1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2021, Microsoft Corporation. 4 * 5 * Authors: 6 * Beau Belgrave <beaub@linux.microsoft.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/cdev.h> 11 #include <linux/hashtable.h> 12 #include <linux/list.h> 13 #include <linux/io.h> 14 #include <linux/uio.h> 15 #include <linux/ioctl.h> 16 #include <linux/jhash.h> 17 #include <linux/refcount.h> 18 #include <linux/trace_events.h> 19 #include <linux/tracefs.h> 20 #include <linux/types.h> 21 #include <linux/uaccess.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/user_events.h> 25 #include "trace_dynevent.h" 26 #include "trace_output.h" 27 #include "trace.h" 28 29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1) 30 31 #define FIELD_DEPTH_TYPE 0 32 #define FIELD_DEPTH_NAME 1 33 #define FIELD_DEPTH_SIZE 2 34 35 /* Limit how long of an event name plus args within the subsystem. */ 36 #define MAX_EVENT_DESC 512 37 #define EVENT_NAME(user_event) ((user_event)->reg_name) 38 #define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name) 39 #define MAX_FIELD_ARRAY_SIZE 1024 40 41 /* 42 * Internal bits (kernel side only) to keep track of connected probes: 43 * These are used when status is requested in text form about an event. These 44 * bits are compared against an internal byte on the event to determine which 45 * probes to print out to the user. 46 * 47 * These do not reflect the mapped bytes between the user and kernel space. 48 */ 49 #define EVENT_STATUS_FTRACE BIT(0) 50 #define EVENT_STATUS_PERF BIT(1) 51 #define EVENT_STATUS_OTHER BIT(7) 52 53 /* 54 * Stores the system name, tables, and locks for a group of events. This 55 * allows isolation for events by various means. 56 */ 57 struct user_event_group { 58 char *system_name; 59 char *system_multi_name; 60 struct hlist_node node; 61 struct mutex reg_mutex; 62 DECLARE_HASHTABLE(register_table, 8); 63 /* ID that moves forward within the group for multi-event names */ 64 u64 multi_id; 65 }; 66 67 /* Group for init_user_ns mapping, top-most group */ 68 static struct user_event_group *init_group; 69 70 /* Max allowed events for the whole system */ 71 static unsigned int max_user_events = 32768; 72 73 /* Current number of events on the whole system */ 74 static unsigned int current_user_events; 75 76 /* 77 * Stores per-event properties, as users register events 78 * within a file a user_event might be created if it does not 79 * already exist. These are globally used and their lifetime 80 * is tied to the refcnt member. These cannot go away until the 81 * refcnt reaches one. 82 */ 83 struct user_event { 84 struct user_event_group *group; 85 char *reg_name; 86 struct tracepoint tracepoint; 87 struct trace_event_call call; 88 struct trace_event_class class; 89 struct dyn_event devent; 90 struct hlist_node node; 91 struct list_head fields; 92 struct list_head validators; 93 struct work_struct put_work; 94 refcount_t refcnt; 95 int min_size; 96 int reg_flags; 97 char status; 98 }; 99 100 /* 101 * Stores per-mm/event properties that enable an address to be 102 * updated properly for each task. As tasks are forked, we use 103 * these to track enablement sites that are tied to an event. 104 */ 105 struct user_event_enabler { 106 struct list_head mm_enablers_link; 107 struct user_event *event; 108 unsigned long addr; 109 110 /* Track enable bit, flags, etc. Aligned for bitops. */ 111 unsigned long values; 112 }; 113 114 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */ 115 #define ENABLE_VAL_BIT_MASK 0x3F 116 117 /* Bit 6 is for faulting status of enablement */ 118 #define ENABLE_VAL_FAULTING_BIT 6 119 120 /* Bit 7 is for freeing status of enablement */ 121 #define ENABLE_VAL_FREEING_BIT 7 122 123 /* Bit 8 is for marking 32-bit on 64-bit */ 124 #define ENABLE_VAL_32_ON_64_BIT 8 125 126 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT) 127 128 /* Only duplicate the bit and compat values */ 129 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK) 130 131 #define ENABLE_BITOPS(e) (&(e)->values) 132 133 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK)) 134 135 #define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT) 136 137 /* Used for asynchronous faulting in of pages */ 138 struct user_event_enabler_fault { 139 struct work_struct work; 140 struct user_event_mm *mm; 141 struct user_event_enabler *enabler; 142 int attempt; 143 }; 144 145 static struct kmem_cache *fault_cache; 146 147 /* Global list of memory descriptors using user_events */ 148 static LIST_HEAD(user_event_mms); 149 static DEFINE_SPINLOCK(user_event_mms_lock); 150 151 /* 152 * Stores per-file events references, as users register events 153 * within a file this structure is modified and freed via RCU. 154 * The lifetime of this struct is tied to the lifetime of the file. 155 * These are not shared and only accessible by the file that created it. 156 */ 157 struct user_event_refs { 158 struct rcu_head rcu; 159 int count; 160 struct user_event *events[]; 161 }; 162 163 struct user_event_file_info { 164 struct user_event_group *group; 165 struct user_event_refs *refs; 166 }; 167 168 #define VALIDATOR_ENSURE_NULL (1 << 0) 169 #define VALIDATOR_REL (1 << 1) 170 171 struct user_event_validator { 172 struct list_head user_event_link; 173 int offset; 174 int flags; 175 }; 176 177 static inline void align_addr_bit(unsigned long *addr, int *bit, 178 unsigned long *flags) 179 { 180 if (IS_ALIGNED(*addr, sizeof(long))) { 181 #ifdef __BIG_ENDIAN 182 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */ 183 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags)) 184 *bit += 32; 185 #endif 186 return; 187 } 188 189 *addr = ALIGN_DOWN(*addr, sizeof(long)); 190 191 /* 192 * We only support 32 and 64 bit values. The only time we need 193 * to align is a 32 bit value on a 64 bit kernel, which on LE 194 * is always 32 bits, and on BE requires no change when unaligned. 195 */ 196 #ifdef __LITTLE_ENDIAN 197 *bit += 32; 198 #endif 199 } 200 201 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i, 202 void *tpdata, bool *faulted); 203 204 static int user_event_parse(struct user_event_group *group, char *name, 205 char *args, char *flags, 206 struct user_event **newuser, int reg_flags); 207 208 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm); 209 static struct user_event_mm *user_event_mm_get_all(struct user_event *user); 210 static void user_event_mm_put(struct user_event_mm *mm); 211 static int destroy_user_event(struct user_event *user); 212 static bool user_fields_match(struct user_event *user, int argc, 213 const char **argv); 214 215 static u32 user_event_key(char *name) 216 { 217 return jhash(name, strlen(name), 0); 218 } 219 220 static bool user_event_capable(u16 reg_flags) 221 { 222 /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */ 223 if (reg_flags & USER_EVENT_REG_PERSIST) { 224 if (!perfmon_capable()) 225 return false; 226 } 227 228 return true; 229 } 230 231 static struct user_event *user_event_get(struct user_event *user) 232 { 233 refcount_inc(&user->refcnt); 234 235 return user; 236 } 237 238 static void delayed_destroy_user_event(struct work_struct *work) 239 { 240 struct user_event *user = container_of( 241 work, struct user_event, put_work); 242 243 mutex_lock(&event_mutex); 244 245 if (!refcount_dec_and_test(&user->refcnt)) 246 goto out; 247 248 if (destroy_user_event(user)) { 249 /* 250 * The only reason this would fail here is if we cannot 251 * update the visibility of the event. In this case the 252 * event stays in the hashtable, waiting for someone to 253 * attempt to delete it later. 254 */ 255 pr_warn("user_events: Unable to delete event\n"); 256 refcount_set(&user->refcnt, 1); 257 } 258 out: 259 mutex_unlock(&event_mutex); 260 } 261 262 static void user_event_put(struct user_event *user, bool locked) 263 { 264 bool delete; 265 266 if (unlikely(!user)) 267 return; 268 269 /* 270 * When the event is not enabled for auto-delete there will always 271 * be at least 1 reference to the event. During the event creation 272 * we initially set the refcnt to 2 to achieve this. In those cases 273 * the caller must acquire event_mutex and after decrement check if 274 * the refcnt is 1, meaning this is the last reference. When auto 275 * delete is enabled, there will only be 1 ref, IE: refcnt will be 276 * only set to 1 during creation to allow the below checks to go 277 * through upon the last put. The last put must always be done with 278 * the event mutex held. 279 */ 280 if (!locked) { 281 lockdep_assert_not_held(&event_mutex); 282 delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex); 283 } else { 284 lockdep_assert_held(&event_mutex); 285 delete = refcount_dec_and_test(&user->refcnt); 286 } 287 288 if (!delete) 289 return; 290 291 /* 292 * We now have the event_mutex in all cases, which ensures that 293 * no new references will be taken until event_mutex is released. 294 * New references come through find_user_event(), which requires 295 * the event_mutex to be held. 296 */ 297 298 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 299 /* We should not get here when persist flag is set */ 300 pr_alert("BUG: Auto-delete engaged on persistent event\n"); 301 goto out; 302 } 303 304 /* 305 * Unfortunately we have to attempt the actual destroy in a work 306 * queue. This is because not all cases handle a trace_event_call 307 * being removed within the class->reg() operation for unregister. 