1 /* 2 * umh - the kernel usermode helper 3 */ 4 #include <linux/module.h> 5 #include <linux/sched.h> 6 #include <linux/sched/task.h> 7 #include <linux/binfmts.h> 8 #include <linux/syscalls.h> 9 #include <linux/unistd.h> 10 #include <linux/kmod.h> 11 #include <linux/slab.h> 12 #include <linux/completion.h> 13 #include <linux/cred.h> 14 #include <linux/file.h> 15 #include <linux/fdtable.h> 16 #include <linux/workqueue.h> 17 #include <linux/security.h> 18 #include <linux/mount.h> 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/resource.h> 22 #include <linux/notifier.h> 23 #include <linux/suspend.h> 24 #include <linux/rwsem.h> 25 #include <linux/ptrace.h> 26 #include <linux/async.h> 27 #include <linux/uaccess.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/pipe_fs_i.h> 30 31 #include <trace/events/module.h> 32 33 #define CAP_BSET (void *)1 34 #define CAP_PI (void *)2 35 36 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET; 37 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET; 38 static DEFINE_SPINLOCK(umh_sysctl_lock); 39 static DECLARE_RWSEM(umhelper_sem); 40 41 static void call_usermodehelper_freeinfo(struct subprocess_info *info) 42 { 43 if (info->cleanup) 44 (*info->cleanup)(info); 45 kfree(info); 46 } 47 48 static void umh_complete(struct subprocess_info *sub_info) 49 { 50 struct completion *comp = xchg(&sub_info->complete, NULL); 51 /* 52 * See call_usermodehelper_exec(). If xchg() returns NULL 53 * we own sub_info, the UMH_KILLABLE caller has gone away 54 * or the caller used UMH_NO_WAIT. 55 */ 56 if (comp) 57 complete(comp); 58 else 59 call_usermodehelper_freeinfo(sub_info); 60 } 61 62 /* 63 * This is the task which runs the usermode application 64 */ 65 static int call_usermodehelper_exec_async(void *data) 66 { 67 struct subprocess_info *sub_info = data; 68 struct cred *new; 69 int retval; 70 71 spin_lock_irq(¤t->sighand->siglock); 72 flush_signal_handlers(current, 1); 73 spin_unlock_irq(¤t->sighand->siglock); 74 75 /* 76 * Our parent (unbound workqueue) runs with elevated scheduling 77 * priority. Avoid propagating that into the userspace child. 78 */ 79 set_user_nice(current, 0); 80 81 retval = -ENOMEM; 82 new = prepare_kernel_cred(current); 83 if (!new) 84 goto out; 85 86 spin_lock(&umh_sysctl_lock); 87 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset); 88 new->cap_inheritable = cap_intersect(usermodehelper_inheritable, 89 new->cap_inheritable); 90 spin_unlock(&umh_sysctl_lock); 91 92 if (sub_info->init) { 93 retval = sub_info->init(sub_info, new); 94 if (retval) { 95 abort_creds(new); 96 goto out; 97 } 98 } 99 100 commit_creds(new); 101 102 sub_info->pid = task_pid_nr(current); 103 if (sub_info->file) 104 retval = do_execve_file(sub_info->file, 105 sub_info->argv, sub_info->envp); 106 else 107 retval = do_execve(getname_kernel(sub_info->path), 108 (const char __user *const __user *)sub_info->argv, 109 (const char __user *const __user *)sub_info->envp); 110 out: 111 sub_info->retval = retval; 112 /* 113 * call_usermodehelper_exec_sync() will call umh_complete 114 * if UHM_WAIT_PROC. 115 */ 116 if (!(sub_info->wait & UMH_WAIT_PROC)) 117 umh_complete(sub_info); 118 if (!retval) 119 return 0; 120 do_exit(0); 121 } 122 123 /* Handles UMH_WAIT_PROC. */ 124 static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info) 125 { 126 pid_t pid; 127 128 /* If SIGCLD is ignored kernel_wait4 won't populate the status. */ 129 kernel_sigaction(SIGCHLD, SIG_DFL); 130 pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD); 131 if (pid < 0) { 132 sub_info->retval = pid; 133 } else { 134 int ret = -ECHILD; 135 /* 136 * Normally it is bogus to call wait4() from in-kernel because 137 * wait4() wants to write the exit code to a userspace address. 138 * But call_usermodehelper_exec_sync() always runs as kernel 139 * thread (workqueue) and put_user() to a kernel address works 140 * OK for kernel threads, due to their having an mm_segment_t 141 * which spans the entire address space. 