xref: /linux/kernel/user.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  * The "user cache".
3  *
4  * (C) Copyright 1991-2000 Linus Torvalds
5  *
6  * We have a per-user structure to keep track of how many
7  * processes, files etc the user has claimed, in order to be
8  * able to have per-user limits for system resources.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/bitops.h>
15 #include <linux/key.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/user_namespace.h>
19 
20 /*
21  * UID task count cache, to get fast user lookup in "alloc_uid"
22  * when changing user ID's (ie setuid() and friends).
23  */
24 
25 #define UIDHASH_MASK		(UIDHASH_SZ - 1)
26 #define __uidhashfn(uid)	(((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
27 #define uidhashentry(ns, uid)	((ns)->uidhash_table + __uidhashfn((uid)))
28 
29 static struct kmem_cache *uid_cachep;
30 
31 /*
32  * The uidhash_lock is mostly taken from process context, but it is
33  * occasionally also taken from softirq/tasklet context, when
34  * task-structs get RCU-freed. Hence all locking must be softirq-safe.
35  * But free_uid() is also called with local interrupts disabled, and running
36  * local_bh_enable() with local interrupts disabled is an error - we'll run
37  * softirq callbacks, and they can unconditionally enable interrupts, and
38  * the caller of free_uid() didn't expect that..
39  */
40 static DEFINE_SPINLOCK(uidhash_lock);
41 
42 struct user_struct root_user = {
43 	.__count	= ATOMIC_INIT(1),
44 	.processes	= ATOMIC_INIT(1),
45 	.files		= ATOMIC_INIT(0),
46 	.sigpending	= ATOMIC_INIT(0),
47 	.locked_shm     = 0,
48 #ifdef CONFIG_KEYS
49 	.uid_keyring	= &root_user_keyring,
50 	.session_keyring = &root_session_keyring,
51 #endif
52 #ifdef CONFIG_FAIR_USER_SCHED
53 	.tg		= &init_task_group,
54 #endif
55 };
56 
57 /*
58  * These routines must be called with the uidhash spinlock held!
59  */
60 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent)
61 {
62 	hlist_add_head(&up->uidhash_node, hashent);
63 }
64 
65 static void uid_hash_remove(struct user_struct *up)
66 {
67 	hlist_del_init(&up->uidhash_node);
68 }
69 
70 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
71 {
72 	struct user_struct *user;
73 	struct hlist_node *h;
74 
75 	hlist_for_each_entry(user, h, hashent, uidhash_node) {
76 		if (user->uid == uid) {
77 			atomic_inc(&user->__count);
78 			return user;
79 		}
80 	}
81 
82 	return NULL;
83 }
84 
85 #ifdef CONFIG_FAIR_USER_SCHED
86 
87 static void sched_destroy_user(struct user_struct *up)
88 {
89 	sched_destroy_group(up->tg);
90 }
91 
92 static int sched_create_user(struct user_struct *up)
93 {
94 	int rc = 0;
95 
96 	up->tg = sched_create_group();
97 	if (IS_ERR(up->tg))
98 		rc = -ENOMEM;
99 
100 	return rc;
101 }
102 
103 static void sched_switch_user(struct task_struct *p)
104 {
105 	sched_move_task(p);
106 }
107 
108 #else	/* CONFIG_FAIR_USER_SCHED */
109 
110 static void sched_destroy_user(struct user_struct *up) { }
111 static int sched_create_user(struct user_struct *up) { return 0; }
112 static void sched_switch_user(struct task_struct *p) { }
113 
114 #endif	/* CONFIG_FAIR_USER_SCHED */
115 
116 #if defined(CONFIG_FAIR_USER_SCHED) && defined(CONFIG_SYSFS)
117 
118 static struct kobject uids_kobject; /* represents /sys/kernel/uids directory */
119 static DEFINE_MUTEX(uids_mutex);
120 
121 static inline void uids_mutex_lock(void)
122 {
123 	mutex_lock(&uids_mutex);
124 }
125 
126 static inline void uids_mutex_unlock(void)