308 */ 309 INIT_WORK(&user->put_work, delayed_destroy_user_event); 310 311 /* 312 * Since the event is still in the hashtable, we have to re-inc 313 * the ref count to 1. This count will be decremented and checked 314 * in the work queue to ensure it's still the last ref. This is 315 * needed because a user-process could register the same event in 316 * between the time of event_mutex release and the work queue 317 * running the delayed destroy. If we removed the item now from 318 * the hashtable, this would result in a timing window where a 319 * user process would fail a register because the trace_event_call 320 * register would fail in the tracing layers. 321 */ 322 refcount_set(&user->refcnt, 1); 323 324 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) { 325 /* 326 * If we fail we must wait for an admin to attempt delete or 327 * another register/close of the event, whichever is first. 328 */ 329 pr_warn("user_events: Unable to queue delayed destroy\n"); 330 } 331 out: 332 /* Ensure if we didn't have event_mutex before we unlock it */ 333 if (!locked) 334 mutex_unlock(&event_mutex); 335 } 336 337 static void user_event_group_destroy(struct user_event_group *group) 338 { 339 kfree(group->system_name); 340 kfree(group->system_multi_name); 341 kfree(group); 342 } 343 344 static char *user_event_group_system_name(void) 345 { 346 char *system_name; 347 int len = sizeof(USER_EVENTS_SYSTEM) + 1; 348 349 system_name = kmalloc(len, GFP_KERNEL); 350 351 if (!system_name) 352 return NULL; 353 354 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM); 355 356 return system_name; 357 } 358 359 static char *user_event_group_system_multi_name(void) 360 { 361 return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL); 362 } 363 364 static struct user_event_group *current_user_event_group(void) 365 { 366 return init_group; 367 } 368 369 static struct user_event_group *user_event_group_create(void) 370 { 371 struct user_event_group *group; 372 373 group = kzalloc(sizeof(*group), GFP_KERNEL); 374 375 if (!group) 376 return NULL; 377 378 group->system_name = user_event_group_system_name(); 379 380 if (!group->system_name) 381 goto error; 382 383 group->system_multi_name = user_event_group_system_multi_name(); 384 385 if (!group->system_multi_name) 386 goto error; 387 388 mutex_init(&group->reg_mutex); 389 hash_init(group->register_table); 390 391 return group; 392 error: 393 if (group) 394 user_event_group_destroy(group); 395 396 return NULL; 397 }; 398 399 static void user_event_enabler_destroy(struct user_event_enabler *enabler, 400 bool locked) 401 { 402 list_del_rcu(&enabler->mm_enablers_link); 403 404 /* No longer tracking the event via the enabler */ 405 user_event_put(enabler->event, locked); 406 407 kfree(enabler); 408 } 409 410 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr, 411 int attempt) 412 { 413 bool unlocked; 414 int ret; 415 416 /* 417 * Normally this is low, ensure that it cannot be taken advantage of by 418 * bad user processes to cause excessive looping. 419 */ 420 if (attempt > 10) 421 return -EFAULT; 422 423 mmap_read_lock(mm->mm); 424 425 /* Ensure MM has tasks, cannot use after exit_mm() */ 426 if (refcount_read(&mm->tasks) == 0) { 427 ret = -ENOENT; 428 goto out; 429 } 430 431 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 432 &unlocked); 433 out: 434 mmap_read_unlock(mm->mm); 435 436 return ret; 437 } 438 439 static int user_event_enabler_write(struct user_event_mm *mm, 440 struct user_event_enabler *enabler, 441 bool fixup_fault, int *attempt); 442 443 static void user_event_enabler_fault_fixup(struct work_struct *work) 444 { 445 struct user_event_enabler_fault *fault = container_of( 446 work, struct user_event_enabler_fault, work); 447 struct user_event_enabler *enabler = fault->enabler; 448 struct user_event_mm *mm = fault->mm; 449 unsigned long uaddr = enabler->addr; 450 int attempt = fault->attempt; 451 int ret; 452 453 ret = user_event_mm_fault_in(mm, uaddr, attempt); 454 455 if (ret && ret != -ENOENT) { 456 struct user_event *user = enabler->event; 457 458 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n", 459 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user)); 460 } 461 462 /* Prevent state changes from racing */ 463 mutex_lock(&event_mutex); 464 465 /* User asked for enabler to be removed during fault */ 466 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) { 467 user_event_enabler_destroy(enabler, true); 468 goto out; 469 } 470 471 /* 472 * If we managed to get the page, re-issue the write. We do not 473 * want to get into a possible infinite loop, which is why we only 474 * attempt again directly if the page came in. If we couldn't get 475 * the page here, then we will try again the next time the event is 476 * enabled/disabled. 477 */ 478 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 479 480 if (!ret) { 481 mmap_read_lock(mm->mm); 482 user_event_enabler_write(mm, enabler, true, &attempt); 483 mmap_read_unlock(mm->mm); 484 } 485 out: 486 mutex_unlock(&event_mutex); 487 488 /* In all cases we no longer need the mm or fault */ 489 user_event_mm_put(mm); 490 kmem_cache_free(fault_cache, fault); 491 } 492 493 static bool user_event_enabler_queue_fault(struct user_event_mm *mm, 494 struct user_event_enabler *enabler, 495 int attempt) 496 { 497 struct user_event_enabler_fault *fault; 498 499 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN); 500 501 if (!fault) 502 return false; 503 504 INIT_WORK(&fault->work, user_event_enabler_fault_fixup); 505 fault->mm = user_event_mm_get(mm); 506 fault->enabler = enabler; 507 fault->attempt = attempt; 508 509 /* Don't try to queue in again while we have a pending fault */ 510 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 511 512 if (!schedule_work(&fault->work)) { 513 /* Allow another attempt later */ 514 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 515 516 user_event_mm_put(mm); 517 kmem_cache_free(fault_cache, fault); 518 519 return false; 520 } 521 522 return true; 523 } 524 525 static int user_event_enabler_write(struct user_event_mm *mm, 526 struct user_event_enabler *enabler, 527 bool fixup_fault, int *attempt) 528 { 529 unsigned long uaddr = enabler->addr; 530 unsigned long *ptr; 531 struct page *page; 532 void *kaddr; 533 int bit = ENABLE_BIT(enabler); 534 int ret; 535 536 lockdep_assert_held(&event_mutex); 537 mmap_assert_locked(mm->mm); 538 539 *attempt += 1; 540 541 /* Ensure MM has tasks, cannot use after exit_mm() */ 542 if (refcount_read(&mm->tasks) == 0) 543 return -ENOENT; 544 545 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) || 546 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)))) 547 return -EBUSY; 548 549 align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler)); 550 551 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT, 552 &page, NULL); 553 554 if (unlikely(ret <= 0)) { 555 if (!fixup_fault) 556 return -EFAULT; 557 558 if (!user_event_enabler_queue_fault(mm, enabler, *attempt)) 559 pr_warn("user_events: Unable to queue fault handler\n"); 560 561 return -EFAULT; 562 } 563 564 kaddr = kmap_local_page(page); 565 ptr = kaddr + (uaddr & ~PAGE_MASK); 566 567 /* Update bit atomically, user tracers must be atomic as well */ 568 if (enabler->event && enabler->event->status) 569 set_bit(bit, ptr); 570 else 571 clear_bit(bit, ptr); 572 573 kunmap_local(kaddr); 574 unpin_user_pages_dirty_lock(&page, 1, true); 575 576 return 0; 577 } 578 579 static bool user_event_enabler_exists(struct user_event_mm *mm, 580 unsigned long uaddr, unsigned char bit) 581 { 582 struct user_event_enabler *enabler; 583 584 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 585 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit) 586 return true; 587 } 588 589 return false; 590 } 591 592 static void user_event_enabler_update(struct user_event *user) 593 { 594 struct user_event_enabler *enabler; 595 struct user_event_mm *next; 596 struct user_event_mm *mm; 597 int attempt; 598 599 lockdep_assert_held(&event_mutex); 600 601 /* 602 * We need to build a one-shot list of all the mms that have an 603 * enabler for the user_event passed in. This list is only valid 604 * while holding the event_mutex. The only reason for this is due 605 * to the global mm list being RCU protected and we use methods 606 * which can wait (mmap_read_lock and pin_user_pages_remote). 607 * 608 * NOTE: user_event_mm_get_all() increments the ref count of each 609 * mm that is added to the list to prevent removal timing windows. 610 * We must always put each mm after they are used, which may wait. 611 */ 612 mm = user_event_mm_get_all(user); 613 614 while (mm) { 615 next = mm->next; 616 mmap_read_lock(mm->mm); 617 618 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 619 if (enabler->event == user) { 620 attempt = 0; 621 user_event_enabler_write(mm, enabler, true, &attempt); 622 } 623 } 624 625 mmap_read_unlock(mm->mm); 626 user_event_mm_put(mm); 627 mm = next; 628 } 629 } 630 631 static bool user_event_enabler_dup(struct user_event_enabler *orig, 632 struct user_event_mm *mm) 633 { 634 struct user_event_enabler *enabler; 635 636 /* Skip pending frees */ 637 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig)))) 638 return true; 639 640 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT); 641 642 if (!enabler) 643 return false; 644 645 enabler->event = user_event_get(orig->event); 646 enabler->addr = orig->addr; 647 648 /* Only dup part of value (ignore future flags, etc) */ 649 enabler->values = orig->values & ENABLE_VAL_DUP_MASK; 650 651 /* Enablers not exposed yet, RCU not required */ 652 list_add(&enabler->mm_enablers_link, &mm->enablers); 653 654 return true; 655 } 656 657 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm) 658 { 659 refcount_inc(&mm->refcnt); 660 661 return mm; 662 } 663 664 static struct user_event_mm *user_event_mm_get_all(struct user_event *user) 665 { 666 struct user_event_mm *found = NULL; 667 struct user_event_enabler *enabler; 668 struct user_event_mm *mm; 669 670 /* 671 * We use the mm->next field to build a one-shot list from the global 672 * RCU protected list. To build this list the event_mutex must be held. 673 * This lets us build a list without requiring allocs that could fail 674 * when user based events are most wanted for diagnostics. 