1 /* 2 * The "user cache". 3 * 4 * (C) Copyright 1991-2000 Linus Torvalds 5 * 6 * We have a per-user structure to keep track of how many 7 * processes, files etc the user has claimed, in order to be 8 * able to have per-user limits for system resources. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/bitops.h> 15 #include <linux/key.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/user_namespace.h> 19 20 struct user_namespace init_user_ns = { 21 .kref = { 22 .refcount = ATOMIC_INIT(2), 23 }, 24 .root_user = &root_user, 25 }; 26 EXPORT_SYMBOL_GPL(init_user_ns); 27 28 /* 29 * UID task count cache, to get fast user lookup in "alloc_uid" 30 * when changing user ID's (ie setuid() and friends). 31 */ 32 33 #define UIDHASH_MASK (UIDHASH_SZ - 1) 34 #define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK) 35 #define uidhashentry(ns, uid) ((ns)->uidhash_table + __uidhashfn((uid))) 36 37 static struct kmem_cache *uid_cachep; 38 39 /* 40 * The uidhash_lock is mostly taken from process context, but it is 41 * occasionally also taken from softirq/tasklet context, when 42 * task-structs get RCU-freed. Hence all locking must be softirq-safe. 43 * But free_uid() is also called with local interrupts disabled, and running 44 * local_bh_enable() with local interrupts disabled is an error - we'll run 45 * softirq callbacks, and they can unconditionally enable interrupts, and 46 * the caller of free_uid() didn't expect that.. 47 */ 48 static DEFINE_SPINLOCK(uidhash_lock); 49 50 struct user_struct root_user = { 51 .__count = ATOMIC_INIT(1), 52 .processes = ATOMIC_INIT(1), 53 .files = ATOMIC_INIT(0), 54 .sigpending = ATOMIC_INIT(0), 55 .locked_shm = 0, 56 #ifdef CONFIG_USER_SCHED 57 .tg = &init_task_group, 58 #endif 59 }; 60 61 /* 62 * These routines must be called with the uidhash spinlock held! 63 */ 64 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent) 65 { 66 hlist_add_head(&up->uidhash_node, hashent); 67 } 68 69 static void uid_hash_remove(struct user_struct *up) 70 { 71 hlist_del_init(&up->uidhash_node); 72 } 73 74 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) 75 { 76 struct user_struct *user; 77 struct hlist_node *h; 78 79 hlist_for_each_entry(user, h, hashent, uidhash_node) { 80 if (user->uid == uid) { 81 atomic_inc(&user->__count); 82 return user; 83 } 84 } 85 86 return NULL; 87 } 88 89 #ifdef CONFIG_USER_SCHED 90 91 static void sched_destroy_user(struct user_struct *up) 92 { 93 sched_destroy_group(up->tg); 94 } 95 96 static int sched_create_user(struct user_struct *up) 97 { 98 int rc = 0; 99 100 up->tg = sched_create_group(&root_task_group); 101 if (IS_ERR(up->tg)) 102 rc = -ENOMEM; 103 104 return rc; 105 } 106 107 static void sched_switch_user(struct task_struct *p) 108 { 109 sched_move_task(p); 110 } 111 112 #else /* CONFIG_USER_SCHED */ 113 114 static void sched_destroy_user(struct user_struct *up) { } 115 static int sched_create_user(struct user_struct *up) { return 0; } 116 static void sched_switch_user(struct task_struct *p) { } 117 118 #endif /* CONFIG_USER_SCHED */ 119 120 #if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS) 121 122 static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */ 123 static DEFINE_MUTEX(uids_mutex); 124 125 static inline void uids_mutex_lock(void) 126 { 127 mutex_lock(&uids_mutex); 128 } 129 130 static inline void uids_mutex_unlock(void) 131 { 132 mutex_unlock(&uids_mutex); 133 } 134 135 /* uid directory attributes */ 136 #ifdef CONFIG_FAIR_GROUP_SCHED 137 static ssize_t cpu_shares_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 142 143 return sprintf(buf, "%lu\n", sched_group_shares(up->tg)); 144 } 145 146 static ssize_t cpu_shares_store(struct kobject *kobj, 147 struct kobj_attribute *attr, 148 const char *buf, size_t size) 149 { 150 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 151 unsigned long shares; 152 int rc; 153 154 sscanf(buf, "%lu", &shares); 155 156 rc = sched_group_set_shares(up->tg, shares); 157 158 return (rc ? rc : size); 159 } 160 161 static struct kobj_attribute cpu_share_attr = 162 __ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store); 163 #endif 164 165 #ifdef CONFIG_RT_GROUP_SCHED 166 static ssize_t cpu_rt_runtime_show(struct kobject *kobj, 167 struct kobj_attribute *attr, 168 char *buf) 169 { 170 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 171 172 return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg)); 173 } 174 175 static ssize_t cpu_rt_runtime_store(struct kobject *kobj, 176 struct kobj_attribute *attr, 177 const char *buf, size_t size) 178 { 179 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 180 unsigned long rt_runtime; 181 int rc; 182 183 sscanf(buf, "%ld", &rt_runtime); 184 185 rc = sched_group_set_rt_runtime(up->tg, rt_runtime); 186 187 return (rc ? rc : size); 188 } 189 190 static struct kobj_attribute cpu_rt_runtime_attr = 191 __ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store); 192 193 static ssize_t cpu_rt_period_show(struct kobject *kobj, 194 struct kobj_attribute *attr, 195 char *buf) 196 { 197 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 198 199 return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg)); 200 } 201 202 static ssize_t cpu_rt_period_store(struct kobject *kobj, 203 struct kobj_attribute *attr, 204 const char *buf, size_t size) 205 { 206 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 207 unsigned long rt_period; 208 int rc; 209 210 sscanf(buf, "%lu", &rt_period); 211 212 rc = sched_group_set_rt_period(up->tg, rt_period); 213 214 return (rc ? rc : size); 215 } 216 217 static struct kobj_attribute cpu_rt_period_attr = 218 __ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store); 219 #endif 220 221 /* default attributes per uid directory */ 222 static struct attribute *uids_attributes[] = { 223 #ifdef CONFIG_FAIR_GROUP_SCHED 224 &cpu_share_attr.attr, 225 #endif 226 #ifdef CONFIG_RT_GROUP_SCHED 227 &cpu_rt_runtime_attr.attr, 228 &cpu_rt_period_attr.attr, 229 #endif 230 NULL 231 }; 232 233 /* the lifetime of user_struct is not managed by the core (now) */ 234 static void uids_release(struct kobject *kobj) 235 { 236 return; 237 } 238 239 static struct kobj_type uids_ktype = { 240 .sysfs_ops = &kobj_sysfs_ops, 241 .default_attrs = uids_attributes, 242 .release = uids_release, 243 }; 244 245 /* create /sys/kernel/uids/<uid>/cpu_share file for this user */ 246 static int uids_user_create(struct user_struct *up) 247 { 248 struct kobject *kobj = &up->kobj; 249 int error; 250 251 memset(kobj, 0, sizeof(struct kobject)); 252 kobj->kset = uids_kset; 253 error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid); 254 if (error) { 255 kobject_put(kobj); 256 goto done; 257 } 258 259 kobject_uevent(kobj, KOBJ_ADD); 260 done: 261 return error; 262 } 263 264 /* create these entries in sysfs: 265 * "/sys/kernel/uids" directory 266 * "/sys/kernel/uids/0" directory (for root user) 267 * "/sys/kernel/uids/0/cpu_share" file (for root user) 268 */ 269 int __init uids_sysfs_init(void) 270 { 271 uids_kset = kset_create_and_add("uids", NULL, kernel_kobj); 272 if (!uids_kset) 273 return -ENOMEM; 274 275 return uids_user_create(&root_user); 276 } 277 278 /* work function to remove sysfs directory for a user and free up 279 * corresponding structures. 