xref: /linux/kernel/trace/trace_hwlat.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_hwlat.c - A simple Hardware Latency detector.
4  *
5  * Use this tracer to detect large system latencies induced by the behavior of
6  * certain underlying system hardware or firmware, independent of Linux itself.
7  * The code was developed originally to detect the presence of SMIs on Intel
8  * and AMD systems, although there is no dependency upon x86 herein.
9  *
10  * The classical example usage of this tracer is in detecting the presence of
11  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
12  * somewhat special form of hardware interrupt spawned from earlier CPU debug
13  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
14  * LPC (or other device) to generate a special interrupt under certain
15  * circumstances, for example, upon expiration of a special SMI timer device,
16  * due to certain external thermal readings, on certain I/O address accesses,
17  * and other situations. An SMI hits a special CPU pin, triggers a special
18  * SMI mode (complete with special memory map), and the OS is unaware.
19  *
20  * Although certain hardware-inducing latencies are necessary (for example,
21  * a modern system often requires an SMI handler for correct thermal control
22  * and remote management) they can wreak havoc upon any OS-level performance
23  * guarantees toward low-latency, especially when the OS is not even made
24  * aware of the presence of these interrupts. For this reason, we need a
25  * somewhat brute force mechanism to detect these interrupts. In this case,
26  * we do it by hogging all of the CPU(s) for configurable timer intervals,
27  * sampling the built-in CPU timer, looking for discontiguous readings.
28  *
29  * WARNING: This implementation necessarily introduces latencies. Therefore,
30  *          you should NEVER use this tracer while running in a production
31  *          environment requiring any kind of low-latency performance
32  *          guarantee(s).
33  *
34  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
35  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
36  *
37  * Includes useful feedback from Clark Williams <clark@redhat.com>
38  *
39  */
40 #include <linux/kthread.h>
41 #include <linux/tracefs.h>
42 #include <linux/uaccess.h>
43 #include <linux/cpumask.h>
44 #include <linux/delay.h>
45 #include <linux/sched/clock.h>
46 #include "trace.h"
47 
48 static struct trace_array	*hwlat_trace;
49 
50 #define U64STR_SIZE		22			/* 20 digits max */
51 
52 #define BANNER			"hwlat_detector: "
53 #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
54 #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
55 #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
56 
57 /* sampling thread*/
58 static struct task_struct *hwlat_kthread;
59 
60 static struct dentry *hwlat_sample_width;	/* sample width us */
61 static struct dentry *hwlat_sample_window;	/* sample window us */
62 
63 /* Save the previous tracing_thresh value */
64 static unsigned long save_tracing_thresh;
65 
66 /* NMI timestamp counters */
67 static u64 nmi_ts_start;
68 static u64 nmi_total_ts;
69 static int nmi_count;
70 static int nmi_cpu;
71 
72 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
73 bool trace_hwlat_callback_enabled;
74 
75 /* If the user changed threshold, remember it */
76 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
77 
78 /* Individual latency samples are stored here when detected. */
79 struct hwlat_sample {
80 	u64			seqnum;		/* unique sequence */
81 	u64			duration;	/* delta */
82 	u64			outer_duration;	/* delta (outer loop) */
83 	u64			nmi_total_ts;	/* Total time spent in NMIs */
84 	struct timespec64	timestamp;	/* wall time */
85 	int			nmi_count;	/* # NMIs during this sample */
86 };
87 
88 /* keep the global state somewhere. */
89 static struct hwlat_data {
90 
91 	struct mutex lock;		/* protect changes */
92 
93 	u64	count;			/* total since reset */
94 
95 	u64	sample_window;		/* total sampling window (on+off) */
96 	u64	sample_width;		/* active sampling portion of window */
97 
98 } hwlat_data = {