675 */ 676 lockdep_assert_held(&event_mutex); 677 678 /* 679 * We do not want to block fork/exec while enablements are being 680 * updated, so we use RCU to walk the current tasks that have used 681 * user_events ABI for 1 or more events. Each enabler found in each 682 * task that matches the event being updated has a write to reflect 683 * the kernel state back into the process. Waits/faults must not occur 684 * during this. So we scan the list under RCU for all the mm that have 685 * the event within it. This is needed because mm_read_lock() can wait. 686 * Each user mm returned has a ref inc to handle remove RCU races. 687 */ 688 rcu_read_lock(); 689 690 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) { 691 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) { 692 if (enabler->event == user) { 693 mm->next = found; 694 found = user_event_mm_get(mm); 695 break; 696 } 697 } 698 } 699 700 rcu_read_unlock(); 701 702 return found; 703 } 704 705 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t) 706 { 707 struct user_event_mm *user_mm; 708 709 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT); 710 711 if (!user_mm) 712 return NULL; 713 714 user_mm->mm = t->mm; 715 INIT_LIST_HEAD(&user_mm->enablers); 716 refcount_set(&user_mm->refcnt, 1); 717 refcount_set(&user_mm->tasks, 1); 718 719 /* 720 * The lifetime of the memory descriptor can slightly outlast 721 * the task lifetime if a ref to the user_event_mm is taken 722 * between list_del_rcu() and call_rcu(). Therefore we need 723 * to take a reference to it to ensure it can live this long 724 * under this corner case. This can also occur in clones that 725 * outlast the parent. 726 */ 727 mmgrab(user_mm->mm); 728 729 return user_mm; 730 } 731 732 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t) 733 { 734 unsigned long flags; 735 736 spin_lock_irqsave(&user_event_mms_lock, flags); 737 list_add_rcu(&user_mm->mms_link, &user_event_mms); 738 spin_unlock_irqrestore(&user_event_mms_lock, flags); 739 740 t->user_event_mm = user_mm; 741 } 742 743 static struct user_event_mm *current_user_event_mm(void) 744 { 745 struct user_event_mm *user_mm = current->user_event_mm; 746 747 if (user_mm) 748 goto inc; 749 750 user_mm = user_event_mm_alloc(current); 751 752 if (!user_mm) 753 goto error; 754 755 user_event_mm_attach(user_mm, current); 756 inc: 757 refcount_inc(&user_mm->refcnt); 758 error: 759 return user_mm; 760 } 761 762 static void user_event_mm_destroy(struct user_event_mm *mm) 763 { 764 struct user_event_enabler *enabler, *next; 765 766 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) 767 user_event_enabler_destroy(enabler, false); 768 769 mmdrop(mm->mm); 770 kfree(mm); 771 } 772 773 static void user_event_mm_put(struct user_event_mm *mm) 774 { 775 if (mm && refcount_dec_and_test(&mm->refcnt)) 776 user_event_mm_destroy(mm); 777 } 778 779 static void delayed_user_event_mm_put(struct work_struct *work) 780 { 781 struct user_event_mm *mm; 782 783 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork); 784 user_event_mm_put(mm); 785 } 786 787 void user_event_mm_remove(struct task_struct *t) 788 { 789 struct user_event_mm *mm; 790 unsigned long flags; 791 792 might_sleep(); 793 794 mm = t->user_event_mm; 795 t->user_event_mm = NULL; 796 797 /* Clone will increment the tasks, only remove if last clone */ 798 if (!refcount_dec_and_test(&mm->tasks)) 799 return; 800 801 /* Remove the mm from the list, so it can no longer be enabled */ 802 spin_lock_irqsave(&user_event_mms_lock, flags); 803 list_del_rcu(&mm->mms_link); 804 spin_unlock_irqrestore(&user_event_mms_lock, flags); 805 806 /* 807 * We need to wait for currently occurring writes to stop within 808 * the mm. This is required since exit_mm() snaps the current rss 809 * stats and clears them. On the final mmdrop(), check_mm() will 810 * report a bug if these increment. 811 * 812 * All writes/pins are done under mmap_read lock, take the write 813 * lock to ensure in-progress faults have completed. Faults that 814 * are pending but yet to run will check the task count and skip 815 * the fault since the mm is going away. 816 */ 817 mmap_write_lock(mm->mm); 818 mmap_write_unlock(mm->mm); 819 820 /* 821 * Put for mm must be done after RCU delay to handle new refs in 822 * between the list_del_rcu() and now. This ensures any get refs 823 * during rcu_read_lock() are accounted for during list removal. 824 * 825 * CPU A | CPU B 826 * --------------------------------------------------------------- 827 * user_event_mm_remove() | rcu_read_lock(); 828 * list_del_rcu() | list_for_each_entry_rcu(); 829 * call_rcu() | refcount_inc(); 830 * . | rcu_read_unlock(); 831 * schedule_work() | . 832 * user_event_mm_put() | . 833 * 834 * mmdrop() cannot be called in the softirq context of call_rcu() 835 * so we use a work queue after call_rcu() to run within. 836 */ 837 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put); 838 queue_rcu_work(system_wq, &mm->put_rwork); 839 } 840 841 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm) 842 { 843 struct user_event_mm *mm = user_event_mm_alloc(t); 844 struct user_event_enabler *enabler; 845 846 if (!mm) 847 return; 848 849 rcu_read_lock(); 850 851 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) { 852 if (!user_event_enabler_dup(enabler, mm)) 853 goto error; 854 } 855 856 rcu_read_unlock(); 857 858 user_event_mm_attach(mm, t); 859 return; 860 error: 861 rcu_read_unlock(); 862 user_event_mm_destroy(mm); 863 } 864 865 static bool current_user_event_enabler_exists(unsigned long uaddr, 866 unsigned char bit) 867 { 868 struct user_event_mm *user_mm = current_user_event_mm(); 869 bool exists; 870 871 if (!user_mm) 872 return false; 873 874 exists = user_event_enabler_exists(user_mm, uaddr, bit); 875 876 user_event_mm_put(user_mm); 877 878 return exists; 879 } 880 881 static struct user_event_enabler 882 *user_event_enabler_create(struct user_reg *reg, struct user_event *user, 883 int *write_result) 884 { 885 struct user_event_enabler *enabler; 886 struct user_event_mm *user_mm; 887 unsigned long uaddr = (unsigned long)reg->enable_addr; 888 int attempt = 0; 889 890 user_mm = current_user_event_mm(); 891 892 if (!user_mm) 893 return NULL; 894 895 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT); 896 897 if (!enabler) 898 goto out; 899 900 enabler->event = user; 901 enabler->addr = uaddr; 902 enabler->values = reg->enable_bit; 903 904 #if BITS_PER_LONG >= 64 905 if (reg->enable_size == 4) 906 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler)); 907 #endif 908 909 retry: 910 /* Prevents state changes from racing with new enablers */ 911 mutex_lock(&event_mutex); 912 913 /* Attempt to reflect the current state within the process */ 914 mmap_read_lock(user_mm->mm); 915 *write_result = user_event_enabler_write(user_mm, enabler, false, 916 &attempt); 917 mmap_read_unlock(user_mm->mm); 918 919 /* 920 * If the write works, then we will track the enabler. A ref to the 921 * underlying user_event is held by the enabler to prevent it going 922 * away while the enabler is still in use by a process. The ref is 923 * removed when the enabler is destroyed. This means a event cannot 924 * be forcefully deleted from the system until all tasks using it 925 * exit or run exec(), which includes forks and clones. 926 */ 927 if (!*write_result) { 928 user_event_get(user); 929 list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers); 930 } 931 932 mutex_unlock(&event_mutex); 933 934 if (*write_result) { 935 /* Attempt to fault-in and retry if it worked */ 936 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 937 goto retry; 938 939 kfree(enabler); 940 enabler = NULL; 941 } 942 out: 943 user_event_mm_put(user_mm); 944 945 return enabler; 946 } 947 948 static __always_inline __must_check 949 bool user_event_last_ref(struct user_event *user) 950 { 951 int last = 0; 952 953 if (user->reg_flags & USER_EVENT_REG_PERSIST) 954 last = 1; 955 956 return refcount_read(&user->refcnt) == last; 957 } 958 959 static __always_inline __must_check 960 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i) 961 { 962 size_t ret; 963 964 pagefault_disable(); 965 966 ret = copy_from_iter_nocache(addr, bytes, i); 967 968 pagefault_enable(); 969 970 return ret; 971 } 972 973 static struct list_head *user_event_get_fields(struct trace_event_call *call) 974 { 975 struct user_event *user = (struct user_event *)call->data; 976 977 return &user->fields; 978 } 979 980 /* 981 * Parses a register command for user_events 982 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]] 983 * 984 * Example event named 'test' with a 20 char 'msg' field with an unsigned int 985 * 'id' field after: 986 * test char[20] msg;unsigned int id 987 * 988 * NOTE: Offsets are from the user data perspective, they are not from the 989 * trace_entry/buffer perspective. We automatically add the common properties 990 * sizes to the offset for the user. 991 * 992 * Upon success user_event has its ref count increased by 1. 