xref: /linux/kernel/trace/trace_events_user.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2021, Microsoft Corporation.
4  *
5  * Authors:
6  *   Beau Belgrave <beaub@linux.microsoft.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/cdev.h>
11 #include <linux/hashtable.h>
12 #include <linux/list.h>
13 #include <linux/io.h>
14 #include <linux/uio.h>
15 #include <linux/ioctl.h>
16 #include <linux/jhash.h>
17 #include <linux/refcount.h>
18 #include <linux/trace_events.h>
19 #include <linux/tracefs.h>
20 #include <linux/types.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/user_events.h>
25 #include "trace_dynevent.h"
26 #include "trace_output.h"
27 #include "trace.h"
28 
29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30 
31 #define FIELD_DEPTH_TYPE 0
32 #define FIELD_DEPTH_NAME 1
33 #define FIELD_DEPTH_SIZE 2
34 
35 /* Limit how long of an event name plus args within the subsystem. */
36 #define MAX_EVENT_DESC 512
37 #define EVENT_NAME(user_event) ((user_event)->reg_name)
38 #define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name)
39 #define MAX_FIELD_ARRAY_SIZE 1024
40 
41 /*
42  * Internal bits (kernel side only) to keep track of connected probes:
43  * These are used when status is requested in text form about an event. These
44  * bits are compared against an internal byte on the event to determine which
45  * probes to print out to the user.
46  *
47  * These do not reflect the mapped bytes between the user and kernel space.
48  */
49 #define EVENT_STATUS_FTRACE BIT(0)
50 #define EVENT_STATUS_PERF BIT(1)
51 #define EVENT_STATUS_OTHER BIT(7)
52 
53 /*
54  * Stores the system name, tables, and locks for a group of events. This
55  * allows isolation for events by various means.
56  */
57 struct user_event_group {
58 	char			*system_name;
59 	char			*system_multi_name;
60 	struct hlist_node	node;
61 	struct mutex		reg_mutex;
62 	DECLARE_HASHTABLE(register_table, 8);
63 	/* ID that moves forward within the group for multi-event names */
64 	u64			multi_id;
65 };
66 
67 /* Group for init_user_ns mapping, top-most group */
68 static struct user_event_group *init_group;
69 
70 /* Max allowed events for the whole system */
71 static unsigned int max_user_events = 32768;
72 
73 /* Current number of events on the whole system */
74 static unsigned int current_user_events;
75 
76 /*
77  * Stores per-event properties, as users register events
78  * within a file a user_event might be created if it does not
79  * already exist. These are globally used and their lifetime
80  * is tied to the refcnt member. These cannot go away until the
81  * refcnt reaches one.
82  */
83 struct user_event {
84 	struct user_event_group		*group;
85 	char				*reg_name;
86 	struct tracepoint		tracepoint;
87 	struct trace_event_call		call;
88 	struct trace_event_class	class;
89 	struct dyn_event		devent;
90 	struct hlist_node		node;
91 	struct list_head		fields;
92 	struct list_head		validators;
93 	struct work_struct		put_work;
94 	refcount_t			refcnt;
95 	int				min_size;
96 	int				reg_flags;
97 	char				status;
98 };
99 
100 /*
101  * Stores per-mm/event properties that enable an address to be
102  * updated properly for each task. As tasks are forked, we use
103  * these to track enablement sites that are tied to an event.
104  */
105 struct user_event_enabler {
106 	struct list_head	mm_enablers_link;
107 	struct user_event	*event;
108 	unsigned long		addr;
109 
110 	/* Track enable bit, flags, etc. Aligned for bitops. */
111 	unsigned long		values;
112 };
113 
114 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
115 #define ENABLE_VAL_BIT_MASK 0x3F
116 
117 /* Bit 6 is for faulting status of enablement */
118 #define ENABLE_VAL_FAULTING_BIT 6
119 
120 /* Bit 7 is for freeing status of enablement */
121 #define ENABLE_VAL_FREEING_BIT 7
122 
123 /* Bit 8 is for marking 32-bit on 64-bit */
124 #define ENABLE_VAL_32_ON_64_BIT 8
125 
126 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
127 
128 /* Only duplicate the bit and compat values */
129 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
130 
131 #define ENABLE_BITOPS(e) (&(e)->values)
132 
133 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
134 
135 #define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT)
136 
137 /* Used for asynchronous faulting in of pages */
138 struct user_event_enabler_fault {
139 	struct work_struct		work;
140 	struct user_event_mm		*mm;
141 	struct user_event_enabler	*enabler;
142 	int				attempt;
143 };
144 
145 static struct kmem_cache *fault_cache;
146 
147 /* Global list of memory descriptors using user_events */
148 static LIST_HEAD(user_event_mms);
149 static DEFINE_SPINLOCK(user_event_mms_lock);
150 
151 /*
152  * Stores per-file events references, as users register events
153  * within a file this structure is modified and freed via RCU.
154  * The lifetime of this struct is tied to the lifetime of the file.
155  * These are not shared and only accessible by the file that created it.
156  */
157 struct user_event_refs {
158 	struct rcu_head		rcu;
159 	int			count;
160 	struct user_event	*events[];
161 };
162 
163 struct user_event_file_info {
164 	struct user_event_group	*group;
165 	struct user_event_refs	*refs;
166 };
167 
168 #define VALIDATOR_ENSURE_NULL (1 << 0)
169 #define VALIDATOR_REL (1 << 1)
170 
171 struct user_event_validator {
172 	struct list_head	user_event_link;
173 	int			offset;
174 	int			flags;
175 };
176 
177 static inline void align_addr_bit(unsigned long *addr, int *bit,
178 				  unsigned long *flags)
179 {
180 	if (IS_ALIGNED(*addr, sizeof(long))) {
181 #ifdef __BIG_ENDIAN
182 		/* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
183 		if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
184 			*bit += 32;
185 #endif
186 		return;
187 	}
188 
189 	*addr = ALIGN_DOWN(*addr, sizeof(long));
190 
191 	/*
192 	 * We only support 32 and 64 bit values. The only time we need
193 	 * to align is a 32 bit value on a 64 bit kernel, which on LE
194 	 * is always 32 bits, and on BE requires no change when unaligned.
195 	 */
196 #ifdef __LITTLE_ENDIAN
197 	*bit += 32;
198 #endif
199 }
200 
201 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
202 				   void *tpdata, bool *faulted);
203 
204 static int user_event_parse(struct user_event_group *group, char *name,
205 			    char *args, char *flags,
206 			    struct user_event **newuser, int reg_flags);
207 
208 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
209 static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
210 static void user_event_mm_put(struct user_event_mm *mm);
211 static int destroy_user_event(struct user_event *user);
212 static bool user_fields_match(struct user_event *user, int argc,
213 			      const char **argv);
214 
215 static u32 user_event_key(char *name)
216 {
217 	return jhash(name, strlen(name), 0);
218 }
219 
220 static bool user_event_capable(u16 reg_flags)
221 {
222 	/* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
223 	if (reg_flags & USER_EVENT_REG_PERSIST) {
224 		if (!perfmon_capable())
225 			return false;
226 	}
227 
228 	return true;
229 }
230 
231 static struct user_event *user_event_get(struct user_event *user)
232 {
233 	refcount_inc(&user->refcnt);
234 
235 	return user;
236 }
237 
238 static void delayed_destroy_user_event(struct work_struct *work)
239 {
240 	struct user_event *user = container_of(
241 		work, struct user_event, put_work);
242 
243 	mutex_lock(&event_mutex);
244 
245 	if (!refcount_dec_and_test(&user->refcnt))
246 		goto out;
247 
248 	if (destroy_user_event(user)) {
249 		/*
250 		 * The only reason this would fail here is if we cannot
251 		 * update the visibility of the event. In this case the
252 		 * event stays in the hashtable, waiting for someone to
253 		 * attempt to delete it later.
