xref: /linux/kernel/trace/trace_hwlat.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_hwlat.c - A simple Hardware Latency detector.
4  *
5  * Use this tracer to detect large system latencies induced by the behavior of
6  * certain underlying system hardware or firmware, independent of Linux itself.
7  * The code was developed originally to detect the presence of SMIs on Intel
8  * and AMD systems, although there is no dependency upon x86 herein.
9  *
10  * The classical example usage of this tracer is in detecting the presence of
11  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
12  * somewhat special form of hardware interrupt spawned from earlier CPU debug
13  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
14  * LPC (or other device) to generate a special interrupt under certain
15  * circumstances, for example, upon expiration of a special SMI timer device,
16  * due to certain external thermal readings, on certain I/O address accesses,
17  * and other situations. An SMI hits a special CPU pin, triggers a special
18  * SMI mode (complete with special memory map), and the OS is unaware.
19  *
20  * Although certain hardware-inducing latencies are necessary (for example,
21  * a modern system often requires an SMI handler for correct thermal control
22  * and remote management) they can wreak havoc upon any OS-level performance
23  * guarantees toward low-latency, especially when the OS is not even made
24  * aware of the presence of these interrupts. For this reason, we need a
25  * somewhat brute force mechanism to detect these interrupts. In this case,
26  * we do it by hogging all of the CPU(s) for configurable timer intervals,
27  * sampling the built-in CPU timer, looking for discontiguous readings.
28  *
29  * WARNING: This implementation necessarily introduces latencies. Therefore,
30  *          you should NEVER use this tracer while running in a production
31  *          environment requiring any kind of low-latency performance
32  *          guarantee(s).
33  *
34  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
35  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
36  *
37  * Includes useful feedback from Clark Williams <williams@redhat.com>
38  *
39  */
40 #include <linux/kthread.h>
41 #include <linux/tracefs.h>
42 #include <linux/uaccess.h>
43 #include <linux/cpumask.h>
44 #include <linux/delay.h>
45 #include <linux/sched/clock.h>
46 #include "trace.h"
47 
48 static struct trace_array	*hwlat_trace;
49 
50 #define U64STR_SIZE		22			/* 20 digits max */
51 
52 #define BANNER			"hwlat_detector: "
53 #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
54 #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
55 #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
56 
57 static struct dentry *hwlat_sample_width;	/* sample width us */
58 static struct dentry *hwlat_sample_window;	/* sample window us */
59 static struct dentry *hwlat_thread_mode;	/* hwlat thread mode */
60 
61 enum {
62 	MODE_NONE = 0,
63 	MODE_ROUND_ROBIN,
64 	MODE_PER_CPU,
65 	MODE_MAX
66 };
67 static char *thread_mode_str[] = { "none", "round-robin", "per-cpu" };
68 
69 /* Save the previous tracing_thresh value */
70 static unsigned long save_tracing_thresh;
71 
72 /* runtime kthread data */
73 struct hwlat_kthread_data {
74 	struct task_struct	*kthread;
75 	/* NMI timestamp counters */
76 	u64			nmi_ts_start;
77 	u64			nmi_total_ts;
78 	int			nmi_count;
79 	int			nmi_cpu;
80 };
81 
82 static struct hwlat_kthread_data hwlat_single_cpu_data;
83 static DEFINE_PER_CPU(struct hwlat_kthread_data, hwlat_per_cpu_data);
