu = gcwq->cpu;
1124 			else
1125 				lcpu = raw_smp_processor_id();
1126 		} else
1127 			lcpu = WORK_CPU_UNBOUND;
1128 
1129 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1130 
1131 		timer->expires = jiffies + delay;
1132 		timer->data = (unsigned long)dwork;
1133 		timer->function = delayed_work_timer_fn;
1134 
1135 		if (unlikely(cpu >= 0))
1136 			add_timer_on(timer, cpu);
1137 		else
1138 			add_timer(timer);
1139 		ret = 1;
1140 	}
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1144 
1145 /**
1146  * worker_enter_idle - enter idle state
1147  * @worker: worker which is entering idle state
1148  *
1149  * @worker is entering idle state.  Update stats and idle timer if
1150  * necessary.
1151  *
1152  * LOCKING:
1153  * spin_lock_irq(gcwq->lock).
1154  */
1155 static void worker_enter_idle(struct worker *worker)
1156 {
1157 	struct global_cwq *gcwq = worker->gcwq;
1158 
1159 	BUG_ON(worker->flags & WORKER_IDLE);
1160 	BUG_ON(!list_empty(&worker->entry) &&
1161 	       (worker->hentry.next || worker->hentry.pprev));
1162 
1163 	/* can't use worker_set_flags(), also called from start_worker() */
1164 	worker->flags |= WORKER_IDLE;
1165 	gcwq->nr_idle++;
1166 	worker->last_active = jiffies;
1167 
1168 	/* idle_list is LIFO */
1169 	list_add(&worker->entry, &gcwq->idle_list);
1170 
1171 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1172 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1173 			mod_timer(&gcwq->idle_timer,
1174 				  jiffies + IDLE_WORKER_TIMEOUT);
1175 	} else
1176 		wake_up_all(&gcwq->trustee_wait);
1177 
1178 	/* sanity check nr_running */
1179 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1180 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1181 }
1182 
1183 /**
1184  * worker_leave_idle - leave idle state
1185  * @worker: worker which is leaving idle state
1186  *
1187  * @worker is leaving idle state.  Update stats.
1188  *
1189  * LOCKING:
1190  * spin_lock_irq(gcwq->lock).
1191  */
1192 static void worker_leave_idle(struct worker *worker)
1193 {
1194 	struct global_cwq *gcwq = worker->gcwq;
1195 
1196 	BUG_ON(!(worker->flags & WORKER_IDLE));
1197 	worker_clr_flags(worker, WORKER_IDLE);
1198 	gcwq->nr_idle--;
1199 	list_del_init(&worker->entry);
1200 }
1201 
1202 /**
1203  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1204  * @worker: self
1205  *
1206  * Works which are scheduled while the cpu is online must at least be
1207  * scheduled to a worker which is bound to the cpu so that if they are
1208  * flushed from cpu callbacks while cpu is going down, they are
1209  * guaranteed to execute on the cpu.
1210  *
1211  * This function is to be used by rogue workers and rescuers to bind
1212  * themselves to the target cpu and may race with cpu going down or
1213  * coming online.  kthread_bind() can't be used because it may put the
1214  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1215  * verbatim as it's best effort and blocking and gcwq may be
1216  * [dis]associated in the meantime.
1217  *
1218  * This function tries set_cpus_allowed() and locks gcwq and verifies
1219  * the binding against GCWQ_DISASSOCIATED which is set during
1220  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1221  * idle state or fetches works without dropping lock, it can guarantee
1222  * the scheduling requirement described in the first paragraph.
1223  *
1224  * CONTEXT:
1225  * Might sleep.  Called without any lock but returns with gcwq->lock
1226  * held.
1227  *
1228  * RETURNS:
1229  * %true if the associated gcwq is online (@worker is successfully
1230  * bound), %false if offline.
1231  */
1232 static bool worker_maybe_bind_and_lock(struct worker *worker)
1233 __acquires(&gcwq->lock)
1234 {
1235 	struct global_cwq *gcwq = worker->gcwq;
1236 	struct task_struct *task = worker->task;
1237 
1238 	while (true) {
1239 		/*
1240 		 * The following call may fail, succeed or succeed
1241 		 * without actually migrating the task to the cpu if
1242 		 * it races with cpu hotunplug operation.  Verify
1243 		 * against GCWQ_DISASSOCIATED.
1244 		 */
1245 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1246 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1247 
1248 		spin_lock_irq(&gcwq->lock);
1249 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1250 			return false;
1251 		if (task_cpu(task) == gcwq->cpu &&
1252 		    cpumask_equal(&current->cpus_allowed,
1253 				  get_cpu_mask(gcwq->cpu)))
1254 			return true;
1255 		spin_unlock_irq(&gcwq->lock);
1256 
1257 		/* CPU has come up inbetween, retry migration */
1258 		cpu_relax();
1259 	}
1260 }
1261 
1262 /*
1263  * Function for worker->rebind_work used to rebind rogue busy workers
1264  * to the associated cpu which is coming back online.  This is
1265  * scheduled by cpu up but can race with other cpu hotplug operations
1266  * and may be executed twice without intervening cpu down.
1267  */
1268 static void worker_rebind_fn(struct work_struct *work)
1269 {
1270 	struct worker *worker = container_of(work, struct worker, rebind_work);
1271 	struct global_cwq *gcwq = worker->gcwq;
1272 
1273 	if (worker_maybe_bind_and_lock(worker))
1274 		worker_clr_flags(worker, WORKER_REBIND);
1275 
1276 	spin_unlock_irq(&gcwq->lock);
1277 }
1278 
1279 static struct worker *alloc_worker(void)
1280 {
1281 	struct worker *worker;
1282 
1283 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1284 	if (worker) {
1285 		INIT_LIST_HEAD(&worker->entry);
1286 		INIT_LIST_HEAD(&worker->scheduled);
1287 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1288 		/* on creation a worker is in !idle && prep state */
1289 		worker->flags = WORKER_PREP;
1290 	}
1291 	return worker;
1292 }
1293 
1294 /**
1295  * create_worker - create a new workqueue worker
1296  * @gcwq: gcwq the new worker will belong to
1297  * @bind: whether to set affinity to @cpu or not
1298  *
1299  * Create a new worker which is bound to @gcwq.  The returned worker
1300  * can be started by calling start_worker() or destroyed using
1301  * destroy_worker().
1302  *
1303  * CONTEXT:
1304  * Might sleep.  Does GFP_KERNEL allocations.
1305  *
1306  * RETURNS:
1307  * Pointer to the newly created worker.
1308  */
1309 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1310 {
1311 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1312 	struct worker *worker = NULL;
1313 	int id = -1;
1314 
1315 	spin_lock_irq(&gcwq->lock);
1316 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1317 		spin_unlock_irq(&gcwq->lock);
1318 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1319 			goto fail;
1320 		spin_lock_irq(&gcwq->lock);
1321 	}
1322 	spin_unlock_irq(&gcwq->lock);
1323 
1324 	worker = alloc_worker();
1325 	if (!worker)
1326 		goto fail;
1327 
1328 	worker->gcwq = gcwq;
1329 	worker->id = id;
1330 
1331 	if (!on_unbound_cpu)
1332 		worker->task = kthread_create(worker_thread, worker,
1333 					      "kworker/%u:%d", gcwq->cpu, id);
1334 	else
1335 		worker->task = kthread_create(worker_thread, worker,
1336 					      "kworker/u:%d", id);
1337 	if (IS_ERR(worker->task))
1338 		goto fail;
1339 
1340 	/*
1341 	 * A rogue worker will become a regular one if CPU comes
1342 	 * online later on.  Make sure every worker has
1343 	 * PF_THREAD_BOUND set.
1344 	 */
1345 	if (bind && !on_unbound_cpu)
1346 		kthread_bind(worker->task, gcwq->cpu);
1347 	else {
1348 		worker->task->flags |= PF_THREAD_BOUND;
1349 		if (on_unbound_cpu)
1350 			worker->flags |= WORKER_UNBOUND;
1351 	}
1352 
1353 	return worker;
1354 fail:
1355 	if (id >= 0) {
1356 		spin_lock_irq(&gcwq->lock);
1357 		ida_remove(&gcwq->worker_ida, id);
1358 		spin_unlock_irq(&gcwq->lock);
1359 	}
1360 	kfree(worker);
1361 	return NULL;
1362 }
1363 
1364 /**
1365  * start_worker - start a newly created worker
1366  * @worker: worker to start
1367  *
1368  * Make the gcwq aware of @worker and start it.
1369  *
1370  * CONTEXT:
1371  * spin_lock_irq(gcwq->lock).
1372  */
1373 static void start_worker(struct worker *worker)
1374 {
1375 	worker->flags |= WORKER_STARTED;
1376 	worker->gcwq->nr_workers++;
1377 	worker_enter_idle(worker);
1378 	wake_up_process(worker->task);
1379 }
1380 
1381 /**
1382  * destroy_worker - destroy a workqueue worker
1383  * @worker: worker to be destroyed
1384  *
1385  * Destroy @worker and adjust @gcwq stats accordingly.