142 * 143 * Thus the __user pointer cast is valid here. 144 */ 145 kernel_wait4(pid, (int __user *)&ret, 0, NULL); 146 147 /* 148 * If ret is 0, either call_usermodehelper_exec_async failed and 149 * the real error code is already in sub_info->retval or 150 * sub_info->retval is 0 anyway, so don't mess with it then. 151 */ 152 if (ret) 153 sub_info->retval = ret; 154 } 155 156 /* Restore default kernel sig handler */ 157 kernel_sigaction(SIGCHLD, SIG_IGN); 158 159 umh_complete(sub_info); 160 } 161 162 /* 163 * We need to create the usermodehelper kernel thread from a task that is affine 164 * to an optimized set of CPUs (or nohz housekeeping ones) such that they 165 * inherit a widest affinity irrespective of call_usermodehelper() callers with 166 * possibly reduced affinity (eg: per-cpu workqueues). We don't want 167 * usermodehelper targets to contend a busy CPU. 168 * 169 * Unbound workqueues provide such wide affinity and allow to block on 170 * UMH_WAIT_PROC requests without blocking pending request (up to some limit). 171 * 172 * Besides, workqueues provide the privilege level that caller might not have 173 * to perform the usermodehelper request. 174 * 175 */ 176 static void call_usermodehelper_exec_work(struct work_struct *work) 177 { 178 struct subprocess_info *sub_info = 179 container_of(work, struct subprocess_info, work); 180 181 if (sub_info->wait & UMH_WAIT_PROC) { 182 call_usermodehelper_exec_sync(sub_info); 183 } else { 184 pid_t pid; 185 /* 186 * Use CLONE_PARENT to reparent it to kthreadd; we do not 187 * want to pollute current->children, and we need a parent 188 * that always ignores SIGCHLD to ensure auto-reaping. 189 */ 190 pid = kernel_thread(call_usermodehelper_exec_async, sub_info, 191 CLONE_PARENT | SIGCHLD); 192 if (pid < 0) { 193 sub_info->retval = pid; 194 umh_complete(sub_info); 195 } 196 } 197 } 198 199 /* 200 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY 201 * (used for preventing user land processes from being created after the user 202 * land has been frozen during a system-wide hibernation or suspend operation). 203 * Should always be manipulated under umhelper_sem acquired for write. 204 */ 205 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED; 206 207 /* Number of helpers running */ 208 static atomic_t running_helpers = ATOMIC_INIT(0); 209 210 /* 211 * Wait queue head used by usermodehelper_disable() to wait for all running 212 * helpers to finish. 213 */ 214 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq); 215 216 /* 217 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled 218 * to become 'false'. 219 */ 220 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq); 221 222 /* 223 * Time to wait for running_helpers to become zero before the setting of 224 * usermodehelper_disabled in usermodehelper_disable() fails 225 */ 226 #define RUNNING_HELPERS_TIMEOUT (5 * HZ) 227 228 int usermodehelper_read_trylock(void) 229 { 230 DEFINE_WAIT(wait); 231 int ret = 0; 232 233 down_read(&umhelper_sem); 234 for (;;) { 235 prepare_to_wait(&usermodehelper_disabled_waitq, &wait, 236 TASK_INTERRUPTIBLE); 237 if (!usermodehelper_disabled) 238 break; 239 240 if (usermodehelper_disabled == UMH_DISABLED) 241 ret = -EAGAIN; 242 243 up_read(&umhelper_sem); 244 245 if (ret) 246 break; 247 248 schedule(); 249 try_to_freeze(); 250 251 down_read(&umhelper_sem); 252 } 253 finish_wait(&usermodehelper_disabled_waitq, &wait); 254 return ret; 255 } 256 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock); 257 258 long usermodehelper_read_lock_wait(long timeout) 259 { 260 DEFINE_WAIT(wait); 261 262 if (timeout < 0) 263 return -EINVAL; 264 265 down_read(&umhelper_sem); 266 for (;;) { 267 prepare_to_wait(&usermodehelper_disabled_waitq, &wait, 268 TASK_UNINTERRUPTIBLE); 269 if (!usermodehelper_disabled) 270 break; 271 272 up_read(&umhelper_sem); 273 274 timeout = schedule_timeout(timeout); 275 if (!timeout) 276 break; 277 278 down_read(&umhelper_sem); 279 } 280 finish_wait(&usermodehelper_disabled_waitq, &wait); 281 return timeout; 282 } 283 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait); 284 285 void usermodehelper_read_unlock(void) 286 { 287 up_read(&umhelper_sem); 288 } 289 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock); 290 291 /** 292 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled. 293 * @depth: New value to assign to usermodehelper_disabled. 