84 
85 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
86 bool trace_hwlat_callback_enabled;
87 
88 /* If the user changed threshold, remember it */
89 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
90 
91 /* Individual latency samples are stored here when detected. */
92 struct hwlat_sample {
93 	u64			seqnum;		/* unique sequence */
94 	u64			duration;	/* delta */
95 	u64			outer_duration;	/* delta (outer loop) */
96 	u64			nmi_total_ts;	/* Total time spent in NMIs */
97 	struct timespec64	timestamp;	/* wall time */
98 	int			nmi_count;	/* # NMIs during this sample */
99 	int			count;		/* # of iterations over thresh */
100 };
101 
102 /* keep the global state somewhere. */
103 static struct hwlat_data {
104 
105 	struct mutex lock;		/* protect changes */
106 
107 	u64	count;			/* total since reset */
108 
109 	u64	sample_window;		/* total sampling window (on+off) */
110 	u64	sample_width;		/* active sampling portion of window */
111 
112 	int	thread_mode;		/* thread mode */
113 
114 } hwlat_data = {
115 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
116 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
117 	.thread_mode		= MODE_ROUND_ROBIN
118 };
119 
120 static struct hwlat_kthread_data *get_cpu_data(void)
121 {
122 	if (hwlat_data.thread_mode == MODE_PER_CPU)
123 		return this_cpu_ptr(&hwlat_per_cpu_data);
124 	else
125 		return &hwlat_single_cpu_data;
126 }
127 
128 static bool hwlat_busy;
129 
130 static void trace_hwlat_sample(struct hwlat_sample *sample)
131 {
132 	struct trace_array *tr = hwlat_trace;
133 	struct trace_buffer *buffer = tr->array_buffer.buffer;
134 	struct ring_buffer_event *event;
135 	struct hwlat_entry *entry;
136 
137 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
138 					  tracing_gen_ctx());
139 	if (!event)
140 		return;
141 	entry	= ring_buffer_event_data(event);
142 	entry->seqnum			= sample->seqnum;
143 	entry->duration			= sample->duration;
144 	entry->outer_duration		= sample->outer_duration;
145 	entry->timestamp		= sample->timestamp;
146 	entry->nmi_total_ts		= sample->nmi_total_ts;
147 	entry->nmi_count		= sample->nmi_count;
148 	entry->count			= sample->count;
149 
150 	trace_buffer_unlock_commit_nostack(buffer, event);
151 }
152 
153 /* Macros to encapsulate the time capturing infrastructure */
154 #define time_type	u64
155 #define time_get()	trace_clock_local()
156 #define time_to_us(x)	div_u64(x, 1000)
157 #define time_sub(a, b)	((a) - (b))
158 #define init_time(a, b)	(a = b)
159 #define time_u64(a)	a
160 
161 void trace_hwlat_callback(bool enter)
162 {
163 	struct hwlat_kthread_data *kdata = get_cpu_data();
164 
165 	if (!kdata->kthread)
166 		return;
167 
168 	/*
169 	 * Currently trace_clock_local() calls sched_clock() and the
170 	 * generic version is not NMI safe.
171 	 */
172 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
173 		if (enter)
174 			kdata->nmi_ts_start = time_get();
175 		else
176 			kdata->nmi_total_ts += time_get() - kdata->nmi_ts_start;
177 	}
178 
179 	if (enter)
180 		kdata->nmi_count++;
181 }
182 
183 /*
184  * hwlat_err - report a hwlat error.
185  */
186 #define hwlat_err(msg) ({							\
187 	struct trace_array *tr = hwlat_trace;					\
188 										\
189 	trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg);	\
190 })
191 
192 /**
193  * get_sample - sample the CPU TSC and look for likely hardware latencies
194  *
195  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
196  * hardware-induced latency. Called with interrupts disabled and with
197  * hwlat_data.lock held.
