xref: /linux/kernel/user.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * The "user cache".
3  *
4  * (C) Copyright 1991-2000 Linus Torvalds
5  *
6  * We have a per-user structure to keep track of how many
7  * processes, files etc the user has claimed, in order to be
8  * able to have per-user limits for system resources.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/bitops.h>
15 #include <linux/key.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/user_namespace.h>
19 #include "cred-internals.h"
20 
21 struct user_namespace init_user_ns = {
22 	.kref = {
23 		.refcount	= ATOMIC_INIT(1),
24 	},
25 	.creator = &root_user,
26 };
27 EXPORT_SYMBOL_GPL(init_user_ns);
28 
29 /*
30  * UID task count cache, to get fast user lookup in "alloc_uid"
31  * when changing user ID's (ie setuid() and friends).
32  */
33 
34 #define UIDHASH_MASK		(UIDHASH_SZ - 1)
35 #define __uidhashfn(uid)	(((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
36 #define uidhashentry(ns, uid)	((ns)->uidhash_table + __uidhashfn((uid)))
37 
38 static struct kmem_cache *uid_cachep;
39 
40 /*
41  * The uidhash_lock is mostly taken from process context, but it is
42  * occasionally also taken from softirq/tasklet context, when
43  * task-structs get RCU-freed. Hence all locking must be softirq-safe.
44  * But free_uid() is also called with local interrupts disabled, and running
45  * local_bh_enable() with local interrupts disabled is an error - we'll run
46  * softirq callbacks, and they can unconditionally enable interrupts, and
47  * the caller of free_uid() didn't expect that..
48  */
49 static DEFINE_SPINLOCK(uidhash_lock);
50 
51 /* root_user.__count is 2, 1 for init task cred, 1 for init_user_ns->creator */
52 struct user_struct root_user = {
53 	.__count	= ATOMIC_INIT(2),
54 	.processes	= ATOMIC_INIT(1),
55 	.files		= ATOMIC_INIT(0),
56 	.sigpending	= ATOMIC_INIT(0),
57 	.locked_shm     = 0,
58 	.user_ns	= &init_user_ns,
59 #ifdef CONFIG_USER_SCHED
60 	.tg		= &init_task_group,
61 #endif
62 };
63 
64 /*
65  * These routines must be called with the uidhash spinlock held!
66  */
67 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent)
68 {
69 	hlist_add_head(&up->uidhash_node, hashent);
70 }
71 
72 static void uid_hash_remove(struct user_struct *up)
73 {
74 	hlist_del_init(&up->uidhash_node);
75 }
76 
77 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
78 {
79 	struct user_struct *user;
80 	struct hlist_node *h;
81 
82 	hlist_for_each_entry(user, h, hashent, uidhash_node) {
83 		if (user->uid == uid) {
84 			atomic_inc(&user->__count);
85 			return user;
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 #ifdef CONFIG_USER_SCHED
93 
94 static void sched_destroy_user(struct user_struct *up)
95 {
96 	sched_destroy_group(up->tg);
97 }
98 
99 static int sched_create_user(struct user_struct *up)
100 {
101 	int rc = 0;
102 
103 	up->tg = sched_create_group(&root_task_group);
104 	if (IS_ERR(up->tg))
105 		rc = -ENOMEM;
106 
107 	set_tg_uid(up);
108 
109 	return rc;
110 }
111 
112 #else	/* CONFIG_USER_SCHED */
113 
114 static void sched_destroy_user(struct user_struct *up) { }
115 static int sched_create_user(struct user_struct *up) { return 0; }
116 
117 #endif	/* CONFIG_USER_SCHED */
118 
119 #if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS)
120 
121 static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */
122 static DEFINE_MUTEX(uids_mutex);
123 
124 static inline void uids_mutex_lock(void)
125 {
126 	mutex_lock(&uids_mutex);
127 }
128 
129 static inline void uids_mutex_unlock(void)
130 {
131 	mutex_unlock(&uids_mutex);
132 }
133 
134 /* uid directory attributes */
135 #ifdef CONFIG_FAIR_GROUP_SCHED
136 static ssize_t cpu_shares_show(struct kobject *kobj,
137 			       struct kobj_attribute *attr,
138 			       char *buf)
139 {
140 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
141 
142 	return sprintf(buf, "%lu\n", sched_group_shares(up->tg));
143 }
144 
145 static ssize_t cpu_shares_store(struct kobject *kobj,
146 				struct kobj_attribute *attr,
147 				const char *buf, size_t size)
148 {
149 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
150 	unsigned long shares;
151 	int rc;
152 
153 	sscanf(buf, "%lu", &shares);
154 
155 	rc = sched_group_set_shares(up->tg, shares);
156 
157 	return (rc ? rc : size);
158 }
159 
160 static struct kobj_attribute cpu_share_attr =
161 	__ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store);
162 #endif
163 
164 #ifdef CONFIG_RT_GROUP_SCHED
165 static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