280 */ 281 static void remove_user_sysfs_dir(struct work_struct *w) 282 { 283 struct user_struct *up = container_of(w, struct user_struct, work); 284 unsigned long flags; 285 int remove_user = 0; 286 287 /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del() 288 * atomic. 289 */ 290 uids_mutex_lock(); 291 292 local_irq_save(flags); 293 294 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { 295 uid_hash_remove(up); 296 remove_user = 1; 297 spin_unlock_irqrestore(&uidhash_lock, flags); 298 } else { 299 local_irq_restore(flags); 300 } 301 302 if (!remove_user) 303 goto done; 304 305 kobject_uevent(&up->kobj, KOBJ_REMOVE); 306 kobject_del(&up->kobj); 307 kobject_put(&up->kobj); 308 309 sched_destroy_user(up); 310 key_put(up->uid_keyring); 311 key_put(up->session_keyring); 312 kmem_cache_free(uid_cachep, up); 313 314 done: 315 uids_mutex_unlock(); 316 } 317 318 /* IRQs are disabled and uidhash_lock is held upon function entry. 319 * IRQ state (as stored in flags) is restored and uidhash_lock released 320 * upon function exit. 321 */ 322 static inline void free_user(struct user_struct *up, unsigned long flags) 323 { 324 /* restore back the count */ 325 atomic_inc(&up->__count); 326 spin_unlock_irqrestore(&uidhash_lock, flags); 327 328 INIT_WORK(&up->work, remove_user_sysfs_dir); 329 schedule_work(&up->work); 330 } 331 332 #else /* CONFIG_USER_SCHED && CONFIG_SYSFS */ 333 334 int uids_sysfs_init(void) { return 0; } 335 static inline int uids_user_create(struct user_struct *up) { return 0; } 336 static inline void uids_mutex_lock(void) { } 337 static inline void uids_mutex_unlock(void) { } 338 339 /* IRQs are disabled and uidhash_lock is held upon function entry. 340 * IRQ state (as stored in flags) is restored and uidhash_lock released 341 * upon function exit. 342 */ 343 static inline void free_user(struct user_struct *up, unsigned long flags) 344 { 345 uid_hash_remove(up); 346 spin_unlock_irqrestore(&uidhash_lock, flags); 347 sched_destroy_user(up); 348 key_put(up->uid_keyring); 349 key_put(up->session_keyring); 350 kmem_cache_free(uid_cachep, up); 351 } 352 353 #endif 354 355 /* 356 * Locate the user_struct for the passed UID. If found, take a ref on it. The 357 * caller must undo that ref with free_uid(). 358 * 359 * If the user_struct could not be found, return NULL. 360 */ 361 struct user_struct *find_user(uid_t uid) 362 { 363 struct user_struct *ret; 364 unsigned long flags; 365 struct user_namespace *ns = current->nsproxy->user_ns; 366 367 spin_lock_irqsave(&uidhash_lock, flags); 368 ret = uid_hash_find(uid, uidhashentry(ns, uid)); 369 spin_unlock_irqrestore(&uidhash_lock, flags); 370 return ret; 371 } 372 373 void free_uid(struct user_struct *up) 374 { 375 unsigned long flags; 376 377 if (!up) 378 return; 379 380 local_irq_save(flags); 381 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) 382 free_user(up, flags); 383 else 384 local_irq_restore(flags); 385 } 386 387 struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) 388 { 389 struct hlist_head *hashent = uidhashentry(ns, uid); 390 struct user_struct *up, *new; 391 392 /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() 393 * atomic. 