1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58
59 #include "workqueue_internal.h"
60
61 enum worker_pool_flags {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 *
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
80 */
81 POOL_BH = 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
85 };
86
87 enum worker_flags {
88 /* worker flags */
89 WORKER_DIE = 1 << 1, /* die die die */
90 WORKER_IDLE = 1 << 2, /* is idle */
91 WORKER_PREP = 1 << 3, /* preparing to run works */
92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
94 WORKER_REBOUND = 1 << 8, /* worker was rebound */
95
96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
97 WORKER_UNBOUND | WORKER_REBOUND,
98 };
99
100 enum work_cancel_flags {
101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
103 };
104
105 enum wq_internal_consts {
106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
107
108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
110
111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
113
114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
115 /* call for help after 10ms
116 (min two ticks) */
117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
118 CREATE_COOLDOWN = HZ, /* time to breath after fail */
119
120 /*
121 * Rescue workers are used only on emergencies and shared by
122 * all cpus. Give MIN_NICE.
123 */
124 RESCUER_NICE_LEVEL = MIN_NICE,
125 HIGHPRI_NICE_LEVEL = MIN_NICE,
126
127 WQ_NAME_LEN = 32,
128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130
131 /*
132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134 * msecs_to_jiffies() can't be an initializer.
135 */
136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS 10
138
139 /*
140 * Structure fields follow one of the following exclusion rules.
141 *
142 * I: Modifiable by initialization/destruction paths and read-only for
143 * everyone else.
144 *
145 * P: Preemption protected. Disabling preemption is enough and should
146 * only be modified and accessed from the local cpu.
147 *
148 * L: pool->lock protected. Access with pool->lock held.
149 *
150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151 * reads.
152 *
153 * K: Only modified by worker while holding pool->lock. Can be safely read by
154 * self, while holding pool->lock or from IRQ context if %current is the
155 * kworker.
156 *
157 * S: Only modified by worker self.
158 *
159 * A: wq_pool_attach_mutex protected.
160 *
161 * PL: wq_pool_mutex protected.
162 *
163 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
164 *
165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
166 *
167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
168 * RCU for reads.
169 *
170 * WQ: wq->mutex protected.
171 *
172 * WR: wq->mutex protected for writes. RCU protected for reads.
173 *
174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175 * with READ_ONCE() without locking.
176 *
177 * MD: wq_mayday_lock protected.
178 *
179 * WD: Used internally by the watchdog.
180 */
181
182 /* struct worker is defined in workqueue_internal.h */
183
184 struct worker_pool {
185 raw_spinlock_t lock; /* the pool lock */
186 int cpu; /* I: the associated cpu */
187 int node; /* I: the associated node ID */
188 int id; /* I: pool ID */
189 unsigned int flags; /* L: flags */
190
191 unsigned long watchdog_ts; /* L: watchdog timestamp */
192 bool cpu_stall; /* WD: stalled cpu bound pool */
193
194 /*
195 * The counter is incremented in a process context on the associated CPU
196 * w/ preemption disabled, and decremented or reset in the same context
197 * but w/ pool->lock held. The readers grab pool->lock and are
198 * guaranteed to see if the counter reached zero.
199 */
200 int nr_running;
201
202 struct list_head worklist; /* L: list of pending works */
203
204 int nr_workers; /* L: total number of workers */
205 int nr_idle; /* L: currently idle workers */
206
207 struct list_head idle_list; /* L: list of idle workers */
208 struct timer_list idle_timer; /* L: worker idle timeout */
209 struct work_struct idle_cull_work; /* L: worker idle cleanup */
210
211 struct timer_list mayday_timer; /* L: SOS timer for workers */
212
213 /* a workers is either on busy_hash or idle_list, or the manager */
214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 /* L: hash of busy workers */
216
217 struct worker *manager; /* L: purely informational */
218 struct list_head workers; /* A: attached workers */
219
220 struct ida worker_ida; /* worker IDs for task name */
221
222 struct workqueue_attrs *attrs; /* I: worker attributes */
223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
224 int refcnt; /* PL: refcnt for unbound pools */
225 #ifdef CONFIG_PREEMPT_RT
226 spinlock_t cb_lock; /* BH worker cancel lock */
227 #endif
228 /*
229 * Destruction of pool is RCU protected to allow dereferences
230 * from get_work_pool().
231 */
232 struct rcu_head rcu;
233 };
234
235 /*
236 * Per-pool_workqueue statistics. These can be monitored using
237 * tools/workqueue/wq_monitor.py.
238 */
239 enum pool_workqueue_stats {
240 PWQ_STAT_STARTED, /* work items started execution */
241 PWQ_STAT_COMPLETED, /* work items completed execution */
242 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
243 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
244 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
245 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
246 PWQ_STAT_MAYDAY, /* maydays to rescuer */
247 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
248
249 PWQ_NR_STATS,
250 };
251
252 /*
253 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
254 * of work_struct->data are used for flags and the remaining high bits
255 * point to the pwq; thus, pwqs need to be aligned at two's power of the
256 * number of flag bits.
257 */
258 struct pool_workqueue {
259 struct worker_pool *pool; /* I: the associated pool */
260 struct workqueue_struct *wq; /* I: the owning workqueue */
261 int work_color; /* L: current color */
262 int flush_color; /* L: flushing color */
263 int refcnt; /* L: reference count */
264 int nr_in_flight[WORK_NR_COLORS];
265 /* L: nr of in_flight works */
266 bool plugged; /* L: execution suspended */
267
268 /*
269 * nr_active management and WORK_STRUCT_INACTIVE:
270 *
271 * When pwq->nr_active >= max_active, new work item is queued to
272 * pwq->inactive_works instead of pool->worklist and marked with
273 * WORK_STRUCT_INACTIVE.
274 *
275 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
276 * nr_active and all work items in pwq->inactive_works are marked with
277 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
278 * in pwq->inactive_works. Some of them are ready to run in
279 * pool->worklist or worker->scheduled. Those work itmes are only struct
280 * wq_barrier which is used for flush_work() and should not participate
281 * in nr_active. For non-barrier work item, it is marked with
282 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
283 */
284 int nr_active; /* L: nr of active works */
285 struct list_head inactive_works; /* L: inactive works */
286 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
287 struct list_head pwqs_node; /* WR: node on wq->pwqs */
288 struct list_head mayday_node; /* MD: node on wq->maydays */
289
290 u64 stats[PWQ_NR_STATS];
291
292 /*
293 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
294 * and pwq_release_workfn() for details. pool_workqueue itself is also
295 * RCU protected so that the first pwq can be determined without
296 * grabbing wq->mutex.
297 */
298 struct kthread_work release_work;
299 struct rcu_head rcu;
300 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
301
302 /*
303 * Structure used to wait for workqueue flush.
304 */
305 struct wq_flusher {
306 struct list_head list; /* WQ: list of flushers */
307 int flush_color; /* WQ: flush color waiting for */
308 struct completion done; /* flush completion */
309 };
310
311 struct wq_device;
312
313 /*
314 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
315 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
316 * As sharing a single nr_active across multiple sockets can be very expensive,
317 * the counting and enforcement is per NUMA node.
318 *
319 * The following struct is used to enforce per-node max_active. When a pwq wants
320 * to start executing a work item, it should increment ->nr using
321 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
322 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
323 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
324 * round-robin order.
325 */
326 struct wq_node_nr_active {
327 int max; /* per-node max_active */
328 atomic_t nr; /* per-node nr_active */
329 raw_spinlock_t lock; /* nests inside pool locks */
330 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
331 };
332
333 /*
334 * The externally visible workqueue. It relays the issued work items to
335 * the appropriate worker_pool through its pool_workqueues.
336 */
337 struct workqueue_struct {
338 struct list_head pwqs; /* WR: all pwqs of this wq */
339 struct list_head list; /* PR: list of all workqueues */
340
341 struct mutex mutex; /* protects this wq */
342 int work_color; /* WQ: current work color */
343 int flush_color; /* WQ: current flush color */
344 atomic_t nr_pwqs_to_flush; /* flush in progress */
345 struct wq_flusher *first_flusher; /* WQ: first flusher */
346 struct list_head flusher_queue; /* WQ: flush waiters */
347 struct list_head flusher_overflow; /* WQ: flush overflow list */
348
349 struct list_head maydays; /* MD: pwqs requesting rescue */
350 struct worker *rescuer; /* MD: rescue worker */
351
352 int nr_drainers; /* WQ: drain in progress */
353
354 /* See alloc_workqueue() function comment for info on min/max_active */
355 int max_active; /* WO: max active works */
356 int min_active; /* WO: min active works */
357 int saved_max_active; /* WQ: saved max_active */
358 int saved_min_active; /* WQ: saved min_active */
359
360 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
361 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
362
363 #ifdef CONFIG_SYSFS
364 struct wq_device *wq_dev; /* I: for sysfs interface */
365 #endif
366 #ifdef CONFIG_LOCKDEP
367 char *lock_name;
368 struct lock_class_key key;
369 struct lockdep_map __lockdep_map;
370 struct lockdep_map *lockdep_map;
371 #endif
372 char name[WQ_NAME_LEN]; /* I: workqueue name */
373
374 /*
375 * Destruction of workqueue_struct is RCU protected to allow walking
376 * the workqueues list without grabbing wq_pool_mutex.
377 * This is used to dump all workqueues from sysrq.
378 */
379 struct rcu_head rcu;
380
381 /* hot fields used during command issue, aligned to cacheline */
382 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
383 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
384 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
385 };
386
387 /*
388 * Each pod type describes how CPUs should be grouped for unbound workqueues.
389 * See the comment above workqueue_attrs->affn_scope.
390 */
391 struct wq_pod_type {
392 int nr_pods; /* number of pods */
393 cpumask_var_t *pod_cpus; /* pod -> cpus */
394 int *pod_node; /* pod -> node */
395 int *cpu_pod; /* cpu -> pod */
396 };
397
398 struct work_offq_data {
399 u32 pool_id;
400 u32 disable;
401 u32 flags;
402 };
403
404 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
405 [WQ_AFFN_DFL] = "default",
406 [WQ_AFFN_CPU] = "cpu",
407 [WQ_AFFN_SMT] = "smt",
408 [WQ_AFFN_CACHE] = "cache",
409 [WQ_AFFN_NUMA] = "numa",
410 [WQ_AFFN_SYSTEM] = "system",
411 };
412
413 /*
414 * Per-cpu work items which run for longer than the following threshold are
415 * automatically considered CPU intensive and excluded from concurrency
416 * management to prevent them from noticeably delaying other per-cpu work items.
417 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
418 * The actual value is initialized in wq_cpu_intensive_thresh_init().
419 */
420 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
421 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
422 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
423 static unsigned int wq_cpu_intensive_warning_thresh = 4;
424 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
425 #endif
426
427 /* see the comment above the definition of WQ_POWER_EFFICIENT */
428 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
429 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
430
431 static bool wq_online; /* can kworkers be created yet? */
432 static bool wq_topo_initialized __read_mostly = false;
433
434 static struct kmem_cache *pwq_cache;
435
436 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
437 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
438
439 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
440 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
441
442 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
443 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
444 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
445 /* wait for manager to go away */
446 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
447
448 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
449 static bool workqueue_freezing; /* PL: have wqs started freezing? */
450
451 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
452 static cpumask_var_t wq_online_cpumask;
453
454 /* PL&A: allowable cpus for unbound wqs and work items */
455 static cpumask_var_t wq_unbound_cpumask;
456
457 /* PL: user requested unbound cpumask via sysfs */
458 static cpumask_var_t wq_requested_unbound_cpumask;
459
460 /* PL: isolated cpumask to be excluded from unbound cpumask */
461 static cpumask_var_t wq_isolated_cpumask;
462
463 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
464 static struct cpumask wq_cmdline_cpumask __initdata;
465
466 /* CPU where unbound work was last round robin scheduled from this CPU */
467 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
468
469 /*
470 * Local execution of unbound work items is no longer guaranteed. The
471 * following always forces round-robin CPU selection on unbound work items
472 * to uncover usages which depend on it.
473 */
474 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
475 static bool wq_debug_force_rr_cpu = true;
476 #else
477 static bool wq_debug_force_rr_cpu = false;
478 #endif
479 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
480
481 /* to raise softirq for the BH worker pools on other CPUs */
482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
483
484 /* the BH worker pools */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
486
487 /* the per-cpu worker pools */
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
489
490 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
491
492 /* PL: hash of all unbound pools keyed by pool->attrs */
493 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
494
495 /* I: attributes used when instantiating standard unbound pools on demand */
496 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
497
498 /* I: attributes used when instantiating ordered pools on demand */
499 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
500
501 /*
502 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
503 * process context while holding a pool lock. Bounce to a dedicated kthread
504 * worker to avoid A-A deadlocks.
505 */
506 static struct kthread_worker *pwq_release_worker __ro_after_init;
507
508 struct workqueue_struct *system_wq __ro_after_init;
509 EXPORT_SYMBOL(system_wq);
510 struct workqueue_struct *system_percpu_wq __ro_after_init;
511 EXPORT_SYMBOL(system_percpu_wq);
512 struct workqueue_struct *system_highpri_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_highpri_wq);
514 struct workqueue_struct *system_long_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_long_wq);
516 struct workqueue_struct *system_unbound_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_unbound_wq);
518 struct workqueue_struct *system_dfl_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_dfl_wq);
520 struct workqueue_struct *system_freezable_wq __ro_after_init;
521 EXPORT_SYMBOL_GPL(system_freezable_wq);
522 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
523 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
524 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
525 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
526 struct workqueue_struct *system_bh_wq;
527 EXPORT_SYMBOL_GPL(system_bh_wq);
528 struct workqueue_struct *system_bh_highpri_wq;
529 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
530
531 static int worker_thread(void *__worker);
532 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
533 static void show_pwq(struct pool_workqueue *pwq);
534 static void show_one_worker_pool(struct worker_pool *pool);
535
536 #define CREATE_TRACE_POINTS
537 #include <trace/events/workqueue.h>
538
539 #define assert_rcu_or_pool_mutex() \
540 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
541 !lockdep_is_held(&wq_pool_mutex), \
542 "RCU or wq_pool_mutex should be held")
543
544 #define for_each_bh_worker_pool(pool, cpu) \
545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 (pool)++)
548
549 #define for_each_cpu_worker_pool(pool, cpu) \
550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 (pool)++)
553
554 /**
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
557 * @pi: integer used for iteration
558 *
559 * This must be called either with wq_pool_mutex held or RCU read
560 * locked. If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
562 *
563 * The if/else clause exists only for the lockdep assertion and can be
564 * ignored.
565 */
566 #define for_each_pool(pool, pi) \
567 idr_for_each_entry(&worker_pool_idr, pool, pi) \
568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
569 else
570
571 /**
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
574 * @pool: worker_pool to iterate workers of
575 *
576 * This must be called with wq_pool_attach_mutex.
577 *
578 * The if/else clause exists only for the lockdep assertion and can be
579 * ignored.
580 */
581 #define for_each_pool_worker(worker, pool) \
582 list_for_each_entry((worker), &(pool)->workers, node) \
583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 else
585
586 /**
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
590 *
591 * This must be called either with wq->mutex held or RCU read locked.
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
594 *
595 * The if/else clause exists only for the lockdep assertion and can be
596 * ignored.
597 */
598 #define for_each_pwq(pwq, wq) \
599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
600 lockdep_is_held(&(wq->mutex)))
601
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603
604 static const struct debug_obj_descr work_debug_descr;
605
work_debug_hint(void * addr)606 static void *work_debug_hint(void *addr)
607 {
608 return ((struct work_struct *) addr)->func;
609 }
610
work_is_static_object(void * addr)611 static bool work_is_static_object(void *addr)
612 {
613 struct work_struct *work = addr;
614
615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617
618 /*
619 * fixup_init is called when:
620 * - an active object is initialized
621 */
work_fixup_init(void * addr,enum debug_obj_state state)622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 struct work_struct *work = addr;
625
626 switch (state) {
627 case ODEBUG_STATE_ACTIVE:
628 cancel_work_sync(work);
629 debug_object_init(work, &work_debug_descr);
630 return true;
631 default:
632 return false;
633 }
634 }
635
636 /*
637 * fixup_free is called when:
638 * - an active object is freed
639 */
work_fixup_free(void * addr,enum debug_obj_state state)640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 struct work_struct *work = addr;
643
644 switch (state) {
645 case ODEBUG_STATE_ACTIVE:
646 cancel_work_sync(work);
647 debug_object_free(work, &work_debug_descr);
648 return true;
649 default:
650 return false;
651 }
652 }
653
654 static const struct debug_obj_descr work_debug_descr = {
655 .name = "work_struct",
656 .debug_hint = work_debug_hint,
657 .is_static_object = work_is_static_object,
658 .fixup_init = work_fixup_init,
659 .fixup_free = work_fixup_free,
660 };
661
debug_work_activate(struct work_struct * work)662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 debug_object_activate(work, &work_debug_descr);
665 }
666
debug_work_deactivate(struct work_struct * work)667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 debug_object_deactivate(work, &work_debug_descr);
670 }
671
__init_work(struct work_struct * work,int onstack)672 void __init_work(struct work_struct *work, int onstack)
673 {
674 if (onstack)
675 debug_object_init_on_stack(work, &work_debug_descr);
676 else
677 debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680
destroy_work_on_stack(struct work_struct * work)681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686
destroy_delayed_work_on_stack(struct delayed_work * work)687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 timer_destroy_on_stack(&work->timer);
690 debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693
694 #else
debug_work_activate(struct work_struct * work)695 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698
699 /**
700 * worker_pool_assign_id - allocate ID and assign it to @pool
701 * @pool: the pool pointer of interest
702 *
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
705 */
worker_pool_assign_id(struct worker_pool * pool)706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 int ret;
709
710 lockdep_assert_held(&wq_pool_mutex);
711
712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 GFP_KERNEL);
714 if (ret >= 0) {
715 pool->id = ret;
716 return 0;
717 }
718 return ret;
719 }
720
721 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724 if (cpu >= 0)
725 return per_cpu_ptr(wq->cpu_pwq, cpu);
726 else
727 return &wq->dfl_pwq;
728 }
729
730 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 lockdep_is_held(&wq_pool_mutex) ||
735 lockdep_is_held(&wq->mutex));
736 }
737
738 /**
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
741 *
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
745 */
unbound_effective_cpumask(struct workqueue_struct * wq)746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750
work_color_to_flags(int color)751 static unsigned int work_color_to_flags(int color)
752 {
753 return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755
get_work_color(unsigned long work_data)756 static int get_work_color(unsigned long work_data)
757 {
758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761
work_next_color(int color)762 static int work_next_color(int color)
763 {
764 return (color + 1) % WORK_NR_COLORS;
765 }
766
pool_offq_flags(struct worker_pool * pool)767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771
772 /*
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq. Once execution starts, the flag
775 * is cleared and the high bits contain OFFQ flags and pool ID.
776 *
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
780 *
781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782 * corresponding to a work. Pool is available once the work has been
783 * queued anywhere after initialization until it is sync canceled. pwq is
784 * available only while the work item is queued.
785 */
set_work_data(struct work_struct * work,unsigned long data)786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 WARN_ON_ONCE(!work_pending(work));
789 atomic_long_set(&work->data, data | work_static(work));
790 }
791
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 unsigned long flags)
794 {
795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 WORK_STRUCT_PWQ | flags);
797 }
798
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 int pool_id, unsigned long flags)
801 {
802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 WORK_STRUCT_PENDING | flags);
804 }
805
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 int pool_id, unsigned long flags)
808 {
809 /*
810 * The following wmb is paired with the implied mb in
811 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 * here are visible to and precede any updates by the next PENDING
813 * owner.
814 */
815 smp_wmb();
816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 flags);
818 /*
819 * The following mb guarantees that previous clear of a PENDING bit
820 * will not be reordered with any speculative LOADS or STORES from
821 * work->current_func, which is executed afterwards. This possible
822 * reordering can lead to a missed execution on attempt to queue
823 * the same @work. E.g. consider this case:
824 *
825 * CPU#0 CPU#1
826 * ---------------------------- --------------------------------
827 *
828 * 1 STORE event_indicated
829 * 2 queue_work_on() {
830 * 3 test_and_set_bit(PENDING)
831 * 4 } set_..._and_clear_pending() {
832 * 5 set_work_data() # clear bit
833 * 6 smp_mb()
834 * 7 work->current_func() {
835 * 8 LOAD event_indicated
836 * }
837 *
838 * Without an explicit full barrier speculative LOAD on line 8 can
839 * be executed before CPU#0 does STORE on line 1. If that happens,
840 * CPU#0 observes the PENDING bit is still set and new execution of
841 * a @work is not queued in a hope, that CPU#1 will eventually
842 * finish the queued @work. Meanwhile CPU#1 does not see
843 * event_indicated is set, because speculative LOAD was executed
844 * before actual STORE.
845 */
846 smp_mb();
847 }
848
work_struct_pwq(unsigned long data)849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853
get_work_pwq(struct work_struct * work)854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 unsigned long data = atomic_long_read(&work->data);
857
858 if (data & WORK_STRUCT_PWQ)
859 return work_struct_pwq(data);
860 else
861 return NULL;
862 }
863
864 /**
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
867 *
868 * Pools are created and destroyed under wq_pool_mutex, and allows read
869 * access under RCU read lock. As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871 *
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect. If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
876 *
877 * Return: The worker_pool @work was last associated with. %NULL if none.
878 */
get_work_pool(struct work_struct * work)879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 unsigned long data = atomic_long_read(&work->data);
882 int pool_id;
883
884 assert_rcu_or_pool_mutex();
885
886 if (data & WORK_STRUCT_PWQ)
887 return work_struct_pwq(data)->pool;
888
889 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 if (pool_id == WORK_OFFQ_POOL_NONE)
891 return NULL;
892
893 return idr_find(&worker_pool_idr, pool_id);
894 }
895
shift_and_mask(unsigned long v,u32 shift,u32 bits)896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 return (v >> shift) & ((1U << bits) - 1);
899 }
900
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904
905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 WORK_OFFQ_POOL_BITS);
907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 WORK_OFFQ_DISABLE_BITS);
909 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911
work_offqd_pack_flags(struct work_offq_data * offqd)912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 ((unsigned long)offqd->flags);
916 }
917
918 /*
919 * Policy functions. These define the policies on how the global worker
920 * pools are managed. Unless noted otherwise, these functions assume that
921 * they're being called with pool->lock held.
922 */
923
924 /*
925 * Need to wake up a worker? Called from anything but currently
926 * running workers.
927 *
928 * Note that, because unbound workers never contribute to nr_running, this
929 * function will always return %true for unbound pools as long as the
930 * worklist isn't empty.
931 */
need_more_worker(struct worker_pool * pool)932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936
937 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)938 static bool may_start_working(struct worker_pool *pool)
939 {
940 return pool->nr_idle;
941 }
942
943 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)944 static bool keep_working(struct worker_pool *pool)
945 {
946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948
949 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 return need_more_worker(pool) && !may_start_working(pool);
953 }
954
955 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 int nr_busy = pool->nr_workers - nr_idle;
961
962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964
965 /**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
971 */
worker_set_flags(struct worker * worker,unsigned int flags)972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 struct worker_pool *pool = worker->pool;
975
976 lockdep_assert_held(&pool->lock);
977
978 /* If transitioning into NOT_RUNNING, adjust nr_running. */
979 if ((flags & WORKER_NOT_RUNNING) &&
980 !(worker->flags & WORKER_NOT_RUNNING)) {
981 pool->nr_running--;
982 }
983
984 worker->flags |= flags;
985 }
986
987 /**
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989 * @worker: self
990 * @flags: flags to clear
991 *
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
993 */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 struct worker_pool *pool = worker->pool;
997 unsigned int oflags = worker->flags;
998
999 lockdep_assert_held(&pool->lock);
1000
1001 worker->flags &= ~flags;
1002
1003 /*
1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1006 * of multiple flags, not a single flag.
1007 */
1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 if (!(worker->flags & WORKER_NOT_RUNNING))
1010 pool->nr_running++;
1011 }
1012
1013 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 if (unlikely(list_empty(&pool->idle_list)))
1017 return NULL;
1018
1019 return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021
1022 /**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state. Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
worker_enter_idle(struct worker * worker)1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 struct worker_pool *pool = worker->pool;
1035
1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 (worker->hentry.next || worker->hentry.pprev)))
1039 return;
1040
1041 /* can't use worker_set_flags(), also called from create_worker() */
1042 worker->flags |= WORKER_IDLE;
1043 pool->nr_idle++;
1044 worker->last_active = jiffies;
1045
1046 /* idle_list is LIFO */
1047 list_add(&worker->entry, &pool->idle_list);
1048
1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052 /* Sanity check nr_running. */
1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055
1056 /**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state. Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
worker_leave_idle(struct worker * worker)1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 struct worker_pool *pool = worker->pool;
1068
1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 return;
1071 worker_clr_flags(worker, WORKER_IDLE);
1072 pool->nr_idle--;
1073 list_del_init(&worker->entry);
1074 }
1075
1076 /**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work. For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function. This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky. A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item. If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives. Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item. Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 struct work_struct *work)
1111 {
1112 struct worker *worker;
1113
1114 hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 (unsigned long)work)
1116 if (worker->current_work == work &&
1117 worker->current_func == work->func)
1118 return worker;
1119
1120 return NULL;
1121 }
1122
1123 /**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 struct work_struct **nextp)
1139 {
1140 struct work_struct *n;
1141
1142 /*
1143 * Linked worklist will always end before the end of the list,
1144 * use NULL for list head.
1145 */
1146 list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 list_move_tail(&work->entry, head);
1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 break;
1150 }
1151
1152 /*
1153 * If we're already inside safe list traversal and have moved
1154 * multiple works to the scheduled queue, the next position
1155 * needs to be updated.
1156 */
1157 if (nextp)
1158 *nextp = n;
1159 }
1160
1161 /**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 struct work_struct **nextp)
1179 {
1180 struct worker_pool *pool = worker->pool;
1181 struct worker *collision;
1182
1183 lockdep_assert_held(&pool->lock);
1184
1185 /*
1186 * A single work shouldn't be executed concurrently by multiple workers.
1187 * __queue_work() ensures that @work doesn't jump to a different pool
1188 * while still running in the previous pool. Here, we should ensure that
1189 * @work is not executed concurrently by multiple workers from the same
1190 * pool. Check whether anyone is already processing the work. If so,
1191 * defer the work to the currently executing one.
1192 */
1193 collision = find_worker_executing_work(pool, work);
1194 if (unlikely(collision)) {
1195 move_linked_works(work, &collision->scheduled, nextp);
1196 return false;
1197 }
1198
1199 move_linked_works(work, &worker->scheduled, nextp);
1200 return true;
1201 }
1202
bh_pool_irq_work(struct worker_pool * pool)1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209
kick_bh_pool(struct worker_pool * pool)1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 if (unlikely(pool->cpu != smp_processor_id() &&
1215 !(pool->flags & POOL_BH_DRAINING))) {
1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 return;
1218 }
1219 #endif
1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 raise_softirq_irqoff(HI_SOFTIRQ);
1222 else
1223 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225
1226 /**
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
1229 *
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
1232 */
kick_pool(struct worker_pool * pool)1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 struct worker *worker = first_idle_worker(pool);
1236 struct task_struct *p;
1237
1238 lockdep_assert_held(&pool->lock);
1239
1240 if (!need_more_worker(pool) || !worker)
1241 return false;
1242
1243 if (pool->flags & POOL_BH) {
1244 kick_bh_pool(pool);
1245 return true;
1246 }
1247
1248 p = worker->task;
1249
1250 #ifdef CONFIG_SMP
1251 /*
1252 * Idle @worker is about to execute @work and waking up provides an
1253 * opportunity to migrate @worker at a lower cost by setting the task's
1254 * wake_cpu field. Let's see if we want to move @worker to improve
1255 * execution locality.
1256 *
1257 * We're waking the worker that went idle the latest and there's some
1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 * optimization and the race window is narrow, let's leave as-is for
1261 * now. If this becomes pronounced, we can skip over workers which are
1262 * still on cpu when picking an idle worker.
1263 *
1264 * If @pool has non-strict affinity, @worker might have ended up outside
1265 * its affinity scope. Repatriate.
1266 */
1267 if (!pool->attrs->affn_strict &&
1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 struct work_struct *work = list_first_entry(&pool->worklist,
1270 struct work_struct, entry);
1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 cpu_online_mask);
1273 if (wake_cpu < nr_cpu_ids) {
1274 p->wake_cpu = wake_cpu;
1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 }
1277 }
1278 #endif
1279 wake_up_process(p);
1280 return true;
1281 }
1282
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284
1285 /*
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1291 *
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1296 */
1297 #define WCI_MAX_ENTS 128
1298
1299 struct wci_ent {
1300 work_func_t func;
1301 atomic64_t cnt;
1302 struct hlist_node hash_node;
1303 };
1304
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309
wci_find_ent(work_func_t func)1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 struct wci_ent *ent;
1313
1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 (unsigned long)func) {
1316 if (ent->func == func)
1317 return ent;
1318 }
1319 return NULL;
1320 }
1321
wq_cpu_intensive_report(work_func_t func)1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 struct wci_ent *ent;
1325
1326 restart:
1327 ent = wci_find_ent(func);
1328 if (ent) {
1329 u64 cnt;
1330
1331 /*
1332 * Start reporting from the warning_thresh and back off
1333 * exponentially.
1334 */
1335 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 if (wq_cpu_intensive_warning_thresh &&
1337 cnt >= wq_cpu_intensive_warning_thresh &&
1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 ent->func, wq_cpu_intensive_thresh_us,
1341 atomic64_read(&ent->cnt));
1342 return;
1343 }
1344
1345 /*
1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 * is exhausted, something went really wrong and we probably made enough
1348 * noise already.