166 				   struct kobj_attribute *attr,
167 				   char *buf)
168 {
169 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
170 
171 	return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg));
172 }
173 
174 static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
175 				    struct kobj_attribute *attr,
176 				    const char *buf, size_t size)
177 {
178 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
179 	unsigned long rt_runtime;
180 	int rc;
181 
182 	sscanf(buf, "%ld", &rt_runtime);
183 
184 	rc = sched_group_set_rt_runtime(up->tg, rt_runtime);
185 
186 	return (rc ? rc : size);
187 }
188 
189 static struct kobj_attribute cpu_rt_runtime_attr =
190 	__ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store);
191 
192 static ssize_t cpu_rt_period_show(struct kobject *kobj,
193 				   struct kobj_attribute *attr,
194 				   char *buf)
195 {
196 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
197 
198 	return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg));
199 }
200 
201 static ssize_t cpu_rt_period_store(struct kobject *kobj,
202 				    struct kobj_attribute *attr,
203 				    const char *buf, size_t size)
204 {
205 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
206 	unsigned long rt_period;
207 	int rc;
208 
209 	sscanf(buf, "%lu", &rt_period);
210 
211 	rc = sched_group_set_rt_period(up->tg, rt_period);
212 
213 	return (rc ? rc : size);
214 }
215 
216 static struct kobj_attribute cpu_rt_period_attr =
217 	__ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store);
218 #endif
219 
220 /* default attributes per uid directory */
221 static struct attribute *uids_attributes[] = {
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223 	&cpu_share_attr.attr,
224 #endif
225 #ifdef CONFIG_RT_GROUP_SCHED
226 	&cpu_rt_runtime_attr.attr,
227 	&cpu_rt_period_attr.attr,
228 #endif
229 	NULL
230 };
231 
232 /* the lifetime of user_struct is not managed by the core (now) */
233 static void uids_release(struct kobject *kobj)
234 {
235 	return;
236 }
237 
238 static struct kobj_type uids_ktype = {
239 	.sysfs_ops = &kobj_sysfs_ops,
240 	.default_attrs = uids_attributes,
241 	.release = uids_release,
242 };
243 
244 /*
245  * Create /sys/kernel/uids/<uid>/cpu_share file for this user
246  * We do not create this file for users in a user namespace (until
247  * sysfs tagging is implemented).
248  *
249  * See Documentation/scheduler/sched-design-CFS.txt for ramifications.
250  */
251 static int uids_user_create(struct user_struct *up)
252 {
253 	struct kobject *kobj = &up->kobj;
254 	int error;
255 
256 	memset(kobj, 0, sizeof(struct kobject));
257 	if (up->user_ns != &init_user_ns)
258 		return 0;
259 	kobj->kset = uids_kset;
260 	error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid);
261 	if (error) {
262 		kobject_put(kobj);
263 		goto done;
264 	}
265 
266 	kobject_uevent(kobj, KOBJ_ADD);
267 done:
268 	return error;
269 }
270 
271 /* create these entries in sysfs:
272  * 	"/sys/kernel/uids" directory
273  * 	"/sys/kernel/uids/0" directory (for root user)
274  * 	"/sys/kernel/uids/0/cpu_share" file (for root user)
275  */
276 int __init uids_sysfs_init(void)
277 {
278 	uids_kset = kset_create_and_add("uids", NULL, kernel_kobj);
279 	if (!uids_kset)
280 		return -ENOMEM;
281 
282 	return uids_user_create(&root_user);
283 }
284 
285 /* work function to remove sysfs directory for a user and free up
286  * corresponding structures.
287  */
288 static void remove_user_sysfs_dir(struct work_struct *w)
289 {
290 	struct user_struct *up = container_of(w, struct user_struct, work);
291 	unsigned long flags;
292 	int remove_user = 0;
293 
294 	if (up->user_ns != &init_user_ns)
295 		return;
296 	/* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
297 	 * atomic.
298 	 */
299 	uids_mutex_lock();
300 
301 	local_irq_save(flags);
302 
303 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
304 		uid_hash_remove(up);
305 		remove_user = 1;
306 		spin_unlock_irqrestore(&uidhash_lock, flags);
307 	} else {
308 		local_irq_restore(flags);
309 	}
310 
311 	if (!remove_user)
312 		goto done;
313 
314 	kobject_uevent(&up->kobj, KOBJ_REMOVE);
315 	kobject_del(&up->kobj);
316 	kobject_put(&up->kobj);
317 
318 	sched_destroy_user(up);
319 	key_put(up->uid_keyring);
320 	key_put(up->session_keyring);
321 	kmem_cache_free(uid_cachep, up);
322 
323 done:
324 	uids_mutex_unlock();
325 }
326 
327 /* IRQs are disabled and uidhash_lock is held upon function entry.
328  * IRQ state (as stored in flags) is restored and uidhash_lock released
329  * upon function exit.