1386  *
1387  * CONTEXT:
1388  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1389  */
1390 static void destroy_worker(struct worker *worker)
1391 {
1392 	struct global_cwq *gcwq = worker->gcwq;
1393 	int id = worker->id;
1394 
1395 	/* sanity check frenzy */
1396 	BUG_ON(worker->current_work);
1397 	BUG_ON(!list_empty(&worker->scheduled));
1398 
1399 	if (worker->flags & WORKER_STARTED)
1400 		gcwq->nr_workers--;
1401 	if (worker->flags & WORKER_IDLE)
1402 		gcwq->nr_idle--;
1403 
1404 	list_del_init(&worker->entry);
1405 	worker->flags |= WORKER_DIE;
1406 
1407 	spin_unlock_irq(&gcwq->lock);
1408 
1409 	kthread_stop(worker->task);
1410 	kfree(worker);
1411 
1412 	spin_lock_irq(&gcwq->lock);
1413 	ida_remove(&gcwq->worker_ida, id);
1414 }
1415 
1416 static void idle_worker_timeout(unsigned long __gcwq)
1417 {
1418 	struct global_cwq *gcwq = (void *)__gcwq;
1419 
1420 	spin_lock_irq(&gcwq->lock);
1421 
1422 	if (too_many_workers(gcwq)) {
1423 		struct worker *worker;
1424 		unsigned long expires;
1425 
1426 		/* idle_list is kept in LIFO order, check the last one */
1427 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1428 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1429 
1430 		if (time_before(jiffies, expires))
1431 			mod_timer(&gcwq->idle_timer, expires);
1432 		else {
1433 			/* it's been idle for too long, wake up manager */
1434 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1435 			wake_up_worker(gcwq);
1436 		}
1437 	}
1438 
1439 	spin_unlock_irq(&gcwq->lock);
1440 }
1441 
1442 static bool send_mayday(struct work_struct *work)
1443 {
1444 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1445 	struct workqueue_struct *wq = cwq->wq;
1446 	unsigned int cpu;
1447 
1448 	if (!(wq->flags & WQ_RESCUER))
1449 		return false;
1450 
1451 	/* mayday mayday mayday */
1452 	cpu = cwq->gcwq->cpu;
1453 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1454 	if (cpu == WORK_CPU_UNBOUND)
1455 		cpu = 0;
1456 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1457 		wake_up_process(wq->rescuer->task);
1458 	return true;
1459 }
1460 
1461 static void gcwq_mayday_timeout(unsigned long __gcwq)
1462 {
1463 	struct global_cwq *gcwq = (void *)__gcwq;
1464 	struct work_struct *work;
1465 
1466 	spin_lock_irq(&gcwq->lock);
1467 
1468 	if (need_to_create_worker(gcwq)) {
1469 		/*
1470 		 * We've been trying to create a new worker but
1471 		 * haven't been successful.  We might be hitting an
1472 		 * allocation deadlock.  Send distress signals to
1473 		 * rescuers.
1474 		 */
1475 		list_for_each_entry(work, &gcwq->worklist, entry)
1476 			send_mayday(work);
1477 	}
1478 
1479 	spin_unlock_irq(&gcwq->lock);
1480 
1481 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1482 }
1483 
1484 /**
1485  * maybe_create_worker - create a new worker if necessary
1486  * @gcwq: gcwq to create a new worker for
1487  *
1488  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1489  * have at least one idle worker on return from this function.  If
1490  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1491  * sent to all rescuers with works scheduled on @gcwq to resolve
1492  * possible allocation deadlock.
1493  *
1494  * On return, need_to_create_worker() is guaranteed to be false and
1495  * may_start_working() true.
1496  *
1497  * LOCKING:
1498  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1499  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1500  * manager.
1501  *
1502  * RETURNS:
1503  * false if no action was taken and gcwq->lock stayed locked, true
1504  * otherwise.
1505  */
1506 static bool maybe_create_worker(struct global_cwq *gcwq)
1507 __releases(&gcwq->lock)
1508 __acquires(&gcwq->lock)
1509 {
1510 	if (!need_to_create_worker(gcwq))
1511 		return false;
1512 restart:
1513 	spin_unlock_irq(&gcwq->lock);
1514 
1515 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1516 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1517 
1518 	while (true) {
1519 		struct worker *worker;
1520 
1521 		worker = create_worker(gcwq, true);
1522 		if (worker) {
1523 			del_timer_sync(&gcwq->mayday_timer);
1524 			spin_lock_irq(&gcwq->lock);
1525 			start_worker(worker);
1526 			BUG_ON(need_to_create_worker(gcwq));
1527 			return true;
1528 		}
1529 
1530 		if (!need_to_create_worker(gcwq))
1531 			break;
1532 
1533 		__set_current_state(TASK_INTERRUPTIBLE);
1534 		schedule_timeout(CREATE_COOLDOWN);
1535 
1536 		if (!need_to_create_worker(gcwq))
1537 			break;
1538 	}
1539 
1540 	del_timer_sync(&gcwq->mayday_timer);
1541 	spin_lock_irq(&gcwq->lock);
1542 	if (need_to_create_worker(gcwq))
1543 		goto restart;
1544 	return true;
1545 }
1546 
1547 /**
1548  * maybe_destroy_worker - destroy workers which have been idle for a while
1549  * @gcwq: gcwq to destroy workers for
1550  *
1551  * Destroy @gcwq workers which have been idle for longer than
1552  * IDLE_WORKER_TIMEOUT.
1553  *
1554  * LOCKING:
1555  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1556  * multiple times.  Called only from manager.
1557  *
1558  * RETURNS:
1559  * false if no action was taken and gcwq->lock stayed locked, true
1560  * otherwise.
1561  */
1562 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1563 {
1564 	bool ret = false;
1565 
1566 	while (too_many_workers(gcwq)) {
1567 		struct worker *worker;
1568 		unsigned long expires;
1569 
1570 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1571 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1572 
1573 		if (time_before(jiffies, expires)) {
1574 			mod_timer(&gcwq->idle_timer, expires);
1575 			break;
1576 		}
1577 
1578 		destroy_worker(worker);
1579 		ret = true;
1580 	}
1581 
1582 	return ret;
1583 }
1584 
1585 /**
1586  * manage_workers - manage worker pool
1587  * @worker: self
1588  *
1589  * Assume the manager role and manage gcwq worker pool @worker belongs
1590  * to.  At any given time, there can be only zero or one manager per
1591  * gcwq.  The exclusion is handled automatically by this function.
1592  *
1593  * The caller can safely start processing works on false return.  On
1594  * true return, it's guaranteed that need_to_create_worker() is false
1595  * and may_start_working() is true.
1596  *
1597  * CONTEXT:
1598  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1599  * multiple times.  Does GFP_KERNEL allocations.
1600  *
1601  * RETURNS:
1602  * false if no action was taken and gcwq->lock stayed locked, true if
1603  * some action was taken.
1604  */
1605 static bool manage_workers(struct worker *worker)
1606 {
1607 	struct global_cwq *gcwq = worker->gcwq;
1608 	bool ret = false;
1609 
1610 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1611 		return ret;
1612 
1613 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1614 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1615 
1616 	/*
1617 	 * Destroy and then create so that may_start_working() is true
1618 	 * on return.
1619 	 */
1620 	ret |= maybe_destroy_workers(gcwq);
1621 	ret |= maybe_create_worker(gcwq);
1622 
1623 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1624 
1625 	/*
1626 	 * The trustee might be waiting to take over the manager
1627 	 * position, tell it we're done.
1628 	 */
1629 	if (unlikely(gcwq->trustee))
1630 		wake_up_all(&gcwq->trustee_wait);
1631 
1632 	return ret;
1633 }
1634 
1635 /**
1636  * move_linked_works - move linked works to a list
1637  * @work: start of series of works to be scheduled
1638  * @head: target list to append @work to
1639  * @nextp: out paramter for nested worklist walking
1640  *
1641  * Schedule linked works starting from @work to @head.  Work series to
1642  * be scheduled starts at @work and includes any consecutive work with
1643  * WORK_STRUCT_LINKED set in its predecessor.
1644  *
1645  * If @nextp is not NULL, it's updated to point to the next work of
1646  * the last scheduled work.  This allows move_linked_works() to be
1647  * nested inside outer list_for_each_entry_safe().
1648  *
1649  * CONTEXT:
1650  * spin_lock_irq(gcwq->lock).
1651  */
1652 static void move_linked_works(struct work_struct *work, struct list_head *head,
1653 			      struct work_struct **nextp)
1654 {
1655 	struct work_struct *n;
1656 
1657 	/*
1658 	 * Linked worklist will always end before the end of the list,
1659 	 * use NULL for list head.
1660 	 */
1661 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1662 		list_move_tail(&work->entry, head);
1663 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1664 			break;
1665 	}
1666 
1667 	/*
1668 	 * If we're already inside safe list traversal and have moved
1669 	 * multiple works to the scheduled queue, the next position
1670 	 * needs to be updated.
1671 	 */
1672 	if (nextp)
1673 		*nextp = n;
1674 }
1675 
1676 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1677 {
1678 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1679 						    struct work_struct, entry);
1680 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1681 
1682 	move_linked_works(work, pos, NULL);
1683 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1684 	cwq->nr_active++;
1685 }
1686 
1687 /**
1688  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1689  * @cwq: cwq of interest
1690  * @color: color of work which left the queue
1691  * @delayed: for a delayed work
1692  *
1693  * A work either has completed or is removed from pending queue,
1694  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1695  *
1696  * CONTEXT:
1697  * spin_lock_irq(gcwq->lock).
1698  */
1699 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1700 				 bool delayed)
1701 {
1702 	/* ignore uncolored works */
1703 	if (color == WORK_NO_COLOR)
1704 		return;
1705 
1706 	cwq->nr_in_flight[color]--;
1707 
1708 	if (!delayed) {
1709 		cwq->nr_active--;
1710 		if (!list_empty(&cwq->delayed_works)) {
1711 			/* one down, submit a delayed one */
1712 			if (cwq->nr_active < cwq->max_active)
1713 				cwq_activate_first_delayed(cwq);
1714 		}
1715 	}
1716 
1717 	/* is flush in progress and are we at the flushing tip? */
1718 	if (likely(cwq->flush_color != color))
1719 		return;
1720 
1721 	/* are there still in-flight works? */
1722 	if (cwq->nr_in_flight[color])
1723 		return;
1724 
1725 	/* this cwq is done, clear flush_color */
1726 	cwq->flush_color = -1;
1727 
1728 	/*
1729 	 * If this was the last cwq, wake up the first flusher.  It
1730 	 * will handle the rest.
1731 	 */
1732 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1733 		complete(&cwq->wq->first_flusher->done);
1734 }
1735 
1736 /**
1737  * process_one_work - process single work
1738  * @worker: self
1739  * @work: work to process
1740  *
1741  * Process @work.  This function contains all the logics necessary to
1742  * process a single work including synchronization against and
1743  * interaction with other workers on the same cpu, queueing and
1744  * flushing.  As long as context requirement is met, any worker can
1745  * call this function to process a work.
1746  *
1747  * CONTEXT:
1748  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1749  */
1750 static void process_one_work(struct worker *worker, struct work_struct *work)
1751 __releases(&gcwq->lock)
1752 __acquires(&gcwq->lock)
1753 {
1754 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1755 	struct global_cwq *gcwq = cwq->gcwq;
1756 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1757 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1758 	work_func_t f = work->func;
1759 	int work_color;
1760 	struct worker *collision;
1761 #ifdef CONFIG_LOCKDEP
1762 	/*
1763 	 * It is permissible to free the struct work_struct from
1764 	 * inside the function that is called from it, this we need to
1765 	 * take into account for lockdep too.  To avoid bogus "held
1766 	 * lock freed" warnings as well as problems when looking into
1767 	 * work->lockdep_map, make a copy and use that here.