254 		 */
255 		pr_warn("user_events: Unable to delete event\n");
256 		refcount_set(&user->refcnt, 1);
257 	}
258 out:
259 	mutex_unlock(&event_mutex);
260 }
261 
262 static void user_event_put(struct user_event *user, bool locked)
263 {
264 	bool delete;
265 
266 	if (unlikely(!user))
267 		return;
268 
269 	/*
270 	 * When the event is not enabled for auto-delete there will always
271 	 * be at least 1 reference to the event. During the event creation
272 	 * we initially set the refcnt to 2 to achieve this. In those cases
273 	 * the caller must acquire event_mutex and after decrement check if
274 	 * the refcnt is 1, meaning this is the last reference. When auto
275 	 * delete is enabled, there will only be 1 ref, IE: refcnt will be
276 	 * only set to 1 during creation to allow the below checks to go
277 	 * through upon the last put. The last put must always be done with
278 	 * the event mutex held.
279 	 */
280 	if (!locked) {
281 		lockdep_assert_not_held(&event_mutex);
282 		delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
283 	} else {
284 		lockdep_assert_held(&event_mutex);
285 		delete = refcount_dec_and_test(&user->refcnt);
286 	}
287 
288 	if (!delete)
289 		return;
290 
291 	/*
292 	 * We now have the event_mutex in all cases, which ensures that
293 	 * no new references will be taken until event_mutex is released.
294 	 * New references come through find_user_event(), which requires
295 	 * the event_mutex to be held.
296 	 */
297 
298 	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
299 		/* We should not get here when persist flag is set */
300 		pr_alert("BUG: Auto-delete engaged on persistent event\n");
301 		goto out;
302 	}
303 
304 	/*
305 	 * Unfortunately we have to attempt the actual destroy in a work
306 	 * queue. This is because not all cases handle a trace_event_call
307 	 * being removed within the class->reg() operation for unregister.
308 	 */
309 	INIT_WORK(&user->put_work, delayed_destroy_user_event);
310 
311 	/*
312 	 * Since the event is still in the hashtable, we have to re-inc
313 	 * the ref count to 1. This count will be decremented and checked
314 	 * in the work queue to ensure it's still the last ref. This is
315 	 * needed because a user-process could register the same event in
316 	 * between the time of event_mutex release and the work queue
317 	 * running the delayed destroy. If we removed the item now from
318 	 * the hashtable, this would result in a timing window where a
319 	 * user process would fail a register because the trace_event_call
320 	 * register would fail in the tracing layers.
321 	 */
322 	refcount_set(&user->refcnt, 1);
323 
324 	if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
325 		/*
326 		 * If we fail we must wait for an admin to attempt delete or
327 		 * another register/close of the event, whichever is first.
328 		 */
329 		pr_warn("user_events: Unable to queue delayed destroy\n");
330 	}
331 out:
332 	/* Ensure if we didn't have event_mutex before we unlock it */
333 	if (!locked)
334 		mutex_unlock(&event_mutex);
335 }
336 
337 static void user_event_group_destroy(struct user_event_group *group)
338 {
339 	kfree(group->system_name);
340 	kfree(group->system_multi_name);
341 	kfree(group);
342 }
343 
344 static char *user_event_group_system_name(void)
345 {
346 	char *system_name;
347 	int len = sizeof(USER_EVENTS_SYSTEM) + 1;
348 
349 	system_name = kmalloc(len, GFP_KERNEL);
350 
351 	if (!system_name)
352 		return NULL;
353 
354 	snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
355 
356 	return system_name;
357 }
358 
359 static char *user_event_group_system_multi_name(void)
360 {
361 	return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL);
362 }
363 
364 static struct user_event_group *current_user_event_group(void)
365 {
366 	return init_group;
367 }
368 
369 static struct user_event_group *user_event_group_create(void)
370 {
371 	struct user_event_group *group;
372 
373 	group = kzalloc(sizeof(*group), GFP_KERNEL);
374 
375 	if (!group)
376 		return NULL;
377 
378 	group->system_name = user_event_group_system_name();
379 
380 	if (!group->system_name)
381 		goto error;
382 
383 	group->system_multi_name = user_event_group_system_multi_name();
384 
385 	if (!group->system_multi_name)
386 		goto error;
387 
388 	mutex_init(&group->reg_mutex);
389 	hash_init(group->register_table);
390 
391 	return group;
392 error:
393 	if (group)
394 		user_event_group_destroy(group);
395 
396 	return NULL;
397 };
398 
399 static void user_event_enabler_destroy(struct user_event_enabler *enabler,
400 				       bool locked)
401 {
402 	list_del_rcu(&enabler->mm_enablers_link);
403 
404 	/* No longer tracking the event via the enabler */
405 	user_event_put(enabler->event, locked);
406 
407 	kfree(enabler);
408 }
409 
410 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
411 				  int attempt)
412 {
413 	bool unlocked;
414 	int ret;
415 
416 	/*
417 	 * Normally this is low, ensure that it cannot be taken advantage of by
418 	 * bad user processes to cause excessive looping.
419 	 */
420 	if (attempt > 10)
421 		return -EFAULT;
422 
423 	mmap_read_lock(mm->mm);
424 
425 	/* Ensure MM has tasks, cannot use after exit_mm() */
426 	if (refcount_read(&mm->tasks) == 0) {
427 		ret = -ENOENT;
428 		goto out;
429 	}
430 
431 	ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
432 			       &unlocked);
433 out:
434 	mmap_read_unlock(mm->mm);
435 
436 	return ret;
437 }
438 
439 static int user_event_enabler_write(struct user_event_mm *mm,
440 				    struct user_event_enabler *enabler,
441 				    bool fixup_fault, int *attempt);
442 
443 static void user_event_enabler_fault_fixup(struct work_struct *work)
444 {
445 	struct user_event_enabler_fault *fault = container_of(
446 		work, struct user_event_enabler_fault, work);
447 	struct user_event_enabler *enabler = fault->enabler;
448 	struct user_event_mm *mm = fault->mm;
449 	unsigned long uaddr = enabler->addr;
450 	int attempt = fault->attempt;
451 	int ret;
452 
453 	ret = user_event_mm_fault_in(mm, uaddr, attempt);
454 
455 	if (ret && ret != -ENOENT) {
456 		struct user_event *user = enabler->event;
457 
458 		pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
459 			mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
460 	}
461 
462 	/* Prevent state changes from racing */
463 	mutex_lock(&event_mutex);
464 
465 	/* User asked for enabler to be removed during fault */
466 	if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
467 		user_event_enabler_destroy(enabler, true);
468 		goto out;
469 	}
470 
471 	/*
472 	 * If we managed to get the page, re-issue the write. We do not
473 	 * want to get into a possible infinite loop, which is why we only
474 	 * attempt again directly if the page came in. If we couldn't get
475 	 * the page here, then we will try again the next time the event is
476 	 * enabled/disabled.