993 */ 994 static int user_event_parse_cmd(struct user_event_group *group, 995 char *raw_command, struct user_event **newuser, 996 int reg_flags) 997 { 998 char *name = raw_command; 999 char *args = strpbrk(name, " "); 1000 char *flags; 1001 1002 if (args) 1003 *args++ = '\0'; 1004 1005 flags = strpbrk(name, ":"); 1006 1007 if (flags) 1008 *flags++ = '\0'; 1009 1010 return user_event_parse(group, name, args, flags, newuser, reg_flags); 1011 } 1012 1013 static int user_field_array_size(const char *type) 1014 { 1015 const char *start = strchr(type, '['); 1016 char val[8]; 1017 char *bracket; 1018 int size = 0; 1019 1020 if (start == NULL) 1021 return -EINVAL; 1022 1023 if (strscpy(val, start + 1, sizeof(val)) <= 0) 1024 return -EINVAL; 1025 1026 bracket = strchr(val, ']'); 1027 1028 if (!bracket) 1029 return -EINVAL; 1030 1031 *bracket = '\0'; 1032 1033 if (kstrtouint(val, 0, &size)) 1034 return -EINVAL; 1035 1036 if (size > MAX_FIELD_ARRAY_SIZE) 1037 return -EINVAL; 1038 1039 return size; 1040 } 1041 1042 static int user_field_size(const char *type) 1043 { 1044 /* long is not allowed from a user, since it's ambigious in size */ 1045 if (strcmp(type, "s64") == 0) 1046 return sizeof(s64); 1047 if (strcmp(type, "u64") == 0) 1048 return sizeof(u64); 1049 if (strcmp(type, "s32") == 0) 1050 return sizeof(s32); 1051 if (strcmp(type, "u32") == 0) 1052 return sizeof(u32); 1053 if (strcmp(type, "int") == 0) 1054 return sizeof(int); 1055 if (strcmp(type, "unsigned int") == 0) 1056 return sizeof(unsigned int); 1057 if (strcmp(type, "s16") == 0) 1058 return sizeof(s16); 1059 if (strcmp(type, "u16") == 0) 1060 return sizeof(u16); 1061 if (strcmp(type, "short") == 0) 1062 return sizeof(short); 1063 if (strcmp(type, "unsigned short") == 0) 1064 return sizeof(unsigned short); 1065 if (strcmp(type, "s8") == 0) 1066 return sizeof(s8); 1067 if (strcmp(type, "u8") == 0) 1068 return sizeof(u8); 1069 if (strcmp(type, "char") == 0) 1070 return sizeof(char); 1071 if (strcmp(type, "unsigned char") == 0) 1072 return sizeof(unsigned char); 1073 if (str_has_prefix(type, "char[")) 1074 return user_field_array_size(type); 1075 if (str_has_prefix(type, "unsigned char[")) 1076 return user_field_array_size(type); 1077 if (str_has_prefix(type, "__data_loc ")) 1078 return sizeof(u32); 1079 if (str_has_prefix(type, "__rel_loc ")) 1080 return sizeof(u32); 1081 1082 /* Uknown basic type, error */ 1083 return -EINVAL; 1084 } 1085 1086 static void user_event_destroy_validators(struct user_event *user) 1087 { 1088 struct user_event_validator *validator, *next; 1089 struct list_head *head = &user->validators; 1090 1091 list_for_each_entry_safe(validator, next, head, user_event_link) { 1092 list_del(&validator->user_event_link); 1093 kfree(validator); 1094 } 1095 } 1096 1097 static void user_event_destroy_fields(struct user_event *user) 1098 { 1099 struct ftrace_event_field *field, *next; 1100 struct list_head *head = &user->fields; 1101 1102 list_for_each_entry_safe(field, next, head, link) { 1103 list_del(&field->link); 1104 kfree(field); 1105 } 1106 } 1107 1108 static int user_event_add_field(struct user_event *user, const char *type, 1109 const char *name, int offset, int size, 1110 int is_signed, int filter_type) 1111 { 1112 struct user_event_validator *validator; 1113 struct ftrace_event_field *field; 1114 int validator_flags = 0; 1115 1116 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT); 1117 1118 if (!field) 1119 return -ENOMEM; 1120 1121 if (str_has_prefix(type, "__data_loc ")) 1122 goto add_validator; 1123 1124 if (str_has_prefix(type, "__rel_loc ")) { 1125 validator_flags |= VALIDATOR_REL; 1126 goto add_validator; 1127 } 1128 1129 goto add_field; 1130 1131 add_validator: 1132 if (strstr(type, "char") != NULL) 1133 validator_flags |= VALIDATOR_ENSURE_NULL; 1134 1135 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT); 1136 1137 if (!validator) { 1138 kfree(field); 1139 return -ENOMEM; 1140 } 1141 1142 validator->flags = validator_flags; 1143 validator->offset = offset; 1144 1145 /* Want sequential access when validating */ 1146 list_add_tail(&validator->user_event_link, &user->validators); 1147 1148 add_field: 1149 field->type = type; 1150 field->name = name; 1151 field->offset = offset; 1152 field->size = size; 1153 field->is_signed = is_signed; 1154 field->filter_type = filter_type; 1155 1156 if (filter_type == FILTER_OTHER) 1157 field->filter_type = filter_assign_type(type); 1158 1159 list_add(&field->link, &user->fields); 1160 1161 /* 1162 * Min size from user writes that are required, this does not include 1163 * the size of trace_entry (common fields). 1164 */ 1165 user->min_size = (offset + size) - sizeof(struct trace_entry); 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * Parses the values of a field within the description 1172 * Format: type name [size] 1173 */ 1174 static int user_event_parse_field(char *field, struct user_event *user, 1175 u32 *offset) 1176 { 1177 char *part, *type, *name; 1178 u32 depth = 0, saved_offset = *offset; 1179 int len, size = -EINVAL; 1180 bool is_struct = false; 1181 1182 field = skip_spaces(field); 1183 1184 if (*field == '\0') 1185 return 0; 1186 1187 /* Handle types that have a space within */ 1188 len = str_has_prefix(field, "unsigned "); 1189 if (len) 1190 goto skip_next; 1191 1192 len = str_has_prefix(field, "struct "); 1193 if (len) { 1194 is_struct = true; 1195 goto skip_next; 1196 } 1197 1198 len = str_has_prefix(field, "__data_loc unsigned "); 1199 if (len) 1200 goto skip_next; 1201 1202 len = str_has_prefix(field, "__data_loc "); 1203 if (len) 1204 goto skip_next; 1205 1206 len = str_has_prefix(field, "__rel_loc unsigned "); 1207 if (len) 1208 goto skip_next; 1209 1210 len = str_has_prefix(field, "__rel_loc "); 1211 if (len) 1212 goto skip_next; 1213 1214 goto parse; 1215 skip_next: 1216 type = field; 1217 field = strpbrk(field + len, " "); 1218 1219 if (field == NULL) 1220 return -EINVAL; 1221 1222 *field++ = '\0'; 1223 depth++; 1224 parse: 1225 name = NULL; 1226 1227 while ((part = strsep(&field, " ")) != NULL) { 1228 switch (depth++) { 1229 case FIELD_DEPTH_TYPE: 1230 type = part; 1231 break; 1232 case FIELD_DEPTH_NAME: 1233 name = part; 1234 break; 1235 case FIELD_DEPTH_SIZE: 1236 if (!is_struct) 1237 return -EINVAL; 1238 1239 if (kstrtou32(part, 10, &size)) 1240 return -EINVAL; 1241 break; 1242 default: 1243 return -EINVAL; 1244 } 1245 } 1246 1247 if (depth < FIELD_DEPTH_SIZE || !name) 1248 return -EINVAL; 1249 1250 if (depth == FIELD_DEPTH_SIZE) 1251 size = user_field_size(type); 1252 1253 if (size == 0) 1254 return -EINVAL; 1255 1256 if (size < 0) 1257 return size; 1258 1259 *offset = saved_offset + size; 1260 1261 return user_event_add_field(user, type, name, saved_offset, size, 1262 type[0] != 'u', FILTER_OTHER); 1263 } 1264 1265 static int user_event_parse_fields(struct user_event *user, char *args) 1266 { 1267 char *field; 1268 u32 offset = sizeof(struct trace_entry); 1269 int ret = -EINVAL; 1270 1271 if (args == NULL) 1272 return 0; 1273 1274 while ((field = strsep(&args, ";")) != NULL) { 1275 ret = user_event_parse_field(field, user, &offset); 1276 1277 if (ret) 1278 break; 1279 } 1280 1281 return ret; 1282 } 1283 1284 static struct trace_event_fields user_event_fields_array[1]; 1285 1286 static const char *user_field_format(const char *type) 1287 { 1288 if (strcmp(type, "s64") == 0) 1289 return "%lld"; 1290 if (strcmp(type, "u64") == 0) 1291 return "%llu"; 1292 if (strcmp(type, "s32") == 0) 1293 return "%d"; 1294 if (strcmp(type, "u32") == 0) 1295 return "%u"; 1296 if (strcmp(type, "int") == 0) 1297 return "%d"; 1298 if (strcmp(type, "unsigned int") == 0) 1299 return "%u"; 1300 if (strcmp(type, "s16") == 0) 1301 return "%d"; 1302 if (strcmp(type, "u16") == 0) 1303 return "%u"; 1304 if (strcmp(type, "short") == 0) 1305 return "%d"; 1306 if (strcmp(type, "unsigned short") == 0) 1307 return "%u"; 1308 if (strcmp(type, "s8") == 0) 1309 return "%d"; 1310 if (strcmp(type, "u8") == 0) 1311 return "%u"; 1312 if (strcmp(type, "char") == 0) 1313 return "%d"; 1314 if (strcmp(type, "unsigned char") == 0) 1315 return "%u"; 1316 if (strstr(type, "char[") != NULL) 1317 return "%s"; 1318 1319 /* Unknown, likely struct, allowed treat as 64-bit */ 1320 return "%llu"; 1321 } 1322 1323 static bool user_field_is_dyn_string(const char *type, const char **str_func) 1324 { 1325 if (str_has_prefix(type, "__data_loc ")) { 1326 *str_func = "__get_str"; 1327 goto check; 1328 } 1329 1330 if (str_has_prefix(type, "__rel_loc ")) { 1331 *str_func = "__get_rel_str"; 1332 goto check; 1333 } 1334 1335 return false; 1336 check: 1337 return strstr(type, "char") != NULL; 1338 } 1339 1340 #define LEN_OR_ZERO (len ? len - pos : 0) 1341 static int user_dyn_field_set_string(int argc, const char **argv, int *iout, 1342 char *buf, int len, bool *colon) 1343 { 1344 int pos = 0, i = *iout; 1345 1346 *colon = false; 1347 1348 for (; i < argc; ++i) { 1349 if (i != *iout) 1350 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1351 1352 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]); 1353 1354 if (strchr(argv[i], ';')) { 1355 ++i; 1356 *colon = true; 1357 break; 1358 } 1359 } 1360 1361 /* Actual set, advance i */ 1362 if (len != 0) 1363 *iout = i; 1364 1365 return pos + 1; 1366 } 1367 1368 static int user_field_set_string(struct ftrace_event_field *field, 1369 char *buf, int len, bool colon) 1370 { 1371 