xref: /linux/kernel/user_namespace.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/export.h>
4 #include <linux/nsproxy.h>
5 #include <linux/slab.h>
6 #include <linux/sched/signal.h>
7 #include <linux/user_namespace.h>
8 #include <linux/proc_ns.h>
9 #include <linux/highuid.h>
10 #include <linux/cred.h>
11 #include <linux/securebits.h>
12 #include <linux/security.h>
13 #include <linux/keyctl.h>
14 #include <linux/key-type.h>
15 #include <keys/user-type.h>
16 #include <linux/seq_file.h>
17 #include <linux/fs.h>
18 #include <linux/uaccess.h>
19 #include <linux/ctype.h>
20 #include <linux/projid.h>
21 #include <linux/fs_struct.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 
25 static struct kmem_cache *user_ns_cachep __ro_after_init;
26 static DEFINE_MUTEX(userns_state_mutex);
27 
28 static bool new_idmap_permitted(const struct file *file,
29 				struct user_namespace *ns, int cap_setid,
30 				struct uid_gid_map *map);
31 static void free_user_ns(struct work_struct *work);
32 
33 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
34 {
35 	return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
36 }
37 
38 static void dec_user_namespaces(struct ucounts *ucounts)
39 {
40 	return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
41 }
42 
43 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
44 {
45 	/* Start with the same capabilities as init but useless for doing
46 	 * anything as the capabilities are bound to the new user namespace.
47 	 */
48 	cred->securebits = SECUREBITS_DEFAULT;
49 	cred->cap_inheritable = CAP_EMPTY_SET;
50 	cred->cap_permitted = CAP_FULL_SET;
51 	cred->cap_effective = CAP_FULL_SET;
52 	cred->cap_ambient = CAP_EMPTY_SET;
53 	cred->cap_bset = CAP_FULL_SET;
54 #ifdef CONFIG_KEYS
55 	key_put(cred->request_key_auth);
56 	cred->request_key_auth = NULL;
57 #endif
58 	/* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
59 	cred->user_ns = user_ns;
60 }
61 
62 static unsigned long enforced_nproc_rlimit(void)
63 {
64 	unsigned long limit = RLIM_INFINITY;
65 
66 	/* Is RLIMIT_NPROC currently enforced? */
67 	if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) ||
68 	    (current_user_ns() != &init_user_ns))
69 		limit = rlimit(RLIMIT_NPROC);
70 
71 	return limit;
72 }
73 
74 /*
75  * Create a new user namespace, deriving the creator from the user in the
76  * passed credentials, and replacing that user with the new root user for the
77  * new namespace.
78  *
79  * This is called by copy_creds(), which will finish setting the target task's
80  * credentials.
81  */
82 int create_user_ns(struct cred *new)
83 {
84 	struct user_namespace *ns, *parent_ns = new->user_ns;
85 	kuid_t owner = new->euid;
86 	kgid_t group = new->egid;
87 	struct ucounts *ucounts;
88 	int ret, i;
89 
90 	ret = -ENOSPC;
91 	if (parent_ns->level > 32)
92 		goto fail;
93 
94 	ucounts = inc_user_namespaces(parent_ns, owner);
95 	if (!ucounts)
96 		goto fail;
97 
98 	/*
99 	 * Verify that we can not violate the policy of which files
100 	 * may be accessed that is specified by the root directory,
101 	 * by verifying that the root directory is at the root of the
102 	 * mount namespace which allows all files to be accessed.
103 	 */
104 	ret = -EPERM;
105 	if (current_chrooted())
106 		goto fail_dec;
107 
108 	/* The creator needs a mapping in the parent user namespace
109 	 * or else we won't be able to reasonably tell userspace who
110 	 * created a user_namespace.
111 	 */
112 	ret = -EPERM;
113 	if (!kuid_has_mapping(parent_ns, owner) ||
114 	    !kgid_has_mapping(parent_ns, group))
115 		goto fail_dec;
116 
117 	ret = security_create_user_ns(new);
118 	if (ret < 0)
119 		goto fail_dec;
120 
121 	ret = -ENOMEM;
122 	ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
123 	if (!ns)
124 		goto fail_dec;
125 
126 	ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
127 	ret = ns_alloc_inum(&ns->ns);
128 	if (ret)
129 		goto fail_free;
130 	ns->ns.ops = &userns_operations;
131 
132 	refcount_set(&ns->ns.count, 1);
133 	/* Leave the new->user_ns reference with the new user namespace. */
134 	ns->parent = parent_ns;
135 	ns->level = parent_ns->level + 1;
136 	ns->owner = owner;
137 	ns->group = group;
138 	INIT_WORK(&ns->work, free_user_ns);
139 	for (i = 0; i < UCOUNT_COUNTS; i++) {
140 		ns->ucount_max[i] = INT_MAX;
141 	}
142 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit());
143 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE));
144 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING));
145 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK));
146 	ns->ucounts = ucounts;
147 
148 	/* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
149 	mutex_lock(&userns_state_mutex);
150 	ns->flags = parent_ns->flags;
151 	mutex_unlock(&userns_state_mutex);
152 
153 #ifdef CONFIG_KEYS
154 	INIT_LIST_HEAD(&ns->keyring_name_list);
155 	init_rwsem(&ns->keyring_sem);
156 #endif
157 	ret = -ENOMEM;
158 	if (!setup_userns_sysctls(ns))
159 		goto fail_keyring;
160 
161 	set_cred_user_ns(new, ns);
162 	return 0;
163 fail_keyring:
164 #ifdef CONFIG_PERSISTENT_KEYRINGS
165 	key_put(ns->persistent_keyring_register);
166 #endif
167 	ns_free_inum(&ns->ns);
168 fail_free:
169 	kmem_cache_free(user_ns_cachep, ns);
