xref: /linux/kernel/user_namespace.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/export.h>
4 #include <linux/nsproxy.h>
5 #include <linux/slab.h>
6 #include <linux/sched/signal.h>
7 #include <linux/user_namespace.h>
8 #include <linux/proc_ns.h>
9 #include <linux/highuid.h>
10 #include <linux/cred.h>
11 #include <linux/securebits.h>
12 #include <linux/keyctl.h>
13 #include <linux/key-type.h>
14 #include <keys/user-type.h>
15 #include <linux/seq_file.h>
16 #include <linux/fs.h>
17 #include <linux/uaccess.h>
18 #include <linux/ctype.h>
19 #include <linux/projid.h>
20 #include <linux/fs_struct.h>
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 
24 static struct kmem_cache *user_ns_cachep __read_mostly;
25 static DEFINE_MUTEX(userns_state_mutex);
26 
27 static bool new_idmap_permitted(const struct file *file,
28 				struct user_namespace *ns, int cap_setid,
29 				struct uid_gid_map *map);
30 static void free_user_ns(struct work_struct *work);
31 
32 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
33 {
34 	return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
35 }
36 
37 static void dec_user_namespaces(struct ucounts *ucounts)
38 {
39 	return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
40 }
41 
42 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
43 {
44 	/* Start with the same capabilities as init but useless for doing
45 	 * anything as the capabilities are bound to the new user namespace.
46 	 */
47 	cred->securebits = SECUREBITS_DEFAULT;
48 	cred->cap_inheritable = CAP_EMPTY_SET;
49 	cred->cap_permitted = CAP_FULL_SET;
50 	cred->cap_effective = CAP_FULL_SET;
51 	cred->cap_ambient = CAP_EMPTY_SET;
52 	cred->cap_bset = CAP_FULL_SET;
53 #ifdef CONFIG_KEYS
54 	key_put(cred->request_key_auth);
55 	cred->request_key_auth = NULL;
56 #endif
57 	/* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
58 	cred->user_ns = user_ns;
59 }
60 
61 static unsigned long enforced_nproc_rlimit(void)
62 {
63 	unsigned long limit = RLIM_INFINITY;
64 
65 	/* Is RLIMIT_NPROC currently enforced? */
66 	if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) ||
67 	    (current_user_ns() != &init_user_ns))
68 		limit = rlimit(RLIMIT_NPROC);
69 
70 	return limit;
71 }
72 
73 /*
74  * Create a new user namespace, deriving the creator from the user in the
75  * passed credentials, and replacing that user with the new root user for the
76  * new namespace.
77  *
78  * This is called by copy_creds(), which will finish setting the target task's
79  * credentials.
80  */
81 int create_user_ns(struct cred *new)
82 {
83 	struct user_namespace *ns, *parent_ns = new->user_ns;
84 	kuid_t owner = new->euid;
85 	kgid_t group = new->egid;
86 	struct ucounts *ucounts;
87 	int ret, i;
88 
89 	ret = -ENOSPC;
90 	if (parent_ns->level > 32)
91 		goto fail;
92 
93 	ucounts = inc_user_namespaces(parent_ns, owner);
94 	if (!ucounts)
95 		goto fail;
96 
97 	/*
98 	 * Verify that we can not violate the policy of which files
99 	 * may be accessed that is specified by the root directory,
100 	 * by verifying that the root directory is at the root of the
101 	 * mount namespace which allows all files to be accessed.
102 	 */
103 	ret = -EPERM;
104 	if (current_chrooted())
105 		goto fail_dec;
106 
107 	/* The creator needs a mapping in the parent user namespace
108 	 * or else we won't be able to reasonably tell userspace who
109 	 * created a user_namespace.
110 	 */
111 	ret = -EPERM;
112 	if (!kuid_has_mapping(parent_ns, owner) ||
113 	    !kgid_has_mapping(parent_ns, group))
114 		goto fail_dec;
115 
116 	ret = -ENOMEM;
117 	ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
118 	if (!ns)
119 		goto fail_dec;
120 
121 	ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
122 	ret = ns_alloc_inum(&ns->ns);
123 	if (ret)
124 		goto fail_free;
125 	ns->ns.ops = &userns_operations;
126 
127 	refcount_set(&ns->ns.count, 1);
128 	/* Leave the new->user_ns reference with the new user namespace. */
129 	ns->parent = parent_ns;
130 	ns->level = parent_ns->level + 1;
131 	ns->owner = owner;
132 	ns->group = group;
133 	INIT_WORK(&ns->work, free_user_ns);
134 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) {
135 		ns->ucount_max[i] = INT_MAX;
136 	}
137 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit());
138 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE));
139 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING));
140 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK));
141 	ns->ucounts = ucounts;
142 
143 	/* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
144 	mutex_lock(&userns_state_mutex);
145 	ns->flags = parent_ns->flags;
146 	mutex_unlock(&userns_state_mutex);
147 
148 #ifdef CONFIG_KEYS
149 	INIT_LIST_HEAD(&ns->keyring_name_list);
150 	init_rwsem(&ns->keyring_sem);
151 #endif
152 	ret = -ENOMEM;
153 	if (!setup_userns_sysctls(ns))
154 		goto fail_keyring;
155 
156 	set_cred_user_ns(new, ns);
157 	return 0;
158 fail_keyring:
159 #ifdef CONFIG_PERSISTENT_KEYRINGS
160 	key_put(ns->persistent_keyring_register);
161 #endif
162 	ns_free_inum(&ns->ns);
163 fail_free:
164 	kmem_cache_free(user_ns_cachep, ns);
165 fail_dec:
166 	dec_user_namespaces(ucounts);
167 fail:
168 	return ret;
169 }
170 
171 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
172 {
173 	struct cred *cred;
174 	int err = -ENOMEM;
175 
176 	if (!(unshare_flags & CLONE_NEWUSER))
177 		return 0;
178 
179 	cred = prepare_creds();
180 	if (cred) {
181 		err = create_user_ns(cred);
182 		if (err)
183 			put_cred(cred);
184 		else
185 			*new_cred = cred;
186 	}
187 
188 	return err;
189 }
190 
191 static void free_user_ns(struct work_struct *work)
192 {
193 	struct user_namespace *parent, *ns =
194 		container_of(work, struct user_namespace, work);
195 
196 	do {
197 		struct ucounts *ucounts = ns->ucounts;
198 		parent = ns->parent;
199 		if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
200 			kfree(ns->gid_map.forward);
201 			kfree(ns->gid_map.reverse);
202 		}
203 		if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
204 			kfree(ns->uid_map.forward);
205 			kfree(ns->uid_map.reverse);
206 		}
207 		if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
208 			kfree(ns->projid_map.forward);
209 			kfree(ns->projid_map.reverse);
210 		}
211 		retire_userns_sysctls(ns);
212 		key_free_user_ns(ns);
213 		ns_free_inum(&ns->ns);
214 		kmem_cache_free(user_ns_cachep, ns);
215 		dec_user_namespaces(ucounts);
216 		ns = parent;
217 	} while (refcount_dec_and_test(&parent->ns.count));
218 }
219 
220 void __put_user_ns(struct user_namespace *ns)
221 {
222 	schedule_work(&ns->work);
223 }
224 EXPORT_SYMBOL(__put_user_ns);
225 
226 /**
227  * idmap_key struct holds the information necessary to find an idmapping in a
228  * sorted idmap array. It is passed to cmp_map_id() as first argument.
229  */
230 struct idmap_key {
231 	bool map_up; /* true  -> id from kid; false -> kid from id */
232 	u32 id; /* id to find */
233 	u32 count; /* == 0 unless used with map_id_range_down() */
234 };
235 
236 /**
237  * cmp_map_id - Function to be passed to bsearch() to find the requested
238  * idmapping. Expects struct idmap_key to be passed via @k.
239  */
240 static int cmp_map_id(const void *k, const void *e)
241 {
242 	u32 first, last, id2;
243 	const struct idmap_key *key = k;
244 	const struct uid_gid_extent *el = e;
245 
246 	id2 = key->id + key->count - 1;
247 
248 	/* handle map_id_{down,up}() */
249 	if (key->map_up)
250 		first = el->lower_first;
251 	else
252 		first = el->first;
253 
254 	last = first + el->count - 1;
255 
256 	if (key->id >= first && key->id <= last &&
257 	    (id2 >= first && id2 <= last))
258 		return 0;
259 
260 	if (key->id < first || id2 < first)
261 		return -1;
262 
263 	return 1;
264 }
265 
266 /**
267  * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
268  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
269  */
270 static struct uid_gid_extent *
271 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
272 {
273 	struct idmap_key key;
274 
275 	key.map_up = false;
276 	key.count = count;
277 	key.id = id;
278 
279 	return bsearch(&key, map->forward, extents,
280 		       sizeof(struct uid_gid_extent), cmp_map_id);
281 }
282 
283 /**
284  * map_id_range_down_base - Find idmap via binary search in static extent array.
285  * Can only be called if number of mappings is equal or less than
286  * UID_GID_MAP_MAX_BASE_EXTENTS.
287  */
288 static struct uid_gid_extent *
289 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
290 {
291 	unsigned idx;
292 	u32 first, last, id2;
293 
294 	id2 = id + count - 1;
295 
296 	/* Find the matching extent */
297 	for (idx = 0; idx < extents; idx++) {
298 		first = map->extent[idx].first;
299 		last = first + map->extent[idx].count - 1;
300 		if (id >= first && id <= last &&
301 		    (id2 >= first && id2 <= last))
302 			return &map->extent[idx];
303 	}
304 	return NULL;
305 }
306 
307 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
308 {
309 	struct uid_gid_extent *extent;
310 	unsigned extents = map->nr_extents;
311 	smp_rmb();
312 
313 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
314 		extent = map_id_range_down_base(extents, map, id, count);
315 	else
316 		extent = map_id_range_down_max(extents, map, id, count);
317 
318 	/* Map the id or note failure */
319 	if (extent)
320 		id = (id - extent->first) + extent->lower_first;
321 	else
322 		id = (u32) -1;
323 
324 	return id;
325 }
326 
327 static u32 map_id_down(struct uid_gid_map *map, u32 id)
328 {
329 	return map_id_range_down(map, id, 1);
330 }
331 
332 /**
333  * map_id_up_base - Find idmap via binary search in static extent array.
334  * Can only be called if number of mappings is equal or less than
335  * UID_GID_MAP_MAX_BASE_EXTENTS.
336  */
337 static struct uid_gid_extent *
338 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id)
339 {
340 	unsigned idx;
341 	u32 first, last;
342 
343 	/* Find the matching extent */
344 	for (idx = 0; idx < extents; idx++) {
345 		first = map->extent[idx].lower_first;
346 		last = first + map->extent[idx].count - 1;
347 		if (id >= first && id <= last)
348 			return &map->extent[idx];
349 	}
350 	return NULL;
351 }
352 
353 /**
354  * map_id_up_max - Find idmap via binary search in ordered idmap array.