int pos = 0; 1372 1373 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type); 1374 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1375 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name); 1376 1377 if (str_has_prefix(field->type, "struct ")) 1378 pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size); 1379 1380 if (colon) 1381 pos += snprintf(buf + pos, LEN_OR_ZERO, ";"); 1382 1383 return pos + 1; 1384 } 1385 1386 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len) 1387 { 1388 struct ftrace_event_field *field; 1389 struct list_head *head = &user->fields; 1390 int pos = 0, depth = 0; 1391 const char *str_func; 1392 1393 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1394 1395 list_for_each_entry_reverse(field, head, link) { 1396 if (depth != 0) 1397 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1398 1399 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s", 1400 field->name, user_field_format(field->type)); 1401 1402 depth++; 1403 } 1404 1405 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1406 1407 list_for_each_entry_reverse(field, head, link) { 1408 if (user_field_is_dyn_string(field->type, &str_func)) 1409 pos += snprintf(buf + pos, LEN_OR_ZERO, 1410 ", %s(%s)", str_func, field->name); 1411 else 1412 pos += snprintf(buf + pos, LEN_OR_ZERO, 1413 ", REC->%s", field->name); 1414 } 1415 1416 return pos + 1; 1417 } 1418 #undef LEN_OR_ZERO 1419 1420 static int user_event_create_print_fmt(struct user_event *user) 1421 { 1422 char *print_fmt; 1423 int len; 1424 1425 len = user_event_set_print_fmt(user, NULL, 0); 1426 1427 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT); 1428 1429 if (!print_fmt) 1430 return -ENOMEM; 1431 1432 user_event_set_print_fmt(user, print_fmt, len); 1433 1434 user->call.print_fmt = print_fmt; 1435 1436 return 0; 1437 } 1438 1439 static enum print_line_t user_event_print_trace(struct trace_iterator *iter, 1440 int flags, 1441 struct trace_event *event) 1442 { 1443 return print_event_fields(iter, event); 1444 } 1445 1446 static struct trace_event_functions user_event_funcs = { 1447 .trace = user_event_print_trace, 1448 }; 1449 1450 static int user_event_set_call_visible(struct user_event *user, bool visible) 1451 { 1452 int ret; 1453 const struct cred *old_cred; 1454 struct cred *cred; 1455 1456 cred = prepare_creds(); 1457 1458 if (!cred) 1459 return -ENOMEM; 1460 1461 /* 1462 * While by default tracefs is locked down, systems can be configured 1463 * to allow user_event files to be less locked down. The extreme case 1464 * being "other" has read/write access to user_events_data/status. 1465 * 1466 * When not locked down, processes may not have permissions to 1467 * add/remove calls themselves to tracefs. We need to temporarily 1468 * switch to root file permission to allow for this scenario. 1469 */ 1470 cred->fsuid = GLOBAL_ROOT_UID; 1471 1472 old_cred = override_creds(cred); 1473 1474 if (visible) 1475 ret = trace_add_event_call(&user->call); 1476 else 1477 ret = trace_remove_event_call(&user->call); 1478 1479 revert_creds(old_cred); 1480 put_cred(cred); 1481 1482 return ret; 1483 } 1484 1485 static int destroy_user_event(struct user_event *user) 1486 { 1487 int ret = 0; 1488 1489 lockdep_assert_held(&event_mutex); 1490 1491 /* Must destroy fields before call removal */ 1492 user_event_destroy_fields(user); 1493 1494 ret = user_event_set_call_visible(user, false); 1495 1496 if (ret) 1497 return ret; 1498 1499 dyn_event_remove(&user->devent); 1500 hash_del(&user->node); 1501 1502 user_event_destroy_validators(user); 1503 1504 /* If we have different names, both must be freed */ 1505 if (EVENT_NAME(user) != EVENT_TP_NAME(user)) 1506 kfree(EVENT_TP_NAME(user)); 1507 1508 kfree(user->call.print_fmt); 1509 kfree(EVENT_NAME(user)); 1510 kfree(user); 1511 1512 if (current_user_events > 0) 1513 current_user_events--; 1514 else 1515 pr_alert("BUG: Bad current_user_events\n"); 1516 1517 return ret; 1518 } 1519 1520 static struct user_event *find_user_event(struct user_event_group *group, 1521 char *name, int argc, const char **argv, 1522 u32 flags, u32 *outkey) 1523 { 1524 struct user_event *user; 1525 u32 key = user_event_key(name); 1526 1527 *outkey = key; 1528 1529 hash_for_each_possible(group->register_table, user, node, key) { 1530 /* 1531 * Single-format events shouldn't return multi-format 1532 * events. Callers expect the underlying tracepoint to match 1533 * the name exactly in these cases. Only check like-formats. 1534 */ 1535 if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags)) 1536 continue; 1537 1538 if (strcmp(EVENT_NAME(user), name)) 1539 continue; 1540 1541 if (user_fields_match(user, argc, argv)) 1542 return user_event_get(user); 1543 1544 /* Scan others if this is a multi-format event */ 1545 if (EVENT_MULTI_FORMAT(flags)) 1546 continue; 1547 1548 return ERR_PTR(-EADDRINUSE); 1549 } 1550 1551 return NULL; 1552 } 1553 1554 static int user_event_validate(struct user_event *user, void *data, int len) 1555 { 1556 struct list_head *head = &user->validators; 1557 struct user_event_validator *validator; 1558 void *pos, *end = data + len; 1559 u32 loc, offset, size; 1560 1561 list_for_each_entry(validator, head, user_event_link) { 1562 pos = data + validator->offset; 1563 1564 /* Already done min_size check, no bounds check here */ 1565 loc = *(u32 *)pos; 1566 offset = loc & 0xffff; 1567 size = loc >> 16; 1568 1569 if (likely(validator->flags & VALIDATOR_REL)) 1570 pos += offset + sizeof(loc); 1571 else 1572 pos = data + offset; 1573 1574 pos += size; 1575 1576 if (unlikely(pos > end)) 1577 return -EFAULT; 1578 1579 if (likely(validator->flags & VALIDATOR_ENSURE_NULL)) 1580 if (unlikely(*(char *)(pos - 1) != '\0')) 1581 return -EFAULT; 1582 } 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * Writes the user supplied payload out to a trace file. 1589 */ 1590 static void user_event_ftrace(struct user_event *user, struct iov_iter *i, 1591 void *tpdata, bool *faulted) 1592 { 1593 struct trace_event_file *file; 1594 struct trace_entry *entry; 1595 struct trace_event_buffer event_buffer; 1596 size_t size = sizeof(*entry) + i->count; 1597 1598 file = (struct trace_event_file *)tpdata; 1599 1600 if (!file || 1601 !(file->flags & EVENT_FILE_FL_ENABLED) || 1602 trace_trigger_soft_disabled(file)) 1603 return; 1604 1605 /* Allocates and fills trace_entry, + 1 of this is data payload */ 1606 entry = trace_event_buffer_reserve(&event_buffer, file, size); 1607 1608 if (unlikely(!entry)) 1609 return; 1610 1611 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i))) 1612 goto discard; 1613 1614 if (!list_empty(&user->validators) && 1615 unlikely(user_event_validate(user, entry, size))) 1616 goto discard; 1617 1618 trace_event_buffer_commit(&event_buffer); 1619 1620 return; 1621 discard: 1622 *faulted = true; 1623 __trace_event_discard_commit(event_buffer.buffer, 1624 event_buffer.event); 1625 } 1626 1627 #ifdef CONFIG_PERF_EVENTS 1628 /* 1629 * Writes the user supplied payload out to perf ring buffer. 1630 */ 1631 static void user_event_perf(struct user_event *user, struct iov_iter *i, 1632 void *tpdata, bool *faulted) 1633 { 1634 struct hlist_head *perf_head; 1635 1636 perf_head = this_cpu_ptr(user->call.perf_events); 1637 1638 if (perf_head && !hlist_empty(perf_head)) { 1639 struct trace_entry *perf_entry; 1640 struct pt_regs *regs; 1641 size_t size = sizeof(*perf_entry) + i->count; 1642 int context; 1643 1644 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8), 1645 ®s, &context); 1646 1647 if (unlikely(!perf_entry)) 1648 return; 1649 1650 perf_fetch_caller_regs(regs); 1651 1652 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i))) 1653 goto discard; 1654 1655 if (!list_empty(&user->validators) && 1656 unlikely(user_event_validate(user, perf_entry, size))) 1657 goto discard; 1658 1659 perf_trace_buf_submit(perf_entry, size, context, 1660 user->call.event.type, 1, regs, 1661 perf_head, NULL); 1662 1663 return; 1664 discard: 1665 *faulted = true; 1666 perf_swevent_put_recursion_context(context); 1667 } 1668 } 1669 #endif 1670 1671 /* 1672 * Update the enabled bit among all user processes. 1673 */ 1674 static void update_enable_bit_for(struct user_event *user) 1675 { 1676 struct tracepoint *tp = &user->tracepoint; 1677 char status = 0; 1678 1679 if (atomic_read(&tp->key.enabled) > 0) { 1680 struct tracepoint_func *probe_func_ptr; 1681 user_event_func_t probe_func; 1682 1683 rcu_read_lock_sched(); 1684 1685 probe_func_ptr = rcu_dereference_sched(tp->funcs); 1686 1687 if (probe_func_ptr) { 1688 do { 1689 probe_func = probe_func_ptr->func; 1690 1691 if (probe_func == user_event_ftrace) 1692 status |= EVENT_STATUS_FTRACE; 1693 #ifdef CONFIG_PERF_EVENTS 1694 else if (probe_func == user_event_perf) 1695 status |= EVENT_STATUS_PERF; 1696 #endif 1697 else 1698 status |= EVENT_STATUS_OTHER; 1699 } while ((++probe_func_ptr)->func); 1700 } 1701 1702 rcu_read_unlock_sched(); 1703 } 1704 1705 user->status = status; 1706 1707 user_event_enabler_update(user); 1708 } 1709 1710 /* 1711 * Register callback for our events from tracing sub-systems. 