99 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
100 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
101 };
102 
103 static void trace_hwlat_sample(struct hwlat_sample *sample)
104 {
105 	struct trace_array *tr = hwlat_trace;
106 	struct trace_event_call *call = &event_hwlat;
107 	struct trace_buffer *buffer = tr->array_buffer.buffer;
108 	struct ring_buffer_event *event;
109 	struct hwlat_entry *entry;
110 	unsigned long flags;
111 	int pc;
112 
113 	pc = preempt_count();
114 	local_save_flags(flags);
115 
116 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
117 					  flags, pc);
118 	if (!event)
119 		return;
120 	entry	= ring_buffer_event_data(event);
121 	entry->seqnum			= sample->seqnum;
122 	entry->duration			= sample->duration;
123 	entry->outer_duration		= sample->outer_duration;
124 	entry->timestamp		= sample->timestamp;
125 	entry->nmi_total_ts		= sample->nmi_total_ts;
126 	entry->nmi_count		= sample->nmi_count;
127 
128 	if (!call_filter_check_discard(call, entry, buffer, event))
129 		trace_buffer_unlock_commit_nostack(buffer, event);
130 }
131 
132 /* Macros to encapsulate the time capturing infrastructure */
133 #define time_type	u64
134 #define time_get()	trace_clock_local()
135 #define time_to_us(x)	div_u64(x, 1000)
136 #define time_sub(a, b)	((a) - (b))
137 #define init_time(a, b)	(a = b)
138 #define time_u64(a)	a
139 
140 void trace_hwlat_callback(bool enter)
141 {
142 	if (smp_processor_id() != nmi_cpu)
143 		return;
144 
145 	/*
146 	 * Currently trace_clock_local() calls sched_clock() and the
147 	 * generic version is not NMI safe.
148 	 */
149 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
150 		if (enter)
151 			nmi_ts_start = time_get();
152 		else
153 			nmi_total_ts += time_get() - nmi_ts_start;
154 	}
155 
156 	if (enter)
157 		nmi_count++;
158 }
159 
160 /**
161  * get_sample - sample the CPU TSC and look for likely hardware latencies
162  *
163  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
164  * hardware-induced latency. Called with interrupts disabled and with
165  * hwlat_data.lock held.
166  */
167 static int get_sample(void)
168 {
169 	struct trace_array *tr = hwlat_trace;
170 	time_type start, t1, t2, last_t2;
171 	s64 diff, total, last_total = 0;
172 	u64 sample = 0;
173 	u64 thresh = tracing_thresh;
174 	u64 outer_sample = 0;
175 	int ret = -1;
176 
177 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
178 
179 	nmi_cpu = smp_processor_id();
180 	nmi_total_ts = 0;
181 	nmi_count = 0;
182 	/* Make sure NMIs see this first */
183 	barrier();
184 
185 	trace_hwlat_callback_enabled = true;
186 
187 	init_time(last_t2, 0);
188 	start = time_get(); /* start timestamp */
189 
190 	do {
191 
192 		t1 = time_get();	/* we'll look for a discontinuity */
193 		t2 = time_get();
194 
195 		if (time_u64(last_t2)) {
196 			/* Check the delta from outer loop (t2 to next t1) */
197 			diff = time_to_us(time_sub(t1, last_t2));
198 			/* This shouldn't happen */
199 			if (diff < 0) {
200 				pr_err(BANNER "time running backwards\n");
201 				goto out;
202 			}
203 			if (diff > outer_sample)
204 				outer_sample = diff;
205 		}
206 		last_t2 = t2;
207 
208 		total = time_to_us(time_sub(t2, start)); /* sample width */
209 
210 		/* Check for possible overflows */
211 		if (total < last_total) {
212 			pr_err("Time total overflowed\n");
213 			break;
214 		}
215 		last_total = total;
216 
217 		/* This checks the inner loop (t1 to t2) */
218 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
219 
220 		/* This shouldn't happen */
221 		if (diff < 0) {
222 			pr_err(BANNER "time running backwards\n");
223 			goto out;
224 		}
225 
226 		if (diff > sample)
227 			sample = diff; /* only want highest value */
228 
229 	} while (total <= hwlat_data.sample_width);
230 
231 	barrier(); /* finish the above in the view for NMIs */
232 	trace_hwlat_callback_enabled = false;
233 	barrier(); /* Make sure nmi_total_ts is no longer updated */
234 
235 	ret = 0;
236 
237 	/* If we exceed the threshold value, we have found a hardware latency */
238 	if (sample > thresh || outer_sample > thresh) {
239 		struct hwlat_sample s;
240 		u64 latency;
241 