355  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
356  */
357 static struct uid_gid_extent *
358 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id)
359 {
360 	struct idmap_key key;
361 
362 	key.map_up = true;
363 	key.count = 1;
364 	key.id = id;
365 
366 	return bsearch(&key, map->reverse, extents,
367 		       sizeof(struct uid_gid_extent), cmp_map_id);
368 }
369 
370 static u32 map_id_up(struct uid_gid_map *map, u32 id)
371 {
372 	struct uid_gid_extent *extent;
373 	unsigned extents = map->nr_extents;
374 	smp_rmb();
375 
376 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
377 		extent = map_id_up_base(extents, map, id);
378 	else
379 		extent = map_id_up_max(extents, map, id);
380 
381 	/* Map the id or note failure */
382 	if (extent)
383 		id = (id - extent->lower_first) + extent->first;
384 	else
385 		id = (u32) -1;
386 
387 	return id;
388 }
389 
390 /**
391  *	make_kuid - Map a user-namespace uid pair into a kuid.
392  *	@ns:  User namespace that the uid is in
393  *	@uid: User identifier
394  *
395  *	Maps a user-namespace uid pair into a kernel internal kuid,
396  *	and returns that kuid.
397  *
398  *	When there is no mapping defined for the user-namespace uid
399  *	pair INVALID_UID is returned.  Callers are expected to test
400  *	for and handle INVALID_UID being returned.  INVALID_UID
401  *	may be tested for using uid_valid().
402  */
403 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
404 {
405 	/* Map the uid to a global kernel uid */
406 	return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
407 }
408 EXPORT_SYMBOL(make_kuid);
409 
410 /**
411  *	from_kuid - Create a uid from a kuid user-namespace pair.
412  *	@targ: The user namespace we want a uid in.
413  *	@kuid: The kernel internal uid to start with.
414  *
415  *	Map @kuid into the user-namespace specified by @targ and
416  *	return the resulting uid.
417  *
418  *	There is always a mapping into the initial user_namespace.
419  *
420  *	If @kuid has no mapping in @targ (uid_t)-1 is returned.
421  */
422 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
423 {
424 	/* Map the uid from a global kernel uid */
425 	return map_id_up(&targ->uid_map, __kuid_val(kuid));
426 }
427 EXPORT_SYMBOL(from_kuid);
428 
429 /**
430  *	from_kuid_munged - Create a uid from a kuid user-namespace pair.
431  *	@targ: The user namespace we want a uid in.
432  *	@kuid: The kernel internal uid to start with.
433  *
434  *	Map @kuid into the user-namespace specified by @targ and
435  *	return the resulting uid.
436  *
437  *	There is always a mapping into the initial user_namespace.
438  *
439  *	Unlike from_kuid from_kuid_munged never fails and always
440  *	returns a valid uid.  This makes from_kuid_munged appropriate
441  *	for use in syscalls like stat and getuid where failing the
442  *	system call and failing to provide a valid uid are not an
443  *	options.
444  *
445  *	If @kuid has no mapping in @targ overflowuid is returned.
446  */
447 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
448 {
449 	uid_t uid;
450 	uid = from_kuid(targ, kuid);
451 
452 	if (uid == (uid_t) -1)
453 		uid = overflowuid;
454 	return uid;
455 }
456 EXPORT_SYMBOL(from_kuid_munged);
457 
458 /**
459  *	make_kgid - Map a user-namespace gid pair into a kgid.
460  *	@ns:  User namespace that the gid is in
461  *	@gid: group identifier
462  *
463  *	Maps a user-namespace gid pair into a kernel internal kgid,
464  *	and returns that kgid.
465  *
466  *	When there is no mapping defined for the user-namespace gid
467  *	pair INVALID_GID is returned.  Callers are expected to test
468  *	for and handle INVALID_GID being returned.  INVALID_GID may be
469  *	tested for using gid_valid().
470  */
471 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
472 {
473 	/* Map the gid to a global kernel gid */
474 	return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
475 }
476 EXPORT_SYMBOL(make_kgid);
477 
478 /**
479  *	from_kgid - Create a gid from a kgid user-namespace pair.
480  *	@targ: The user namespace we want a gid in.
481  *	@kgid: The kernel internal gid to start with.
482  *
483  *	Map @kgid into the user-namespace specified by @targ and
484  *	return the resulting gid.
485  *
486  *	There is always a mapping into the initial user_namespace.
487  *
488  *	If @kgid has no mapping in @targ (gid_t)-1 is returned.
489  */
490 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
491 {
492 	/* Map the gid from a global kernel gid */
493 	return map_id_up(&targ->gid_map, __kgid_val(kgid));
494 }
495 EXPORT_SYMBOL(from_kgid);
496 
497 /**
498  *	from_kgid_munged - Create a gid from a kgid user-namespace pair.
499  *	@targ: The user namespace we want a gid in.
500  *	@kgid: The kernel internal gid to start with.
501  *
502  *	Map @kgid into the user-namespace specified by @targ and
503  *	return the resulting gid.
504  *
505  *	There is always a mapping into the initial user_namespace.
506  *
507  *	Unlike from_kgid from_kgid_munged never fails and always
508  *	returns a valid gid.  This makes from_kgid_munged appropriate
509  *	for use in syscalls like stat and getgid where failing the
510  *	system call and failing to provide a valid gid are not options.
511  *
512  *	If @kgid has no mapping in @targ overflowgid is returned.
513  */
514 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
515 {
516 	gid_t gid;
517 	gid = from_kgid(targ, kgid);
518 
519 	if (gid == (gid_t) -1)
520 		gid = overflowgid;
521 	return gid;
522 }
523 EXPORT_SYMBOL(from_kgid_munged);
524 
525 /**
526  *	make_kprojid - Map a user-namespace projid pair into a kprojid.