1349 */
1350 if (wci_nr_ents >= WCI_MAX_ENTS)
1351 return;
1352
1353 raw_spin_lock(&wci_lock);
1354
1355 if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 raw_spin_unlock(&wci_lock);
1357 return;
1358 }
1359
1360 if (wci_find_ent(func)) {
1361 raw_spin_unlock(&wci_lock);
1362 goto restart;
1363 }
1364
1365 ent = &wci_ents[wci_nr_ents++];
1366 ent->func = func;
1367 atomic64_set(&ent->cnt, 0);
1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369
1370 raw_spin_unlock(&wci_lock);
1371
1372 goto restart;
1373 }
1374
1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378
1379 /**
1380 * wq_worker_running - a worker is running again
1381 * @task: task waking up
1382 *
1383 * This function is called when a worker returns from schedule()
1384 */
wq_worker_running(struct task_struct * task)1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 struct worker *worker = kthread_data(task);
1388
1389 if (!READ_ONCE(worker->sleeping))
1390 return;
1391
1392 /*
1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 * and the nr_running increment below, we may ruin the nr_running reset
1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 * pool. Protect against such race.
1397 */
1398 preempt_disable();
1399 if (!(worker->flags & WORKER_NOT_RUNNING))
1400 worker->pool->nr_running++;
1401 preempt_enable();
1402
1403 /*
1404 * CPU intensive auto-detection cares about how long a work item hogged
1405 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 */
1407 worker->current_at = worker->task->se.sum_exec_runtime;
1408
1409 WRITE_ONCE(worker->sleeping, 0);
1410 }
1411
1412 /**
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
1415 *
1416 * This function is called from schedule() when a busy worker is
1417 * going to sleep.
1418 */
wq_worker_sleeping(struct task_struct * task)1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 struct worker *worker = kthread_data(task);
1422 struct worker_pool *pool;
1423
1424 /*
1425 * Rescuers, which may not have all the fields set up like normal
1426 * workers, also reach here, let's not access anything before
1427 * checking NOT_RUNNING.
1428 */
1429 if (worker->flags & WORKER_NOT_RUNNING)
1430 return;
1431
1432 pool = worker->pool;
1433
1434 /* Return if preempted before wq_worker_running() was reached */
1435 if (READ_ONCE(worker->sleeping))
1436 return;
1437
1438 WRITE_ONCE(worker->sleeping, 1);
1439 raw_spin_lock_irq(&pool->lock);
1440
1441 /*
1442 * Recheck in case unbind_workers() preempted us. We don't
1443 * want to decrement nr_running after the worker is unbound
1444 * and nr_running has been reset.
1445 */
1446 if (worker->flags & WORKER_NOT_RUNNING) {
1447 raw_spin_unlock_irq(&pool->lock);
1448 return;
1449 }
1450
1451 pool->nr_running--;
1452 if (kick_pool(pool))
1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454
1455 raw_spin_unlock_irq(&pool->lock);
1456 }
1457
1458 /**
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1461 *
1462 * Called from sched_tick(). We're in the IRQ context and the current
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1464 */
wq_worker_tick(struct task_struct * task)1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 struct worker *worker = kthread_data(task);
1468 struct pool_workqueue *pwq = worker->current_pwq;
1469 struct worker_pool *pool = worker->pool;
1470
1471 if (!pwq)
1472 return;
1473
1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475
1476 if (!wq_cpu_intensive_thresh_us)
1477 return;
1478
1479 /*
1480 * If the current worker is concurrency managed and hogged the CPU for
1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 *
1484 * Set @worker->sleeping means that @worker is in the process of
1485 * switching out voluntarily and won't be contributing to
1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 * We probably want to make this prettier in the future.
1490 */
1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 worker->task->se.sum_exec_runtime - worker->current_at <
1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 return;
1495
1496 raw_spin_lock(&pool->lock);
1497
1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 wq_cpu_intensive_report(worker->current_func);
1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501
1502 if (kick_pool(pool))
1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504
1505 raw_spin_unlock(&pool->lock);
1506 }
1507
1508 /**
1509 * wq_worker_last_func - retrieve worker's last work function
1510 * @task: Task to retrieve last work function of.
1511 *
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1514 *
1515 * CONTEXT:
1516 * raw_spin_lock_irq(rq->lock)
1517 *
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1522 *
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1527 *
1528 * Return:
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1531 */
wq_worker_last_func(struct task_struct * task)1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 struct worker *worker = kthread_data(task);
1535
1536 return worker->last_func;
1537 }
1538
1539 /**
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1543 *
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545 *
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547 *
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549 *
1550 * - Otherwise, node_nr_active[@node].
1551 */
wq_node_nr_active(struct workqueue_struct * wq,int node)1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 int node)
1554 {
1555 if (!(wq->flags & WQ_UNBOUND))
1556 return NULL;
1557
1558 if (node == NUMA_NO_NODE)
1559 node = nr_node_ids;
1560
1561 return wq->node_nr_active[node];
1562 }
1563
1564 /**
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568 *
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1572 */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 struct cpumask *effective = unbound_effective_cpumask(wq);
1576 int min_active = READ_ONCE(wq->min_active);
1577 int max_active = READ_ONCE(wq->max_active);
1578 int total_cpus, node;
1579
1580 lockdep_assert_held(&wq->mutex);
1581
1582 if (!wq_topo_initialized)
1583 return;
1584
1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 off_cpu = -1;
1587
1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 if (off_cpu >= 0)
1590 total_cpus--;
1591
1592 /* If all CPUs of the wq get offline, use the default values */
1593 if (unlikely(!total_cpus)) {
1594 for_each_node(node)
1595 wq_node_nr_active(wq, node)->max = min_active;
1596
1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 return;
1599 }
1600
1601 for_each_node(node) {
1602 int node_cpus;
1603
1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 node_cpus--;
1607
1608 wq_node_nr_active(wq, node)->max =
1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 min_active, max_active);
1611 }
1612
1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615
1616 /**
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1619 *
1620 * Obtain an extra reference on @pwq. The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1622 */
get_pwq(struct pool_workqueue * pwq)1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 lockdep_assert_held(&pwq->pool->lock);
1626 WARN_ON_ONCE(pwq->refcnt <= 0);
1627 pwq->refcnt++;
1628 }
1629
1630 /**
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1633 *
1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1635 * destruction. The caller should be holding the matching pool->lock.
1636 */
put_pwq(struct pool_workqueue * pwq)1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 lockdep_assert_held(&pwq->pool->lock);
1640 if (likely(--pwq->refcnt))
1641 return;
1642 /*
1643 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 * kthread_worker to avoid A-A deadlocks.
1645 */
1646 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648
1649 /**
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1652 *
1653 * put_pwq() with locking. This function also allows %NULL @pwq.
1654 */
put_pwq_unlocked(struct pool_workqueue * pwq)1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 if (pwq) {
1658 /*
1659 * As both pwqs and pools are RCU protected, the
1660 * following lock operations are safe.
1661 */
1662 raw_spin_lock_irq(&pwq->pool->lock);
1663 put_pwq(pwq);
1664 raw_spin_unlock_irq(&pwq->pool->lock);
1665 }
1666 }
1667
pwq_is_empty(struct pool_workqueue * pwq)1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 struct work_struct *work)
1675 {
1676 unsigned long *wdb = work_data_bits(work);
1677
1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 trace_workqueue_activate_work(work);
1680 if (list_empty(&pwq->pool->worklist))
1681 pwq->pool->watchdog_ts = jiffies;
1682 move_linked_works(work, &pwq->pool->worklist, NULL);
1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685
tryinc_node_nr_active(struct wq_node_nr_active * nna)1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687 {
1688 int max = READ_ONCE(nna->max);
1689 int old = atomic_read(&nna->nr);
1690
1691 do {
1692 if (old >= max)
1693 return false;
1694 } while (!atomic_try_cmpxchg_relaxed(&nna->nr, &old, old + 1));
1695
1696 return true;
1697 }
1698
1699 /**
1700 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1701 * @pwq: pool_workqueue of interest
1702 * @fill: max_active may have increased, try to increase concurrency level
1703 *
1704 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1705 * successfully obtained. %false otherwise.
1706 */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1707 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1708 {
1709 struct workqueue_struct *wq = pwq->wq;
1710 struct worker_pool *pool = pwq->pool;
1711 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1712 bool obtained = false;
1713
1714 lockdep_assert_held(&pool->lock);
1715
1716 if (!nna) {
1717 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1718 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1719 goto out;
1720 }
1721
1722 if (unlikely(pwq->plugged))
1723 return false;
1724
1725 /*
1726 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1727 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1728 * concurrency level. Don't jump the line.
1729 *
1730 * We need to ignore the pending test after max_active has increased as
1731 * pwq_dec_nr_active() can only maintain the concurrency level but not
1732 * increase it. This is indicated by @fill.
1733 */
1734 if (!list_empty(&pwq->pending_node) && likely(!fill))
1735 goto out;
1736
1737 obtained = tryinc_node_nr_active(nna);
1738 if (obtained)
1739 goto out;
1740
1741 /*
1742 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1743 * and try again. The smp_mb() is paired with the implied memory barrier
1744 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1745 * we see the decremented $nna->nr or they see non-empty
1746 * $nna->pending_pwqs.
1747 */
1748 raw_spin_lock(&nna->lock);
1749
1750 if (list_empty(&pwq->pending_node))
1751 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1752 else if (likely(!fill))
1753 goto out_unlock;
1754
1755 smp_mb();
1756
1757 obtained = tryinc_node_nr_active(nna);
1758
1759 /*
1760 * If @fill, @pwq might have already been pending. Being spuriously
1761 * pending in cold paths doesn't affect anything. Let's leave it be.
1762 */
1763 if (obtained && likely(!fill))
1764 list_del_init(&pwq->pending_node);
1765
1766 out_unlock:
1767 raw_spin_unlock(&nna->lock);
1768 out:
1769 if (obtained)
1770 pwq->nr_active++;
1771 return obtained;
1772 }
1773
1774 /**
1775 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1776 * @pwq: pool_workqueue of interest
1777 * @fill: max_active may have increased, try to increase concurrency level
1778 *
1779 * Activate the first inactive work item of @pwq if available and allowed by
1780 * max_active limit.
1781 *
1782 * Returns %true if an inactive work item has been activated. %false if no
1783 * inactive work item is found or max_active limit is reached.
1784 */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1785 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1786 {
1787 struct work_struct *work =
1788 list_first_entry_or_null(&pwq->inactive_works,
1789 struct work_struct, entry);
1790
1791 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1792 __pwq_activate_work(pwq, work);
1793 return true;
1794 } else {
1795 return false;
1796 }
1797 }
1798
1799 /**
1800 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1801 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1802 *
1803 * This function should only be called for ordered workqueues where only the
1804 * oldest pwq is unplugged, the others are plugged to suspend execution to
1805 * ensure proper work item ordering::
1806 *
1807 * dfl_pwq --------------+ [P] - plugged
1808 * |
1809 * v
1810 * pwqs -> A -> B [P] -> C [P] (newest)
1811 * | | |
1812 * 1 3 5
1813 * | | |
1814 * 2 4 6
1815 *
1816 * When the oldest pwq is drained and removed, this function should be called
1817 * to unplug the next oldest one to start its work item execution. Note that
1818 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1819 * the list is the oldest.
1820 */
unplug_oldest_pwq(struct workqueue_struct * wq)1821 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1822 {
1823 struct pool_workqueue *pwq;
1824
1825 lockdep_assert_held(&wq->mutex);
1826
1827 /* Caller should make sure that pwqs isn't empty before calling */
1828 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1829 pwqs_node);
1830 raw_spin_lock_irq(&pwq->pool->lock);
1831 if (pwq->plugged) {
1832 pwq->plugged = false;
1833 if (pwq_activate_first_inactive(pwq, true))
1834 kick_pool(pwq->pool);
1835 }
1836 raw_spin_unlock_irq(&pwq->pool->lock);
1837 }
1838
1839 /**
1840 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1841 * @nna: wq_node_nr_active to activate a pending pwq for
1842 * @caller_pool: worker_pool the caller is locking
1843 *
1844 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1845 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1846 */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1847 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1848 struct worker_pool *caller_pool)
1849 {
1850 struct worker_pool *locked_pool = caller_pool;
1851 struct pool_workqueue *pwq;
1852 struct work_struct *work;
1853
1854 lockdep_assert_held(&caller_pool->lock);
1855
1856 raw_spin_lock(&nna->lock);
1857 retry:
1858 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1859 struct pool_workqueue, pending_node);
1860 if (!pwq)
1861 goto out_unlock;
1862
1863 /*
1864 * If @pwq is for a different pool than @locked_pool, we need to lock
1865 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1866 * / lock dance. For that, we also need to release @nna->lock as it's
1867 * nested inside pool locks.
1868 */
1869 if (pwq->pool != locked_pool) {
1870 raw_spin_unlock(&locked_pool->lock);
1871 locked_pool = pwq->pool;
1872 if (!raw_spin_trylock(&locked_pool->lock)) {
1873 raw_spin_unlock(&nna->lock);
1874 raw_spin_lock(&locked_pool->lock);
1875 raw_spin_lock(&nna->lock);
1876 goto retry;
1877 }
1878 }
1879
1880 /*
1881 * $pwq may not have any inactive work items due to e.g. cancellations.
1882 * Drop it from pending_pwqs and see if there's another one.
1883 */
1884 work = list_first_entry_or_null(&pwq->inactive_works,
1885 struct work_struct, entry);
1886 if (!work) {
1887 list_del_init(&pwq->pending_node);
1888 goto retry;
1889 }
1890
1891 /*
1892 * Acquire an nr_active count and activate the inactive work item. If
1893 * $pwq still has inactive work items, rotate it to the end of the
1894 * pending_pwqs so that we round-robin through them. This means that
1895 * inactive work items are not activated in queueing order which is fine
1896 * given that there has never been any ordering across different pwqs.
1897 */
1898 if (likely(tryinc_node_nr_active(nna))) {
1899 pwq->nr_active++;
1900 __pwq_activate_work(pwq, work);
1901
1902 if (list_empty(&pwq->inactive_works))
1903 list_del_init(&pwq->pending_node);
1904 else
1905 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1906
1907 /* if activating a foreign pool, make sure it's running */
1908 if (pwq->pool != caller_pool)
1909 kick_pool(pwq->pool);
1910 }
1911
1912 out_unlock:
1913 raw_spin_unlock(&nna->lock);
1914 if (locked_pool != caller_pool) {
1915 raw_spin_unlock(&locked_pool->lock);
1916 raw_spin_lock(&caller_pool->lock);
1917 }
1918 }
1919
1920 /**
1921 * pwq_dec_nr_active - Retire an active count
1922 * @pwq: pool_workqueue of interest
1923 *
1924 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1925 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1926 */
pwq_dec_nr_active(struct pool_workqueue * pwq)1927 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1928 {
1929 struct worker_pool *pool = pwq->pool;
1930 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1931
1932 lockdep_assert_held(&pool->lock);
1933
1934 /*
1935 * @pwq->nr_active should be decremented for both percpu and unbound
1936 * workqueues.
1937 */
1938 pwq->nr_active--;
1939
1940 /*
1941 * For a percpu workqueue, it's simple. Just need to kick the first
1942 * inactive work item on @pwq itself.
1943 */
1944 if (!nna) {
1945 pwq_activate_first_inactive(pwq, false);
1946 return;
1947 }
1948
1949 /*
1950 * If @pwq is for an unbound workqueue, it's more complicated because
1951 * multiple pwqs and pools may be sharing the nr_active count. When a
1952 * pwq needs to wait for an nr_active count, it puts itself on
1953 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1954 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1955 * guarantee that either we see non-empty pending_pwqs or they see
1956 * decremented $nna->nr.
1957 *
1958 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1959 * max_active gets updated. However, it is guaranteed to be equal to or
1960 * larger than @pwq->wq->min_active which is above zero unless freezing.
1961 * This maintains the forward progress guarantee.
1962 */
1963 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1964 return;
1965
1966 if (!list_empty(&nna->pending_pwqs))
1967 node_activate_pending_pwq(nna, pool);
1968 }
1969
1970 /**
1971 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1972 * @pwq: pwq of interest
1973 * @work_data: work_data of work which left the queue
1974 *
1975 * A work either has completed or is removed from pending queue,
1976 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1977 *
1978 * NOTE:
1979 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1980 * and thus should be called after all other state updates for the in-flight
1981 * work item is complete.
1982 *
1983 * CONTEXT:
1984 * raw_spin_lock_irq(pool->lock).
1985 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1986 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1987 {
1988 int color = get_work_color(work_data);
1989
1990 if (!(work_data & WORK_STRUCT_INACTIVE))
1991 pwq_dec_nr_active(pwq);
1992
1993 pwq->nr_in_flight[color]--;
1994
1995 /* is flush in progress and are we at the flushing tip? */
1996 if (likely(pwq->flush_color != color))
1997 goto out_put;
1998
1999 /* are there still in-flight works? */
2000 if (pwq->nr_in_flight[color])
2001 goto out_put;
2002
2003 /* this pwq is done, clear flush_color */
2004 pwq->flush_color = -1;
2005
2006 /*
2007 * If this was the last pwq, wake up the first flusher. It
2008 * will handle the rest.
2009 */
2010 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2011 complete(&pwq->wq->first_flusher->done);
2012 out_put:
2013 put_pwq(pwq);
2014 }
2015
2016 /**
2017 * try_to_grab_pending - steal work item from worklist and disable irq
2018 * @work: work item to steal
2019 * @cflags: %WORK_CANCEL_ flags
2020 * @irq_flags: place to store irq state
2021 *
2022 * Try to grab PENDING bit of @work. This function can handle @work in any
2023 * stable state - idle, on timer or on worklist.
2024 *
2025 * Return:
2026 *
2027 * ======== ================================================================
2028 * 1 if @work was pending and we successfully stole PENDING
2029 * 0 if @work was idle and we claimed PENDING
2030 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2031 * ======== ================================================================
2032 *
2033 * Note:
2034 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2035 * interrupted while holding PENDING and @work off queue, irq must be
2036 * disabled on entry. This, combined with delayed_work->timer being
2037 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2038 *
2039 * On successful return, >= 0, irq is disabled and the caller is
2040 * responsible for releasing it using local_irq_restore(*@irq_flags).
2041 *
2042 * This function is safe to call from any context including IRQ handler.
2043 */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2044 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2045 unsigned long *irq_flags)
2046 {
2047 struct worker_pool *pool;
2048 struct pool_workqueue *pwq;
2049
2050 local_irq_save(*irq_flags);
2051
2052 /* try to steal the timer if it exists */
2053 if (cflags & WORK_CANCEL_DELAYED) {
2054 struct delayed_work *dwork = to_delayed_work(work);
2055
2056 /*
2057 * dwork->timer is irqsafe. If timer_delete() fails, it's
2058 * guaranteed that the timer is not queued anywhere and not
2059 * running on the local CPU.
2060 */
2061 if (likely(timer_delete(&dwork->timer)))
2062 return 1;
2063 }
2064
2065 /* try to claim PENDING the normal way */
2066 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2067 return 0;
2068
2069 rcu_read_lock();
2070 /*
2071 * The queueing is in progress, or it is already queued. Try to
2072 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2073 */
2074 pool = get_work_pool(work);
2075 if (!pool)
2076 goto fail;
2077
2078 raw_spin_lock(&pool->lock);
2079 /*
2080 * work->data is guaranteed to point to pwq only while the work
2081 * item is queued on pwq->wq, and both updating work->data to point
2082 * to pwq on queueing and to pool on dequeueing are done under
2083 * pwq->pool->lock. This in turn guarantees that, if work->data
2084 * points to pwq which is associated with a locked pool, the work
2085 * item is currently queued on that pool.
2086 */
2087 pwq = get_work_pwq(work);
2088 if (pwq && pwq->pool == pool) {
2089 unsigned long work_data = *work_data_bits(work);
2090
2091 debug_work_deactivate(work);
2092
2093 /*
2094 * A cancelable inactive work item must be in the
2095 * pwq->inactive_works since a queued barrier can't be
2096 * canceled (see the comments in insert_wq_barrier()).
2097 *
2098 * An inactive work item cannot be deleted directly because
2099 * it might have linked barrier work items which, if left
2100 * on the inactive_works list, will confuse pwq->nr_active
2101 * management later on and cause stall. Move the linked
2102 * barrier work items to the worklist when deleting the grabbed
2103 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2104 * it doesn't participate in nr_active management in later
2105 * pwq_dec_nr_in_flight().
2106 */
2107 if (work_data & WORK_STRUCT_INACTIVE)
2108 move_linked_works(work, &pwq->pool->worklist, NULL);
2109
2110 list_del_init(&work->entry);
2111
2112 /*
2113 * work->data points to pwq iff queued. Let's point to pool. As
2114 * this destroys work->data needed by the next step, stash it.
2115 */
2116 set_work_pool_and_keep_pending(work, pool->id,
2117 pool_offq_flags(pool));
2118
2119 /* must be the last step, see the function comment */
2120 pwq_dec_nr_in_flight(pwq, work_data);
2121
2122 raw_spin_unlock(&pool->lock);
2123 rcu_read_unlock();
2124 return 1;
2125 }
2126 raw_spin_unlock(&pool->lock);
2127 fail:
2128 rcu_read_unlock();
2129 local_irq_restore(*irq_flags);
2130 return -EAGAIN;
2131 }
2132
2133 /**
2134 * work_grab_pending - steal work item from worklist and disable irq
2135 * @work: work item to steal
2136 * @cflags: %WORK_CANCEL_ flags
2137 * @irq_flags: place to store IRQ state
2138 *
2139 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2140 * or on worklist.
2141 *
2142 * Can be called from any context. IRQ is disabled on return with IRQ state
2143 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2144 * local_irq_restore().
2145 *
2146 * Returns %true if @work was pending. %false if idle.
2147 */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2148 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2149 unsigned long *irq_flags)
2150 {
2151 int ret;
2152
2153 while (true) {
2154 ret = try_to_grab_pending(work, cflags, irq_flags);
2155 if (ret >= 0)
2156 return ret;
2157 cpu_relax();
2158 }
2159 }
2160
2161 /**
2162 * insert_work - insert a work into a pool
2163 * @pwq: pwq @work belongs to
2164 * @work: work to insert
2165 * @head: insertion point
2166 * @extra_flags: extra WORK_STRUCT_* flags to set
2167 *
2168 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2169 * work_struct flags.
2170 *
2171 * CONTEXT:
2172 * raw_spin_lock_irq(pool->lock).
2173 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2174 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2175 struct list_head *head, unsigned int extra_flags)
2176 {
2177 debug_work_activate(work);
2178
2179 /* record the work call stack in order to print it in KASAN reports */
2180 kasan_record_aux_stack(work);
2181
2182 /* we own @work, set data and link */
2183 set_work_pwq(work, pwq, extra_flags);
2184 list_add_tail(&work->entry, head);
2185 get_pwq(pwq);
2186 }
2187
2188 /*
2189 * Test whether @work is being queued from another work executing on the
2190 * same workqueue.
2191 */
is_chained_work(struct workqueue_struct * wq)2192 static bool is_chained_work(struct workqueue_struct *wq)
2193 {
2194 struct worker *worker;
2195
2196 worker = current_wq_worker();
2197 /*
2198 * Return %true iff I'm a worker executing a work item on @wq. If
2199 * I'm @worker, it's safe to dereference it without locking.
2200 */
2201 return worker && worker->current_pwq->wq == wq;
2202 }
2203
2204 /*
2205 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2206 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2207 * avoid perturbing sensitive tasks.
2208 */
wq_select_unbound_cpu(int cpu)2209 static int wq_select_unbound_cpu(int cpu)
2210 {
2211 int new_cpu;
2212
2213 if (likely(!wq_debug_force_rr_cpu)) {
2214 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2215 return cpu;
2216 } else {
2217 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2218 }
2219
2220 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2221 new_cpu = cpumask_next_and_wrap(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2222 if (unlikely(new_cpu >= nr_cpu_ids))
2223 return cpu;
2224 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2225
2226 return new_cpu;
2227 }
2228
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2229 static void __queue_work(int cpu, struct workqueue_struct *wq,
2230 struct work_struct *work)
2231 {
2232 struct pool_workqueue *pwq;
2233 struct worker_pool *last_pool, *pool;
2234 unsigned int work_flags;
2235 unsigned int req_cpu = cpu;
2236
2237 /*
2238 * While a work item is PENDING && off queue, a task trying to
2239 * steal the PENDING will busy-loop waiting for it to either get
2240 * queued or lose PENDING. Grabbing PENDING and queueing should
2241 * happen with IRQ disabled.
2242 */
2243 lockdep_assert_irqs_disabled();
2244
2245 /*
2246 * For a draining wq, only works from the same workqueue are
2247 * allowed. The __WQ_DESTROYING helps to spot the issue that
2248 * queues a new work item to a wq after destroy_workqueue(wq).
2249 */
2250 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2251 WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2252 work->func, wq->name))) {
2253 return;
2254 }
2255 rcu_read_lock();
2256 retry:
2257 /* pwq which will be used unless @work is executing elsewhere */
2258 if (req_cpu == WORK_CPU_UNBOUND) {
2259 if (wq->flags & WQ_UNBOUND)
2260 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2261 else
2262 cpu = raw_smp_processor_id();
2263 }
2264
2265 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2266 pool = pwq->pool;
2267
2268 /*
2269 * If @work was previously on a different pool, it might still be
2270 * running there, in which case the work needs to be queued on that
2271 * pool to guarantee non-reentrancy.
2272 *
2273 * For ordered workqueue, work items must be queued on the newest pwq
2274 * for accurate order management. Guaranteed order also guarantees
2275 * non-reentrancy. See the comments above unplug_oldest_pwq().
2276 */
2277 last_pool = get_work_pool(work);
2278 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2279 struct worker *worker;
2280
2281 raw_spin_lock(&last_pool->lock);
2282
2283 worker = find_worker_executing_work(last_pool, work);
2284
2285 if (worker && worker->current_pwq->wq == wq) {
2286 pwq = worker->current_pwq;
2287 pool = pwq->pool;
2288 WARN_ON_ONCE(pool != last_pool);
2289 } else {
2290 /* meh... not running there, queue here */
2291 raw_spin_unlock(&last_pool->lock);
2292 raw_spin_lock(&pool->lock);
2293 }
2294 } else {
2295 raw_spin_lock(&pool->lock);
2296 }
2297
2298 /*
2299 * pwq is determined and locked. For unbound pools, we could have raced
2300 * with pwq release and it could already be dead. If its refcnt is zero,
2301 * repeat pwq selection. Note that unbound pwqs never die without
2302 * another pwq replacing it in cpu_pwq or while work items are executing
2303 * on it, so the retrying is guaranteed to make forward-progress.
2304 */
2305 if (unlikely(!pwq->refcnt)) {
2306 if (wq->flags & WQ_UNBOUND) {
2307 raw_spin_unlock(&pool->lock);
2308 cpu_relax();
2309 goto retry;
2310 }
2311 /* oops */
2312 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2313 wq->name, cpu);
2314 }
2315
2316 /* pwq determined, queue */
2317 trace_workqueue_queue_work(req_cpu, pwq, work);
2318
2319 if (WARN_ON(!list_empty(&work->entry)))
2320 goto out;
2321
2322 pwq->nr_in_flight[pwq->work_color]++;
2323 work_flags = work_color_to_flags(pwq->work_color);
2324
2325 /*
2326 * Limit the number of concurrently active work items to max_active.
2327 * @work must also queue behind existing inactive work items to maintain
2328 * ordering when max_active changes. See wq_adjust_max_active().
2329 */
2330 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2331 if (list_empty(&pool->worklist))
2332 pool->watchdog_ts = jiffies;
2333
2334 trace_workqueue_activate_work(work);
2335 insert_work(pwq, work, &pool->worklist, work_flags);
2336 kick_pool(pool);
2337 } else {
2338 work_flags |= WORK_STRUCT_INACTIVE;
2339 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2340 }
2341
2342 out:
2343 raw_spin_unlock(&pool->lock);
2344 rcu_read_unlock();
2345 }
2346
clear_pending_if_disabled(struct work_struct * work)2347 static bool clear_pending_if_disabled(struct work_struct *work)
2348 {
2349 unsigned long data = *work_data_bits(work);
2350 struct work_offq_data offqd;
2351
2352 if (likely((data & WORK_STRUCT_PWQ) ||
2353 !(data & WORK_OFFQ_DISABLE_MASK)))
2354 return false;
2355
2356 work_offqd_unpack(&offqd, data);
2357 set_work_pool_and_clear_pending(work, offqd.pool_id,
2358 work_offqd_pack_flags(&offqd));
2359 return true;
2360 }
2361
2362 /**
2363 * queue_work_on - queue work on specific cpu
2364 * @cpu: CPU number to execute work on
2365 * @wq: workqueue to use
2366 * @work: work to queue
2367 *
2368 * We queue the work to a specific CPU, the caller must ensure it
2369 * can't go away. Callers that fail to ensure that the specified
2370 * CPU cannot go away will execute on a randomly chosen CPU.
2371 * But note well that callers specifying a CPU that never has been
2372 * online will get a splat.
2373 *
2374 * Return: %false if @work was already on a queue, %true otherwise.