1768 	 */
1769 	struct lockdep_map lockdep_map = work->lockdep_map;
1770 #endif
1771 	/*
1772 	 * A single work shouldn't be executed concurrently by
1773 	 * multiple workers on a single cpu.  Check whether anyone is
1774 	 * already processing the work.  If so, defer the work to the
1775 	 * currently executing one.
1776 	 */
1777 	collision = __find_worker_executing_work(gcwq, bwh, work);
1778 	if (unlikely(collision)) {
1779 		move_linked_works(work, &collision->scheduled, NULL);
1780 		return;
1781 	}
1782 
1783 	/* claim and process */
1784 	debug_work_deactivate(work);
1785 	hlist_add_head(&worker->hentry, bwh);
1786 	worker->current_work = work;
1787 	worker->current_cwq = cwq;
1788 	work_color = get_work_color(work);
1789 
1790 	/* record the current cpu number in the work data and dequeue */
1791 	set_work_cpu(work, gcwq->cpu);
1792 	list_del_init(&work->entry);
1793 
1794 	/*
1795 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1796 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1797 	 */
1798 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1799 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1800 						struct work_struct, entry);
1801 
1802 		if (!list_empty(&gcwq->worklist) &&
1803 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1804 			wake_up_worker(gcwq);
1805 		else
1806 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1807 	}
1808 
1809 	/*
1810 	 * CPU intensive works don't participate in concurrency
1811 	 * management.  They're the scheduler's responsibility.
1812 	 */
1813 	if (unlikely(cpu_intensive))
1814 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1815 
1816 	spin_unlock_irq(&gcwq->lock);
1817 
1818 	work_clear_pending(work);
1819 	lock_map_acquire(&cwq->wq->lockdep_map);
1820 	lock_map_acquire(&lockdep_map);
1821 	trace_workqueue_execute_start(work);
1822 	f(work);
1823 	/*
1824 	 * While we must be careful to not use "work" after this, the trace
1825 	 * point will only record its address.
1826 	 */
1827 	trace_workqueue_execute_end(work);
1828 	lock_map_release(&lockdep_map);
1829 	lock_map_release(&cwq->wq->lockdep_map);
1830 
1831 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1832 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1833 		       "%s/0x%08x/%d\n",
1834 		       current->comm, preempt_count(), task_pid_nr(current));
1835 		printk(KERN_ERR "    last function: ");
1836 		print_symbol("%s\n", (unsigned long)f);
1837 		debug_show_held_locks(current);
1838 		dump_stack();
1839 	}
1840 
1841 	spin_lock_irq(&gcwq->lock);
1842 
1843 	/* clear cpu intensive status */
1844 	if (unlikely(cpu_intensive))
1845 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1846 
1847 	/* we're done with it, release */
1848 	hlist_del_init(&worker->hentry);
1849 	worker->current_work = NULL;
1850 	worker->current_cwq = NULL;
1851 	cwq_dec_nr_in_flight(cwq, work_color, false);
1852 }
1853 
1854 /**
1855  * process_scheduled_works - process scheduled works
1856  * @worker: self
1857  *
1858  * Process all scheduled works.  Please note that the scheduled list
1859  * may change while processing a work, so this function repeatedly
1860  * fetches a work from the top and executes it.
1861  *
1862  * CONTEXT:
1863  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1864  * multiple times.
1865  */
1866 static void process_scheduled_works(struct worker *worker)
1867 {
1868 	while (!list_empty(&worker->scheduled)) {
1869 		struct work_struct *work = list_first_entry(&worker->scheduled,
1870 						struct work_struct, entry);
1871 		process_one_work(worker, work);
1872 	}
1873 }
1874 
1875 /**
1876  * worker_thread - the worker thread function
1877  * @__worker: self
1878  *
1879  * The gcwq worker thread function.  There's a single dynamic pool of
1880  * these per each cpu.  These workers process all works regardless of
1881  * their specific target workqueue.  The only exception is works which
1882  * belong to workqueues with a rescuer which will be explained in
1883  * rescuer_thread().
1884  */
1885 static int worker_thread(void *__worker)
1886 {
1887 	struct worker *worker = __worker;
1888 	struct global_cwq *gcwq = worker->gcwq;
1889 
1890 	/* tell the scheduler that this is a workqueue worker */
1891 	worker->task->flags |= PF_WQ_WORKER;
1892 woke_up:
1893 	spin_lock_irq(&gcwq->lock);
1894 
1895 	/* DIE can be set only while we're idle, checking here is enough */
1896 	if (worker->flags & WORKER_DIE) {
1897 		spin_unlock_irq(&gcwq->lock);
1898 		worker->task->flags &= ~PF_WQ_WORKER;
1899 		return 0;
1900 	}
1901 
1902 	worker_leave_idle(worker);
1903 recheck:
1904 	/* no more worker necessary? */
1905 	if (!need_more_worker(gcwq))
1906 		goto sleep;
1907 
1908 	/* do we need to manage? */
1909 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1910 		goto recheck;
1911 
1912 	/*
1913 	 * ->scheduled list can only be filled while a worker is
1914 	 * preparing to process a work or actually processing it.
1915 	 * Make sure nobody diddled with it while I was sleeping.
1916 	 */
1917 	BUG_ON(!list_empty(&worker->scheduled));
1918 
1919 	/*
1920 	 * When control reaches this point, we're guaranteed to have
1921 	 * at least one idle worker or that someone else has already
1922 	 * assumed the manager role.
1923 	 */
1924 	worker_clr_flags(worker, WORKER_PREP);
1925 
1926 	do {
1927 		struct work_struct *work =
1928 			list_first_entry(&gcwq->worklist,
1929 					 struct work_struct, entry);
1930 
1931 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1932 			/* optimization path, not strictly necessary */
1933 			process_one_work(worker, work);
1934 			if (unlikely(!list_empty(&worker->scheduled)))
1935 				process_scheduled_works(worker);
1936 		} else {
1937 			move_linked_works(work, &worker->scheduled, NULL);
1938 			process_scheduled_works(worker);
1939 		}
1940 	} while (keep_working(gcwq));
1941 
1942 	worker_set_flags(worker, WORKER_PREP, false);
1943 sleep:
1944 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1945 		goto recheck;
1946 
1947 	/*
1948 	 * gcwq->lock is held and there's no work to process and no
1949 	 * need to manage, sleep.  Workers are woken up only while
1950 	 * holding gcwq->lock or from local cpu, so setting the
1951 	 * current state before releasing gcwq->lock is enough to
1952 	 * prevent losing any event.
1953 	 */
1954 	worker_enter_idle(worker);
1955 	__set_current_state(TASK_INTERRUPTIBLE);
1956 	spin_unlock_irq(&gcwq->lock);
1957 	schedule();
1958 	goto woke_up;
1959 }
1960 
1961 /**
1962  * rescuer_thread - the rescuer thread function
1963  * @__wq: the associated workqueue
1964  *
1965  * Workqueue rescuer thread function.  There's one rescuer for each
1966  * workqueue which has WQ_RESCUER set.
1967  *
1968  * Regular work processing on a gcwq may block trying to create a new
1969  * worker which uses GFP_KERNEL allocation which has slight chance of
1970  * developing into deadlock if some works currently on the same queue
1971  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
1972  * the problem rescuer solves.
1973  *
1974  * When such condition is possible, the gcwq summons rescuers of all
1975  * workqueues which have works queued on the gcwq and let them process
1976  * those works so that forward progress can be guaranteed.
1977  *
1978  * This should happen rarely.
1979  */
1980 static int rescuer_thread(void *__wq)
1981 {
1982 	struct workqueue_struct *wq = __wq;
1983 	struct worker *rescuer = wq->rescuer;
1984 	struct list_head *scheduled = &rescuer->scheduled;
1985 	bool is_unbound = wq->flags & WQ_UNBOUND;
1986 	unsigned int cpu;
1987 
1988 	set_user_nice(current, RESCUER_NICE_LEVEL);
1989 repeat:
1990 	set_current_state(TASK_INTERRUPTIBLE);
1991 
1992 	if (kthread_should_stop())
1993 		return 0;
1994 
1995 	/*
1996 	 * See whether any cpu is asking for help.  Unbounded
1997 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1998 	 */
1999 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2000 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2001 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2002 		struct global_cwq *gcwq = cwq->gcwq;
2003 		struct work_struct *work, *n;
2004 
2005 		__set_current_state(TASK_RUNNING);
2006 		mayday_clear_cpu(cpu, wq->mayday_mask);
2007 
2008 		/* migrate to the target cpu if possible */
2009 		rescuer->gcwq = gcwq;
2010 		worker_maybe_bind_and_lock(rescuer);
2011 
2012 		/*
2013 		 * Slurp in all works issued via this workqueue and
2014 		 * process'em.
2015 		 */
2016 		BUG_ON(!list_empty(&rescuer->scheduled));
2017 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2018 			if (get_work_cwq(work) == cwq)
2019 				move_linked_works(work, scheduled, &n);
2020 
2021 		process_scheduled_works(rescuer);
2022 		spin_unlock_irq(&gcwq->lock);
2023 	}
2024 
2025 	schedule();
2026 	goto repeat;
2027 }
2028 
2029 struct wq_barrier {
2030 	struct work_struct	work;
2031 	struct completion	done;
2032 };
2033 
2034 static void wq_barrier_func(struct work_struct *work)
2035 {
2036 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2037 	complete(&barr->done);
2038 }
2039 
2040 /**
2041  * insert_wq_barrier - insert a barrier work
2042  * @cwq: cwq to insert barrier into
2043  * @barr: wq_barrier to insert
2044  * @target: target work to attach @barr to
2045  * @worker: worker currently executing @target, NULL if @target is not executing
2046  *
2047  * @barr is linked to @target such that @barr is completed only after
2048  * @target finishes execution.  Please note that the ordering
2049  * guarantee is observed only with respect to @target and on the local
2050  * cpu.
2051  *
2052  * Currently, a queued barrier can't be canceled.  This is because
2053  * try_to_grab_pending() can't determine whether the work to be
2054  * grabbed is at the head of the queue and thus can't clear LINKED
2055  * flag of the previous work while there must be a valid next work
2056  * after a work with LINKED flag set.
2057  *
2058  * Note that when @worker is non-NULL, @target may be modified
2059  * underneath us, so we can't reliably determine cwq from @target.
