xref: /linux/kernel/trace/trace_hwlat.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * trace_hwlatdetect.c - A simple Hardware Latency detector.
3  *
4  * Use this tracer to detect large system latencies induced by the behavior of
5  * certain underlying system hardware or firmware, independent of Linux itself.
6  * The code was developed originally to detect the presence of SMIs on Intel
7  * and AMD systems, although there is no dependency upon x86 herein.
8  *
9  * The classical example usage of this tracer is in detecting the presence of
10  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
11  * somewhat special form of hardware interrupt spawned from earlier CPU debug
12  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
13  * LPC (or other device) to generate a special interrupt under certain
14  * circumstances, for example, upon expiration of a special SMI timer device,
15  * due to certain external thermal readings, on certain I/O address accesses,
16  * and other situations. An SMI hits a special CPU pin, triggers a special
17  * SMI mode (complete with special memory map), and the OS is unaware.
18  *
19  * Although certain hardware-inducing latencies are necessary (for example,
20  * a modern system often requires an SMI handler for correct thermal control
21  * and remote management) they can wreak havoc upon any OS-level performance
22  * guarantees toward low-latency, especially when the OS is not even made
23  * aware of the presence of these interrupts. For this reason, we need a
24  * somewhat brute force mechanism to detect these interrupts. In this case,
25  * we do it by hogging all of the CPU(s) for configurable timer intervals,
26  * sampling the built-in CPU timer, looking for discontiguous readings.
27  *
28  * WARNING: This implementation necessarily introduces latencies. Therefore,
29  *          you should NEVER use this tracer while running in a production
30  *          environment requiring any kind of low-latency performance
31  *          guarantee(s).
32  *
33  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
34  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
35  *
36  * Includes useful feedback from Clark Williams <clark@redhat.com>
37  *
38  * This file is licensed under the terms of the GNU General Public
39  * License version 2. This program is licensed "as is" without any
40  * warranty of any kind, whether express or implied.
41  */
42 #include <linux/kthread.h>
43 #include <linux/tracefs.h>
44 #include <linux/uaccess.h>
45 #include <linux/cpumask.h>
46 #include <linux/delay.h>
47 #include <linux/sched/clock.h>
48 #include "trace.h"
49 
50 static struct trace_array	*hwlat_trace;
51 
52 #define U64STR_SIZE		22			/* 20 digits max */
53 
54 #define BANNER			"hwlat_detector: "
55 #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
56 #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
57 #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
58 
59 /* sampling thread*/
60 static struct task_struct *hwlat_kthread;
61 
62 static struct dentry *hwlat_sample_width;	/* sample width us */
63 static struct dentry *hwlat_sample_window;	/* sample window us */
64 
65 /* Save the previous tracing_thresh value */
66 static unsigned long save_tracing_thresh;
67 
68 /* NMI timestamp counters */
69 static u64 nmi_ts_start;
70 static u64 nmi_total_ts;
71 static int nmi_count;
72 static int nmi_cpu;
73 
74 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
75 bool trace_hwlat_callback_enabled;
76 
77 /* If the user changed threshold, remember it */
78 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
79 
80 /* Individual latency samples are stored here when detected. */
81 struct hwlat_sample {
82 	u64		seqnum;		/* unique sequence */
83 	u64		duration;	/* delta */