170 fail_dec:
171 	dec_user_namespaces(ucounts);
172 fail:
173 	return ret;
174 }
175 
176 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
177 {
178 	struct cred *cred;
179 	int err = -ENOMEM;
180 
181 	if (!(unshare_flags & CLONE_NEWUSER))
182 		return 0;
183 
184 	cred = prepare_creds();
185 	if (cred) {
186 		err = create_user_ns(cred);
187 		if (err)
188 			put_cred(cred);
189 		else
190 			*new_cred = cred;
191 	}
192 
193 	return err;
194 }
195 
196 static void free_user_ns(struct work_struct *work)
197 {
198 	struct user_namespace *parent, *ns =
199 		container_of(work, struct user_namespace, work);
200 
201 	do {
202 		struct ucounts *ucounts = ns->ucounts;
203 		parent = ns->parent;
204 		if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
205 			kfree(ns->gid_map.forward);
206 			kfree(ns->gid_map.reverse);
207 		}
208 		if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
209 			kfree(ns->uid_map.forward);
210 			kfree(ns->uid_map.reverse);
211 		}
212 		if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
213 			kfree(ns->projid_map.forward);
214 			kfree(ns->projid_map.reverse);
215 		}
216 #if IS_ENABLED(CONFIG_BINFMT_MISC)
217 		kfree(ns->binfmt_misc);
218 #endif
219 		retire_userns_sysctls(ns);
220 		key_free_user_ns(ns);
221 		ns_free_inum(&ns->ns);
222 		kmem_cache_free(user_ns_cachep, ns);
223 		dec_user_namespaces(ucounts);
224 		ns = parent;
225 	} while (refcount_dec_and_test(&parent->ns.count));
226 }
227 
228 void __put_user_ns(struct user_namespace *ns)
229 {
230 	schedule_work(&ns->work);
231 }
232 EXPORT_SYMBOL(__put_user_ns);
233 
234 /**
235  * struct idmap_key - holds the information necessary to find an idmapping in a
236  * sorted idmap array. It is passed to cmp_map_id() as first argument.
237  */
238 struct idmap_key {
239 	bool map_up; /* true  -> id from kid; false -> kid from id */
240 	u32 id; /* id to find */
241 	u32 count; /* == 0 unless used with map_id_range_down() */
242 };
243 
244 /**
245  * cmp_map_id - Function to be passed to bsearch() to find the requested
246  * idmapping. Expects struct idmap_key to be passed via @k.
247  */
248 static int cmp_map_id(const void *k, const void *e)
249 {
250 	u32 first, last, id2;
251 	const struct idmap_key *key = k;
252 	const struct uid_gid_extent *el = e;
253 
254 	id2 = key->id + key->count - 1;
255 
256 	/* handle map_id_{down,up}() */
257 	if (key->map_up)
258 		first = el->lower_first;
259 	else
260 		first = el->first;
261 
262 	last = first + el->count - 1;
263 
264 	if (key->id >= first && key->id <= last &&
265 	    (id2 >= first && id2 <= last))
266 		return 0;
267 
268 	if (key->id < first || id2 < first)
269 		return -1;
270 
271 	return 1;
272 }
273 
274 /**
275  * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
276  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
277  */
278 static struct uid_gid_extent *
279 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
280 {
281 	struct idmap_key key;
282 
283 	key.map_up = false;
284 	key.count = count;
285 	key.id = id;
286 
287 	return bsearch(&key, map->forward, extents,
288 		       sizeof(struct uid_gid_extent), cmp_map_id);
289 }
290 
291 /**
292  * map_id_range_down_base - Find idmap via binary search in static extent array.
293  * Can only be called if number of mappings is equal or less than
294  * UID_GID_MAP_MAX_BASE_EXTENTS.
295  */
296 static struct uid_gid_extent *
297 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
298 {
299 	unsigned idx;
300 	u32 first, last, id2;
301 
302 	id2 = id + count - 1;
303 
304 	/* Find the matching extent */
305 	for (idx = 0; idx < extents; idx++) {
306 		first = map->extent[idx].first;
307 		last = first + map->extent[idx].count - 1;
308 		if (id >= first && id <= last &&
309 		    (id2 >= first && id2 <= last))
310 			return &map->extent[idx];
311 	}
312 	return NULL;
313 }
314 
315 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
316 {
317 	struct uid_gid_extent *extent;
318 	unsigned extents = map->nr_extents;
319 	smp_rmb();
320 
321 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
322 		extent = map_id_range_down_base(extents, map, id, count);
323 	else
324 		extent = map_id_range_down_max(extents, map, id, count);
325 
326 	/* Map the id or note failure */
327 	if (extent)
328 		id = (id - extent->first) + extent->lower_first;
329 	else
330 		id = (u32) -1;
331 
332 	return id;
333 }
334 
335 static u32 map_id_down(struct uid_gid_map *map, u32 id)
336 {
337 	return map_id_range_down(map, id, 1);
338 }
339 
340 /**
341  * map_id_up_base - Find idmap via binary search in static extent array.
342  * Can only be called if number of mappings is equal or less than
343  * UID_GID_MAP_MAX_BASE_EXTENTS.
344  */
345 static struct uid_gid_extent *
346 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id)
347 {
348 	unsigned idx;
349 	u32 first, last;
350 
351 	/* Find the matching extent */
352 	for (idx = 0; idx < extents; idx++) {
353 		first = map->extent[idx].lower_first;
354 		last = first + map->extent[idx].count - 1;
355 		if (id >= first && id <= last)
356 			return &map->extent[idx];
357 	}
358 	return NULL;
359 }
360 
361 /**
362  * map_id_up_max - Find idmap via binary search in ordered idmap array.