1712 */ 1713 static int user_event_reg(struct trace_event_call *call, 1714 enum trace_reg type, 1715 void *data) 1716 { 1717 struct user_event *user = (struct user_event *)call->data; 1718 int ret = 0; 1719 1720 if (!user) 1721 return -ENOENT; 1722 1723 switch (type) { 1724 case TRACE_REG_REGISTER: 1725 ret = tracepoint_probe_register(call->tp, 1726 call->class->probe, 1727 data); 1728 if (!ret) 1729 goto inc; 1730 break; 1731 1732 case TRACE_REG_UNREGISTER: 1733 tracepoint_probe_unregister(call->tp, 1734 call->class->probe, 1735 data); 1736 goto dec; 1737 1738 #ifdef CONFIG_PERF_EVENTS 1739 case TRACE_REG_PERF_REGISTER: 1740 ret = tracepoint_probe_register(call->tp, 1741 call->class->perf_probe, 1742 data); 1743 if (!ret) 1744 goto inc; 1745 break; 1746 1747 case TRACE_REG_PERF_UNREGISTER: 1748 tracepoint_probe_unregister(call->tp, 1749 call->class->perf_probe, 1750 data); 1751 goto dec; 1752 1753 case TRACE_REG_PERF_OPEN: 1754 case TRACE_REG_PERF_CLOSE: 1755 case TRACE_REG_PERF_ADD: 1756 case TRACE_REG_PERF_DEL: 1757 break; 1758 #endif 1759 } 1760 1761 return ret; 1762 inc: 1763 user_event_get(user); 1764 update_enable_bit_for(user); 1765 return 0; 1766 dec: 1767 update_enable_bit_for(user); 1768 user_event_put(user, true); 1769 return 0; 1770 } 1771 1772 static int user_event_create(const char *raw_command) 1773 { 1774 struct user_event_group *group; 1775 struct user_event *user; 1776 char *name; 1777 int ret; 1778 1779 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX)) 1780 return -ECANCELED; 1781 1782 raw_command += USER_EVENTS_PREFIX_LEN; 1783 raw_command = skip_spaces(raw_command); 1784 1785 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT); 1786 1787 if (!name) 1788 return -ENOMEM; 1789 1790 group = current_user_event_group(); 1791 1792 if (!group) { 1793 kfree(name); 1794 return -ENOENT; 1795 } 1796 1797 mutex_lock(&group->reg_mutex); 1798 1799 /* Dyn events persist, otherwise they would cleanup immediately */ 1800 ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST); 1801 1802 if (!ret) 1803 user_event_put(user, false); 1804 1805 mutex_unlock(&group->reg_mutex); 1806 1807 if (ret) 1808 kfree(name); 1809 1810 return ret; 1811 } 1812 1813 static int user_event_show(struct seq_file *m, struct dyn_event *ev) 1814 { 1815 struct user_event *user = container_of(ev, struct user_event, devent); 1816 struct ftrace_event_field *field; 1817 struct list_head *head; 1818 int depth = 0; 1819 1820 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user)); 1821 1822 head = trace_get_fields(&user->call); 1823 1824 list_for_each_entry_reverse(field, head, link) { 1825 if (depth == 0) 1826 seq_puts(m, " "); 1827 else 1828 seq_puts(m, "; "); 1829 1830 seq_printf(m, "%s %s", field->type, field->name); 1831 1832 if (str_has_prefix(field->type, "struct ")) 1833 seq_printf(m, " %d", field->size); 1834 1835 depth++; 1836 } 1837 1838 seq_puts(m, "\n"); 1839 1840 return 0; 1841 } 1842 1843 static bool user_event_is_busy(struct dyn_event *ev) 1844 { 1845 struct user_event *user = container_of(ev, struct user_event, devent); 1846 1847 return !user_event_last_ref(user); 1848 } 1849 1850 static int user_event_free(struct dyn_event *ev) 1851 { 1852 struct user_event *user = container_of(ev, struct user_event, devent); 1853 1854 if (!user_event_last_ref(user)) 1855 return -EBUSY; 1856 1857 if (!user_event_capable(user->reg_flags)) 1858 return -EPERM; 1859 1860 return destroy_user_event(user); 1861 } 1862 1863 static bool user_field_match(struct ftrace_event_field *field, int argc, 1864 const char **argv, int *iout) 1865 { 1866 char *field_name = NULL, *dyn_field_name = NULL; 1867 bool colon = false, match = false; 1868 int dyn_len, len; 1869 1870 if (*iout >= argc) 1871 return false; 1872 1873 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1874 0, &colon); 1875 1876 len = user_field_set_string(field, field_name, 0, colon); 1877 1878 if (dyn_len != len) 1879 return false; 1880 1881 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL); 1882 field_name = kmalloc(len, GFP_KERNEL); 1883 1884 if (!dyn_field_name || !field_name) 1885 goto out; 1886 1887 user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1888 dyn_len, &colon); 1889 1890 user_field_set_string(field, field_name, len, colon); 1891 1892 match = strcmp(dyn_field_name, field_name) == 0; 1893 out: 1894 kfree(dyn_field_name); 1895 kfree(field_name); 1896 1897 return match; 1898 } 1899 1900 static bool user_fields_match(struct user_event *user, int argc, 1901 const char **argv) 1902 { 1903 struct ftrace_event_field *field; 1904 struct list_head *head = &user->fields; 1905 int i = 0; 1906 1907 if (argc == 0) 1908 return list_empty(head); 1909 1910 list_for_each_entry_reverse(field, head, link) { 1911 if (!user_field_match(field, argc, argv, &i)) 1912 return false; 1913 } 1914 1915 if (i != argc) 1916 return false; 1917 1918 return true; 1919 } 1920 1921 static bool user_event_match(const char *system, const char *event, 1922 int argc, const char **argv, struct dyn_event *ev) 1923 { 1924 struct user_event *user = container_of(ev, struct user_event, devent); 1925 bool match; 1926 1927 match = strcmp(EVENT_NAME(user), event) == 0; 1928 1929 if (match && system) { 1930 match = strcmp(system, user->group->system_name) == 0 || 1931 strcmp(system, user->group->system_multi_name) == 0; 1932 } 1933 1934 if (match) 1935 match = user_fields_match(user, argc, argv); 1936 1937 return match; 1938 } 1939 1940 static struct dyn_event_operations user_event_dops = { 1941 .create = user_event_create, 1942 .show = user_event_show, 1943 .is_busy = user_event_is_busy, 1944 .free = user_event_free, 1945 .match = user_event_match, 1946 }; 1947 1948 static int user_event_trace_register(struct user_event *user) 1949 { 1950 int ret; 1951 1952 ret = register_trace_event(&user->call.event); 1953 1954 if (!ret) 1955 return -ENODEV; 1956 1957 ret = user_event_set_call_visible(user, true); 1958 1959 if (ret) 1960 unregister_trace_event(&user->call.event); 1961 1962 return ret; 1963 } 1964 1965 static int user_event_set_tp_name(struct user_event *user) 1966 { 1967 lockdep_assert_held(&user->group->reg_mutex); 1968 1969 if (EVENT_MULTI_FORMAT(user->reg_flags)) { 1970 char *multi_name; 1971 1972 multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx", 1973 user->reg_name, user->group->multi_id); 1974 1975 if (!multi_name) 1976 return -ENOMEM; 1977 1978 user->call.name = multi_name; 1979 user->tracepoint.name = multi_name; 1980 1981 /* Inc to ensure unique multi-event name next time */ 1982 user->group->multi_id++; 1983 } else { 1984 /* Non Multi-format uses register name */ 1985 user->call.name = user->reg_name; 1986 user->tracepoint.name = user->reg_name; 1987 } 1988 1989 return 0; 1990 } 1991 1992 /* 1993 * Parses the event name, arguments and flags then registers if successful. 1994 * The name buffer lifetime is owned by this method for success cases only. 1995 * Upon success the returned user_event has its ref count increased by 1. 1996 */ 1997 static int user_event_parse(struct user_event_group *group, char *name, 1998 char *args, char *flags, 1999 struct user_event **newuser, int reg_flags) 2000 { 2001 struct user_event *user; 2002 char **argv = NULL; 2003 int argc = 0; 2004 int ret; 2005 u32 key; 2006 2007 /* Currently don't support any text based flags */ 2008 if (flags != NULL) 2009 return -EINVAL; 2010 2011 if (!user_event_capable(reg_flags)) 2012 return -EPERM; 2013 2014 if (args) { 2015 argv = argv_split(GFP_KERNEL, args, &argc); 2016 2017 if (!argv) 2018 return -ENOMEM; 2019 } 2020 2021 /* Prevent dyn_event from racing */ 2022 mutex_lock(&event_mutex); 2023 user = find_user_event(group, name, argc, (const char **)argv, 2024 reg_flags, &key); 2025 mutex_unlock(&event_mutex); 2026 2027 if (argv) 2028 argv_free(argv); 2029 2030 if (IS_ERR(user)) 2031 return PTR_ERR(user); 2032 2033 if (user) { 2034 *newuser = user; 2035 /* 2036 * Name is allocated by caller, free it since it already exists. 2037 * Caller only worries about failure cases for freeing. 2038 */ 2039 kfree(name); 2040 2041 return 0; 2042 } 2043 2044 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT); 2045 2046 if (!user) 2047 return -ENOMEM; 2048 2049 INIT_LIST_HEAD(&user->class.fields); 2050 INIT_LIST_HEAD(&user->fields); 2051 INIT_LIST_HEAD(&user->validators); 2052 2053 user->group = group; 2054 user->reg_name = name; 2055 user->reg_flags = reg_flags; 2056 2057 ret = user_event_set_tp_name(user); 2058 2059 if (ret) 2060 goto put_user; 2061 2062 ret = user_event_parse_fields(user, args); 2063 2064 if (ret) 2065 goto put_user; 2066 2067 ret = user_event_create_print_fmt(user); 2068 2069 if (ret) 2070 goto put_user; 2071 2072 user->call.data = user; 2073 user->call.class = &user->class; 2074 user->call.flags = TRACE_EVENT_FL_TRACEPOINT; 2075 user->call.tp = &user->tracepoint; 2076 user->call.event.funcs = &user_event_funcs; 2077 2078 if (EVENT_MULTI_FORMAT(user->reg_flags)) 2079 user->class.system = group->system_multi_name; 2080 else 2081 user->class.system = group->system_name; 2082 2083 user->class.fields_array = user_event_fields_array; 2084 user->class.get_fields = user_event_get_fields; 2085 user->class.reg = user_event_reg; 2086 user->class.probe = user_event_ftrace; 2087 #ifdef CONFIG_PERF_EVENTS 2088 user->class.perf_probe = user_event_perf; 2089 #endif 2090 2091 mutex_lock(&event_mutex); 2092 2093 if (current_user_events >= max_user_events) { 2094 ret = -EMFILE; 2095 goto put_user_lock; 2096 } 2097 2098 ret = user_event_trace_register(user); 2099 2100 if (ret) 2101 goto put_user_lock; 2102 2103 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 2104 /* Ensure we track self ref and caller ref (2) */ 2105 refcount_set(&user->refcnt, 2); 2106 } else { 2107 /* Ensure we track only caller ref (1) */ 2108 refcount_set(&user->refcnt, 1); 2109 } 2110 2111 dyn_event_init(&user->devent, &user_event_dops); 2112 dyn_event_add(&user->devent, &user->call); 2113 hash_add(group->register_table, &user->node, key); 2114 current_user_events++; 2115 2116 mutex_unlock(&event_mutex); 2117 2118 *newuser = user; 2119 return 0; 2120 put_user_lock: 2121 mutex_unlock(&event_mutex); 2122 put_user: 2123 user_event_destroy_fields(user); 2124 user_event_destroy_validators(user); 2125 kfree(user->call.print_fmt); 2126 2127 /* Caller frees reg_name on error, but not multi-name */ 2128 if (EVENT_NAME(user) != EVENT_TP_NAME(user)) 2129 kfree(EVENT_TP_NAME(user)); 2130 2131 kfree(user); 2132 return ret; 2133 } 2134 2135 /* 2136 * Deletes previously created events if they are no longer being used. 2137 */ 2138 static int delete_user_event(struct user_event_group *group, char *name) 2139 { 2140 struct user_event *user; 2141 struct hlist_node *tmp; 2142 u32 key = user_event_key(name); 2143 int ret = -ENOENT; 2144 2145 /* Attempt to delete all event(s) with the name passed in */ 2146 hash_for_each_possible_safe(group->register_table, user, tmp, node, key) { 2147 if (strcmp(EVENT_NAME(user), name)) 2148 continue; 2149 2150 if (!user_event_last_ref(user)) 2151 return -EBUSY; 2152 2153 if (!user_event_capable(user->reg_flags)) 2154 return -EPERM; 2155 2156 ret = destroy_user_event(user); 2157 2158 if (ret) 2159 goto out; 2160 } 2161 out: 2162 return ret; 2163 } 2164 2165 /* 2166 * Validates the user payload and writes via iterator. 