198  */
199 static int get_sample(void)
200 {
201 	struct hwlat_kthread_data *kdata = get_cpu_data();
202 	struct trace_array *tr = hwlat_trace;
203 	struct hwlat_sample s;
204 	time_type start, t1, t2, last_t2;
205 	s64 diff, outer_diff, total, last_total = 0;
206 	u64 sample = 0;
207 	u64 thresh = tracing_thresh;
208 	u64 outer_sample = 0;
209 	int ret = -1;
210 	unsigned int count = 0;
211 
212 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
213 
214 	kdata->nmi_total_ts = 0;
215 	kdata->nmi_count = 0;
216 	/* Make sure NMIs see this first */
217 	barrier();
218 
219 	trace_hwlat_callback_enabled = true;
220 
221 	init_time(last_t2, 0);
222 	start = time_get(); /* start timestamp */
223 	outer_diff = 0;
224 
225 	do {
226 
227 		t1 = time_get();	/* we'll look for a discontinuity */
228 		t2 = time_get();
229 
230 		if (time_u64(last_t2)) {
231 			/* Check the delta from outer loop (t2 to next t1) */
232 			outer_diff = time_to_us(time_sub(t1, last_t2));
233 			/* This shouldn't happen */
234 			if (outer_diff < 0) {
235 				hwlat_err(BANNER "time running backwards\n");
236 				goto out;
237 			}
238 			if (outer_diff > outer_sample)
239 				outer_sample = outer_diff;
240 		}
241 		last_t2 = t2;
242 
243 		total = time_to_us(time_sub(t2, start)); /* sample width */
244 
245 		/* Check for possible overflows */
246 		if (total < last_total) {
247 			hwlat_err("Time total overflowed\n");
248 			break;
249 		}
250 		last_total = total;
251 
252 		/* This checks the inner loop (t1 to t2) */
253 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
254 
255 		if (diff > thresh || outer_diff > thresh) {
256 			if (!count)
257 				ktime_get_real_ts64(&s.timestamp);
258 			count++;
259 		}
260 
261 		/* This shouldn't happen */
262 		if (diff < 0) {
263 			hwlat_err(BANNER "time running backwards\n");
264 			goto out;
265 		}
266 
267 		if (diff > sample)
268 			sample = diff; /* only want highest value */
269 
270 	} while (total <= hwlat_data.sample_width);
271 
272 	barrier(); /* finish the above in the view for NMIs */
273 	trace_hwlat_callback_enabled = false;
274 	barrier(); /* Make sure nmi_total_ts is no longer updated */
275 
276 	ret = 0;
277 
278 	/* If we exceed the threshold value, we have found a hardware latency */
279 	if (sample > thresh || outer_sample > thresh) {
280 		u64 latency;
281 
282 		ret = 1;
283 
284 		/* We read in microseconds */
285 		if (kdata->nmi_total_ts)
286 			do_div(kdata->nmi_total_ts, NSEC_PER_USEC);
287 
288 		hwlat_data.count++;
289 		s.seqnum = hwlat_data.count;
290 		s.duration = sample;
291 		s.outer_duration = outer_sample;
292 		s.nmi_total_ts = kdata->nmi_total_ts;
293 		s.nmi_count = kdata->nmi_count;
294 		s.count = count;
295 		trace_hwlat_sample(&s);
296 
297 		latency = max(sample, outer_sample);
298 
299 		/* Keep a running maximum ever recorded hardware latency */
300 		if (latency > tr->max_latency) {
301 			tr->max_latency = latency;
302 			latency_fsnotify(tr);
303 		}
304 	}
305 
306 out:
307 	return ret;
308 }
309 
310 static struct cpumask save_cpumask;
311 
312 static void move_to_next_cpu(void)
313 {
314 	struct cpumask *current_mask = &save_cpumask;
315 	struct trace_array *tr = hwlat_trace;
316 	int next_cpu;
317 
318 	/*
319 	 * If for some reason the user modifies the CPU affinity
320 	 * of this thread, then stop migrating for the duration
321 	 * of the current test.
322 	 */
323 	if (!cpumask_equal(current_mask, current->cpus_ptr))
324 		goto change_mode;
325 
326 	cpus_read_lock();
327 	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
328 	next_cpu = cpumask_next(raw_smp_processor_id(), current_mask);
329 	cpus_read_unlock();
330 
331 	if (next_cpu >= nr_cpu_ids)
332 		next_cpu = cpumask_first(current_mask);
333 
334 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
335 		goto change_mode;
336 
337 	cpumask_clear(current_mask);
338 	cpumask_set_cpu(next_cpu, current_mask);
339 
340 	set_cpus_allowed_ptr(current, current_mask);
341 	return;
342 
343  change_mode:
344 	hwlat_data.thread_mode = MODE_NONE;
345 	pr_info(BANNER "cpumask changed while in round-robin mode, switching to mode none\n");
346 }
347 
348 /*
349  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
350  *
351  * Used to periodically sample the CPU TSC via a call to get_sample. We
352  * disable interrupts, which does (intentionally) introduce latency since we
353  * need to ensure nothing else might be running (and thus preempting).
354  * Obviously this should never be used in production environments.