242 		ret = 1;
243 
244 		/* We read in microseconds */
245 		if (nmi_total_ts)
246 			do_div(nmi_total_ts, NSEC_PER_USEC);
247 
248 		hwlat_data.count++;
249 		s.seqnum = hwlat_data.count;
250 		s.duration = sample;
251 		s.outer_duration = outer_sample;
252 		ktime_get_real_ts64(&s.timestamp);
253 		s.nmi_total_ts = nmi_total_ts;
254 		s.nmi_count = nmi_count;
255 		trace_hwlat_sample(&s);
256 
257 		latency = max(sample, outer_sample);
258 
259 		/* Keep a running maximum ever recorded hardware latency */
260 		if (latency > tr->max_latency) {
261 			tr->max_latency = latency;
262 			latency_fsnotify(tr);
263 		}
264 	}
265 
266 out:
267 	return ret;
268 }
269 
270 static struct cpumask save_cpumask;
271 static bool disable_migrate;
272 
273 static void move_to_next_cpu(void)
274 {
275 	struct cpumask *current_mask = &save_cpumask;
276 	int next_cpu;
277 
278 	if (disable_migrate)
279 		return;
280 	/*
281 	 * If for some reason the user modifies the CPU affinity
282 	 * of this thread, then stop migrating for the duration
283 	 * of the current test.
284 	 */
285 	if (!cpumask_equal(current_mask, current->cpus_ptr))
286 		goto disable;
287 
288 	get_online_cpus();
289 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
290 	next_cpu = cpumask_next(smp_processor_id(), current_mask);
291 	put_online_cpus();
292 
293 	if (next_cpu >= nr_cpu_ids)
294 		next_cpu = cpumask_first(current_mask);
295 
296 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
297 		goto disable;
298 
299 	cpumask_clear(current_mask);
300 	cpumask_set_cpu(next_cpu, current_mask);
301 
302 	sched_setaffinity(0, current_mask);
303 	return;
304 
305  disable:
306 	disable_migrate = true;
307 }
308 
309 /*
310  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
311  *
312  * Used to periodically sample the CPU TSC via a call to get_sample. We
313  * disable interrupts, which does (intentionally) introduce latency since we
314  * need to ensure nothing else might be running (and thus preempting).
315  * Obviously this should never be used in production environments.
316  *
317  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
318  */
319 static int kthread_fn(void *data)
320 {
321 	u64 interval;
322 
323 	while (!kthread_should_stop()) {
324 
325 		move_to_next_cpu();
326 
327 		local_irq_disable();
328 		get_sample();
329 		local_irq_enable();
330 
331 		mutex_lock(&hwlat_data.lock);
332 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
333 		mutex_unlock(&hwlat_data.lock);
334 
335 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
336 
337 		/* Always sleep for at least 1ms */
338 		if (interval < 1)
339 			interval = 1;
340 
341 		if (msleep_interruptible(interval))
342 			break;
343 	}
344 
345 	return 0;
346 }
347 
348 /**
349  * start_kthread - Kick off the hardware latency sampling/detector kthread
350  *
351  * This starts the kernel thread that will sit and sample the CPU timestamp
352  * counter (TSC or similar) and look for potential hardware latencies.
353  */
354 static int start_kthread(struct trace_array *tr)
355 {
356 	struct cpumask *current_mask = &save_cpumask;
357 	struct task_struct *kthread;
358 	int next_cpu;
359 
360 	if (WARN_ON(hwlat_kthread))
361 		return 0;
362 
363 	/* Just pick the first CPU on first iteration */
364 	current_mask = &save_cpumask;
365 	get_online_cpus();
366 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
367 	put_online_cpus();
368 	next_cpu = cpumask_first(current_mask);
369 
370 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
371 	if (IS_ERR(kthread)) {
372 		pr_err(BANNER "could not start sampling thread\n");
373 		return -ENOMEM;
374 	}
375 
376 	cpumask_clear(current_mask);
377 	cpumask_set_cpu(next_cpu, current_mask);
378 	sched_setaffinity(kthread->pid, current_mask);
379 
380 	hwlat_kthread = kthread;
381 	wake_up_process(kthread);
382 
383 	return 0;
384 }
385 
386 /**
387  * stop_kthread - Inform the hardware latency samping/detector kthread to stop
388  *
389  * This kicks the running hardware latency sampling/detector kernel thread and
390  * tells it to stop sampling now. Use this on unload and at system shutdown.