127 {
128 	mutex_unlock(&uids_mutex);
129 }
130 
131 /* return cpu shares held by the user */
132 static ssize_t cpu_shares_show(struct kset *kset, char *buffer)
133 {
134 	struct user_struct *up = container_of(kset, struct user_struct, kset);
135 
136 	return sprintf(buffer, "%lu\n", sched_group_shares(up->tg));
137 }
138 
139 /* modify cpu shares held by the user */
140 static ssize_t cpu_shares_store(struct kset *kset, const char *buffer,
141 				size_t size)
142 {
143 	struct user_struct *up = container_of(kset, struct user_struct, kset);
144 	unsigned long shares;
145 	int rc;
146 
147 	sscanf(buffer, "%lu", &shares);
148 
149 	rc = sched_group_set_shares(up->tg, shares);
150 
151 	return (rc ? rc : size);
152 }
153 
154 static void user_attr_init(struct subsys_attribute *sa, char *name, int mode)
155 {
156 	sa->attr.name = name;
157 	sa->attr.mode = mode;
158 	sa->show = cpu_shares_show;
159 	sa->store = cpu_shares_store;
160 }
161 
162 /* Create "/sys/kernel/uids/<uid>" directory and
163  *  "/sys/kernel/uids/<uid>/cpu_share" file for this user.
164  */
165 static int user_kobject_create(struct user_struct *up)
166 {
167 	struct kset *kset = &up->kset;
168 	struct kobject *kobj = &kset->kobj;
169 	int error;
170 
171 	memset(kset, 0, sizeof(struct kset));
172 	kobj->parent = &uids_kobject;	/* create under /sys/kernel/uids dir */
173 	kobject_set_name(kobj, "%d", up->uid);
174 	kset_init(kset);
175 	user_attr_init(&up->user_attr, "cpu_share", 0644);
176 
177 	error = kobject_add(kobj);
178 	if (error)
179 		goto done;
180 
181 	error = sysfs_create_file(kobj, &up->user_attr.attr);
182 	if (error)
183 		kobject_del(kobj);
184 
185 	kobject_uevent(kobj, KOBJ_ADD);
186 
187 done:
188 	return error;
189 }
190 
191 /* create these in sysfs filesystem:
192  * 	"/sys/kernel/uids" directory
193  * 	"/sys/kernel/uids/0" directory (for root user)
194  * 	"/sys/kernel/uids/0/cpu_share" file (for root user)
195  */
196 int __init uids_kobject_init(void)
197 {
198 	int error;
199 
200 	/* create under /sys/kernel dir */
201 	uids_kobject.parent = &kernel_subsys.kobj;
202 	uids_kobject.kset = &kernel_subsys;
203 	kobject_set_name(&uids_kobject, "uids");
204 	kobject_init(&uids_kobject);
205 
206 	error = kobject_add(&uids_kobject);
207 	if (!error)
208 		error = user_kobject_create(&root_user);
209 
210 	return error;
211 }
212 
213 /* work function to remove sysfs directory for a user and free up
214  * corresponding structures.
215  */
216 static void remove_user_sysfs_dir(struct work_struct *w)
217 {
218 	struct user_struct *up = container_of(w, struct user_struct, work);
219 	struct kobject *kobj = &up->kset.kobj;
220 	unsigned long flags;
221 	int remove_user = 0;
222 
223 	/* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
224 	 * atomic.
225 	 */
226 	uids_mutex_lock();
227 
228 	local_irq_save(flags);
229 
230 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
231 		uid_hash_remove(up);
232 		remove_user = 1;
233 		spin_unlock_irqrestore(&uidhash_lock, flags);
234 	} else {
235 		local_irq_restore(flags);
236 	}
237 
238 	if (!remove_user)
239 		goto done;
240 
241 	sysfs_remove_file(kobj, &up->user_attr.attr);
242 	kobject_uevent(kobj, KOBJ_REMOVE);
243 	kobject_del(kobj);
244 
245 	sched_destroy_user(up);
246 	key_put(up->uid_keyring);
247 	key_put(up->session_keyring);
248 	kmem_cache_free(uid_cachep, up);
249 
250 done:
251 	uids_mutex_unlock();
252 }
253 
254 /* IRQs are disabled and uidhash_lock is held upon function entry.