363  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
364  */
365 static struct uid_gid_extent *
366 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id)
367 {
368 	struct idmap_key key;
369 
370 	key.map_up = true;
371 	key.count = 1;
372 	key.id = id;
373 
374 	return bsearch(&key, map->reverse, extents,
375 		       sizeof(struct uid_gid_extent), cmp_map_id);
376 }
377 
378 static u32 map_id_up(struct uid_gid_map *map, u32 id)
379 {
380 	struct uid_gid_extent *extent;
381 	unsigned extents = map->nr_extents;
382 	smp_rmb();
383 
384 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
385 		extent = map_id_up_base(extents, map, id);
386 	else
387 		extent = map_id_up_max(extents, map, id);
388 
389 	/* Map the id or note failure */
390 	if (extent)
391 		id = (id - extent->lower_first) + extent->first;
392 	else
393 		id = (u32) -1;
394 
395 	return id;
396 }
397 
398 /**
399  *	make_kuid - Map a user-namespace uid pair into a kuid.
400  *	@ns:  User namespace that the uid is in
401  *	@uid: User identifier
402  *
403  *	Maps a user-namespace uid pair into a kernel internal kuid,
404  *	and returns that kuid.
405  *
406  *	When there is no mapping defined for the user-namespace uid
407  *	pair INVALID_UID is returned.  Callers are expected to test
408  *	for and handle INVALID_UID being returned.  INVALID_UID
409  *	may be tested for using uid_valid().
410  */
411 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
412 {
413 	/* Map the uid to a global kernel uid */
414 	return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
415 }
416 EXPORT_SYMBOL(make_kuid);
417 
418 /**
419  *	from_kuid - Create a uid from a kuid user-namespace pair.
420  *	@targ: The user namespace we want a uid in.
421  *	@kuid: The kernel internal uid to start with.
422  *
423  *	Map @kuid into the user-namespace specified by @targ and
424  *	return the resulting uid.
425  *
426  *	There is always a mapping into the initial user_namespace.
427  *
428  *	If @kuid has no mapping in @targ (uid_t)-1 is returned.
429  */
430 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
431 {
432 	/* Map the uid from a global kernel uid */
433 	return map_id_up(&targ->uid_map, __kuid_val(kuid));
434 }
435 EXPORT_SYMBOL(from_kuid);
436 
437 /**
438  *	from_kuid_munged - Create a uid from a kuid user-namespace pair.
439  *	@targ: The user namespace we want a uid in.
440  *	@kuid: The kernel internal uid to start with.
441  *
442  *	Map @kuid into the user-namespace specified by @targ and
443  *	return the resulting uid.
444  *
445  *	There is always a mapping into the initial user_namespace.
446  *
447  *	Unlike from_kuid from_kuid_munged never fails and always
448  *	returns a valid uid.  This makes from_kuid_munged appropriate
449  *	for use in syscalls like stat and getuid where failing the
450  *	system call and failing to provide a valid uid are not an
451  *	options.
452  *
453  *	If @kuid has no mapping in @targ overflowuid is returned.
454  */
455 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
456 {
457 	uid_t uid;
458 	uid = from_kuid(targ, kuid);
459 
460 	if (uid == (uid_t) -1)
461 		uid = overflowuid;
462 	return uid;
463 }
464 EXPORT_SYMBOL(from_kuid_munged);
465 
466 /**
467  *	make_kgid - Map a user-namespace gid pair into a kgid.
468  *	@ns:  User namespace that the gid is in
469  *	@gid: group identifier
470  *
471  *	Maps a user-namespace gid pair into a kernel internal kgid,
472  *	and returns that kgid.
473  *
474  *	When there is no mapping defined for the user-namespace gid
475  *	pair INVALID_GID is returned.  Callers are expected to test
476  *	for and handle INVALID_GID being returned.  INVALID_GID may be
477  *	tested for using gid_valid().
478  */
479 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
480 {
481 	/* Map the gid to a global kernel gid */
482 	return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
483 }
484 EXPORT_SYMBOL(make_kgid);
485 
486 /**
487  *	from_kgid - Create a gid from a kgid user-namespace pair.
488  *	@targ: The user namespace we want a gid in.
489  *	@kgid: The kernel internal gid to start with.
490  *
491  *	Map @kgid into the user-namespace specified by @targ and
492  *	return the resulting gid.
493  *
494  *	There is always a mapping into the initial user_namespace.
495  *
496  *	If @kgid has no mapping in @targ (gid_t)-1 is returned.
497  */
498 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
499 {
500 	/* Map the gid from a global kernel gid */
501 	return map_id_up(&targ->gid_map, __kgid_val(kgid));
502 }
503 EXPORT_SYMBOL(from_kgid);
504 
505 /**
506  *	from_kgid_munged - Create a gid from a kgid user-namespace pair.
507  *	@targ: The user namespace we want a gid in.
508  *	@kgid: The kernel internal gid to start with.
509  *
510  *	Map @kgid into the user-namespace specified by @targ and
511  *	return the resulting gid.
512  *
513  *	There is always a mapping into the initial user_namespace.
514  *
515  *	Unlike from_kgid from_kgid_munged never fails and always
516  *	returns a valid gid.  This makes from_kgid_munged appropriate
517  *	for use in syscalls like stat and getgid where failing the
518  *	system call and failing to provide a valid gid are not options.
519  *
520  *	If @kgid has no mapping in @targ overflowgid is returned.