477 	 */
478 	clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
479 
480 	if (!ret) {
481 		mmap_read_lock(mm->mm);
482 		user_event_enabler_write(mm, enabler, true, &attempt);
483 		mmap_read_unlock(mm->mm);
484 	}
485 out:
486 	mutex_unlock(&event_mutex);
487 
488 	/* In all cases we no longer need the mm or fault */
489 	user_event_mm_put(mm);
490 	kmem_cache_free(fault_cache, fault);
491 }
492 
493 static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
494 					   struct user_event_enabler *enabler,
495 					   int attempt)
496 {
497 	struct user_event_enabler_fault *fault;
498 
499 	fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
500 
501 	if (!fault)
502 		return false;
503 
504 	INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
505 	fault->mm = user_event_mm_get(mm);
506 	fault->enabler = enabler;
507 	fault->attempt = attempt;
508 
509 	/* Don't try to queue in again while we have a pending fault */
510 	set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
511 
512 	if (!schedule_work(&fault->work)) {
513 		/* Allow another attempt later */
514 		clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
515 
516 		user_event_mm_put(mm);
517 		kmem_cache_free(fault_cache, fault);
518 
519 		return false;
520 	}
521 
522 	return true;
523 }
524 
525 static int user_event_enabler_write(struct user_event_mm *mm,
526 				    struct user_event_enabler *enabler,
527 				    bool fixup_fault, int *attempt)
528 {
529 	unsigned long uaddr = enabler->addr;
530 	unsigned long *ptr;
531 	struct page *page;
532 	void *kaddr;
533 	int bit = ENABLE_BIT(enabler);
534 	int ret;
535 
536 	lockdep_assert_held(&event_mutex);
537 	mmap_assert_locked(mm->mm);
538 
539 	*attempt += 1;
540 
541 	/* Ensure MM has tasks, cannot use after exit_mm() */
542 	if (refcount_read(&mm->tasks) == 0)
543 		return -ENOENT;
544 
545 	if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
546 		     test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
547 		return -EBUSY;
548 
549 	align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
550 
551 	ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
552 				    &page, NULL);
553 
554 	if (unlikely(ret <= 0)) {
555 		if (!fixup_fault)
556 			return -EFAULT;
557 
558 		if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
559 			pr_warn("user_events: Unable to queue fault handler\n");
560 
561 		return -EFAULT;
562 	}
563 
564 	kaddr = kmap_local_page(page);
565 	ptr = kaddr + (uaddr & ~PAGE_MASK);
566 
567 	/* Update bit atomically, user tracers must be atomic as well */
568 	if (enabler->event && enabler->event->status)
569 		set_bit(bit, ptr);
570 	else
571 		clear_bit(bit, ptr);
572 
573 	kunmap_local(kaddr);
574 	unpin_user_pages_dirty_lock(&page, 1, true);
575 
576 	return 0;
577 }
578 
579 static bool user_event_enabler_exists(struct user_event_mm *mm,
580 				      unsigned long uaddr, unsigned char bit)
581 {
582 	struct user_event_enabler *enabler;
583 
584 	list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
585 		if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
586 			return true;
587 	}
588 
589 	return false;
590 }
591 
592 static void user_event_enabler_update(struct user_event *user)
593 {
594 	struct user_event_enabler *enabler;
595 	struct user_event_mm *next;
596 	struct user_event_mm *mm;
597 	int attempt;
598 
599 	lockdep_assert_held(&event_mutex);
600 
601 	/*
602 	 * We need to build a one-shot list of all the mms that have an
603 	 * enabler for the user_event passed in. This list is only valid
604 	 * while holding the event_mutex. The only reason for this is due
605 	 * to the global mm list being RCU protected and we use methods
606 	 * which can wait (mmap_read_lock and pin_user_pages_remote).
607 	 *
608 	 * NOTE: user_event_mm_get_all() increments the ref count of each
609 	 * mm that is added to the list to prevent removal timing windows.
610 	 * We must always put each mm after they are used, which may wait.
611 	 */
612 	mm = user_event_mm_get_all(user);
613 
614 	while (mm) {
615 		next = mm->next;
616 		mmap_read_lock(mm->mm);
617 
618 		list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
619 			if (enabler->event == user) {
620 				attempt = 0;
621 				user_event_enabler_write(mm, enabler, true, &attempt);
622 			}
623 		}
624 
625 		mmap_read_unlock(mm->mm);
626 		user_event_mm_put(mm);
627 		mm = next;
628 	}
629 }
630 
631 static bool user_event_enabler_dup(struct user_event_enabler *orig,
632 				   struct user_event_mm *mm)
633 {
634 	struct user_event_enabler *enabler;
635 
636 	/* Skip pending frees */
637 	if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
638 		return true;
639 
640 	enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
641 
642 	if (!enabler)
643 		return false;
644 
645 	enabler->event = user_event_get(orig->event);
646 	enabler->addr = orig->addr;
647 
648 	/* Only dup part of value (ignore future flags, etc) */
649 	enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
650 
651 	/* Enablers not exposed yet, RCU not required */
652 	list_add(&enabler->mm_enablers_link, &mm->enablers);
653 
654 	return true;
655 }
656 
657 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
658 {
659 	refcount_inc(&mm->refcnt);
660 
661 	return mm;
662 }
663 
664 static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
665 {
666 	struct user_event_mm *found = NULL;
667 	struct user_event_enabler *enabler;
668 	struct user_event_mm *mm;
669 
670 	/*
671 	 * We use the mm->next field to build a one-shot list from the global
672 	 * RCU protected list. To build this list the event_mutex must be held.
673 	 * This lets us build a list without requiring allocs that could fail
674 	 * when user based events are most wanted for diagnostics.
675 	 */
676 	lockdep_assert_held(&event_mutex);
677 
678 	/*
679 	 * We do not want to block fork/exec while enablements are being
680 	 * updated, so we use RCU to walk the current tasks that have used
681 	 * user_events ABI for 1 or more events. Each enabler found in each
682 	 * task that matches the event being updated has a write to reflect
683 	 * the kernel state back into the process. Waits/faults must not occur
684 	 * during this. So we scan the list under RCU for all the mm that have
685 	 * the event within it. This is needed because mm_read_lock() can wait.
686 	 * Each user mm returned has a ref inc to handle remove RCU races.
687 	 */
688 	rcu_read_lock();
689 
690 	list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
691 		list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
692 			if (enabler->event == user) {
693 				mm->next = found;
694 				found = user_event_mm_get(mm);
695 				break;
696 			}
697 		}
698 	}
699 
700 	rcu_read_unlock();
701 
702 	return found;
703 }
704 
705 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
706 {
707 	struct user_event_mm *user_mm;
708 
709 	user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
710 
711 	if (!user_mm)
712 		return NULL;
713 
714 	user_mm->mm = t->mm;
715 	INIT_LIST_HEAD(&user_mm->enablers);
716 	refcount_set(&user_mm->refcnt, 1);
717 	refcount_set(&user_mm->tasks, 1);
718 
719 	/*
720 	 * The lifetime of the memory descriptor can slightly outlast
721 	 * the task lifetime if a ref to the user_event_mm is taken
722 	 * between list_del_rcu() and call_rcu(). Therefore we need
723 	 * to take a reference to it to ensure it can live this long
724 	 * under this corner case. This can also occur in clones that
725 	 * outlast the parent.