2060  *
2061  * CONTEXT:
2062  * spin_lock_irq(gcwq->lock).
2063  */
2064 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2065 			      struct wq_barrier *barr,
2066 			      struct work_struct *target, struct worker *worker)
2067 {
2068 	struct list_head *head;
2069 	unsigned int linked = 0;
2070 
2071 	/*
2072 	 * debugobject calls are safe here even with gcwq->lock locked
2073 	 * as we know for sure that this will not trigger any of the
2074 	 * checks and call back into the fixup functions where we
2075 	 * might deadlock.
2076 	 */
2077 	INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
2078 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2079 	init_completion(&barr->done);
2080 
2081 	/*
2082 	 * If @target is currently being executed, schedule the
2083 	 * barrier to the worker; otherwise, put it after @target.
2084 	 */
2085 	if (worker)
2086 		head = worker->scheduled.next;
2087 	else {
2088 		unsigned long *bits = work_data_bits(target);
2089 
2090 		head = target->entry.next;
2091 		/* there can already be other linked works, inherit and set */
2092 		linked = *bits & WORK_STRUCT_LINKED;
2093 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2094 	}
2095 
2096 	debug_work_activate(&barr->work);
2097 	insert_work(cwq, &barr->work, head,
2098 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2099 }
2100 
2101 /**
2102  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2103  * @wq: workqueue being flushed
2104  * @flush_color: new flush color, < 0 for no-op
2105  * @work_color: new work color, < 0 for no-op
2106  *
2107  * Prepare cwqs for workqueue flushing.
2108  *
2109  * If @flush_color is non-negative, flush_color on all cwqs should be
2110  * -1.  If no cwq has in-flight commands at the specified color, all
2111  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2112  * has in flight commands, its cwq->flush_color is set to
2113  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2114  * wakeup logic is armed and %true is returned.
2115  *
2116  * The caller should have initialized @wq->first_flusher prior to
2117  * calling this function with non-negative @flush_color.  If
2118  * @flush_color is negative, no flush color update is done and %false
2119  * is returned.
2120  *
2121  * If @work_color is non-negative, all cwqs should have the same
2122  * work_color which is previous to @work_color and all will be
2123  * advanced to @work_color.
2124  *
2125  * CONTEXT:
2126  * mutex_lock(wq->flush_mutex).
2127  *
2128  * RETURNS:
2129  * %true if @flush_color >= 0 and there's something to flush.  %false
2130  * otherwise.
2131  */
2132 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2133 				      int flush_color, int work_color)
2134 {
2135 	bool wait = false;
2136 	unsigned int cpu;
2137 
2138 	if (flush_color >= 0) {
2139 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2140 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2141 	}
2142 
2143 	for_each_cwq_cpu(cpu, wq) {
2144 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2145 		struct global_cwq *gcwq = cwq->gcwq;
2146 
2147 		spin_lock_irq(&gcwq->lock);
2148 
2149 		if (flush_color >= 0) {
2150 			BUG_ON(cwq->flush_color != -1);
2151 
2152 			if (cwq->nr_in_flight[flush_color]) {
2153 				cwq->flush_color = flush_color;
2154 				atomic_inc(&wq->nr_cwqs_to_flush);
2155 				wait = true;
2156 			}
2157 		}
2158 
2159 		if (work_color >= 0) {
2160 			BUG_ON(work_color != work_next_color(cwq->work_color));
2161 			cwq->work_color = work_color;
2162 		}
2163 
2164 		spin_unlock_irq(&gcwq->lock);
2165 	}
2166 
2167 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2168 		complete(&wq->first_flusher->done);
2169 
2170 	return wait;
2171 }
2172 
2173 /**
2174  * flush_workqueue - ensure that any scheduled work has run to completion.
2175  * @wq: workqueue to flush
2176  *
2177  * Forces execution of the workqueue and blocks until its completion.
2178  * This is typically used in driver shutdown handlers.
2179  *
2180  * We sleep until all works which were queued on entry have been handled,
2181  * but we are not livelocked by new incoming ones.
2182  */
2183 void flush_workqueue(struct workqueue_struct *wq)
2184 {
2185 	struct wq_flusher this_flusher = {
2186 		.list = LIST_HEAD_INIT(this_flusher.list),
2187 		.flush_color = -1,
2188 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2189 	};
2190 	int next_color;
2191 
2192 	lock_map_acquire(&wq->lockdep_map);
2193 	lock_map_release(&wq->lockdep_map);
2194 
2195 	mutex_lock(&wq->flush_mutex);
2196 
2197 	/*
2198 	 * Start-to-wait phase
2199 	 */
2200 	next_color = work_next_color(wq->work_color);
2201 
2202 	if (next_color != wq->flush_color) {
2203 		/*
2204 		 * Color space is not full.  The current work_color
2205 		 * becomes our flush_color and work_color is advanced
2206 		 * by one.
2207 		 */
2208 		BUG_ON(!list_empty(&wq->flusher_overflow));
2209 		this_flusher.flush_color = wq->work_color;
2210 		wq->work_color = next_color;
2211 
2212 		if (!wq->first_flusher) {
2213 			/* no flush in progress, become the first flusher */
2214 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2215 
2216 			wq->first_flusher = &this_flusher;
2217 
2218 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2219 						       wq->work_color)) {
2220 				/* nothing to flush, done */
2221 				wq->flush_color = next_color;
2222 				wq->first_flusher = NULL;
2223 				goto out_unlock;
2224 			}
2225 		} else {
2226 			/* wait in queue */
2227 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2228 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2229 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2230 		}
2231 	} else {
2232 		/*
2233 		 * Oops, color space is full, wait on overflow queue.
2234 		 * The next flush completion will assign us
2235 		 * flush_color and transfer to flusher_queue.
2236 		 */
2237 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2238 	}
2239 
2240 	mutex_unlock(&wq->flush_mutex);
2241 
2242 	wait_for_completion(&this_flusher.done);
2243 
2244 	/*
2245 	 * Wake-up-and-cascade phase
2246 	 *
2247 	 * First flushers are responsible for cascading flushes and
2248 	 * handling overflow.  Non-first flushers can simply return.
2249 	 */
2250 	if (wq->first_flusher != &this_flusher)
2251 		return;
2252 
2253 	mutex_lock(&wq->flush_mutex);
2254 
2255 	/* we might have raced, check again with mutex held */
2256 	if (wq->first_flusher != &this_flusher)
2257 		goto out_unlock;
2258 
2259 	wq->first_flusher = NULL;
2260 
2261 	BUG_ON(!list_empty(&this_flusher.list));
2262 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2263 
2264 	while (true) {
2265 		struct wq_flusher *next, *tmp;
2266 
2267 		/* complete all the flushers sharing the current flush color */
2268 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2269 			if (next->flush_color != wq->flush_color)
2270 				break;
2271 			list_del_init(&next->list);
2272 			complete(&next->done);
2273 		}
2274 
2275 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2276 		       wq->flush_color != work_next_color(wq->work_color));
2277 
2278 		/* this flush_color is finished, advance by one */
2279 		wq->flush_color = work_next_color(wq->flush_color);
2280 
2281 		/* one color has been freed, handle overflow queue */
2282 		if (!list_empty(&wq->flusher_overflow)) {
2283 			/*
2284 			 * Assign the same color to all overflowed
2285 			 * flushers, advance work_color and append to
2286 			 * flusher_queue.  This is the start-to-wait
2287 			 * phase for these overflowed flushers.
2288 			 */
2289 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2290 				tmp->flush_color = wq->work_color;
2291 
2292 			wq->work_color = work_next_color(wq->work_color);
2293 
2294 			list_splice_tail_init(&wq->flusher_overflow,
2295 					      &wq->flusher_queue);
2296 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2297 		}
2298 
2299 		if (list_empty(&wq->flusher_queue)) {
2300 			BUG_ON(wq->flush_color != wq->work_color);
2301 			break;
2302 		}
2303 
2304 		/*
2305 		 * Need to flush more colors.  Make the next flusher
2306 		 * the new first flusher and arm cwqs.
2307 		 */
2308 		BUG_ON(wq->flush_color == wq->work_color);
2309 		BUG_ON(wq->flush_color != next->flush_color);
2310 
2311 		list_del_init(&next->list);
2312 		wq->first_flusher = next;
2313 
2314 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2315 			break;
2316 
2317 		/*
2318 		 * Meh... this color is already done, clear first
2319 		 * flusher and repeat cascading.
2320 		 */
2321 		wq->first_flusher = NULL;
2322 	}
2323 
2324 out_unlock:
2325 	mutex_unlock(&wq->flush_mutex);
2326 }
2327 EXPORT_SYMBOL_GPL(flush_workqueue);
2328 
2329 /**
2330  * flush_work - block until a work_struct's callback has terminated
2331  * @work: the work which is to be flushed
2332  *
2333  * Returns false if @work has already terminated.
2334  *
2335  * It is expected that, prior to calling flush_work(), the caller has
2336  * arranged for the work to not be requeued, otherwise it doesn't make
2337  * sense to use this function.
2338  */
2339 int flush_work(struct work_struct *work)
2340 {
2341 	struct worker *worker = NULL;
2342 	struct global_cwq *gcwq;
2343 	struct cpu_workqueue_struct *cwq;
2344 	struct wq_barrier barr;
2345 
2346 	might_sleep();
2347 	gcwq = get_work_gcwq(work);
2348 	if (!gcwq)
2349 		return 0;
2350 
2351 	spin_lock_irq(&gcwq->lock);
2352 	if (!list_empty(&work->entry)) {
2353 		/*
2354 		 * See the comment near try_to_grab_pending()->smp_rmb().
2355 		 * If it was re-queued to a different gcwq under us, we
2356 		 * are not going to wait.
2357 		 */
2358 		smp_rmb();
2359 		cwq = get_work_cwq(work);
2360 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2361 			goto already_gone;
2362 	} else {
2363 		worker = find_worker_executing_work(gcwq, work);
2364 		if (!worker)
2365 			goto already_gone;
2366 		cwq = worker->current_cwq;
2367 	}
2368 
2369 	insert_wq_barrier(cwq, &barr, work, worker);
2370 	spin_unlock_irq(&gcwq->lock);
2371 
2372 	lock_map_acquire(&cwq->wq->lockdep_map);
2373 	lock_map_release(&cwq->wq->lockdep_map);
2374 
2375 	wait_for_completion(&barr.done);
2376 	destroy_work_on_stack(&barr.work);
2377 	return 1;
2378 already_gone:
2379 	spin_unlock_irq(&gcwq->lock);
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL_GPL(flush_work);
2383 
2384 /*
2385  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2386  * so this work can't be re-armed in any way.