355  *
356  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
357  */
358 static int kthread_fn(void *data)
359 {
360 	u64 interval;
361 
362 	while (!kthread_should_stop()) {
363 
364 		if (hwlat_data.thread_mode == MODE_ROUND_ROBIN)
365 			move_to_next_cpu();
366 
367 		local_irq_disable();
368 		get_sample();
369 		local_irq_enable();
370 
371 		mutex_lock(&hwlat_data.lock);
372 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
373 		mutex_unlock(&hwlat_data.lock);
374 
375 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
376 
377 		/* Always sleep for at least 1ms */
378 		if (interval < 1)
379 			interval = 1;
380 
381 		if (msleep_interruptible(interval))
382 			break;
383 	}
384 
385 	return 0;
386 }
387 
388 /*
389  * stop_stop_kthread - Inform the hardware latency sampling/detector kthread to stop
390  *
391  * This kicks the running hardware latency sampling/detector kernel thread and
392  * tells it to stop sampling now. Use this on unload and at system shutdown.
393  */
394 static void stop_single_kthread(void)
395 {
396 	struct hwlat_kthread_data *kdata = get_cpu_data();
397 	struct task_struct *kthread;
398 
399 	cpus_read_lock();
400 	kthread = kdata->kthread;
401 
402 	if (!kthread)
403 		goto out_put_cpus;
404 
405 	kthread_stop(kthread);
406 	kdata->kthread = NULL;
407 
408 out_put_cpus:
409 	cpus_read_unlock();
410 }
411 
412 
413 /*
414  * start_single_kthread - Kick off the hardware latency sampling/detector kthread
415  *
416  * This starts the kernel thread that will sit and sample the CPU timestamp
417  * counter (TSC or similar) and look for potential hardware latencies.
418  */
419 static int start_single_kthread(struct trace_array *tr)
420 {
421 	struct hwlat_kthread_data *kdata = get_cpu_data();
422 	struct cpumask *current_mask = &save_cpumask;
423 	struct task_struct *kthread;
424 	int next_cpu;
425 
426 	cpus_read_lock();
427 	if (kdata->kthread)
428 		goto out_put_cpus;
429 
430 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
431 	if (IS_ERR(kthread)) {
432 		pr_err(BANNER "could not start sampling thread\n");
433 		cpus_read_unlock();
434 		return -ENOMEM;
435 	}
436 
437 	/* Just pick the first CPU on first iteration */
438 	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
439 
440 	if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) {
441 		next_cpu = cpumask_first(current_mask);
442 		cpumask_clear(current_mask);
443 		cpumask_set_cpu(next_cpu, current_mask);
444 
445 	}
446 
447 	set_cpus_allowed_ptr(kthread, current_mask);
448 
449 	kdata->kthread = kthread;
450 	wake_up_process(kthread);
451 
452 out_put_cpus:
453 	cpus_read_unlock();
454 	return 0;
455 }
456 
457 /*
458  * stop_cpu_kthread - Stop a hwlat cpu kthread
459  */
460 static void stop_cpu_kthread(unsigned int cpu)
461 {
462 	struct task_struct *kthread;
463 
464 	kthread = per_cpu(hwlat_per_cpu_data, cpu).kthread;
465 	if (kthread)
466 		kthread_stop(kthread);
467 	per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL;
468 }
469 
470 /*
471  * stop_per_cpu_kthreads - Inform the hardware latency sampling/detector kthread to stop
472  *
473  * This kicks the running hardware latency sampling/detector kernel threads and
474  * tells it to stop sampling now. Use this on unload and at system shutdown.