726 	 */
727 	mmgrab(user_mm->mm);
728 
729 	return user_mm;
730 }
731 
732 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
733 {
734 	unsigned long flags;
735 
736 	spin_lock_irqsave(&user_event_mms_lock, flags);
737 	list_add_rcu(&user_mm->mms_link, &user_event_mms);
738 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
739 
740 	t->user_event_mm = user_mm;
741 }
742 
743 static struct user_event_mm *current_user_event_mm(void)
744 {
745 	struct user_event_mm *user_mm = current->user_event_mm;
746 
747 	if (user_mm)
748 		goto inc;
749 
750 	user_mm = user_event_mm_alloc(current);
751 
752 	if (!user_mm)
753 		goto error;
754 
755 	user_event_mm_attach(user_mm, current);
756 inc:
757 	refcount_inc(&user_mm->refcnt);
758 error:
759 	return user_mm;
760 }
761 
762 static void user_event_mm_destroy(struct user_event_mm *mm)
763 {
764 	struct user_event_enabler *enabler, *next;
765 
766 	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
767 		user_event_enabler_destroy(enabler, false);
768 
769 	mmdrop(mm->mm);
770 	kfree(mm);
771 }
772 
773 static void user_event_mm_put(struct user_event_mm *mm)
774 {
775 	if (mm && refcount_dec_and_test(&mm->refcnt))
776 		user_event_mm_destroy(mm);
777 }
778 
779 static void delayed_user_event_mm_put(struct work_struct *work)
780 {
781 	struct user_event_mm *mm;
782 
783 	mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
784 	user_event_mm_put(mm);
785 }
786 
787 void user_event_mm_remove(struct task_struct *t)
788 {
789 	struct user_event_mm *mm;
790 	unsigned long flags;
791 
792 	might_sleep();
793 
794 	mm = t->user_event_mm;
795 	t->user_event_mm = NULL;
796 
797 	/* Clone will increment the tasks, only remove if last clone */
798 	if (!refcount_dec_and_test(&mm->tasks))
799 		return;
800 
801 	/* Remove the mm from the list, so it can no longer be enabled */
802 	spin_lock_irqsave(&user_event_mms_lock, flags);
803 	list_del_rcu(&mm->mms_link);
804 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
805 
806 	/*
807 	 * We need to wait for currently occurring writes to stop within
808 	 * the mm. This is required since exit_mm() snaps the current rss
809 	 * stats and clears them. On the final mmdrop(), check_mm() will
810 	 * report a bug if these increment.
811 	 *
812 	 * All writes/pins are done under mmap_read lock, take the write
813 	 * lock to ensure in-progress faults have completed. Faults that
814 	 * are pending but yet to run will check the task count and skip
815 	 * the fault since the mm is going away.
816 	 */
817 	mmap_write_lock(mm->mm);
818 	mmap_write_unlock(mm->mm);
819 
820 	/*
821 	 * Put for mm must be done after RCU delay to handle new refs in
822 	 * between the list_del_rcu() and now. This ensures any get refs
823 	 * during rcu_read_lock() are accounted for during list removal.
824 	 *
825 	 * CPU A			|	CPU B
826 	 * ---------------------------------------------------------------
827 	 * user_event_mm_remove()	|	rcu_read_lock();
828 	 * list_del_rcu()		|	list_for_each_entry_rcu();
829 	 * call_rcu()			|	refcount_inc();
830 	 * .				|	rcu_read_unlock();
831 	 * schedule_work()		|	.
832 	 * user_event_mm_put()		|	.
833 	 *
834 	 * mmdrop() cannot be called in the softirq context of call_rcu()
835 	 * so we use a work queue after call_rcu() to run within.
836 	 */
837 	INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
838 	queue_rcu_work(system_wq, &mm->put_rwork);
839 }
840 
841 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
842 {
843 	struct user_event_mm *mm = user_event_mm_alloc(t);
844 	struct user_event_enabler *enabler;
845 
846 	if (!mm)
847 		return;
848 
849 	rcu_read_lock();
850 
851 	list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
852 		if (!user_event_enabler_dup(enabler, mm))
853 			goto error;
854 	}
855 
856 	rcu_read_unlock();
857 
858 	user_event_mm_attach(mm, t);
859 	return;
860 error:
861 	rcu_read_unlock();
862 	user_event_mm_destroy(mm);
863 }
864 
865 static bool current_user_event_enabler_exists(unsigned long uaddr,
866 					      unsigned char bit)
867 {
868 	struct user_event_mm *user_mm = current_user_event_mm();
869 	bool exists;
870 
871 	if (!user_mm)
872 		return false;
873 
874 	exists = user_event_enabler_exists(user_mm, uaddr, bit);
875 
876 	user_event_mm_put(user_mm);
877 
878 	return exists;
879 }
880 
881 static struct user_event_enabler
882 *user_event_enabler_create(struct user_reg *reg, struct user_event *user,
883 			   int *write_result)
884 {
885 	struct user_event_enabler *enabler;
886 	struct user_event_mm *user_mm;
887 	unsigned long uaddr = (unsigned long)reg->enable_addr;
888 	int attempt = 0;
889 
890 	user_mm = current_user_event_mm();
891 
892 	if (!user_mm)
893 		return NULL;
894 
895 	enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
896 
897 	if (!enabler)
898 		goto out;
899 
900 	enabler->event = user;
901 	enabler->addr = uaddr;
902 	enabler->values = reg->enable_bit;
903 
904 #if BITS_PER_LONG >= 64
905 	if (reg->enable_size == 4)
906 		set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
907 #endif
908 
909 retry:
910 	/* Prevents state changes from racing with new enablers */
911 	mutex_lock(&event_mutex);
912 
913 	/* Attempt to reflect the current state within the process */
914 	mmap_read_lock(user_mm->mm);
915 	*write_result = user_event_enabler_write(user_mm, enabler, false,
916 						 &attempt);
917 	mmap_read_unlock(user_mm->mm);
918 
919 	/*
920 	 * If the write works, then we will track the enabler. A ref to the
921 	 * underlying user_event is held by the enabler to prevent it going
922 	 * away while the enabler is still in use by a process. The ref is
923 	 * removed when the enabler is destroyed. This means a event cannot
924 	 * be forcefully deleted from the system until all tasks using it
925 	 * exit or run exec(), which includes forks and clones.
926 	 */
927 	if (!*write_result) {
928 		user_event_get(user);
929 		list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
930 	}
931 
932 	mutex_unlock(&event_mutex);
933 
934 	if (*write_result) {
935 		/* Attempt to fault-in and retry if it worked */
936 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
937 			goto retry;
938 
939 		kfree(enabler);
940 		enabler = NULL;
941 	}
942 out:
943 	user_event_mm_put(user_mm);
944 
945 	return enabler;
946 }
947 
948 static __always_inline __must_check
949 bool user_event_last_ref(struct user_event *user)
950 {
951 	int last = 0;
952 
953 	if (user->reg_flags & USER_EVENT_REG_PERSIST)
954 		last = 1;
955 
956 	return refcount_read(&user->refcnt) == last;
957 }
958 
959 static __always_inline __must_check
960 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
961 {
962 	size_t ret;
963 
964 	pagefault_disable();
965 
966 	ret = copy_from_iter_nocache(addr, bytes, i);
967 
968 	pagefault_enable();
969 
970 	return ret;
971 }
972 
973 static struct list_head *user_event_get_fields(struct trace_event_call *call)
974 {
975 	struct user_event *user = (struct user_event *)call->data;
976 
977 	return &user->fields;
978 }
979 
980 /*
981  * Parses a register command for user_events
982  * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
983  *
984  * Example event named 'test' with a 20 char 'msg' field with an unsigned int
985  * 'id' field after:
986  * test char[20] msg;unsigned int id
987  *
988  * NOTE: Offsets are from the user data perspective, they are not from the
989  * trace_entry/buffer perspective. We automatically add the common properties
990  * sizes to the offset for the user.