521  */
522 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
523 {
524 	gid_t gid;
525 	gid = from_kgid(targ, kgid);
526 
527 	if (gid == (gid_t) -1)
528 		gid = overflowgid;
529 	return gid;
530 }
531 EXPORT_SYMBOL(from_kgid_munged);
532 
533 /**
534  *	make_kprojid - Map a user-namespace projid pair into a kprojid.
535  *	@ns:  User namespace that the projid is in
536  *	@projid: Project identifier
537  *
538  *	Maps a user-namespace uid pair into a kernel internal kuid,
539  *	and returns that kuid.
540  *
541  *	When there is no mapping defined for the user-namespace projid
542  *	pair INVALID_PROJID is returned.  Callers are expected to test
543  *	for and handle INVALID_PROJID being returned.  INVALID_PROJID
544  *	may be tested for using projid_valid().
545  */
546 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
547 {
548 	/* Map the uid to a global kernel uid */
549 	return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
550 }
551 EXPORT_SYMBOL(make_kprojid);
552 
553 /**
554  *	from_kprojid - Create a projid from a kprojid user-namespace pair.
555  *	@targ: The user namespace we want a projid in.
556  *	@kprojid: The kernel internal project identifier to start with.
557  *
558  *	Map @kprojid into the user-namespace specified by @targ and
559  *	return the resulting projid.
560  *
561  *	There is always a mapping into the initial user_namespace.
562  *
563  *	If @kprojid has no mapping in @targ (projid_t)-1 is returned.
564  */
565 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
566 {
567 	/* Map the uid from a global kernel uid */
568 	return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
569 }
570 EXPORT_SYMBOL(from_kprojid);
571 
572 /**
573  *	from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
574  *	@targ: The user namespace we want a projid in.
575  *	@kprojid: The kernel internal projid to start with.
576  *
577  *	Map @kprojid into the user-namespace specified by @targ and
578  *	return the resulting projid.
579  *
580  *	There is always a mapping into the initial user_namespace.
581  *
582  *	Unlike from_kprojid from_kprojid_munged never fails and always
583  *	returns a valid projid.  This makes from_kprojid_munged
584  *	appropriate for use in syscalls like stat and where
585  *	failing the system call and failing to provide a valid projid are
586  *	not an options.
587  *
588  *	If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
589  */
590 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
591 {
592 	projid_t projid;
593 	projid = from_kprojid(targ, kprojid);
594 
595 	if (projid == (projid_t) -1)
596 		projid = OVERFLOW_PROJID;
597 	return projid;
598 }
599 EXPORT_SYMBOL(from_kprojid_munged);
600 
601 
602 static int uid_m_show(struct seq_file *seq, void *v)
603 {
604 	struct user_namespace *ns = seq->private;
605 	struct uid_gid_extent *extent = v;
606 	struct user_namespace *lower_ns;
607 	uid_t lower;
608 
609 	lower_ns = seq_user_ns(seq);
610 	if ((lower_ns == ns) && lower_ns->parent)
611 		lower_ns = lower_ns->parent;
612 
613 	lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
614 
615 	seq_printf(seq, "%10u %10u %10u\n",
616 		extent->first,
617 		lower,
618 		extent->count);
619 
620 	return 0;
621 }
622 
623 static int gid_m_show(struct seq_file *seq, void *v)
624 {
625 	struct user_namespace *ns = seq->private;
626 	struct uid_gid_extent *extent = v;
627 	struct user_namespace *lower_ns;
628 	gid_t lower;
629 
630 	lower_ns = seq_user_ns(seq);
631 	if ((lower_ns == ns) && lower_ns->parent)
632 		lower_ns = lower_ns->parent;
633 
634 	lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
635 
636 	seq_printf(seq, "%10u %10u %10u\n",
637 		extent->first,
638 		lower,
639 		extent->count);
640 
641 	return 0;
642 }
643 
644 static int projid_m_show(struct seq_file *seq, void *v)
645 {
646 	struct user_namespace *ns = seq->private;
647 	struct uid_gid_extent *extent = v;
648 	struct user_namespace *lower_ns;
649 	projid_t lower;
650 
651 	lower_ns = seq_user_ns(seq);
652 	if ((lower_ns == ns) && lower_ns->parent)
653 		lower_ns = lower_ns->parent;
654 
655 	lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
656 
657 	seq_printf(seq, "%10u %10u %10u\n",
658 		extent->first,
659 		lower,
660 		extent->count);
661 
662 	return 0;
663 }
664 
665 static void *m_start(struct seq_file *seq, loff_t *ppos,
666 		     struct uid_gid_map *map)
667 {
668 	loff_t pos = *ppos;
669 	unsigned extents = map->nr_extents;
670 	smp_rmb();
671 
672 	if (pos >= extents)
673 		return NULL;
674 
675 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
676 		return &map->extent[pos];
677 
678 	return &map->forward[pos];
679 }
680 
681 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
682 {
683 	struct user_namespace *ns = seq->private;
684 
685 	return m_start(seq, ppos, &ns->uid_map);
686 }
687 
688 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
689 {
690 	struct user_namespace *ns = seq->private;
691 
692 	return m_start(seq, ppos, &ns->gid_map);
693 }
694 
695 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
696 {
697 	struct user_namespace *ns = seq->private;
698 
699 	return m_start(seq, ppos, &ns->projid_map);
700 }
701 
702 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
703 {
704 	(*pos)++;
705 	return seq->op->start(seq, pos);
706 }
707 
708 static void m_stop(struct seq_file *seq, void *v)
709 {
710 	return;
711 }
712 
713 const struct seq_operations proc_uid_seq_operations = {
714 	.start = uid_m_start,
715 	.stop = m_stop,
716 	.next = m_next,
717 	.show = uid_m_show,
718 };
719 
720 const struct seq_operations proc_gid_seq_operations = {
