xref: /linux/kernel/trace/trace_hwlat.c (revision 312b62b6610cabea4cb535fd4889c41e9a84afca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_hwlat.c - A simple Hardware Latency detector.
4  *
5  * Use this tracer to detect large system latencies induced by the behavior of
6  * certain underlying system hardware or firmware, independent of Linux itself.
7  * The code was developed originally to detect the presence of SMIs on Intel
8  * and AMD systems, although there is no dependency upon x86 herein.
9  *
10  * The classical example usage of this tracer is in detecting the presence of
11  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
12  * somewhat special form of hardware interrupt spawned from earlier CPU debug
13  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
14  * LPC (or other device) to generate a special interrupt under certain
15  * circumstances, for example, upon expiration of a special SMI timer device,
16  * due to certain external thermal readings, on certain I/O address accesses,
17  * and other situations. An SMI hits a special CPU pin, triggers a special
18  * SMI mode (complete with special memory map), and the OS is unaware.
19  *
20  * Although certain hardware-inducing latencies are necessary (for example,
21  * a modern system often requires an SMI handler for correct thermal control
22  * and remote management) they can wreak havoc upon any OS-level performance
23  * guarantees toward low-latency, especially when the OS is not even made
24  * aware of the presence of these interrupts. For this reason, we need a
25  * somewhat brute force mechanism to detect these interrupts. In this case,
26  * we do it by hogging all of the CPU(s) for configurable timer intervals,
27  * sampling the built-in CPU timer, looking for discontiguous readings.
28  *
29  * WARNING: This implementation necessarily introduces latencies. Therefore,
30  *          you should NEVER use this tracer while running in a production
31  *          environment requiring any kind of low-latency performance
32  *          guarantee(s).
33  *
34  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
35  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
36  *
37  * Includes useful feedback from Clark Williams <clark@redhat.com>
38  *
39  */
40 #include <linux/kthread.h>
41 #include <linux/tracefs.h>
42 #include <linux/uaccess.h>
43 #include <linux/cpumask.h>
44 #include <linux/delay.h>
45 #include <linux/sched/clock.h>
46 #include "trace.h"
47 
48 static struct trace_array	*hwlat_trace;
49 
50 #define U64STR_SIZE		22			/* 20 digits max */
51 
52 #define BANNER			"hwlat_detector: "
53 #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
54 #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
55 #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
56 
57 /* sampling thread*/
58 static struct task_struct *hwlat_kthread;
59 
60 static struct dentry *hwlat_sample_width;	/* sample width us */
61 static struct dentry *hwlat_sample_window;	/* sample window us */
62 
63 /* Save the previous tracing_thresh value */
64 static unsigned long save_tracing_thresh;
65 
66 /* NMI timestamp counters */
67 static u64 nmi_ts_start;
68 static u64 nmi_total_ts;
69 static int nmi_count;
70 static int nmi_cpu;
71 
72 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
73 bool trace_hwlat_callback_enabled;
74 
75 /* If the user changed threshold, remember it */
76 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
77 
78 /* Individual latency samples are stored here when detected. */
79 struct hwlat_sample {
80 	u64			seqnum;		/* unique sequence */
81 	u64			duration;	/* delta */
82 	u64			outer_duration;	/* delta (outer loop) */
83 	u64			nmi_total_ts;	/* Total time spent in NMIs */
84 	struct timespec64	timestamp;	/* wall time */
85 	int			nmi_count;	/* # NMIs during this sample */
86 	int			count;		/* # of iteratons over threash */