2387  */
2388 static int try_to_grab_pending(struct work_struct *work)
2389 {
2390 	struct global_cwq *gcwq;
2391 	int ret = -1;
2392 
2393 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2394 		return 0;
2395 
2396 	/*
2397 	 * The queueing is in progress, or it is already queued. Try to
2398 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2399 	 */
2400 	gcwq = get_work_gcwq(work);
2401 	if (!gcwq)
2402 		return ret;
2403 
2404 	spin_lock_irq(&gcwq->lock);
2405 	if (!list_empty(&work->entry)) {
2406 		/*
2407 		 * This work is queued, but perhaps we locked the wrong gcwq.
2408 		 * In that case we must see the new value after rmb(), see
2409 		 * insert_work()->wmb().
2410 		 */
2411 		smp_rmb();
2412 		if (gcwq == get_work_gcwq(work)) {
2413 			debug_work_deactivate(work);
2414 			list_del_init(&work->entry);
2415 			cwq_dec_nr_in_flight(get_work_cwq(work),
2416 				get_work_color(work),
2417 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2418 			ret = 1;
2419 		}
2420 	}
2421 	spin_unlock_irq(&gcwq->lock);
2422 
2423 	return ret;
2424 }
2425 
2426 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2427 {
2428 	struct wq_barrier barr;
2429 	struct worker *worker;
2430 
2431 	spin_lock_irq(&gcwq->lock);
2432 
2433 	worker = find_worker_executing_work(gcwq, work);
2434 	if (unlikely(worker))
2435 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2436 
2437 	spin_unlock_irq(&gcwq->lock);
2438 
2439 	if (unlikely(worker)) {
2440 		wait_for_completion(&barr.done);
2441 		destroy_work_on_stack(&barr.work);
2442 	}
2443 }
2444 
2445 static void wait_on_work(struct work_struct *work)
2446 {
2447 	int cpu;
2448 
2449 	might_sleep();
2450 
2451 	lock_map_acquire(&work->lockdep_map);
2452 	lock_map_release(&work->lockdep_map);
2453 
2454 	for_each_gcwq_cpu(cpu)
2455 		wait_on_cpu_work(get_gcwq(cpu), work);
2456 }
2457 
2458 static int __cancel_work_timer(struct work_struct *work,
2459 				struct timer_list* timer)
2460 {
2461 	int ret;
2462 
2463 	do {
2464 		ret = (timer && likely(del_timer(timer)));
2465 		if (!ret)
2466 			ret = try_to_grab_pending(work);
2467 		wait_on_work(work);
2468 	} while (unlikely(ret < 0));
2469 
2470 	clear_work_data(work);
2471 	return ret;
2472 }
2473 
2474 /**
2475  * cancel_work_sync - block until a work_struct's callback has terminated
2476  * @work: the work which is to be flushed
2477  *
2478  * Returns true if @work was pending.
2479  *
2480  * cancel_work_sync() will cancel the work if it is queued. If the work's
2481  * callback appears to be running, cancel_work_sync() will block until it
2482  * has completed.
2483  *
2484  * It is possible to use this function if the work re-queues itself. It can
2485  * cancel the work even if it migrates to another workqueue, however in that
2486  * case it only guarantees that work->func() has completed on the last queued
2487  * workqueue.
2488  *
2489  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
2490  * pending, otherwise it goes into a busy-wait loop until the timer expires.
2491  *
2492  * The caller must ensure that workqueue_struct on which this work was last
2493  * queued can't be destroyed before this function returns.
2494  */
2495 int cancel_work_sync(struct work_struct *work)
2496 {
2497 	return __cancel_work_timer(work, NULL);
2498 }
2499 EXPORT_SYMBOL_GPL(cancel_work_sync);
2500 
2501 /**
2502  * cancel_delayed_work_sync - reliably kill off a delayed work.
2503  * @dwork: the delayed work struct
2504  *
2505  * Returns true if @dwork was pending.
2506  *
2507  * It is possible to use this function if @dwork rearms itself via queue_work()
2508  * or queue_delayed_work(). See also the comment for cancel_work_sync().
2509  */
2510 int cancel_delayed_work_sync(struct delayed_work *dwork)
2511 {
2512 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2513 }
2514 EXPORT_SYMBOL(cancel_delayed_work_sync);
2515 
2516 /**
2517  * schedule_work - put work task in global workqueue
2518  * @work: job to be done
2519  *
2520  * Returns zero if @work was already on the kernel-global workqueue and
2521  * non-zero otherwise.
2522  *
2523  * This puts a job in the kernel-global workqueue if it was not already
2524  * queued and leaves it in the same position on the kernel-global
2525  * workqueue otherwise.
2526  */
2527 int schedule_work(struct work_struct *work)
2528 {
2529 	return queue_work(system_wq, work);
2530 }
2531 EXPORT_SYMBOL(schedule_work);
2532 
2533 /*
2534  * schedule_work_on - put work task on a specific cpu
2535  * @cpu: cpu to put the work task on
2536  * @work: job to be done
2537  *
2538  * This puts a job on a specific cpu
2539  */
2540 int schedule_work_on(int cpu, struct work_struct *work)
2541 {
2542 	return queue_work_on(cpu, system_wq, work);
2543 }
2544 EXPORT_SYMBOL(schedule_work_on);
2545 
2546 /**
2547  * schedule_delayed_work - put work task in global workqueue after delay
2548  * @dwork: job to be done
2549  * @delay: number of jiffies to wait or 0 for immediate execution
2550  *
2551  * After waiting for a given time this puts a job in the kernel-global
2552  * workqueue.
2553  */
2554 int schedule_delayed_work(struct delayed_work *dwork,
2555 					unsigned long delay)
2556 {
2557 	return queue_delayed_work(system_wq, dwork, delay);
2558 }
2559 EXPORT_SYMBOL(schedule_delayed_work);
2560 
2561 /**
2562  * flush_delayed_work - block until a dwork_struct's callback has terminated
2563  * @dwork: the delayed work which is to be flushed
2564  *
2565  * Any timeout is cancelled, and any pending work is run immediately.
2566  */
2567 void flush_delayed_work(struct delayed_work *dwork)
2568 {
2569 	if (del_timer_sync(&dwork->timer)) {
2570 		__queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
2571 			     &dwork->work);
2572 		put_cpu();
2573 	}
2574 	flush_work(&dwork->work);
2575 }
2576 EXPORT_SYMBOL(flush_delayed_work);
2577 
2578 /**
2579  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2580  * @cpu: cpu to use
2581  * @dwork: job to be done
2582  * @delay: number of jiffies to wait
2583  *
2584  * After waiting for a given time this puts a job in the kernel-global
2585  * workqueue on the specified CPU.
2586  */
2587 int schedule_delayed_work_on(int cpu,
2588 			struct delayed_work *dwork, unsigned long delay)
2589 {
2590 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2591 }
2592 EXPORT_SYMBOL(schedule_delayed_work_on);
2593 
2594 /**
2595  * schedule_on_each_cpu - call a function on each online CPU from keventd
2596  * @func: the function to call
2597  *
2598  * Returns zero on success.
2599  * Returns -ve errno on failure.
2600  *
2601  * schedule_on_each_cpu() is very slow.
2602  */
2603 int schedule_on_each_cpu(work_func_t func)
2604 {
2605 	int cpu;
2606 	struct work_struct __percpu *works;
2607 
2608 	works = alloc_percpu(struct work_struct);
2609 	if (!works)
2610 		return -ENOMEM;
2611 
2612 	get_online_cpus();
2613 
2614 	for_each_online_cpu(cpu) {
2615 		struct work_struct *work = per_cpu_ptr(works, cpu);
2616 
2617 		INIT_WORK(work, func);
2618 		schedule_work_on(cpu, work);
2619 	}
2620 
2621 	for_each_online_cpu(cpu)
2622 		flush_work(per_cpu_ptr(works, cpu));
2623 
2624 	put_online_cpus();
2625 	free_percpu(works);
2626 	return 0;
2627 }
2628 
2629 /**
2630  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2631  *
2632  * Forces execution of the kernel-global workqueue and blocks until its
2633  * completion.
2634  *
2635  * Think twice before calling this function!  It's very easy to get into
2636  * trouble if you don't take great care.  Either of the following situations
2637  * will lead to deadlock:
2638  *
2639  *	One of the work items currently on the workqueue needs to acquire
2640  *	a lock held by your code or its caller.
2641  *
2642  *	Your code is running in the context of a work routine.
2643  *
2644  * They will be detected by lockdep when they occur, but the first might not
2645  * occur very often.  It depends on what work items are on the workqueue and
2646  * what locks they need, which you have no control over.
2647  *
2648  * In most situations flushing the entire workqueue is overkill; you merely
2649  * need to know that a particular work item isn't queued and isn't running.
2650  * In such cases you should use cancel_delayed_work_sync() or
2651  * cancel_work_sync() instead.
2652  */
2653 void flush_scheduled_work(void)
2654 {
2655 	flush_workqueue(system_wq);
2656 }
2657 EXPORT_SYMBOL(flush_scheduled_work);
2658 
2659 /**
2660  * execute_in_process_context - reliably execute the routine with user context
2661  * @fn:		the function to execute
2662  * @ew:		guaranteed storage for the execute work structure (must
2663  *		be available when the work executes)
2664  *
2665  * Executes the function immediately if process context is available,
2666  * otherwise schedules the function for delayed execution.
2667  *
2668  * Returns:	0 - function was executed
2669  *		1 - function was scheduled for execution
2670  */
2671 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2672 {
2673 	if (!in_interrupt()) {
2674 		fn(&ew->work);
2675 		return 0;
2676 	}
2677 
2678 	INIT_WORK(&ew->work, fn);
2679 	schedule_work(&ew->work);
2680 
2681 	return 1;
2682 }
2683 EXPORT_SYMBOL_GPL(execute_in_process_context);
2684 
2685 int keventd_up(void)
2686 {
2687 	return system_wq != NULL;
2688 }
2689 
2690 static int alloc_cwqs(struct workqueue_struct *wq)
2691 {
2692 	/*
2693 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2694 	 * Make sure that the alignment isn't lower than that of
2695 	 * unsigned long long.
