1 /* 2 * The "user cache". 3 * 4 * (C) Copyright 1991-2000 Linus Torvalds 5 * 6 * We have a per-user structure to keep track of how many 7 * processes, files etc the user has claimed, in order to be 8 * able to have per-user limits for system resources. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/bitops.h> 15 #include <linux/key.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/user_namespace.h> 19 20 /* 21 * UID task count cache, to get fast user lookup in "alloc_uid" 22 * when changing user ID's (ie setuid() and friends). 23 */ 24 25 #define UIDHASH_MASK (UIDHASH_SZ - 1) 26 #define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK) 27 #define uidhashentry(ns, uid) ((ns)->uidhash_table + __uidhashfn((uid))) 28 29 static struct kmem_cache *uid_cachep; 30 31 /* 32 * The uidhash_lock is mostly taken from process context, but it is 33 * occasionally also taken from softirq/tasklet context, when 34 * task-structs get RCU-freed. Hence all locking must be softirq-safe. 35 * But free_uid() is also called with local interrupts disabled, and running 36 * local_bh_enable() with local interrupts disabled is an error - we'll run 37 * softirq callbacks, and they can unconditionally enable interrupts, and 38 * the caller of free_uid() didn't expect that.. 39 */ 40 static DEFINE_SPINLOCK(uidhash_lock); 41 42 struct user_struct root_user = { 43 .__count = ATOMIC_INIT(1), 44 .processes = ATOMIC_INIT(1), 45 .files = ATOMIC_INIT(0), 46 .sigpending = ATOMIC_INIT(0), 47 .locked_shm = 0, 48 #ifdef CONFIG_KEYS 49 .uid_keyring = &root_user_keyring, 50 .session_keyring = &root_session_keyring, 51 #endif 52 #ifdef CONFIG_FAIR_USER_SCHED 53 .tg = &init_task_group, 54 #endif 55 }; 56 57 /* 58 * These routines must be called with the uidhash spinlock held! 59 */ 60 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent) 61 { 62 hlist_add_head(&up->uidhash_node, hashent); 63 } 64 65 static void uid_hash_remove(struct user_struct *up) 66 { 67 hlist_del_init(&up->uidhash_node); 68 } 69 70 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) 71 { 72 struct user_struct *user; 73 struct hlist_node *h; 74 75 hlist_for_each_entry(user, h, hashent, uidhash_node) { 76 if (user->uid == uid) { 77 atomic_inc(&user->__count); 78 return user; 79 } 80 } 81 82 return NULL; 83 } 84 85 #ifdef CONFIG_FAIR_USER_SCHED 86 87 static void sched_destroy_user(struct user_struct *up) 88 { 89 sched_destroy_group(up->tg); 90 } 91 92 static int sched_create_user(struct user_struct *up) 93 { 94 int rc = 0; 95 96 up->tg = sched_create_group(); 97 if (IS_ERR(up->tg)) 98 rc = -ENOMEM; 99 100 return rc; 101 } 102 103 static void sched_switch_user(struct task_struct *p) 104 { 105 sched_move_task(p); 106 } 107 108 #else /* CONFIG_FAIR_USER_SCHED */ 109 110 static void sched_destroy_user(struct user_struct *up) { } 111 static int sched_create_user(struct user_struct *up) { return 0; } 112 static void sched_switch_user(struct task_struct *p) { } 113 114 #endif /* CONFIG_FAIR_USER_SCHED */ 115 116 #if defined(CONFIG_FAIR_USER_SCHED) && defined(CONFIG_SYSFS) 117 118 static struct kobject uids_kobject; /* represents /sys/kernel/uids directory */ 119 static DEFINE_MUTEX(uids_mutex); 120 121 static inline void uids_mutex_lock(void) 122 { 123 mutex_lock(&uids_mutex); 124 } 125 126 static inline void uids_mutex_unlock(void) 127 { 128 mutex_unlock(&uids_mutex); 129 } 130 131 /* return cpu shares held by the user */ 132 static ssize_t cpu_shares_show(struct kset *kset, char *buffer) 133 { 134 struct user_struct *up = container_of(kset, struct user_struct, kset); 135 136 return sprintf(buffer, "%lu\n", sched_group_shares(up->tg)); 137 } 138 139 /* modify cpu shares held by the user */ 140 static ssize_t cpu_shares_store(struct kset *kset, const char *buffer, 141 size_t size) 142 { 143 struct user_struct *up = container_of(kset, struct user_struct, kset); 144 unsigned long shares; 145 int rc; 146 147 sscanf(buffer, "%lu", &shares); 148 149 rc = sched_group_set_shares(up->tg, shares); 150 151 return (rc ? rc : size); 152 } 153 154 static void user_attr_init(struct subsys_attribute *sa, char *name, int mode) 155 { 156 sa->attr.name = name; 157 sa->attr.mode = mode; 158 sa->show = cpu_shares_show; 159 sa->store = cpu_shares_store; 160 } 161 162 /* Create "/sys/kernel/uids/<uid>" directory