84 	u64		outer_duration;	/* delta (outer loop) */
85 	u64		nmi_total_ts;	/* Total time spent in NMIs */
86 	struct timespec	timestamp;	/* wall time */
87 	int		nmi_count;	/* # NMIs during this sample */
88 };
89 
90 /* keep the global state somewhere. */
91 static struct hwlat_data {
92 
93 	struct mutex lock;		/* protect changes */
94 
95 	u64	count;			/* total since reset */
96 
97 	u64	sample_window;		/* total sampling window (on+off) */
98 	u64	sample_width;		/* active sampling portion of window */
99 
100 } hwlat_data = {
101 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
102 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
103 };
104 
105 static void trace_hwlat_sample(struct hwlat_sample *sample)
106 {
107 	struct trace_array *tr = hwlat_trace;
108 	struct trace_event_call *call = &event_hwlat;
109 	struct ring_buffer *buffer = tr->trace_buffer.buffer;
110 	struct ring_buffer_event *event;
111 	struct hwlat_entry *entry;
112 	unsigned long flags;
113 	int pc;
114 
115 	pc = preempt_count();
116 	local_save_flags(flags);
117 
118 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
119 					  flags, pc);
120 	if (!event)
121 		return;
122 	entry	= ring_buffer_event_data(event);
123 	entry->seqnum			= sample->seqnum;
124 	entry->duration			= sample->duration;
125 	entry->outer_duration		= sample->outer_duration;
126 	entry->timestamp		= sample->timestamp;
127 	entry->nmi_total_ts		= sample->nmi_total_ts;
128 	entry->nmi_count		= sample->nmi_count;
129 
130 	if (!call_filter_check_discard(call, entry, buffer, event))
131 		trace_buffer_unlock_commit_nostack(buffer, event);
132 }
133 
134 /* Macros to encapsulate the time capturing infrastructure */
135 #define time_type	u64
136 #define time_get()	trace_clock_local()
137 #define time_to_us(x)	div_u64(x, 1000)
138 #define time_sub(a, b)	((a) - (b))
139 #define init_time(a, b)	(a = b)
140 #define time_u64(a)	a
141 
142 void trace_hwlat_callback(bool enter)
143 {
144 	if (smp_processor_id() != nmi_cpu)
145 		return;
146 
147 	/*
148 	 * Currently trace_clock_local() calls sched_clock() and the
149 	 * generic version is not NMI safe.
150 	 */
151 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
152 		if (enter)
153 			nmi_ts_start = time_get();
154 		else
155 			nmi_total_ts = time_get() - nmi_ts_start;
156 	}
157 
158 	if (enter)
159 		nmi_count++;
160 }
161 
162 /**
163  * get_sample - sample the CPU TSC and look for likely hardware latencies
164  *
165  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
166  * hardware-induced latency. Called with interrupts disabled and with
167  * hwlat_data.lock held.
168  */
169 static int get_sample(void)
170 {
171 	struct trace_array *tr = hwlat_trace;
172 	time_type start, t1, t2, last_t2;
173 	s64 diff, total, last_total = 0;
174 	u64 sample = 0;
175 	u64 thresh = tracing_thresh;
176 	u64 outer_sample = 0;
177 	int ret = -1;
178 
179 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
180 
181 	nmi_cpu = smp_processor_id();
182 	nmi_total_ts = 0;
183 	nmi_count = 0;
184 	/* Make sure NMIs see this first */
185 	barrier();
186 
187 	trace_hwlat_callback_enabled = true;
188 
189 	init_time(last_t2, 0);
190 	start = time_get(); /* start timestamp */
191 
192 	do {
193 
194 		t1 = time_get();	/* we'll look for a discontinuity */
195 		t2 = time_get();
196 
197 		if (time_u64(last_t2)) {
198 			/* Check the delta from outer loop (t2 to next t1) */
199 			diff = time_to_us(time_sub(t1, last_t2));
200 			/* This shouldn't happen */
201 			if (diff < 0) {
202 				pr_err(BANNER "time running backwards\n");
203 				goto out;
204 			}
205 			if (diff > outer_sample)
206 				outer_sample = diff;
207 		}
208 		last_t2 = t2;
209 
210 		total = time_to_us(time_sub(t2, start)); /* sample width */
211 
212 		/* Check for possible overflows */