2696 	 */
2697 	const size_t size = sizeof(struct cpu_workqueue_struct);
2698 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2699 				   __alignof__(unsigned long long));
2700 #ifdef CONFIG_SMP
2701 	bool percpu = !(wq->flags & WQ_UNBOUND);
2702 #else
2703 	bool percpu = false;
2704 #endif
2705 
2706 	if (percpu)
2707 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2708 	else {
2709 		void *ptr;
2710 
2711 		/*
2712 		 * Allocate enough room to align cwq and put an extra
2713 		 * pointer at the end pointing back to the originally
2714 		 * allocated pointer which will be used for free.
2715 		 */
2716 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2717 		if (ptr) {
2718 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2719 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2720 		}
2721 	}
2722 
2723 	/* just in case, make sure it's actually aligned */
2724 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2725 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2726 }
2727 
2728 static void free_cwqs(struct workqueue_struct *wq)
2729 {
2730 #ifdef CONFIG_SMP
2731 	bool percpu = !(wq->flags & WQ_UNBOUND);
2732 #else
2733 	bool percpu = false;
2734 #endif
2735 
2736 	if (percpu)
2737 		free_percpu(wq->cpu_wq.pcpu);
2738 	else if (wq->cpu_wq.single) {
2739 		/* the pointer to free is stored right after the cwq */
2740 		kfree(*(void **)(wq->cpu_wq.single + 1));
2741 	}
2742 }
2743 
2744 static int wq_clamp_max_active(int max_active, unsigned int flags,
2745 			       const char *name)
2746 {
2747 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2748 
2749 	if (max_active < 1 || max_active > lim)
2750 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2751 		       "is out of range, clamping between %d and %d\n",
2752 		       max_active, name, 1, lim);
2753 
2754 	return clamp_val(max_active, 1, lim);
2755 }
2756 
2757 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2758 					       unsigned int flags,
2759 					       int max_active,
2760 					       struct lock_class_key *key,
2761 					       const char *lock_name)
2762 {
2763 	struct workqueue_struct *wq;
2764 	unsigned int cpu;
2765 
2766 	/*
2767 	 * Unbound workqueues aren't concurrency managed and should be
2768 	 * dispatched to workers immediately.
2769 	 */
2770 	if (flags & WQ_UNBOUND)
2771 		flags |= WQ_HIGHPRI;
2772 
2773 	max_active = max_active ?: WQ_DFL_ACTIVE;
2774 	max_active = wq_clamp_max_active(max_active, flags, name);
2775 
2776 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2777 	if (!wq)
2778 		goto err;
2779 
2780 	wq->flags = flags;
2781 	wq->saved_max_active = max_active;
2782 	mutex_init(&wq->flush_mutex);
2783 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2784 	INIT_LIST_HEAD(&wq->flusher_queue);
2785 	INIT_LIST_HEAD(&wq->flusher_overflow);
2786 
2787 	wq->name = name;
2788 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2789 	INIT_LIST_HEAD(&wq->list);
2790 
2791 	if (alloc_cwqs(wq) < 0)
2792 		goto err;
2793 
2794 	for_each_cwq_cpu(cpu, wq) {
2795 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2796 		struct global_cwq *gcwq = get_gcwq(cpu);
2797 
2798 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2799 		cwq->gcwq = gcwq;
2800 		cwq->wq = wq;
2801 		cwq->flush_color = -1;
2802 		cwq->max_active = max_active;
2803 		INIT_LIST_HEAD(&cwq->delayed_works);
2804 	}
2805 
2806 	if (flags & WQ_RESCUER) {
2807 		struct worker *rescuer;
2808 
2809 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2810 			goto err;
2811 
2812 		wq->rescuer = rescuer = alloc_worker();
2813 		if (!rescuer)
2814 			goto err;
2815 
2816 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2817 		if (IS_ERR(rescuer->task))
2818 			goto err;
2819 
2820 		rescuer->task->flags |= PF_THREAD_BOUND;
2821 		wake_up_process(rescuer->task);
2822 	}
2823 
2824 	/*
2825 	 * workqueue_lock protects global freeze state and workqueues
2826 	 * list.  Grab it, set max_active accordingly and add the new
2827 	 * workqueue to workqueues list.
2828 	 */
2829 	spin_lock(&workqueue_lock);
2830 
2831 	if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2832 		for_each_cwq_cpu(cpu, wq)
2833 			get_cwq(cpu, wq)->max_active = 0;
2834 
2835 	list_add(&wq->list, &workqueues);
2836 
2837 	spin_unlock(&workqueue_lock);
2838 
2839 	return wq;
2840 err:
2841 	if (wq) {
2842 		free_cwqs(wq);
2843 		free_mayday_mask(wq->mayday_mask);
2844 		kfree(wq->rescuer);
2845 		kfree(wq);
2846 	}
2847 	return NULL;
2848 }
2849 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2850 
2851 /**
2852  * destroy_workqueue - safely terminate a workqueue
2853  * @wq: target workqueue
2854  *
2855  * Safely destroy a workqueue. All work currently pending will be done first.
2856  */
2857 void destroy_workqueue(struct workqueue_struct *wq)
2858 {
2859 	unsigned int cpu;
2860 
2861 	wq->flags |= WQ_DYING;
2862 	flush_workqueue(wq);
2863 
2864 	/*
2865 	 * wq list is used to freeze wq, remove from list after
2866 	 * flushing is complete in case freeze races us.
2867 	 */
2868 	spin_lock(&workqueue_lock);
2869 	list_del(&wq->list);
2870 	spin_unlock(&workqueue_lock);
2871 
2872 	/* sanity check */
2873 	for_each_cwq_cpu(cpu, wq) {
2874 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2875 		int i;
2876 
2877 		for (i = 0; i < WORK_NR_COLORS; i++)
2878 			BUG_ON(cwq->nr_in_flight[i]);
2879 		BUG_ON(cwq->nr_active);
2880 		BUG_ON(!list_empty(&cwq->delayed_works));
2881 	}
2882 
2883 	if (wq->flags & WQ_RESCUER) {
2884 		kthread_stop(wq->rescuer->task);
2885 		free_mayday_mask(wq->mayday_mask);
2886 		kfree(wq->rescuer);
2887 	}
2888 
2889 	free_cwqs(wq);
2890 	kfree(wq);
2891 }
2892 EXPORT_SYMBOL_GPL(destroy_workqueue);
2893 
2894 /**
2895  * workqueue_set_max_active - adjust max_active of a workqueue
2896  * @wq: target workqueue
2897  * @max_active: new max_active value.
2898  *
2899  * Set max_active of @wq to @max_active.
2900  *
2901  * CONTEXT:
2902  * Don't call from IRQ context.
2903  */
2904 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2905 {
2906 	unsigned int cpu;
2907 
2908 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2909 
2910 	spin_lock(&workqueue_lock);
2911 
2912 	wq->saved_max_active = max_active;
2913 
2914 	for_each_cwq_cpu(cpu, wq) {
2915 		struct global_cwq *gcwq = get_gcwq(cpu);
2916 
2917 		spin_lock_irq(&gcwq->lock);
2918 
2919 		if (!(wq->flags & WQ_FREEZEABLE) ||
2920 		    !(gcwq->flags & GCWQ_FREEZING))
2921 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
2922 
2923 		spin_unlock_irq(&gcwq->lock);
2924 	}
2925 
2926 	spin_unlock(&workqueue_lock);
2927 }
2928 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
2929 
2930 /**
2931  * workqueue_congested - test whether a workqueue is congested
2932  * @cpu: CPU in question
2933  * @wq: target workqueue
2934  *
2935  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
2936  * no synchronization around this function and the test result is
2937  * unreliable and only useful as advisory hints or for debugging.
2938  *
2939  * RETURNS:
2940  * %true if congested, %false otherwise.
2941  */
2942 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
2943 {
2944 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2945 
2946 	return !list_empty(&cwq->delayed_works);
2947 }
2948 EXPORT_SYMBOL_GPL(workqueue_congested);
2949 
2950 /**
2951  * work_cpu - return the last known associated cpu for @work
2952  * @work: the work of interest
2953  *
2954  * RETURNS:
2955  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
2956  */
2957 unsigned int work_cpu(struct work_struct *work)
2958 {
2959 	struct global_cwq *gcwq = get_work_gcwq(work);
2960 
2961 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
2962 }
2963 EXPORT_SYMBOL_GPL(work_cpu);
2964 
2965 /**
2966  * work_busy - test whether a work is currently pending or running
2967  * @work: the work to be tested
2968  *
2969  * Test whether @work is currently pending or running.  There is no
2970  * synchronization around this function and the test result is
2971  * unreliable and only useful as advisory hints or for debugging.
2972  * Especially for reentrant wqs, the pending state might hide the
2973  * running state.
2974  *
2975  * RETURNS:
2976  * OR'd bitmask of WORK_BUSY_* bits.
2977  */
2978 unsigned int work_busy(struct work_struct *work)
2979 {
2980 	struct global_cwq *gcwq = get_work_gcwq(work);
2981 	unsigned long flags;
2982 	unsigned int ret = 0;
2983 
2984 	if (!gcwq)
2985 		return false;
2986 
2987 	spin_lock_irqsave(&gcwq->lock, flags);
2988 
2989 	if (work_pending(work))
2990 		ret |= WORK_BUSY_PENDING;
2991 	if (find_worker_executing_work(gcwq, work))
2992 		ret |= WORK_BUSY_RUNNING;
2993 
2994 	spin_unlock_irqrestore(&gcwq->lock, flags);
2995 
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(work_busy);
2999 
3000 /*
3001  * CPU hotplug.
3002  *
3003  * There are two challenges in supporting CPU hotplug.  Firstly, there
3004  * are a lot of assumptions on strong associations among work, cwq and
3005  * gcwq which make migrating pending and scheduled works very
3006  * difficult to implement without impacting hot paths.  Secondly,
3007  * gcwqs serve mix of short, long and very long running works making
3008  * blocked draining impractical.
3009  *
3010  * This is solved by allowing a gcwq to be detached from CPU, running
3011  * it with unbound (rogue) workers and allowing it to be reattached
3012  * later if the cpu comes back online.  A separate thread is created
3013  * to govern a gcwq in such state and is called the trustee of the
3014  * gcwq.
3015  *
3016  * Trustee states and their descriptions.
3017  *
3018  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3019  *		new trustee is started with this state.