527  *	@ns:  User namespace that the projid is in
528  *	@projid: Project identifier
529  *
530  *	Maps a user-namespace uid pair into a kernel internal kuid,
531  *	and returns that kuid.
532  *
533  *	When there is no mapping defined for the user-namespace projid
534  *	pair INVALID_PROJID is returned.  Callers are expected to test
535  *	for and handle INVALID_PROJID being returned.  INVALID_PROJID
536  *	may be tested for using projid_valid().
537  */
538 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
539 {
540 	/* Map the uid to a global kernel uid */
541 	return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
542 }
543 EXPORT_SYMBOL(make_kprojid);
544 
545 /**
546  *	from_kprojid - Create a projid from a kprojid user-namespace pair.
547  *	@targ: The user namespace we want a projid in.
548  *	@kprojid: The kernel internal project identifier to start with.
549  *
550  *	Map @kprojid into the user-namespace specified by @targ and
551  *	return the resulting projid.
552  *
553  *	There is always a mapping into the initial user_namespace.
554  *
555  *	If @kprojid has no mapping in @targ (projid_t)-1 is returned.
556  */
557 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
558 {
559 	/* Map the uid from a global kernel uid */
560 	return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
561 }
562 EXPORT_SYMBOL(from_kprojid);
563 
564 /**
565  *	from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
566  *	@targ: The user namespace we want a projid in.
567  *	@kprojid: The kernel internal projid to start with.
568  *
569  *	Map @kprojid into the user-namespace specified by @targ and
570  *	return the resulting projid.
571  *
572  *	There is always a mapping into the initial user_namespace.
573  *
574  *	Unlike from_kprojid from_kprojid_munged never fails and always
575  *	returns a valid projid.  This makes from_kprojid_munged
576  *	appropriate for use in syscalls like stat and where
577  *	failing the system call and failing to provide a valid projid are
578  *	not an options.
579  *
580  *	If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
581  */
582 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
583 {
584 	projid_t projid;
585 	projid = from_kprojid(targ, kprojid);
586 
587 	if (projid == (projid_t) -1)
588 		projid = OVERFLOW_PROJID;
589 	return projid;
590 }
591 EXPORT_SYMBOL(from_kprojid_munged);
592 
593 
594 static int uid_m_show(struct seq_file *seq, void *v)
595 {
596 	struct user_namespace *ns = seq->private;
597 	struct uid_gid_extent *extent = v;
598 	struct user_namespace *lower_ns;
599 	uid_t lower;
600 
601 	lower_ns = seq_user_ns(seq);
602 	if ((lower_ns == ns) && lower_ns->parent)
603 		lower_ns = lower_ns->parent;
604 
605 	lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
606 
607 	seq_printf(seq, "%10u %10u %10u\n",
608 		extent->first,
609 		lower,
610 		extent->count);
611 
612 	return 0;
613 }
614 
615 static int gid_m_show(struct seq_file *seq, void *v)
616 {
617 	struct user_namespace *ns = seq->private;
618 	struct uid_gid_extent *extent = v;
619 	struct user_namespace *lower_ns;
620 	gid_t lower;
621 
622 	lower_ns = seq_user_ns(seq);
623 	if ((lower_ns == ns) && lower_ns->parent)
624 		lower_ns = lower_ns->parent;
625 
626 	lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
627 
628 	seq_printf(seq, "%10u %10u %10u\n",
629 		extent->first,
630 		lower,
631 		extent->count);
632 
633 	return 0;
634 }
635 
636 static int projid_m_show(struct seq_file *seq, void *v)
637 {
638 	struct user_namespace *ns = seq->private;
639 	struct uid_gid_extent *extent = v;
640 	struct user_namespace *lower_ns;
641 	projid_t lower;
642 
643 	lower_ns = seq_user_ns(seq);
644 	if ((lower_ns == ns) && lower_ns->parent)
645 		lower_ns = lower_ns->parent;
646 
647 	lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
648 
649 	seq_printf(seq, "%10u %10u %10u\n",
650 		extent->first,
651 		lower,
652 		extent->count);
653 
654 	return 0;
655 }
656 
657 static void *m_start(struct seq_file *seq, loff_t *ppos,
658 		     struct uid_gid_map *map)
659 {
660 	loff_t pos = *ppos;
661 	unsigned extents = map->nr_extents;
662 	smp_rmb();
663 
664 	if (pos >= extents)
665 		return NULL;
666 
667 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
668 		return &map->extent[pos];
669 
670 	return &map->forward[pos];
671 }
672 
673 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
674 {
675 	struct user_namespace *ns = seq->private;
676 
677 	return m_start(seq, ppos, &ns->uid_map);
678 }
679 
680 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
681 {
682 	struct user_namespace *ns = seq->private;
683 
684 	return m_start(seq, ppos, &ns->gid_map);
685 }
686 
687 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
688 {
689 	struct user_namespace *ns = seq->private;
690 
691 	return m_start(seq, ppos, &ns->projid_map);
692 }
693 
694 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
695 {
696 	(*pos)++;
697 	return seq->op->start(seq, pos);
698 }
699 
700 static void m_stop(struct seq_file *seq, void *v)
701 {
702 	return;
703 }
704 
705 const struct seq_operations proc_uid_seq_operations = {
706 	.start = uid_m_start,
707 	.stop = m_stop,
708 	.next = m_next,
709 	.show = uid_m_show,
710 };
711 
712 const struct seq_operations proc_gid_seq_operations = {
713 	.start = gid_m_start,
714 	.stop = m_stop,
715 	.next = m_next,
716 	.show = gid_m_show,
717 };
718 
719 const struct seq_operations proc_projid_seq_operations = {