2375 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2376 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2377 struct work_struct *work)
2378 {
2379 bool ret = false;
2380 unsigned long irq_flags;
2381
2382 local_irq_save(irq_flags);
2383
2384 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2385 !clear_pending_if_disabled(work)) {
2386 __queue_work(cpu, wq, work);
2387 ret = true;
2388 }
2389
2390 local_irq_restore(irq_flags);
2391 return ret;
2392 }
2393 EXPORT_SYMBOL(queue_work_on);
2394
2395 /**
2396 * select_numa_node_cpu - Select a CPU based on NUMA node
2397 * @node: NUMA node ID that we want to select a CPU from
2398 *
2399 * This function will attempt to find a "random" cpu available on a given
2400 * node. If there are no CPUs available on the given node it will return
2401 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2402 * available CPU if we need to schedule this work.
2403 */
select_numa_node_cpu(int node)2404 static int select_numa_node_cpu(int node)
2405 {
2406 int cpu;
2407
2408 /* Delay binding to CPU if node is not valid or online */
2409 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2410 return WORK_CPU_UNBOUND;
2411
2412 /* Use local node/cpu if we are already there */
2413 cpu = raw_smp_processor_id();
2414 if (node == cpu_to_node(cpu))
2415 return cpu;
2416
2417 /* Use "random" otherwise know as "first" online CPU of node */
2418 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2419
2420 /* If CPU is valid return that, otherwise just defer */
2421 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2422 }
2423
2424 /**
2425 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2426 * @node: NUMA node that we are targeting the work for
2427 * @wq: workqueue to use
2428 * @work: work to queue
2429 *
2430 * We queue the work to a "random" CPU within a given NUMA node. The basic
2431 * idea here is to provide a way to somehow associate work with a given
2432 * NUMA node.
2433 *
2434 * This function will only make a best effort attempt at getting this onto
2435 * the right NUMA node. If no node is requested or the requested node is
2436 * offline then we just fall back to standard queue_work behavior.
2437 *
2438 * Currently the "random" CPU ends up being the first available CPU in the
2439 * intersection of cpu_online_mask and the cpumask of the node, unless we
2440 * are running on the node. In that case we just use the current CPU.
2441 *
2442 * Return: %false if @work was already on a queue, %true otherwise.
2443 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2444 bool queue_work_node(int node, struct workqueue_struct *wq,
2445 struct work_struct *work)
2446 {
2447 unsigned long irq_flags;
2448 bool ret = false;
2449
2450 /*
2451 * This current implementation is specific to unbound workqueues.
2452 * Specifically we only return the first available CPU for a given
2453 * node instead of cycling through individual CPUs within the node.
2454 *
2455 * If this is used with a per-cpu workqueue then the logic in
2456 * workqueue_select_cpu_near would need to be updated to allow for
2457 * some round robin type logic.
2458 */
2459 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2460
2461 local_irq_save(irq_flags);
2462
2463 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2464 !clear_pending_if_disabled(work)) {
2465 int cpu = select_numa_node_cpu(node);
2466
2467 __queue_work(cpu, wq, work);
2468 ret = true;
2469 }
2470
2471 local_irq_restore(irq_flags);
2472 return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(queue_work_node);
2475
delayed_work_timer_fn(struct timer_list * t)2476 void delayed_work_timer_fn(struct timer_list *t)
2477 {
2478 struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2479
2480 /* should have been called from irqsafe timer with irq already off */
2481 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2482 }
2483 EXPORT_SYMBOL(delayed_work_timer_fn);
2484
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2485 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2486 struct delayed_work *dwork, unsigned long delay)
2487 {
2488 struct timer_list *timer = &dwork->timer;
2489 struct work_struct *work = &dwork->work;
2490
2491 WARN_ON_ONCE(!wq);
2492 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2493 WARN_ON_ONCE(timer_pending(timer));
2494 WARN_ON_ONCE(!list_empty(&work->entry));
2495
2496 /*
2497 * If @delay is 0, queue @dwork->work immediately. This is for
2498 * both optimization and correctness. The earliest @timer can
2499 * expire is on the closest next tick and delayed_work users depend
2500 * on that there's no such delay when @delay is 0.
2501 */
2502 if (!delay) {
2503 __queue_work(cpu, wq, &dwork->work);
2504 return;
2505 }
2506
2507 WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2508 dwork->wq = wq;
2509 dwork->cpu = cpu;
2510 timer->expires = jiffies + delay;
2511
2512 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2513 /* If the current cpu is a housekeeping cpu, use it. */
2514 cpu = smp_processor_id();
2515 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2516 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2517 add_timer_on(timer, cpu);
2518 } else {
2519 if (likely(cpu == WORK_CPU_UNBOUND))
2520 add_timer_global(timer);
2521 else
2522 add_timer_on(timer, cpu);
2523 }
2524 }
2525
2526 /**
2527 * queue_delayed_work_on - queue work on specific CPU after delay
2528 * @cpu: CPU number to execute work on
2529 * @wq: workqueue to use
2530 * @dwork: work to queue
2531 * @delay: number of jiffies to wait before queueing
2532 *
2533 * We queue the delayed_work to a specific CPU, for non-zero delays the
2534 * caller must ensure it is online and can't go away. Callers that fail
2535 * to ensure this, may get @dwork->timer queued to an offlined CPU and
2536 * this will prevent queueing of @dwork->work unless the offlined CPU
2537 * becomes online again.
2538 *
2539 * Return: %false if @work was already on a queue, %true otherwise. If
2540 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2541 * execution.
2542 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2543 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2544 struct delayed_work *dwork, unsigned long delay)
2545 {
2546 struct work_struct *work = &dwork->work;
2547 bool ret = false;
2548 unsigned long irq_flags;
2549
2550 /* read the comment in __queue_work() */
2551 local_irq_save(irq_flags);
2552
2553 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2554 !clear_pending_if_disabled(work)) {
2555 __queue_delayed_work(cpu, wq, dwork, delay);
2556 ret = true;
2557 }
2558
2559 local_irq_restore(irq_flags);
2560 return ret;
2561 }
2562 EXPORT_SYMBOL(queue_delayed_work_on);
2563
2564 /**
2565 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2566 * @cpu: CPU number to execute work on
2567 * @wq: workqueue to use
2568 * @dwork: work to queue
2569 * @delay: number of jiffies to wait before queueing
2570 *
2571 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2572 * modify @dwork's timer so that it expires after @delay. If @delay is
2573 * zero, @work is guaranteed to be scheduled immediately regardless of its
2574 * current state.
2575 *
2576 * Return: %false if @dwork was idle and queued, %true if @dwork was
2577 * pending and its timer was modified.
2578 *
2579 * This function is safe to call from any context including IRQ handler.
2580 * See try_to_grab_pending() for details.
2581 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2583 struct delayed_work *dwork, unsigned long delay)
2584 {
2585 unsigned long irq_flags;
2586 bool ret;
2587
2588 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2589
2590 if (!clear_pending_if_disabled(&dwork->work))
2591 __queue_delayed_work(cpu, wq, dwork, delay);
2592
2593 local_irq_restore(irq_flags);
2594 return ret;
2595 }
2596 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2597
rcu_work_rcufn(struct rcu_head * rcu)2598 static void rcu_work_rcufn(struct rcu_head *rcu)
2599 {
2600 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2601
2602 /* read the comment in __queue_work() */
2603 local_irq_disable();
2604 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2605 local_irq_enable();
2606 }
2607
2608 /**
2609 * queue_rcu_work - queue work after a RCU grace period
2610 * @wq: workqueue to use
2611 * @rwork: work to queue
2612 *
2613 * Return: %false if @rwork was already pending, %true otherwise. Note
2614 * that a full RCU grace period is guaranteed only after a %true return.
2615 * While @rwork is guaranteed to be executed after a %false return, the
2616 * execution may happen before a full RCU grace period has passed.
2617 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2618 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2619 {
2620 struct work_struct *work = &rwork->work;
2621
2622 /*
2623 * rcu_work can't be canceled or disabled. Warn if the user reached
2624 * inside @rwork and disabled the inner work.
2625 */
2626 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2627 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2628 rwork->wq = wq;
2629 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2630 return true;
2631 }
2632
2633 return false;
2634 }
2635 EXPORT_SYMBOL(queue_rcu_work);
2636
alloc_worker(int node)2637 static struct worker *alloc_worker(int node)
2638 {
2639 struct worker *worker;
2640
2641 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2642 if (worker) {
2643 INIT_LIST_HEAD(&worker->entry);
2644 INIT_LIST_HEAD(&worker->scheduled);
2645 INIT_LIST_HEAD(&worker->node);
2646 /* on creation a worker is in !idle && prep state */
2647 worker->flags = WORKER_PREP;
2648 }
2649 return worker;
2650 }
2651
pool_allowed_cpus(struct worker_pool * pool)2652 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2653 {
2654 if (pool->cpu < 0 && pool->attrs->affn_strict)
2655 return pool->attrs->__pod_cpumask;
2656 else
2657 return pool->attrs->cpumask;
2658 }
2659
2660 /**
2661 * worker_attach_to_pool() - attach a worker to a pool
2662 * @worker: worker to be attached
2663 * @pool: the target pool
2664 *
2665 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2666 * cpu-binding of @worker are kept coordinated with the pool across
2667 * cpu-[un]hotplugs.
2668 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2669 static void worker_attach_to_pool(struct worker *worker,
2670 struct worker_pool *pool)
2671 {
2672 mutex_lock(&wq_pool_attach_mutex);
2673
2674 /*
2675 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2676 * across this function. See the comments above the flag definition for
2677 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2678 */
2679 if (pool->flags & POOL_DISASSOCIATED) {
2680 worker->flags |= WORKER_UNBOUND;
2681 } else {
2682 WARN_ON_ONCE(pool->flags & POOL_BH);
2683 kthread_set_per_cpu(worker->task, pool->cpu);
2684 }
2685
2686 if (worker->rescue_wq)
2687 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2688
2689 list_add_tail(&worker->node, &pool->workers);
2690 worker->pool = pool;
2691
2692 mutex_unlock(&wq_pool_attach_mutex);
2693 }
2694
unbind_worker(struct worker * worker)2695 static void unbind_worker(struct worker *worker)
2696 {
2697 lockdep_assert_held(&wq_pool_attach_mutex);
2698
2699 kthread_set_per_cpu(worker->task, -1);
2700 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2701 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2702 else
2703 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2704 }
2705
2706
detach_worker(struct worker * worker)2707 static void detach_worker(struct worker *worker)
2708 {
2709 lockdep_assert_held(&wq_pool_attach_mutex);
2710
2711 unbind_worker(worker);
2712 list_del(&worker->node);
2713 }
2714
2715 /**
2716 * worker_detach_from_pool() - detach a worker from its pool
2717 * @worker: worker which is attached to its pool
2718 *
2719 * Undo the attaching which had been done in worker_attach_to_pool(). The
2720 * caller worker shouldn't access to the pool after detached except it has
2721 * other reference to the pool.
2722 */
worker_detach_from_pool(struct worker * worker)2723 static void worker_detach_from_pool(struct worker *worker)
2724 {
2725 struct worker_pool *pool = worker->pool;
2726
2727 /* there is one permanent BH worker per CPU which should never detach */
2728 WARN_ON_ONCE(pool->flags & POOL_BH);
2729
2730 mutex_lock(&wq_pool_attach_mutex);
2731 detach_worker(worker);
2732 worker->pool = NULL;
2733 mutex_unlock(&wq_pool_attach_mutex);
2734
2735 /* clear leftover flags without pool->lock after it is detached */
2736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2737 }
2738
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2739 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2740 struct worker_pool *pool)
2741 {
2742 if (worker->rescue_wq)
2743 return scnprintf(buf, size, "kworker/R-%s",
2744 worker->rescue_wq->name);
2745
2746 if (pool) {
2747 if (pool->cpu >= 0)
2748 return scnprintf(buf, size, "kworker/%d:%d%s",
2749 pool->cpu, worker->id,
2750 pool->attrs->nice < 0 ? "H" : "");
2751 else
2752 return scnprintf(buf, size, "kworker/u%d:%d",
2753 pool->id, worker->id);
2754 } else {
2755 return scnprintf(buf, size, "kworker/dying");
2756 }
2757 }
2758
2759 /**
2760 * create_worker - create a new workqueue worker
2761 * @pool: pool the new worker will belong to
2762 *
2763 * Create and start a new worker which is attached to @pool.
2764 *
2765 * CONTEXT:
2766 * Might sleep. Does GFP_KERNEL allocations.
2767 *
2768 * Return:
2769 * Pointer to the newly created worker.
2770 */
create_worker(struct worker_pool * pool)2771 static struct worker *create_worker(struct worker_pool *pool)
2772 {
2773 struct worker *worker;
2774 int id;
2775
2776 /* ID is needed to determine kthread name */
2777 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2778 if (id < 0) {
2779 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2780 ERR_PTR(id));
2781 return NULL;
2782 }
2783
2784 worker = alloc_worker(pool->node);
2785 if (!worker) {
2786 pr_err_once("workqueue: Failed to allocate a worker\n");
2787 goto fail;
2788 }
2789
2790 worker->id = id;
2791
2792 if (!(pool->flags & POOL_BH)) {
2793 char id_buf[WORKER_ID_LEN];
2794
2795 format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2796 worker->task = kthread_create_on_node(worker_thread, worker,
2797 pool->node, "%s", id_buf);
2798 if (IS_ERR(worker->task)) {
2799 if (PTR_ERR(worker->task) == -EINTR) {
2800 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2801 id_buf);
2802 } else {
2803 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2804 worker->task);
2805 }
2806 goto fail;
2807 }
2808
2809 set_user_nice(worker->task, pool->attrs->nice);
2810 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2811 }
2812
2813 /* successful, attach the worker to the pool */
2814 worker_attach_to_pool(worker, pool);
2815
2816 /* start the newly created worker */
2817 raw_spin_lock_irq(&pool->lock);
2818
2819 worker->pool->nr_workers++;
2820 worker_enter_idle(worker);
2821
2822 /*
2823 * @worker is waiting on a completion in kthread() and will trigger hung
2824 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2825 * wake it up explicitly.
2826 */
2827 if (worker->task)
2828 wake_up_process(worker->task);
2829
2830 raw_spin_unlock_irq(&pool->lock);
2831
2832 return worker;
2833
2834 fail:
2835 ida_free(&pool->worker_ida, id);
2836 kfree(worker);
2837 return NULL;
2838 }
2839
detach_dying_workers(struct list_head * cull_list)2840 static void detach_dying_workers(struct list_head *cull_list)
2841 {
2842 struct worker *worker;
2843
2844 list_for_each_entry(worker, cull_list, entry)
2845 detach_worker(worker);
2846 }
2847
reap_dying_workers(struct list_head * cull_list)2848 static void reap_dying_workers(struct list_head *cull_list)
2849 {
2850 struct worker *worker, *tmp;
2851
2852 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2853 list_del_init(&worker->entry);
2854 kthread_stop_put(worker->task);
2855 kfree(worker);
2856 }
2857 }
2858
2859 /**
2860 * set_worker_dying - Tag a worker for destruction
2861 * @worker: worker to be destroyed
2862 * @list: transfer worker away from its pool->idle_list and into list
2863 *
2864 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2865 * should be idle.
2866 *
2867 * CONTEXT:
2868 * raw_spin_lock_irq(pool->lock).
2869 */
set_worker_dying(struct worker * worker,struct list_head * list)2870 static void set_worker_dying(struct worker *worker, struct list_head *list)
2871 {
2872 struct worker_pool *pool = worker->pool;
2873
2874 lockdep_assert_held(&pool->lock);
2875 lockdep_assert_held(&wq_pool_attach_mutex);
2876
2877 /* sanity check frenzy */
2878 if (WARN_ON(worker->current_work) ||
2879 WARN_ON(!list_empty(&worker->scheduled)) ||
2880 WARN_ON(!(worker->flags & WORKER_IDLE)))
2881 return;
2882
2883 pool->nr_workers--;
2884 pool->nr_idle--;
2885
2886 worker->flags |= WORKER_DIE;
2887
2888 list_move(&worker->entry, list);
2889
2890 /* get an extra task struct reference for later kthread_stop_put() */
2891 get_task_struct(worker->task);
2892 }
2893
2894 /**
2895 * idle_worker_timeout - check if some idle workers can now be deleted.
2896 * @t: The pool's idle_timer that just expired
2897 *
2898 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2899 * worker_leave_idle(), as a worker flicking between idle and active while its
2900 * pool is at the too_many_workers() tipping point would cause too much timer
2901 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2902 * it expire and re-evaluate things from there.
2903 */
idle_worker_timeout(struct timer_list * t)2904 static void idle_worker_timeout(struct timer_list *t)
2905 {
2906 struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2907 bool do_cull = false;
2908
2909 if (work_pending(&pool->idle_cull_work))
2910 return;
2911
2912 raw_spin_lock_irq(&pool->lock);
2913
2914 if (too_many_workers(pool)) {
2915 struct worker *worker;
2916 unsigned long expires;
2917
2918 /* idle_list is kept in LIFO order, check the last one */
2919 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2920 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2921 do_cull = !time_before(jiffies, expires);
2922
2923 if (!do_cull)
2924 mod_timer(&pool->idle_timer, expires);
2925 }
2926 raw_spin_unlock_irq(&pool->lock);
2927
2928 if (do_cull)
2929 queue_work(system_dfl_wq, &pool->idle_cull_work);
2930 }
2931
2932 /**
2933 * idle_cull_fn - cull workers that have been idle for too long.
2934 * @work: the pool's work for handling these idle workers
2935 *
2936 * This goes through a pool's idle workers and gets rid of those that have been
2937 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2938 *
2939 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2940 * culled, so this also resets worker affinity. This requires a sleepable
2941 * context, hence the split between timer callback and work item.
2942 */
idle_cull_fn(struct work_struct * work)2943 static void idle_cull_fn(struct work_struct *work)
2944 {
2945 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2946 LIST_HEAD(cull_list);
2947
2948 /*
2949 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2950 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2951 * This is required as a previously-preempted worker could run after
2952 * set_worker_dying() has happened but before detach_dying_workers() did.
2953 */
2954 mutex_lock(&wq_pool_attach_mutex);
2955 raw_spin_lock_irq(&pool->lock);
2956
2957 while (too_many_workers(pool)) {
2958 struct worker *worker;
2959 unsigned long expires;
2960
2961 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2962 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2963
2964 if (time_before(jiffies, expires)) {
2965 mod_timer(&pool->idle_timer, expires);
2966 break;
2967 }
2968
2969 set_worker_dying(worker, &cull_list);
2970 }
2971
2972 raw_spin_unlock_irq(&pool->lock);
2973 detach_dying_workers(&cull_list);
2974 mutex_unlock(&wq_pool_attach_mutex);
2975
2976 reap_dying_workers(&cull_list);
2977 }
2978
send_mayday(struct work_struct * work)2979 static void send_mayday(struct work_struct *work)
2980 {
2981 struct pool_workqueue *pwq = get_work_pwq(work);
2982 struct workqueue_struct *wq = pwq->wq;
2983
2984 lockdep_assert_held(&wq_mayday_lock);
2985
2986 if (!wq->rescuer)
2987 return;
2988
2989 /* mayday mayday mayday */
2990 if (list_empty(&pwq->mayday_node)) {
2991 /*
2992 * If @pwq is for an unbound wq, its base ref may be put at
2993 * any time due to an attribute change. Pin @pwq until the
2994 * rescuer is done with it.
2995 */
2996 get_pwq(pwq);
2997 list_add_tail(&pwq->mayday_node, &wq->maydays);
2998 wake_up_process(wq->rescuer->task);
2999 pwq->stats[PWQ_STAT_MAYDAY]++;
3000 }
3001 }
3002
pool_mayday_timeout(struct timer_list * t)3003 static void pool_mayday_timeout(struct timer_list *t)
3004 {
3005 struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3006 struct work_struct *work;
3007
3008 raw_spin_lock_irq(&pool->lock);
3009 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
3010
3011 if (need_to_create_worker(pool)) {
3012 /*
3013 * We've been trying to create a new worker but
3014 * haven't been successful. We might be hitting an
3015 * allocation deadlock. Send distress signals to
3016 * rescuers.
3017 */
3018 list_for_each_entry(work, &pool->worklist, entry)
3019 send_mayday(work);
3020 }
3021
3022 raw_spin_unlock(&wq_mayday_lock);
3023 raw_spin_unlock_irq(&pool->lock);
3024
3025 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3026 }
3027
3028 /**
3029 * maybe_create_worker - create a new worker if necessary
3030 * @pool: pool to create a new worker for
3031 *
3032 * Create a new worker for @pool if necessary. @pool is guaranteed to
3033 * have at least one idle worker on return from this function. If
3034 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3035 * sent to all rescuers with works scheduled on @pool to resolve
3036 * possible allocation deadlock.
3037 *
3038 * On return, need_to_create_worker() is guaranteed to be %false and
3039 * may_start_working() %true.
3040 *
3041 * LOCKING:
3042 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3043 * multiple times. Does GFP_KERNEL allocations. Called only from
3044 * manager.
3045 */
maybe_create_worker(struct worker_pool * pool)3046 static void maybe_create_worker(struct worker_pool *pool)
3047 __releases(&pool->lock)
3048 __acquires(&pool->lock)
3049 {
3050 restart:
3051 raw_spin_unlock_irq(&pool->lock);
3052
3053 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3054 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3055
3056 while (true) {
3057 if (create_worker(pool) || !need_to_create_worker(pool))
3058 break;
3059
3060 schedule_timeout_interruptible(CREATE_COOLDOWN);
3061
3062 if (!need_to_create_worker(pool))
3063 break;
3064 }
3065
3066 timer_delete_sync(&pool->mayday_timer);
3067 raw_spin_lock_irq(&pool->lock);
3068 /*
3069 * This is necessary even after a new worker was just successfully
3070 * created as @pool->lock was dropped and the new worker might have
3071 * already become busy.
3072 */
3073 if (need_to_create_worker(pool))
3074 goto restart;
3075 }
3076
3077 #ifdef CONFIG_PREEMPT_RT
worker_lock_callback(struct worker_pool * pool)3078 static void worker_lock_callback(struct worker_pool *pool)
3079 {
3080 spin_lock(&pool->cb_lock);
3081 }
3082
worker_unlock_callback(struct worker_pool * pool)3083 static void worker_unlock_callback(struct worker_pool *pool)
3084 {
3085 spin_unlock(&pool->cb_lock);
3086 }
3087
workqueue_callback_cancel_wait_running(struct worker_pool * pool)3088 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool)
3089 {
3090 spin_lock(&pool->cb_lock);
3091 spin_unlock(&pool->cb_lock);
3092 }
3093
3094 #else
3095
worker_lock_callback(struct worker_pool * pool)3096 static void worker_lock_callback(struct worker_pool *pool) { }
worker_unlock_callback(struct worker_pool * pool)3097 static void worker_unlock_callback(struct worker_pool *pool) { }
workqueue_callback_cancel_wait_running(struct worker_pool * pool)3098 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool) { }
3099
3100 #endif
3101
3102 /**
3103 * manage_workers - manage worker pool
3104 * @worker: self
3105 *
3106 * Assume the manager role and manage the worker pool @worker belongs
3107 * to. At any given time, there can be only zero or one manager per
3108 * pool. The exclusion is handled automatically by this function.
3109 *
3110 * The caller can safely start processing works on false return. On
3111 * true return, it's guaranteed that need_to_create_worker() is false
3112 * and may_start_working() is true.
3113 *
3114 * CONTEXT:
3115 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3116 * multiple times. Does GFP_KERNEL allocations.
3117 *
3118 * Return:
3119 * %false if the pool doesn't need management and the caller can safely
3120 * start processing works, %true if management function was performed and
3121 * the conditions that the caller verified before calling the function may
3122 * no longer be true.
3123 */
manage_workers(struct worker * worker)3124 static bool manage_workers(struct worker *worker)
3125 {
3126 struct worker_pool *pool = worker->pool;
3127
3128 if (pool->flags & POOL_MANAGER_ACTIVE)
3129 return false;
3130
3131 pool->flags |= POOL_MANAGER_ACTIVE;
3132 pool->manager = worker;
3133
3134 maybe_create_worker(pool);
3135
3136 pool->manager = NULL;
3137 pool->flags &= ~POOL_MANAGER_ACTIVE;
3138 rcuwait_wake_up(&manager_wait);
3139 return true;
3140 }
3141
3142 /**
3143 * process_one_work - process single work
3144 * @worker: self
3145 * @work: work to process
3146 *
3147 * Process @work. This function contains all the logics necessary to
3148 * process a single work including synchronization against and
3149 * interaction with other workers on the same cpu, queueing and
3150 * flushing. As long as context requirement is met, any worker can
3151 * call this function to process a work.
3152 *
3153 * CONTEXT:
3154 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3155 */
process_one_work(struct worker * worker,struct work_struct * work)3156 static void process_one_work(struct worker *worker, struct work_struct *work)
3157 __releases(&pool->lock)
3158 __acquires(&pool->lock)
3159 {
3160 struct pool_workqueue *pwq = get_work_pwq(work);
3161 struct worker_pool *pool = worker->pool;
3162 unsigned long work_data;
3163 int lockdep_start_depth, rcu_start_depth;
3164 bool bh_draining = pool->flags & POOL_BH_DRAINING;
3165 #ifdef CONFIG_LOCKDEP
3166 /*
3167 * It is permissible to free the struct work_struct from
3168 * inside the function that is called from it, this we need to
3169 * take into account for lockdep too. To avoid bogus "held
3170 * lock freed" warnings as well as problems when looking into
3171 * work->lockdep_map, make a copy and use that here.
3172 */
3173 struct lockdep_map lockdep_map;
3174
3175 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3176 #endif
3177 /* ensure we're on the correct CPU */
3178 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3179 raw_smp_processor_id() != pool->cpu);
3180
3181 /* claim and dequeue */
3182 debug_work_deactivate(work);
3183 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3184 worker->current_work = work;
3185 worker->current_func = work->func;
3186 worker->current_pwq = pwq;
3187 if (worker->task)
3188 worker->current_at = worker->task->se.sum_exec_runtime;
3189 work_data = *work_data_bits(work);
3190 worker->current_color = get_work_color(work_data);
3191
3192 /*
3193 * Record wq name for cmdline and debug reporting, may get
3194 * overridden through set_worker_desc().
3195 */
3196 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3197
3198 list_del_init(&work->entry);
3199
3200 /*
3201 * CPU intensive works don't participate in concurrency management.
3202 * They're the scheduler's responsibility. This takes @worker out
3203 * of concurrency management and the next code block will chain
3204 * execution of the pending work items.
3205 */
3206 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3207 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3208
3209 /*
3210 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3211 * since nr_running would always be >= 1 at this point. This is used to
3212 * chain execution of the pending work items for WORKER_NOT_RUNNING
3213 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3214 */
3215 kick_pool(pool);
3216
3217 /*
3218 * Record the last pool and clear PENDING which should be the last
3219 * update to @work. Also, do this inside @pool->lock so that
3220 * PENDING and queued state changes happen together while IRQ is
3221 * disabled.
3222 */
3223 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3224
3225 pwq->stats[PWQ_STAT_STARTED]++;
3226 raw_spin_unlock_irq(&pool->lock);
3227
3228 rcu_start_depth = rcu_preempt_depth();
3229 lockdep_start_depth = lockdep_depth(current);
3230 /* see drain_dead_softirq_workfn() */
3231 if (!bh_draining)
3232 lock_map_acquire(pwq->wq->lockdep_map);
3233 lock_map_acquire(&lockdep_map);
3234 /*
3235 * Strictly speaking we should mark the invariant state without holding
3236 * any locks, that is, before these two lock_map_acquire()'s.
3237 *
3238 * However, that would result in:
3239 *
3240 * A(W1)
3241 * WFC(C)
3242 * A(W1)
3243 * C(C)
3244 *
3245 * Which would create W1->C->W1 dependencies, even though there is no
3246 * actual deadlock possible. There are two solutions, using a
3247 * read-recursive acquire on the work(queue) 'locks', but this will then
3248 * hit the lockdep limitation on recursive locks, or simply discard
3249 * these locks.
3250 *
3251 * AFAICT there is no possible deadlock scenario between the
3252 * flush_work() and complete() primitives (except for single-threaded
3253 * workqueues), so hiding them isn't a problem.
3254 */
3255 lockdep_invariant_state(true);
3256 trace_workqueue_execute_start(work);
3257 worker->current_func(work);
3258 /*
3259 * While we must be careful to not use "work" after this, the trace
3260 * point will only record its address.
3261 */
3262 trace_workqueue_execute_end(work, worker->current_func);
3263
3264 lock_map_release(&lockdep_map);
3265 if (!bh_draining)
3266 lock_map_release(pwq->wq->lockdep_map);
3267
3268 if (unlikely((worker->task && in_atomic()) ||
3269 lockdep_depth(current) != lockdep_start_depth ||
3270 rcu_preempt_depth() != rcu_start_depth)) {
3271 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3272 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3273 current->comm, task_pid_nr(current), preempt_count(),
3274 lockdep_start_depth, lockdep_depth(current),
3275 rcu_start_depth, rcu_preempt_depth(),
3276 worker->current_func);
3277 debug_show_held_locks(current);
3278 dump_stack();
3279 }
3280
3281 /*
3282 * The following prevents a kworker from hogging CPU on !PREEMPTION
3283 * kernels, where a requeueing work item waiting for something to
3284 * happen could deadlock with stop_machine as such work item could
3285 * indefinitely requeue itself while all other CPUs are trapped in
3286 * stop_machine. At the same time, report a quiescent RCU state so
3287 * the same condition doesn't freeze RCU.
