1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/export.h> 4 #include <linux/nsproxy.h> 5 #include <linux/slab.h> 6 #include <linux/sched/signal.h> 7 #include <linux/user_namespace.h> 8 #include <linux/proc_ns.h> 9 #include <linux/highuid.h> 10 #include <linux/cred.h> 11 #include <linux/securebits.h> 12 #include <linux/security.h> 13 #include <linux/keyctl.h> 14 #include <linux/key-type.h> 15 #include <keys/user-type.h> 16 #include <linux/seq_file.h> 17 #include <linux/fs.h> 18 #include <linux/uaccess.h> 19 #include <linux/ctype.h> 20 #include <linux/projid.h> 21 #include <linux/fs_struct.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 25 static struct kmem_cache *user_ns_cachep __ro_after_init; 26 static DEFINE_MUTEX(userns_state_mutex); 27 28 static bool new_idmap_permitted(const struct file *file, 29 struct user_namespace *ns, int cap_setid, 30 struct uid_gid_map *map); 31 static void free_user_ns(struct work_struct *work); 32 33 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) 34 { 35 return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); 36 } 37 38 static void dec_user_namespaces(struct ucounts *ucounts) 39 { 40 return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); 41 } 42 43 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) 44 { 45 /* Start with the same capabilities as init but useless for doing 46 * anything as the capabilities are bound to the new user namespace. 47 */ 48 cred->securebits = SECUREBITS_DEFAULT; 49 cred->cap_inheritable = CAP_EMPTY_SET; 50 cred->cap_permitted = CAP_FULL_SET; 51 cred->cap_effective = CAP_FULL_SET; 52 cred->cap_ambient = CAP_EMPTY_SET; 53 cred->cap_bset = CAP_FULL_SET; 54 #ifdef CONFIG_KEYS 55 key_put(cred->request_key_auth); 56 cred->request_key_auth = NULL; 57 #endif 58 /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ 59 cred->user_ns = user_ns; 60 } 61 62 static unsigned long enforced_nproc_rlimit(void) 63 { 64 unsigned long limit = RLIM_INFINITY; 65 66 /* Is RLIMIT_NPROC currently enforced? */ 67 if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) || 68 (current_user_ns() != &init_user_ns)) 69 limit = rlimit(RLIMIT_NPROC); 70 71 return limit; 72 } 73 74 /* 75 * Create a new user namespace, deriving the creator from the user in the 76 * passed credentials, and replacing that user with the new root user for the 77 * new namespace. 78 * 79 * This is called by copy_creds(), which will finish setting the target task's 80 * credentials. 81 */ 82 int create_user_ns(struct cred *new) 83 { 84 struct user_namespace *ns, *parent_ns = new->user_ns; 85 kuid_t owner = new->euid; 86 kgid_t group = new->egid; 87 struct ucounts *ucounts; 88 int ret, i; 89 90 ret = -ENOSPC; 91 if (parent_ns->level > 32) 92 goto fail; 93 94 ucounts = inc_user_namespaces(parent_ns, owner); 95 if (!ucounts) 96 goto fail; 97 98 /* 99 * Verify that we can not violate the policy of which files 100 * may be accessed that is specified by the root directory, 101 * by verifying that the root directory is at the root of the 102 * mount namespace which allows all files to be accessed. 103 */ 104 ret = -EPERM; 105 if (current_chrooted()) 106 goto fail_dec; 107 108 /* The creator needs a mapping in the parent user namespace 109 * or else we won't be able to reasonably tell userspace who 110 * created a user_namespace. 111 */ 112 ret = -EPERM; 113 if (!kuid_has_mapping(parent_ns, owner) || 114 !kgid_has_mapping(parent_ns, group)) 115 goto fail_dec; 116 117 ret = security_create_user_ns(new); 118 if (ret < 0) 119 goto fail_dec; 120 121 ret = -ENOMEM; 122 ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); 123 if (!ns) 124 goto fail_dec; 125 126 ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP); 127 ret = ns_alloc_inum(&ns->ns); 128 if (ret) 129 goto fail_free; 130 ns->ns.ops = &userns_operations; 131 132 refcount_set(&ns->ns.count, 1); 133 /* Leave the new->user_ns reference with the new user namespace. */ 134 ns->parent = parent_ns; 135 ns->level = parent_ns->level + 1; 136 ns->owner = owner; 137 ns->group = group; 138 INIT_WORK(&ns->work, free_user_ns); 139 for (i = 0; i < UCOUNT_COUNTS; i++) { 140 ns->ucount_max[i] = INT_MAX; 141 } 142 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit()); 143 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE)); 144 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING)); 145 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK)); 146 ns->ucounts = ucounts; 147 148 /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ 149 mutex_lock(&userns_state_mutex); 150 ns->flags = parent_ns->flags; 151 mutex_unlock(&userns_state_mutex); 152 153 #ifdef CONFIG_KEYS 154 INIT_LIST_HEAD(&ns->keyring_name_list); 155 init_rwsem(&ns->keyring_sem); 156 #endif 157 ret = -ENOMEM; 158 if (!setup_userns_sysctls(ns)) 159 goto fail_keyring; 160 161 set_cred_user_ns(new, ns); 162 return 0; 163 fail_keyring: 164 #ifdef CONFIG_PERSISTENT_KEYRINGS 165 key_put(ns->persistent_keyring_register); 166 #endif 167 ns_free_inum(&ns->ns); 168 fail_free: 169 kmem_cache_free(user_ns_cachep, ns); 170 fail_dec: 171 dec_user_namespaces(ucounts); 172 fail: 173 return ret; 174 } 175 176 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) 177 { 178 struct cred *cred; 179 int err = -ENOMEM; 180 181 if (!