213 		if (total < last_total) {
214 			pr_err("Time total overflowed\n");
215 			break;
216 		}
217 		last_total = total;
218 
219 		/* This checks the inner loop (t1 to t2) */
220 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
221 
222 		/* This shouldn't happen */
223 		if (diff < 0) {
224 			pr_err(BANNER "time running backwards\n");
225 			goto out;
226 		}
227 
228 		if (diff > sample)
229 			sample = diff; /* only want highest value */
230 
231 	} while (total <= hwlat_data.sample_width);
232 
233 	barrier(); /* finish the above in the view for NMIs */
234 	trace_hwlat_callback_enabled = false;
235 	barrier(); /* Make sure nmi_total_ts is no longer updated */
236 
237 	ret = 0;
238 
239 	/* If we exceed the threshold value, we have found a hardware latency */
240 	if (sample > thresh || outer_sample > thresh) {
241 		struct hwlat_sample s;
242 
243 		ret = 1;
244 
245 		/* We read in microseconds */
246 		if (nmi_total_ts)
247 			do_div(nmi_total_ts, NSEC_PER_USEC);
248 
249 		hwlat_data.count++;
250 		s.seqnum = hwlat_data.count;
251 		s.duration = sample;
252 		s.outer_duration = outer_sample;
253 		s.timestamp = CURRENT_TIME;
254 		s.nmi_total_ts = nmi_total_ts;
255 		s.nmi_count = nmi_count;
256 		trace_hwlat_sample(&s);
257 
258 		/* Keep a running maximum ever recorded hardware latency */
259 		if (sample > tr->max_latency)
260 			tr->max_latency = sample;
261 	}
262 
263 out:
264 	return ret;
265 }
266 
267 static struct cpumask save_cpumask;
268 static bool disable_migrate;
269 
270 static void move_to_next_cpu(void)
271 {
272 	struct cpumask *current_mask = &save_cpumask;
273 	int next_cpu;
274 
275 	if (disable_migrate)
276 		return;
277 	/*
278 	 * If for some reason the user modifies the CPU affinity
279 	 * of this thread, than stop migrating for the duration
280 	 * of the current test.
281 	 */
282 	if (!cpumask_equal(current_mask, &current->cpus_allowed))
283 		goto disable;
284 
285 	get_online_cpus();
286 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
287 	next_cpu = cpumask_next(smp_processor_id(), current_mask);
288 	put_online_cpus();
289 
290 	if (next_cpu >= nr_cpu_ids)
291 		next_cpu = cpumask_first(current_mask);
292 
293 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
294 		goto disable;
295 
296 	cpumask_clear(current_mask);
297 	cpumask_set_cpu(next_cpu, current_mask);
298 
299 	sched_setaffinity(0, current_mask);
300 	return;
301 
302  disable:
303 	disable_migrate = true;
304 }
305 
306 /*
307  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
308  *
309  * Used to periodically sample the CPU TSC via a call to get_sample. We
310  * disable interrupts, which does (intentionally) introduce latency since we
311  * need to ensure nothing else might be running (and thus preempting).
312  * Obviously this should never be used in production environments.
313  *
314  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
315  */
316 static int kthread_fn(void *data)
317 {
318 	u64 interval;
319 
320 	while (!kthread_should_stop()) {
321 
322 		move_to_next_cpu();
323 
324 		local_irq_disable();
325 		get_sample();
326 		local_irq_enable();
327 
328 		mutex_lock(&hwlat_data.lock);
329 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
330 		mutex_unlock(&hwlat_data.lock);
331 
332 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
333 
334 		/* Always sleep for at least 1ms */
335 		if (interval < 1)
336 			interval = 1;
337 
338 		if (msleep_interruptible(interval))
339 			break;
340 	}
341 
342 	return 0;
343 }
344 
345 /**
346  * start_kthread - Kick off the hardware latency sampling/detector kthread
347  *
348  * This starts the kernel thread that will sit and sample the CPU timestamp
349  * counter (TSC or similar) and look for potential hardware latencies.