3288 */
3289 if (worker->task)
3290 cond_resched();
3291
3292 raw_spin_lock_irq(&pool->lock);
3293
3294 pwq->stats[PWQ_STAT_COMPLETED]++;
3295
3296 /*
3297 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3298 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3299 * wq_cpu_intensive_thresh_us. Clear it.
3300 */
3301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3302
3303 /* tag the worker for identification in schedule() */
3304 worker->last_func = worker->current_func;
3305
3306 /* we're done with it, release */
3307 hash_del(&worker->hentry);
3308 worker->current_work = NULL;
3309 worker->current_func = NULL;
3310 worker->current_pwq = NULL;
3311 worker->current_color = INT_MAX;
3312
3313 /* must be the last step, see the function comment */
3314 pwq_dec_nr_in_flight(pwq, work_data);
3315 }
3316
3317 /**
3318 * process_scheduled_works - process scheduled works
3319 * @worker: self
3320 *
3321 * Process all scheduled works. Please note that the scheduled list
3322 * may change while processing a work, so this function repeatedly
3323 * fetches a work from the top and executes it.
3324 *
3325 * CONTEXT:
3326 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3327 * multiple times.
3328 */
process_scheduled_works(struct worker * worker)3329 static void process_scheduled_works(struct worker *worker)
3330 {
3331 struct work_struct *work;
3332 bool first = true;
3333
3334 while ((work = list_first_entry_or_null(&worker->scheduled,
3335 struct work_struct, entry))) {
3336 if (first) {
3337 worker->pool->watchdog_ts = jiffies;
3338 first = false;
3339 }
3340 process_one_work(worker, work);
3341 }
3342 }
3343
set_pf_worker(bool val)3344 static void set_pf_worker(bool val)
3345 {
3346 mutex_lock(&wq_pool_attach_mutex);
3347 if (val)
3348 current->flags |= PF_WQ_WORKER;
3349 else
3350 current->flags &= ~PF_WQ_WORKER;
3351 mutex_unlock(&wq_pool_attach_mutex);
3352 }
3353
3354 /**
3355 * worker_thread - the worker thread function
3356 * @__worker: self
3357 *
3358 * The worker thread function. All workers belong to a worker_pool -
3359 * either a per-cpu one or dynamic unbound one. These workers process all
3360 * work items regardless of their specific target workqueue. The only
3361 * exception is work items which belong to workqueues with a rescuer which
3362 * will be explained in rescuer_thread().
3363 *
3364 * Return: 0
3365 */
worker_thread(void * __worker)3366 static int worker_thread(void *__worker)
3367 {
3368 struct worker *worker = __worker;
3369 struct worker_pool *pool = worker->pool;
3370
3371 /* tell the scheduler that this is a workqueue worker */
3372 set_pf_worker(true);
3373 woke_up:
3374 raw_spin_lock_irq(&pool->lock);
3375
3376 /* am I supposed to die? */
3377 if (unlikely(worker->flags & WORKER_DIE)) {
3378 raw_spin_unlock_irq(&pool->lock);
3379 set_pf_worker(false);
3380 /*
3381 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3382 * shouldn't be accessed, reset it to NULL in case otherwise.
3383 */
3384 worker->pool = NULL;
3385 ida_free(&pool->worker_ida, worker->id);
3386 return 0;
3387 }
3388
3389 worker_leave_idle(worker);
3390 recheck:
3391 /* no more worker necessary? */
3392 if (!need_more_worker(pool))
3393 goto sleep;
3394
3395 /* do we need to manage? */
3396 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3397 goto recheck;
3398
3399 /*
3400 * ->scheduled list can only be filled while a worker is
3401 * preparing to process a work or actually processing it.
3402 * Make sure nobody diddled with it while I was sleeping.
3403 */
3404 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3405
3406 /*
3407 * Finish PREP stage. We're guaranteed to have at least one idle
3408 * worker or that someone else has already assumed the manager
3409 * role. This is where @worker starts participating in concurrency
3410 * management if applicable and concurrency management is restored
3411 * after being rebound. See rebind_workers() for details.
3412 */
3413 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3414
3415 do {
3416 struct work_struct *work =
3417 list_first_entry(&pool->worklist,
3418 struct work_struct, entry);
3419
3420 if (assign_work(work, worker, NULL))
3421 process_scheduled_works(worker);
3422 } while (keep_working(pool));
3423
3424 worker_set_flags(worker, WORKER_PREP);
3425 sleep:
3426 /*
3427 * pool->lock is held and there's no work to process and no need to
3428 * manage, sleep. Workers are woken up only while holding
3429 * pool->lock or from local cpu, so setting the current state
3430 * before releasing pool->lock is enough to prevent losing any
3431 * event.
3432 */
3433 worker_enter_idle(worker);
3434 __set_current_state(TASK_IDLE);
3435 raw_spin_unlock_irq(&pool->lock);
3436 schedule();
3437 goto woke_up;
3438 }
3439
assign_rescuer_work(struct pool_workqueue * pwq,struct worker * rescuer)3440 static bool assign_rescuer_work(struct pool_workqueue *pwq, struct worker *rescuer)
3441 {
3442 struct worker_pool *pool = pwq->pool;
3443 struct work_struct *work, *n;
3444
3445 /* need rescue? */
3446 if (!pwq->nr_active || !need_to_create_worker(pool))
3447 return false;
3448
3449 /*
3450 * Slurp in all works issued via this workqueue and
3451 * process'em.
3452 */
3453 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3454 if (get_work_pwq(work) == pwq && assign_work(work, rescuer, &n))
3455 pwq->stats[PWQ_STAT_RESCUED]++;
3456 }
3457
3458 return !list_empty(&rescuer->scheduled);
3459 }
3460
3461 /**
3462 * rescuer_thread - the rescuer thread function
3463 * @__rescuer: self
3464 *
3465 * Workqueue rescuer thread function. There's one rescuer for each
3466 * workqueue which has WQ_MEM_RECLAIM set.
3467 *
3468 * Regular work processing on a pool may block trying to create a new
3469 * worker which uses GFP_KERNEL allocation which has slight chance of
3470 * developing into deadlock if some works currently on the same queue
3471 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3472 * the problem rescuer solves.
3473 *
3474 * When such condition is possible, the pool summons rescuers of all
3475 * workqueues which have works queued on the pool and let them process
3476 * those works so that forward progress can be guaranteed.
3477 *
3478 * This should happen rarely.
3479 *
3480 * Return: 0
3481 */
rescuer_thread(void * __rescuer)3482 static int rescuer_thread(void *__rescuer)
3483 {
3484 struct worker *rescuer = __rescuer;
3485 struct workqueue_struct *wq = rescuer->rescue_wq;
3486 bool should_stop;
3487
3488 set_user_nice(current, RESCUER_NICE_LEVEL);
3489
3490 /*
3491 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3492 * doesn't participate in concurrency management.
3493 */
3494 set_pf_worker(true);
3495 repeat:
3496 set_current_state(TASK_IDLE);
3497
3498 /*
3499 * By the time the rescuer is requested to stop, the workqueue
3500 * shouldn't have any work pending, but @wq->maydays may still have
3501 * pwq(s) queued. This can happen by non-rescuer workers consuming
3502 * all the work items before the rescuer got to them. Go through
3503 * @wq->maydays processing before acting on should_stop so that the
3504 * list is always empty on exit.
3505 */
3506 should_stop = kthread_should_stop();
3507
3508 /* see whether any pwq is asking for help */
3509 raw_spin_lock_irq(&wq_mayday_lock);
3510
3511 while (!list_empty(&wq->maydays)) {
3512 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3513 struct pool_workqueue, mayday_node);
3514 struct worker_pool *pool = pwq->pool;
3515
3516 __set_current_state(TASK_RUNNING);
3517 list_del_init(&pwq->mayday_node);
3518
3519 raw_spin_unlock_irq(&wq_mayday_lock);
3520
3521 worker_attach_to_pool(rescuer, pool);
3522
3523 raw_spin_lock_irq(&pool->lock);
3524
3525 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3526
3527 if (assign_rescuer_work(pwq, rescuer)) {
3528 process_scheduled_works(rescuer);
3529
3530 /*
3531 * The above execution of rescued work items could
3532 * have created more to rescue through
3533 * pwq_activate_first_inactive() or chained
3534 * queueing. Let's put @pwq back on mayday list so
3535 * that such back-to-back work items, which may be
3536 * being used to relieve memory pressure, don't
3537 * incur MAYDAY_INTERVAL delay inbetween.
3538 */
3539 if (pwq->nr_active && need_to_create_worker(pool)) {
3540 raw_spin_lock(&wq_mayday_lock);
3541 /*
3542 * Queue iff somebody else hasn't queued it already.
3543 */
3544 if (list_empty(&pwq->mayday_node)) {
3545 get_pwq(pwq);
3546 list_add_tail(&pwq->mayday_node, &wq->maydays);
3547 }
3548 raw_spin_unlock(&wq_mayday_lock);
3549 }
3550 }
3551
3552 /*
3553 * Leave this pool. Notify regular workers; otherwise, we end up
3554 * with 0 concurrency and stalling the execution.
3555 */
3556 kick_pool(pool);
3557
3558 raw_spin_unlock_irq(&pool->lock);
3559
3560 worker_detach_from_pool(rescuer);
3561
3562 /*
3563 * Put the reference grabbed by send_mayday(). @pool might
3564 * go away any time after it.
3565 */
3566 put_pwq_unlocked(pwq);
3567
3568 raw_spin_lock_irq(&wq_mayday_lock);
3569 }
3570
3571 raw_spin_unlock_irq(&wq_mayday_lock);
3572
3573 if (should_stop) {
3574 __set_current_state(TASK_RUNNING);
3575 set_pf_worker(false);
3576 return 0;
3577 }
3578
3579 /* rescuers should never participate in concurrency management */
3580 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3581 schedule();
3582 goto repeat;
3583 }
3584
bh_worker(struct worker * worker)3585 static void bh_worker(struct worker *worker)
3586 {
3587 struct worker_pool *pool = worker->pool;
3588 int nr_restarts = BH_WORKER_RESTARTS;
3589 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3590
3591 worker_lock_callback(pool);
3592 raw_spin_lock_irq(&pool->lock);
3593 worker_leave_idle(worker);
3594
3595 /*
3596 * This function follows the structure of worker_thread(). See there for
3597 * explanations on each step.
3598 */
3599 if (!need_more_worker(pool))
3600 goto done;
3601
3602 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3603 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3604
3605 do {
3606 struct work_struct *work =
3607 list_first_entry(&pool->worklist,
3608 struct work_struct, entry);
3609
3610 if (assign_work(work, worker, NULL))
3611 process_scheduled_works(worker);
3612 } while (keep_working(pool) &&
3613 --nr_restarts && time_before(jiffies, end));
3614
3615 worker_set_flags(worker, WORKER_PREP);
3616 done:
3617 worker_enter_idle(worker);
3618 kick_pool(pool);
3619 raw_spin_unlock_irq(&pool->lock);
3620 worker_unlock_callback(pool);
3621 }
3622
3623 /*
3624 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3625 *
3626 * This is currently called from tasklet[_hi]action() and thus is also called
3627 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3628 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3629 * can be dropped.
3630 *
3631 * After full conversion, we'll add worker->softirq_action, directly use the
3632 * softirq action and obtain the worker pointer from the softirq_action pointer.
3633 */
workqueue_softirq_action(bool highpri)3634 void workqueue_softirq_action(bool highpri)
3635 {
3636 struct worker_pool *pool =
3637 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3638 if (need_more_worker(pool))
3639 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3640 }
3641
3642 struct wq_drain_dead_softirq_work {
3643 struct work_struct work;
3644 struct worker_pool *pool;
3645 struct completion done;
3646 };
3647
drain_dead_softirq_workfn(struct work_struct * work)3648 static void drain_dead_softirq_workfn(struct work_struct *work)
3649 {
3650 struct wq_drain_dead_softirq_work *dead_work =
3651 container_of(work, struct wq_drain_dead_softirq_work, work);
3652 struct worker_pool *pool = dead_work->pool;
3653 bool repeat;
3654
3655 /*
3656 * @pool's CPU is dead and we want to execute its still pending work
3657 * items from this BH work item which is running on a different CPU. As
3658 * its CPU is dead, @pool can't be kicked and, as work execution path
3659 * will be nested, a lockdep annotation needs to be suppressed. Mark
3660 * @pool with %POOL_BH_DRAINING for the special treatments.
3661 */
3662 raw_spin_lock_irq(&pool->lock);
3663 pool->flags |= POOL_BH_DRAINING;
3664 raw_spin_unlock_irq(&pool->lock);
3665
3666 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3667
3668 raw_spin_lock_irq(&pool->lock);
3669 pool->flags &= ~POOL_BH_DRAINING;
3670 repeat = need_more_worker(pool);
3671 raw_spin_unlock_irq(&pool->lock);
3672
3673 /*
3674 * bh_worker() might hit consecutive execution limit and bail. If there
3675 * still are pending work items, reschedule self and return so that we
3676 * don't hog this CPU's BH.
3677 */
3678 if (repeat) {
3679 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3680 queue_work(system_bh_highpri_wq, work);
3681 else
3682 queue_work(system_bh_wq, work);
3683 } else {
3684 complete(&dead_work->done);
3685 }
3686 }
3687
3688 /*
3689 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3690 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3691 * have to worry about draining overlapping with CPU coming back online or
3692 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3693 * on). Let's keep it simple and drain them synchronously. These are BH work
3694 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3695 */
workqueue_softirq_dead(unsigned int cpu)3696 void workqueue_softirq_dead(unsigned int cpu)
3697 {
3698 int i;
3699
3700 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3701 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3702 struct wq_drain_dead_softirq_work dead_work;
3703
3704 if (!need_more_worker(pool))
3705 continue;
3706
3707 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3708 dead_work.pool = pool;
3709 init_completion(&dead_work.done);
3710
3711 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3712 queue_work(system_bh_highpri_wq, &dead_work.work);
3713 else
3714 queue_work(system_bh_wq, &dead_work.work);
3715
3716 wait_for_completion(&dead_work.done);
3717 destroy_work_on_stack(&dead_work.work);
3718 }
3719 }
3720
3721 /**
3722 * check_flush_dependency - check for flush dependency sanity
3723 * @target_wq: workqueue being flushed
3724 * @target_work: work item being flushed (NULL for workqueue flushes)
3725 * @from_cancel: are we called from the work cancel path
3726 *
3727 * %current is trying to flush the whole @target_wq or @target_work on it.
3728 * If this is not the cancel path (which implies work being flushed is either
3729 * already running, or will not be at all), check if @target_wq doesn't have
3730 * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3731 * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3732 * progress guarantee leading to a deadlock.
3733 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3734 static void check_flush_dependency(struct workqueue_struct *target_wq,
3735 struct work_struct *target_work,
3736 bool from_cancel)
3737 {
3738 work_func_t target_func;
3739 struct worker *worker;
3740
3741 if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3742 return;
3743
3744 worker = current_wq_worker();
3745 target_func = target_work ? target_work->func : NULL;
3746
3747 WARN_ONCE(current->flags & PF_MEMALLOC,
3748 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3749 current->pid, current->comm, target_wq->name, target_func);
3750 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3751 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3752 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3753 worker->current_pwq->wq->name, worker->current_func,
3754 target_wq->name, target_func);
3755 }
3756
3757 struct wq_barrier {
3758 struct work_struct work;
3759 struct completion done;
3760 struct task_struct *task; /* purely informational */
3761 };
3762
wq_barrier_func(struct work_struct * work)3763 static void wq_barrier_func(struct work_struct *work)
3764 {
3765 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3766 complete(&barr->done);
3767 }
3768
3769 /**
3770 * insert_wq_barrier - insert a barrier work
3771 * @pwq: pwq to insert barrier into
3772 * @barr: wq_barrier to insert
3773 * @target: target work to attach @barr to
3774 * @worker: worker currently executing @target, NULL if @target is not executing
3775 *
3776 * @barr is linked to @target such that @barr is completed only after
3777 * @target finishes execution. Please note that the ordering
3778 * guarantee is observed only with respect to @target and on the local
3779 * cpu.
3780 *
3781 * Currently, a queued barrier can't be canceled. This is because
3782 * try_to_grab_pending() can't determine whether the work to be
3783 * grabbed is at the head of the queue and thus can't clear LINKED
3784 * flag of the previous work while there must be a valid next work
3785 * after a work with LINKED flag set.
3786 *
3787 * Note that when @worker is non-NULL, @target may be modified
3788 * underneath us, so we can't reliably determine pwq from @target.
3789 *
3790 * CONTEXT:
3791 * raw_spin_lock_irq(pool->lock).
3792 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3793 static void insert_wq_barrier(struct pool_workqueue *pwq,
3794 struct wq_barrier *barr,
3795 struct work_struct *target, struct worker *worker)
3796 {
3797 static __maybe_unused struct lock_class_key bh_key, thr_key;
3798 unsigned int work_flags = 0;
3799 unsigned int work_color;
3800 struct list_head *head;
3801
3802 /*
3803 * debugobject calls are safe here even with pool->lock locked
3804 * as we know for sure that this will not trigger any of the
3805 * checks and call back into the fixup functions where we
3806 * might deadlock.
3807 *
3808 * BH and threaded workqueues need separate lockdep keys to avoid
3809 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3810 * usage".
3811 */
3812 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3813 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3814 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3815
3816 init_completion_map(&barr->done, &target->lockdep_map);
3817
3818 barr->task = current;
3819
3820 /* The barrier work item does not participate in nr_active. */
3821 work_flags |= WORK_STRUCT_INACTIVE;
3822
3823 /*
3824 * If @target is currently being executed, schedule the
3825 * barrier to the worker; otherwise, put it after @target.
3826 */
3827 if (worker) {
3828 head = worker->scheduled.next;
3829 work_color = worker->current_color;
3830 } else {
3831 unsigned long *bits = work_data_bits(target);
3832
3833 head = target->entry.next;
3834 /* there can already be other linked works, inherit and set */
3835 work_flags |= *bits & WORK_STRUCT_LINKED;
3836 work_color = get_work_color(*bits);
3837 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3838 }
3839
3840 pwq->nr_in_flight[work_color]++;
3841 work_flags |= work_color_to_flags(work_color);
3842
3843 insert_work(pwq, &barr->work, head, work_flags);
3844 }
3845
3846 /**
3847 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3848 * @wq: workqueue being flushed
3849 * @flush_color: new flush color, < 0 for no-op
3850 * @work_color: new work color, < 0 for no-op
3851 *
3852 * Prepare pwqs for workqueue flushing.
3853 *
3854 * If @flush_color is non-negative, flush_color on all pwqs should be
3855 * -1. If no pwq has in-flight commands at the specified color, all
3856 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3857 * has in flight commands, its pwq->flush_color is set to
3858 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3859 * wakeup logic is armed and %true is returned.
3860 *
3861 * The caller should have initialized @wq->first_flusher prior to
3862 * calling this function with non-negative @flush_color. If
3863 * @flush_color is negative, no flush color update is done and %false
3864 * is returned.
3865 *
3866 * If @work_color is non-negative, all pwqs should have the same
3867 * work_color which is previous to @work_color and all will be
3868 * advanced to @work_color.
3869 *
3870 * CONTEXT:
3871 * mutex_lock(wq->mutex).
3872 *
3873 * Return:
3874 * %true if @flush_color >= 0 and there's something to flush. %false
3875 * otherwise.
3876 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3877 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3878 int flush_color, int work_color)
3879 {
3880 bool wait = false;
3881 struct pool_workqueue *pwq;
3882 struct worker_pool *current_pool = NULL;
3883
3884 if (flush_color >= 0) {
3885 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3886 atomic_set(&wq->nr_pwqs_to_flush, 1);
3887 }
3888
3889 /*
3890 * For unbound workqueue, pwqs will map to only a few pools.
3891 * Most of the time, pwqs within the same pool will be linked
3892 * sequentially to wq->pwqs by cpu index. So in the majority
3893 * of pwq iters, the pool is the same, only doing lock/unlock
3894 * if the pool has changed. This can largely reduce expensive
3895 * lock operations.
3896 */
3897 for_each_pwq(pwq, wq) {
3898 if (current_pool != pwq->pool) {
3899 if (likely(current_pool))
3900 raw_spin_unlock_irq(¤t_pool->lock);
3901 current_pool = pwq->pool;
3902 raw_spin_lock_irq(¤t_pool->lock);
3903 }
3904
3905 if (flush_color >= 0) {
3906 WARN_ON_ONCE(pwq->flush_color != -1);
3907
3908 if (pwq->nr_in_flight[flush_color]) {
3909 pwq->flush_color = flush_color;
3910 atomic_inc(&wq->nr_pwqs_to_flush);
3911 wait = true;
3912 }
3913 }
3914
3915 if (work_color >= 0) {
3916 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3917 pwq->work_color = work_color;
3918 }
3919
3920 }
3921
3922 if (current_pool)
3923 raw_spin_unlock_irq(¤t_pool->lock);
3924
3925 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3926 complete(&wq->first_flusher->done);
3927
3928 return wait;
3929 }
3930
touch_wq_lockdep_map(struct workqueue_struct * wq)3931 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3932 {
3933 #ifdef CONFIG_LOCKDEP
3934 if (unlikely(!wq->lockdep_map))
3935 return;
3936
3937 if (wq->flags & WQ_BH)
3938 local_bh_disable();
3939
3940 lock_map_acquire(wq->lockdep_map);
3941 lock_map_release(wq->lockdep_map);
3942
3943 if (wq->flags & WQ_BH)
3944 local_bh_enable();
3945 #endif
3946 }
3947
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3948 static void touch_work_lockdep_map(struct work_struct *work,
3949 struct workqueue_struct *wq)
3950 {
3951 #ifdef CONFIG_LOCKDEP
3952 if (wq->flags & WQ_BH)
3953 local_bh_disable();
3954
3955 lock_map_acquire(&work->lockdep_map);
3956 lock_map_release(&work->lockdep_map);
3957
3958 if (wq->flags & WQ_BH)
3959 local_bh_enable();
3960 #endif
3961 }
3962
3963 /**
3964 * __flush_workqueue - ensure that any scheduled work has run to completion.
3965 * @wq: workqueue to flush
3966 *
3967 * This function sleeps until all work items which were queued on entry
3968 * have finished execution, but it is not livelocked by new incoming ones.
3969 */
__flush_workqueue(struct workqueue_struct * wq)3970 void __flush_workqueue(struct workqueue_struct *wq)
3971 {
3972 struct wq_flusher this_flusher = {
3973 .list = LIST_HEAD_INIT(this_flusher.list),
3974 .flush_color = -1,
3975 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3976 };
3977 int next_color;
3978
3979 if (WARN_ON(!wq_online))
3980 return;
3981
3982 touch_wq_lockdep_map(wq);
3983
3984 mutex_lock(&wq->mutex);
3985
3986 /*
3987 * Start-to-wait phase
3988 */
3989 next_color = work_next_color(wq->work_color);
3990
3991 if (next_color != wq->flush_color) {
3992 /*
3993 * Color space is not full. The current work_color
3994 * becomes our flush_color and work_color is advanced
3995 * by one.
3996 */
3997 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3998 this_flusher.flush_color = wq->work_color;
3999 wq->work_color = next_color;
4000
4001 if (!wq->first_flusher) {
4002 /* no flush in progress, become the first flusher */
4003 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4004
4005 wq->first_flusher = &this_flusher;
4006
4007 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
4008 wq->work_color)) {
4009 /* nothing to flush, done */
4010 wq->flush_color = next_color;
4011 wq->first_flusher = NULL;
4012 goto out_unlock;
4013 }
4014 } else {
4015 /* wait in queue */
4016 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
4017 list_add_tail(&this_flusher.list, &wq->flusher_queue);
4018 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4019 }
4020 } else {
4021 /*
4022 * Oops, color space is full, wait on overflow queue.
4023 * The next flush completion will assign us
4024 * flush_color and transfer to flusher_queue.
4025 */
4026 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4027 }
4028
4029 check_flush_dependency(wq, NULL, false);
4030
4031 mutex_unlock(&wq->mutex);
4032
4033 wait_for_completion(&this_flusher.done);
4034
4035 /*
4036 * Wake-up-and-cascade phase
4037 *
4038 * First flushers are responsible for cascading flushes and
4039 * handling overflow. Non-first flushers can simply return.
4040 */
4041 if (READ_ONCE(wq->first_flusher) != &this_flusher)
4042 return;
4043
4044 mutex_lock(&wq->mutex);
4045
4046 /* we might have raced, check again with mutex held */
4047 if (wq->first_flusher != &this_flusher)
4048 goto out_unlock;
4049
4050 WRITE_ONCE(wq->first_flusher, NULL);
4051
4052 WARN_ON_ONCE(!list_empty(&this_flusher.list));
4053 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4054
4055 while (true) {
4056 struct wq_flusher *next, *tmp;
4057
4058 /* complete all the flushers sharing the current flush color */
4059 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4060 if (next->flush_color != wq->flush_color)
4061 break;
4062 list_del_init(&next->list);
4063 complete(&next->done);
4064 }
4065
4066 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4067 wq->flush_color != work_next_color(wq->work_color));
4068
4069 /* this flush_color is finished, advance by one */
4070 wq->flush_color = work_next_color(wq->flush_color);
4071
4072 /* one color has been freed, handle overflow queue */
4073 if (!list_empty(&wq->flusher_overflow)) {
4074 /*
4075 * Assign the same color to all overflowed
4076 * flushers, advance work_color and append to
4077 * flusher_queue. This is the start-to-wait
4078 * phase for these overflowed flushers.
4079 */
4080 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4081 tmp->flush_color = wq->work_color;
4082
4083 wq->work_color = work_next_color(wq->work_color);
4084
4085 list_splice_tail_init(&wq->flusher_overflow,
4086 &wq->flusher_queue);
4087 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4088 }
4089
4090 if (list_empty(&wq->flusher_queue)) {
4091 WARN_ON_ONCE(wq->flush_color != wq->work_color);
4092 break;
4093 }
4094
4095 /*
4096 * Need to flush more colors. Make the next flusher
4097 * the new first flusher and arm pwqs.
4098 */
4099 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4100 WARN_ON_ONCE(wq->flush_color != next->flush_color);
4101
4102 list_del_init(&next->list);
4103 wq->first_flusher = next;
4104
4105 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4106 break;
4107
4108 /*
4109 * Meh... this color is already done, clear first
4110 * flusher and repeat cascading.
4111 */
4112 wq->first_flusher = NULL;
4113 }
4114
4115 out_unlock:
4116 mutex_unlock(&wq->mutex);
4117 }
4118 EXPORT_SYMBOL(__flush_workqueue);
4119
4120 /**
4121 * drain_workqueue - drain a workqueue
4122 * @wq: workqueue to drain
4123 *
4124 * Wait until the workqueue becomes empty. While draining is in progress,
4125 * only chain queueing is allowed. IOW, only currently pending or running
4126 * work items on @wq can queue further work items on it. @wq is flushed
4127 * repeatedly until it becomes empty. The number of flushing is determined
4128 * by the depth of chaining and should be relatively short. Whine if it
4129 * takes too long.
4130 */
drain_workqueue(struct workqueue_struct * wq)4131 void drain_workqueue(struct workqueue_struct *wq)
4132 {
4133 unsigned int flush_cnt = 0;
4134 struct pool_workqueue *pwq;
4135
4136 /*
4137 * __queue_work() needs to test whether there are drainers, is much
4138 * hotter than drain_workqueue() and already looks at @wq->flags.
4139 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4140 */
4141 mutex_lock(&wq->mutex);
4142 if (!wq->nr_drainers++)
4143 wq->flags |= __WQ_DRAINING;
4144 mutex_unlock(&wq->mutex);
4145 reflush:
4146 __flush_workqueue(wq);
4147
4148 mutex_lock(&wq->mutex);
4149
4150 for_each_pwq(pwq, wq) {
4151 bool drained;
4152
4153 raw_spin_lock_irq(&pwq->pool->lock);
4154 drained = pwq_is_empty(pwq);
4155 raw_spin_unlock_irq(&pwq->pool->lock);
4156
4157 if (drained)
4158 continue;
4159
4160 if (++flush_cnt == 10 ||
4161 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4162 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4163 wq->name, __func__, flush_cnt);
4164
4165 mutex_unlock(&wq->mutex);
4166 goto reflush;
4167 }
4168
4169 if (!--wq->nr_drainers)
4170 wq->flags &= ~__WQ_DRAINING;
4171 mutex_unlock(&wq->mutex);
4172 }
4173 EXPORT_SYMBOL_GPL(drain_workqueue);
4174
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4175 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4176 bool from_cancel)
4177 {
4178 struct worker *worker = NULL;
4179 struct worker_pool *pool;
4180 struct pool_workqueue *pwq;
4181 struct workqueue_struct *wq;
4182
4183 rcu_read_lock();
4184 pool = get_work_pool(work);
4185 if (!pool) {
4186 rcu_read_unlock();
4187 return false;
4188 }
4189
4190 raw_spin_lock_irq(&pool->lock);
4191 /* see the comment in try_to_grab_pending() with the same code */
4192 pwq = get_work_pwq(work);
4193 if (pwq) {
4194 if (unlikely(pwq->pool != pool))
4195 goto already_gone;
4196 } else {
4197 worker = find_worker_executing_work(pool, work);
4198 if (!worker)
4199 goto already_gone;
4200 pwq = worker->current_pwq;
4201 }
4202
4203 wq = pwq->wq;
4204 check_flush_dependency(wq, work, from_cancel);
4205
4206 insert_wq_barrier(pwq, barr, work, worker);
4207 raw_spin_unlock_irq(&pool->lock);
4208
4209 touch_work_lockdep_map(work, wq);
4210
4211 /*
4212 * Force a lock recursion deadlock when using flush_work() inside a
4213 * single-threaded or rescuer equipped workqueue.