255  * IRQ state (as stored in flags) is restored and uidhash_lock released
256  * upon function exit.
257  */
258 static inline void free_user(struct user_struct *up, unsigned long flags)
259 {
260 	/* restore back the count */
261 	atomic_inc(&up->__count);
262 	spin_unlock_irqrestore(&uidhash_lock, flags);
263 
264 	INIT_WORK(&up->work, remove_user_sysfs_dir);
265 	schedule_work(&up->work);
266 }
267 
268 #else	/* CONFIG_FAIR_USER_SCHED && CONFIG_SYSFS */
269 
270 static inline int user_kobject_create(struct user_struct *up) { return 0; }
271 static inline void uids_mutex_lock(void) { }
272 static inline void uids_mutex_unlock(void) { }
273 
274 /* IRQs are disabled and uidhash_lock is held upon function entry.
275  * IRQ state (as stored in flags) is restored and uidhash_lock released
276  * upon function exit.
277  */
278 static inline void free_user(struct user_struct *up, unsigned long flags)
279 {
280 	uid_hash_remove(up);
281 	spin_unlock_irqrestore(&uidhash_lock, flags);
282 	sched_destroy_user(up);
283 	key_put(up->uid_keyring);
284 	key_put(up->session_keyring);
285 	kmem_cache_free(uid_cachep, up);
286 }
287 
288 #endif
289 
290 /*
291  * Locate the user_struct for the passed UID.  If found, take a ref on it.  The
292  * caller must undo that ref with free_uid().
293  *
294  * If the user_struct could not be found, return NULL.
295  */
296 struct user_struct *find_user(uid_t uid)
297 {
298 	struct user_struct *ret;
299 	unsigned long flags;
300 	struct user_namespace *ns = current->nsproxy->user_ns;
301 
302 	spin_lock_irqsave(&uidhash_lock, flags);
303 	ret = uid_hash_find(uid, uidhashentry(ns, uid));
304 	spin_unlock_irqrestore(&uidhash_lock, flags);
305 	return ret;
306 }
307 
308 void free_uid(struct user_struct *up)
309 {
310 	unsigned long flags;
311 
312 	if (!up)
313 		return;
314 
315 	local_irq_save(flags);
316 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
317 		free_user(up, flags);
318 	else
319 		local_irq_restore(flags);
320 }
321 
322 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
323 {
324 	struct hlist_head *hashent = uidhashentry(ns, uid);
325 	struct user_struct *up;
326 
327 	/* Make uid_hash_find() + user_kobject_create() + uid_hash_insert()
328 	 * atomic.
329 	 */
330 	uids_mutex_lock();
331 
332 	spin_lock_irq(&uidhash_lock);
333 	up = uid_hash_find(uid, hashent);
334 	spin_unlock_irq(&uidhash_lock);
335 
336 	if (!up) {
337 		struct user_struct *new;
338 
339 		new = kmem_cache_alloc(uid_cachep, GFP_KERNEL);
340 		if (!new) {
341 			uids_mutex_unlock();
342 			return NULL;
343 		}
344 
345 		new->uid = uid;
346 		atomic_set(&new->__count, 1);
347 		atomic_set(&new->processes, 0);
348 		atomic_set(&new->files, 0);
349 		atomic_set(&new->sigpending, 0);
350 #ifdef CONFIG_INOTIFY_USER
351 		atomic_set(&new->inotify_watches, 0);
352 		atomic_set(&new->inotify_devs, 0);
353 #endif
354 #ifdef CONFIG_POSIX_MQUEUE
355 		new->mq_bytes = 0;
356 #endif
357 		new->locked_shm = 0;
358 
359 		if (alloc_uid_keyring(new, current) < 0) {
360 			kmem_cache_free(uid_cachep, new);
361 			uids_mutex_unlock();
362 			return NULL;
363 		}
364 
365 		if (sched_create_user(new) < 0) {
366 			key_put(new->uid_keyring);
367 			key_put(new->session_keyring);
368 			kmem_cache_free(uid_cachep, new);
369 			uids_mutex_unlock();
370 			return NULL;
371 		}
372 
373 		if (user_kobject_create(new)) {
374 			sched_destroy_user(new);
375 			key_put(new->uid_keyring);
376 			key_put(new->session_keyring);
377 			kmem_cache_free(uid_cachep, new);
378 			uids_mutex_unlock();
379 			return NULL;
380 		}
381 
382 		/*
383 		 * Before adding this, check whether we raced
384 		 * on adding the same user already..