2167 */ 2168 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i) 2169 { 2170 struct user_event_file_info *info = file->private_data; 2171 struct user_event_refs *refs; 2172 struct user_event *user = NULL; 2173 struct tracepoint *tp; 2174 ssize_t ret = i->count; 2175 int idx; 2176 2177 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx))) 2178 return -EFAULT; 2179 2180 if (idx < 0) 2181 return -EINVAL; 2182 2183 rcu_read_lock_sched(); 2184 2185 refs = rcu_dereference_sched(info->refs); 2186 2187 /* 2188 * The refs->events array is protected by RCU, and new items may be 2189 * added. But the user retrieved from indexing into the events array 2190 * shall be immutable while the file is opened. 2191 */ 2192 if (likely(refs && idx < refs->count)) 2193 user = refs->events[idx]; 2194 2195 rcu_read_unlock_sched(); 2196 2197 if (unlikely(user == NULL)) 2198 return -ENOENT; 2199 2200 if (unlikely(i->count < user->min_size)) 2201 return -EINVAL; 2202 2203 tp = &user->tracepoint; 2204 2205 /* 2206 * It's possible key.enabled disables after this check, however 2207 * we don't mind if a few events are included in this condition. 2208 */ 2209 if (likely(atomic_read(&tp->key.enabled) > 0)) { 2210 struct tracepoint_func *probe_func_ptr; 2211 user_event_func_t probe_func; 2212 struct iov_iter copy; 2213 void *tpdata; 2214 bool faulted; 2215 2216 if (unlikely(fault_in_iov_iter_readable(i, i->count))) 2217 return -EFAULT; 2218 2219 faulted = false; 2220 2221 rcu_read_lock_sched(); 2222 2223 probe_func_ptr = rcu_dereference_sched(tp->funcs); 2224 2225 if (probe_func_ptr) { 2226 do { 2227 copy = *i; 2228 probe_func = probe_func_ptr->func; 2229 tpdata = probe_func_ptr->data; 2230 probe_func(user, ©, tpdata, &faulted); 2231 } while ((++probe_func_ptr)->func); 2232 } 2233 2234 rcu_read_unlock_sched(); 2235 2236 if (unlikely(faulted)) 2237 return -EFAULT; 2238 } else 2239 return -EBADF; 2240 2241 return ret; 2242 } 2243 2244 static int user_events_open(struct inode *node, struct file *file) 2245 { 2246 struct user_event_group *group; 2247 struct user_event_file_info *info; 2248 2249 group = current_user_event_group(); 2250 2251 if (!group) 2252 return -ENOENT; 2253 2254 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT); 2255 2256 if (!info) 2257 return -ENOMEM; 2258 2259 info->group = group; 2260 2261 file->private_data = info; 2262 2263 return 0; 2264 } 2265 2266 static ssize_t user_events_write(struct file *file, const char __user *ubuf, 2267 size_t count, loff_t *ppos) 2268 { 2269 struct iov_iter i; 2270 2271 if (unlikely(*ppos != 0)) 2272 return -EFAULT; 2273 2274 if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i))) 2275 return -EFAULT; 2276 2277 return user_events_write_core(file, &i); 2278 } 2279 2280 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i) 2281 { 2282 return user_events_write_core(kp->ki_filp, i); 2283 } 2284 2285 static int user_events_ref_add(struct user_event_file_info *info, 2286 struct user_event *user) 2287 { 2288 struct user_event_group *group = info->group; 2289 struct user_event_refs *refs, *new_refs; 2290 int i, size, count = 0; 2291 2292 refs = rcu_dereference_protected(info->refs, 2293 lockdep_is_held(&group->reg_mutex)); 2294 2295 if (refs) { 2296 count = refs->count; 2297 2298 for (i = 0; i < count; ++i) 2299 if (refs->events[i] == user) 2300 return i; 2301 } 2302 2303 size = struct_size(refs, events, count + 1); 2304 2305 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT); 2306 2307 if (!new_refs) 2308 return -ENOMEM; 2309 2310 new_refs->count = count + 1; 2311 2312 for (i = 0; i < count; ++i) 2313 new_refs->events[i] = refs->events[i]; 2314 2315 new_refs->events[i] = user_event_get(user); 2316 2317 rcu_assign_pointer(info->refs, new_refs); 2318 2319 if (refs) 2320 kfree_rcu(refs, rcu); 2321 2322 return i; 2323 } 2324 2325 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg) 2326 { 2327 u32 size; 2328 long ret; 2329 2330 ret = get_user(size, &ureg->size); 2331 2332 if (ret) 2333 return ret; 2334 2335 if (size > PAGE_SIZE) 2336 return -E2BIG; 2337 2338 if (size < offsetofend(struct user_reg, write_index)) 2339 return -EINVAL; 2340 2341 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2342 2343 if (ret) 2344 return ret; 2345 2346 /* Ensure only valid flags */ 2347 if (kreg->flags & ~(USER_EVENT_REG_MAX-1)) 2348 return -EINVAL; 2349 2350 /* Ensure supported size */ 2351 switch (kreg->enable_size) { 2352 case 4: 2353 /* 32-bit */ 2354 break; 2355 #if BITS_PER_LONG >= 64 2356 case 8: 2357 /* 64-bit */ 2358 break; 2359 #endif 2360 default: 2361 return -EINVAL; 2362 } 2363 2364 /* Ensure natural alignment */ 2365 if (kreg->enable_addr % kreg->enable_size) 2366 return -EINVAL; 2367 2368 /* Ensure bit range for size */ 2369 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1) 2370 return -EINVAL; 2371 2372 /* Ensure accessible */ 2373 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr, 2374 kreg->enable_size)) 2375 return -EFAULT; 2376 2377 kreg->size = size; 2378 2379 return 0; 2380 } 2381 2382 /* 2383 * Registers a user_event on behalf of a user process. 2384 */ 2385 static long user_events_ioctl_reg(struct user_event_file_info *info, 2386 unsigned long uarg) 2387 { 2388 struct user_reg __user *ureg = (struct user_reg __user *)uarg; 2389 struct user_reg reg; 2390 struct user_event *user; 2391 struct user_event_enabler *enabler; 2392 char *name; 2393 long ret; 2394 int write_result; 2395 2396 ret = user_reg_get(ureg, ®); 2397 2398 if (ret) 2399 return ret; 2400 2401 /* 2402 * Prevent users from using the same address and bit multiple times 2403 * within the same mm address space. This can cause unexpected behavior 2404 * for user processes that is far easier to debug if this is explictly 2405 * an error upon registering. 2406 */ 2407 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr, 2408 reg.enable_bit)) 2409 return -EADDRINUSE; 2410 2411 name = strndup_user((const char __user *)(uintptr_t)reg.name_args, 2412 MAX_EVENT_DESC); 2413 2414 if (IS_ERR(name)) { 2415 ret = PTR_ERR(name); 2416 return ret; 2417 } 2418 2419 ret = user_event_parse_cmd(info->group, name, &user, reg.flags); 2420 2421 if (ret) { 2422 kfree(name); 2423 return ret; 2424 } 2425 2426 ret = user_events_ref_add(info, user); 2427 2428 /* No longer need parse ref, ref_add either worked or not */ 2429 user_event_put(user, false); 2430 2431 /* Positive number is index and valid */ 2432 if (ret < 0) 2433 return ret; 2434 2435 /* 2436 * user_events_ref_add succeeded: 2437 * At this point we have a user_event, it's lifetime is bound by the 2438 * reference count, not this file. If anything fails, the user_event 2439 * still has a reference until the file is released. During release 2440 * any remaining references (from user_events_ref_add) are decremented. 2441 * 2442 * Attempt to create an enabler, which too has a lifetime tied in the 2443 * same way for the event. Once the task that caused the enabler to be 2444 * created exits or issues exec() then the enablers it has created 2445 * will be destroyed and the ref to the event will be decremented. 2446 */ 2447 enabler = user_event_enabler_create(®, user, &write_result); 2448 2449 if (!enabler) 2450 return -ENOMEM; 2451 2452 /* Write failed/faulted, give error back to caller */ 2453 if (write_result) 2454 return write_result; 2455 2456 put_user((u32)ret, &ureg->write_index); 2457 2458 return 0; 2459 } 2460 2461 /* 2462 * Deletes a user_event on behalf of a user process. 