4214 *
4215 * For single threaded workqueues the deadlock happens when the work
4216 * is after the work issuing the flush_work(). For rescuer equipped
4217 * workqueues the deadlock happens when the rescuer stalls, blocking
4218 * forward progress.
4219 */
4220 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4221 touch_wq_lockdep_map(wq);
4222
4223 rcu_read_unlock();
4224 return true;
4225 already_gone:
4226 raw_spin_unlock_irq(&pool->lock);
4227 rcu_read_unlock();
4228 return false;
4229 }
4230
__flush_work(struct work_struct * work,bool from_cancel)4231 static bool __flush_work(struct work_struct *work, bool from_cancel)
4232 {
4233 struct wq_barrier barr;
4234
4235 if (WARN_ON(!wq_online))
4236 return false;
4237
4238 if (WARN_ON(!work->func))
4239 return false;
4240
4241 if (!start_flush_work(work, &barr, from_cancel))
4242 return false;
4243
4244 /*
4245 * start_flush_work() returned %true. If @from_cancel is set, we know
4246 * that @work must have been executing during start_flush_work() and
4247 * can't currently be queued. Its data must contain OFFQ bits. If @work
4248 * was queued on a BH workqueue, we also know that it was running in the
4249 * BH context and thus can be busy-waited.
4250 */
4251 if (from_cancel) {
4252 unsigned long data = *work_data_bits(work);
4253
4254 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4255 (data & WORK_OFFQ_BH)) {
4256 /*
4257 * On RT, prevent a live lock when %current preempted
4258 * soft interrupt processing by blocking on lock which
4259 * is owned by the thread invoking the callback.
4260 */
4261 while (!try_wait_for_completion(&barr.done)) {
4262 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4263 struct worker_pool *pool;
4264
4265 guard(rcu)();
4266 pool = get_work_pool(work);
4267 if (pool)
4268 workqueue_callback_cancel_wait_running(pool);
4269 } else {
4270 cpu_relax();
4271 }
4272 }
4273 goto out_destroy;
4274 }
4275 }
4276
4277 wait_for_completion(&barr.done);
4278
4279 out_destroy:
4280 destroy_work_on_stack(&barr.work);
4281 return true;
4282 }
4283
4284 /**
4285 * flush_work - wait for a work to finish executing the last queueing instance
4286 * @work: the work to flush
4287 *
4288 * Wait until @work has finished execution. @work is guaranteed to be idle
4289 * on return if it hasn't been requeued since flush started.
4290 *
4291 * Return:
4292 * %true if flush_work() waited for the work to finish execution,
4293 * %false if it was already idle.
4294 */
flush_work(struct work_struct * work)4295 bool flush_work(struct work_struct *work)
4296 {
4297 might_sleep();
4298 return __flush_work(work, false);
4299 }
4300 EXPORT_SYMBOL_GPL(flush_work);
4301
4302 /**
4303 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4304 * @dwork: the delayed work to flush
4305 *
4306 * Delayed timer is cancelled and the pending work is queued for
4307 * immediate execution. Like flush_work(), this function only
4308 * considers the last queueing instance of @dwork.
4309 *
4310 * Return:
4311 * %true if flush_work() waited for the work to finish execution,
4312 * %false if it was already idle.
4313 */
flush_delayed_work(struct delayed_work * dwork)4314 bool flush_delayed_work(struct delayed_work *dwork)
4315 {
4316 local_irq_disable();
4317 if (timer_delete_sync(&dwork->timer))
4318 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4319 local_irq_enable();
4320 return flush_work(&dwork->work);
4321 }
4322 EXPORT_SYMBOL(flush_delayed_work);
4323
4324 /**
4325 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4326 * @rwork: the rcu work to flush
4327 *
4328 * Return:
4329 * %true if flush_rcu_work() waited for the work to finish execution,
4330 * %false if it was already idle.
4331 */
flush_rcu_work(struct rcu_work * rwork)4332 bool flush_rcu_work(struct rcu_work *rwork)
4333 {
4334 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4335 rcu_barrier();
4336 flush_work(&rwork->work);
4337 return true;
4338 } else {
4339 return flush_work(&rwork->work);
4340 }
4341 }
4342 EXPORT_SYMBOL(flush_rcu_work);
4343
work_offqd_disable(struct work_offq_data * offqd)4344 static void work_offqd_disable(struct work_offq_data *offqd)
4345 {
4346 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4347
4348 if (likely(offqd->disable < max))
4349 offqd->disable++;
4350 else
4351 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4352 }
4353
work_offqd_enable(struct work_offq_data * offqd)4354 static void work_offqd_enable(struct work_offq_data *offqd)
4355 {
4356 if (likely(offqd->disable > 0))
4357 offqd->disable--;
4358 else
4359 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4360 }
4361
__cancel_work(struct work_struct * work,u32 cflags)4362 static bool __cancel_work(struct work_struct *work, u32 cflags)
4363 {
4364 struct work_offq_data offqd;
4365 unsigned long irq_flags;
4366 int ret;
4367
4368 ret = work_grab_pending(work, cflags, &irq_flags);
4369
4370 work_offqd_unpack(&offqd, *work_data_bits(work));
4371
4372 if (cflags & WORK_CANCEL_DISABLE)
4373 work_offqd_disable(&offqd);
4374
4375 set_work_pool_and_clear_pending(work, offqd.pool_id,
4376 work_offqd_pack_flags(&offqd));
4377 local_irq_restore(irq_flags);
4378 return ret;
4379 }
4380
__cancel_work_sync(struct work_struct * work,u32 cflags)4381 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4382 {
4383 bool ret;
4384
4385 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4386
4387 if (*work_data_bits(work) & WORK_OFFQ_BH)
4388 WARN_ON_ONCE(in_hardirq());
4389 else
4390 might_sleep();
4391
4392 /*
4393 * Skip __flush_work() during early boot when we know that @work isn't
4394 * executing. This allows canceling during early boot.
4395 */
4396 if (wq_online)
4397 __flush_work(work, true);
4398
4399 if (!(cflags & WORK_CANCEL_DISABLE))
4400 enable_work(work);
4401
4402 return ret;
4403 }
4404
4405 /*
4406 * See cancel_delayed_work()
4407 */
cancel_work(struct work_struct * work)4408 bool cancel_work(struct work_struct *work)
4409 {
4410 return __cancel_work(work, 0);
4411 }
4412 EXPORT_SYMBOL(cancel_work);
4413
4414 /**
4415 * cancel_work_sync - cancel a work and wait for it to finish
4416 * @work: the work to cancel
4417 *
4418 * Cancel @work and wait for its execution to finish. This function can be used
4419 * even if the work re-queues itself or migrates to another workqueue. On return
4420 * from this function, @work is guaranteed to be not pending or executing on any
4421 * CPU as long as there aren't racing enqueues.
4422 *
4423 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4424 * Use cancel_delayed_work_sync() instead.
4425 *
4426 * Must be called from a sleepable context if @work was last queued on a non-BH
4427 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4428 * if @work was last queued on a BH workqueue.
4429 *
4430 * Returns %true if @work was pending, %false otherwise.
4431 */
cancel_work_sync(struct work_struct * work)4432 bool cancel_work_sync(struct work_struct *work)
4433 {
4434 return __cancel_work_sync(work, 0);
4435 }
4436 EXPORT_SYMBOL_GPL(cancel_work_sync);
4437
4438 /**
4439 * cancel_delayed_work - cancel a delayed work
4440 * @dwork: delayed_work to cancel
4441 *
4442 * Kill off a pending delayed_work.
4443 *
4444 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4445 * pending.
4446 *
4447 * Note:
4448 * The work callback function may still be running on return, unless
4449 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4450 * use cancel_delayed_work_sync() to wait on it.
4451 *
4452 * This function is safe to call from any context including IRQ handler.
4453 */
cancel_delayed_work(struct delayed_work * dwork)4454 bool cancel_delayed_work(struct delayed_work *dwork)
4455 {
4456 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4457 }
4458 EXPORT_SYMBOL(cancel_delayed_work);
4459
4460 /**
4461 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4462 * @dwork: the delayed work cancel
4463 *
4464 * This is cancel_work_sync() for delayed works.
4465 *
4466 * Return:
4467 * %true if @dwork was pending, %false otherwise.
4468 */
cancel_delayed_work_sync(struct delayed_work * dwork)4469 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4470 {
4471 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4472 }
4473 EXPORT_SYMBOL(cancel_delayed_work_sync);
4474
4475 /**
4476 * disable_work - Disable and cancel a work item
4477 * @work: work item to disable
4478 *
4479 * Disable @work by incrementing its disable count and cancel it if currently
4480 * pending. As long as the disable count is non-zero, any attempt to queue @work
4481 * will fail and return %false. The maximum supported disable depth is 2 to the
4482 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4483 *
4484 * Can be called from any context. Returns %true if @work was pending, %false
4485 * otherwise.
4486 */
disable_work(struct work_struct * work)4487 bool disable_work(struct work_struct *work)
4488 {
4489 return __cancel_work(work, WORK_CANCEL_DISABLE);
4490 }
4491 EXPORT_SYMBOL_GPL(disable_work);
4492
4493 /**
4494 * disable_work_sync - Disable, cancel and drain a work item
4495 * @work: work item to disable
4496 *
4497 * Similar to disable_work() but also wait for @work to finish if currently
4498 * executing.
4499 *
4500 * Must be called from a sleepable context if @work was last queued on a non-BH
4501 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4502 * if @work was last queued on a BH workqueue.
4503 *
4504 * Returns %true if @work was pending, %false otherwise.
4505 */
disable_work_sync(struct work_struct * work)4506 bool disable_work_sync(struct work_struct *work)
4507 {
4508 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4509 }
4510 EXPORT_SYMBOL_GPL(disable_work_sync);
4511
4512 /**
4513 * enable_work - Enable a work item
4514 * @work: work item to enable
4515 *
4516 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4517 * only be queued if its disable count is 0.
4518 *
4519 * Can be called from any context. Returns %true if the disable count reached 0.
4520 * Otherwise, %false.
4521 */
enable_work(struct work_struct * work)4522 bool enable_work(struct work_struct *work)
4523 {
4524 struct work_offq_data offqd;
4525 unsigned long irq_flags;
4526
4527 work_grab_pending(work, 0, &irq_flags);
4528
4529 work_offqd_unpack(&offqd, *work_data_bits(work));
4530 work_offqd_enable(&offqd);
4531 set_work_pool_and_clear_pending(work, offqd.pool_id,
4532 work_offqd_pack_flags(&offqd));
4533 local_irq_restore(irq_flags);
4534
4535 return !offqd.disable;
4536 }
4537 EXPORT_SYMBOL_GPL(enable_work);
4538
4539 /**
4540 * disable_delayed_work - Disable and cancel a delayed work item
4541 * @dwork: delayed work item to disable
4542 *
4543 * disable_work() for delayed work items.
4544 */
disable_delayed_work(struct delayed_work * dwork)4545 bool disable_delayed_work(struct delayed_work *dwork)
4546 {
4547 return __cancel_work(&dwork->work,
4548 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4549 }
4550 EXPORT_SYMBOL_GPL(disable_delayed_work);
4551
4552 /**
4553 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4554 * @dwork: delayed work item to disable
4555 *
4556 * disable_work_sync() for delayed work items.
4557 */
disable_delayed_work_sync(struct delayed_work * dwork)4558 bool disable_delayed_work_sync(struct delayed_work *dwork)
4559 {
4560 return __cancel_work_sync(&dwork->work,
4561 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4562 }
4563 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4564
4565 /**
4566 * enable_delayed_work - Enable a delayed work item
4567 * @dwork: delayed work item to enable
4568 *
4569 * enable_work() for delayed work items.
4570 */
enable_delayed_work(struct delayed_work * dwork)4571 bool enable_delayed_work(struct delayed_work *dwork)
4572 {
4573 return enable_work(&dwork->work);
4574 }
4575 EXPORT_SYMBOL_GPL(enable_delayed_work);
4576
4577 /**
4578 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4579 * @func: the function to call
4580 *
4581 * schedule_on_each_cpu() executes @func on each online CPU using the
4582 * system workqueue and blocks until all CPUs have completed.
4583 * schedule_on_each_cpu() is very slow.
4584 *
4585 * Return:
4586 * 0 on success, -errno on failure.
4587 */
schedule_on_each_cpu(work_func_t func)4588 int schedule_on_each_cpu(work_func_t func)
4589 {
4590 int cpu;
4591 struct work_struct __percpu *works;
4592
4593 works = alloc_percpu(struct work_struct);
4594 if (!works)
4595 return -ENOMEM;
4596
4597 cpus_read_lock();
4598
4599 for_each_online_cpu(cpu) {
4600 struct work_struct *work = per_cpu_ptr(works, cpu);
4601
4602 INIT_WORK(work, func);
4603 schedule_work_on(cpu, work);
4604 }
4605
4606 for_each_online_cpu(cpu)
4607 flush_work(per_cpu_ptr(works, cpu));
4608
4609 cpus_read_unlock();
4610 free_percpu(works);
4611 return 0;
4612 }
4613
4614 /**
4615 * execute_in_process_context - reliably execute the routine with user context
4616 * @fn: the function to execute
4617 * @ew: guaranteed storage for the execute work structure (must
4618 * be available when the work executes)
4619 *
4620 * Executes the function immediately if process context is available,
4621 * otherwise schedules the function for delayed execution.
4622 *
4623 * Return: 0 - function was executed
4624 * 1 - function was scheduled for execution
4625 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4626 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4627 {
4628 if (!in_interrupt()) {
4629 fn(&ew->work);
4630 return 0;
4631 }
4632
4633 INIT_WORK(&ew->work, fn);
4634 schedule_work(&ew->work);
4635
4636 return 1;
4637 }
4638 EXPORT_SYMBOL_GPL(execute_in_process_context);
4639
4640 /**
4641 * free_workqueue_attrs - free a workqueue_attrs
4642 * @attrs: workqueue_attrs to free
4643 *
4644 * Undo alloc_workqueue_attrs().
4645 */
free_workqueue_attrs(struct workqueue_attrs * attrs)4646 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4647 {
4648 if (attrs) {
4649 free_cpumask_var(attrs->cpumask);
4650 free_cpumask_var(attrs->__pod_cpumask);
4651 kfree(attrs);
4652 }
4653 }
4654
4655 /**
4656 * alloc_workqueue_attrs - allocate a workqueue_attrs
4657 *
4658 * Allocate a new workqueue_attrs, initialize with default settings and
4659 * return it.
4660 *
4661 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4662 */
alloc_workqueue_attrs_noprof(void)4663 struct workqueue_attrs *alloc_workqueue_attrs_noprof(void)
4664 {
4665 struct workqueue_attrs *attrs;
4666
4667 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4668 if (!attrs)
4669 goto fail;
4670 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4671 goto fail;
4672 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4673 goto fail;
4674
4675 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4676 attrs->affn_scope = WQ_AFFN_DFL;
4677 return attrs;
4678 fail:
4679 free_workqueue_attrs(attrs);
4680 return NULL;
4681 }
4682
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4683 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4684 const struct workqueue_attrs *from)
4685 {
4686 to->nice = from->nice;
4687 cpumask_copy(to->cpumask, from->cpumask);
4688 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4689 to->affn_strict = from->affn_strict;
4690
4691 /*
4692 * Unlike hash and equality test, copying shouldn't ignore wq-only
4693 * fields as copying is used for both pool and wq attrs. Instead,
4694 * get_unbound_pool() explicitly clears the fields.
4695 */
4696 to->affn_scope = from->affn_scope;
4697 to->ordered = from->ordered;
4698 }
4699
4700 /*
4701 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4702 * comments in 'struct workqueue_attrs' definition.
4703 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4704 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4705 {
4706 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4707 attrs->ordered = false;
4708 if (attrs->affn_strict)
4709 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4710 }
4711
4712 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4713 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4714 {
4715 u32 hash = 0;
4716
4717 hash = jhash_1word(attrs->nice, hash);
4718 hash = jhash_1word(attrs->affn_strict, hash);
4719 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4720 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4721 if (!attrs->affn_strict)
4722 hash = jhash(cpumask_bits(attrs->cpumask),
4723 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4724 return hash;
4725 }
4726
4727 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4728 static bool wqattrs_equal(const struct workqueue_attrs *a,
4729 const struct workqueue_attrs *b)
4730 {
4731 if (a->nice != b->nice)
4732 return false;
4733 if (a->affn_strict != b->affn_strict)
4734 return false;
4735 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4736 return false;
4737 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4738 return false;
4739 return true;
4740 }
4741
4742 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4743 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4744 const cpumask_t *unbound_cpumask)
4745 {
4746 /*
4747 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4748 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4749 * @unbound_cpumask.
4750 */
4751 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4752 if (unlikely(cpumask_empty(attrs->cpumask)))
4753 cpumask_copy(attrs->cpumask, unbound_cpumask);
4754 }
4755
4756 /* find wq_pod_type to use for @attrs */
4757 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4758 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4759 {
4760 enum wq_affn_scope scope;
4761 struct wq_pod_type *pt;
4762
4763 /* to synchronize access to wq_affn_dfl */
4764 lockdep_assert_held(&wq_pool_mutex);
4765
4766 if (attrs->affn_scope == WQ_AFFN_DFL)
4767 scope = wq_affn_dfl;
4768 else
4769 scope = attrs->affn_scope;
4770
4771 pt = &wq_pod_types[scope];
4772
4773 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4774 likely(pt->nr_pods))
4775 return pt;
4776
4777 /*
4778 * Before workqueue_init_topology(), only SYSTEM is available which is
4779 * initialized in workqueue_init_early().
4780 */
4781 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4782 BUG_ON(!pt->nr_pods);
4783 return pt;
4784 }
4785
4786 /**
4787 * init_worker_pool - initialize a newly zalloc'd worker_pool
4788 * @pool: worker_pool to initialize
4789 *
4790 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4791 *
4792 * Return: 0 on success, -errno on failure. Even on failure, all fields
4793 * inside @pool proper are initialized and put_unbound_pool() can be called
4794 * on @pool safely to release it.
4795 */
init_worker_pool(struct worker_pool * pool)4796 static int init_worker_pool(struct worker_pool *pool)
4797 {
4798 raw_spin_lock_init(&pool->lock);
4799 pool->id = -1;
4800 pool->cpu = -1;
4801 pool->node = NUMA_NO_NODE;
4802 pool->flags |= POOL_DISASSOCIATED;
4803 pool->watchdog_ts = jiffies;
4804 INIT_LIST_HEAD(&pool->worklist);
4805 INIT_LIST_HEAD(&pool->idle_list);
4806 hash_init(pool->busy_hash);
4807
4808 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4809 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4810
4811 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4812
4813 INIT_LIST_HEAD(&pool->workers);
4814
4815 ida_init(&pool->worker_ida);
4816 INIT_HLIST_NODE(&pool->hash_node);
4817 pool->refcnt = 1;
4818 #ifdef CONFIG_PREEMPT_RT
4819 spin_lock_init(&pool->cb_lock);
4820 #endif
4821
4822 /* shouldn't fail above this point */
4823 pool->attrs = alloc_workqueue_attrs();
4824 if (!pool->attrs)
4825 return -ENOMEM;
4826
4827 wqattrs_clear_for_pool(pool->attrs);
4828
4829 return 0;
4830 }
4831
4832 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4833 static void wq_init_lockdep(struct workqueue_struct *wq)
4834 {
4835 char *lock_name;
4836
4837 lockdep_register_key(&wq->key);
4838 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4839 if (!lock_name)
4840 lock_name = wq->name;
4841
4842 wq->lock_name = lock_name;
4843 wq->lockdep_map = &wq->__lockdep_map;
4844 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4845 }
4846
wq_unregister_lockdep(struct workqueue_struct * wq)4847 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4848 {
4849 if (wq->lockdep_map != &wq->__lockdep_map)
4850 return;
4851
4852 lockdep_unregister_key(&wq->key);
4853 }
4854
wq_free_lockdep(struct workqueue_struct * wq)4855 static void wq_free_lockdep(struct workqueue_struct *wq)
4856 {
4857 if (wq->lockdep_map != &wq->__lockdep_map)
4858 return;
4859
4860 if (wq->lock_name != wq->name)
4861 kfree(wq->lock_name);
4862 }
4863 #else
wq_init_lockdep(struct workqueue_struct * wq)4864 static void wq_init_lockdep(struct workqueue_struct *wq)
4865 {
4866 }
4867
wq_unregister_lockdep(struct workqueue_struct * wq)4868 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4869 {
4870 }
4871
wq_free_lockdep(struct workqueue_struct * wq)4872 static void wq_free_lockdep(struct workqueue_struct *wq)
4873 {
4874 }
4875 #endif
4876
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4877 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4878 {
4879 int node;
4880
4881 for_each_node(node) {
4882 kfree(nna_ar[node]);
4883 nna_ar[node] = NULL;
4884 }
4885
4886 kfree(nna_ar[nr_node_ids]);
4887 nna_ar[nr_node_ids] = NULL;
4888 }
4889
init_node_nr_active(struct wq_node_nr_active * nna)4890 static void init_node_nr_active(struct wq_node_nr_active *nna)
4891 {
4892 nna->max = WQ_DFL_MIN_ACTIVE;
4893 atomic_set(&nna->nr, 0);
4894 raw_spin_lock_init(&nna->lock);
4895 INIT_LIST_HEAD(&nna->pending_pwqs);
4896 }
4897
4898 /*
4899 * Each node's nr_active counter will be accessed mostly from its own node and
4900 * should be allocated in the node.
4901 */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4902 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4903 {
4904 struct wq_node_nr_active *nna;
4905 int node;
4906
4907 for_each_node(node) {
4908 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4909 if (!nna)
4910 goto err_free;
4911 init_node_nr_active(nna);
4912 nna_ar[node] = nna;
4913 }
4914
4915 /* [nr_node_ids] is used as the fallback */
4916 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4917 if (!nna)
4918 goto err_free;
4919 init_node_nr_active(nna);
4920 nna_ar[nr_node_ids] = nna;
4921
4922 return 0;
4923
4924 err_free:
4925 free_node_nr_active(nna_ar);
4926 return -ENOMEM;
4927 }
4928
rcu_free_wq(struct rcu_head * rcu)4929 static void rcu_free_wq(struct rcu_head *rcu)
4930 {
4931 struct workqueue_struct *wq =
4932 container_of(rcu, struct workqueue_struct, rcu);
4933
4934 if (wq->flags & WQ_UNBOUND)
4935 free_node_nr_active(wq->node_nr_active);
4936
4937 wq_free_lockdep(wq);
4938 free_percpu(wq->cpu_pwq);
4939 free_workqueue_attrs(wq->unbound_attrs);
4940 kfree(wq);
4941 }
4942
rcu_free_pool(struct rcu_head * rcu)4943 static void rcu_free_pool(struct rcu_head *rcu)
4944 {
4945 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4946
4947 ida_destroy(&pool->worker_ida);
4948 free_workqueue_attrs(pool->attrs);
4949 kfree(pool);
4950 }
4951
4952 /**
4953 * put_unbound_pool - put a worker_pool
4954 * @pool: worker_pool to put
4955 *
4956 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4957 * safe manner. get_unbound_pool() calls this function on its failure path
4958 * and this function should be able to release pools which went through,
4959 * successfully or not, init_worker_pool().
4960 *
4961 * Should be called with wq_pool_mutex held.
4962 */
put_unbound_pool(struct worker_pool * pool)4963 static void put_unbound_pool(struct worker_pool *pool)
4964 {
4965 struct worker *worker;
4966 LIST_HEAD(cull_list);
4967
4968 lockdep_assert_held(&wq_pool_mutex);
4969
4970 if (--pool->refcnt)
4971 return;
4972
4973 /* sanity checks */
4974 if (WARN_ON(!(pool->cpu < 0)) ||
4975 WARN_ON(!list_empty(&pool->worklist)))
4976 return;
4977
4978 /* release id and unhash */
4979 if (pool->id >= 0)
4980 idr_remove(&worker_pool_idr, pool->id);
4981 hash_del(&pool->hash_node);
4982
4983 /*
4984 * Become the manager and destroy all workers. This prevents
4985 * @pool's workers from blocking on attach_mutex. We're the last
4986 * manager and @pool gets freed with the flag set.
4987 *
4988 * Having a concurrent manager is quite unlikely to happen as we can
4989 * only get here with
4990 * pwq->refcnt == pool->refcnt == 0
4991 * which implies no work queued to the pool, which implies no worker can
4992 * become the manager. However a worker could have taken the role of
4993 * manager before the refcnts dropped to 0, since maybe_create_worker()
4994 * drops pool->lock
4995 */
4996 while (true) {
4997 rcuwait_wait_event(&manager_wait,
4998 !(pool->flags & POOL_MANAGER_ACTIVE),
4999 TASK_UNINTERRUPTIBLE);
5000
5001 mutex_lock(&wq_pool_attach_mutex);
5002 raw_spin_lock_irq(&pool->lock);
5003 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
5004 pool->flags |= POOL_MANAGER_ACTIVE;
5005 break;
5006 }
5007 raw_spin_unlock_irq(&pool->lock);
5008 mutex_unlock(&wq_pool_attach_mutex);
5009 }
5010
5011 while ((worker = first_idle_worker(pool)))
5012 set_worker_dying(worker, &cull_list);
5013 WARN_ON(pool->nr_workers || pool->nr_idle);
5014 raw_spin_unlock_irq(&pool->lock);
5015
5016 detach_dying_workers(&cull_list);
5017
5018 mutex_unlock(&wq_pool_attach_mutex);
5019
5020 reap_dying_workers(&cull_list);
5021
5022 /* shut down the timers */
5023 timer_delete_sync(&pool->idle_timer);
5024 cancel_work_sync(&pool->idle_cull_work);
5025 timer_delete_sync(&pool->mayday_timer);
5026
5027 /* RCU protected to allow dereferences from get_work_pool() */
5028 call_rcu(&pool->rcu, rcu_free_pool);
5029 }
5030
5031 /**
5032 * get_unbound_pool - get a worker_pool with the specified attributes
5033 * @attrs: the attributes of the worker_pool to get
5034 *
5035 * Obtain a worker_pool which has the same attributes as @attrs, bump the
5036 * reference count and return it. If there already is a matching
5037 * worker_pool, it will be used; otherwise, this function attempts to
5038 * create a new one.
5039 *
5040 * Should be called with wq_pool_mutex held.
5041 *
5042 * Return: On success, a worker_pool with the same attributes as @attrs.
5043 * On failure, %NULL.
5044 */
get_unbound_pool(const struct workqueue_attrs * attrs)5045 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5046 {
5047 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5048 u32 hash = wqattrs_hash(attrs);
5049 struct worker_pool *pool;
5050 int pod, node = NUMA_NO_NODE;
5051
5052 lockdep_assert_held(&wq_pool_mutex);
5053
5054 /* do we already have a matching pool? */
5055 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5056 if (wqattrs_equal(pool->attrs, attrs)) {
5057 pool->refcnt++;
5058 return pool;
5059 }
5060 }
5061
5062 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5063 for (pod = 0; pod < pt->nr_pods; pod++) {
5064 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5065 node = pt->pod_node[pod];
5066 break;
5067 }
5068 }
5069
5070 /* nope, create a new one */
5071 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5072 if (!pool || init_worker_pool(pool) < 0)
5073 goto fail;
5074
5075 pool->node = node;
5076 copy_workqueue_attrs(pool->attrs, attrs);
5077 wqattrs_clear_for_pool(pool->attrs);
5078
5079 if (worker_pool_assign_id(pool) < 0)
5080 goto fail;
5081
5082 /* create and start the initial worker */
5083 if (wq_online && !create_worker(pool))
5084 goto fail;
5085
5086 /* install */
5087 hash_add(unbound_pool_hash, &pool->hash_node, hash);
5088
5089 return pool;
5090 fail:
5091 if (pool)
5092 put_unbound_pool(pool);
5093 return NULL;
5094 }
5095
5096 /*
5097 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5098 * refcnt and needs to be destroyed.
5099 */
pwq_release_workfn(struct kthread_work * work)5100 static void pwq_release_workfn(struct kthread_work *work)
5101 {
5102 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5103 release_work);
5104 struct workqueue_struct *wq = pwq->wq;
5105 struct worker_pool *pool = pwq->pool;
5106 bool is_last = false;
5107
5108 /*
5109 * When @pwq is not linked, it doesn't hold any reference to the
5110 * @wq, and @wq is invalid to access.
5111 */
5112 if (!list_empty(&pwq->pwqs_node)) {
5113 mutex_lock(&wq->mutex);
5114 list_del_rcu(&pwq->pwqs_node);
5115 is_last = list_empty(&wq->pwqs);
5116
5117 /*
5118 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5119 */
5120 if (!is_last && (wq->flags & __WQ_ORDERED))
5121 unplug_oldest_pwq(wq);
5122
5123 mutex_unlock(&wq->mutex);
5124 }
5125
5126 if (wq->flags & WQ_UNBOUND) {
5127 mutex_lock(&wq_pool_mutex);
5128 put_unbound_pool(pool);
5129 mutex_unlock(&wq_pool_mutex);
5130 }
5131
5132 if (!list_empty(&pwq->pending_node)) {
5133 struct wq_node_nr_active *nna =
5134 wq_node_nr_active(pwq->wq, pwq->pool->node);
5135
5136 raw_spin_lock_irq(&nna->lock);
5137 list_del_init(&pwq->pending_node);
5138 raw_spin_unlock_irq(&nna->lock);
5139 }
5140
5141 kfree_rcu(pwq, rcu);
5142
5143 /*
5144 * If we're the last pwq going away, @wq is already dead and no one
5145 * is gonna access it anymore. Schedule RCU free.