87 };
88 
89 /* keep the global state somewhere. */
90 static struct hwlat_data {
91 
92 	struct mutex lock;		/* protect changes */
93 
94 	u64	count;			/* total since reset */
95 
96 	u64	sample_window;		/* total sampling window (on+off) */
97 	u64	sample_width;		/* active sampling portion of window */
98 
99 } hwlat_data = {
100 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
101 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
102 };
103 
104 static void trace_hwlat_sample(struct hwlat_sample *sample)
105 {
106 	struct trace_array *tr = hwlat_trace;
107 	struct trace_event_call *call = &event_hwlat;
108 	struct trace_buffer *buffer = tr->array_buffer.buffer;
109 	struct ring_buffer_event *event;
110 	struct hwlat_entry *entry;
111 	unsigned long flags;
112 	int pc;
113 
114 	pc = preempt_count();
115 	local_save_flags(flags);
116 
117 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
118 					  flags, pc);
119 	if (!event)
120 		return;
121 	entry	= ring_buffer_event_data(event);
122 	entry->seqnum			= sample->seqnum;
123 	entry->duration			= sample->duration;
124 	entry->outer_duration		= sample->outer_duration;
125 	entry->timestamp		= sample->timestamp;
126 	entry->nmi_total_ts		= sample->nmi_total_ts;
127 	entry->nmi_count		= sample->nmi_count;
128 	entry->count			= sample->count;
129 
130 	if (!call_filter_check_discard(call, entry, buffer, event))
131 		trace_buffer_unlock_commit_nostack(buffer, event);
132 }
133 
134 /* Macros to encapsulate the time capturing infrastructure */
135 #define time_type	u64
136 #define time_get()	trace_clock_local()
137 #define time_to_us(x)	div_u64(x, 1000)
138 #define time_sub(a, b)	((a) - (b))
139 #define init_time(a, b)	(a = b)
140 #define time_u64(a)	a
141 
142 void trace_hwlat_callback(bool enter)
143 {
144 	if (smp_processor_id() != nmi_cpu)
145 		return;
146 
147 	/*
148 	 * Currently trace_clock_local() calls sched_clock() and the
149 	 * generic version is not NMI safe.
150 	 */
151 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
152 		if (enter)
153 			nmi_ts_start = time_get();
154 		else
155 			nmi_total_ts += time_get() - nmi_ts_start;
156 	}
157 
158 	if (enter)
159 		nmi_count++;
160 }
161 
162 /**
163  * get_sample - sample the CPU TSC and look for likely hardware latencies
164  *
165  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
166  * hardware-induced latency. Called with interrupts disabled and with
167  * hwlat_data.lock held.
168  */
169 static int get_sample(void)
170 {
171 	struct trace_array *tr = hwlat_trace;
172 	struct hwlat_sample s;
173 	time_type start, t1, t2, last_t2;
174 	s64 diff, outer_diff, total, last_total = 0;
175 	u64 sample = 0;
176 	u64 thresh = tracing_thresh;
177 	u64 outer_sample = 0;
178 	int ret = -1;
179 	unsigned int count = 0;
180 
181 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
182 
183 	nmi_cpu = smp_processor_id();
184 	nmi_total_ts = 0;
185 	nmi_count = 0;
186 	/* Make sure NMIs see this first */
187 	barrier();
188 
189 	trace_hwlat_callback_enabled = true;
190 
191 	init_time(last_t2, 0);
192 	start = time_get(); /* start timestamp */
193 	outer_diff = 0;
194 
195 	do {
196 
197 		t1 = time_get();	/* we'll look for a discontinuity */
198 		t2 = time_get();
199 
200 		if (time_u64(last_t2)) {
201 			/* Check the delta from outer loop (t2 to next t1) */
202 			outer_diff = time_to_us(time_sub(t1, last_t2));
203 			/* This shouldn't happen */
204 			if (outer_diff < 0) {
205 				pr_err(BANNER "time running backwards\n");
206 				goto out;
207 			}
208 			if (outer_diff > outer_sample)
209 				outer_sample = outer_diff;
210 		}
211 		last_t2 = t2;
212 
213 		total = time_to_us(time_sub(t2, start)); /* sample width */
214 
215 		/* Check for possible overflows */
216 		if (total < last_total) {
217 			pr_err("Time total overflowed\n");
218 			break;
219 		}