991  *
992  * Upon success user_event has its ref count increased by 1.
993  */
994 static int user_event_parse_cmd(struct user_event_group *group,
995 				char *raw_command, struct user_event **newuser,
996 				int reg_flags)
997 {
998 	char *name = raw_command;
999 	char *args = strpbrk(name, " ");
1000 	char *flags;
1001 
1002 	if (args)
1003 		*args++ = '\0';
1004 
1005 	flags = strpbrk(name, ":");
1006 
1007 	if (flags)
1008 		*flags++ = '\0';
1009 
1010 	return user_event_parse(group, name, args, flags, newuser, reg_flags);
1011 }
1012 
1013 static int user_field_array_size(const char *type)
1014 {
1015 	const char *start = strchr(type, '[');
1016 	char val[8];
1017 	char *bracket;
1018 	int size = 0;
1019 
1020 	if (start == NULL)
1021 		return -EINVAL;
1022 
1023 	if (strscpy(val, start + 1, sizeof(val)) <= 0)
1024 		return -EINVAL;
1025 
1026 	bracket = strchr(val, ']');
1027 
1028 	if (!bracket)
1029 		return -EINVAL;
1030 
1031 	*bracket = '\0';
1032 
1033 	if (kstrtouint(val, 0, &size))
1034 		return -EINVAL;
1035 
1036 	if (size > MAX_FIELD_ARRAY_SIZE)
1037 		return -EINVAL;
1038 
1039 	return size;
1040 }
1041 
1042 static int user_field_size(const char *type)
1043 {
1044 	/* long is not allowed from a user, since it's ambigious in size */
1045 	if (strcmp(type, "s64") == 0)
1046 		return sizeof(s64);
1047 	if (strcmp(type, "u64") == 0)
1048 		return sizeof(u64);
1049 	if (strcmp(type, "s32") == 0)
1050 		return sizeof(s32);
1051 	if (strcmp(type, "u32") == 0)
1052 		return sizeof(u32);
1053 	if (strcmp(type, "int") == 0)
1054 		return sizeof(int);
1055 	if (strcmp(type, "unsigned int") == 0)
1056 		return sizeof(unsigned int);
1057 	if (strcmp(type, "s16") == 0)
1058 		return sizeof(s16);
1059 	if (strcmp(type, "u16") == 0)
1060 		return sizeof(u16);
1061 	if (strcmp(type, "short") == 0)
1062 		return sizeof(short);
1063 	if (strcmp(type, "unsigned short") == 0)
1064 		return sizeof(unsigned short);
1065 	if (strcmp(type, "s8") == 0)
1066 		return sizeof(s8);
1067 	if (strcmp(type, "u8") == 0)
1068 		return sizeof(u8);
1069 	if (strcmp(type, "char") == 0)
1070 		return sizeof(char);
1071 	if (strcmp(type, "unsigned char") == 0)
1072 		return sizeof(unsigned char);
1073 	if (str_has_prefix(type, "char["))
1074 		return user_field_array_size(type);
1075 	if (str_has_prefix(type, "unsigned char["))
1076 		return user_field_array_size(type);
1077 	if (str_has_prefix(type, "__data_loc "))
1078 		return sizeof(u32);
1079 	if (str_has_prefix(type, "__rel_loc "))
1080 		return sizeof(u32);
1081 
1082 	/* Uknown basic type, error */
1083 	return -EINVAL;
1084 }
1085 
1086 static void user_event_destroy_validators(struct user_event *user)
1087 {
1088 	struct user_event_validator *validator, *next;
1089 	struct list_head *head = &user->validators;
1090 
1091 	list_for_each_entry_safe(validator, next, head, user_event_link) {
1092 		list_del(&validator->user_event_link);
1093 		kfree(validator);
1094 	}
1095 }
1096 
1097 static void user_event_destroy_fields(struct user_event *user)
1098 {
1099 	struct ftrace_event_field *field, *next;
1100 	struct list_head *head = &user->fields;
1101 
1102 	list_for_each_entry_safe(field, next, head, link) {
1103 		list_del(&field->link);
1104 		kfree(field);
1105 	}
1106 }
1107 
1108 static int user_event_add_field(struct user_event *user, const char *type,
1109 				const char *name, int offset, int size,
1110 				int is_signed, int filter_type)
1111 {
1112 	struct user_event_validator *validator;
1113 	struct ftrace_event_field *field;
1114 	int validator_flags = 0;
1115 
1116 	field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
1117 
1118 	if (!field)
1119 		return -ENOMEM;
1120 
1121 	if (str_has_prefix(type, "__data_loc "))
1122 		goto add_validator;
1123 
1124 	if (str_has_prefix(type, "__rel_loc ")) {
1125 		validator_flags |= VALIDATOR_REL;
1126 		goto add_validator;
1127 	}
1128 
1129 	goto add_field;
1130 
1131 add_validator:
1132 	if (strstr(type, "char") != NULL)
1133 		validator_flags |= VALIDATOR_ENSURE_NULL;
1134 
1135 	validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
1136 
1137 	if (!validator) {
1138 		kfree(field);
1139 		return -ENOMEM;
1140 	}
1141 
1142 	validator->flags = validator_flags;
1143 	validator->offset = offset;
1144 
1145 	/* Want sequential access when validating */
1146 	list_add_tail(&validator->user_event_link, &user->validators);
1147 
1148 add_field:
1149 	field->type = type;
1150 	field->name = name;
1151 	field->offset = offset;
1152 	field->size = size;
1153 	field->is_signed = is_signed;
1154 	field->filter_type = filter_type;
1155 
1156 	if (filter_type == FILTER_OTHER)
1157 		field->filter_type = filter_assign_type(type);
1158 
1159 	list_add(&field->link, &user->fields);
1160 
1161 	/*
1162 	 * Min size from user writes that are required, this does not include
1163 	 * the size of trace_entry (common fields).