5146 */
5147 if (is_last) {
5148 wq_unregister_lockdep(wq);
5149 call_rcu(&wq->rcu, rcu_free_wq);
5150 }
5151 }
5152
5153 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5154 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5155 struct worker_pool *pool)
5156 {
5157 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5158
5159 memset(pwq, 0, sizeof(*pwq));
5160
5161 pwq->pool = pool;
5162 pwq->wq = wq;
5163 pwq->flush_color = -1;
5164 pwq->refcnt = 1;
5165 INIT_LIST_HEAD(&pwq->inactive_works);
5166 INIT_LIST_HEAD(&pwq->pending_node);
5167 INIT_LIST_HEAD(&pwq->pwqs_node);
5168 INIT_LIST_HEAD(&pwq->mayday_node);
5169 kthread_init_work(&pwq->release_work, pwq_release_workfn);
5170 }
5171
5172 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5173 static void link_pwq(struct pool_workqueue *pwq)
5174 {
5175 struct workqueue_struct *wq = pwq->wq;
5176
5177 lockdep_assert_held(&wq->mutex);
5178
5179 /* may be called multiple times, ignore if already linked */
5180 if (!list_empty(&pwq->pwqs_node))
5181 return;
5182
5183 /* set the matching work_color */
5184 pwq->work_color = wq->work_color;
5185
5186 /* link in @pwq */
5187 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5188 }
5189
5190 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5191 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5192 const struct workqueue_attrs *attrs)
5193 {
5194 struct worker_pool *pool;
5195 struct pool_workqueue *pwq;
5196
5197 lockdep_assert_held(&wq_pool_mutex);
5198
5199 pool = get_unbound_pool(attrs);
5200 if (!pool)
5201 return NULL;
5202
5203 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5204 if (!pwq) {
5205 put_unbound_pool(pool);
5206 return NULL;
5207 }
5208
5209 init_pwq(pwq, wq, pool);
5210 return pwq;
5211 }
5212
apply_wqattrs_lock(void)5213 static void apply_wqattrs_lock(void)
5214 {
5215 mutex_lock(&wq_pool_mutex);
5216 }
5217
apply_wqattrs_unlock(void)5218 static void apply_wqattrs_unlock(void)
5219 {
5220 mutex_unlock(&wq_pool_mutex);
5221 }
5222
5223 /**
5224 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5225 * @attrs: the wq_attrs of the default pwq of the target workqueue
5226 * @cpu: the target CPU
5227 *
5228 * Calculate the cpumask a workqueue with @attrs should use on @pod.
5229 * The result is stored in @attrs->__pod_cpumask.
5230 *
5231 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5232 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5233 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5234 *
5235 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5236 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5237 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5238 {
5239 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5240 int pod = pt->cpu_pod[cpu];
5241
5242 /* calculate possible CPUs in @pod that @attrs wants */
5243 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5244 /* does @pod have any online CPUs @attrs wants? */
5245 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5246 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5247 return;
5248 }
5249 }
5250
5251 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5252 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5253 int cpu, struct pool_workqueue *pwq)
5254 {
5255 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5256 struct pool_workqueue *old_pwq;
5257
5258 lockdep_assert_held(&wq_pool_mutex);
5259 lockdep_assert_held(&wq->mutex);
5260
5261 /* link_pwq() can handle duplicate calls */
5262 link_pwq(pwq);
5263
5264 old_pwq = rcu_access_pointer(*slot);
5265 rcu_assign_pointer(*slot, pwq);
5266 return old_pwq;
5267 }
5268
5269 /* context to store the prepared attrs & pwqs before applying */
5270 struct apply_wqattrs_ctx {
5271 struct workqueue_struct *wq; /* target workqueue */
5272 struct workqueue_attrs *attrs; /* attrs to apply */
5273 struct list_head list; /* queued for batching commit */
5274 struct pool_workqueue *dfl_pwq;
5275 struct pool_workqueue *pwq_tbl[];
5276 };
5277
5278 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5279 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5280 {
5281 if (ctx) {
5282 int cpu;
5283
5284 for_each_possible_cpu(cpu)
5285 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5286 put_pwq_unlocked(ctx->dfl_pwq);
5287
5288 free_workqueue_attrs(ctx->attrs);
5289
5290 kfree(ctx);
5291 }
5292 }
5293
5294 /* allocate the attrs and pwqs for later installation */
5295 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5296 apply_wqattrs_prepare(struct workqueue_struct *wq,
5297 const struct workqueue_attrs *attrs,
5298 const cpumask_var_t unbound_cpumask)
5299 {
5300 struct apply_wqattrs_ctx *ctx;
5301 struct workqueue_attrs *new_attrs;
5302 int cpu;
5303
5304 lockdep_assert_held(&wq_pool_mutex);
5305
5306 if (WARN_ON(attrs->affn_scope < 0 ||
5307 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5308 return ERR_PTR(-EINVAL);
5309
5310 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5311
5312 new_attrs = alloc_workqueue_attrs();
5313 if (!ctx || !new_attrs)
5314 goto out_free;
5315
5316 /*
5317 * If something goes wrong during CPU up/down, we'll fall back to
5318 * the default pwq covering whole @attrs->cpumask. Always create
5319 * it even if we don't use it immediately.
5320 */
5321 copy_workqueue_attrs(new_attrs, attrs);
5322 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5323 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5324 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5325 if (!ctx->dfl_pwq)
5326 goto out_free;
5327
5328 for_each_possible_cpu(cpu) {
5329 if (new_attrs->ordered) {
5330 ctx->dfl_pwq->refcnt++;
5331 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5332 } else {
5333 wq_calc_pod_cpumask(new_attrs, cpu);
5334 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5335 if (!ctx->pwq_tbl[cpu])
5336 goto out_free;
5337 }
5338 }
5339
5340 /* save the user configured attrs and sanitize it. */
5341 copy_workqueue_attrs(new_attrs, attrs);
5342 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5343 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5344 ctx->attrs = new_attrs;
5345
5346 /*
5347 * For initialized ordered workqueues, there should only be one pwq
5348 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5349 * of newly queued work items until execution of older work items in
5350 * the old pwq's have completed.
5351 */
5352 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5353 ctx->dfl_pwq->plugged = true;
5354
5355 ctx->wq = wq;
5356 return ctx;
5357
5358 out_free:
5359 free_workqueue_attrs(new_attrs);
5360 apply_wqattrs_cleanup(ctx);
5361 return ERR_PTR(-ENOMEM);
5362 }
5363
5364 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5365 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5366 {
5367 int cpu;
5368
5369 /* all pwqs have been created successfully, let's install'em */
5370 mutex_lock(&ctx->wq->mutex);
5371
5372 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5373
5374 /* save the previous pwqs and install the new ones */
5375 for_each_possible_cpu(cpu)
5376 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5377 ctx->pwq_tbl[cpu]);
5378 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5379
5380 /* update node_nr_active->max */
5381 wq_update_node_max_active(ctx->wq, -1);
5382
5383 mutex_unlock(&ctx->wq->mutex);
5384 }
5385
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5386 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5387 const struct workqueue_attrs *attrs)
5388 {
5389 struct apply_wqattrs_ctx *ctx;
5390
5391 /* only unbound workqueues can change attributes */
5392 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5393 return -EINVAL;
5394
5395 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5396 if (IS_ERR(ctx))
5397 return PTR_ERR(ctx);
5398
5399 /* the ctx has been prepared successfully, let's commit it */
5400 apply_wqattrs_commit(ctx);
5401 apply_wqattrs_cleanup(ctx);
5402
5403 return 0;
5404 }
5405
5406 /**
5407 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5408 * @wq: the target workqueue
5409 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5410 *
5411 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5412 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5413 * work items are affine to the pod it was issued on. Older pwqs are released as
5414 * in-flight work items finish. Note that a work item which repeatedly requeues
5415 * itself back-to-back will stay on its current pwq.
5416 *
5417 * Performs GFP_KERNEL allocations.
5418 *
5419 * Return: 0 on success and -errno on failure.
5420 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5421 int apply_workqueue_attrs(struct workqueue_struct *wq,
5422 const struct workqueue_attrs *attrs)
5423 {
5424 int ret;
5425
5426 mutex_lock(&wq_pool_mutex);
5427 ret = apply_workqueue_attrs_locked(wq, attrs);
5428 mutex_unlock(&wq_pool_mutex);
5429
5430 return ret;
5431 }
5432
5433 /**
5434 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5435 * @wq: the target workqueue
5436 * @cpu: the CPU to update the pwq slot for
5437 *
5438 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5439 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
5440 *
5441 *
5442 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5443 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5444 *
5445 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5446 * with a cpumask spanning multiple pods, the workers which were already
5447 * executing the work items for the workqueue will lose their CPU affinity and
5448 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5449 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5450 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5451 */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5452 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5453 {
5454 struct pool_workqueue *old_pwq = NULL, *pwq;
5455 struct workqueue_attrs *target_attrs;
5456
5457 lockdep_assert_held(&wq_pool_mutex);
5458
5459 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5460 return;
5461
5462 /*
5463 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5464 * Let's use a preallocated one. The following buf is protected by
5465 * CPU hotplug exclusion.
5466 */
5467 target_attrs = unbound_wq_update_pwq_attrs_buf;
5468
5469 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5470 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5471
5472 /* nothing to do if the target cpumask matches the current pwq */
5473 wq_calc_pod_cpumask(target_attrs, cpu);
5474 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5475 return;
5476
5477 /* create a new pwq */
5478 pwq = alloc_unbound_pwq(wq, target_attrs);
5479 if (!pwq) {
5480 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5481 wq->name);
5482 goto use_dfl_pwq;
5483 }
5484
5485 /* Install the new pwq. */
5486 mutex_lock(&wq->mutex);
5487 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5488 goto out_unlock;
5489
5490 use_dfl_pwq:
5491 mutex_lock(&wq->mutex);
5492 pwq = unbound_pwq(wq, -1);
5493 raw_spin_lock_irq(&pwq->pool->lock);
5494 get_pwq(pwq);
5495 raw_spin_unlock_irq(&pwq->pool->lock);
5496 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5497 out_unlock:
5498 mutex_unlock(&wq->mutex);
5499 put_pwq_unlocked(old_pwq);
5500 }
5501
alloc_and_link_pwqs(struct workqueue_struct * wq)5502 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5503 {
5504 bool highpri = wq->flags & WQ_HIGHPRI;
5505 int cpu, ret;
5506
5507 lockdep_assert_held(&wq_pool_mutex);
5508
5509 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5510 if (!wq->cpu_pwq)
5511 goto enomem;
5512
5513 if (!(wq->flags & WQ_UNBOUND)) {
5514 struct worker_pool __percpu *pools;
5515
5516 if (wq->flags & WQ_BH)
5517 pools = bh_worker_pools;
5518 else
5519 pools = cpu_worker_pools;
5520
5521 for_each_possible_cpu(cpu) {
5522 struct pool_workqueue **pwq_p;
5523 struct worker_pool *pool;
5524
5525 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5526 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5527
5528 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5529 pool->node);
5530 if (!*pwq_p)
5531 goto enomem;
5532
5533 init_pwq(*pwq_p, wq, pool);
5534
5535 mutex_lock(&wq->mutex);
5536 link_pwq(*pwq_p);
5537 mutex_unlock(&wq->mutex);
5538 }
5539 return 0;
5540 }
5541
5542 if (wq->flags & __WQ_ORDERED) {
5543 struct pool_workqueue *dfl_pwq;
5544
5545 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5546 /* there should only be single pwq for ordering guarantee */
5547 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5548 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5549 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5550 "ordering guarantee broken for workqueue %s\n", wq->name);
5551 } else {
5552 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5553 }
5554
5555 return ret;
5556
5557 enomem:
5558 if (wq->cpu_pwq) {
5559 for_each_possible_cpu(cpu) {
5560 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5561
5562 if (pwq)
5563 kmem_cache_free(pwq_cache, pwq);
5564 }
5565 free_percpu(wq->cpu_pwq);
5566 wq->cpu_pwq = NULL;
5567 }
5568 return -ENOMEM;
5569 }
5570
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5571 static int wq_clamp_max_active(int max_active, unsigned int flags,
5572 const char *name)
5573 {
5574 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5575 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5576 max_active, name, 1, WQ_MAX_ACTIVE);
5577
5578 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5579 }
5580
5581 /*
5582 * Workqueues which may be used during memory reclaim should have a rescuer
5583 * to guarantee forward progress.
5584 */
init_rescuer(struct workqueue_struct * wq)5585 static int init_rescuer(struct workqueue_struct *wq)
5586 {
5587 struct worker *rescuer;
5588 char id_buf[WORKER_ID_LEN];
5589 int ret;
5590
5591 lockdep_assert_held(&wq_pool_mutex);
5592
5593 if (!(wq->flags & WQ_MEM_RECLAIM))
5594 return 0;
5595
5596 rescuer = alloc_worker(NUMA_NO_NODE);
5597 if (!rescuer) {
5598 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5599 wq->name);
5600 return -ENOMEM;
5601 }
5602
5603 rescuer->rescue_wq = wq;
5604 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5605
5606 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5607 if (IS_ERR(rescuer->task)) {
5608 ret = PTR_ERR(rescuer->task);
5609 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5610 wq->name, ERR_PTR(ret));
5611 kfree(rescuer);
5612 return ret;
5613 }
5614
5615 wq->rescuer = rescuer;
5616
5617 /* initial cpumask is consistent with the detached rescuer and unbind_worker() */
5618 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5619 kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5620 else
5621 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5622
5623 wake_up_process(rescuer->task);
5624
5625 return 0;
5626 }
5627
5628 /**
5629 * wq_adjust_max_active - update a wq's max_active to the current setting
5630 * @wq: target workqueue
5631 *
5632 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5633 * activate inactive work items accordingly. If @wq is freezing, clear
5634 * @wq->max_active to zero.
5635 */
wq_adjust_max_active(struct workqueue_struct * wq)5636 static void wq_adjust_max_active(struct workqueue_struct *wq)
5637 {
5638 bool activated;
5639 int new_max, new_min;
5640
5641 lockdep_assert_held(&wq->mutex);
5642
5643 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5644 new_max = 0;
5645 new_min = 0;
5646 } else {
5647 new_max = wq->saved_max_active;
5648 new_min = wq->saved_min_active;
5649 }
5650
5651 if (wq->max_active == new_max && wq->min_active == new_min)
5652 return;
5653
5654 /*
5655 * Update @wq->max/min_active and then kick inactive work items if more
5656 * active work items are allowed. This doesn't break work item ordering
5657 * because new work items are always queued behind existing inactive
5658 * work items if there are any.
5659 */
5660 WRITE_ONCE(wq->max_active, new_max);
5661 WRITE_ONCE(wq->min_active, new_min);
5662
5663 if (wq->flags & WQ_UNBOUND)
5664 wq_update_node_max_active(wq, -1);
5665
5666 if (new_max == 0)
5667 return;
5668
5669 /*
5670 * Round-robin through pwq's activating the first inactive work item
5671 * until max_active is filled.
5672 */
5673 do {
5674 struct pool_workqueue *pwq;
5675
5676 activated = false;
5677 for_each_pwq(pwq, wq) {
5678 unsigned long irq_flags;
5679
5680 /* can be called during early boot w/ irq disabled */
5681 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5682 if (pwq_activate_first_inactive(pwq, true)) {
5683 activated = true;
5684 kick_pool(pwq->pool);
5685 }
5686 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5687 }
5688 } while (activated);
5689 }
5690
5691 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5692 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5693 unsigned int flags,
5694 int max_active, va_list args)
5695 {
5696 struct workqueue_struct *wq;
5697 size_t wq_size;
5698 int name_len;
5699
5700 if (flags & WQ_BH) {
5701 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5702 return NULL;
5703 if (WARN_ON_ONCE(max_active))
5704 return NULL;
5705 }
5706
5707 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5708 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5709 flags |= WQ_UNBOUND;
5710
5711 /* allocate wq and format name */
5712 if (flags & WQ_UNBOUND)
5713 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5714 else
5715 wq_size = sizeof(*wq);
5716
5717 wq = kzalloc_noprof(wq_size, GFP_KERNEL);
5718 if (!wq)
5719 return NULL;
5720
5721 if (flags & WQ_UNBOUND) {
5722 wq->unbound_attrs = alloc_workqueue_attrs_noprof();
5723 if (!wq->unbound_attrs)
5724 goto err_free_wq;
5725 }
5726
5727 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5728
5729 if (name_len >= WQ_NAME_LEN)
5730 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5731 wq->name);
5732
5733 if (flags & WQ_BH) {
5734 /*
5735 * BH workqueues always share a single execution context per CPU
5736 * and don't impose any max_active limit.
5737 */
5738 max_active = INT_MAX;
5739 } else {
5740 max_active = max_active ?: WQ_DFL_ACTIVE;
5741 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5742 }
5743
5744 /* init wq */
5745 wq->flags = flags;
5746 wq->max_active = max_active;
5747 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5748 wq->saved_max_active = wq->max_active;
5749 wq->saved_min_active = wq->min_active;
5750 mutex_init(&wq->mutex);
5751 atomic_set(&wq->nr_pwqs_to_flush, 0);
5752 INIT_LIST_HEAD(&wq->pwqs);
5753 INIT_LIST_HEAD(&wq->flusher_queue);
5754 INIT_LIST_HEAD(&wq->flusher_overflow);
5755 INIT_LIST_HEAD(&wq->maydays);
5756
5757 INIT_LIST_HEAD(&wq->list);
5758
5759 if (flags & WQ_UNBOUND) {
5760 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5761 goto err_free_wq;
5762 }
5763
5764 /*
5765 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5766 * and the global freeze state.
5767 */
5768 apply_wqattrs_lock();
5769
5770 if (alloc_and_link_pwqs(wq) < 0)
5771 goto err_unlock_free_node_nr_active;
5772
5773 mutex_lock(&wq->mutex);
5774 wq_adjust_max_active(wq);
5775 mutex_unlock(&wq->mutex);
5776
5777 list_add_tail_rcu(&wq->list, &workqueues);
5778
5779 if (wq_online && init_rescuer(wq) < 0)
5780 goto err_unlock_destroy;
5781
5782 apply_wqattrs_unlock();
5783
5784 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5785 goto err_destroy;
5786
5787 return wq;
5788
5789 err_unlock_free_node_nr_active:
5790 apply_wqattrs_unlock();
5791 /*
5792 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5793 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5794 * completes before calling kfree(wq).
5795 */
5796 if (wq->flags & WQ_UNBOUND) {
5797 kthread_flush_worker(pwq_release_worker);
5798 free_node_nr_active(wq->node_nr_active);
5799 }
5800 err_free_wq:
5801 free_workqueue_attrs(wq->unbound_attrs);
5802 kfree(wq);
5803 return NULL;
5804 err_unlock_destroy:
5805 apply_wqattrs_unlock();
5806 err_destroy:
5807 destroy_workqueue(wq);
5808 return NULL;
5809 }
5810
5811 __printf(1, 4)
alloc_workqueue_noprof(const char * fmt,unsigned int flags,int max_active,...)5812 struct workqueue_struct *alloc_workqueue_noprof(const char *fmt,
5813 unsigned int flags,
5814 int max_active, ...)
5815 {
5816 struct workqueue_struct *wq;
5817 va_list args;
5818
5819 va_start(args, max_active);
5820 wq = __alloc_workqueue(fmt, flags, max_active, args);
5821 va_end(args);
5822 if (!wq)
5823 return NULL;
5824
5825 wq_init_lockdep(wq);
5826
5827 return wq;
5828 }
5829 EXPORT_SYMBOL_GPL(alloc_workqueue_noprof);
5830
5831 #ifdef CONFIG_LOCKDEP
5832 __printf(1, 5)
5833 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5834 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5835 int max_active, struct lockdep_map *lockdep_map, ...)
5836 {
5837 struct workqueue_struct *wq;
5838 va_list args;
5839
5840 va_start(args, lockdep_map);
5841 wq = __alloc_workqueue(fmt, flags, max_active, args);
5842 va_end(args);
5843 if (!wq)
5844 return NULL;
5845
5846 wq->lockdep_map = lockdep_map;
5847
5848 return wq;
5849 }
5850 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5851 #endif
5852
pwq_busy(struct pool_workqueue * pwq)5853 static bool pwq_busy(struct pool_workqueue *pwq)
5854 {
5855 int i;
5856
5857 for (i = 0; i < WORK_NR_COLORS; i++)
5858 if (pwq->nr_in_flight[i])
5859 return true;
5860
5861 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5862 return true;
5863 if (!pwq_is_empty(pwq))
5864 return true;
5865
5866 return false;
5867 }
5868
5869 /**
5870 * destroy_workqueue - safely terminate a workqueue
5871 * @wq: target workqueue
5872 *
5873 * Safely destroy a workqueue. All work currently pending will be done first.
5874 *
5875 * This function does NOT guarantee that non-pending work that has been
5876 * submitted with queue_delayed_work() and similar functions will be done
5877 * before destroying the workqueue. The fundamental problem is that, currently,
5878 * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5879 * is only linked on the timer-side. All delayed_work must, therefore, be
5880 * canceled before calling this function.
5881 *
5882 * TODO: It would be better if the problem described above wouldn't exist and
5883 * destroy_workqueue() would cleanly cancel all pending and non-pending
5884 * delayed_work.
5885 */
destroy_workqueue(struct workqueue_struct * wq)5886 void destroy_workqueue(struct workqueue_struct *wq)
5887 {
5888 struct pool_workqueue *pwq;
5889 int cpu;
5890
5891 /*
5892 * Remove it from sysfs first so that sanity check failure doesn't
5893 * lead to sysfs name conflicts.
5894 */
5895 workqueue_sysfs_unregister(wq);
5896
5897 /* mark the workqueue destruction is in progress */
5898 mutex_lock(&wq->mutex);
5899 wq->flags |= __WQ_DESTROYING;
5900 mutex_unlock(&wq->mutex);
5901
5902 /* drain it before proceeding with destruction */
5903 drain_workqueue(wq);
5904
5905 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5906 if (wq->rescuer) {
5907 /* rescuer will empty maydays list before exiting */
5908 kthread_stop(wq->rescuer->task);
5909 kfree(wq->rescuer);
5910 wq->rescuer = NULL;
5911 }
5912
5913 /*
5914 * Sanity checks - grab all the locks so that we wait for all
5915 * in-flight operations which may do put_pwq().
5916 */
5917 mutex_lock(&wq_pool_mutex);
5918 mutex_lock(&wq->mutex);
5919 for_each_pwq(pwq, wq) {
5920 raw_spin_lock_irq(&pwq->pool->lock);
5921 if (WARN_ON(pwq_busy(pwq))) {
5922 pr_warn("%s: %s has the following busy pwq\n",
5923 __func__, wq->name);
5924 show_pwq(pwq);
5925 raw_spin_unlock_irq(&pwq->pool->lock);
5926 mutex_unlock(&wq->mutex);
5927 mutex_unlock(&wq_pool_mutex);
5928 show_one_workqueue(wq);
5929 return;
5930 }
5931 raw_spin_unlock_irq(&pwq->pool->lock);
5932 }
5933 mutex_unlock(&wq->mutex);
5934
5935 /*
5936 * wq list is used to freeze wq, remove from list after
5937 * flushing is complete in case freeze races us.
5938 */
5939 list_del_rcu(&wq->list);
5940 mutex_unlock(&wq_pool_mutex);
5941
5942 /*
5943 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5944 * to put the base refs. @wq will be auto-destroyed from the last
5945 * pwq_put. RCU read lock prevents @wq from going away from under us.
5946 */
5947 rcu_read_lock();
5948
5949 for_each_possible_cpu(cpu) {
5950 put_pwq_unlocked(unbound_pwq(wq, cpu));
5951 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5952 }
5953
5954 put_pwq_unlocked(unbound_pwq(wq, -1));
5955 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5956
5957 rcu_read_unlock();
5958 }
5959 EXPORT_SYMBOL_GPL(destroy_workqueue);
5960
5961 /**
5962 * workqueue_set_max_active - adjust max_active of a workqueue
5963 * @wq: target workqueue
5964 * @max_active: new max_active value.
5965 *
5966 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5967 * comment.
5968 *
5969 * CONTEXT:
5970 * Don't call from IRQ context.
5971 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5972 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5973 {
5974 /* max_active doesn't mean anything for BH workqueues */
5975 if (WARN_ON(wq->flags & WQ_BH))
5976 return;
5977 /* disallow meddling with max_active for ordered workqueues */
5978 if (WARN_ON(wq->flags & __WQ_ORDERED))
5979 return;
5980
5981 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5982
5983 mutex_lock(&wq->mutex);
5984
5985 wq->saved_max_active = max_active;
5986 if (wq->flags & WQ_UNBOUND)
5987 wq->saved_min_active = min(wq->saved_min_active, max_active);
5988
5989 wq_adjust_max_active(wq);
5990
5991 mutex_unlock(&wq->mutex);
5992 }
5993 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5994
5995 /**
5996 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5997 * @wq: target unbound workqueue
5998 * @min_active: new min_active value
5999 *
6000 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
6001 * unbound workqueue is not guaranteed to be able to process max_active
6002 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
6003 * able to process min_active number of interdependent work items which is
6004 * %WQ_DFL_MIN_ACTIVE by default.
6005 *
6006 * Use this function to adjust the min_active value between 0 and the current
6007 * max_active.
6008 */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)6009 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
6010 {
6011 /* min_active is only meaningful for non-ordered unbound workqueues */
6012 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
6013 WQ_UNBOUND))
6014 return;
6015
6016 mutex_lock(&wq->mutex);
6017 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
6018 wq_adjust_max_active(wq);
6019 mutex_unlock(&wq->mutex);
6020 }
6021
6022 /**
6023 * current_work - retrieve %current task's work struct
6024 *
6025 * Determine if %current task is a workqueue worker and what it's working on.
6026 * Useful to find out the context that the %current task is running in.
6027 *
6028 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6029 */
current_work(void)6030 struct work_struct *current_work(void)
6031 {
6032 struct worker *worker = current_wq_worker();
6033
6034 return worker ? worker->current_work : NULL;
6035 }
6036 EXPORT_SYMBOL(current_work);
6037
6038 /**
6039 * current_is_workqueue_rescuer - is %current workqueue rescuer?
6040 *
6041 * Determine whether %current is a workqueue rescuer. Can be used from
6042 * work functions to determine whether it's being run off the rescuer task.
6043 *
6044 * Return: %true if %current is a workqueue rescuer. %false otherwise.
6045 */
current_is_workqueue_rescuer(void)6046 bool current_is_workqueue_rescuer(void)
6047 {
6048 struct worker *worker = current_wq_worker();
6049
6050 return worker && worker->rescue_wq;
6051 }
6052
6053 /**
6054 * workqueue_congested - test whether a workqueue is congested
6055 * @cpu: CPU in question
6056 * @wq: target workqueue
6057 *
6058 * Test whether @wq's cpu workqueue for @cpu is congested. There is
6059 * no synchronization around this function and the test result is
6060 * unreliable and only useful as advisory hints or for debugging.
6061 *
6062 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6063 *
6064 * With the exception of ordered workqueues, all workqueues have per-cpu
6065 * pool_workqueues, each with its own congested state. A workqueue being
6066 * congested on one CPU doesn't mean that the workqueue is contested on any
6067 * other CPUs.
6068 *
6069 * Return:
6070 * %true if congested, %false otherwise.
6071 */
workqueue_congested(int cpu,struct workqueue_struct * wq)6072 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6073 {
6074 struct pool_workqueue *pwq;
6075 bool ret;
6076
6077 preempt_disable();
6078
6079 if (cpu == WORK_CPU_UNBOUND)
6080 cpu = smp_processor_id();
6081
6082 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6083 ret = !list_empty(&pwq->inactive_works);
6084
6085 preempt_enable();
6086
6087 return ret;
6088 }
6089 EXPORT_SYMBOL_GPL(workqueue_congested);
6090
6091 /**
6092 * work_busy - test whether a work is currently pending or running
6093 * @work: the work to be tested
6094 *
6095 * Test whether @work is currently pending or running. There is no
6096 * synchronization around this function and the test result is
6097 * unreliable and only useful as advisory hints or for debugging.
6098 *
6099 * Return:
6100 * OR'd bitmask of WORK_BUSY_* bits.
6101 */
work_busy(struct work_struct * work)6102 unsigned int work_busy(struct work_struct *work)
6103 {
6104 struct worker_pool *pool;
6105 unsigned long irq_flags;
6106 unsigned int ret = 0;
6107
6108 if (work_pending(work))
6109 ret |= WORK_BUSY_PENDING;
6110
6111 rcu_read_lock();
6112 pool = get_work_pool(work);
6113 if (pool) {
6114 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6115 if (find_worker_executing_work(pool, work))
6116 ret |= WORK_BUSY_RUNNING;
6117 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6118 }
6119 rcu_read_unlock();
6120
6121 return ret;
6122 }
6123 EXPORT_SYMBOL_GPL(work_busy);
6124
6125 /**
6126 * set_worker_desc - set description for the current work item
6127 * @fmt: printf-style format string
6128 * @...: arguments for the format string
6129 *
6130 * This function can be called by a running work function to describe what
6131 * the work item is about. If the worker task gets dumped, this
6132 * information will be printed out together to help debugging. The
6133 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6134 */
set_worker_desc(const char * fmt,...)6135 void set_worker_desc(const char *fmt, ...)