294 * 295 * Change the value of usermodehelper_disabled (under umhelper_sem locked for 296 * writing) and wakeup tasks waiting for it to change. 297 */ 298 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth) 299 { 300 down_write(&umhelper_sem); 301 usermodehelper_disabled = depth; 302 wake_up(&usermodehelper_disabled_waitq); 303 up_write(&umhelper_sem); 304 } 305 306 /** 307 * __usermodehelper_disable - Prevent new helpers from being started. 308 * @depth: New value to assign to usermodehelper_disabled. 309 * 310 * Set usermodehelper_disabled to @depth and wait for running helpers to exit. 311 */ 312 int __usermodehelper_disable(enum umh_disable_depth depth) 313 { 314 long retval; 315 316 if (!depth) 317 return -EINVAL; 318 319 down_write(&umhelper_sem); 320 usermodehelper_disabled = depth; 321 up_write(&umhelper_sem); 322 323 /* 324 * From now on call_usermodehelper_exec() won't start any new 325 * helpers, so it is sufficient if running_helpers turns out to 326 * be zero at one point (it may be increased later, but that 327 * doesn't matter). 328 */ 329 retval = wait_event_timeout(running_helpers_waitq, 330 atomic_read(&running_helpers) == 0, 331 RUNNING_HELPERS_TIMEOUT); 332 if (retval) 333 return 0; 334 335 __usermodehelper_set_disable_depth(UMH_ENABLED); 336 return -EAGAIN; 337 } 338 339 static void helper_lock(void) 340 { 341 atomic_inc(&running_helpers); 342 smp_mb__after_atomic(); 343 } 344 345 static void helper_unlock(void) 346 { 347 if (atomic_dec_and_test(&running_helpers)) 348 wake_up(&running_helpers_waitq); 349 } 350 351 /** 352 * call_usermodehelper_setup - prepare to call a usermode helper 353 * @path: path to usermode executable 354 * @argv: arg vector for process 355 * @envp: environment for process 356 * @gfp_mask: gfp mask for memory allocation 357 * @cleanup: a cleanup function 358 * @init: an init function 359 * @data: arbitrary context sensitive data 360 * 361 * Returns either %NULL on allocation failure, or a subprocess_info 362 * structure. This should be passed to call_usermodehelper_exec to 363 * exec the process and free the structure. 364 * 365 * The init function is used to customize the helper process prior to 366 * exec. A non-zero return code causes the process to error out, exit, 367 * and return the failure to the calling process 368 * 369 * The cleanup function is just before ethe subprocess_info is about to 370 * be freed. This can be used for freeing the argv and envp. The 371 * Function must be runnable in either a process context or the 372 * context in which call_usermodehelper_exec is called. 373 */ 374 struct subprocess_info *call_usermodehelper_setup(const char *path, char **argv, 375 char **envp, gfp_t gfp_mask, 376 int (*init)(struct subprocess_info *info, struct cred *new), 377 void (*cleanup)(struct subprocess_info *info), 378 void *data) 379 { 380 struct subprocess_info *sub_info; 381 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask); 382 if (!sub_info) 383 goto out; 384 385 INIT_WORK(&sub_info->work, call_usermodehelper_exec_work); 386 387 #ifdef CONFIG_STATIC_USERMODEHELPER 388 sub_info->path = CONFIG_STATIC_USERMODEHELPER_PATH; 389 #else 390 sub_info->path = path; 391 #endif 392 sub_info->argv = argv; 393 sub_info->envp = envp; 394 395 sub_info->cleanup = cleanup; 396 sub_info->init = init; 397 sub_info->data = data; 398 out: 399 return sub_info; 400 } 401 EXPORT_SYMBOL(call_usermodehelper_setup); 402 403 struct subprocess_info *call_usermodehelper_setup_file(struct file *file, 404 int (*init)(struct subprocess_info *info, struct cred *new), 405 void (*cleanup)(struct subprocess_info *info), void *data) 406 { 407 struct subprocess_info *sub_info; 408 409 sub_info = kzalloc(sizeof(struct subprocess_info), GFP_KERNEL); 410 if (!sub_info) 411 return NULL; 412 413 INIT_WORK(&sub_info->work, call_usermodehelper_exec_work); 414 sub_info->path = "none"; 415 sub_info->file = file; 416 sub_info->init = init; 417 sub_info->cleanup = cleanup; 418 sub_info->data = data; 419 return sub_info; 420 } 421 422 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 423 { 424 struct umh_info *umh_info = info->data; 425 struct file *from_umh[2]; 426 struct file *to_umh[2]; 427 int err; 428 429 /* create pipe to send data to umh */ 430 err = create_pipe_files(to_umh, 0); 431 if (err) 432 return err; 433 err = replace_fd(0, to_umh[0], 0); 434 fput(to_umh[0]); 435 if (err < 0) { 436 fput(to_umh[1]); 437 return err; 438 } 439 440 /* create pipe to receive data from umh */ 441 err = create_pipe_files(from_umh, 0); 442 if (err) { 443 fput(to_umh[1]); 444 replace_fd(0, NULL, 0); 445 return err; 446 } 447 err = replace_fd(1, from_umh[1], 0); 448 fput(from_umh[1]); 449 if (err < 0) { 450 fput(to_umh[1]); 451 replace_fd(0, NULL, 0); 452 fput(from_umh[0]); 453 return err; 454 } 455 456 umh_info->pipe_to_umh = to_umh[1]; 457 umh_info->pipe_from_umh = from_umh[0]; 458 return 0; 459 } 460 461 static void umh_save_pid(struct subprocess_info *info) 462 { 463 struct umh_info *umh_info = info->data; 464 465 umh_info->pid = info->pid; 466 } 467 468 /** 469 * fork_usermode_blob - fork a blob of bytes as a usermode process 470 * @data: a blob of bytes that can be do_execv-ed as a file 471 * @len: length of the blob 472 * @info: information about usermode process (shouldn't be NULL) 473 * 474 * Returns either negative error or zero which indicates success 475 * in executing a blob of bytes as a usermode process. In such 476 * case 'struct umh_info *info' is populated with two pipes 477 * and a pid of the process. The caller is responsible for health 478 * check of the user process, killing it via pid, and closing the 479 * pipes when user process is no longer needed. 480 */ 481 int fork_usermode_blob(void *data, size_t len, struct umh_info *info) 482 { 483 struct subprocess_info *sub_info; 484 struct file *file; 485 ssize_t written; 486 loff_t pos = 0; 487 int err; 488 489 file = shmem_kernel_file_setup("", len, 0); 490 if (IS_ERR(file)) 491 return PTR_ERR(file); 492 493 written = kernel_write(file, data, len, &pos); 494 if (written != len) { 495 err = written; 496 if (err >= 0) 497 err = -ENOMEM; 498 goto out; 499 } 500 501 err = -ENOMEM; 502 sub_info = call_usermodehelper_setup_file(file, umh_pipe_setup, 503 umh_save_pid, info); 504 if (!sub_info) 505 goto out; 506 507 err = call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC); 508 out: 509 fput(file); 510 return err; 511 } 512 EXPORT_SYMBOL_GPL(fork_usermode_blob); 513 514 /** 515 * call_usermodehelper_exec - start a usermode application 516 * @sub_info: information about the subprocessa 517 * @wait: wait for the application to finish and return status. 518 * when UMH_NO_WAIT don't wait at all, but you get no useful error back 519 * when the program couldn't be exec'ed. This makes it safe to call 520 * from interrupt context. 521 * 522 * Runs a user-space application. The application is started 523 * asynchronously if wait is not set, and runs as a child of system workqueues. 524 * (ie. it runs with full root capabilities and optimized affinity). 525 */ 526 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait) 527 { 528 DECLARE_COMPLETION_ONSTACK(done); 529 int retval = 0; 530 531 if (!sub_info->path) { 532 call_usermodehelper_freeinfo(sub_info); 533 return -EINVAL; 534 } 535 helper_lock(); 536 if (usermodehelper_disabled) { 537 retval = -EBUSY; 538 goto out; 539 } 540 541 /* 542 * If there is no binary for us to call, then just return and get out of 543 * here. This allows us to set STATIC_USERMODEHELPER_PATH to "" and 544 * disable all call_usermodehelper() calls. 545 */ 546 if (strlen(sub_info->path) == 0) 547 goto out; 548 549 /* 550 * Set the completion pointer only if there is a waiter. 