721 	.start = gid_m_start,
722 	.stop = m_stop,
723 	.next = m_next,
724 	.show = gid_m_show,
725 };
726 
727 const struct seq_operations proc_projid_seq_operations = {
728 	.start = projid_m_start,
729 	.stop = m_stop,
730 	.next = m_next,
731 	.show = projid_m_show,
732 };
733 
734 static bool mappings_overlap(struct uid_gid_map *new_map,
735 			     struct uid_gid_extent *extent)
736 {
737 	u32 upper_first, lower_first, upper_last, lower_last;
738 	unsigned idx;
739 
740 	upper_first = extent->first;
741 	lower_first = extent->lower_first;
742 	upper_last = upper_first + extent->count - 1;
743 	lower_last = lower_first + extent->count - 1;
744 
745 	for (idx = 0; idx < new_map->nr_extents; idx++) {
746 		u32 prev_upper_first, prev_lower_first;
747 		u32 prev_upper_last, prev_lower_last;
748 		struct uid_gid_extent *prev;
749 
750 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
751 			prev = &new_map->extent[idx];
752 		else
753 			prev = &new_map->forward[idx];
754 
755 		prev_upper_first = prev->first;
756 		prev_lower_first = prev->lower_first;
757 		prev_upper_last = prev_upper_first + prev->count - 1;
758 		prev_lower_last = prev_lower_first + prev->count - 1;
759 
760 		/* Does the upper range intersect a previous extent? */
761 		if ((prev_upper_first <= upper_last) &&
762 		    (prev_upper_last >= upper_first))
763 			return true;
764 
765 		/* Does the lower range intersect a previous extent? */
766 		if ((prev_lower_first <= lower_last) &&
767 		    (prev_lower_last >= lower_first))
768 			return true;
769 	}
770 	return false;
771 }
772 
773 /**
774  * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
775  * Takes care to allocate a 4K block of memory if the number of mappings exceeds
776  * UID_GID_MAP_MAX_BASE_EXTENTS.
777  */
778 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
779 {
780 	struct uid_gid_extent *dest;
781 
782 	if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
783 		struct uid_gid_extent *forward;
784 
785 		/* Allocate memory for 340 mappings. */
786 		forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
787 					sizeof(struct uid_gid_extent),
788 					GFP_KERNEL);
789 		if (!forward)
790 			return -ENOMEM;
791 
792 		/* Copy over memory. Only set up memory for the forward pointer.
793 		 * Defer the memory setup for the reverse pointer.
794 		 */
795 		memcpy(forward, map->extent,
796 		       map->nr_extents * sizeof(map->extent[0]));
797 
798 		map->forward = forward;
799 		map->reverse = NULL;
800 	}
801 
802 	if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
803 		dest = &map->extent[map->nr_extents];
804 	else
805 		dest = &map->forward[map->nr_extents];
806 
807 	*dest = *extent;
808 	map->nr_extents++;
809 	return 0;
810 }
811 
812 /* cmp function to sort() forward mappings */
813 static int cmp_extents_forward(const void *a, const void *b)
814 {
815 	const struct uid_gid_extent *e1 = a;
816 	const struct uid_gid_extent *e2 = b;
817 
818 	if (e1->first < e2->first)
819 		return -1;
820 
821 	if (e1->first > e2->first)
822 		return 1;
823 
824 	return 0;
825 }
826 
827 /* cmp function to sort() reverse mappings */
828 static int cmp_extents_reverse(const void *a, const void *b)
829 {
830 	const struct uid_gid_extent *e1 = a;
831 	const struct uid_gid_extent *e2 = b;
832 
833 	if (e1->lower_first < e2->lower_first)
834 		return -1;
835 
836 	if (e1->lower_first > e2->lower_first)
837 		return 1;
838 
839 	return 0;
840 }
841 
842 /**
843  * sort_idmaps - Sorts an array of idmap entries.
844  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
845  */
846 static int sort_idmaps(struct uid_gid_map *map)
847 {
848 	if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
849 		return 0;
850 
851 	/* Sort forward array. */
852 	sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
853 	     cmp_extents_forward, NULL);
854 
855 	/* Only copy the memory from forward we actually need. */
856 	map->reverse = kmemdup(map->forward,
857 			       map->nr_extents * sizeof(struct uid_gid_extent),
858 			       GFP_KERNEL);
859 	if (!map->reverse)
860 		return -ENOMEM;
861 
862 	/* Sort reverse array. */
863 	sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
864 	     cmp_extents_reverse, NULL);
865 
866 	return 0;
867 }
868 
869 /**
870  * verify_root_map() - check the uid 0 mapping
871  * @file: idmapping file
872  * @map_ns: user namespace of the target process
873  * @new_map: requested idmap
874  *
875  * If a process requests mapping parent uid 0 into the new ns, verify that the
876  * process writing the map had the CAP_SETFCAP capability as the target process
877  * will be able to write fscaps that are valid in ancestor user namespaces.
878  *
879  * Return: true if the mapping is allowed, false if not.
880  */
881 static bool verify_root_map(const struct file *file,
882 			    struct user_namespace *map_ns,
883 			    struct uid_gid_map *new_map)
884 {
885 	int idx;
886 	const struct user_namespace *file_ns = file->f_cred->user_ns;
887 	struct uid_gid_extent *extent0 = NULL;
888 
889 	for (idx = 0; idx < new_map->nr_extents; idx++) {
890 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
891 			extent0 = &new_map->extent[idx];
892 		else
893 			extent0 = &new_map->forward[idx];
894 		if (extent0->lower_first == 0)
895 			break;
896 
897 		extent0 = NULL;
898 	}
899 
900 	if (!extent0)
901 		return true;
902 
903 	if (map_ns == file_ns) {
904 		/* The process unshared its ns and is writing to its own
905 		 * /proc/self/uid_map.  User already has full capabilites in
906 		 * the new namespace.  Verify that the parent had CAP_SETFCAP
907 		 * when it unshared.