6136 {
6137 struct worker *worker = current_wq_worker();
6138 va_list args;
6139
6140 if (worker) {
6141 va_start(args, fmt);
6142 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6143 va_end(args);
6144 }
6145 }
6146 EXPORT_SYMBOL_GPL(set_worker_desc);
6147
6148 /**
6149 * print_worker_info - print out worker information and description
6150 * @log_lvl: the log level to use when printing
6151 * @task: target task
6152 *
6153 * If @task is a worker and currently executing a work item, print out the
6154 * name of the workqueue being serviced and worker description set with
6155 * set_worker_desc() by the currently executing work item.
6156 *
6157 * This function can be safely called on any task as long as the
6158 * task_struct itself is accessible. While safe, this function isn't
6159 * synchronized and may print out mixups or garbages of limited length.
6160 */
print_worker_info(const char * log_lvl,struct task_struct * task)6161 void print_worker_info(const char *log_lvl, struct task_struct *task)
6162 {
6163 work_func_t *fn = NULL;
6164 char name[WQ_NAME_LEN] = { };
6165 char desc[WORKER_DESC_LEN] = { };
6166 struct pool_workqueue *pwq = NULL;
6167 struct workqueue_struct *wq = NULL;
6168 struct worker *worker;
6169
6170 if (!(task->flags & PF_WQ_WORKER))
6171 return;
6172
6173 /*
6174 * This function is called without any synchronization and @task
6175 * could be in any state. Be careful with dereferences.
6176 */
6177 worker = kthread_probe_data(task);
6178
6179 /*
6180 * Carefully copy the associated workqueue's workfn, name and desc.
6181 * Keep the original last '\0' in case the original is garbage.
6182 */
6183 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6184 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6185 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6186 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6187 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6188
6189 if (fn || name[0] || desc[0]) {
6190 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6191 if (strcmp(name, desc))
6192 pr_cont(" (%s)", desc);
6193 pr_cont("\n");
6194 }
6195 }
6196
pr_cont_pool_info(struct worker_pool * pool)6197 static void pr_cont_pool_info(struct worker_pool *pool)
6198 {
6199 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6200 if (pool->node != NUMA_NO_NODE)
6201 pr_cont(" node=%d", pool->node);
6202 pr_cont(" flags=0x%x", pool->flags);
6203 if (pool->flags & POOL_BH)
6204 pr_cont(" bh%s",
6205 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6206 else
6207 pr_cont(" nice=%d", pool->attrs->nice);
6208 }
6209
pr_cont_worker_id(struct worker * worker)6210 static void pr_cont_worker_id(struct worker *worker)
6211 {
6212 struct worker_pool *pool = worker->pool;
6213
6214 if (pool->flags & WQ_BH)
6215 pr_cont("bh%s",
6216 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6217 else
6218 pr_cont("%d%s", task_pid_nr(worker->task),
6219 worker->rescue_wq ? "(RESCUER)" : "");
6220 }
6221
6222 struct pr_cont_work_struct {
6223 bool comma;
6224 work_func_t func;
6225 long ctr;
6226 };
6227
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6228 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6229 {
6230 if (!pcwsp->ctr)
6231 goto out_record;
6232 if (func == pcwsp->func) {
6233 pcwsp->ctr++;
6234 return;
6235 }
6236 if (pcwsp->ctr == 1)
6237 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6238 else
6239 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6240 pcwsp->ctr = 0;
6241 out_record:
6242 if ((long)func == -1L)
6243 return;
6244 pcwsp->comma = comma;
6245 pcwsp->func = func;
6246 pcwsp->ctr = 1;
6247 }
6248
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6249 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6250 {
6251 if (work->func == wq_barrier_func) {
6252 struct wq_barrier *barr;
6253
6254 barr = container_of(work, struct wq_barrier, work);
6255
6256 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6257 pr_cont("%s BAR(%d)", comma ? "," : "",
6258 task_pid_nr(barr->task));
6259 } else {
6260 if (!comma)
6261 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6262 pr_cont_work_flush(comma, work->func, pcwsp);
6263 }
6264 }
6265
show_pwq(struct pool_workqueue * pwq)6266 static void show_pwq(struct pool_workqueue *pwq)
6267 {
6268 struct pr_cont_work_struct pcws = { .ctr = 0, };
6269 struct worker_pool *pool = pwq->pool;
6270 struct work_struct *work;
6271 struct worker *worker;
6272 bool has_in_flight = false, has_pending = false;
6273 int bkt;
6274
6275 pr_info(" pwq %d:", pool->id);
6276 pr_cont_pool_info(pool);
6277
6278 pr_cont(" active=%d refcnt=%d%s\n",
6279 pwq->nr_active, pwq->refcnt,
6280 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6281
6282 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6283 if (worker->current_pwq == pwq) {
6284 has_in_flight = true;
6285 break;
6286 }
6287 }
6288 if (has_in_flight) {
6289 bool comma = false;
6290
6291 pr_info(" in-flight:");
6292 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6293 if (worker->current_pwq != pwq)
6294 continue;
6295
6296 pr_cont(" %s", comma ? "," : "");
6297 pr_cont_worker_id(worker);
6298 pr_cont(":%ps", worker->current_func);
6299 list_for_each_entry(work, &worker->scheduled, entry)
6300 pr_cont_work(false, work, &pcws);
6301 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6302 comma = true;
6303 }
6304 pr_cont("\n");
6305 }
6306
6307 list_for_each_entry(work, &pool->worklist, entry) {
6308 if (get_work_pwq(work) == pwq) {
6309 has_pending = true;
6310 break;
6311 }
6312 }
6313 if (has_pending) {
6314 bool comma = false;
6315
6316 pr_info(" pending:");
6317 list_for_each_entry(work, &pool->worklist, entry) {
6318 if (get_work_pwq(work) != pwq)
6319 continue;
6320
6321 pr_cont_work(comma, work, &pcws);
6322 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6323 }
6324 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6325 pr_cont("\n");
6326 }
6327
6328 if (!list_empty(&pwq->inactive_works)) {
6329 bool comma = false;
6330
6331 pr_info(" inactive:");
6332 list_for_each_entry(work, &pwq->inactive_works, entry) {
6333 pr_cont_work(comma, work, &pcws);
6334 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6335 }
6336 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6337 pr_cont("\n");
6338 }
6339 }
6340
6341 /**
6342 * show_one_workqueue - dump state of specified workqueue
6343 * @wq: workqueue whose state will be printed
6344 */
show_one_workqueue(struct workqueue_struct * wq)6345 void show_one_workqueue(struct workqueue_struct *wq)
6346 {
6347 struct pool_workqueue *pwq;
6348 bool idle = true;
6349 unsigned long irq_flags;
6350
6351 for_each_pwq(pwq, wq) {
6352 if (!pwq_is_empty(pwq)) {
6353 idle = false;
6354 break;
6355 }
6356 }
6357 if (idle) /* Nothing to print for idle workqueue */
6358 return;
6359
6360 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6361
6362 for_each_pwq(pwq, wq) {
6363 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6364 if (!pwq_is_empty(pwq)) {
6365 /*
6366 * Defer printing to avoid deadlocks in console
6367 * drivers that queue work while holding locks
6368 * also taken in their write paths.
6369 */
6370 printk_deferred_enter();
6371 show_pwq(pwq);
6372 printk_deferred_exit();
6373 }
6374 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6375 /*
6376 * We could be printing a lot from atomic context, e.g.
6377 * sysrq-t -> show_all_workqueues(). Avoid triggering
6378 * hard lockup.
6379 */
6380 touch_nmi_watchdog();
6381 }
6382
6383 }
6384
6385 /**
6386 * show_one_worker_pool - dump state of specified worker pool
6387 * @pool: worker pool whose state will be printed
6388 */
show_one_worker_pool(struct worker_pool * pool)6389 static void show_one_worker_pool(struct worker_pool *pool)
6390 {
6391 struct worker *worker;
6392 bool first = true;
6393 unsigned long irq_flags;
6394 unsigned long hung = 0;
6395
6396 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6397 if (pool->nr_workers == pool->nr_idle)
6398 goto next_pool;
6399
6400 /* How long the first pending work is waiting for a worker. */
6401 if (!list_empty(&pool->worklist))
6402 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6403
6404 /*
6405 * Defer printing to avoid deadlocks in console drivers that
6406 * queue work while holding locks also taken in their write
6407 * paths.
6408 */
6409 printk_deferred_enter();
6410 pr_info("pool %d:", pool->id);
6411 pr_cont_pool_info(pool);
6412 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6413 if (pool->manager)
6414 pr_cont(" manager: %d",
6415 task_pid_nr(pool->manager->task));
6416 list_for_each_entry(worker, &pool->idle_list, entry) {
6417 pr_cont(" %s", first ? "idle: " : "");
6418 pr_cont_worker_id(worker);
6419 first = false;
6420 }
6421 pr_cont("\n");
6422 printk_deferred_exit();
6423 next_pool:
6424 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6425 /*
6426 * We could be printing a lot from atomic context, e.g.
6427 * sysrq-t -> show_all_workqueues(). Avoid triggering
6428 * hard lockup.
6429 */
6430 touch_nmi_watchdog();
6431
6432 }
6433
6434 /**
6435 * show_all_workqueues - dump workqueue state
6436 *
6437 * Called from a sysrq handler and prints out all busy workqueues and pools.
6438 */
show_all_workqueues(void)6439 void show_all_workqueues(void)
6440 {
6441 struct workqueue_struct *wq;
6442 struct worker_pool *pool;
6443 int pi;
6444
6445 rcu_read_lock();
6446
6447 pr_info("Showing busy workqueues and worker pools:\n");
6448
6449 list_for_each_entry_rcu(wq, &workqueues, list)
6450 show_one_workqueue(wq);
6451
6452 for_each_pool(pool, pi)
6453 show_one_worker_pool(pool);
6454
6455 rcu_read_unlock();
6456 }
6457
6458 /**
6459 * show_freezable_workqueues - dump freezable workqueue state
6460 *
6461 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6462 * still busy.
6463 */
show_freezable_workqueues(void)6464 void show_freezable_workqueues(void)
6465 {
6466 struct workqueue_struct *wq;
6467
6468 rcu_read_lock();
6469
6470 pr_info("Showing freezable workqueues that are still busy:\n");
6471
6472 list_for_each_entry_rcu(wq, &workqueues, list) {
6473 if (!(wq->flags & WQ_FREEZABLE))
6474 continue;
6475 show_one_workqueue(wq);
6476 }
6477
6478 rcu_read_unlock();
6479 }
6480
6481 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6482 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6483 {
6484 /* stabilize PF_WQ_WORKER and worker pool association */
6485 mutex_lock(&wq_pool_attach_mutex);
6486
6487 if (task->flags & PF_WQ_WORKER) {
6488 struct worker *worker = kthread_data(task);
6489 struct worker_pool *pool = worker->pool;
6490 int off;
6491
6492 off = format_worker_id(buf, size, worker, pool);
6493
6494 if (pool) {
6495 raw_spin_lock_irq(&pool->lock);
6496 /*
6497 * ->desc tracks information (wq name or
6498 * set_worker_desc()) for the latest execution. If
6499 * current, prepend '+', otherwise '-'.
6500 */
6501 if (worker->desc[0] != '\0') {
6502 if (worker->current_work)
6503 scnprintf(buf + off, size - off, "+%s",
6504 worker->desc);
6505 else
6506 scnprintf(buf + off, size - off, "-%s",
6507 worker->desc);
6508 }
6509 raw_spin_unlock_irq(&pool->lock);
6510 }
6511 } else {
6512 strscpy(buf, task->comm, size);
6513 }
6514
6515 mutex_unlock(&wq_pool_attach_mutex);
6516 }
6517
6518 #ifdef CONFIG_SMP
6519
6520 /*
6521 * CPU hotplug.
6522 *
6523 * There are two challenges in supporting CPU hotplug. Firstly, there
6524 * are a lot of assumptions on strong associations among work, pwq and
6525 * pool which make migrating pending and scheduled works very
6526 * difficult to implement without impacting hot paths. Secondly,
6527 * worker pools serve mix of short, long and very long running works making
6528 * blocked draining impractical.
6529 *
6530 * This is solved by allowing the pools to be disassociated from the CPU
6531 * running as an unbound one and allowing it to be reattached later if the
6532 * cpu comes back online.
6533 */
6534
unbind_workers(int cpu)6535 static void unbind_workers(int cpu)
6536 {
6537 struct worker_pool *pool;
6538 struct worker *worker;
6539
6540 for_each_cpu_worker_pool(pool, cpu) {
6541 mutex_lock(&wq_pool_attach_mutex);
6542 raw_spin_lock_irq(&pool->lock);
6543
6544 /*
6545 * We've blocked all attach/detach operations. Make all workers
6546 * unbound and set DISASSOCIATED. Before this, all workers
6547 * must be on the cpu. After this, they may become diasporas.
6548 * And the preemption disabled section in their sched callbacks
6549 * are guaranteed to see WORKER_UNBOUND since the code here
6550 * is on the same cpu.
6551 */
6552 for_each_pool_worker(worker, pool)
6553 worker->flags |= WORKER_UNBOUND;
6554
6555 pool->flags |= POOL_DISASSOCIATED;
6556
6557 /*
6558 * The handling of nr_running in sched callbacks are disabled
6559 * now. Zap nr_running. After this, nr_running stays zero and
6560 * need_more_worker() and keep_working() are always true as
6561 * long as the worklist is not empty. This pool now behaves as
6562 * an unbound (in terms of concurrency management) pool which
6563 * are served by workers tied to the pool.
6564 */
6565 pool->nr_running = 0;
6566
6567 /*
6568 * With concurrency management just turned off, a busy
6569 * worker blocking could lead to lengthy stalls. Kick off
6570 * unbound chain execution of currently pending work items.
6571 */
6572 kick_pool(pool);
6573
6574 raw_spin_unlock_irq(&pool->lock);
6575
6576 for_each_pool_worker(worker, pool)
6577 unbind_worker(worker);
6578
6579 mutex_unlock(&wq_pool_attach_mutex);
6580 }
6581 }
6582
6583 /**
6584 * rebind_workers - rebind all workers of a pool to the associated CPU
6585 * @pool: pool of interest
6586 *
6587 * @pool->cpu is coming online. Rebind all workers to the CPU.
6588 */
rebind_workers(struct worker_pool * pool)6589 static void rebind_workers(struct worker_pool *pool)
6590 {
6591 struct worker *worker;
6592
6593 lockdep_assert_held(&wq_pool_attach_mutex);
6594
6595 /*
6596 * Restore CPU affinity of all workers. As all idle workers should
6597 * be on the run-queue of the associated CPU before any local
6598 * wake-ups for concurrency management happen, restore CPU affinity
6599 * of all workers first and then clear UNBOUND. As we're called
6600 * from CPU_ONLINE, the following shouldn't fail.
6601 */
6602 for_each_pool_worker(worker, pool) {
6603 kthread_set_per_cpu(worker->task, pool->cpu);
6604 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6605 pool_allowed_cpus(pool)) < 0);
6606 }
6607
6608 raw_spin_lock_irq(&pool->lock);
6609
6610 pool->flags &= ~POOL_DISASSOCIATED;
6611
6612 for_each_pool_worker(worker, pool) {
6613 unsigned int worker_flags = worker->flags;
6614
6615 /*
6616 * We want to clear UNBOUND but can't directly call
6617 * worker_clr_flags() or adjust nr_running. Atomically
6618 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6619 * @worker will clear REBOUND using worker_clr_flags() when
6620 * it initiates the next execution cycle thus restoring
6621 * concurrency management. Note that when or whether
6622 * @worker clears REBOUND doesn't affect correctness.
6623 *
6624 * WRITE_ONCE() is necessary because @worker->flags may be
6625 * tested without holding any lock in
6626 * wq_worker_running(). Without it, NOT_RUNNING test may
6627 * fail incorrectly leading to premature concurrency
6628 * management operations.
6629 */
6630 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6631 worker_flags |= WORKER_REBOUND;
6632 worker_flags &= ~WORKER_UNBOUND;
6633 WRITE_ONCE(worker->flags, worker_flags);
6634 }
6635
6636 raw_spin_unlock_irq(&pool->lock);
6637 }
6638
6639 /**
6640 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6641 * @pool: unbound pool of interest
6642 * @cpu: the CPU which is coming up
6643 *
6644 * An unbound pool may end up with a cpumask which doesn't have any online
6645 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6646 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6647 * online CPU before, cpus_allowed of all its workers should be restored.
6648 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6649 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6650 {
6651 static cpumask_t cpumask;
6652 struct worker *worker;
6653
6654 lockdep_assert_held(&wq_pool_attach_mutex);
6655
6656 /* is @cpu allowed for @pool? */
6657 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6658 return;
6659
6660 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6661
6662 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6663 for_each_pool_worker(worker, pool)
6664 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6665 }
6666
workqueue_prepare_cpu(unsigned int cpu)6667 int workqueue_prepare_cpu(unsigned int cpu)
6668 {
6669 struct worker_pool *pool;
6670
6671 for_each_cpu_worker_pool(pool, cpu) {
6672 if (pool->nr_workers)
6673 continue;
6674 if (!create_worker(pool))
6675 return -ENOMEM;
6676 }
6677 return 0;
6678 }
6679
workqueue_online_cpu(unsigned int cpu)6680 int workqueue_online_cpu(unsigned int cpu)
6681 {
6682 struct worker_pool *pool;
6683 struct workqueue_struct *wq;
6684 int pi;
6685
6686 mutex_lock(&wq_pool_mutex);
6687
6688 cpumask_set_cpu(cpu, wq_online_cpumask);
6689
6690 for_each_pool(pool, pi) {
6691 /* BH pools aren't affected by hotplug */
6692 if (pool->flags & POOL_BH)
6693 continue;
6694
6695 mutex_lock(&wq_pool_attach_mutex);
6696 if (pool->cpu == cpu)
6697 rebind_workers(pool);
6698 else if (pool->cpu < 0)
6699 restore_unbound_workers_cpumask(pool, cpu);
6700 mutex_unlock(&wq_pool_attach_mutex);
6701 }
6702
6703 /* update pod affinity of unbound workqueues */
6704 list_for_each_entry(wq, &workqueues, list) {
6705 struct workqueue_attrs *attrs = wq->unbound_attrs;
6706
6707 if (attrs) {
6708 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6709 int tcpu;
6710
6711 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6712 unbound_wq_update_pwq(wq, tcpu);
6713
6714 mutex_lock(&wq->mutex);
6715 wq_update_node_max_active(wq, -1);
6716 mutex_unlock(&wq->mutex);
6717 }
6718 }
6719
6720 mutex_unlock(&wq_pool_mutex);
6721 return 0;
6722 }
6723
workqueue_offline_cpu(unsigned int cpu)6724 int workqueue_offline_cpu(unsigned int cpu)
6725 {
6726 struct workqueue_struct *wq;
6727
6728 /* unbinding per-cpu workers should happen on the local CPU */
6729 if (WARN_ON(cpu != smp_processor_id()))
6730 return -1;
6731
6732 unbind_workers(cpu);
6733
6734 /* update pod affinity of unbound workqueues */
6735 mutex_lock(&wq_pool_mutex);
6736
6737 cpumask_clear_cpu(cpu, wq_online_cpumask);
6738
6739 list_for_each_entry(wq, &workqueues, list) {
6740 struct workqueue_attrs *attrs = wq->unbound_attrs;
6741
6742 if (attrs) {
6743 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6744 int tcpu;
6745
6746 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6747 unbound_wq_update_pwq(wq, tcpu);
6748
6749 mutex_lock(&wq->mutex);
6750 wq_update_node_max_active(wq, cpu);
6751 mutex_unlock(&wq->mutex);
6752 }
6753 }
6754 mutex_unlock(&wq_pool_mutex);
6755
6756 return 0;
6757 }
6758
6759 struct work_for_cpu {
6760 struct work_struct work;
6761 long (*fn)(void *);
6762 void *arg;
6763 long ret;
6764 };
6765
work_for_cpu_fn(struct work_struct * work)6766 static void work_for_cpu_fn(struct work_struct *work)
6767 {
6768 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6769
6770 wfc->ret = wfc->fn(wfc->arg);
6771 }
6772
6773 /**
6774 * work_on_cpu_key - run a function in thread context on a particular cpu
6775 * @cpu: the cpu to run on
6776 * @fn: the function to run
6777 * @arg: the function arg
6778 * @key: The lock class key for lock debugging purposes
6779 *
6780 * It is up to the caller to ensure that the cpu doesn't go offline.
6781 * The caller must not hold any locks which would prevent @fn from completing.
6782 *
6783 * Return: The value @fn returns.
6784 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6785 long work_on_cpu_key(int cpu, long (*fn)(void *),
6786 void *arg, struct lock_class_key *key)
6787 {
6788 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6789
6790 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6791 schedule_work_on(cpu, &wfc.work);
6792 flush_work(&wfc.work);
6793 destroy_work_on_stack(&wfc.work);
6794 return wfc.ret;
6795 }
6796 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6797 #endif /* CONFIG_SMP */
6798
6799 #ifdef CONFIG_FREEZER
6800
6801 /**
6802 * freeze_workqueues_begin - begin freezing workqueues
6803 *
6804 * Start freezing workqueues. After this function returns, all freezable
6805 * workqueues will queue new works to their inactive_works list instead of
6806 * pool->worklist.
6807 *
6808 * CONTEXT:
6809 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6810 */
freeze_workqueues_begin(void)6811 void freeze_workqueues_begin(void)
6812 {
6813 struct workqueue_struct *wq;
6814
6815 mutex_lock(&wq_pool_mutex);
6816
6817 WARN_ON_ONCE(workqueue_freezing);
6818 workqueue_freezing = true;
6819
6820 list_for_each_entry(wq, &workqueues, list) {
6821 mutex_lock(&wq->mutex);
6822 wq_adjust_max_active(wq);
6823 mutex_unlock(&wq->mutex);
6824 }
6825
6826 mutex_unlock(&wq_pool_mutex);
6827 }
6828
6829 /**
6830 * freeze_workqueues_busy - are freezable workqueues still busy?
6831 *
6832 * Check whether freezing is complete. This function must be called
6833 * between freeze_workqueues_begin() and thaw_workqueues().
6834 *
6835 * CONTEXT:
6836 * Grabs and releases wq_pool_mutex.
6837 *
6838 * Return:
6839 * %true if some freezable workqueues are still busy. %false if freezing
6840 * is complete.
6841 */
freeze_workqueues_busy(void)6842 bool freeze_workqueues_busy(void)
6843 {
6844 bool busy = false;
6845 struct workqueue_struct *wq;
6846 struct pool_workqueue *pwq;
6847
6848 mutex_lock(&wq_pool_mutex);
6849
6850 WARN_ON_ONCE(!workqueue_freezing);
6851
6852 list_for_each_entry(wq, &workqueues, list) {
6853 if (!(wq->flags & WQ_FREEZABLE))
6854 continue;
6855 /*
6856 * nr_active is monotonically decreasing. It's safe
6857 * to peek without lock.
6858 */
6859 rcu_read_lock();
6860 for_each_pwq(pwq, wq) {
6861 WARN_ON_ONCE(pwq->nr_active < 0);
6862 if (pwq->nr_active) {
6863 busy = true;
6864 rcu_read_unlock();
6865 goto out_unlock;
6866 }
6867 }
6868 rcu_read_unlock();
6869 }
6870 out_unlock:
6871 mutex_unlock(&wq_pool_mutex);
6872 return busy;
6873 }
6874
6875 /**
6876 * thaw_workqueues - thaw workqueues
6877 *
6878 * Thaw workqueues. Normal queueing is restored and all collected
6879 * frozen works are transferred to their respective pool worklists.
6880 *
6881 * CONTEXT:
6882 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6883 */
thaw_workqueues(void)6884 void thaw_workqueues(void)
6885 {
6886 struct workqueue_struct *wq;
6887
6888 mutex_lock(&wq_pool_mutex);
6889
6890 if (!workqueue_freezing)
6891 goto out_unlock;
6892
6893 workqueue_freezing = false;
6894
6895 /* restore max_active and repopulate worklist */
6896 list_for_each_entry(wq, &workqueues, list) {
6897 mutex_lock(&wq->mutex);
6898 wq_adjust_max_active(wq);
6899 mutex_unlock(&wq->mutex);
6900 }
6901
6902 out_unlock:
6903 mutex_unlock(&wq_pool_mutex);
6904 }
6905 #endif /* CONFIG_FREEZER */
6906
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6907 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6908 {
6909 LIST_HEAD(ctxs);
6910 int ret = 0;
6911 struct workqueue_struct *wq;
6912 struct apply_wqattrs_ctx *ctx, *n;
6913
6914 lockdep_assert_held(&wq_pool_mutex);
6915
6916 list_for_each_entry(wq, &workqueues, list) {
6917 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6918 continue;
6919
6920 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6921 if (IS_ERR(ctx)) {
6922 ret = PTR_ERR(ctx);
6923 break;
6924 }
6925
6926 list_add_tail(&ctx->list, &ctxs);
6927 }
6928
6929 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6930 if (!ret)
6931 apply_wqattrs_commit(ctx);
6932 apply_wqattrs_cleanup(ctx);
6933 }
6934
6935 if (!ret) {
6936 int cpu;
6937 struct worker_pool *pool;
6938 struct worker *worker;
6939
6940 mutex_lock(&wq_pool_attach_mutex);
6941 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6942 /* rescuer needs to respect cpumask changes when it is not attached */
6943 list_for_each_entry(wq, &workqueues, list) {
6944 if (wq->rescuer && !wq->rescuer->pool)
6945 unbind_worker(wq->rescuer);
6946 }
6947 /* DISASSOCIATED worker needs to respect wq_unbound_cpumask */
6948 for_each_possible_cpu(cpu) {
6949 for_each_cpu_worker_pool(pool, cpu) {
6950 if (!(pool->flags & POOL_DISASSOCIATED))
6951 continue;
6952 for_each_pool_worker(worker, pool)
6953 unbind_worker(worker);
6954 }
6955 }
6956 mutex_unlock(&wq_pool_attach_mutex);
6957 }
6958 return ret;
6959 }
6960
6961 /**
6962 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6963 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6964 *
6965 * This function can be called from cpuset code to provide a set of isolated
6966 * CPUs that should be excluded from wq_unbound_cpumask.
6967 */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6968 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6969 {
6970 cpumask_var_t cpumask;
6971 int ret = 0;
6972
6973 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6974 return -ENOMEM;
6975
6976 mutex_lock(&wq_pool_mutex);
6977
6978 /*
6979 * If the operation fails, it will fall back to
6980 * wq_requested_unbound_cpumask which is initially set to
6981 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6982 * by any subsequent write to workqueue/cpumask sysfs file.
6983 */
6984 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6985 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6986 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6987 ret = workqueue_apply_unbound_cpumask(cpumask);
6988
6989 /* Save the current isolated cpumask & export it via sysfs */
6990 if (!ret)
6991 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6992
6993 mutex_unlock(&wq_pool_mutex);
6994 free_cpumask_var(cpumask);
6995 return ret;
6996 }
6997
parse_affn_scope(const char * val)6998 static int parse_affn_scope(const char *val)
6999 {
7000 int i;
7001
7002 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
7003 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
7004 return i;
7005 }
7006 return -EINVAL;
7007 }
7008
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)7009 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
7010 {
7011 struct workqueue_struct *wq;
7012 int affn, cpu;
7013
7014 affn = parse_affn_scope(val);
7015 if (affn < 0)
7016 return affn;
7017 if (affn == WQ_AFFN_DFL)
7018 return -EINVAL;
7019
7020 cpus_read_lock();
7021 mutex_lock(&wq_pool_mutex);
7022
7023 wq_affn_dfl = affn;
7024
7025 list_for_each_entry(wq, &workqueues, list) {
7026 for_each_online_cpu(cpu)
7027 unbound_wq_update_pwq(wq, cpu);
7028 }
7029
7030 mutex_unlock(&wq_pool_mutex);
7031 cpus_read_unlock();
7032
7033 return 0;
7034 }
7035
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7036 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7037 {
7038 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7039 }
7040
7041 static const struct kernel_param_ops wq_affn_dfl_ops = {
7042 .set = wq_affn_dfl_set,
7043 .get = wq_affn_dfl_get,
7044 };
7045
7046 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7047
7048 #ifdef CONFIG_SYSFS
7049 /*
7050 * Workqueues with WQ_SYSFS flag set is visible to userland via
7051 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
7052 * following attributes.
7053 *
7054 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
7055 * max_active RW int : maximum number of in-flight work items
7056 *
7057 * Unbound workqueues have the following extra attributes.