2463 */ 2464 static long user_events_ioctl_del(struct user_event_file_info *info, 2465 unsigned long uarg) 2466 { 2467 void __user *ubuf = (void __user *)uarg; 2468 char *name; 2469 long ret; 2470 2471 name = strndup_user(ubuf, MAX_EVENT_DESC); 2472 2473 if (IS_ERR(name)) 2474 return PTR_ERR(name); 2475 2476 /* event_mutex prevents dyn_event from racing */ 2477 mutex_lock(&event_mutex); 2478 ret = delete_user_event(info->group, name); 2479 mutex_unlock(&event_mutex); 2480 2481 kfree(name); 2482 2483 return ret; 2484 } 2485 2486 static long user_unreg_get(struct user_unreg __user *ureg, 2487 struct user_unreg *kreg) 2488 { 2489 u32 size; 2490 long ret; 2491 2492 ret = get_user(size, &ureg->size); 2493 2494 if (ret) 2495 return ret; 2496 2497 if (size > PAGE_SIZE) 2498 return -E2BIG; 2499 2500 if (size < offsetofend(struct user_unreg, disable_addr)) 2501 return -EINVAL; 2502 2503 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2504 2505 /* Ensure no reserved values, since we don't support any yet */ 2506 if (kreg->__reserved || kreg->__reserved2) 2507 return -EINVAL; 2508 2509 return ret; 2510 } 2511 2512 static int user_event_mm_clear_bit(struct user_event_mm *user_mm, 2513 unsigned long uaddr, unsigned char bit, 2514 unsigned long flags) 2515 { 2516 struct user_event_enabler enabler; 2517 int result; 2518 int attempt = 0; 2519 2520 memset(&enabler, 0, sizeof(enabler)); 2521 enabler.addr = uaddr; 2522 enabler.values = bit | flags; 2523 retry: 2524 /* Prevents state changes from racing with new enablers */ 2525 mutex_lock(&event_mutex); 2526 2527 /* Force the bit to be cleared, since no event is attached */ 2528 mmap_read_lock(user_mm->mm); 2529 result = user_event_enabler_write(user_mm, &enabler, false, &attempt); 2530 mmap_read_unlock(user_mm->mm); 2531 2532 mutex_unlock(&event_mutex); 2533 2534 if (result) { 2535 /* Attempt to fault-in and retry if it worked */ 2536 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 2537 goto retry; 2538 } 2539 2540 return result; 2541 } 2542 2543 /* 2544 * Unregisters an enablement address/bit within a task/user mm. 2545 */ 2546 static long user_events_ioctl_unreg(unsigned long uarg) 2547 { 2548 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg; 2549 struct user_event_mm *mm = current->user_event_mm; 2550 struct user_event_enabler *enabler, *next; 2551 struct user_unreg reg; 2552 unsigned long flags; 2553 long ret; 2554 2555 ret = user_unreg_get(ureg, ®); 2556 2557 if (ret) 2558 return ret; 2559 2560 if (!mm) 2561 return -ENOENT; 2562 2563 flags = 0; 2564 ret = -ENOENT; 2565 2566 /* 2567 * Flags freeing and faulting are used to indicate if the enabler is in 2568 * use at all. When faulting is set a page-fault is occurring asyncly. 2569 * During async fault if freeing is set, the enabler will be destroyed. 2570 * If no async fault is happening, we can destroy it now since we hold 2571 * the event_mutex during these checks. 2572 */ 2573 mutex_lock(&event_mutex); 2574 2575 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) { 2576 if (enabler->addr == reg.disable_addr && 2577 ENABLE_BIT(enabler) == reg.disable_bit) { 2578 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)); 2579 2580 /* We must keep compat flags for the clear */ 2581 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK; 2582 2583 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler))) 2584 user_event_enabler_destroy(enabler, true); 2585 2586 /* Removed at least one */ 2587 ret = 0; 2588 } 2589 } 2590 2591 mutex_unlock(&event_mutex); 2592 2593 /* Ensure bit is now cleared for user, regardless of event status */ 2594 if (!ret) 2595 ret = user_event_mm_clear_bit(mm, reg.disable_addr, 2596 reg.disable_bit, flags); 2597 2598 return ret; 2599 } 2600 2601 /* 2602 * Handles the ioctl from user mode to register or alter operations. 2603 */ 2604 static long user_events_ioctl(struct file *file, unsigned int cmd, 2605 unsigned long uarg) 2606 { 2607 struct user_event_file_info *info = file->private_data; 2608 struct user_event_group *group = info->group; 2609 long ret = -ENOTTY; 2610 2611 switch (cmd) { 2612 case DIAG_IOCSREG: 2613 mutex_lock(&group->reg_mutex); 2614 ret = user_events_ioctl_reg(info, uarg); 2615 mutex_unlock(&group->reg_mutex); 2616 break; 2617 2618 case DIAG_IOCSDEL: 2619 mutex_lock(&group->reg_mutex); 2620 ret = user_events_ioctl_del(info, uarg); 2621 mutex_unlock(&group->reg_mutex); 2622 break; 2623 2624 case DIAG_IOCSUNREG: 2625 mutex_lock(&group->reg_mutex); 2626 ret = user_events_ioctl_unreg(uarg); 2627 mutex_unlock(&group->reg_mutex); 2628 break; 2629 } 2630 2631 return ret; 2632 } 2633 2634 /* 2635 * Handles the final close of the file from user mode. 2636 */ 2637 static int user_events_release(struct inode *node, struct file *file) 2638 { 2639 struct user_event_file_info *info = file->private_data; 2640 struct user_event_group *group; 2641 struct user_event_refs *refs; 2642 int i; 2643 2644 if (!info) 2645 return -EINVAL; 2646 2647 group = info->group; 2648 2649 /* 2650 * Ensure refs cannot change under any situation by taking the 2651 * register mutex during the final freeing of the references. 2652 */ 2653 mutex_lock(&group->reg_mutex); 2654 2655 refs = info->refs; 2656 2657 if (!refs) 2658 goto out; 2659 2660 /* 2661 * The lifetime of refs has reached an end, it's tied to this file. 2662 * The underlying user_events are ref counted, and cannot be freed. 2663 * After this decrement, the user_events may be freed elsewhere. 2664 */ 2665 for (i = 0; i < refs->count; ++i) 2666 user_event_put(refs->events[i], false); 2667 2668 out: 2669 file->private_data = NULL; 2670 2671 mutex_unlock(&group->reg_mutex); 2672 2673 kfree(refs); 2674 kfree(info); 2675 2676 return 0; 2677 } 2678 2679 static const struct file_operations user_data_fops = { 2680 .open = user_events_open, 2681 .write = user_events_write, 2682 .write_iter = user_events_write_iter, 2683 .unlocked_ioctl = user_events_ioctl, 2684 .release = user_events_release, 2685 }; 2686 2687 static void *user_seq_start(struct seq_file *m, loff_t *pos) 2688 { 2689 if (*pos) 2690 return NULL; 2691 2692 return (void *)1; 2693 } 2694 2695 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos) 2696 { 2697 ++*pos; 2698 return NULL; 2699 } 2700 2701 static void user_seq_stop(struct seq_file *m, void *p) 2702 { 2703 } 2704 2705 static int user_seq_show(struct seq_file *m, void *p) 2706 { 2707 struct user_event_group *group = m->private; 2708 struct user_event *user; 2709 char status; 2710 int i, active = 0, busy = 0; 2711 2712 if (!group) 2713 return -EINVAL; 2714 2715 mutex_lock(&group->reg_mutex); 2716 2717 hash_for_each(group->register_table, i, user, node) { 2718 status = user->status; 2719 2720 seq_printf(m, "%s", EVENT_TP_NAME(user)); 2721 2722 if (status != 0) 2723 seq_puts(m, " #"); 2724 2725 if (status != 0) { 2726 seq_puts(m, " Used by"); 2727 if (status & EVENT_STATUS_FTRACE) 2728 seq_puts(m, " ftrace"); 2729 if (status & EVENT_STATUS_PERF) 2730 seq_puts(m, " perf"); 2731 if (status & EVENT_STATUS_OTHER) 2732 seq_puts(m, " other"); 2733 busy++; 2734 } 2735 2736 seq_puts(m, "\n"); 2737 active++; 2738 } 2739 2740 mutex_unlock(&group->reg_mutex); 2741 2742 seq_puts(m, "\n"); 2743 seq_printf(m, "Active: %d\n", active); 2744 seq_printf(m, "Busy: %d\n", busy); 2745 2746 return 0; 2747 } 2748 2749 static const struct seq_operations user_seq_ops = { 2750 .start = user_seq_start, 2751 .next = user_seq_next, 2752 .stop = user_seq_stop, 2753 .show = user_seq_show, 2754 }; 2755 2756 static int user_status_open(struct inode *node, struct file *file) 2757 { 2758 struct user_event_group *group; 2759 int ret; 2760 2761 group = current_user_event_group(); 2762 2763 if (!group) 2764 return -ENOENT; 2765 2766 ret = seq_open(file, &user_seq_ops); 2767 2768 if (!ret) { 2769 /* Chain group to seq_file */ 2770 struct seq_file *m = file->private_data; 2771 2772 m->private = group; 2773 } 2774 2775 return ret; 2776 } 2777 2778 static const struct file_operations user_status_fops = { 2779 .open = user_status_open, 2780 .read = seq_read, 2781 .llseek = seq_lseek, 2782 .release = seq_release, 2783 }; 2784 2785 /* 2786 * Creates a set of tracefs files to allow user mode interactions. 2787 */ 2788 static int create_user_tracefs(void) 2789 { 2790 struct dentry *edata, *emmap; 2791 2792 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE, 2793 NULL, NULL, &user_data_fops); 2794 2795 if (!edata) { 2796 pr_warn("Could not create tracefs 'user_events_data' entry\n"); 2797 goto err; 2798 } 2799 2800 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ, 2801 NULL, NULL, &user_status_fops); 2802 2803 if (!emmap) { 2804 tracefs_remove(edata); 2805 pr_warn("Could not create tracefs 'user_events_mmap' entry\n"); 2806 goto err; 2807 } 2808 2809 return 0; 2810 err: 2811 return -ENODEV; 2812 } 2813 2814 static int set_max_user_events_sysctl(struct ctl_table *table, int write, 2815 void *buffer, size_t *lenp, loff_t *ppos) 2816 { 2817 int ret; 2818 2819 mutex_lock(&event_mutex); 2820 2821 ret = proc_douintvec(table, write, buffer, lenp, ppos); 2822 2823 mutex_unlock(&event_mutex); 2824 2825 return ret; 2826 } 2827 2828 static struct ctl_table user_event_sysctls[] = { 2829 { 2830 .procname = "user_events_max", 2831 .data = &max_user_events, 2832 .maxlen = sizeof(unsigned int), 2833 .mode = 0644, 2834 .proc_handler = set_max_user_events_sysctl, 2835 }, 2836 {} 2837 }; 2838 2839 static int __init trace_events_user_init(void) 2840 { 2841 int ret; 2842 2843 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0); 2844 2845 if (!fault_cache) 2846 return -ENOMEM; 2847 2848 init_group = user_event_group_create(); 2849 2850 if (!init_group) { 2851 kmem_cache_destroy(fault_cache); 2852 return -ENOMEM; 2853 } 2854 2855 ret = create_user_tracefs(); 2856 2857 if (ret) { 2858 pr_warn("user_events could not register with tracefs\n"); 2859 user_event_group_destroy(init_group); 2860 kmem_cache_destroy(fault_cache); 2861 init_group = NULL; 2862 return ret; 2863 } 2864 2865 if (dyn_event_register(&user_event_dops)) 2866 pr_warn("user_events could not register with dyn_events\n"); 2867 2868 register_sysctl_init("kernel", user_event_sysctls); 2869 2870 return 0; 2871 } 2872 2873 fs_initcall(trace_events_user_init); 2874