394 */ 395 uids_mutex_lock(); 396 397 spin_lock_irq(&uidhash_lock); 398 up = uid_hash_find(uid, hashent); 399 spin_unlock_irq(&uidhash_lock); 400 401 if (!up) { 402 new = kmem_cache_zalloc(uid_cachep, GFP_KERNEL); 403 if (!new) 404 goto out_unlock; 405 406 new->uid = uid; 407 atomic_set(&new->__count, 1); 408 409 if (sched_create_user(new) < 0) 410 goto out_free_user; 411 412 if (uids_user_create(new)) 413 goto out_destoy_sched; 414 415 /* 416 * Before adding this, check whether we raced 417 * on adding the same user already.. 418 */ 419 spin_lock_irq(&uidhash_lock); 420 up = uid_hash_find(uid, hashent); 421 if (up) { 422 /* This case is not possible when CONFIG_USER_SCHED 423 * is defined, since we serialize alloc_uid() using 424 * uids_mutex. Hence no need to call 425 * sched_destroy_user() or remove_user_sysfs_dir(). 426 */ 427 key_put(new->uid_keyring); 428 key_put(new->session_keyring); 429 kmem_cache_free(uid_cachep, new); 430 } else { 431 uid_hash_insert(new, hashent); 432 up = new; 433 } 434 spin_unlock_irq(&uidhash_lock); 435 436 } 437 438 uids_mutex_unlock(); 439 440 return up; 441 442 out_destoy_sched: 443 sched_destroy_user(new); 444 out_free_user: 445 kmem_cache_free(uid_cachep, new); 446 out_unlock: 447 uids_mutex_unlock(); 448 return NULL; 449 } 450 451 void switch_uid(struct user_struct *new_user) 452 { 453 struct user_struct *old_user; 454 455 /* What if a process setreuid()'s and this brings the 456 * new uid over his NPROC rlimit? We can check this now 457 * cheaply with the new uid cache, so if it matters 458 * we should be checking for it. -DaveM 459 */ 460 old_user = current->user; 461 atomic_inc(&new_user->processes); 462 atomic_dec(&old_user->processes); 463 switch_uid_keyring(new_user); 464 current->user = new_user; 465 sched_switch_user(current); 466 467 /* 468 * We need to synchronize with __sigqueue_alloc() 469 * doing a get_uid(p->user).. If that saw the old 470 * user value, we need to wait until it has exited 471 * its critical region before we can free the old 472 * structure. 473 */ 474 smp_mb(); 475 spin_unlock_wait(¤t->sighand->siglock); 476 477 free_uid(old_user); 478 suid_keys(current); 479 } 480 481 #ifdef CONFIG_USER_NS 482 void release_uids(struct user_namespace *ns) 483 { 484 int i; 485 unsigned long flags; 486 struct hlist_head *head; 487 struct hlist_node *nd; 488 489 spin_lock_irqsave(&uidhash_lock, flags); 490 /* 491 * collapse the chains so that the user_struct-s will 492 * be still alive, but not in hashes. subsequent free_uid() 493 * will free them. 494 */ 495 for (i = 0; i < UIDHASH_SZ; i++) { 496 head = ns->uidhash_table + i; 497 while (!hlist_empty(head)) { 498 nd = head->first; 499 hlist_del_init(nd); 500 } 501 } 502 spin_unlock_irqrestore(&uidhash_lock, flags); 503 504 free_uid(ns->root_user); 505 } 506 #endif 507 508 static int __init uid_cache_init(void) 509 { 510 int n; 511 512 uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct), 513 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 514 515 for(n = 0; n < UIDHASH_SZ; ++n) 516 INIT_HLIST_HEAD(init_user_ns.uidhash_table + n); 517 518 /* Insert the root user immediately (init already runs as root) */ 519 spin_lock_irq(&uidhash_lock); 520 uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0)); 521 spin_unlock_irq(&uidhash_lock); 522 523 return 0; 524 } 525 526 module_init(uid_cache_init); 527