475  */
476 static void stop_per_cpu_kthreads(void)
477 {
478 	unsigned int cpu;
479 
480 	cpus_read_lock();
481 	for_each_online_cpu(cpu)
482 		stop_cpu_kthread(cpu);
483 	cpus_read_unlock();
484 }
485 
486 /*
487  * start_cpu_kthread - Start a hwlat cpu kthread
488  */
489 static int start_cpu_kthread(unsigned int cpu)
490 {
491 	struct task_struct *kthread;
492 
493 	/* Do not start a new hwlatd thread if it is already running */
494 	if (per_cpu(hwlat_per_cpu_data, cpu).kthread)
495 		return 0;
496 
497 	kthread = kthread_run_on_cpu(kthread_fn, NULL, cpu, "hwlatd/%u");
498 	if (IS_ERR(kthread)) {
499 		pr_err(BANNER "could not start sampling thread\n");
500 		return -ENOMEM;
501 	}
502 
503 	per_cpu(hwlat_per_cpu_data, cpu).kthread = kthread;
504 
505 	return 0;
506 }
507 
508 #ifdef CONFIG_HOTPLUG_CPU
509 static void hwlat_hotplug_workfn(struct work_struct *dummy)
510 {
511 	struct trace_array *tr = hwlat_trace;
512 	unsigned int cpu = smp_processor_id();
513 
514 	mutex_lock(&trace_types_lock);
515 	mutex_lock(&hwlat_data.lock);
516 	cpus_read_lock();
517 
518 	if (!hwlat_busy || hwlat_data.thread_mode != MODE_PER_CPU)
519 		goto out_unlock;
520 
521 	if (!cpu_online(cpu))
522 		goto out_unlock;
523 	if (!cpumask_test_cpu(cpu, tr->tracing_cpumask))
524 		goto out_unlock;
525 
526 	start_cpu_kthread(cpu);
527 
528 out_unlock:
529 	cpus_read_unlock();
530 	mutex_unlock(&hwlat_data.lock);
531 	mutex_unlock(&trace_types_lock);
532 }
533 
534 static DECLARE_WORK(hwlat_hotplug_work, hwlat_hotplug_workfn);
535 
536 /*
537  * hwlat_cpu_init - CPU hotplug online callback function
538  */
539 static int hwlat_cpu_init(unsigned int cpu)
540 {
541 	schedule_work_on(cpu, &hwlat_hotplug_work);
542 	return 0;
543 }
544 
545 /*
546  * hwlat_cpu_die - CPU hotplug offline callback function
547  */
548 static int hwlat_cpu_die(unsigned int cpu)
549 {
550 	stop_cpu_kthread(cpu);
551 	return 0;
552 }
553 
554 static void hwlat_init_hotplug_support(void)
555 {
556 	int ret;
557 
558 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/hwlat:online",
559 				hwlat_cpu_init, hwlat_cpu_die);
560 	if (ret < 0)
561 		pr_warn(BANNER "Error to init cpu hotplug support\n");
562 
563 	return;
564 }
565 #else /* CONFIG_HOTPLUG_CPU */
566 static void hwlat_init_hotplug_support(void)
567 {
568 	return;
569 }
570 #endif /* CONFIG_HOTPLUG_CPU */
571 
572 /*
573  * start_per_cpu_kthreads - Kick off the hardware latency sampling/detector kthreads
574  *
575  * This starts the kernel threads that will sit on potentially all cpus and
576  * sample the CPU timestamp counter (TSC or similar) and look for potential
577  * hardware latencies.
578  */
579 static int start_per_cpu_kthreads(struct trace_array *tr)
580 {
581 	struct cpumask *current_mask = &save_cpumask;
582 	unsigned int cpu;
583 	int retval;
584 
585 	cpus_read_lock();
586 	/*
587 	 * Run only on CPUs in which hwlat is allowed to run.
588 	 */
589 	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
590 
591 	for_each_cpu(cpu, current_mask) {
592 		retval = start_cpu_kthread(cpu);
593 		if (retval)
594 			goto out_error;
595 	}
596 	cpus_read_unlock();
597 
598 	return 0;
599 
600 out_error:
601 	cpus_read_unlock();
602 	stop_per_cpu_kthreads();
603 	return retval;
604 }
605 
606 static void *s_mode_start(struct seq_file *s, loff_t *pos)
607 {
608 	int mode = *pos;
609 
610 	mutex_lock(&hwlat_data.lock);
611 
612 	if (mode >= MODE_MAX)
613 		return NULL;
614 
615 	return pos;
616 }
617 
618 static void *s_mode_next(struct seq_file *s, void *v, loff_t *pos)
619 {
620 	int mode = ++(*pos);
621 
622 	if (mode >= MODE_MAX)
623 		return NULL;
624 
625 	return pos;
626 }
627 
628 static int s_mode_show(struct seq_file *s, void *v)
629 {
630 	loff_t *pos = v;
631 	int mode = *pos;
632 
633 	if (mode == hwlat_data.thread_mode)