551 * This makes it possible to use umh_complete to free 552 * the data structure in case of UMH_NO_WAIT. 553 */ 554 sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done; 555 sub_info->wait = wait; 556 557 queue_work(system_unbound_wq, &sub_info->work); 558 if (wait == UMH_NO_WAIT) /* task has freed sub_info */ 559 goto unlock; 560 561 if (wait & UMH_KILLABLE) { 562 retval = wait_for_completion_killable(&done); 563 if (!retval) 564 goto wait_done; 565 566 /* umh_complete() will see NULL and free sub_info */ 567 if (xchg(&sub_info->complete, NULL)) 568 goto unlock; 569 /* fallthrough, umh_complete() was already called */ 570 } 571 572 wait_for_completion(&done); 573 wait_done: 574 retval = sub_info->retval; 575 out: 576 call_usermodehelper_freeinfo(sub_info); 577 unlock: 578 helper_unlock(); 579 return retval; 580 } 581 EXPORT_SYMBOL(call_usermodehelper_exec); 582 583 /** 584 * call_usermodehelper() - prepare and start a usermode application 585 * @path: path to usermode executable 586 * @argv: arg vector for process 587 * @envp: environment for process 588 * @wait: wait for the application to finish and return status. 589 * when UMH_NO_WAIT don't wait at all, but you get no useful error back 590 * when the program couldn't be exec'ed. This makes it safe to call 591 * from interrupt context. 592 * 593 * This function is the equivalent to use call_usermodehelper_setup() and 594 * call_usermodehelper_exec(). 595 */ 596 int call_usermodehelper(const char *path, char **argv, char **envp, int wait) 597 { 598 struct subprocess_info *info; 599 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL; 600 601 info = call_usermodehelper_setup(path, argv, envp, gfp_mask, 602 NULL, NULL, NULL); 603 if (info == NULL) 604 return -ENOMEM; 605 606 return call_usermodehelper_exec(info, wait); 607 } 608 EXPORT_SYMBOL(call_usermodehelper); 609 610 static int proc_cap_handler(struct ctl_table *table, int write, 611 void __user *buffer, size_t *lenp, loff_t *ppos) 612 { 613 struct ctl_table t; 614 unsigned long cap_array[_KERNEL_CAPABILITY_U32S]; 615 kernel_cap_t new_cap; 616 int err, i; 617 618 if (write && (!capable(CAP_SETPCAP) || 619 !capable(CAP_SYS_MODULE))) 620 return -EPERM; 621 622 /* 623 * convert from the global kernel_cap_t to the ulong array to print to 624 * userspace if this is a read. 625 */ 626 spin_lock(&umh_sysctl_lock); 627 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) { 628 if (table->data == CAP_BSET) 629 cap_array[i] = usermodehelper_bset.cap[i]; 630 else if (table->data == CAP_PI) 631 cap_array[i] = usermodehelper_inheritable.cap[i]; 632 else 633 BUG(); 634 } 635 spin_unlock(&umh_sysctl_lock); 636 637 t = *table; 638 t.data = &cap_array; 639 640 /* 641 * actually read or write and array of ulongs from userspace. Remember 642 * these are least significant 32 bits first 643 */ 644 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); 645 if (err < 0) 646 return err; 647 648 /* 649 * convert from the sysctl array of ulongs to the kernel_cap_t 650 * internal representation 651 */ 652 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) 653 new_cap.cap[i] = cap_array[i]; 654 655 /* 656 * Drop everything not in the new_cap (but don't add things) 657 */ 658 if (write) { 659 spin_lock(&umh_sysctl_lock); 660 if (table->data == CAP_BSET) 661 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap); 662 if (table->data == CAP_PI) 663 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap); 664 spin_unlock(&umh_sysctl_lock); 665 } 666 667 return 0; 668 } 669 670 struct ctl_table usermodehelper_table[] = { 671 { 672 .procname = "bset", 673 .data = CAP_BSET, 674 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long), 675 .mode = 0600, 676 .proc_handler = proc_cap_handler, 677 }, 678 { 679 .procname = "inheritable", 680 .data = CAP_PI, 681 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long), 682 .mode = 0600, 683 .proc_handler = proc_cap_handler, 684 }, 685 { } 686 }; 687