720 	.start = projid_m_start,
721 	.stop = m_stop,
722 	.next = m_next,
723 	.show = projid_m_show,
724 };
725 
726 static bool mappings_overlap(struct uid_gid_map *new_map,
727 			     struct uid_gid_extent *extent)
728 {
729 	u32 upper_first, lower_first, upper_last, lower_last;
730 	unsigned idx;
731 
732 	upper_first = extent->first;
733 	lower_first = extent->lower_first;
734 	upper_last = upper_first + extent->count - 1;
735 	lower_last = lower_first + extent->count - 1;
736 
737 	for (idx = 0; idx < new_map->nr_extents; idx++) {
738 		u32 prev_upper_first, prev_lower_first;
739 		u32 prev_upper_last, prev_lower_last;
740 		struct uid_gid_extent *prev;
741 
742 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
743 			prev = &new_map->extent[idx];
744 		else
745 			prev = &new_map->forward[idx];
746 
747 		prev_upper_first = prev->first;
748 		prev_lower_first = prev->lower_first;
749 		prev_upper_last = prev_upper_first + prev->count - 1;
750 		prev_lower_last = prev_lower_first + prev->count - 1;
751 
752 		/* Does the upper range intersect a previous extent? */
753 		if ((prev_upper_first <= upper_last) &&
754 		    (prev_upper_last >= upper_first))
755 			return true;
756 
757 		/* Does the lower range intersect a previous extent? */
758 		if ((prev_lower_first <= lower_last) &&
759 		    (prev_lower_last >= lower_first))
760 			return true;
761 	}
762 	return false;
763 }
764 
765 /**
766  * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
767  * Takes care to allocate a 4K block of memory if the number of mappings exceeds
768  * UID_GID_MAP_MAX_BASE_EXTENTS.
769  */
770 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
771 {
772 	struct uid_gid_extent *dest;
773 
774 	if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
775 		struct uid_gid_extent *forward;
776 
777 		/* Allocate memory for 340 mappings. */
778 		forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
779 					sizeof(struct uid_gid_extent),
780 					GFP_KERNEL);
781 		if (!forward)
782 			return -ENOMEM;
783 
784 		/* Copy over memory. Only set up memory for the forward pointer.
785 		 * Defer the memory setup for the reverse pointer.
786 		 */
787 		memcpy(forward, map->extent,
788 		       map->nr_extents * sizeof(map->extent[0]));
789 
790 		map->forward = forward;
791 		map->reverse = NULL;
792 	}
793 
794 	if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
795 		dest = &map->extent[map->nr_extents];
796 	else
797 		dest = &map->forward[map->nr_extents];
798 
799 	*dest = *extent;
800 	map->nr_extents++;
801 	return 0;
802 }
803 
804 /* cmp function to sort() forward mappings */
805 static int cmp_extents_forward(const void *a, const void *b)
806 {
807 	const struct uid_gid_extent *e1 = a;
808 	const struct uid_gid_extent *e2 = b;
809 
810 	if (e1->first < e2->first)
811 		return -1;
812 
813 	if (e1->first > e2->first)
814 		return 1;
815 
816 	return 0;
817 }
818 
819 /* cmp function to sort() reverse mappings */
820 static int cmp_extents_reverse(const void *a, const void *b)
821 {
822 	const struct uid_gid_extent *e1 = a;
823 	const struct uid_gid_extent *e2 = b;
824 
825 	if (e1->lower_first < e2->lower_first)
826 		return -1;
827 
828 	if (e1->lower_first > e2->lower_first)
829 		return 1;
830 
831 	return 0;
832 }
833 
834 /**
835  * sort_idmaps - Sorts an array of idmap entries.
836  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
837  */
838 static int sort_idmaps(struct uid_gid_map *map)
839 {
840 	if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
841 		return 0;
842 
843 	/* Sort forward array. */
844 	sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
845 	     cmp_extents_forward, NULL);
846 
847 	/* Only copy the memory from forward we actually need. */
848 	map->reverse = kmemdup(map->forward,
849 			       map->nr_extents * sizeof(struct uid_gid_extent),
850 			       GFP_KERNEL);
851 	if (!map->reverse)
852 		return -ENOMEM;
853 
854 	/* Sort reverse array. */
855 	sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
856 	     cmp_extents_reverse, NULL);
857 
858 	return 0;
859 }
860 
861 /**
862  * verify_root_map() - check the uid 0 mapping
863  * @file: idmapping file
864  * @map_ns: user namespace of the target process
865  * @new_map: requested idmap
866  *
867  * If a process requests mapping parent uid 0 into the new ns, verify that the
868  * process writing the map had the CAP_SETFCAP capability as the target process
869  * will be able to write fscaps that are valid in ancestor user namespaces.
870  *
871  * Return: true if the mapping is allowed, false if not.
872  */
873 static bool verify_root_map(const struct file *file,
874 			    struct user_namespace *map_ns,
875 			    struct uid_gid_map *new_map)
876 {
877 	int idx;
878 	const struct user_namespace *file_ns = file->f_cred->user_ns;
879 	struct uid_gid_extent *extent0 = NULL;
880 
881 	for (idx = 0; idx < new_map->nr_extents; idx++) {
882 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
883 			extent0 = &new_map->extent[idx];
884 		else
885 			extent0 = &new_map->forward[idx];
886 		if (extent0->lower_first == 0)
887 			break;
888 
889 		extent0 = NULL;
890 	}
891 
892 	if (!extent0)
893 		return true;
894 
895 	if (map_ns == file_ns) {
896 		/* The process unshared its ns and is writing to its own
897 		 * /proc/self/uid_map.  User already has full capabilites in
898 		 * the new namespace.  Verify that the parent had CAP_SETFCAP
899 		 * when it unshared.