(unshare_flags & CLONE_NEWUSER)) 182 return 0; 183 184 cred = prepare_creds(); 185 if (cred) { 186 err = create_user_ns(cred); 187 if (err) 188 put_cred(cred); 189 else 190 *new_cred = cred; 191 } 192 193 return err; 194 } 195 196 static void free_user_ns(struct work_struct *work) 197 { 198 struct user_namespace *parent, *ns = 199 container_of(work, struct user_namespace, work); 200 201 do { 202 struct ucounts *ucounts = ns->ucounts; 203 parent = ns->parent; 204 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 205 kfree(ns->gid_map.forward); 206 kfree(ns->gid_map.reverse); 207 } 208 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 209 kfree(ns->uid_map.forward); 210 kfree(ns->uid_map.reverse); 211 } 212 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 213 kfree(ns->projid_map.forward); 214 kfree(ns->projid_map.reverse); 215 } 216 #if IS_ENABLED(CONFIG_BINFMT_MISC) 217 kfree(ns->binfmt_misc); 218 #endif 219 retire_userns_sysctls(ns); 220 key_free_user_ns(ns); 221 ns_free_inum(&ns->ns); 222 kmem_cache_free(user_ns_cachep, ns); 223 dec_user_namespaces(ucounts); 224 ns = parent; 225 } while (refcount_dec_and_test(&parent->ns.count)); 226 } 227 228 void __put_user_ns(struct user_namespace *ns) 229 { 230 schedule_work(&ns->work); 231 } 232 EXPORT_SYMBOL(__put_user_ns); 233 234 /* 235 * struct idmap_key - holds the information necessary to find an idmapping in a 236 * sorted idmap array. It is passed to cmp_map_id() as first argument. 237 */ 238 struct idmap_key { 239 bool map_up; /* true -> id from kid; false -> kid from id */ 240 u32 id; /* id to find */ 241 u32 count; /* == 0 unless used with map_id_range_down() */ 242 }; 243 244 /* 245 * cmp_map_id - Function to be passed to bsearch() to find the requested 246 * idmapping. Expects struct idmap_key to be passed via @k. 247 */ 248 static int cmp_map_id(const void *k, const void *e) 249 { 250 u32 first, last, id2; 251 const struct idmap_key *key = k; 252 const struct uid_gid_extent *el = e; 253 254 id2 = key->id + key->count - 1; 255 256 /* handle map_id_{down,up}() */ 257 if (key->map_up) 258 first = el->lower_first; 259 else 260 first = el->first; 261 262 last = first + el->count - 1; 263 264 if (key->id >= first && key->id <= last && 265 (id2 >= first && id2 <= last)) 266 return 0; 267 268 if (key->id < first || id2 < first) 269 return -1; 270 271 return 1; 272 } 273 274 /* 275 * map_id_range_down_max - Find idmap via binary search in ordered idmap array. 276 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 277 */ 278 static struct uid_gid_extent * 279 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 280 { 281 struct idmap_key key; 282 283 key.map_up = false; 284 key.count = count; 285 key.id = id; 286 287 return bsearch(&key, map->forward, extents, 288 sizeof(struct uid_gid_extent), cmp_map_id); 289 } 290 291 /* 292 * map_id_range_down_base - Find idmap via binary search in static extent array. 293 * Can only be called if number of mappings is equal or less than 294 * UID_GID_MAP_MAX_BASE_EXTENTS. 295 */ 296 static struct uid_gid_extent * 297 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 298 { 299 unsigned idx; 300 u32 first, last, id2; 301 302 id2 = id + count - 1; 303 304 /* Find the matching extent */ 305 for (idx = 0; idx < extents; idx++) { 306 first = map->extent[idx].first; 307 last = first + map->extent[idx].count - 1; 308 if (id >= first && id <= last && 309 (id2 >= first && id2 <= last)) 310 return &map->extent[idx]; 311 } 312 return NULL; 313 } 314 315 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) 316 { 317 struct uid_gid_extent *extent; 318 unsigned extents = map->nr_extents; 319 smp_rmb(); 320 321 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 322 extent = map_id_range_down_base(extents, map, id, count); 323 else 324 extent = map_id_range_down_max(extents, map, id, count); 325 326 /* Map the id or note failure */ 327 if (extent) 328 id = (id - extent->first) + extent->lower_first; 329 else 330 id = (u32) -1; 331 332 return id; 333 } 334 335 u32 map_id_down(struct uid_gid_map *map, u32 id) 336 { 337 return map_id_range_down(map, id, 1); 338 } 339 340 /* 341 * map_id_up_base - Find idmap via binary search in static extent array. 342 * Can only be called if number of mappings is equal or less than 343 * UID_GID_MAP_MAX_BASE_EXTENTS. 344 */ 345 static struct uid_gid_extent * 346 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) 347 { 348 unsigned idx; 349 u32 first, last; 350 351 /* Find the matching extent */ 352 for (idx = 0; idx < extents; idx++) { 353 first = map->extent[idx].lower_first; 354 last = first + map->extent[idx].count - 1; 355 if (id >= first && id <= last) 356 return &map->extent[idx]; 357 } 358 return NULL; 359 } 360 361 /* 362 * map_id_up_max - Find idmap via binary search in ordered idmap array. 