1164 	 */
1165 	user->min_size = (offset + size) - sizeof(struct trace_entry);
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Parses the values of a field within the description
1172  * Format: type name [size]
1173  */
1174 static int user_event_parse_field(char *field, struct user_event *user,
1175 				  u32 *offset)
1176 {
1177 	char *part, *type, *name;
1178 	u32 depth = 0, saved_offset = *offset;
1179 	int len, size = -EINVAL;
1180 	bool is_struct = false;
1181 
1182 	field = skip_spaces(field);
1183 
1184 	if (*field == '\0')
1185 		return 0;
1186 
1187 	/* Handle types that have a space within */
1188 	len = str_has_prefix(field, "unsigned ");
1189 	if (len)
1190 		goto skip_next;
1191 
1192 	len = str_has_prefix(field, "struct ");
1193 	if (len) {
1194 		is_struct = true;
1195 		goto skip_next;
1196 	}
1197 
1198 	len = str_has_prefix(field, "__data_loc unsigned ");
1199 	if (len)
1200 		goto skip_next;
1201 
1202 	len = str_has_prefix(field, "__data_loc ");
1203 	if (len)
1204 		goto skip_next;
1205 
1206 	len = str_has_prefix(field, "__rel_loc unsigned ");
1207 	if (len)
1208 		goto skip_next;
1209 
1210 	len = str_has_prefix(field, "__rel_loc ");
1211 	if (len)
1212 		goto skip_next;
1213 
1214 	goto parse;
1215 skip_next:
1216 	type = field;
1217 	field = strpbrk(field + len, " ");
1218 
1219 	if (field == NULL)
1220 		return -EINVAL;
1221 
1222 	*field++ = '\0';
1223 	depth++;
1224 parse:
1225 	name = NULL;
1226 
1227 	while ((part = strsep(&field, " ")) != NULL) {
1228 		switch (depth++) {
1229 		case FIELD_DEPTH_TYPE:
1230 			type = part;
1231 			break;
1232 		case FIELD_DEPTH_NAME:
1233 			name = part;
1234 			break;
1235 		case FIELD_DEPTH_SIZE:
1236 			if (!is_struct)
1237 				return -EINVAL;
1238 
1239 			if (kstrtou32(part, 10, &size))
1240 				return -EINVAL;
1241 			break;
1242 		default:
1243 			return -EINVAL;
1244 		}
1245 	}
1246 
1247 	if (depth < FIELD_DEPTH_SIZE || !name)
1248 		return -EINVAL;
1249 
1250 	if (depth == FIELD_DEPTH_SIZE)
1251 		size = user_field_size(type);
1252 
1253 	if (size == 0)
1254 		return -EINVAL;
1255 
1256 	if (size < 0)
1257 		return size;
1258 
1259 	*offset = saved_offset + size;
1260 
1261 	return user_event_add_field(user, type, name, saved_offset, size,
1262 				    type[0] != 'u', FILTER_OTHER);
1263 }
1264 
1265 static int user_event_parse_fields(struct user_event *user, char *args)
1266 {
1267 	char *field;
1268 	u32 offset = sizeof(struct trace_entry);
1269 	int ret = -EINVAL;
1270 
1271 	if (args == NULL)
1272 		return 0;
1273 
1274 	while ((field = strsep(&args, ";")) != NULL) {
1275 		ret = user_event_parse_field(field, user, &offset);
1276 
1277 		if (ret)
1278 			break;
1279 	}
1280 
1281 	return ret;
1282 }
1283 
1284 static struct trace_event_fields user_event_fields_array[1];
1285 
1286 static const char *user_field_format(const char *type)
1287 {
1288 	if (strcmp(type, "s64") == 0)
1289 		return "%lld";
1290 	if (strcmp(type, "u64") == 0)
1291 		return "%llu";
1292 	if (strcmp(type, "s32") == 0)
1293 		return "%d";
1294 	if (strcmp(type, "u32") == 0)
1295 		return "%u";
1296 	if (strcmp(type, "int") == 0)
1297 		return "%d";
1298 	if (strcmp(type, "unsigned int") == 0)
1299 		return "%u";
1300 	if (strcmp(type, "s16") == 0)
1301 		return "%d";
1302 	if (strcmp(type, "u16") == 0)
1303 		return "%u";
1304 	if (strcmp(type, "short") == 0)
1305 		return "%d";
1306 	if (strcmp(type, "unsigned short") == 0)
1307 		return "%u";
1308 	if (strcmp(type, "s8") == 0)
1309 		return "%d";
1310 	if (strcmp(type, "u8") == 0)
1311 		return "%u";
1312 	if (strcmp(type, "char") == 0)
1313 		return "%d";
1314 	if (strcmp(type, "unsigned char") == 0)
1315 		return "%u";
1316 	if (strstr(type, "char[") != NULL)
1317 		return "%s";
1318 
1319 	/* Unknown, likely struct, allowed treat as 64-bit */
1320 	return "%llu";
1321 }
1322 
1323 static bool user_field_is_dyn_string(const char *type, const char **str_func)
1324 {
1325 	if (str_has_prefix(type, "__data_loc ")) {
1326 		*str_func = "__get_str";
1327 		goto check;
1328 	}
1329 
1330 	if (str_has_prefix(type, "__rel_loc ")) {
1331 		*str_func = "__get_rel_str";
1332 		goto check;
1333 	}
1334 
1335 	return false;
1336 check:
1337 	return strstr(type, "char") != NULL;
1338 }
1339 
1340 #define LEN_OR_ZERO (len ? len - pos : 0)
1341 static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1342 				     char *buf, int len, bool *colon)
1343 {
1344 	int pos = 0, i = *iout;
1345 
1346 	*colon = false;
1347 
1348 	for (; i < argc; ++i) {
1349 		if (i != *iout)
1350 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1351 
1352 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1353 
1354 		if (strchr(argv[i], ';')) {
1355 			++i;
1356 			*colon = true;
1357 			break;
1358 		}
1359 	}
1360 
1361 	/* Actual set, advance i */
1362 	if (len != 0)
1363 		*iout = i;
1364 
1365 	return pos + 1;
1366 }
1367 
1368 static int user_field_set_string(struct ftrace_event_field *field,
1369 				 char *buf, int len, bool colon)
1370 {
1371 	int pos = 0;
1372 
1373 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1374 	pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1375 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1376 
1377 	if (str_has_prefix(field->type, "struct "))
1378 		pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
1379 
1380 	if (colon)
1381 		pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1382 
1383 	return pos + 1;
1384 }
1385 
1386 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1387 {
1388 	struct ftrace_event_field *field;
1389 	struct list_head *head = &user->fields;
1390 	int pos = 0, depth = 0;
1391 	const char *str_func;
1392 
1393 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1394 
1395 	list_for_each_entry_reverse(field, head, link) {
1396 		if (depth != 0)
1397 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1398 
1399 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1400 				field->name, user_field_format(field->type));
1401 
1402 		depth++;
1403 	}
1404 
1405 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1406 
1407 	list_for_each_entry_reverse(field, head, link) {
1408 		if (user_field_is_dyn_string(field->type, &str_func))
1409 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1410 					", %s(%s)", str_func, field->name);
1411 		else
1412 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1413 					", REC->%s", field->name);
1414 	}
1415 
1416 	return pos + 1;
1417 }
1418 #undef LEN_OR_ZERO
1419 
1420 static int user_event_create_print_fmt(struct user_event *user)
1421 {
1422 	char *print_fmt;
1423 	int len;
1424 
1425 	len = user_event_set_print_fmt(user, NULL, 0);
1426 
1427 	print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
1428 
1429 	if (!print_fmt)
1430 		return -ENOMEM;
1431 
1432 	user_event_set_print_fmt(user, print_fmt, len);
1433 
1434 	user->call.print_fmt = print_fmt;
1435 
1436 	return 0;
1437 }
1438 
1439 static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1440 						int flags,
1441 						struct trace_event *event)
1442 {
1443 	return print_event_fields(iter, event);
1444 }
1445 
1446 static struct trace_event_functions user_event_funcs = {
1447 	.trace = user_event_print_trace,
1448 };
1449 
1450 static int user_event_set_call_visible(struct user_event *user, bool visible)
1451 {
1452 	int ret;
1453 	const struct cred *old_cred;
1454 	struct cred *cred;
1455 
1456 	cred = prepare_creds();
1457 
1458 	if (!cred)
1459 		return -ENOMEM;
1460 
1461 	/*
1462 	 * While by default tracefs is locked down, systems can be configured
1463 	 * to allow user_event files to be less locked down. The extreme case
1464 	 * being "other" has read/write access to user_events_data/status.
1465 	 *
1466 	 * When not locked down, processes may not have permissions to
1467 	 * add/remove calls themselves to tracefs. We need to temporarily
1468 	 * switch to root file permission to allow for this scenario.