900 		 * */
901 		if (!file_ns->parent_could_setfcap)
902 			return false;
903 	} else {
904 		/* Process p1 is writing to uid_map of p2, who is in a child
905 		 * user namespace to p1's.  Verify that the opener of the map
906 		 * file has CAP_SETFCAP against the parent of the new map
907 		 * namespace */
908 		if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
909 			return false;
910 	}
911 
912 	return true;
913 }
914 
915 static ssize_t map_write(struct file *file, const char __user *buf,
916 			 size_t count, loff_t *ppos,
917 			 int cap_setid,
918 			 struct uid_gid_map *map,
919 			 struct uid_gid_map *parent_map)
920 {
921 	struct seq_file *seq = file->private_data;
922 	struct user_namespace *map_ns = seq->private;
923 	struct uid_gid_map new_map;
924 	unsigned idx;
925 	struct uid_gid_extent extent;
926 	char *kbuf = NULL, *pos, *next_line;
927 	ssize_t ret;
928 
929 	/* Only allow < page size writes at the beginning of the file */
930 	if ((*ppos != 0) || (count >= PAGE_SIZE))
931 		return -EINVAL;
932 
933 	/* Slurp in the user data */
934 	kbuf = memdup_user_nul(buf, count);
935 	if (IS_ERR(kbuf))
936 		return PTR_ERR(kbuf);
937 
938 	/*
939 	 * The userns_state_mutex serializes all writes to any given map.
940 	 *
941 	 * Any map is only ever written once.
942 	 *
943 	 * An id map fits within 1 cache line on most architectures.
944 	 *
945 	 * On read nothing needs to be done unless you are on an
946 	 * architecture with a crazy cache coherency model like alpha.
947 	 *
948 	 * There is a one time data dependency between reading the
949 	 * count of the extents and the values of the extents.  The
950 	 * desired behavior is to see the values of the extents that
951 	 * were written before the count of the extents.
952 	 *
953 	 * To achieve this smp_wmb() is used on guarantee the write
954 	 * order and smp_rmb() is guaranteed that we don't have crazy
955 	 * architectures returning stale data.
956 	 */
957 	mutex_lock(&userns_state_mutex);
958 
959 	memset(&new_map, 0, sizeof(struct uid_gid_map));
960 
961 	ret = -EPERM;
962 	/* Only allow one successful write to the map */
963 	if (map->nr_extents != 0)
964 		goto out;
965 
966 	/*
967 	 * Adjusting namespace settings requires capabilities on the target.
968 	 */
969 	if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
970 		goto out;
971 
972 	/* Parse the user data */
973 	ret = -EINVAL;
974 	pos = kbuf;
975 	for (; pos; pos = next_line) {
976 
977 		/* Find the end of line and ensure I don't look past it */
978 		next_line = strchr(pos, '\n');
979 		if (next_line) {
980 			*next_line = '\0';
981 			next_line++;
982 			if (*next_line == '\0')
983 				next_line = NULL;
984 		}
985 
986 		pos = skip_spaces(pos);
987 		extent.first = simple_strtoul(pos, &pos, 10);
988 		if (!isspace(*pos))
989 			goto out;
990 
991 		pos = skip_spaces(pos);
992 		extent.lower_first = simple_strtoul(pos, &pos, 10);
993 		if (!isspace(*pos))
994 			goto out;
995 
996 		pos = skip_spaces(pos);
997 		extent.count = simple_strtoul(pos, &pos, 10);
998 		if (*pos && !isspace(*pos))
999 			goto out;
1000 
1001 		/* Verify there is not trailing junk on the line */
1002 		pos = skip_spaces(pos);
1003 		if (*pos != '\0')
1004 			goto out;
1005 
1006 		/* Verify we have been given valid starting values */
1007 		if ((extent.first == (u32) -1) ||
1008 		    (extent.lower_first == (u32) -1))
1009 			goto out;
1010 
1011 		/* Verify count is not zero and does not cause the
1012 		 * extent to wrap
1013 		 */
1014 		if ((extent.first + extent.count) <= extent.first)
1015 			goto out;
1016 		if ((extent.lower_first + extent.count) <=
1017 		     extent.lower_first)
1018 			goto out;
1019 
1020 		/* Do the ranges in extent overlap any previous extents? */
1021 		if (mappings_overlap(&new_map, &extent))
1022 			goto out;
1023 
1024 		if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1025 		    (next_line != NULL))
1026 			goto out;
1027 
1028 		ret = insert_extent(&new_map, &extent);
1029 		if (ret < 0)
1030 			goto out;
1031 		ret = -EINVAL;
1032 	}
1033 	/* Be very certain the new map actually exists */
1034 	if (new_map.nr_extents == 0)
1035 		goto out;
1036 
1037 	ret = -EPERM;
1038 	/* Validate the user is allowed to use user id's mapped to. */
1039 	if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1040 		goto out;
1041 
1042 	ret = -EPERM;
1043 	/* Map the lower ids from the parent user namespace to the
1044 	 * kernel global id space.
1045 	 */
1046 	for (idx = 0; idx < new_map.nr_extents; idx++) {
1047 		struct uid_gid_extent *e;
1048 		u32 lower_first;
1049 
1050 		if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1051 			e = &new_map.extent[idx];
1052 		else
1053 			e = &new_map.forward[idx];
1054 
1055 		lower_first = map_id_range_down(parent_map,
1056 						e->lower_first,
1057 						e->count);
1058 
1059 		/* Fail if we can not map the specified extent to
1060 		 * the kernel global id space.