363 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 364 */ 365 static struct uid_gid_extent * 366 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) 367 { 368 struct idmap_key key; 369 370 key.map_up = true; 371 key.count = 1; 372 key.id = id; 373 374 return bsearch(&key, map->reverse, extents, 375 sizeof(struct uid_gid_extent), cmp_map_id); 376 } 377 378 u32 map_id_up(struct uid_gid_map *map, u32 id) 379 { 380 struct uid_gid_extent *extent; 381 unsigned extents = map->nr_extents; 382 smp_rmb(); 383 384 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 385 extent = map_id_up_base(extents, map, id); 386 else 387 extent = map_id_up_max(extents, map, id); 388 389 /* Map the id or note failure */ 390 if (extent) 391 id = (id - extent->lower_first) + extent->first; 392 else 393 id = (u32) -1; 394 395 return id; 396 } 397 398 /** 399 * make_kuid - Map a user-namespace uid pair into a kuid. 400 * @ns: User namespace that the uid is in 401 * @uid: User identifier 402 * 403 * Maps a user-namespace uid pair into a kernel internal kuid, 404 * and returns that kuid. 405 * 406 * When there is no mapping defined for the user-namespace uid 407 * pair INVALID_UID is returned. Callers are expected to test 408 * for and handle INVALID_UID being returned. INVALID_UID 409 * may be tested for using uid_valid(). 410 */ 411 kuid_t make_kuid(struct user_namespace *ns, uid_t uid) 412 { 413 /* Map the uid to a global kernel uid */ 414 return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); 415 } 416 EXPORT_SYMBOL(make_kuid); 417 418 /** 419 * from_kuid - Create a uid from a kuid user-namespace pair. 420 * @targ: The user namespace we want a uid in. 421 * @kuid: The kernel internal uid to start with. 422 * 423 * Map @kuid into the user-namespace specified by @targ and 424 * return the resulting uid. 425 * 426 * There is always a mapping into the initial user_namespace. 427 * 428 * If @kuid has no mapping in @targ (uid_t)-1 is returned. 429 */ 430 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) 431 { 432 /* Map the uid from a global kernel uid */ 433 return map_id_up(&targ->uid_map, __kuid_val(kuid)); 434 } 435 EXPORT_SYMBOL(from_kuid); 436 437 /** 438 * from_kuid_munged - Create a uid from a kuid user-namespace pair. 439 * @targ: The user namespace we want a uid in. 440 * @kuid: The kernel internal uid to start with. 441 * 442 * Map @kuid into the user-namespace specified by @targ and 443 * return the resulting uid. 444 * 445 * There is always a mapping into the initial user_namespace. 446 * 447 * Unlike from_kuid from_kuid_munged never fails and always 448 * returns a valid uid. This makes from_kuid_munged appropriate 449 * for use in syscalls like stat and getuid where failing the 450 * system call and failing to provide a valid uid are not an 451 * options. 452 * 453 * If @kuid has no mapping in @targ overflowuid is returned. 454 */ 455 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) 456 { 457 uid_t uid; 458 uid = from_kuid(targ, kuid); 459 460 if (uid == (uid_t) -1) 461 uid = overflowuid; 462 return uid; 463 } 464 EXPORT_SYMBOL(from_kuid_munged); 465 466 /** 467 * make_kgid - Map a user-namespace gid pair into a kgid. 468 * @ns: User namespace that the gid is in 469 * @gid: group identifier 470 * 471 * Maps a user-namespace gid pair into a kernel internal kgid, 472 * and returns that kgid. 473 * 474 * When there is no mapping defined for the user-namespace gid 475 * pair INVALID_GID is returned. Callers are expected to test 476 * for and handle INVALID_GID being returned. INVALID_GID may be 477 * tested for using gid_valid(). 478 */ 479 kgid_t make_kgid(struct user_namespace *ns, gid_t gid) 480 { 481 /* Map the gid to a global kernel gid */ 482 return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); 483 } 484 EXPORT_SYMBOL(make_kgid); 485 486 /** 487 * from_kgid - Create a gid from a kgid user-namespace pair. 488 * @targ: The user namespace we want a gid in. 489 * @kgid: The kernel internal gid to start with. 490 * 491 * Map @kgid into the user-namespace specified by @targ and 492 * return the resulting gid. 493 * 494 * There is always a mapping into the initial user_namespace. 495 * 496 * If @kgid has no mapping in @targ (gid_t)-1 is returned. 497 */ 498 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) 499 { 500 /* Map the gid from a global kernel gid */ 501 return map_id_up(&targ->gid_map, __kgid_val(kgid)); 502 } 503 EXPORT_SYMBOL(from_kgid); 504 505 /** 506 * from_kgid_munged - Create a gid from a kgid user-namespace pair. 507 * @targ: The user namespace we want a gid in. 508 * @kgid: The kernel internal gid to start with. 509 * 510 * Map @kgid into the user-namespace specified by @targ and 511 * return the resulting gid. 512 * 513 * There is always a mapping into the initial user_namespace. 514 * 515 * Unlike from_kgid from_kgid_munged never fails and always 516 * returns a valid gid. This makes from_kgid_munged appropriate 517 * for use in syscalls like stat and getgid where failing the 518 * system call and failing to provide a valid gid are not options. 