3020  *
3021  * IN_CHARGE	Once started, trustee will enter this state after
3022  *		assuming the manager role and making all existing
3023  *		workers rogue.  DOWN_PREPARE waits for trustee to
3024  *		enter this state.  After reaching IN_CHARGE, trustee
3025  *		tries to execute the pending worklist until it's empty
3026  *		and the state is set to BUTCHER, or the state is set
3027  *		to RELEASE.
3028  *
3029  * BUTCHER	Command state which is set by the cpu callback after
3030  *		the cpu has went down.  Once this state is set trustee
3031  *		knows that there will be no new works on the worklist
3032  *		and once the worklist is empty it can proceed to
3033  *		killing idle workers.
3034  *
3035  * RELEASE	Command state which is set by the cpu callback if the
3036  *		cpu down has been canceled or it has come online
3037  *		again.  After recognizing this state, trustee stops
3038  *		trying to drain or butcher and clears ROGUE, rebinds
3039  *		all remaining workers back to the cpu and releases
3040  *		manager role.
3041  *
3042  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3043  *		is complete.
3044  *
3045  *          trustee                 CPU                draining
3046  *         took over                down               complete
3047  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3048  *                        |                     |                  ^
3049  *                        | CPU is back online  v   return workers |
3050  *                         ----------------> RELEASE --------------
3051  */
3052 
3053 /**
3054  * trustee_wait_event_timeout - timed event wait for trustee
3055  * @cond: condition to wait for
3056  * @timeout: timeout in jiffies
3057  *
3058  * wait_event_timeout() for trustee to use.  Handles locking and
3059  * checks for RELEASE request.
3060  *
3061  * CONTEXT:
3062  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3063  * multiple times.  To be used by trustee.
3064  *
3065  * RETURNS:
3066  * Positive indicating left time if @cond is satisfied, 0 if timed
3067  * out, -1 if canceled.
3068  */
3069 #define trustee_wait_event_timeout(cond, timeout) ({			\
3070 	long __ret = (timeout);						\
3071 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3072 	       __ret) {							\
3073 		spin_unlock_irq(&gcwq->lock);				\
3074 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3075 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3076 			__ret);						\
3077 		spin_lock_irq(&gcwq->lock);				\
3078 	}								\
3079 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3080 })
3081 
3082 /**
3083  * trustee_wait_event - event wait for trustee
3084  * @cond: condition to wait for
3085  *
3086  * wait_event() for trustee to use.  Automatically handles locking and
3087  * checks for CANCEL request.
3088  *
3089  * CONTEXT:
3090  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3091  * multiple times.  To be used by trustee.
3092  *
3093  * RETURNS:
3094  * 0 if @cond is satisfied, -1 if canceled.
3095  */
3096 #define trustee_wait_event(cond) ({					\
3097 	long __ret1;							\
3098 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3099 	__ret1 < 0 ? -1 : 0;						\
3100 })
3101 
3102 static int __cpuinit trustee_thread(void *__gcwq)
3103 {
3104 	struct global_cwq *gcwq = __gcwq;
3105 	struct worker *worker;
3106 	struct work_struct *work;
3107 	struct hlist_node *pos;
3108 	long rc;
3109 	int i;
3110 
3111 	BUG_ON(gcwq->cpu != smp_processor_id());
3112 
3113 	spin_lock_irq(&gcwq->lock);
3114 	/*
3115 	 * Claim the manager position and make all workers rogue.
3116 	 * Trustee must be bound to the target cpu and can't be
3117 	 * cancelled.
3118 	 */
3119 	BUG_ON(gcwq->cpu != smp_processor_id());
3120 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3121 	BUG_ON(rc < 0);
3122 
3123 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3124 
3125 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3126 		worker->flags |= WORKER_ROGUE;
3127 
3128 	for_each_busy_worker(worker, i, pos, gcwq)
3129 		worker->flags |= WORKER_ROGUE;
3130 
3131 	/*
3132 	 * Call schedule() so that we cross rq->lock and thus can
3133 	 * guarantee sched callbacks see the rogue flag.  This is
3134 	 * necessary as scheduler callbacks may be invoked from other
3135 	 * cpus.
3136 	 */
3137 	spin_unlock_irq(&gcwq->lock);
3138 	schedule();
3139 	spin_lock_irq(&gcwq->lock);
3140 
3141 	/*
3142 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3143 	 * this, nr_running stays zero and need_more_worker() and
3144 	 * keep_working() are always true as long as the worklist is
3145 	 * not empty.
3146 	 */
3147 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3148 
3149 	spin_unlock_irq(&gcwq->lock);
3150 	del_timer_sync(&gcwq->idle_timer);
3151 	spin_lock_irq(&gcwq->lock);
3152 
3153 	/*
3154 	 * We're now in charge.  Notify and proceed to drain.  We need
3155 	 * to keep the gcwq running during the whole CPU down
3156 	 * procedure as other cpu hotunplug callbacks may need to
3157 	 * flush currently running tasks.
3158 	 */
3159 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3160 	wake_up_all(&gcwq->trustee_wait);
3161 
3162 	/*
3163 	 * The original cpu is in the process of dying and may go away
3164 	 * anytime now.  When that happens, we and all workers would
3165 	 * be migrated to other cpus.  Try draining any left work.  We
3166 	 * want to get it over with ASAP - spam rescuers, wake up as
3167 	 * many idlers as necessary and create new ones till the
3168 	 * worklist is empty.  Note that if the gcwq is frozen, there
3169 	 * may be frozen works in freezeable cwqs.  Don't declare
3170 	 * completion while frozen.
3171 	 */
3172 	while (gcwq->nr_workers != gcwq->nr_idle ||
3173 	       gcwq->flags & GCWQ_FREEZING ||
3174 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3175 		int nr_works = 0;
3176 
3177 		list_for_each_entry(work, &gcwq->worklist, entry) {
3178 			send_mayday(work);
3179 			nr_works++;
3180 		}
3181 
3182 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3183 			if (!nr_works--)
3184 				break;
3185 			wake_up_process(worker->task);
3186 		}
3187 
3188 		if (need_to_create_worker(gcwq)) {
3189 			spin_unlock_irq(&gcwq->lock);
3190 			worker = create_worker(gcwq, false);
3191 			spin_lock_irq(&gcwq->lock);
3192 			if (worker) {
3193 				worker->flags |= WORKER_ROGUE;
3194 				start_worker(worker);
3195 			}
3196 		}
3197 
3198 		/* give a breather */
3199 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3200 			break;
3201 	}
3202 
3203 	/*
3204 	 * Either all works have been scheduled and cpu is down, or
3205 	 * cpu down has already been canceled.  Wait for and butcher
3206 	 * all workers till we're canceled.
3207 	 */
3208 	do {
3209 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3210 		while (!list_empty(&gcwq->idle_list))
3211 			destroy_worker(list_first_entry(&gcwq->idle_list,
3212 							struct worker, entry));
3213 	} while (gcwq->nr_workers && rc >= 0);
3214 
3215 	/*
3216 	 * At this point, either draining has completed and no worker
3217 	 * is left, or cpu down has been canceled or the cpu is being
3218 	 * brought back up.  There shouldn't be any idle one left.
3219 	 * Tell the remaining busy ones to rebind once it finishes the
3220 	 * currently scheduled works by scheduling the rebind_work.
3221 	 */
3222 	WARN_ON(!list_empty(&gcwq->idle_list));
3223 
3224 	for_each_busy_worker(worker, i, pos, gcwq) {
3225 		struct work_struct *rebind_work = &worker->rebind_work;
3226 
3227 		/*
3228 		 * Rebind_work may race with future cpu hotplug
3229 		 * operations.  Use a separate flag to mark that
3230 		 * rebinding is scheduled.
3231 		 */
3232 		worker->flags |= WORKER_REBIND;
3233 		worker->flags &= ~WORKER_ROGUE;
3234 
3235 		/* queue rebind_work, wq doesn't matter, use the default one */
3236 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3237 				     work_data_bits(rebind_work)))
3238 			continue;
3239 
3240 		debug_work_activate(rebind_work);
3241 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3242 			    worker->scheduled.next,
3243 			    work_color_to_flags(WORK_NO_COLOR));
3244 	}
3245 
3246 	/* relinquish manager role */
3247 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3248 
3249 	/* notify completion */
3250 	gcwq->trustee = NULL;
3251 	gcwq->trustee_state = TRUSTEE_DONE;
3252 	wake_up_all(&gcwq->trustee_wait);
3253 	spin_unlock_irq(&gcwq->lock);
3254 	return 0;
3255 }
3256 
3257 /**
3258  * wait_trustee_state - wait for trustee to enter the specified state
3259  * @gcwq: gcwq the trustee of interest belongs to
3260  * @state: target state to wait for
3261  *
3262  * Wait for the trustee to reach @state.  DONE is already matched.
3263  *
3264  * CONTEXT:
3265  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3266  * multiple times.  To be used by cpu_callback.
3267  */
3268 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3269 __releases(&gcwq->lock)
3270 __acquires(&gcwq->lock)
3271 {
3272 	if (!(gcwq->trustee_state == state ||
3273 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3274 		spin_unlock_irq(&gcwq->lock);
3275 		__wait_event(gcwq->trustee_wait,
3276 			     gcwq->trustee_state == state ||
3277 			     gcwq->trustee_state == TRUSTEE_DONE);
3278 		spin_lock_irq(&gcwq->lock);
3279 	}
3280 }
3281 
3282 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3283 						unsigned long action,
3284 						void *hcpu)
3285 {
3286 	unsigned int cpu = (unsigned long)hcpu;
3287 	struct global_cwq *gcwq = get_gcwq(cpu);
3288 	struct task_struct *new_trustee = NULL;
3289 	struct worker *uninitialized_var(new_worker);
3290 	unsigned long flags;
3291 
3292 	action &= ~CPU_TASKS_FROZEN;
3293 
3294 	switch (action) {
3295 	case CPU_DOWN_PREPARE:
3296 		new_trustee = kthread_create(trustee_thread, gcwq,
3297 					     "workqueue_trustee/%d\n", cpu);
3298 		if (IS_ERR(new_trustee))
3299 			return notifier_from_errno(PTR_ERR(new_trustee));
3300 		kthread_bind(new_trustee, cpu);
3301 		/* fall through */
3302 	case CPU_UP_PREPARE:
3303 		BUG_ON(gcwq->first_idle);
3304 		new_worker = create_worker(gcwq, false);
3305 		if (!new_worker) {
3306 			if (new_trustee)
3307 				kthread_stop(new_trustee);
3308 			return NOTIFY_BAD;
3309 		}
3310 	}
3311 
3312 	/* some are called w/ irq disabled, don't disturb irq status */
3313 	spin_lock_irqsave(&gcwq->lock, flags);
3314 
3315 	switch (action) {
3316 	case CPU_DOWN_PREPARE:
3317 		/* initialize trustee and tell it to acquire the gcwq */
3318 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3319 		gcwq->trustee = new_trustee;
3320 		gcwq->trustee_state = TRUSTEE_START;
3321 		wake_up_process(gcwq->trustee);
3322 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3323 		/* fall through */
3324 	case CPU_UP_PREPARE:
3325 		BUG_ON(gcwq->first_idle);
3326 		gcwq->first_idle = new_worker;
3327 		break;
3328 
3329 	case CPU_DYING:
3330 		/*
3331 		 * Before this, the trustee and all workers except for
3332 		 * the ones which are still executing works from
3333 		 * before the last CPU down must be on the cpu.  After
3334 		 * this, they'll all be diasporas.