1469 	 */
1470 	cred->fsuid = GLOBAL_ROOT_UID;
1471 
1472 	old_cred = override_creds(cred);
1473 
1474 	if (visible)
1475 		ret = trace_add_event_call(&user->call);
1476 	else
1477 		ret = trace_remove_event_call(&user->call);
1478 
1479 	revert_creds(old_cred);
1480 	put_cred(cred);
1481 
1482 	return ret;
1483 }
1484 
1485 static int destroy_user_event(struct user_event *user)
1486 {
1487 	int ret = 0;
1488 
1489 	lockdep_assert_held(&event_mutex);
1490 
1491 	/* Must destroy fields before call removal */
1492 	user_event_destroy_fields(user);
1493 
1494 	ret = user_event_set_call_visible(user, false);
1495 
1496 	if (ret)
1497 		return ret;
1498 
1499 	dyn_event_remove(&user->devent);
1500 	hash_del(&user->node);
1501 
1502 	user_event_destroy_validators(user);
1503 
1504 	/* If we have different names, both must be freed */
1505 	if (EVENT_NAME(user) != EVENT_TP_NAME(user))
1506 		kfree(EVENT_TP_NAME(user));
1507 
1508 	kfree(user->call.print_fmt);
1509 	kfree(EVENT_NAME(user));
1510 	kfree(user);
1511 
1512 	if (current_user_events > 0)
1513 		current_user_events--;
1514 	else
1515 		pr_alert("BUG: Bad current_user_events\n");
1516 
1517 	return ret;
1518 }
1519 
1520 static struct user_event *find_user_event(struct user_event_group *group,
1521 					  char *name, int argc, const char **argv,
1522 					  u32 flags, u32 *outkey)
1523 {
1524 	struct user_event *user;
1525 	u32 key = user_event_key(name);
1526 
1527 	*outkey = key;
1528 
1529 	hash_for_each_possible(group->register_table, user, node, key) {
1530 		/*
1531 		 * Single-format events shouldn't return multi-format
1532 		 * events. Callers expect the underlying tracepoint to match
1533 		 * the name exactly in these cases. Only check like-formats.
1534 		 */
1535 		if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags))
1536 			continue;
1537 
1538 		if (strcmp(EVENT_NAME(user), name))
1539 			continue;
1540 
1541 		if (user_fields_match(user, argc, argv))
1542 			return user_event_get(user);
1543 
1544 		/* Scan others if this is a multi-format event */
1545 		if (EVENT_MULTI_FORMAT(flags))
1546 			continue;
1547 
1548 		return ERR_PTR(-EADDRINUSE);
1549 	}
1550 
1551 	return NULL;
1552 }
1553 
1554 static int user_event_validate(struct user_event *user, void *data, int len)
1555 {
1556 	struct list_head *head = &user->validators;
1557 	struct user_event_validator *validator;
1558 	void *pos, *end = data + len;
1559 	u32 loc, offset, size;
1560 
1561 	list_for_each_entry(validator, head, user_event_link) {
1562 		pos = data + validator->offset;
1563 
1564 		/* Already done min_size check, no bounds check here */
1565 		loc = *(u32 *)pos;
1566 		offset = loc & 0xffff;
1567 		size = loc >> 16;
1568 
1569 		if (likely(validator->flags & VALIDATOR_REL))
1570 			pos += offset + sizeof(loc);
1571 		else
1572 			pos = data + offset;
1573 
1574 		pos += size;
1575 
1576 		if (unlikely(pos > end))
1577 			return -EFAULT;
1578 
1579 		if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1580 			if (unlikely(*(char *)(pos - 1) != '\0'))
1581 				return -EFAULT;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 /*
1588  * Writes the user supplied payload out to a trace file.
1589  */
1590 static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
1591 			      void *tpdata, bool *faulted)
1592 {
1593 	struct trace_event_file *file;
1594 	struct trace_entry *entry;
1595 	struct trace_event_buffer event_buffer;
1596 	size_t size = sizeof(*entry) + i->count;
1597 
1598 	file = (struct trace_event_file *)tpdata;
1599 
1600 	if (!file ||
1601 	    !(file->flags & EVENT_FILE_FL_ENABLED) ||
1602 	    trace_trigger_soft_disabled(file))
1603 		return;
1604 
1605 	/* Allocates and fills trace_entry, + 1 of this is data payload */
1606 	entry = trace_event_buffer_reserve(&event_buffer, file, size);
1607 
1608 	if (unlikely(!entry))
1609 		return;
1610 
1611 	if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
1612 		goto discard;
1613 
1614 	if (!list_empty(&user->validators) &&
1615 	    unlikely(user_event_validate(user, entry, size)))
1616 		goto discard;
1617 
1618 	trace_event_buffer_commit(&event_buffer);
1619 
1620 	return;
1621 discard:
1622 	*faulted = true;
1623 	__trace_event_discard_commit(event_buffer.buffer,
1624 				     event_buffer.event);
1625 }
1626 
1627 #ifdef CONFIG_PERF_EVENTS
1628 /*
1629  * Writes the user supplied payload out to perf ring buffer.
1630  */
1631 static void user_event_perf(struct user_event *user, struct iov_iter *i,
1632 			    void *tpdata, bool *faulted)
1633 {
1634 	struct hlist_head *perf_head;
1635 
1636 	perf_head = this_cpu_ptr(user->call.perf_events);
1637 
1638 	if (perf_head && !hlist_empty(perf_head)) {
1639 		struct trace_entry *perf_entry;
1640 		struct pt_regs *regs;
1641 		size_t size = sizeof(*perf_entry) + i->count;
1642 		int context;
1643 
1644 		perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1645 						  &regs, &context);
1646 
1647 		if (unlikely(!perf_entry))
1648 			return;
1649 
1650 		perf_fetch_caller_regs(regs);
1651 
1652 		if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
1653 			goto discard;
1654 
1655 		if (!list_empty(&user->validators) &&
1656 		    unlikely(user_event_validate(user, perf_entry, size)))
1657 			goto discard;
1658 
1659 		perf_trace_buf_submit(perf_entry, size, context,
1660 				      user->call.event.type, 1, regs,
1661 				      perf_head, NULL);
1662 
1663 		return;
1664 discard:
1665 		*faulted = true;
1666 		perf_swevent_put_recursion_context(context);
1667 	}
1668 }
1669 #endif
1670 
1671 /*
1672  * Update the enabled bit among all user processes.
1673  */
1674 static void update_enable_bit_for(struct user_event *user)
1675 {
1676 	struct tracepoint *tp = &user->tracepoint;
1677 	char status = 0;
1678 
1679 	if (atomic_read(&tp->key.enabled) > 0) {
1680 		struct tracepoint_func *probe_func_ptr;
1681 		user_event_func_t probe_func;
1682 
1683 		rcu_read_lock_sched();
1684 
1685 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
1686 
1687 		if (probe_func_ptr) {
1688 			do {
1689 				probe_func = probe_func_ptr->func;
1690 
1691 				if (probe_func == user_event_ftrace)
1692 					status |= EVENT_STATUS_FTRACE;
1693 #ifdef CONFIG_PERF_EVENTS
1694 				else if (probe_func == user_event_perf)
1695 					status |= EVENT_STATUS_PERF;
1696 #endif
1697 				else
1698 					status |= EVENT_STATUS_OTHER;
1699 			} while ((++probe_func_ptr)->func);
1700 		}
1701 
1702 		rcu_read_unlock_sched();
1703 	}
1704 
1705 	user->status = status;
1706 
1707 	user_event_enabler_update(user);
1708 }
1709 
1710 /*
1711  * Register callback for our events from tracing sub-systems.