391  */
392 static void stop_kthread(void)
393 {
394 	if (!hwlat_kthread)
395 		return;
396 	kthread_stop(hwlat_kthread);
397 	hwlat_kthread = NULL;
398 }
399 
400 /*
401  * hwlat_read - Wrapper read function for reading both window and width
402  * @filp: The active open file structure
403  * @ubuf: The userspace provided buffer to read value into
404  * @cnt: The maximum number of bytes to read
405  * @ppos: The current "file" position
406  *
407  * This function provides a generic read implementation for the global state
408  * "hwlat_data" structure filesystem entries.
409  */
410 static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
411 			  size_t cnt, loff_t *ppos)
412 {
413 	char buf[U64STR_SIZE];
414 	u64 *entry = filp->private_data;
415 	u64 val;
416 	int len;
417 
418 	if (!entry)
419 		return -EFAULT;
420 
421 	if (cnt > sizeof(buf))
422 		cnt = sizeof(buf);
423 
424 	val = *entry;
425 
426 	len = snprintf(buf, sizeof(buf), "%llu\n", val);
427 
428 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
429 }
430 
431 /**
432  * hwlat_width_write - Write function for "width" entry
433  * @filp: The active open file structure
434  * @ubuf: The user buffer that contains the value to write
435  * @cnt: The maximum number of bytes to write to "file"
436  * @ppos: The current position in @file
437  *
438  * This function provides a write implementation for the "width" interface
439  * to the hardware latency detector. It can be used to configure
440  * for how many us of the total window us we will actively sample for any
441  * hardware-induced latency periods. Obviously, it is not possible to
442  * sample constantly and have the system respond to a sample reader, or,
443  * worse, without having the system appear to have gone out to lunch. It
444  * is enforced that width is less that the total window size.
445  */
446 static ssize_t
447 hwlat_width_write(struct file *filp, const char __user *ubuf,
448 		  size_t cnt, loff_t *ppos)
449 {
450 	u64 val;
451 	int err;
452 
453 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
454 	if (err)
455 		return err;
456 
457 	mutex_lock(&hwlat_data.lock);
458 	if (val < hwlat_data.sample_window)
459 		hwlat_data.sample_width = val;
460 	else
461 		err = -EINVAL;
462 	mutex_unlock(&hwlat_data.lock);
463 
464 	if (err)
465 		return err;
466 
467 	return cnt;
468 }
469 
470 /**
471  * hwlat_window_write - Write function for "window" entry
472  * @filp: The active open file structure
473  * @ubuf: The user buffer that contains the value to write
474  * @cnt: The maximum number of bytes to write to "file"
475  * @ppos: The current position in @file
476  *
477  * This function provides a write implementation for the "window" interface
478  * to the hardware latency detetector. The window is the total time
479  * in us that will be considered one sample period. Conceptually, windows
480  * occur back-to-back and contain a sample width period during which
481  * actual sampling occurs. Can be used to write a new total window size. It
482  * is enfoced that any value written must be greater than the sample width
483  * size, or an error results.