634 		seq_printf(s, "[%s]", thread_mode_str[mode]);
635 	else
636 		seq_printf(s, "%s", thread_mode_str[mode]);
637 
638 	if (mode < MODE_MAX - 1) /* if mode is any but last */
639 		seq_puts(s, " ");
640 
641 	return 0;
642 }
643 
644 static void s_mode_stop(struct seq_file *s, void *v)
645 {
646 	seq_puts(s, "\n");
647 	mutex_unlock(&hwlat_data.lock);
648 }
649 
650 static const struct seq_operations thread_mode_seq_ops = {
651 	.start		= s_mode_start,
652 	.next		= s_mode_next,
653 	.show		= s_mode_show,
654 	.stop		= s_mode_stop
655 };
656 
657 static int hwlat_mode_open(struct inode *inode, struct file *file)
658 {
659 	return seq_open(file, &thread_mode_seq_ops);
660 };
661 
662 static void hwlat_tracer_start(struct trace_array *tr);
663 static void hwlat_tracer_stop(struct trace_array *tr);
664 
665 /**
666  * hwlat_mode_write - Write function for "mode" entry
667  * @filp: The active open file structure
668  * @ubuf: The user buffer that contains the value to write
669  * @cnt: The maximum number of bytes to write to "file"
670  * @ppos: The current position in @file
671  *
672  * This function provides a write implementation for the "mode" interface
673  * to the hardware latency detector. hwlatd has different operation modes.
674  * The "none" sets the allowed cpumask for a single hwlatd thread at the
675  * startup and lets the scheduler handle the migration. The default mode is
676  * the "round-robin" one, in which a single hwlatd thread runs, migrating
677  * among the allowed CPUs in a round-robin fashion. The "per-cpu" mode
678  * creates one hwlatd thread per allowed CPU.
679  */
680 static ssize_t hwlat_mode_write(struct file *filp, const char __user *ubuf,
681 				 size_t cnt, loff_t *ppos)
682 {
683 	struct trace_array *tr = hwlat_trace;
684 	const char *mode;
685 	char buf[64];
686 	int ret, i;
687 
688 	if (cnt >= sizeof(buf))
689 		return -EINVAL;
690 
691 	if (copy_from_user(buf, ubuf, cnt))
692 		return -EFAULT;
693 
694 	buf[cnt] = 0;
695 
696 	mode = strstrip(buf);
697 
698 	ret = -EINVAL;
699 
700 	/*
701 	 * trace_types_lock is taken to avoid concurrency on start/stop
702 	 * and hwlat_busy.
703 	 */
704 	mutex_lock(&trace_types_lock);
705 	if (hwlat_busy)
706 		hwlat_tracer_stop(tr);
707 
708 	mutex_lock(&hwlat_data.lock);
709 
710 	for (i = 0; i < MODE_MAX; i++) {
711 		if (strcmp(mode, thread_mode_str[i]) == 0) {
712 			hwlat_data.thread_mode = i;
713 			ret = cnt;
714 		}
715 	}
716 
717 	mutex_unlock(&hwlat_data.lock);
718 
719 	if (hwlat_busy)
720 		hwlat_tracer_start(tr);
721 	mutex_unlock(&trace_types_lock);
722 
723 	*ppos += cnt;
724 
725 
726 
727 	return ret;
728 }
729 
730 /*
731  * The width parameter is read/write using the generic trace_min_max_param
732  * method. The *val is protected by the hwlat_data lock and is upper
733  * bounded by the window parameter.
734  */
735 static struct trace_min_max_param hwlat_width = {
736 	.lock		= &hwlat_data.lock,
737 	.val		= &hwlat_data.sample_width,
738 	.max		= &hwlat_data.sample_window,
739 	.min		= NULL,
740 };
741 
742 /*
743  * The window parameter is read/write using the generic trace_min_max_param
744  * method. The *val is protected by the hwlat_data lock and is lower
745  * bounded by the width parameter.
746  */
747 static struct trace_min_max_param hwlat_window = {
748 	.lock		= &hwlat_data.lock,
749 	.val		= &hwlat_data.sample_window,
750 	.max		= NULL,
751 	.min		= &hwlat_data.sample_width,
752 };
753 
754 static const struct file_operations thread_mode_fops = {
755 	.open		= hwlat_mode_open,
756 	.read		= seq_read,
757 	.llseek		= seq_lseek,
758 	.release	= seq_release,
759 	.write		= hwlat_mode_write
760 };
761 /**
762  * init_tracefs - A function to initialize the tracefs interface files
763  *
764  * This function creates entries in tracefs for "hwlat_detector".