1061 		 */
1062 		if (lower_first == (u32) -1)
1063 			goto out;
1064 
1065 		e->lower_first = lower_first;
1066 	}
1067 
1068 	/*
1069 	 * If we want to use binary search for lookup, this clones the extent
1070 	 * array and sorts both copies.
1071 	 */
1072 	ret = sort_idmaps(&new_map);
1073 	if (ret < 0)
1074 		goto out;
1075 
1076 	/* Install the map */
1077 	if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1078 		memcpy(map->extent, new_map.extent,
1079 		       new_map.nr_extents * sizeof(new_map.extent[0]));
1080 	} else {
1081 		map->forward = new_map.forward;
1082 		map->reverse = new_map.reverse;
1083 	}
1084 	smp_wmb();
1085 	map->nr_extents = new_map.nr_extents;
1086 
1087 	*ppos = count;
1088 	ret = count;
1089 out:
1090 	if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1091 		kfree(new_map.forward);
1092 		kfree(new_map.reverse);
1093 		map->forward = NULL;
1094 		map->reverse = NULL;
1095 		map->nr_extents = 0;
1096 	}
1097 
1098 	mutex_unlock(&userns_state_mutex);
1099 	kfree(kbuf);
1100 	return ret;
1101 }
1102 
1103 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1104 			   size_t size, loff_t *ppos)
1105 {
1106 	struct seq_file *seq = file->private_data;
1107 	struct user_namespace *ns = seq->private;
1108 	struct user_namespace *seq_ns = seq_user_ns(seq);
1109 
1110 	if (!ns->parent)
1111 		return -EPERM;
1112 
1113 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1114 		return -EPERM;
1115 
1116 	return map_write(file, buf, size, ppos, CAP_SETUID,
1117 			 &ns->uid_map, &ns->parent->uid_map);
1118 }
1119 
1120 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1121 			   size_t size, loff_t *ppos)
1122 {
1123 	struct seq_file *seq = file->private_data;
1124 	struct user_namespace *ns = seq->private;
1125 	struct user_namespace *seq_ns = seq_user_ns(seq);
1126 
1127 	if (!ns->parent)
1128 		return -EPERM;
1129 
1130 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1131 		return -EPERM;
1132 
1133 	return map_write(file, buf, size, ppos, CAP_SETGID,
1134 			 &ns->gid_map, &ns->parent->gid_map);
1135 }
1136 
1137 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1138 			      size_t size, loff_t *ppos)
1139 {
1140 	struct seq_file *seq = file->private_data;
1141 	struct user_namespace *ns = seq->private;
1142 	struct user_namespace *seq_ns = seq_user_ns(seq);
1143 
1144 	if (!ns->parent)
1145 		return -EPERM;
1146 
1147 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1148 		return -EPERM;
1149 
1150 	/* Anyone can set any valid project id no capability needed */
1151 	return map_write(file, buf, size, ppos, -1,
1152 			 &ns->projid_map, &ns->parent->projid_map);
1153 }
1154 
1155 static bool new_idmap_permitted(const struct file *file,
1156 				struct user_namespace *ns, int cap_setid,
1157 				struct uid_gid_map *new_map)
1158 {
1159 	const struct cred *cred = file->f_cred;
1160 
1161 	if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1162 		return false;
1163 
1164 	/* Don't allow mappings that would allow anything that wouldn't
1165 	 * be allowed without the establishment of unprivileged mappings.
1166 	 */
1167 	if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1168 	    uid_eq(ns->owner, cred->euid)) {
1169 		u32 id = new_map->extent[0].lower_first;
1170 		if (cap_setid == CAP_SETUID) {
1171 			kuid_t uid = make_kuid(ns->parent, id);
1172 			if (uid_eq(uid, cred->euid))
1173 				return true;
1174 		} else if (cap_setid == CAP_SETGID) {
1175 			kgid_t gid = make_kgid(ns->parent, id);
1176 			if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1177 			    gid_eq(gid, cred->egid))
1178 				return true;
1179 		}
1180 	}
1181 
1182 	/* Allow anyone to set a mapping that doesn't require privilege */
1183 	if (!cap_valid(cap_setid))
1184 		return true;
1185 
1186 	/* Allow the specified ids if we have the appropriate capability
1187 	 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1188 	 * And the opener of the id file also has the appropriate capability.
1189 	 */
1190 	if (ns_capable(ns->parent, cap_setid) &&
1191 	    file_ns_capable(file, ns->parent, cap_setid))
1192 		return true;
1193 
1194 	return false;
1195 }
1196 
1197 int proc_setgroups_show(struct seq_file *seq, void *v)
1198 {
1199 	struct user_namespace *ns = seq->private;
1200 	unsigned long userns_flags = READ_ONCE(ns->flags);
1201 
1202 	seq_printf(seq, "%s\n",
1203 		   (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1204 		   "allow" : "deny");
1205 	return 0;
1206 }
1207 
1208 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1209 			     size_t count, loff_t *ppos)
1210 {
1211 	struct seq_file *seq = file->private_data;
1212 	struct user_namespace *ns = seq->private;
1213 	char kbuf[8], *pos;
1214 	bool setgroups_allowed;
1215 	ssize_t ret;
1216 
1217 	/* Only allow a very narrow range of strings to be written */
1218 	ret = -EINVAL;
1219 	if ((*ppos != 0) || (count >= sizeof(kbuf)))
1220 		goto out;
1221 
1222 	/* What was written? */
1223 	ret = -EFAULT;
1224 	if (copy_from_user(kbuf, buf, count))
1225 		goto out;
1226 	kbuf[count] = '\0';
1227 	pos = kbuf;
1228 
1229 	/* What is being requested? */
1230 	ret = -EINVAL;
1231 	if (strncmp(pos, "allow", 5) == 0) {
1232 		pos += 5;
1233 		setgroups_allowed = true;
1234 	}
1235 	else if (strncmp(pos, "deny", 4) == 0) {
1236 		pos += 4;
1237 		setgroups_allowed = false;
1238 	}
1239 	else
1240 		goto out;
1241 
1242 	/* Verify there is not trailing junk on the line */
1243 	pos = skip_spaces(pos);
1244 	if (*pos != '\0')
1245 		goto out;
1246 
1247 	ret = -EPERM;
1248 	mutex_lock(&userns_state_mutex);
1249 	if (setgroups_allowed) {
1250 		/* Enabling setgroups after setgroups has been disabled
1251 		 * is not allowed.