519 * 520 * If @kgid has no mapping in @targ overflowgid is returned. 521 */ 522 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) 523 { 524 gid_t gid; 525 gid = from_kgid(targ, kgid); 526 527 if (gid == (gid_t) -1) 528 gid = overflowgid; 529 return gid; 530 } 531 EXPORT_SYMBOL(from_kgid_munged); 532 533 /** 534 * make_kprojid - Map a user-namespace projid pair into a kprojid. 535 * @ns: User namespace that the projid is in 536 * @projid: Project identifier 537 * 538 * Maps a user-namespace uid pair into a kernel internal kuid, 539 * and returns that kuid. 540 * 541 * When there is no mapping defined for the user-namespace projid 542 * pair INVALID_PROJID is returned. Callers are expected to test 543 * for and handle INVALID_PROJID being returned. INVALID_PROJID 544 * may be tested for using projid_valid(). 545 */ 546 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) 547 { 548 /* Map the uid to a global kernel uid */ 549 return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); 550 } 551 EXPORT_SYMBOL(make_kprojid); 552 553 /** 554 * from_kprojid - Create a projid from a kprojid user-namespace pair. 555 * @targ: The user namespace we want a projid in. 556 * @kprojid: The kernel internal project identifier to start with. 557 * 558 * Map @kprojid into the user-namespace specified by @targ and 559 * return the resulting projid. 560 * 561 * There is always a mapping into the initial user_namespace. 562 * 563 * If @kprojid has no mapping in @targ (projid_t)-1 is returned. 564 */ 565 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) 566 { 567 /* Map the uid from a global kernel uid */ 568 return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); 569 } 570 EXPORT_SYMBOL(from_kprojid); 571 572 /** 573 * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. 574 * @targ: The user namespace we want a projid in. 575 * @kprojid: The kernel internal projid to start with. 576 * 577 * Map @kprojid into the user-namespace specified by @targ and 578 * return the resulting projid. 579 * 580 * There is always a mapping into the initial user_namespace. 581 * 582 * Unlike from_kprojid from_kprojid_munged never fails and always 583 * returns a valid projid. This makes from_kprojid_munged 584 * appropriate for use in syscalls like stat and where 585 * failing the system call and failing to provide a valid projid are 586 * not an options. 587 * 588 * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. 589 */ 590 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) 591 { 592 projid_t projid; 593 projid = from_kprojid(targ, kprojid); 594 595 if (projid == (projid_t) -1) 596 projid = OVERFLOW_PROJID; 597 return projid; 598 } 599 EXPORT_SYMBOL(from_kprojid_munged); 600 601 602 static int uid_m_show(struct seq_file *seq, void *v) 603 { 604 struct user_namespace *ns = seq->private; 605 struct uid_gid_extent *extent = v; 606 struct user_namespace *lower_ns; 607 uid_t lower; 608 609 lower_ns = seq_user_ns(seq); 610 if ((lower_ns == ns) && lower_ns->parent) 611 lower_ns = lower_ns->parent; 612 613 lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); 614 615 seq_printf(seq, "%10u %10u %10u\n", 616 extent->first, 617 lower, 618 extent->count); 619 620 return 0; 621 } 622 623 static int gid_m_show(struct seq_file *seq, void *v) 624 { 625 struct user_namespace *ns = seq->private; 626 struct uid_gid_extent *extent = v; 627 struct user_namespace *lower_ns; 628 gid_t lower; 629 630 lower_ns = seq_user_ns(seq); 631 if ((lower_ns == ns) && lower_ns->parent) 632 lower_ns = lower_ns->parent; 633 634 lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); 635 636 seq_printf(seq, "%10u %10u %10u\n", 637 extent->first, 638 lower, 639 extent->count); 640 641 return 0; 642 } 643 644 static int projid_m_show(struct seq_file *seq, void *v) 645 { 646 struct user_namespace *ns = seq->private; 647 struct uid_gid_extent *extent = v; 648 struct user_namespace *lower_ns; 649 projid_t lower; 650 651 lower_ns = seq_user_ns(seq); 652 if ((lower_ns == ns) && lower_ns->parent) 653 lower_ns = lower_ns->parent; 654 655 lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); 656 657 seq_printf(seq, "%10u %10u %10u\n", 658 extent->first, 659 lower, 660 extent->count); 661 662 return 0; 663 } 664 665 static void *m_start(struct seq_file *seq, loff_t *ppos, 666 struct uid_gid_map *map) 667 { 668 loff_t pos = *ppos; 669 unsigned extents = map->nr_extents; 670 smp_rmb(); 671 672 if (pos >= extents) 673 return NULL; 674 675 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 676 return &map->extent[pos]; 677 678 return &map->forward[pos]; 679 } 680 681 static void *uid_m_start(struct seq_file *seq, loff_t *ppos) 682 { 683 struct user_namespace *ns = seq->private; 684 685 return m_start(seq, ppos, &ns->uid_map); 686 } 687 688 static void *gid_m_start(struct seq_file *seq, loff_t *ppos) 689 { 690 struct user_namespace *ns = seq->private; 691 692 return m_start(seq, ppos, &ns->gid_map); 693 } 694 695 static void *projid_m_start(struct seq_file *seq, loff_t *ppos) 696 { 697 struct user_namespace *ns = seq->private; 698 699 return m_start(seq, ppos, &ns->projid_map); 700 } 701 702 static void *m_next(struct seq_file *seq, void *v, loff_t *pos) 703 { 704 (*pos)++; 705 return seq->op->start(seq, pos); 706 } 707 708 static void m_stop(struct seq_file *seq, void *v) 709 { 710 return; 711 } 712 713 const struct seq_operations proc_uid_seq_operations = { 714 .start = uid_m_start, 715 .stop = m_stop, 716 .next = m_next, 717 .show = uid_m_show, 718 }; 719 720 const struct seq_operations proc_gid_seq_operations = { 721 .start = gid_m_start, 722 .stop = m_stop, 723 .next = m_next, 724 .show = gid_m_show, 725 }; 726 727 const struct seq_operations proc_projid_seq_operations = { 728 .start = projid_m_start, 729 .stop = m_stop, 730 .next = m_next, 731 .show = projid_m_show, 732 }; 733 734 static bool mappings_overlap(struct uid_gid_map *new_map, 735 struct uid_gid_extent *extent) 736 { 737 u32 upper_first, lower_first, upper_last, lower_last; 738 unsigned idx; 739 740 upper_first = extent->first; 741 lower_first = extent->lower_first; 742 upper_last = upper_first + extent->count - 1; 743 lower_last = lower_first + extent->count - 1; 744 745 for (idx = 0; idx < new_map->nr_extents; idx++) { 746 u32 prev_upper_first, prev_lower_first; 747 u32 prev_upper_last, prev_lower_last; 748 struct uid_gid_extent *prev; 749 750 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 751 prev = &new_map->extent[idx]; 752 else 753 prev = &new_map->forward[idx]; 754 755 prev_upper_first = prev->first; 756 prev_lower_first = prev->lower_first; 757 prev_upper_last = prev_upper_first + prev->count - 1; 758 prev_lower_last = prev_lower_first + prev->count - 1; 759 760 /* Does the upper range intersect a previous extent? */ 761 if ((prev_upper_first <= upper_last) && 762 (prev_upper_last >= upper_first)) 763 return true; 764 765 /* Does the lower range intersect a previous extent? */ 766 if ((prev_lower_first <= lower_last) && 767 (prev_lower_last >= lower_first)) 768 return true; 769 } 770 return false; 771 } 772 773 /* 774 * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. 775 * Takes care to allocate a 4K block of memory if the number of mappings exceeds 776 * UID_GID_MAP_MAX_BASE_EXTENTS. 777 */ 778 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) 779 { 780 struct uid_gid_extent *dest; 781 782 if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { 783 struct uid_gid_extent *forward; 784 785 /* Allocate memory for 340 mappings. */ 786 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, 787 sizeof(struct uid_gid_extent), 788 GFP_KERNEL); 789 if (!forward) 790 return -ENOMEM; 791 792 /* Copy over memory. Only set up memory for the forward pointer. 793 * Defer the memory setup for the reverse pointer. 794 */ 795 memcpy(forward, map->extent, 796 map->nr_extents * sizeof(map->extent[0])); 797 798 map->forward = forward; 799 map->reverse = NULL; 800 } 801 802 if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) 803 dest = &map->extent[map->nr_extents]; 804 else 805 dest = &map->forward[map->nr_extents]; 806 807 *dest = *extent; 808 map->nr_extents++; 809 return 0; 810 } 811 812 /* cmp function to sort() forward mappings */ 813 static int cmp_extents_forward(const void *a, const void *b) 814 { 815 const struct uid_gid_extent *e1 = a; 816 const struct uid_gid_extent *e2 = b; 817 818 if (e1->first < e2->first) 819 return -1; 820 821 if (e1->first > e2->first) 822 return 1; 823 824 return 0; 825 } 826 827 /* cmp function to sort() reverse mappings */ 828 static int cmp_extents_reverse(const void *a, const void *b) 829 { 830 const struct uid_gid_extent *e1 = a; 831 const struct uid_gid_extent *e2 = b; 832 833 if (e1->lower_first < e2->lower_first) 834 return -1; 835 836 if (e1->lower_first > e2->lower_first) 837 return 1; 838 839 return 0; 840 } 841 842 /* 843 * sort_idmaps - Sorts an array of idmap entries. 844 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 845 */ 846 static int sort_idmaps(struct uid_gid_map *map) 847 { 848 if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 849 return 0; 850 851 /* Sort forward array. */ 852 sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), 853 cmp_extents_forward, NULL); 854 855 /* Only copy the memory from forward we actually need. */ 856 map->reverse = kmemdup_array(map->forward, map->nr_extents, 857 sizeof(struct uid_gid_extent), GFP_KERNEL); 858 if (!map->reverse) 859 return -ENOMEM; 860 861 /* Sort reverse array. */ 862 sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), 863 cmp_extents_reverse, NULL); 864 865 return 0; 866 } 867 868 /** 869 * verify_root_map() - check the uid 0 mapping 870 * @file: idmapping file 871 * @map_ns: user namespace of the target process 872 * @new_map: requested idmap 873 * 874 * If a process requests mapping parent uid 0 into the new ns, verify that the 875 * process writing the map had the CAP_SETFCAP capability as the target process 876 * will be able to write fscaps that are valid in ancestor user namespaces. 