7058 *
7059 * nice RW int : nice value of the workers
7060 * cpumask RW mask : bitmask of allowed CPUs for the workers
7061 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
7062 * affinity_strict RW bool : worker CPU affinity is strict
7063 */
7064 struct wq_device {
7065 struct workqueue_struct *wq;
7066 struct device dev;
7067 };
7068
dev_to_wq(struct device * dev)7069 static struct workqueue_struct *dev_to_wq(struct device *dev)
7070 {
7071 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7072
7073 return wq_dev->wq;
7074 }
7075
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7076 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7077 char *buf)
7078 {
7079 struct workqueue_struct *wq = dev_to_wq(dev);
7080
7081 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7082 }
7083 static DEVICE_ATTR_RO(per_cpu);
7084
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7085 static ssize_t max_active_show(struct device *dev,
7086 struct device_attribute *attr, char *buf)
7087 {
7088 struct workqueue_struct *wq = dev_to_wq(dev);
7089
7090 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7091 }
7092
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7093 static ssize_t max_active_store(struct device *dev,
7094 struct device_attribute *attr, const char *buf,
7095 size_t count)
7096 {
7097 struct workqueue_struct *wq = dev_to_wq(dev);
7098 int val;
7099
7100 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7101 return -EINVAL;
7102
7103 workqueue_set_max_active(wq, val);
7104 return count;
7105 }
7106 static DEVICE_ATTR_RW(max_active);
7107
7108 static struct attribute *wq_sysfs_attrs[] = {
7109 &dev_attr_per_cpu.attr,
7110 &dev_attr_max_active.attr,
7111 NULL,
7112 };
7113 ATTRIBUTE_GROUPS(wq_sysfs);
7114
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7115 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7116 char *buf)
7117 {
7118 struct workqueue_struct *wq = dev_to_wq(dev);
7119 int written;
7120
7121 mutex_lock(&wq->mutex);
7122 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7123 mutex_unlock(&wq->mutex);
7124
7125 return written;
7126 }
7127
7128 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7129 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7130 {
7131 struct workqueue_attrs *attrs;
7132
7133 lockdep_assert_held(&wq_pool_mutex);
7134
7135 attrs = alloc_workqueue_attrs();
7136 if (!attrs)
7137 return NULL;
7138
7139 copy_workqueue_attrs(attrs, wq->unbound_attrs);
7140 return attrs;
7141 }
7142
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7143 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7144 const char *buf, size_t count)
7145 {
7146 struct workqueue_struct *wq = dev_to_wq(dev);
7147 struct workqueue_attrs *attrs;
7148 int ret = -ENOMEM;
7149
7150 apply_wqattrs_lock();
7151
7152 attrs = wq_sysfs_prep_attrs(wq);
7153 if (!attrs)
7154 goto out_unlock;
7155
7156 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7157 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7158 ret = apply_workqueue_attrs_locked(wq, attrs);
7159 else
7160 ret = -EINVAL;
7161
7162 out_unlock:
7163 apply_wqattrs_unlock();
7164 free_workqueue_attrs(attrs);
7165 return ret ?: count;
7166 }
7167
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7168 static ssize_t wq_cpumask_show(struct device *dev,
7169 struct device_attribute *attr, char *buf)
7170 {
7171 struct workqueue_struct *wq = dev_to_wq(dev);
7172 int written;
7173
7174 mutex_lock(&wq->mutex);
7175 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7176 cpumask_pr_args(wq->unbound_attrs->cpumask));
7177 mutex_unlock(&wq->mutex);
7178 return written;
7179 }
7180
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7181 static ssize_t wq_cpumask_store(struct device *dev,
7182 struct device_attribute *attr,
7183 const char *buf, size_t count)
7184 {
7185 struct workqueue_struct *wq = dev_to_wq(dev);
7186 struct workqueue_attrs *attrs;
7187 int ret = -ENOMEM;
7188
7189 apply_wqattrs_lock();
7190
7191 attrs = wq_sysfs_prep_attrs(wq);
7192 if (!attrs)
7193 goto out_unlock;
7194
7195 ret = cpumask_parse(buf, attrs->cpumask);
7196 if (!ret)
7197 ret = apply_workqueue_attrs_locked(wq, attrs);
7198
7199 out_unlock:
7200 apply_wqattrs_unlock();
7201 free_workqueue_attrs(attrs);
7202 return ret ?: count;
7203 }
7204
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7205 static ssize_t wq_affn_scope_show(struct device *dev,
7206 struct device_attribute *attr, char *buf)
7207 {
7208 struct workqueue_struct *wq = dev_to_wq(dev);
7209 int written;
7210
7211 mutex_lock(&wq->mutex);
7212 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7213 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7214 wq_affn_names[WQ_AFFN_DFL],
7215 wq_affn_names[wq_affn_dfl]);
7216 else
7217 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7218 wq_affn_names[wq->unbound_attrs->affn_scope]);
7219 mutex_unlock(&wq->mutex);
7220
7221 return written;
7222 }
7223
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7224 static ssize_t wq_affn_scope_store(struct device *dev,
7225 struct device_attribute *attr,
7226 const char *buf, size_t count)
7227 {
7228 struct workqueue_struct *wq = dev_to_wq(dev);
7229 struct workqueue_attrs *attrs;
7230 int affn, ret = -ENOMEM;
7231
7232 affn = parse_affn_scope(buf);
7233 if (affn < 0)
7234 return affn;
7235
7236 apply_wqattrs_lock();
7237 attrs = wq_sysfs_prep_attrs(wq);
7238 if (attrs) {
7239 attrs->affn_scope = affn;
7240 ret = apply_workqueue_attrs_locked(wq, attrs);
7241 }
7242 apply_wqattrs_unlock();
7243 free_workqueue_attrs(attrs);
7244 return ret ?: count;
7245 }
7246
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7247 static ssize_t wq_affinity_strict_show(struct device *dev,
7248 struct device_attribute *attr, char *buf)
7249 {
7250 struct workqueue_struct *wq = dev_to_wq(dev);
7251
7252 return scnprintf(buf, PAGE_SIZE, "%d\n",
7253 wq->unbound_attrs->affn_strict);
7254 }
7255
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7256 static ssize_t wq_affinity_strict_store(struct device *dev,
7257 struct device_attribute *attr,
7258 const char *buf, size_t count)
7259 {
7260 struct workqueue_struct *wq = dev_to_wq(dev);
7261 struct workqueue_attrs *attrs;
7262 int v, ret = -ENOMEM;
7263
7264 if (sscanf(buf, "%d", &v) != 1)
7265 return -EINVAL;
7266
7267 apply_wqattrs_lock();
7268 attrs = wq_sysfs_prep_attrs(wq);
7269 if (attrs) {
7270 attrs->affn_strict = (bool)v;
7271 ret = apply_workqueue_attrs_locked(wq, attrs);
7272 }
7273 apply_wqattrs_unlock();
7274 free_workqueue_attrs(attrs);
7275 return ret ?: count;
7276 }
7277
7278 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7279 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7280 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7281 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7282 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7283 __ATTR_NULL,
7284 };
7285
7286 static const struct bus_type wq_subsys = {
7287 .name = "workqueue",
7288 .dev_groups = wq_sysfs_groups,
7289 };
7290
7291 /**
7292 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7293 * @cpumask: the cpumask to set
7294 *
7295 * The low-level workqueues cpumask is a global cpumask that limits
7296 * the affinity of all unbound workqueues. This function check the @cpumask
7297 * and apply it to all unbound workqueues and updates all pwqs of them.
7298 *
7299 * Return: 0 - Success
7300 * -EINVAL - Invalid @cpumask
7301 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7302 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7303 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7304 {
7305 int ret = -EINVAL;
7306
7307 /*
7308 * Not excluding isolated cpus on purpose.
7309 * If the user wishes to include them, we allow that.
7310 */
7311 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7312 if (!cpumask_empty(cpumask)) {
7313 ret = 0;
7314 apply_wqattrs_lock();
7315 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7316 ret = workqueue_apply_unbound_cpumask(cpumask);
7317 if (!ret)
7318 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7319 apply_wqattrs_unlock();
7320 }
7321
7322 return ret;
7323 }
7324
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7325 static ssize_t __wq_cpumask_show(struct device *dev,
7326 struct device_attribute *attr, char *buf, cpumask_var_t mask)
7327 {
7328 int written;
7329
7330 mutex_lock(&wq_pool_mutex);
7331 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7332 mutex_unlock(&wq_pool_mutex);
7333
7334 return written;
7335 }
7336
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7337 static ssize_t cpumask_requested_show(struct device *dev,
7338 struct device_attribute *attr, char *buf)
7339 {
7340 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7341 }
7342 static DEVICE_ATTR_RO(cpumask_requested);
7343
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7344 static ssize_t cpumask_isolated_show(struct device *dev,
7345 struct device_attribute *attr, char *buf)
7346 {
7347 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7348 }
7349 static DEVICE_ATTR_RO(cpumask_isolated);
7350
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7351 static ssize_t cpumask_show(struct device *dev,
7352 struct device_attribute *attr, char *buf)
7353 {
7354 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7355 }
7356
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7357 static ssize_t cpumask_store(struct device *dev,
7358 struct device_attribute *attr, const char *buf, size_t count)
7359 {
7360 cpumask_var_t cpumask;
7361 int ret;
7362
7363 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7364 return -ENOMEM;
7365
7366 ret = cpumask_parse(buf, cpumask);
7367 if (!ret)
7368 ret = workqueue_set_unbound_cpumask(cpumask);
7369
7370 free_cpumask_var(cpumask);
7371 return ret ? ret : count;
7372 }
7373 static DEVICE_ATTR_RW(cpumask);
7374
7375 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7376 &dev_attr_cpumask.attr,
7377 &dev_attr_cpumask_requested.attr,
7378 &dev_attr_cpumask_isolated.attr,
7379 NULL,
7380 };
7381 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7382
wq_sysfs_init(void)7383 static int __init wq_sysfs_init(void)
7384 {
7385 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7386 }
7387 core_initcall(wq_sysfs_init);
7388
wq_device_release(struct device * dev)7389 static void wq_device_release(struct device *dev)
7390 {
7391 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7392
7393 kfree(wq_dev);
7394 }
7395
7396 /**
7397 * workqueue_sysfs_register - make a workqueue visible in sysfs
7398 * @wq: the workqueue to register
7399 *
7400 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7401 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7402 * which is the preferred method.
7403 *
7404 * Workqueue user should use this function directly iff it wants to apply
7405 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7406 * apply_workqueue_attrs() may race against userland updating the
7407 * attributes.
7408 *
7409 * Return: 0 on success, -errno on failure.
7410 */
workqueue_sysfs_register(struct workqueue_struct * wq)7411 int workqueue_sysfs_register(struct workqueue_struct *wq)
7412 {
7413 struct wq_device *wq_dev;
7414 int ret;
7415
7416 /*
7417 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7418 * ordered workqueues.
7419 */
7420 if (WARN_ON(wq->flags & __WQ_ORDERED))
7421 return -EINVAL;
7422
7423 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7424 if (!wq_dev)
7425 return -ENOMEM;
7426
7427 wq_dev->wq = wq;
7428 wq_dev->dev.bus = &wq_subsys;
7429 wq_dev->dev.release = wq_device_release;
7430 dev_set_name(&wq_dev->dev, "%s", wq->name);
7431
7432 /*
7433 * unbound_attrs are created separately. Suppress uevent until
7434 * everything is ready.
7435 */
7436 dev_set_uevent_suppress(&wq_dev->dev, true);
7437
7438 ret = device_register(&wq_dev->dev);
7439 if (ret) {
7440 put_device(&wq_dev->dev);
7441 wq->wq_dev = NULL;
7442 return ret;
7443 }
7444
7445 if (wq->flags & WQ_UNBOUND) {
7446 struct device_attribute *attr;
7447
7448 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7449 ret = device_create_file(&wq_dev->dev, attr);
7450 if (ret) {
7451 device_unregister(&wq_dev->dev);
7452 wq->wq_dev = NULL;
7453 return ret;
7454 }
7455 }
7456 }
7457
7458 dev_set_uevent_suppress(&wq_dev->dev, false);
7459 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7460 return 0;
7461 }
7462
7463 /**
7464 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7465 * @wq: the workqueue to unregister
7466 *
7467 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7468 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7469 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7470 {
7471 struct wq_device *wq_dev = wq->wq_dev;
7472
7473 if (!wq->wq_dev)
7474 return;
7475
7476 wq->wq_dev = NULL;
7477 device_unregister(&wq_dev->dev);
7478 }
7479 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7480 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7481 #endif /* CONFIG_SYSFS */
7482
7483 /*
7484 * Workqueue watchdog.
7485 *
7486 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7487 * flush dependency, a concurrency managed work item which stays RUNNING
7488 * indefinitely. Workqueue stalls can be very difficult to debug as the
7489 * usual warning mechanisms don't trigger and internal workqueue state is
7490 * largely opaque.
7491 *
7492 * Workqueue watchdog monitors all worker pools periodically and dumps
7493 * state if some pools failed to make forward progress for a while where
7494 * forward progress is defined as the first item on ->worklist changing.
7495 *
7496 * This mechanism is controlled through the kernel parameter
7497 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7498 * corresponding sysfs parameter file.
7499 */
7500 #ifdef CONFIG_WQ_WATCHDOG
7501
7502 static unsigned long wq_watchdog_thresh = 30;
7503 static struct timer_list wq_watchdog_timer;
7504
7505 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7506 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7507
7508 static unsigned int wq_panic_on_stall;
7509 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7510
7511 /*
7512 * Show workers that might prevent the processing of pending work items.
7513 * The only candidates are CPU-bound workers in the running state.
7514 * Pending work items should be handled by another idle worker
7515 * in all other situations.
7516 */
show_cpu_pool_hog(struct worker_pool * pool)7517 static void show_cpu_pool_hog(struct worker_pool *pool)
7518 {
7519 struct worker *worker;
7520 unsigned long irq_flags;
7521 int bkt;
7522
7523 raw_spin_lock_irqsave(&pool->lock, irq_flags);
7524
7525 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7526 if (task_is_running(worker->task)) {
7527 /*
7528 * Defer printing to avoid deadlocks in console
7529 * drivers that queue work while holding locks
7530 * also taken in their write paths.
7531 */
7532 printk_deferred_enter();
7533
7534 pr_info("pool %d:\n", pool->id);
7535 sched_show_task(worker->task);
7536
7537 printk_deferred_exit();
7538 }
7539 }
7540
7541 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7542 }
7543
show_cpu_pools_hogs(void)7544 static void show_cpu_pools_hogs(void)
7545 {
7546 struct worker_pool *pool;
7547 int pi;
7548
7549 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7550
7551 rcu_read_lock();
7552
7553 for_each_pool(pool, pi) {
7554 if (pool->cpu_stall)
7555 show_cpu_pool_hog(pool);
7556
7557 }
7558
7559 rcu_read_unlock();
7560 }
7561
panic_on_wq_watchdog(void)7562 static void panic_on_wq_watchdog(void)
7563 {
7564 static unsigned int wq_stall;
7565
7566 if (wq_panic_on_stall) {
7567 wq_stall++;
7568 BUG_ON(wq_stall >= wq_panic_on_stall);
7569 }
7570 }
7571
wq_watchdog_reset_touched(void)7572 static void wq_watchdog_reset_touched(void)
7573 {
7574 int cpu;
7575
7576 wq_watchdog_touched = jiffies;
7577 for_each_possible_cpu(cpu)
7578 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7579 }
7580
wq_watchdog_timer_fn(struct timer_list * unused)7581 static void wq_watchdog_timer_fn(struct timer_list *unused)
7582 {
7583 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7584 bool lockup_detected = false;
7585 bool cpu_pool_stall = false;
7586 unsigned long now = jiffies;
7587 struct worker_pool *pool;
7588 int pi;
7589
7590 if (!thresh)
7591 return;
7592
7593 for_each_pool(pool, pi) {
7594 unsigned long pool_ts, touched, ts;
7595
7596 pool->cpu_stall = false;
7597 if (list_empty(&pool->worklist))
7598 continue;
7599
7600 /*
7601 * If a virtual machine is stopped by the host it can look to
7602 * the watchdog like a stall.
7603 */
7604 kvm_check_and_clear_guest_paused();
7605
7606 /* get the latest of pool and touched timestamps */
7607 if (pool->cpu >= 0)
7608 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7609 else
7610 touched = READ_ONCE(wq_watchdog_touched);
7611 pool_ts = READ_ONCE(pool->watchdog_ts);
7612
7613 if (time_after(pool_ts, touched))
7614 ts = pool_ts;
7615 else
7616 ts = touched;
7617
7618 /* did we stall? */
7619 if (time_after(now, ts + thresh)) {
7620 lockup_detected = true;
7621 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7622 pool->cpu_stall = true;
7623 cpu_pool_stall = true;
7624 }
7625 pr_emerg("BUG: workqueue lockup - pool");
7626 pr_cont_pool_info(pool);
7627 pr_cont(" stuck for %us!\n",
7628 jiffies_to_msecs(now - pool_ts) / 1000);
7629 }
7630
7631
7632 }
7633
7634 if (lockup_detected)
7635 show_all_workqueues();
7636
7637 if (cpu_pool_stall)
7638 show_cpu_pools_hogs();
7639
7640 if (lockup_detected)
7641 panic_on_wq_watchdog();
7642
7643 wq_watchdog_reset_touched();
7644 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7645 }
7646
wq_watchdog_touch(int cpu)7647 notrace void wq_watchdog_touch(int cpu)
7648 {
7649 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7650 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7651 unsigned long now = jiffies;
7652
7653 if (cpu >= 0)
7654 per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7655 else
7656 WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7657
7658 /* Don't unnecessarily store to global cacheline */
7659 if (time_after(now, touch_ts + thresh / 4))
7660 WRITE_ONCE(wq_watchdog_touched, jiffies);
7661 }
7662
wq_watchdog_set_thresh(unsigned long thresh)7663 static void wq_watchdog_set_thresh(unsigned long thresh)
7664 {
7665 wq_watchdog_thresh = 0;
7666 timer_delete_sync(&wq_watchdog_timer);
7667
7668 if (thresh) {
7669 wq_watchdog_thresh = thresh;
7670 wq_watchdog_reset_touched();
7671 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7672 }
7673 }
7674
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7675 static int wq_watchdog_param_set_thresh(const char *val,
7676 const struct kernel_param *kp)
7677 {
7678 unsigned long thresh;
7679 int ret;
7680
7681 ret = kstrtoul(val, 0, &thresh);
7682 if (ret)
7683 return ret;
7684
7685 if (system_percpu_wq)
7686 wq_watchdog_set_thresh(thresh);
7687 else
7688 wq_watchdog_thresh = thresh;
7689
7690 return 0;
7691 }
7692
7693 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7694 .set = wq_watchdog_param_set_thresh,
7695 .get = param_get_ulong,
7696 };
7697
7698 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7699 0644);
7700
wq_watchdog_init(void)7701 static void wq_watchdog_init(void)
7702 {
7703 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7704 wq_watchdog_set_thresh(wq_watchdog_thresh);
7705 }
7706
7707 #else /* CONFIG_WQ_WATCHDOG */
7708
wq_watchdog_init(void)7709 static inline void wq_watchdog_init(void) { }
7710
7711 #endif /* CONFIG_WQ_WATCHDOG */
7712
bh_pool_kick_normal(struct irq_work * irq_work)7713 static void bh_pool_kick_normal(struct irq_work *irq_work)
7714 {
7715 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7716 }
7717
bh_pool_kick_highpri(struct irq_work * irq_work)7718 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7719 {
7720 raise_softirq_irqoff(HI_SOFTIRQ);
7721 }
7722
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7723 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7724 {
7725 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7726 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7727 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7728 return;
7729 }
7730
7731 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7732 }
7733
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7734 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7735 {
7736 BUG_ON(init_worker_pool(pool));
7737 pool->cpu = cpu;
7738 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7739 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7740 pool->attrs->nice = nice;
7741 pool->attrs->affn_strict = true;
7742 pool->node = cpu_to_node(cpu);
7743
7744 /* alloc pool ID */
7745 mutex_lock(&wq_pool_mutex);
7746 BUG_ON(worker_pool_assign_id(pool));
7747 mutex_unlock(&wq_pool_mutex);
7748 }
7749
7750 /**
7751 * workqueue_init_early - early init for workqueue subsystem
7752 *
7753 * This is the first step of three-staged workqueue subsystem initialization and
7754 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7755 * up. It sets up all the data structures and system workqueues and allows early
7756 * boot code to create workqueues and queue/cancel work items. Actual work item
7757 * execution starts only after kthreads can be created and scheduled right
7758 * before early initcalls.
7759 */
workqueue_init_early(void)7760 void __init workqueue_init_early(void)
7761 {
7762 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7763 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7764 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7765 bh_pool_kick_highpri };
7766 int i, cpu;
7767
7768 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7769
7770 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7771 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7772 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7773 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7774
7775 cpumask_copy(wq_online_cpumask, cpu_online_mask);
7776 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7777 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7778 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7779 if (!cpumask_empty(&wq_cmdline_cpumask))
7780 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7781
7782 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7783 cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7784 housekeeping_cpumask(HK_TYPE_DOMAIN));
7785 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7786
7787 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7788 BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7789
7790 /*
7791 * If nohz_full is enabled, set power efficient workqueue as unbound.
7792 * This allows workqueue items to be moved to HK CPUs.
7793 */
7794 if (housekeeping_enabled(HK_TYPE_TICK))
7795 wq_power_efficient = true;
7796
7797 /* initialize WQ_AFFN_SYSTEM pods */
7798 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7799 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7800 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7801 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7802
7803 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7804
7805 pt->nr_pods = 1;
7806 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7807 pt->pod_node[0] = NUMA_NO_NODE;
7808 pt->cpu_pod[0] = 0;
7809
7810 /* initialize BH and CPU pools */
7811 for_each_possible_cpu(cpu) {
7812 struct worker_pool *pool;
7813
7814 i = 0;
7815 for_each_bh_worker_pool(pool, cpu) {
7816 init_cpu_worker_pool(pool, cpu, std_nice[i]);
7817 pool->flags |= POOL_BH;
7818 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7819 i++;
7820 }
7821
7822 i = 0;
7823 for_each_cpu_worker_pool(pool, cpu)
7824 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7825 }
7826
7827 /* create default unbound and ordered wq attrs */
7828 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7829 struct workqueue_attrs *attrs;
7830
7831 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7832 attrs->nice = std_nice[i];
7833 unbound_std_wq_attrs[i] = attrs;
7834
7835 /*
7836 * An ordered wq should have only one pwq as ordering is
7837 * guaranteed by max_active which is enforced by pwqs.
7838 */
7839 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7840 attrs->nice = std_nice[i];
7841 attrs->ordered = true;
7842 ordered_wq_attrs[i] = attrs;
7843 }
7844
7845 system_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7846 system_percpu_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7847 system_highpri_wq = alloc_workqueue("events_highpri",
7848 WQ_HIGHPRI | WQ_PERCPU, 0);
7849 system_long_wq = alloc_workqueue("events_long", WQ_PERCPU, 0);
7850 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7851 system_dfl_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7852 system_freezable_wq = alloc_workqueue("events_freezable",
7853 WQ_FREEZABLE | WQ_PERCPU, 0);
7854 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7855 WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7856 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7857 WQ_FREEZABLE | WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7858 system_bh_wq = alloc_workqueue("events_bh", WQ_BH | WQ_PERCPU, 0);
7859 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7860 WQ_BH | WQ_HIGHPRI | WQ_PERCPU, 0);
7861 BUG_ON(!system_wq || !system_percpu_wq|| !system_highpri_wq || !system_long_wq ||
7862 !system_unbound_wq || !system_freezable_wq || !system_dfl_wq ||
7863 !system_power_efficient_wq ||
7864 !system_freezable_power_efficient_wq ||
7865 !system_bh_wq || !system_bh_highpri_wq);
7866 }
7867
wq_cpu_intensive_thresh_init(void)7868 static void __init wq_cpu_intensive_thresh_init(void)
7869 {
7870 unsigned long thresh;
7871 unsigned long bogo;
7872
7873 pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7874 BUG_ON(IS_ERR(pwq_release_worker));
7875
7876 /* if the user set it to a specific value, keep it */
7877 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7878 return;
7879
7880 /*
7881 * The default of 10ms is derived from the fact that most modern (as of
7882 * 2023) processors can do a lot in 10ms and that it's just below what
7883 * most consider human-perceivable. However, the kernel also runs on a
7884 * lot slower CPUs including microcontrollers where the threshold is way
7885 * too low.
7886 *
7887 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7888 * This is by no means accurate but it doesn't have to be. The mechanism
7889 * is still useful even when the threshold is fully scaled up. Also, as
7890 * the reports would usually be applicable to everyone, some machines
7891 * operating on longer thresholds won't significantly diminish their
7892 * usefulness.
7893 */
7894 thresh = 10 * USEC_PER_MSEC;
7895
7896 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7897 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7898 if (bogo < 4000)
7899 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7900
7901 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7902 loops_per_jiffy, bogo, thresh);
7903
7904 wq_cpu_intensive_thresh_us = thresh;
7905 }
7906
7907 /**
7908 * workqueue_init - bring workqueue subsystem fully online
7909 *
7910 * This is the second step of three-staged workqueue subsystem initialization
7911 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7912 * been created and work items queued on them, but there are no kworkers
7913 * executing the work items yet. Populate the worker pools with the initial
7914 * workers and enable future kworker creations.
7915 */
workqueue_init(void)7916 void __init workqueue_init(void)
7917 {
7918 struct workqueue_struct *wq;
7919 struct worker_pool *pool;
7920 int cpu, bkt;
7921
7922 wq_cpu_intensive_thresh_init();
7923
7924 mutex_lock(&wq_pool_mutex);
7925
7926 /*
7927 * Per-cpu pools created earlier could be missing node hint. Fix them
7928 * up. Also, create a rescuer for workqueues that requested it.
7929 */
7930 for_each_possible_cpu(cpu) {
7931 for_each_bh_worker_pool(pool, cpu)
7932 pool->node = cpu_to_node(cpu);
7933 for_each_cpu_worker_pool(pool, cpu)
7934 pool->node = cpu_to_node(cpu);
7935 }
7936
7937 list_for_each_entry(wq, &workqueues, list) {
7938 WARN(init_rescuer(wq),
7939 "workqueue: failed to create early rescuer for %s",
7940 wq->name);
7941 }
7942
7943 mutex_unlock(&wq_pool_mutex);
7944
7945 /*
7946 * Create the initial workers. A BH pool has one pseudo worker that
7947 * represents the shared BH execution context and thus doesn't get
7948 * affected by hotplug events. Create the BH pseudo workers for all
7949 * possible CPUs here.
7950 */
7951 for_each_possible_cpu(cpu)
7952 for_each_bh_worker_pool(pool, cpu)
7953 BUG_ON(!create_worker(pool));
7954
7955 for_each_online_cpu(cpu) {
7956 for_each_cpu_worker_pool(pool, cpu) {
7957 pool->flags &= ~POOL_DISASSOCIATED;
7958 BUG_ON(!create_worker(pool));
7959 }
7960 }
7961
7962 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7963 BUG_ON(!create_worker(pool));
7964
7965 wq_online = true;
7966 wq_watchdog_init();
7967 }
7968
7969 /*
7970 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7971 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7972 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7973 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7974 static void __init init_pod_type(struct wq_pod_type *pt,
7975 bool (*cpus_share_pod)(int, int))
7976 {
7977 int cur, pre, cpu, pod;
7978
7979 pt->nr_pods = 0;
7980
7981 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7982 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7983 BUG_ON(!pt->cpu_pod);
7984
7985 for_each_possible_cpu(cur) {
7986 for_each_possible_cpu(pre) {
7987 if (pre >= cur) {
7988 pt->cpu_pod[cur] = pt->nr_pods++;
7989 break;
7990 }
7991 if (cpus_share_pod(cur, pre)) {
7992 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7993 break;
7994 }
7995 }
7996 }
7997
7998 /* init the rest to match @pt->cpu_pod[] */
7999 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
8000 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
8001 BUG_ON(!pt->pod_cpus || !pt->pod_node);
8002
8003 for (pod = 0; pod < pt->nr_pods; pod++)
8004 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
8005
8006 for_each_possible_cpu(cpu) {
8007 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
8008 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
8009 }
8010 }
8011
cpus_dont_share(int cpu0,int cpu1)8012 static bool __init cpus_dont_share(int cpu0, int cpu1)
8013 {
8014 return false;
8015 }
8016
cpus_share_smt(int cpu0,int cpu1)8017 static bool __init cpus_share_smt(int cpu0, int cpu1)
8018 {
8019 #ifdef CONFIG_SCHED_SMT
8020 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
8021 #else
8022 return false;
8023 #endif
8024 }
8025
cpus_share_numa(int cpu0,int cpu1)8026 static bool __init cpus_share_numa(int cpu0, int cpu1)
8027 {
8028 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8029 }
8030
8031 /**
8032 * workqueue_init_topology - initialize CPU pods for unbound workqueues
8033 *
8034 * This is the third step of three-staged workqueue subsystem initialization and
8035 * invoked after SMP and topology information are fully initialized. It
8036 * initializes the unbound CPU pods accordingly.
8037 */
workqueue_init_topology(void)8038 void __init workqueue_init_topology(void)
8039 {
8040 struct workqueue_struct *wq;
8041 int cpu;
8042
8043 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8044 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8045 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8046 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8047
8048 wq_topo_initialized = true;
8049
8050 mutex_lock(&wq_pool_mutex);
8051
8052 /*
8053 * Workqueues allocated earlier would have all CPUs sharing the default
8054 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8055 * and CPU combinations to apply per-pod sharing.
8056 */
8057 list_for_each_entry(wq, &workqueues, list) {
8058 for_each_online_cpu(cpu)
8059 unbound_wq_update_pwq(wq, cpu);
8060 if (wq->flags & WQ_UNBOUND) {
8061 mutex_lock(&wq->mutex);
8062 wq_update_node_max_active(wq, -1);
8063 mutex_unlock(&wq->mutex);
8064 }
8065 }
8066
8067 mutex_unlock(&wq_pool_mutex);
8068 }
8069
__warn_flushing_systemwide_wq(void)8070 void __warn_flushing_systemwide_wq(void)
8071 {
8072 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8073 dump_stack();
8074 }
8075 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8076
workqueue_unbound_cpus_setup(char * str)8077 static int __init workqueue_unbound_cpus_setup(char *str)
8078 {
8079 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8080 cpumask_clear(&wq_cmdline_cpumask);
8081 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8082 }
8083
8084 return 1;
8085 }
8086 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8087