350  */
351 static int start_kthread(struct trace_array *tr)
352 {
353 	struct cpumask *current_mask = &save_cpumask;
354 	struct task_struct *kthread;
355 	int next_cpu;
356 
357 	/* Just pick the first CPU on first iteration */
358 	current_mask = &save_cpumask;
359 	get_online_cpus();
360 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
361 	put_online_cpus();
362 	next_cpu = cpumask_first(current_mask);
363 
364 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
365 	if (IS_ERR(kthread)) {
366 		pr_err(BANNER "could not start sampling thread\n");
367 		return -ENOMEM;
368 	}
369 
370 	cpumask_clear(current_mask);
371 	cpumask_set_cpu(next_cpu, current_mask);
372 	sched_setaffinity(kthread->pid, current_mask);
373 
374 	hwlat_kthread = kthread;
375 	wake_up_process(kthread);
376 
377 	return 0;
378 }
379 
380 /**
381  * stop_kthread - Inform the hardware latency samping/detector kthread to stop
382  *
383  * This kicks the running hardware latency sampling/detector kernel thread and
384  * tells it to stop sampling now. Use this on unload and at system shutdown.
385  */
386 static void stop_kthread(void)
387 {
388 	if (!hwlat_kthread)
389 		return;
390 	kthread_stop(hwlat_kthread);
391 	hwlat_kthread = NULL;
392 }
393 
394 /*
395  * hwlat_read - Wrapper read function for reading both window and width
396  * @filp: The active open file structure
397  * @ubuf: The userspace provided buffer to read value into
398  * @cnt: The maximum number of bytes to read
399  * @ppos: The current "file" position
400  *
401  * This function provides a generic read implementation for the global state
402  * "hwlat_data" structure filesystem entries.
403  */
404 static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
405 			  size_t cnt, loff_t *ppos)
406 {
407 	char buf[U64STR_SIZE];
408 	u64 *entry = filp->private_data;
409 	u64 val;
410 	int len;
411 
412 	if (!entry)
413 		return -EFAULT;
414 
415 	if (cnt > sizeof(buf))
416 		cnt = sizeof(buf);
417 
418 	val = *entry;
419 
420 	len = snprintf(buf, sizeof(buf), "%llu\n", val);
421 
422 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
423 }
424 
425 /**
426  * hwlat_width_write - Write function for "width" entry
427  * @filp: The active open file structure
428  * @ubuf: The user buffer that contains the value to write
429  * @cnt: The maximum number of bytes to write to "file"
430  * @ppos: The current position in @file
431  *
432  * This function provides a write implementation for the "width" interface
433  * to the hardware latency detector. It can be used to configure
434  * for how many us of the total window us we will actively sample for any
435  * hardware-induced latency periods. Obviously, it is not possible to
436  * sample constantly and have the system respond to a sample reader, or,
437  * worse, without having the system appear to have gone out to lunch. It
438  * is enforced that width is less that the total window size.
439  */
440 static ssize_t
441 hwlat_width_write(struct file *filp, const char __user *ubuf,
442 		  size_t cnt, loff_t *ppos)
443 {
444 	u64 val;
445 	int err;
446 
447 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
448 	if (err)
449 		return err;
450 
451 	mutex_lock(&hwlat_data.lock);
452 	if (val < hwlat_data.sample_window)
453 		hwlat_data.sample_width = val;
454 	else
455 		err = -EINVAL;
456 	mutex_unlock(&hwlat_data.lock);
457 
458 	if (err)
459 		return err;
460 
461 	return cnt;
462 }
463 
464 /**
465  * hwlat_window_write - Write function for "window" entry
466  * @filp: The active open file structure
467  * @ubuf: The user buffer that contains the value to write
468  * @cnt: The maximum number of bytes to write to "file"
469  * @ppos: The current position in @file
470  *
471  * This function provides a write implementation for the "window" interface
472  * to the hardware latency detetector. The window is the total time
473  * in us that will be considered one sample period. Conceptually, windows
474  * occur back-to-back and contain a sample width period during which
475  * actual sampling occurs. Can be used to write a new total window size. It
476  * is enfoced that any value written must be greater than the sample width
477  * size, or an error results.