484  */
485 static ssize_t
486 hwlat_window_write(struct file *filp, const char __user *ubuf,
487 		   size_t cnt, loff_t *ppos)
488 {
489 	u64 val;
490 	int err;
491 
492 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
493 	if (err)
494 		return err;
495 
496 	mutex_lock(&hwlat_data.lock);
497 	if (hwlat_data.sample_width < val)
498 		hwlat_data.sample_window = val;
499 	else
500 		err = -EINVAL;
501 	mutex_unlock(&hwlat_data.lock);
502 
503 	if (err)
504 		return err;
505 
506 	return cnt;
507 }
508 
509 static const struct file_operations width_fops = {
510 	.open		= tracing_open_generic,
511 	.read		= hwlat_read,
512 	.write		= hwlat_width_write,
513 };
514 
515 static const struct file_operations window_fops = {
516 	.open		= tracing_open_generic,
517 	.read		= hwlat_read,
518 	.write		= hwlat_window_write,
519 };
520 
521 /**
522  * init_tracefs - A function to initialize the tracefs interface files
523  *
524  * This function creates entries in tracefs for "hwlat_detector".
525  * It creates the hwlat_detector directory in the tracing directory,
526  * and within that directory is the count, width and window files to
527  * change and view those values.
528  */
529 static int init_tracefs(void)
530 {
531 	struct dentry *d_tracer;
532 	struct dentry *top_dir;
533 
534 	d_tracer = tracing_init_dentry();
535 	if (IS_ERR(d_tracer))
536 		return -ENOMEM;
537 
538 	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
539 	if (!top_dir)
540 		return -ENOMEM;
541 
542 	hwlat_sample_window = tracefs_create_file("window", 0640,
543 						  top_dir,
544 						  &hwlat_data.sample_window,
545 						  &window_fops);
546 	if (!hwlat_sample_window)
547 		goto err;
548 
549 	hwlat_sample_width = tracefs_create_file("width", 0644,
550 						 top_dir,
551 						 &hwlat_data.sample_width,
552 						 &width_fops);
553 	if (!hwlat_sample_width)
554 		goto err;
555 
556 	return 0;
557 
558  err:
559 	tracefs_remove(top_dir);
560 	return -ENOMEM;
561 }
562 
563 static void hwlat_tracer_start(struct trace_array *tr)
564 {
565 	int err;
566 
567 	err = start_kthread(tr);
568 	if (err)
569 		pr_err(BANNER "Cannot start hwlat kthread\n");
570 }
571 
572 static void hwlat_tracer_stop(struct trace_array *tr)
573 {
574 	stop_kthread();
575 }
576 
577 static bool hwlat_busy;
578 
579 static int hwlat_tracer_init(struct trace_array *tr)
580 {
581 	/* Only allow one instance to enable this */
582 	if (hwlat_busy)
583 		return -EBUSY;
584 
585 	hwlat_trace = tr;
586 
587 	disable_migrate = false;
588 	hwlat_data.count = 0;
589 	tr->max_latency = 0;
590 	save_tracing_thresh = tracing_thresh;
591 
592 	/* tracing_thresh is in nsecs, we speak in usecs */
593 	if (!tracing_thresh)
594 		tracing_thresh = last_tracing_thresh;
595 
596 	if (tracer_tracing_is_on(tr))
597 		hwlat_tracer_start(tr);
598 
599 	hwlat_busy = true;
600 
601 	return 0;
602 }
603 
604 static void hwlat_tracer_reset(struct trace_array *tr)
605 {
606 	stop_kthread();
607 
608 	/* the tracing threshold is static between runs */
609 	last_tracing_thresh = tracing_thresh;
610 
611 	tracing_thresh = save_tracing_thresh;
612 	hwlat_busy = false;
613 }
614 
615 static struct tracer hwlat_tracer __read_mostly =
616 {
617 	.name		= "hwlat",
618 	.init		= hwlat_tracer_init,
619 	.reset		= hwlat_tracer_reset,
620 	.start		= hwlat_tracer_start,
621 	.stop		= hwlat_tracer_stop,
622 	.allow_instances = true,
623 };
624 
625 __init static int init_hwlat_tracer(void)
626 {
627 	int ret;
628 
629 	mutex_init(&hwlat_data.lock);
630 
631 	ret = register_tracer(&hwlat_tracer);
632 	if (ret)
633 		return ret;
634 
635 	init_tracefs();
636 
637 	return 0;
638 }
639 late_initcall(init_hwlat_tracer);
640