and 163 * "/sys/kernel/uids/<uid>/cpu_share" file for this user. 164 */ 165 static int user_kobject_create(struct user_struct *up) 166 { 167 struct kset *kset = &up->kset; 168 struct kobject *kobj = &kset->kobj; 169 int error; 170 171 memset(kset, 0, sizeof(struct kset)); 172 kobj->parent = &uids_kobject; /* create under /sys/kernel/uids dir */ 173 kobject_set_name(kobj, "%d", up->uid); 174 kset_init(kset); 175 user_attr_init(&up->user_attr, "cpu_share", 0644); 176 177 error = kobject_add(kobj); 178 if (error) 179 goto done; 180 181 error = sysfs_create_file(kobj, &up->user_attr.attr); 182 if (error) 183 kobject_del(kobj); 184 185 kobject_uevent(kobj, KOBJ_ADD); 186 187 done: 188 return error; 189 } 190 191 /* create these in sysfs filesystem: 192 * "/sys/kernel/uids" directory 193 * "/sys/kernel/uids/0" directory (for root user) 194 * "/sys/kernel/uids/0/cpu_share" file (for root user) 195 */ 196 int __init uids_kobject_init(void) 197 { 198 int error; 199 200 /* create under /sys/kernel dir */ 201 uids_kobject.parent = &kernel_subsys.kobj; 202 uids_kobject.kset = &kernel_subsys; 203 kobject_set_name(&uids_kobject, "uids"); 204 kobject_init(&uids_kobject); 205 206 error = kobject_add(&uids_kobject); 207 if (!error) 208 error = user_kobject_create(&root_user); 209 210 return error; 211 } 212 213 /* work function to remove sysfs directory for a user and free up 214 * corresponding structures. 215 */ 216 static void remove_user_sysfs_dir(struct work_struct *w) 217 { 218 struct user_struct *up = container_of(w, struct user_struct, work); 219 struct kobject *kobj = &up->kset.kobj; 220 unsigned long flags; 221 int remove_user = 0; 222 223 /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del() 224 * atomic. 225 */ 226 uids_mutex_lock(); 227 228 local_irq_save(flags); 229 230 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { 231 uid_hash_remove(up); 232 remove_user = 1; 233 spin_unlock_irqrestore(&uidhash_lock, flags); 234 } else { 235 local_irq_restore(flags); 236 } 237 238 if (!remove_user) 239 goto done; 240 241 sysfs_remove_file(kobj, &up->user_attr.attr); 242 kobject_uevent(kobj, KOBJ_REMOVE); 243 kobject_del(kobj); 244 245 sched_destroy_user(up); 246 key_put(up->uid_keyring); 247 key_put(up->session_keyring); 248 kmem_cache_free(uid_cachep, up); 249 250 done: 251 uids_mutex_unlock(); 252 } 253 254 /* IRQs are disabled and uidhash_lock is held upon function entry. 255 * IRQ state (as stored in flags) is restored and uidhash_lock released 256 * upon function exit. 257 */ 258 static inline void free_user(struct user_struct *up, unsigned long flags) 259 { 260 /* restore back the count */ 261 atomic_inc(&up->__count); 262 spin_unlock_irqrestore(&uidhash_lock, flags); 263 264 INIT_WORK(&up->work, remove_user_sysfs_dir); 265 schedule_work(&up->work); 266 } 267 268 #else /* CONFIG_FAIR_USER_SCHED && CONFIG_SYSFS */ 269 270 static inline int user_kobject_create(struct user_struct *up) { return 0; } 271 static inline void uids_mutex_lock(void) { } 272 static inline void uids_mutex_unlock(void) { } 273 274 /* IRQs are disabled and uidhash_lock is held upon function entry. 275 * IRQ state (as stored in flags) is restored and uidhash_lock released 276 * upon function exit. 277 */ 278 static inline void free_user(struct user_struct *up, unsigned long flags) 279 { 280 uid_hash_remove(up); 281 spin_unlock_irqrestore(&uidhash_lock, flags); 282 sched_destroy_user(up); 283 key_put(up->uid_keyring); 284 key_put(up->session_keyring); 285 kmem_cache_free(uid_cachep, up); 286 } 287 288 #endif 289 290 /* 291 * Locate the user_struct for the passed UID. If found, take a ref on it. The 292 * caller must undo that ref with free_uid(). 293 * 294 * If the user_struct could not be found, return NULL. 295 */ 296 struct user_struct *find_user(uid_t uid) 297 { 298 struct user_struct *ret; 299 unsigned long flags; 300 struct user_namespace *ns = current->nsproxy->user_ns; 301 302 spin_lock_irqsave(&uidhash_lock, flags); 303 ret = uid_hash_find(uid, uidhashentry(ns, uid)); 304 spin_unlock_irqrestore(&uidhash_lock, flags); 305 return ret; 306 } 307 308 void free_uid(struct user_struct *up) 309 { 310 unsigned long flags; 311 312 if (!up) 313 return; 314 315 local_irq_save(flags); 316 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) 317 free_user(up, flags); 318 else 319 local_irq_restore(flags); 320 } 321 322 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid) 323 { 324 struct hlist_head *hashent = uidhashentry(ns, uid); 325 struct user_struct *up; 326 327 /* Make uid_hash_find() + user_kobject_create() + uid_hash_insert() 328 * atomic. 