908 		 * */
909 		if (!file_ns->parent_could_setfcap)
910 			return false;
911 	} else {
912 		/* Process p1 is writing to uid_map of p2, who is in a child
913 		 * user namespace to p1's.  Verify that the opener of the map
914 		 * file has CAP_SETFCAP against the parent of the new map
915 		 * namespace */
916 		if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
917 			return false;
918 	}
919 
920 	return true;
921 }
922 
923 static ssize_t map_write(struct file *file, const char __user *buf,
924 			 size_t count, loff_t *ppos,
925 			 int cap_setid,
926 			 struct uid_gid_map *map,
927 			 struct uid_gid_map *parent_map)
928 {
929 	struct seq_file *seq = file->private_data;
930 	struct user_namespace *map_ns = seq->private;
931 	struct uid_gid_map new_map;
932 	unsigned idx;
933 	struct uid_gid_extent extent;
934 	char *kbuf = NULL, *pos, *next_line;
935 	ssize_t ret;
936 
937 	/* Only allow < page size writes at the beginning of the file */
938 	if ((*ppos != 0) || (count >= PAGE_SIZE))
939 		return -EINVAL;
940 
941 	/* Slurp in the user data */
942 	kbuf = memdup_user_nul(buf, count);
943 	if (IS_ERR(kbuf))
944 		return PTR_ERR(kbuf);
945 
946 	/*
947 	 * The userns_state_mutex serializes all writes to any given map.
948 	 *
949 	 * Any map is only ever written once.
950 	 *
951 	 * An id map fits within 1 cache line on most architectures.
952 	 *
953 	 * On read nothing needs to be done unless you are on an
954 	 * architecture with a crazy cache coherency model like alpha.
955 	 *
956 	 * There is a one time data dependency between reading the
957 	 * count of the extents and the values of the extents.  The
958 	 * desired behavior is to see the values of the extents that
959 	 * were written before the count of the extents.
960 	 *
961 	 * To achieve this smp_wmb() is used on guarantee the write
962 	 * order and smp_rmb() is guaranteed that we don't have crazy
963 	 * architectures returning stale data.
964 	 */
965 	mutex_lock(&userns_state_mutex);
966 
967 	memset(&new_map, 0, sizeof(struct uid_gid_map));
968 
969 	ret = -EPERM;
970 	/* Only allow one successful write to the map */
971 	if (map->nr_extents != 0)
972 		goto out;
973 
974 	/*
975 	 * Adjusting namespace settings requires capabilities on the target.
976 	 */
977 	if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
978 		goto out;
979 
980 	/* Parse the user data */
981 	ret = -EINVAL;
982 	pos = kbuf;
983 	for (; pos; pos = next_line) {
984 
985 		/* Find the end of line and ensure I don't look past it */
986 		next_line = strchr(pos, '\n');
987 		if (next_line) {
988 			*next_line = '\0';
989 			next_line++;
990 			if (*next_line == '\0')
991 				next_line = NULL;
992 		}
993 
994 		pos = skip_spaces(pos);
995 		extent.first = simple_strtoul(pos, &pos, 10);
996 		if (!isspace(*pos))
997 			goto out;
998 
999 		pos = skip_spaces(pos);
1000 		extent.lower_first = simple_strtoul(pos, &pos, 10);
1001 		if (!isspace(*pos))
1002 			goto out;
1003 
1004 		pos = skip_spaces(pos);
1005 		extent.count = simple_strtoul(pos, &pos, 10);
1006 		if (*pos && !isspace(*pos))
1007 			goto out;
1008 
1009 		/* Verify there is not trailing junk on the line */
1010 		pos = skip_spaces(pos);
1011 		if (*pos != '\0')
1012 			goto out;
1013 
1014 		/* Verify we have been given valid starting values */
1015 		if ((extent.first == (u32) -1) ||
1016 		    (extent.lower_first == (u32) -1))
1017 			goto out;
1018 
1019 		/* Verify count is not zero and does not cause the
1020 		 * extent to wrap
1021 		 */
1022 		if ((extent.first + extent.count) <= extent.first)
1023 			goto out;
1024 		if ((extent.lower_first + extent.count) <=
1025 		     extent.lower_first)
1026 			goto out;
1027 
1028 		/* Do the ranges in extent overlap any previous extents? */
1029 		if (mappings_overlap(&new_map, &extent))
1030 			goto out;
1031 
1032 		if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1033 		    (next_line != NULL))
1034 			goto out;
1035 
1036 		ret = insert_extent(&new_map, &extent);
1037 		if (ret < 0)
1038 			goto out;
1039 		ret = -EINVAL;
1040 	}
1041 	/* Be very certain the new map actually exists */
1042 	if (new_map.nr_extents == 0)
1043 		goto out;
1044 
1045 	ret = -EPERM;
1046 	/* Validate the user is allowed to use user id's mapped to. */
1047 	if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1048 		goto out;
1049 
1050 	ret = -EPERM;
1051 	/* Map the lower ids from the parent user namespace to the
1052 	 * kernel global id space.
1053 	 */
1054 	for (idx = 0; idx < new_map.nr_extents; idx++) {
1055 		struct uid_gid_extent *e;
1056 		u32 lower_first;
1057 
1058 		if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1059 			e = &new_map.extent[idx];
1060 		else
1061 			e = &new_map.forward[idx];
1062 
1063 		lower_first = map_id_range_down(parent_map,
1064 						e->lower_first,
1065 						e->count);
1066 
1067 		/* Fail if we can not map the specified extent to
1068 		 * the kernel global id space.