765  * It creates the hwlat_detector directory in the tracing directory,
766  * and within that directory is the count, width and window files to
767  * change and view those values.
768  */
769 static int init_tracefs(void)
770 {
771 	int ret;
772 	struct dentry *top_dir;
773 
774 	ret = tracing_init_dentry();
775 	if (ret)
776 		return -ENOMEM;
777 
778 	top_dir = tracefs_create_dir("hwlat_detector", NULL);
779 	if (!top_dir)
780 		return -ENOMEM;
781 
782 	hwlat_sample_window = tracefs_create_file("window", TRACE_MODE_WRITE,
783 						  top_dir,
784 						  &hwlat_window,
785 						  &trace_min_max_fops);
786 	if (!hwlat_sample_window)
787 		goto err;
788 
789 	hwlat_sample_width = tracefs_create_file("width", TRACE_MODE_WRITE,
790 						 top_dir,
791 						 &hwlat_width,
792 						 &trace_min_max_fops);
793 	if (!hwlat_sample_width)
794 		goto err;
795 
796 	hwlat_thread_mode = trace_create_file("mode", TRACE_MODE_WRITE,
797 					      top_dir,
798 					      NULL,
799 					      &thread_mode_fops);
800 	if (!hwlat_thread_mode)
801 		goto err;
802 
803 	return 0;
804 
805  err:
806 	tracefs_remove(top_dir);
807 	return -ENOMEM;
808 }
809 
810 static void hwlat_tracer_start(struct trace_array *tr)
811 {
812 	int err;
813 
814 	if (hwlat_data.thread_mode == MODE_PER_CPU)
815 		err = start_per_cpu_kthreads(tr);
816 	else
817 		err = start_single_kthread(tr);
818 	if (err)
819 		pr_err(BANNER "Cannot start hwlat kthread\n");
820 }
821 
822 static void hwlat_tracer_stop(struct trace_array *tr)
823 {
824 	if (hwlat_data.thread_mode == MODE_PER_CPU)
825 		stop_per_cpu_kthreads();
826 	else
827 		stop_single_kthread();
828 }
829 
830 static int hwlat_tracer_init(struct trace_array *tr)
831 {
832 	/* Only allow one instance to enable this */
833 	if (hwlat_busy)
834 		return -EBUSY;
835 
836 	hwlat_trace = tr;
837 
838 	hwlat_data.count = 0;
839 	tr->max_latency = 0;
840 	save_tracing_thresh = tracing_thresh;
841 
842 	/* tracing_thresh is in nsecs, we speak in usecs */
843 	if (!tracing_thresh)
844 		tracing_thresh = last_tracing_thresh;
845 
846 	if (tracer_tracing_is_on(tr))
847 		hwlat_tracer_start(tr);
848 
849 	hwlat_busy = true;
850 
851 	return 0;
852 }
853 
854 static void hwlat_tracer_reset(struct trace_array *tr)
855 {
856 	hwlat_tracer_stop(tr);
857 
858 	/* the tracing threshold is static between runs */
859 	last_tracing_thresh = tracing_thresh;
860 
861 	tracing_thresh = save_tracing_thresh;
862 	hwlat_busy = false;
863 }
864 
865 static struct tracer hwlat_tracer __read_mostly =
866 {
867 	.name		= "hwlat",
868 	.init		= hwlat_tracer_init,
869 	.reset		= hwlat_tracer_reset,
870 	.start		= hwlat_tracer_start,
871 	.stop		= hwlat_tracer_stop,
872 	.allow_instances = true,
873 };
874 
875 __init static int init_hwlat_tracer(void)
876 {
877 	int ret;
878 
879 	mutex_init(&hwlat_data.lock);
880 
881 	ret = register_tracer(&hwlat_tracer);
882 	if (ret)
883 		return ret;
884 
885 	hwlat_init_hotplug_support();
886 
887 	init_tracefs();
888 
889 	return 0;
890 }
891 late_initcall(init_hwlat_tracer);
892