220 		last_total = total;
221 
222 		/* This checks the inner loop (t1 to t2) */
223 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
224 
225 		if (diff > thresh || outer_diff > thresh) {
226 			if (!count)
227 				ktime_get_real_ts64(&s.timestamp);
228 			count++;
229 		}
230 
231 		/* This shouldn't happen */
232 		if (diff < 0) {
233 			pr_err(BANNER "time running backwards\n");
234 			goto out;
235 		}
236 
237 		if (diff > sample)
238 			sample = diff; /* only want highest value */
239 
240 	} while (total <= hwlat_data.sample_width);
241 
242 	barrier(); /* finish the above in the view for NMIs */
243 	trace_hwlat_callback_enabled = false;
244 	barrier(); /* Make sure nmi_total_ts is no longer updated */
245 
246 	ret = 0;
247 
248 	/* If we exceed the threshold value, we have found a hardware latency */
249 	if (sample > thresh || outer_sample > thresh) {
250 		u64 latency;
251 
252 		ret = 1;
253 
254 		/* We read in microseconds */
255 		if (nmi_total_ts)
256 			do_div(nmi_total_ts, NSEC_PER_USEC);
257 
258 		hwlat_data.count++;
259 		s.seqnum = hwlat_data.count;
260 		s.duration = sample;
261 		s.outer_duration = outer_sample;
262 		s.nmi_total_ts = nmi_total_ts;
263 		s.nmi_count = nmi_count;
264 		s.count = count;
265 		trace_hwlat_sample(&s);
266 
267 		latency = max(sample, outer_sample);
268 
269 		/* Keep a running maximum ever recorded hardware latency */
270 		if (latency > tr->max_latency) {
271 			tr->max_latency = latency;
272 			latency_fsnotify(tr);
273 		}
274 	}
275 
276 out:
277 	return ret;
278 }
279 
280 static struct cpumask save_cpumask;
281 static bool disable_migrate;
282 
283 static void move_to_next_cpu(void)
284 {
285 	struct cpumask *current_mask = &save_cpumask;
286 	int next_cpu;
287 
288 	if (disable_migrate)
289 		return;
290 	/*
291 	 * If for some reason the user modifies the CPU affinity
292 	 * of this thread, then stop migrating for the duration
293 	 * of the current test.
294 	 */
295 	if (!cpumask_equal(current_mask, current->cpus_ptr))
296 		goto disable;
297 
298 	get_online_cpus();
299 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
300 	next_cpu = cpumask_next(smp_processor_id(), current_mask);
301 	put_online_cpus();
302 
303 	if (next_cpu >= nr_cpu_ids)
304 		next_cpu = cpumask_first(current_mask);
305 
306 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
307 		goto disable;
308 
309 	cpumask_clear(current_mask);
310 	cpumask_set_cpu(next_cpu, current_mask);
311 
312 	sched_setaffinity(0, current_mask);
313 	return;
314 
315  disable:
316 	disable_migrate = true;
317 }
318 
319 /*
320  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
321  *
322  * Used to periodically sample the CPU TSC via a call to get_sample. We
323  * disable interrupts, which does (intentionally) introduce latency since we
324  * need to ensure nothing else might be running (and thus preempting).
325  * Obviously this should never be used in production environments.
326  *
327  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
328  */
329 static int kthread_fn(void *data)
330 {
331 	u64 interval;
332 
333 	while (!kthread_should_stop()) {
334 
335 		move_to_next_cpu();
336 
337 		local_irq_disable();
338 		get_sample();
339 		local_irq_enable();
340 
341 		mutex_lock(&hwlat_data.lock);
342 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
343 		mutex_unlock(&hwlat_data.lock);
344 
345 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
346 
347 		/* Always sleep for at least 1ms */
348 		if (interval < 1)
349 			interval = 1;
350 
351 		if (msleep_interruptible(interval))
352 			break;
353 	}
354 
355 	return 0;
356 }
357 
358 /**
359  * start_kthread - Kick off the hardware latency sampling/detector kthread
360  *
361  * This starts the kernel thread that will sit and sample the CPU timestamp
362  * counter (TSC or similar) and look for potential hardware latencies.