877 * 878 * Return: true if the mapping is allowed, false if not. 879 */ 880 static bool verify_root_map(const struct file *file, 881 struct user_namespace *map_ns, 882 struct uid_gid_map *new_map) 883 { 884 int idx; 885 const struct user_namespace *file_ns = file->f_cred->user_ns; 886 struct uid_gid_extent *extent0 = NULL; 887 888 for (idx = 0; idx < new_map->nr_extents; idx++) { 889 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 890 extent0 = &new_map->extent[idx]; 891 else 892 extent0 = &new_map->forward[idx]; 893 if (extent0->lower_first == 0) 894 break; 895 896 extent0 = NULL; 897 } 898 899 if (!extent0) 900 return true; 901 902 if (map_ns == file_ns) { 903 /* The process unshared its ns and is writing to its own 904 * /proc/self/uid_map. User already has full capabilites in 905 * the new namespace. Verify that the parent had CAP_SETFCAP 906 * when it unshared. 907 * */ 908 if (!file_ns->parent_could_setfcap) 909 return false; 910 } else { 911 /* Process p1 is writing to uid_map of p2, who is in a child 912 * user namespace to p1's. Verify that the opener of the map 913 * file has CAP_SETFCAP against the parent of the new map 914 * namespace */ 915 if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP)) 916 return false; 917 } 918 919 return true; 920 } 921 922 static ssize_t map_write(struct file *file, const char __user *buf, 923 size_t count, loff_t *ppos, 924 int cap_setid, 925 struct uid_gid_map *map, 926 struct uid_gid_map *parent_map) 927 { 928 struct seq_file *seq = file->private_data; 929 struct user_namespace *map_ns = seq->private; 930 struct uid_gid_map new_map; 931 unsigned idx; 932 struct uid_gid_extent extent; 933 char *kbuf, *pos, *next_line; 934 ssize_t ret; 935 936 /* Only allow < page size writes at the beginning of the file */ 937 if ((*ppos != 0) || (count >= PAGE_SIZE)) 938 return -EINVAL; 939 940 /* Slurp in the user data */ 941 kbuf = memdup_user_nul(buf, count); 942 if (IS_ERR(kbuf)) 943 return PTR_ERR(kbuf); 944 945 /* 946 * The userns_state_mutex serializes all writes to any given map. 947 * 948 * Any map is only ever written once. 949 * 950 * An id map fits within 1 cache line on most architectures. 951 * 952 * On read nothing needs to be done unless you are on an 953 * architecture with a crazy cache coherency model like alpha. 954 * 955 * There is a one time data dependency between reading the 956 * count of the extents and the values of the extents. The 957 * desired behavior is to see the values of the extents that 958 * were written before the count of the extents. 959 * 960 * To achieve this smp_wmb() is used on guarantee the write 961 * order and smp_rmb() is guaranteed that we don't have crazy 962 * architectures returning stale data. 963 */ 964 mutex_lock(&userns_state_mutex); 965 966 memset(&new_map, 0, sizeof(struct uid_gid_map)); 967 968 ret = -EPERM; 969 /* Only allow one successful write to the map */ 970 if (map->nr_extents != 0) 971 goto out; 972 973 /* 974 * Adjusting namespace settings requires capabilities on the target. 975 */ 976 if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN)) 977 goto out; 978 979 /* Parse the user data */ 980 ret = -EINVAL; 981 pos = kbuf; 982 for (; pos; pos = next_line) { 983 984 /* Find the end of line and ensure I don't look past it */ 985 next_line = strchr(pos, '\n'); 986 if (next_line) { 987 *next_line = '\0'; 988 next_line++; 989 if (*next_line == '\0') 990 next_line = NULL; 991 } 992 993 pos = skip_spaces(pos); 994 extent.first = simple_strtoul(pos, &pos, 10); 995 if (!isspace(*pos)) 996 goto out; 997 998 pos = skip_spaces(pos); 999 extent.lower_first = simple_strtoul(pos, &pos, 10); 1000 if (!isspace(*pos)) 1001 goto out; 1002 1003 pos = skip_spaces(pos); 1004 extent.count = simple_strtoul(pos, &pos, 10); 1005 if (*pos && !isspace(*pos)) 1006 goto out; 1007 1008 /* Verify there is not trailing junk on the line */ 1009 pos = skip_spaces(pos); 1010 if (*pos != '\0') 1011 goto out; 1012 1013 /* Verify we have been given valid starting values */ 1014 if ((extent.first == (u32) -1) || 1015 (extent.lower_first == (u32) -1)) 1016 goto out; 1017 1018 /* Verify count is not zero and does not cause the 1019 * extent to wrap 1020 */ 1021 if ((extent.first + extent.count) <= extent.first) 1022 goto out; 1023 if ((extent.lower_first + extent.count) <= 1024 extent.lower_first) 1025 goto out; 1026 1027 /* Do the ranges in extent overlap any previous extents? */ 1028 if (mappings_overlap(&new_map, &extent)) 1029 goto out; 1030 1031 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && 1032 (next_line != NULL)) 1033 goto out; 1034 1035 ret = insert_extent(&new_map, &extent); 1036 if (ret < 0) 1037 goto out; 1038 ret = -EINVAL; 1039 } 1040 /* Be very certain the new map actually exists */ 1041 if (new_map.nr_extents == 0) 1042 goto out; 1043 1044 ret = -EPERM; 1045 /* Validate the user is allowed to use user id's mapped to. */ 1046 if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map)) 1047 goto out; 1048 1049 ret = -EPERM; 1050 /* Map the lower ids from the parent user namespace to the 1051 * kernel global id space. 