1069 		 */
1070 		if (lower_first == (u32) -1)
1071 			goto out;
1072 
1073 		e->lower_first = lower_first;
1074 	}
1075 
1076 	/*
1077 	 * If we want to use binary search for lookup, this clones the extent
1078 	 * array and sorts both copies.
1079 	 */
1080 	ret = sort_idmaps(&new_map);
1081 	if (ret < 0)
1082 		goto out;
1083 
1084 	/* Install the map */
1085 	if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1086 		memcpy(map->extent, new_map.extent,
1087 		       new_map.nr_extents * sizeof(new_map.extent[0]));
1088 	} else {
1089 		map->forward = new_map.forward;
1090 		map->reverse = new_map.reverse;
1091 	}
1092 	smp_wmb();
1093 	map->nr_extents = new_map.nr_extents;
1094 
1095 	*ppos = count;
1096 	ret = count;
1097 out:
1098 	if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1099 		kfree(new_map.forward);
1100 		kfree(new_map.reverse);
1101 		map->forward = NULL;
1102 		map->reverse = NULL;
1103 		map->nr_extents = 0;
1104 	}
1105 
1106 	mutex_unlock(&userns_state_mutex);
1107 	kfree(kbuf);
1108 	return ret;
1109 }
1110 
1111 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1112 			   size_t size, loff_t *ppos)
1113 {
1114 	struct seq_file *seq = file->private_data;
1115 	struct user_namespace *ns = seq->private;
1116 	struct user_namespace *seq_ns = seq_user_ns(seq);
1117 
1118 	if (!ns->parent)
1119 		return -EPERM;
1120 
1121 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1122 		return -EPERM;
1123 
1124 	return map_write(file, buf, size, ppos, CAP_SETUID,
1125 			 &ns->uid_map, &ns->parent->uid_map);
1126 }
1127 
1128 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1129 			   size_t size, loff_t *ppos)
1130 {
1131 	struct seq_file *seq = file->private_data;
1132 	struct user_namespace *ns = seq->private;
1133 	struct user_namespace *seq_ns = seq_user_ns(seq);
1134 
1135 	if (!ns->parent)
1136 		return -EPERM;
1137 
1138 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1139 		return -EPERM;
1140 
1141 	return map_write(file, buf, size, ppos, CAP_SETGID,
1142 			 &ns->gid_map, &ns->parent->gid_map);
1143 }
1144 
1145 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1146 			      size_t size, loff_t *ppos)
1147 {
1148 	struct seq_file *seq = file->private_data;
1149 	struct user_namespace *ns = seq->private;
1150 	struct user_namespace *seq_ns = seq_user_ns(seq);
1151 
1152 	if (!ns->parent)
1153 		return -EPERM;
1154 
1155 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1156 		return -EPERM;
1157 
1158 	/* Anyone can set any valid project id no capability needed */
1159 	return map_write(file, buf, size, ppos, -1,
1160 			 &ns->projid_map, &ns->parent->projid_map);
1161 }
1162 
1163 static bool new_idmap_permitted(const struct file *file,
1164 				struct user_namespace *ns, int cap_setid,
1165 				struct uid_gid_map *new_map)
1166 {
1167 	const struct cred *cred = file->f_cred;
1168 
1169 	if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1170 		return false;
1171 
1172 	/* Don't allow mappings that would allow anything that wouldn't
1173 	 * be allowed without the establishment of unprivileged mappings.
1174 	 */
1175 	if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1176 	    uid_eq(ns->owner, cred->euid)) {
1177 		u32 id = new_map->extent[0].lower_first;
1178 		if (cap_setid == CAP_SETUID) {
1179 			kuid_t uid = make_kuid(ns->parent, id);
1180 			if (uid_eq(uid, cred->euid))
1181 				return true;
1182 		} else if (cap_setid == CAP_SETGID) {
1183 			kgid_t gid = make_kgid(ns->parent, id);
1184 			if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1185 			    gid_eq(gid, cred->egid))
1186 				return true;
1187 		}
1188 	}
1189 
1190 	/* Allow anyone to set a mapping that doesn't require privilege */
1191 	if (!cap_valid(cap_setid))
1192 		return true;
1193 
1194 	/* Allow the specified ids if we have the appropriate capability
1195 	 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1196 	 * And the opener of the id file also has the appropriate capability.
1197 	 */
1198 	if (ns_capable(ns->parent, cap_setid) &&
1199 	    file_ns_capable(file, ns->parent, cap_setid))
1200 		return true;
1201 
1202 	return false;
1203 }
1204 
1205 int proc_setgroups_show(struct seq_file *seq, void *v)
1206 {
1207 	struct user_namespace *ns = seq->private;
1208 	unsigned long userns_flags = READ_ONCE(ns->flags);
1209 
1210 	seq_printf(seq, "%s\n",
1211 		   (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1212 		   "allow" : "deny");
1213 	return 0;
1214 }
1215 
1216 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1217 			     size_t count, loff_t *ppos)
1218 {
1219 	struct seq_file *seq = file->private_data;
1220 	struct user_namespace *ns = seq->private;
1221 	char kbuf[8], *pos;
1222 	bool setgroups_allowed;
1223 	ssize_t ret;
1224 
1225 	/* Only allow a very narrow range of strings to be written */
1226 	ret = -EINVAL;
1227 	if ((*ppos != 0) || (count >= sizeof(kbuf)))
1228 		goto out;
1229 
1230 	/* What was written? */
1231 	ret = -EFAULT;
1232 	if (copy_from_user(kbuf, buf, count))
1233 		goto out;
1234 	kbuf[count] = '\0';
1235 	pos = kbuf;
1236 
1237 	/* What is being requested? */
1238 	ret = -EINVAL;
1239 	if (strncmp(pos, "allow", 5) == 0) {
1240 		pos += 5;
1241 		setgroups_allowed = true;
1242 	}
1243 	else if (strncmp(pos, "deny", 4) == 0) {
1244 		pos += 4;
1245 		setgroups_allowed = false;
1246 	}
1247 	else
1248 		goto out;
1249 
1250 	/* Verify there is not trailing junk on the line */
1251 	pos = skip_spaces(pos);
1252 	if (*pos != '\0')
1253 		goto out;
1254 
1255 	ret = -EPERM;
1256 	mutex_lock(&userns_state_mutex);
1257 	if (setgroups_allowed) {
1258 		/* Enabling setgroups after setgroups has been disabled
1259 		 * is not allowed.