363  */
364 static int start_kthread(struct trace_array *tr)
365 {
366 	struct cpumask *current_mask = &save_cpumask;
367 	struct task_struct *kthread;
368 	int next_cpu;
369 
370 	if (WARN_ON(hwlat_kthread))
371 		return 0;
372 
373 	/* Just pick the first CPU on first iteration */
374 	current_mask = &save_cpumask;
375 	get_online_cpus();
376 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
377 	put_online_cpus();
378 	next_cpu = cpumask_first(current_mask);
379 
380 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
381 	if (IS_ERR(kthread)) {
382 		pr_err(BANNER "could not start sampling thread\n");
383 		return -ENOMEM;
384 	}
385 
386 	cpumask_clear(current_mask);
387 	cpumask_set_cpu(next_cpu, current_mask);
388 	sched_setaffinity(kthread->pid, current_mask);
389 
390 	hwlat_kthread = kthread;
391 	wake_up_process(kthread);
392 
393 	return 0;
394 }
395 
396 /**
397  * stop_kthread - Inform the hardware latency samping/detector kthread to stop
398  *
399  * This kicks the running hardware latency sampling/detector kernel thread and
400  * tells it to stop sampling now. Use this on unload and at system shutdown.
401  */
402 static void stop_kthread(void)
403 {
404 	if (!hwlat_kthread)
405 		return;
406 	kthread_stop(hwlat_kthread);
407 	hwlat_kthread = NULL;
408 }
409 
410 /*
411  * hwlat_read - Wrapper read function for reading both window and width
412  * @filp: The active open file structure
413  * @ubuf: The userspace provided buffer to read value into
414  * @cnt: The maximum number of bytes to read
415  * @ppos: The current "file" position
416  *
417  * This function provides a generic read implementation for the global state
418  * "hwlat_data" structure filesystem entries.
419  */
420 static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
421 			  size_t cnt, loff_t *ppos)
422 {
423 	char buf[U64STR_SIZE];
424 	u64 *entry = filp->private_data;
425 	u64 val;
426 	int len;
427 
428 	if (!entry)
429 		return -EFAULT;
430 
431 	if (cnt > sizeof(buf))
432 		cnt = sizeof(buf);
433 
434 	val = *entry;
435 
436 	len = snprintf(buf, sizeof(buf), "%llu\n", val);
437 
438 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
439 }
440 
441 /**
442  * hwlat_width_write - Write function for "width" entry
443  * @filp: The active open file structure
444  * @ubuf: The user buffer that contains the value to write
445  * @cnt: The maximum number of bytes to write to "file"
446  * @ppos: The current position in @file
447  *
448  * This function provides a write implementation for the "width" interface
449  * to the hardware latency detector. It can be used to configure
450  * for how many us of the total window us we will actively sample for any
451  * hardware-induced latency periods. Obviously, it is not possible to
452  * sample constantly and have the system respond to a sample reader, or,
453  * worse, without having the system appear to have gone out to lunch. It
454  * is enforced that width is less that the total window size.
455  */
456 static ssize_t
457 hwlat_width_write(struct file *filp, const char __user *ubuf,
458 		  size_t cnt, loff_t *ppos)
459 {
460 	u64 val;
461 	int err;
462 
463 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
464 	if (err)
465 		return err;
466 
467 	mutex_lock(&hwlat_data.lock);
468 	if (val < hwlat_data.sample_window)
469 		hwlat_data.sample_width = val;
470 	else
471 		err = -EINVAL;
472 	mutex_unlock(&hwlat_data.lock);
473 
474 	if (err)
475 		return err;
476 
477 	return cnt;
478 }
479 
480 /**
481  * hwlat_window_write - Write function for "window" entry
482  * @filp: The active open file structure
483  * @ubuf: The user buffer that contains the value to write
484  * @cnt: The maximum number of bytes to write to "file"
485  * @ppos: The current position in @file
486  *
487  * This function provides a write implementation for the "window" interface
488  * to the hardware latency detetector. The window is the total time
489  * in us that will be considered one sample period. Conceptually, windows
490  * occur back-to-back and contain a sample width period during which
491  * actual sampling occurs. Can be used to write a new total window size. It
492  * is enfoced that any value written must be greater than the sample width
493  * size, or an error results.