385 		 */
386 		spin_lock_irq(&uidhash_lock);
387 		up = uid_hash_find(uid, hashent);
388 		if (up) {
389 			/* This case is not possible when CONFIG_FAIR_USER_SCHED
390 			 * is defined, since we serialize alloc_uid() using
391 			 * uids_mutex. Hence no need to call
392 			 * sched_destroy_user() or remove_user_sysfs_dir().
393 			 */
394 			key_put(new->uid_keyring);
395 			key_put(new->session_keyring);
396 			kmem_cache_free(uid_cachep, new);
397 		} else {
398 			uid_hash_insert(new, hashent);
399 			up = new;
400 		}
401 		spin_unlock_irq(&uidhash_lock);
402 
403 	}
404 
405 	uids_mutex_unlock();
406 
407 	return up;
408 }
409 
410 void switch_uid(struct user_struct *new_user)
411 {
412 	struct user_struct *old_user;
413 
414 	/* What if a process setreuid()'s and this brings the
415 	 * new uid over his NPROC rlimit?  We can check this now
416 	 * cheaply with the new uid cache, so if it matters
417 	 * we should be checking for it.  -DaveM
418 	 */
419 	old_user = current->user;
420 	atomic_inc(&new_user->processes);
421 	atomic_dec(&old_user->processes);
422 	switch_uid_keyring(new_user);
423 	current->user = new_user;
424 	sched_switch_user(current);
425 
426 	/*
427 	 * We need to synchronize with __sigqueue_alloc()
428 	 * doing a get_uid(p->user).. If that saw the old
429 	 * user value, we need to wait until it has exited
430 	 * its critical region before we can free the old
431 	 * structure.
432 	 */
433 	smp_mb();
434 	spin_unlock_wait(&current->sighand->siglock);
435 
436 	free_uid(old_user);
437 	suid_keys(current);
438 }
439 
440 void release_uids(struct user_namespace *ns)
441 {
442 	int i;
443 	unsigned long flags;
444 	struct hlist_head *head;
445 	struct hlist_node *nd;
446 
447 	spin_lock_irqsave(&uidhash_lock, flags);
448 	/*
449 	 * collapse the chains so that the user_struct-s will
450 	 * be still alive, but not in hashes. subsequent free_uid()
451 	 * will free them.
452 	 */
453 	for (i = 0; i < UIDHASH_SZ; i++) {
454 		head = ns->uidhash_table + i;
455 		while (!hlist_empty(head)) {
456 			nd = head->first;
457 			hlist_del_init(nd);
458 		}
459 	}
460 	spin_unlock_irqrestore(&uidhash_lock, flags);
461 
462 	free_uid(ns->root_user);
463 }
464 
465 static int __init uid_cache_init(void)
466 {
467 	int n;
468 
469 	uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
470 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
471 
472 	for(n = 0; n < UIDHASH_SZ; ++n)
473 		INIT_HLIST_HEAD(init_user_ns.uidhash_table + n);
474 
475 	/* Insert the root user immediately (init already runs as root) */
476 	spin_lock_irq(&uidhash_lock);
477 	uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
478 	spin_unlock_irq(&uidhash_lock);
479 
480 	return 0;
481 }
482 
483 module_init(uid_cache_init);
484