1260 		 */
1261 		if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1262 			goto out_unlock;
1263 	} else {
1264 		/* Permanently disabling setgroups after setgroups has
1265 		 * been enabled by writing the gid_map is not allowed.
1266 		 */
1267 		if (ns->gid_map.nr_extents != 0)
1268 			goto out_unlock;
1269 		ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1270 	}
1271 	mutex_unlock(&userns_state_mutex);
1272 
1273 	/* Report a successful write */
1274 	*ppos = count;
1275 	ret = count;
1276 out:
1277 	return ret;
1278 out_unlock:
1279 	mutex_unlock(&userns_state_mutex);
1280 	goto out;
1281 }
1282 
1283 bool userns_may_setgroups(const struct user_namespace *ns)
1284 {
1285 	bool allowed;
1286 
1287 	mutex_lock(&userns_state_mutex);
1288 	/* It is not safe to use setgroups until a gid mapping in
1289 	 * the user namespace has been established.
1290 	 */
1291 	allowed = ns->gid_map.nr_extents != 0;
1292 	/* Is setgroups allowed? */
1293 	allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1294 	mutex_unlock(&userns_state_mutex);
1295 
1296 	return allowed;
1297 }
1298 
1299 /*
1300  * Returns true if @child is the same namespace or a descendant of
1301  * @ancestor.
1302  */
1303 bool in_userns(const struct user_namespace *ancestor,
1304 	       const struct user_namespace *child)
1305 {
1306 	const struct user_namespace *ns;
1307 	for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1308 		;
1309 	return (ns == ancestor);
1310 }
1311 
1312 bool current_in_userns(const struct user_namespace *target_ns)
1313 {
1314 	return in_userns(target_ns, current_user_ns());
1315 }
1316 EXPORT_SYMBOL(current_in_userns);
1317 
1318 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1319 {
1320 	return container_of(ns, struct user_namespace, ns);
1321 }
1322 
1323 static struct ns_common *userns_get(struct task_struct *task)
1324 {
1325 	struct user_namespace *user_ns;
1326 
1327 	rcu_read_lock();
1328 	user_ns = get_user_ns(__task_cred(task)->user_ns);
1329 	rcu_read_unlock();
1330 
1331 	return user_ns ? &user_ns->ns : NULL;
1332 }
1333 
1334 static void userns_put(struct ns_common *ns)
1335 {
1336 	put_user_ns(to_user_ns(ns));
1337 }
1338 
1339 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1340 {
1341 	struct user_namespace *user_ns = to_user_ns(ns);
1342 	struct cred *cred;
1343 
1344 	/* Don't allow gaining capabilities by reentering
1345 	 * the same user namespace.
1346 	 */
1347 	if (user_ns == current_user_ns())
1348 		return -EINVAL;
1349 
1350 	/* Tasks that share a thread group must share a user namespace */
1351 	if (!thread_group_empty(current))
1352 		return -EINVAL;
1353 
1354 	if (current->fs->users != 1)
1355 		return -EINVAL;
1356 
1357 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1358 		return -EPERM;
1359 
1360 	cred = nsset_cred(nsset);
1361 	if (!cred)
1362 		return -EINVAL;
1363 
1364 	put_user_ns(cred->user_ns);
1365 	set_cred_user_ns(cred, get_user_ns(user_ns));
1366 
1367 	if (set_cred_ucounts(cred) < 0)
1368 		return -EINVAL;
1369 
1370 	return 0;
1371 }
1372 
1373 struct ns_common *ns_get_owner(struct ns_common *ns)
1374 {
1375 	struct user_namespace *my_user_ns = current_user_ns();
1376 	struct user_namespace *owner, *p;
1377 
1378 	/* See if the owner is in the current user namespace */
1379 	owner = p = ns->ops->owner(ns);
1380 	for (;;) {
1381 		if (!p)
1382 			return ERR_PTR(-EPERM);
1383 		if (p == my_user_ns)
1384 			break;
1385 		p = p->parent;
1386 	}
1387 
1388 	return &get_user_ns(owner)->ns;
1389 }
1390 
1391 static struct user_namespace *userns_owner(struct ns_common *ns)
1392 {
1393 	return to_user_ns(ns)->parent;
1394 }
1395 
1396 const struct proc_ns_operations userns_operations = {
1397 	.name		= "user",
1398 	.type		= CLONE_NEWUSER,
1399 	.get		= userns_get,
1400 	.put		= userns_put,
1401 	.install	= userns_install,
1402 	.owner		= userns_owner,
1403 	.get_parent	= ns_get_owner,
1404 };
1405 
1406 static __init int user_namespaces_init(void)
1407 {
1408 	user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT);
1409 	return 0;
1410 }
1411 subsys_initcall(user_namespaces_init);
1412