494  */
495 static ssize_t
496 hwlat_window_write(struct file *filp, const char __user *ubuf,
497 		   size_t cnt, loff_t *ppos)
498 {
499 	u64 val;
500 	int err;
501 
502 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
503 	if (err)
504 		return err;
505 
506 	mutex_lock(&hwlat_data.lock);
507 	if (hwlat_data.sample_width < val)
508 		hwlat_data.sample_window = val;
509 	else
510 		err = -EINVAL;
511 	mutex_unlock(&hwlat_data.lock);
512 
513 	if (err)
514 		return err;
515 
516 	return cnt;
517 }
518 
519 static const struct file_operations width_fops = {
520 	.open		= tracing_open_generic,
521 	.read		= hwlat_read,
522 	.write		= hwlat_width_write,
523 };
524 
525 static const struct file_operations window_fops = {
526 	.open		= tracing_open_generic,
527 	.read		= hwlat_read,
528 	.write		= hwlat_window_write,
529 };
530 
531 /**
532  * init_tracefs - A function to initialize the tracefs interface files
533  *
534  * This function creates entries in tracefs for "hwlat_detector".
535  * It creates the hwlat_detector directory in the tracing directory,
536  * and within that directory is the count, width and window files to
537  * change and view those values.
538  */
539 static int init_tracefs(void)
540 {
541 	struct dentry *d_tracer;
542 	struct dentry *top_dir;
543 
544 	d_tracer = tracing_init_dentry();
545 	if (IS_ERR(d_tracer))
546 		return -ENOMEM;
547 
548 	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
549 	if (!top_dir)
550 		return -ENOMEM;
551 
552 	hwlat_sample_window = tracefs_create_file("window", 0640,
553 						  top_dir,
554 						  &hwlat_data.sample_window,
555 						  &window_fops);
556 	if (!hwlat_sample_window)
557 		goto err;
558 
559 	hwlat_sample_width = tracefs_create_file("width", 0644,
560 						 top_dir,
561 						 &hwlat_data.sample_width,
562 						 &width_fops);
563 	if (!hwlat_sample_width)
564 		goto err;
565 
566 	return 0;
567 
568  err:
569 	tracefs_remove(top_dir);
570 	return -ENOMEM;
571 }
572 
573 static void hwlat_tracer_start(struct trace_array *tr)
574 {
575 	int err;
576 
577 	err = start_kthread(tr);
578 	if (err)
579 		pr_err(BANNER "Cannot start hwlat kthread\n");
580 }
581 
582 static void hwlat_tracer_stop(struct trace_array *tr)
583 {
584 	stop_kthread();
585 }
586 
587 static bool hwlat_busy;
588 
589 static int hwlat_tracer_init(struct trace_array *tr)
590 {
591 	/* Only allow one instance to enable this */
592 	if (hwlat_busy)
593 		return -EBUSY;
594 
595 	hwlat_trace = tr;
596 
597 	disable_migrate = false;
598 	hwlat_data.count = 0;
599 	tr->max_latency = 0;
600 	save_tracing_thresh = tracing_thresh;
601 
602 	/* tracing_thresh is in nsecs, we speak in usecs */
603 	if (!tracing_thresh)
604 		tracing_thresh = last_tracing_thresh;
605 
606 	if (tracer_tracing_is_on(tr))
607 		hwlat_tracer_start(tr);
608 
609 	hwlat_busy = true;
610 
611 	return 0;
612 }
613 
614 static void hwlat_tracer_reset(struct trace_array *tr)
615 {
616 	stop_kthread();
617 
618 	/* the tracing threshold is static between runs */
619 	last_tracing_thresh = tracing_thresh;
620 
621 	tracing_thresh = save_tracing_thresh;
622 	hwlat_busy = false;
623 }
624 
625 static struct tracer hwlat_tracer __read_mostly =
626 {
627 	.name		= "hwlat",
628 	.init		= hwlat_tracer_init,
629 	.reset		= hwlat_tracer_reset,
630 	.start		= hwlat_tracer_start,
631 	.stop		= hwlat_tracer_stop,
632 	.allow_instances = true,
633 };
634 
635 __init static int init_hwlat_tracer(void)
636 {
637 	int ret;
638 
639 	mutex_init(&hwlat_data.lock);
640 
641 	ret = register_tracer(&hwlat_tracer);
642 	if (ret)
643 		return ret;
644 
645 	init_tracefs();
646 
647 	return 0;
648 }
649 late_initcall(init_hwlat_tracer);
650