1052 */ 1053 for (idx = 0; idx < new_map.nr_extents; idx++) { 1054 struct uid_gid_extent *e; 1055 u32 lower_first; 1056 1057 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 1058 e = &new_map.extent[idx]; 1059 else 1060 e = &new_map.forward[idx]; 1061 1062 lower_first = map_id_range_down(parent_map, 1063 e->lower_first, 1064 e->count); 1065 1066 /* Fail if we can not map the specified extent to 1067 * the kernel global id space. 1068 */ 1069 if (lower_first == (u32) -1) 1070 goto out; 1071 1072 e->lower_first = lower_first; 1073 } 1074 1075 /* 1076 * If we want to use binary search for lookup, this clones the extent 1077 * array and sorts both copies. 1078 */ 1079 ret = sort_idmaps(&new_map); 1080 if (ret < 0) 1081 goto out; 1082 1083 /* Install the map */ 1084 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { 1085 memcpy(map->extent, new_map.extent, 1086 new_map.nr_extents * sizeof(new_map.extent[0])); 1087 } else { 1088 map->forward = new_map.forward; 1089 map->reverse = new_map.reverse; 1090 } 1091 smp_wmb(); 1092 map->nr_extents = new_map.nr_extents; 1093 1094 *ppos = count; 1095 ret = count; 1096 out: 1097 if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 1098 kfree(new_map.forward); 1099 kfree(new_map.reverse); 1100 map->forward = NULL; 1101 map->reverse = NULL; 1102 map->nr_extents = 0; 1103 } 1104 1105 mutex_unlock(&userns_state_mutex); 1106 kfree(kbuf); 1107 return ret; 1108 } 1109 1110 ssize_t proc_uid_map_write(struct file *file, const char __user *buf, 1111 size_t size, loff_t *ppos) 1112 { 1113 struct seq_file *seq = file->private_data; 1114 struct user_namespace *ns = seq->private; 1115 struct user_namespace *seq_ns = seq_user_ns(seq); 1116 1117 if (!ns->parent) 1118 return -EPERM; 1119 1120 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1121 return -EPERM; 1122 1123 return map_write(file, buf, size, ppos, CAP_SETUID, 1124 &ns->uid_map, &ns->parent->uid_map); 1125 } 1126 1127 ssize_t proc_gid_map_write(struct file *file, const char __user *buf, 1128 size_t size, loff_t *ppos) 1129 { 1130 struct seq_file *seq = file->private_data; 1131 struct user_namespace *ns = seq->private; 1132 struct user_namespace *seq_ns = seq_user_ns(seq); 1133 1134 if (!ns->parent) 1135 return -EPERM; 1136 1137 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1138 return -EPERM; 1139 1140 return map_write(file, buf, size, ppos, CAP_SETGID, 1141 &ns->gid_map, &ns->parent->gid_map); 1142 } 1143 1144 ssize_t proc_projid_map_write(struct file *file, const char __user *buf, 1145 size_t size, loff_t *ppos) 1146 { 1147 struct seq_file *seq = file->private_data; 1148 struct user_namespace *ns = seq->private; 1149 struct user_namespace *seq_ns = seq_user_ns(seq); 1150 1151 if (!ns->parent) 1152 return -EPERM; 1153 1154 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1155 return -EPERM; 1156 1157 /* Anyone can set any valid project id no capability needed */ 1158 return map_write(file, buf, size, ppos, -1, 1159 &ns->projid_map, &ns->parent->projid_map); 1160 } 1161 1162 static bool new_idmap_permitted(const struct file *file, 1163 struct user_namespace *ns, int cap_setid, 1164 struct uid_gid_map *new_map) 1165 { 1166 const struct cred *cred = file->f_cred; 1167 1168 if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map)) 1169 return false; 1170 1171 /* Don't allow mappings that would allow anything that wouldn't 1172 * be allowed without the establishment of unprivileged mappings. 1173 */ 1174 if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && 1175 uid_eq(ns->owner, cred->euid)) { 1176 u32 id = new_map->extent[0].lower_first; 1177 if (cap_setid == CAP_SETUID) { 1178 kuid_t uid = make_kuid(ns->parent, id); 1179 if (uid_eq(uid, cred->euid)) 1180 return true; 1181 } else if (cap_setid == CAP_SETGID) { 1182 kgid_t gid = make_kgid(ns->parent, id); 1183 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && 1184 gid_eq(gid, cred->egid)) 1185 return true; 1186 } 1187 } 1188 1189 /* Allow anyone to set a mapping that doesn't require privilege */ 1190 if (!cap_valid(cap_setid)) 1191 return true; 1192 1193 /* Allow the specified ids if we have the appropriate capability 1194 * (CAP_SETUID or CAP_SETGID) over the parent user namespace. 1195 * And the opener of the id file also has the appropriate capability. 1196 */ 1197 if (ns_capable(ns->parent, cap_setid) && 1198 file_ns_capable(file, ns->parent, cap_setid)) 1199 return true; 1200 1201 return false; 1202 } 1203 1204 int proc_setgroups_show(struct seq_file *seq, void *v) 1205 { 1206 struct user_namespace *ns = seq->private; 1207 unsigned long userns_flags = READ_ONCE(ns->flags); 1208 1209 seq_printf(seq, "%s\n", 1210 (userns_flags & USERNS_SETGROUPS_ALLOWED) ? 