1252 		 */
1253 		if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1254 			goto out_unlock;
1255 	} else {
1256 		/* Permanently disabling setgroups after setgroups has
1257 		 * been enabled by writing the gid_map is not allowed.
1258 		 */
1259 		if (ns->gid_map.nr_extents != 0)
1260 			goto out_unlock;
1261 		ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1262 	}
1263 	mutex_unlock(&userns_state_mutex);
1264 
1265 	/* Report a successful write */
1266 	*ppos = count;
1267 	ret = count;
1268 out:
1269 	return ret;
1270 out_unlock:
1271 	mutex_unlock(&userns_state_mutex);
1272 	goto out;
1273 }
1274 
1275 bool userns_may_setgroups(const struct user_namespace *ns)
1276 {
1277 	bool allowed;
1278 
1279 	mutex_lock(&userns_state_mutex);
1280 	/* It is not safe to use setgroups until a gid mapping in
1281 	 * the user namespace has been established.
1282 	 */
1283 	allowed = ns->gid_map.nr_extents != 0;
1284 	/* Is setgroups allowed? */
1285 	allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1286 	mutex_unlock(&userns_state_mutex);
1287 
1288 	return allowed;
1289 }
1290 
1291 /*
1292  * Returns true if @child is the same namespace or a descendant of
1293  * @ancestor.
1294  */
1295 bool in_userns(const struct user_namespace *ancestor,
1296 	       const struct user_namespace *child)
1297 {
1298 	const struct user_namespace *ns;
1299 	for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1300 		;
1301 	return (ns == ancestor);
1302 }
1303 
1304 bool current_in_userns(const struct user_namespace *target_ns)
1305 {
1306 	return in_userns(target_ns, current_user_ns());
1307 }
1308 EXPORT_SYMBOL(current_in_userns);
1309 
1310 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1311 {
1312 	return container_of(ns, struct user_namespace, ns);
1313 }
1314 
1315 static struct ns_common *userns_get(struct task_struct *task)
1316 {
1317 	struct user_namespace *user_ns;
1318 
1319 	rcu_read_lock();
1320 	user_ns = get_user_ns(__task_cred(task)->user_ns);
1321 	rcu_read_unlock();
1322 
1323 	return user_ns ? &user_ns->ns : NULL;
1324 }
1325 
1326 static void userns_put(struct ns_common *ns)
1327 {
1328 	put_user_ns(to_user_ns(ns));
1329 }
1330 
1331 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1332 {
1333 	struct user_namespace *user_ns = to_user_ns(ns);
1334 	struct cred *cred;
1335 
1336 	/* Don't allow gaining capabilities by reentering
1337 	 * the same user namespace.
1338 	 */
1339 	if (user_ns == current_user_ns())
1340 		return -EINVAL;
1341 
1342 	/* Tasks that share a thread group must share a user namespace */
1343 	if (!thread_group_empty(current))
1344 		return -EINVAL;
1345 
1346 	if (current->fs->users != 1)
1347 		return -EINVAL;
1348 
1349 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1350 		return -EPERM;
1351 
1352 	cred = nsset_cred(nsset);
1353 	if (!cred)
1354 		return -EINVAL;
1355 
1356 	put_user_ns(cred->user_ns);
1357 	set_cred_user_ns(cred, get_user_ns(user_ns));
1358 
1359 	if (set_cred_ucounts(cred) < 0)
1360 		return -EINVAL;
1361 
1362 	return 0;
1363 }
1364 
1365 struct ns_common *ns_get_owner(struct ns_common *ns)
1366 {
1367 	struct user_namespace *my_user_ns = current_user_ns();
1368 	struct user_namespace *owner, *p;
1369 
1370 	/* See if the owner is in the current user namespace */
1371 	owner = p = ns->ops->owner(ns);
1372 	for (;;) {
1373 		if (!p)
1374 			return ERR_PTR(-EPERM);
1375 		if (p == my_user_ns)
1376 			break;
1377 		p = p->parent;
1378 	}
1379 
1380 	return &get_user_ns(owner)->ns;
1381 }
1382 
1383 static struct user_namespace *userns_owner(struct ns_common *ns)
1384 {
1385 	return to_user_ns(ns)->parent;
1386 }
1387 
1388 const struct proc_ns_operations userns_operations = {
1389 	.name		= "user",
1390 	.type		= CLONE_NEWUSER,
1391 	.get		= userns_get,
1392 	.put		= userns_put,
1393 	.install	= userns_install,
1394 	.owner		= userns_owner,
1395 	.get_parent	= ns_get_owner,
1396 };
1397 
1398 static __init int user_namespaces_init(void)
1399 {
1400 	user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT);
1401 	return 0;
1402 }
1403 subsys_initcall(user_namespaces_init);
1404