3335 		 */
3336 		gcwq->flags |= GCWQ_DISASSOCIATED;
3337 		break;
3338 
3339 	case CPU_POST_DEAD:
3340 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3341 		/* fall through */
3342 	case CPU_UP_CANCELED:
3343 		destroy_worker(gcwq->first_idle);
3344 		gcwq->first_idle = NULL;
3345 		break;
3346 
3347 	case CPU_DOWN_FAILED:
3348 	case CPU_ONLINE:
3349 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3350 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3351 			gcwq->trustee_state = TRUSTEE_RELEASE;
3352 			wake_up_process(gcwq->trustee);
3353 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3354 		}
3355 
3356 		/*
3357 		 * Trustee is done and there might be no worker left.
3358 		 * Put the first_idle in and request a real manager to
3359 		 * take a look.
3360 		 */
3361 		spin_unlock_irq(&gcwq->lock);
3362 		kthread_bind(gcwq->first_idle->task, cpu);
3363 		spin_lock_irq(&gcwq->lock);
3364 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3365 		start_worker(gcwq->first_idle);
3366 		gcwq->first_idle = NULL;
3367 		break;
3368 	}
3369 
3370 	spin_unlock_irqrestore(&gcwq->lock, flags);
3371 
3372 	return notifier_from_errno(0);
3373 }
3374 
3375 #ifdef CONFIG_SMP
3376 
3377 struct work_for_cpu {
3378 	struct completion completion;
3379 	long (*fn)(void *);
3380 	void *arg;
3381 	long ret;
3382 };
3383 
3384 static int do_work_for_cpu(void *_wfc)
3385 {
3386 	struct work_for_cpu *wfc = _wfc;
3387 	wfc->ret = wfc->fn(wfc->arg);
3388 	complete(&wfc->completion);
3389 	return 0;
3390 }
3391 
3392 /**
3393  * work_on_cpu - run a function in user context on a particular cpu
3394  * @cpu: the cpu to run on
3395  * @fn: the function to run
3396  * @arg: the function arg
3397  *
3398  * This will return the value @fn returns.
3399  * It is up to the caller to ensure that the cpu doesn't go offline.
3400  * The caller must not hold any locks which would prevent @fn from completing.
3401  */
3402 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3403 {
3404 	struct task_struct *sub_thread;
3405 	struct work_for_cpu wfc = {
3406 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3407 		.fn = fn,
3408 		.arg = arg,
3409 	};
3410 
3411 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3412 	if (IS_ERR(sub_thread))
3413 		return PTR_ERR(sub_thread);
3414 	kthread_bind(sub_thread, cpu);
3415 	wake_up_process(sub_thread);
3416 	wait_for_completion(&wfc.completion);
3417 	return wfc.ret;
3418 }
3419 EXPORT_SYMBOL_GPL(work_on_cpu);
3420 #endif /* CONFIG_SMP */
3421 
3422 #ifdef CONFIG_FREEZER
3423 
3424 /**
3425  * freeze_workqueues_begin - begin freezing workqueues
3426  *
3427  * Start freezing workqueues.  After this function returns, all
3428  * freezeable workqueues will queue new works to their frozen_works
3429  * list instead of gcwq->worklist.
3430  *
3431  * CONTEXT:
3432  * Grabs and releases workqueue_lock and gcwq->lock's.
3433  */
3434 void freeze_workqueues_begin(void)
3435 {
3436 	unsigned int cpu;
3437 
3438 	spin_lock(&workqueue_lock);
3439 
3440 	BUG_ON(workqueue_freezing);
3441 	workqueue_freezing = true;
3442 
3443 	for_each_gcwq_cpu(cpu) {
3444 		struct global_cwq *gcwq = get_gcwq(cpu);
3445 		struct workqueue_struct *wq;
3446 
3447 		spin_lock_irq(&gcwq->lock);
3448 
3449 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3450 		gcwq->flags |= GCWQ_FREEZING;
3451 
3452 		list_for_each_entry(wq, &workqueues, list) {
3453 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3454 
3455 			if (cwq && wq->flags & WQ_FREEZEABLE)
3456 				cwq->max_active = 0;
3457 		}
3458 
3459 		spin_unlock_irq(&gcwq->lock);
3460 	}
3461 
3462 	spin_unlock(&workqueue_lock);
3463 }
3464 
3465 /**
3466  * freeze_workqueues_busy - are freezeable workqueues still busy?
3467  *
3468  * Check whether freezing is complete.  This function must be called
3469  * between freeze_workqueues_begin() and thaw_workqueues().
3470  *
3471  * CONTEXT:
3472  * Grabs and releases workqueue_lock.
3473  *
3474  * RETURNS:
3475  * %true if some freezeable workqueues are still busy.  %false if
3476  * freezing is complete.
3477  */
3478 bool freeze_workqueues_busy(void)
3479 {
3480 	unsigned int cpu;
3481 	bool busy = false;
3482 
3483 	spin_lock(&workqueue_lock);
3484 
3485 	BUG_ON(!workqueue_freezing);
3486 
3487 	for_each_gcwq_cpu(cpu) {
3488 		struct workqueue_struct *wq;
3489 		/*
3490 		 * nr_active is monotonically decreasing.  It's safe
3491 		 * to peek without lock.
3492 		 */
3493 		list_for_each_entry(wq, &workqueues, list) {
3494 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3495 
3496 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3497 				continue;
3498 
3499 			BUG_ON(cwq->nr_active < 0);
3500 			if (cwq->nr_active) {
3501 				busy = true;
3502 				goto out_unlock;
3503 			}
3504 		}
3505 	}
3506 out_unlock:
3507 	spin_unlock(&workqueue_lock);
3508 	return busy;
3509 }
3510 
3511 /**
3512  * thaw_workqueues - thaw workqueues
3513  *
3514  * Thaw workqueues.  Normal queueing is restored and all collected
3515  * frozen works are transferred to their respective gcwq worklists.
3516  *
3517  * CONTEXT:
3518  * Grabs and releases workqueue_lock and gcwq->lock's.
3519  */
3520 void thaw_workqueues(void)
3521 {
3522 	unsigned int cpu;
3523 
3524 	spin_lock(&workqueue_lock);
3525 
3526 	if (!workqueue_freezing)
3527 		goto out_unlock;
3528 
3529 	for_each_gcwq_cpu(cpu) {
3530 		struct global_cwq *gcwq = get_gcwq(cpu);
3531 		struct workqueue_struct *wq;
3532 
3533 		spin_lock_irq(&gcwq->lock);
3534 
3535 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3536 		gcwq->flags &= ~GCWQ_FREEZING;
3537 
3538 		list_for_each_entry(wq, &workqueues, list) {
3539 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3540 
3541 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3542 				continue;
3543 
3544 			/* restore max_active and repopulate worklist */
3545 			cwq->max_active = wq->saved_max_active;
3546 
3547 			while (!list_empty(&cwq->delayed_works) &&
3548 			       cwq->nr_active < cwq->max_active)
3549 				cwq_activate_first_delayed(cwq);
3550 		}
3551 
3552 		wake_up_worker(gcwq);
3553 
3554 		spin_unlock_irq(&gcwq->lock);
3555 	}
3556 
3557 	workqueue_freezing = false;
3558 out_unlock:
3559 	spin_unlock(&workqueue_lock);
3560 }
3561 #endif /* CONFIG_FREEZER */
3562 
3563 static int __init init_workqueues(void)
3564 {
3565 	unsigned int cpu;
3566 	int i;
3567 
3568 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3569 
3570 	/* initialize gcwqs */
3571 	for_each_gcwq_cpu(cpu) {
3572 		struct global_cwq *gcwq = get_gcwq(cpu);
3573 
3574 		spin_lock_init(&gcwq->lock);
3575 		INIT_LIST_HEAD(&gcwq->worklist);
3576 		gcwq->cpu = cpu;
3577 		gcwq->flags |= GCWQ_DISASSOCIATED;
3578 
3579 		INIT_LIST_HEAD(&gcwq->idle_list);
3580 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3581 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3582 
3583 		init_timer_deferrable(&gcwq->idle_timer);
3584 		gcwq->idle_timer.function = idle_worker_timeout;
3585 		gcwq->idle_timer.data = (unsigned long)gcwq;
3586 
3587 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3588 			    (unsigned long)gcwq);
3589 
3590 		ida_init(&gcwq->worker_ida);
3591 
3592 		gcwq->trustee_state = TRUSTEE_DONE;
3593 		init_waitqueue_head(&gcwq->trustee_wait);
3594 	}
3595 
3596 	/* create the initial worker */
3597 	for_each_online_gcwq_cpu(cpu) {
3598 		struct global_cwq *gcwq = get_gcwq(cpu);
3599 		struct worker *worker;
3600 
3601 		if (cpu != WORK_CPU_UNBOUND)
3602 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3603 		worker = create_worker(gcwq, true);
3604 		BUG_ON(!worker);
3605 		spin_lock_irq(&gcwq->lock);
3606 		start_worker(worker);
3607 		spin_unlock_irq(&gcwq->lock);
3608 	}
3609 
3610 	system_wq = alloc_workqueue("events", 0, 0);
3611 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3612 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3613 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3614 					    WQ_UNBOUND_MAX_ACTIVE);
3615 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
3616 	return 0;
3617 }
3618 early_initcall(init_workqueues);
3619