1211 "allow" : "deny"); 1212 return 0; 1213 } 1214 1215 ssize_t proc_setgroups_write(struct file *file, const char __user *buf, 1216 size_t count, loff_t *ppos) 1217 { 1218 struct seq_file *seq = file->private_data; 1219 struct user_namespace *ns = seq->private; 1220 char kbuf[8], *pos; 1221 bool setgroups_allowed; 1222 ssize_t ret; 1223 1224 /* Only allow a very narrow range of strings to be written */ 1225 ret = -EINVAL; 1226 if ((*ppos != 0) || (count >= sizeof(kbuf))) 1227 goto out; 1228 1229 /* What was written? */ 1230 ret = -EFAULT; 1231 if (copy_from_user(kbuf, buf, count)) 1232 goto out; 1233 kbuf[count] = '\0'; 1234 pos = kbuf; 1235 1236 /* What is being requested? */ 1237 ret = -EINVAL; 1238 if (strncmp(pos, "allow", 5) == 0) { 1239 pos += 5; 1240 setgroups_allowed = true; 1241 } 1242 else if (strncmp(pos, "deny", 4) == 0) { 1243 pos += 4; 1244 setgroups_allowed = false; 1245 } 1246 else 1247 goto out; 1248 1249 /* Verify there is not trailing junk on the line */ 1250 pos = skip_spaces(pos); 1251 if (*pos != '\0') 1252 goto out; 1253 1254 ret = -EPERM; 1255 mutex_lock(&userns_state_mutex); 1256 if (setgroups_allowed) { 1257 /* Enabling setgroups after setgroups has been disabled 1258 * is not allowed. 1259 */ 1260 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) 1261 goto out_unlock; 1262 } else { 1263 /* Permanently disabling setgroups after setgroups has 1264 * been enabled by writing the gid_map is not allowed. 1265 */ 1266 if (ns->gid_map.nr_extents != 0) 1267 goto out_unlock; 1268 ns->flags &= ~USERNS_SETGROUPS_ALLOWED; 1269 } 1270 mutex_unlock(&userns_state_mutex); 1271 1272 /* Report a successful write */ 1273 *ppos = count; 1274 ret = count; 1275 out: 1276 return ret; 1277 out_unlock: 1278 mutex_unlock(&userns_state_mutex); 1279 goto out; 1280 } 1281 1282 bool userns_may_setgroups(const struct user_namespace *ns) 1283 { 1284 bool allowed; 1285 1286 mutex_lock(&userns_state_mutex); 1287 /* It is not safe to use setgroups until a gid mapping in 1288 * the user namespace has been established. 1289 */ 1290 allowed = ns->gid_map.nr_extents != 0; 1291 /* Is setgroups allowed? */ 1292 allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); 1293 mutex_unlock(&userns_state_mutex); 1294 1295 return allowed; 1296 } 1297 1298 /* 1299 * Returns true if @child is the same namespace or a descendant of 1300 * @ancestor. 1301 */ 1302 bool in_userns(const struct user_namespace *ancestor, 1303 const struct user_namespace *child) 1304 { 1305 const struct user_namespace *ns; 1306 for (ns = child; ns->level > ancestor->level; ns = ns->parent) 1307 ; 1308 return (ns == ancestor); 1309 } 1310 1311 bool current_in_userns(const struct user_namespace *target_ns) 1312 { 1313 return in_userns(target_ns, current_user_ns()); 1314 } 1315 EXPORT_SYMBOL(current_in_userns); 1316 1317 static inline struct user_namespace *to_user_ns(struct ns_common *ns) 1318 { 1319 return container_of(ns, struct user_namespace, ns); 1320 } 1321 1322 static struct ns_common *userns_get(struct task_struct *task) 1323 { 1324 struct user_namespace *user_ns; 1325 1326 rcu_read_lock(); 1327 user_ns = get_user_ns(__task_cred(task)->user_ns); 1328 rcu_read_unlock(); 1329 1330 return user_ns ? &user_ns->ns : NULL; 1331 } 1332 1333 static void userns_put(struct ns_common *ns) 1334 { 1335 put_user_ns(to_user_ns(ns)); 1336 } 1337 1338 static int userns_install(struct nsset *nsset, struct ns_common *ns) 1339 { 1340 struct user_namespace *user_ns = to_user_ns(ns); 1341 struct cred *cred; 1342 1343 /* Don't allow gaining capabilities by reentering 1344 * the same user namespace. 1345 */ 1346 if (user_ns == current_user_ns()) 1347 return -EINVAL; 1348 1349 /* Tasks that share a thread group must share a user namespace */ 1350 if (!thread_group_empty(current)) 1351 return -EINVAL; 1352 1353 if (current->fs->users != 1) 1354 return -EINVAL; 1355 1356 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1357 return -EPERM; 1358 1359 cred = nsset_cred(nsset); 1360 if (!cred) 1361 return -EINVAL; 1362 1363 put_user_ns(cred->user_ns); 1364 set_cred_user_ns(cred, get_user_ns(user_ns)); 1365 1366 if (set_cred_ucounts(cred) < 0) 1367 return -EINVAL; 1368 1369 return 0; 1370 } 1371 1372 struct ns_common *ns_get_owner(struct ns_common *ns) 1373 { 1374 struct user_namespace *my_user_ns = current_user_ns(); 1375 struct user_namespace *owner, *p; 1376 1377 /* See if the owner is in the current user namespace */ 1378 owner = p = ns->ops->owner(ns); 1379 for (;;) { 1380 if (!p) 1381 return ERR_PTR(-EPERM); 1382 if (p == my_user_ns) 1383 break; 1384 p = p->parent; 1385 } 1386 1387 return &get_user_ns(owner)->ns; 1388 } 1389 1390 static struct user_namespace *userns_owner(struct ns_common *ns) 1391 { 1392 return to_user_ns(ns)->parent; 1393 } 1394 1395 const struct proc_ns_operations userns_operations = { 1396 .name = "user", 1397 .type = CLONE_NEWUSER, 1398 .get = userns_get, 1399 .put = userns_put, 1400 .install = userns_install, 1401 .owner = userns_owner, 1402 .get_parent = ns_get_owner, 1403 }; 1404 1405 static __init int user_namespaces_init(void) 1406 { 1407 user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT); 1408 return 0; 1409 } 1410 subsys_initcall(user_namespaces_init); 1411