329 */ 330 uids_mutex_lock(); 331 332 spin_lock_irq(&uidhash_lock); 333 up = uid_hash_find(uid, hashent); 334 spin_unlock_irq(&uidhash_lock); 335 336 if (!up) { 337 struct user_struct *new; 338 339 new = kmem_cache_alloc(uid_cachep, GFP_KERNEL); 340 if (!new) { 341 uids_mutex_unlock(); 342 return NULL; 343 } 344 345 new->uid = uid; 346 atomic_set(&new->__count, 1); 347 atomic_set(&new->processes, 0); 348 atomic_set(&new->files, 0); 349 atomic_set(&new->sigpending, 0); 350 #ifdef CONFIG_INOTIFY_USER 351 atomic_set(&new->inotify_watches, 0); 352 atomic_set(&new->inotify_devs, 0); 353 #endif 354 #ifdef CONFIG_POSIX_MQUEUE 355 new->mq_bytes = 0; 356 #endif 357 new->locked_shm = 0; 358 359 if (alloc_uid_keyring(new, current) < 0) { 360 kmem_cache_free(uid_cachep, new); 361 uids_mutex_unlock(); 362 return NULL; 363 } 364 365 if (sched_create_user(new) < 0) { 366 key_put(new->uid_keyring); 367 key_put(new->session_keyring); 368 kmem_cache_free(uid_cachep, new); 369 uids_mutex_unlock(); 370 return NULL; 371 } 372 373 if (user_kobject_create(new)) { 374 sched_destroy_user(new); 375 key_put(new->uid_keyring); 376 key_put(new->session_keyring); 377 kmem_cache_free(uid_cachep, new); 378 uids_mutex_unlock(); 379 return NULL; 380 } 381 382 /* 383 * Before adding this, check whether we raced 384 * on adding the same user already.. 385 */ 386 spin_lock_irq(&uidhash_lock); 387 up = uid_hash_find(uid, hashent); 388 if (up) { 389 /* This case is not possible when CONFIG_FAIR_USER_SCHED 390 * is defined, since we serialize alloc_uid() using 391 * uids_mutex. Hence no need to call 392 * sched_destroy_user() or remove_user_sysfs_dir(). 393 */ 394 key_put(new->uid_keyring); 395 key_put(new->session_keyring); 396 kmem_cache_free(uid_cachep, new); 397 } else { 398 uid_hash_insert(new, hashent); 399 up = new; 400 } 401 spin_unlock_irq(&uidhash_lock); 402 403 } 404 405 uids_mutex_unlock(); 406 407 return up; 408 } 409 410 void switch_uid(struct user_struct *new_user) 411 { 412 struct user_struct *old_user; 413 414 /* What if a process setreuid()'s and this brings the 415 * new uid over his NPROC rlimit? We can check this now 416 * cheaply with the new uid cache, so if it matters 417 * we should be checking for it. -DaveM 418 */ 419 old_user = current->user; 420 atomic_inc(&new_user->processes); 421 atomic_dec(&old_user->processes); 422 switch_uid_keyring(new_user); 423 current->user = new_user; 424 sched_switch_user(current); 425 426 /* 427 * We need to synchronize with __sigqueue_alloc() 428 * doing a get_uid(p->user).. If that saw the old 429 * user value, we need to wait until it has exited 430 * its critical region before we can free the old 431 * structure. 432 */ 433 smp_mb(); 434 spin_unlock_wait(¤t->sighand->siglock); 435 436 free_uid(old_user); 437 suid_keys(current); 438 } 439 440 void release_uids(struct user_namespace *ns) 441 { 442 int i; 443 unsigned long flags; 444 struct hlist_head *head; 445 struct hlist_node *nd; 446 447 spin_lock_irqsave(&uidhash_lock, flags); 448 /* 449 * collapse the chains so that the user_struct-s will 450 * be still alive, but not in hashes. subsequent free_uid() 451 * will free them. 452 */ 453 for (i = 0; i < UIDHASH_SZ; i++) { 454 head = ns->uidhash_table + i; 455 while (!hlist_empty(head)) { 456 nd = head->first; 457 hlist_del_init(nd); 458 } 459 } 460 spin_unlock_irqrestore(&uidhash_lock, flags); 461 462 free_uid(ns->root_user); 463 } 464 465 static int __init uid_cache_init(void) 466 { 467 int n; 468 469 uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct), 470 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 471 472 for(n = 0; n < UIDHASH_SZ; ++n) 473 INIT_HLIST_HEAD(init_user_ns.uidhash_table + n); 474 475 /* Insert the root user immediately (init already runs as root) */ 476 spin_lock_irq(&uidhash_lock); 477 uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0)); 478 spin_unlock_irq(&uidhash_lock); 479 480 return 0; 481 } 482 483 module_init(uid_cache_init); 484