330  */
331 static void free_user(struct user_struct *up, unsigned long flags)
332 {
333 	/* restore back the count */
334 	atomic_inc(&up->__count);
335 	spin_unlock_irqrestore(&uidhash_lock, flags);
336 
337 	put_user_ns(up->user_ns);
338 	INIT_WORK(&up->work, remove_user_sysfs_dir);
339 	schedule_work(&up->work);
340 }
341 
342 #else	/* CONFIG_USER_SCHED && CONFIG_SYSFS */
343 
344 int uids_sysfs_init(void) { return 0; }
345 static inline int uids_user_create(struct user_struct *up) { return 0; }
346 static inline void uids_mutex_lock(void) { }
347 static inline void uids_mutex_unlock(void) { }
348 
349 /* IRQs are disabled and uidhash_lock is held upon function entry.
350  * IRQ state (as stored in flags) is restored and uidhash_lock released
351  * upon function exit.
352  */
353 static void free_user(struct user_struct *up, unsigned long flags)
354 {
355 	uid_hash_remove(up);
356 	spin_unlock_irqrestore(&uidhash_lock, flags);
357 	sched_destroy_user(up);
358 	key_put(up->uid_keyring);
359 	key_put(up->session_keyring);
360 	put_user_ns(up->user_ns);
361 	kmem_cache_free(uid_cachep, up);
362 }
363 
364 #endif
365 
366 /*
367  * Locate the user_struct for the passed UID.  If found, take a ref on it.  The
368  * caller must undo that ref with free_uid().
369  *
370  * If the user_struct could not be found, return NULL.
371  */
372 struct user_struct *find_user(uid_t uid)
373 {
374 	struct user_struct *ret;
375 	unsigned long flags;
376 	struct user_namespace *ns = current_user_ns();
377 
378 	spin_lock_irqsave(&uidhash_lock, flags);
379 	ret = uid_hash_find(uid, uidhashentry(ns, uid));
380 	spin_unlock_irqrestore(&uidhash_lock, flags);
381 	return ret;
382 }
383 
384 void free_uid(struct user_struct *up)
385 {
386 	unsigned long flags;
387 
388 	if (!up)
389 		return;
390 
391 	local_irq_save(flags);
392 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
393 		free_user(up, flags);
394 	else
395 		local_irq_restore(flags);
396 }
397 
398 struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
399 {
400 	struct hlist_head *hashent = uidhashentry(ns, uid);
401 	struct user_struct *up, *new;
402 
403 	/* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
404 	 * atomic.
405 	 */
406 	uids_mutex_lock();
407 
408 	spin_lock_irq(&uidhash_lock);
409 	up = uid_hash_find(uid, hashent);
410 	spin_unlock_irq(&uidhash_lock);
411 
412 	if (!up) {
413 		new = kmem_cache_zalloc(uid_cachep, GFP_KERNEL);
414 		if (!new)
415 			goto out_unlock;
416 
417 		new->uid = uid;
418 		atomic_set(&new->__count, 1);
419 
420 		if (sched_create_user(new) < 0)
421 			goto out_free_user;
422 
423 		new->user_ns = get_user_ns(ns);
424 
425 		if (uids_user_create(new))
426 			goto out_destoy_sched;
427 
428 		/*
429 		 * Before adding this, check whether we raced
430 		 * on adding the same user already..
431 		 */
432 		spin_lock_irq(&uidhash_lock);
433 		up = uid_hash_find(uid, hashent);
434 		if (up) {
435 			/* This case is not possible when CONFIG_USER_SCHED
436 			 * is defined, since we serialize alloc_uid() using
437 			 * uids_mutex. Hence no need to call
438 			 * sched_destroy_user() or remove_user_sysfs_dir().
439 			 */
440 			key_put(new->uid_keyring);
441 			key_put(new->session_keyring);
442 			kmem_cache_free(uid_cachep, new);
443 		} else {
444 			uid_hash_insert(new, hashent);
445 			up = new;
446 		}
447 		spin_unlock_irq(&uidhash_lock);
448 	}
449 
450 	uids_mutex_unlock();
451 
452 	return up;
453 
454 out_destoy_sched:
455 	sched_destroy_user(new);
456 	put_user_ns(new->user_ns);
457 out_free_user:
458 	kmem_cache_free(uid_cachep, new);
459 out_unlock:
460 	uids_mutex_unlock();
461 	return NULL;
462 }
463 
464 static int __init uid_cache_init(void)
465 {
466 	int n;
467 
468 	uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
469 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
470 
471 	for(n = 0; n < UIDHASH_SZ; ++n)
472 		INIT_HLIST_HEAD(init_user_ns.uidhash_table + n);
473 
474 	/* Insert the root user immediately (init already runs as root) */
475 	spin_lock_irq(&uidhash_lock);
476 	uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
477 	spin_unlock_irq(&uidhash_lock);
478 
479 	return 0;
480 }
481 
482 module_init(uid_cache_init);
483