478  */
479 static ssize_t
480 hwlat_window_write(struct file *filp, const char __user *ubuf,
481 		   size_t cnt, loff_t *ppos)
482 {
483 	u64 val;
484 	int err;
485 
486 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
487 	if (err)
488 		return err;
489 
490 	mutex_lock(&hwlat_data.lock);
491 	if (hwlat_data.sample_width < val)
492 		hwlat_data.sample_window = val;
493 	else
494 		err = -EINVAL;
495 	mutex_unlock(&hwlat_data.lock);
496 
497 	if (err)
498 		return err;
499 
500 	return cnt;
501 }
502 
503 static const struct file_operations width_fops = {
504 	.open		= tracing_open_generic,
505 	.read		= hwlat_read,
506 	.write		= hwlat_width_write,
507 };
508 
509 static const struct file_operations window_fops = {
510 	.open		= tracing_open_generic,
511 	.read		= hwlat_read,
512 	.write		= hwlat_window_write,
513 };
514 
515 /**
516  * init_tracefs - A function to initialize the tracefs interface files
517  *
518  * This function creates entries in tracefs for "hwlat_detector".
519  * It creates the hwlat_detector directory in the tracing directory,
520  * and within that directory is the count, width and window files to
521  * change and view those values.
522  */
523 static int init_tracefs(void)
524 {
525 	struct dentry *d_tracer;
526 	struct dentry *top_dir;
527 
528 	d_tracer = tracing_init_dentry();
529 	if (IS_ERR(d_tracer))
530 		return -ENOMEM;
531 
532 	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
533 	if (!top_dir)
534 		return -ENOMEM;
535 
536 	hwlat_sample_window = tracefs_create_file("window", 0640,
537 						  top_dir,
538 						  &hwlat_data.sample_window,
539 						  &window_fops);
540 	if (!hwlat_sample_window)
541 		goto err;
542 
543 	hwlat_sample_width = tracefs_create_file("width", 0644,
544 						 top_dir,
545 						 &hwlat_data.sample_width,
546 						 &width_fops);
547 	if (!hwlat_sample_width)
548 		goto err;
549 
550 	return 0;
551 
552  err:
553 	tracefs_remove_recursive(top_dir);
554 	return -ENOMEM;
555 }
556 
557 static void hwlat_tracer_start(struct trace_array *tr)
558 {
559 	int err;
560 
561 	err = start_kthread(tr);
562 	if (err)
563 		pr_err(BANNER "Cannot start hwlat kthread\n");
564 }
565 
566 static void hwlat_tracer_stop(struct trace_array *tr)
567 {
568 	stop_kthread();
569 }
570 
571 static bool hwlat_busy;
572 
573 static int hwlat_tracer_init(struct trace_array *tr)
574 {
575 	/* Only allow one instance to enable this */
576 	if (hwlat_busy)
577 		return -EBUSY;
578 
579 	hwlat_trace = tr;
580 
581 	disable_migrate = false;
582 	hwlat_data.count = 0;
583 	tr->max_latency = 0;
584 	save_tracing_thresh = tracing_thresh;
585 
586 	/* tracing_thresh is in nsecs, we speak in usecs */
587 	if (!tracing_thresh)
588 		tracing_thresh = last_tracing_thresh;
589 
590 	if (tracer_tracing_is_on(tr))
591 		hwlat_tracer_start(tr);
592 
593 	hwlat_busy = true;
594 
595 	return 0;
596 }
597 
598 static void hwlat_tracer_reset(struct trace_array *tr)
599 {
600 	stop_kthread();
601 
602 	/* the tracing threshold is static between runs */
603 	last_tracing_thresh = tracing_thresh;
604 
605 	tracing_thresh = save_tracing_thresh;
606 	hwlat_busy = false;
607 }
608 
609 static struct tracer hwlat_tracer __read_mostly =
610 {
611 	.name		= "hwlat",
612 	.init		= hwlat_tracer_init,
613 	.reset		= hwlat_tracer_reset,
614 	.start		= hwlat_tracer_start,
615 	.stop		= hwlat_tracer_stop,
616 	.allow_instances = true,
617 };
618 
619 __init static int init_hwlat_tracer(void)
620 {
621 	int ret;
622 
623 	mutex_init(&hwlat_data.lock);
624 
625 	ret = register_tracer(&hwlat_tracer);
626 	if (ret)
627 		return ret;
628 
629 	init_tracefs();
630 
631 	return 0;
632 }
633 late_initcall(init_hwlat_tracer);
634