1712  */
1713 static int user_event_reg(struct trace_event_call *call,
1714 			  enum trace_reg type,
1715 			  void *data)
1716 {
1717 	struct user_event *user = (struct user_event *)call->data;
1718 	int ret = 0;
1719 
1720 	if (!user)
1721 		return -ENOENT;
1722 
1723 	switch (type) {
1724 	case TRACE_REG_REGISTER:
1725 		ret = tracepoint_probe_register(call->tp,
1726 						call->class->probe,
1727 						data);
1728 		if (!ret)
1729 			goto inc;
1730 		break;
1731 
1732 	case TRACE_REG_UNREGISTER:
1733 		tracepoint_probe_unregister(call->tp,
1734 					    call->class->probe,
1735 					    data);
1736 		goto dec;
1737 
1738 #ifdef CONFIG_PERF_EVENTS
1739 	case TRACE_REG_PERF_REGISTER:
1740 		ret = tracepoint_probe_register(call->tp,
1741 						call->class->perf_probe,
1742 						data);
1743 		if (!ret)
1744 			goto inc;
1745 		break;
1746 
1747 	case TRACE_REG_PERF_UNREGISTER:
1748 		tracepoint_probe_unregister(call->tp,
1749 					    call->class->perf_probe,
1750 					    data);
1751 		goto dec;
1752 
1753 	case TRACE_REG_PERF_OPEN:
1754 	case TRACE_REG_PERF_CLOSE:
1755 	case TRACE_REG_PERF_ADD:
1756 	case TRACE_REG_PERF_DEL:
1757 		break;
1758 #endif
1759 	}
1760 
1761 	return ret;
1762 inc:
1763 	user_event_get(user);
1764 	update_enable_bit_for(user);
1765 	return 0;
1766 dec:
1767 	update_enable_bit_for(user);
1768 	user_event_put(user, true);
1769 	return 0;
1770 }
1771 
1772 static int user_event_create(const char *raw_command)
1773 {
1774 	struct user_event_group *group;
1775 	struct user_event *user;
1776 	char *name;
1777 	int ret;
1778 
1779 	if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1780 		return -ECANCELED;
1781 
1782 	raw_command += USER_EVENTS_PREFIX_LEN;
1783 	raw_command = skip_spaces(raw_command);
1784 
1785 	name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
1786 
1787 	if (!name)
1788 		return -ENOMEM;
1789 
1790 	group = current_user_event_group();
1791 
1792 	if (!group) {
1793 		kfree(name);
1794 		return -ENOENT;
1795 	}
1796 
1797 	mutex_lock(&group->reg_mutex);
1798 
1799 	/* Dyn events persist, otherwise they would cleanup immediately */
1800 	ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
1801 
1802 	if (!ret)
1803 		user_event_put(user, false);
1804 
1805 	mutex_unlock(&group->reg_mutex);
1806 
1807 	if (ret)
1808 		kfree(name);
1809 
1810 	return ret;
1811 }
1812 
1813 static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1814 {
1815 	struct user_event *user = container_of(ev, struct user_event, devent);
1816 	struct ftrace_event_field *field;
1817 	struct list_head *head;
1818 	int depth = 0;
1819 
1820 	seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1821 
1822 	head = trace_get_fields(&user->call);
1823 
1824 	list_for_each_entry_reverse(field, head, link) {
1825 		if (depth == 0)
1826 			seq_puts(m, " ");
1827 		else
1828 			seq_puts(m, "; ");
1829 
1830 		seq_printf(m, "%s %s", field->type, field->name);
1831 
1832 		if (str_has_prefix(field->type, "struct "))
1833 			seq_printf(m, " %d", field->size);
1834 
1835 		depth++;
1836 	}
1837 
1838 	seq_puts(m, "\n");
1839 
1840 	return 0;
1841 }
1842 
1843 static bool user_event_is_busy(struct dyn_event *ev)
1844 {
1845 	struct user_event *user = container_of(ev, struct user_event, devent);
1846 
1847 	return !user_event_last_ref(user);
1848 }
1849 
1850 static int user_event_free(struct dyn_event *ev)
1851 {
1852 	struct user_event *user = container_of(ev, struct user_event, devent);
1853 
1854 	if (!user_event_last_ref(user))
1855 		return -EBUSY;
1856 
1857 	if (!user_event_capable(user->reg_flags))
1858 		return -EPERM;
1859 
1860 	return destroy_user_event(user);
1861 }
1862 
1863 static bool user_field_match(struct ftrace_event_field *field, int argc,
1864 			     const char **argv, int *iout)
1865 {
1866 	char *field_name = NULL, *dyn_field_name = NULL;
1867 	bool colon = false, match = false;
1868 	int dyn_len, len;
1869 
1870 	if (*iout >= argc)
1871 		return false;
1872 
1873 	dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1874 					    0, &colon);
1875 
1876 	len = user_field_set_string(field, field_name, 0, colon);
1877 
1878 	if (dyn_len != len)
1879 		return false;
1880 
1881 	dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1882 	field_name = kmalloc(len, GFP_KERNEL);
1883 
1884 	if (!dyn_field_name || !field_name)
1885 		goto out;
1886 
1887 	user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1888 				  dyn_len, &colon);
1889 
1890 	user_field_set_string(field, field_name, len, colon);
1891 
1892 	match = strcmp(dyn_field_name, field_name) == 0;
1893 out:
1894 	kfree(dyn_field_name);
1895 	kfree(field_name);
1896 
1897 	return match;
1898 }
1899 
1900 static bool user_fields_match(struct user_event *user, int argc,
1901 			      const char **argv)
1902 {
1903 	struct ftrace_event_field *field;
1904 	struct list_head *head = &user->fields;
1905 	int i = 0;
1906 
1907 	if (argc == 0)
1908 		return list_empty(head);
1909 
1910 	list_for_each_entry_reverse(field, head, link) {
1911 		if (!user_field_match(field, argc, argv, &i))
1912 			return false;
1913 	}
1914 
1915 	if (i != argc)
1916 		return false;
1917 
1918 	return true;
1919 }
1920 
1921 static bool user_event_match(const char *system, const char *event,
1922 			     int argc, const char **argv, struct dyn_event *ev)
1923 {
1924 	struct user_event *user = container_of(ev, struct user_event, devent);
1925 	bool match;
1926 
1927 	match = strcmp(EVENT_NAME(user), event) == 0;
1928 
1929 	if (match && system) {
1930 		match = strcmp(system, user->group->system_name) == 0 ||
1931 			strcmp(system, user->group->system_multi_name) == 0;
1932 	}
1933 
1934 	if (match)
1935 		match = user_fields_match(user, argc, argv);
1936 
1937 	return match;
1938 }
1939 
1940 static struct dyn_event_operations user_event_dops = {
1941 	.create = user_event_create,
1942 	.show = user_event_show,
1943 	.is_busy = user_event_is_busy,
1944 	.free = user_event_free,
1945 	.match = user_event_match,
1946 };
1947 
1948 static int user_event_trace_register(struct user_event *user)
1949 {
1950 	int ret;
1951 
1952 	ret = register_trace_event(&user->call.event);
1953 
1954 	if (!ret)
1955 		return -ENODEV;
1956 
1957 	ret = user_event_set_call_visible(user, true);
1958 
1959 	if (ret)
1960 		unregister_trace_event(&user->call.event);
1961 
1962 	return ret;
1963 }
1964 
1965 static int user_event_set_tp_name(struct user_event *user)
1966 {
1967 	lockdep_assert_held(&user->group->reg_mutex);
1968 
1969 	if (EVENT_MULTI_FORMAT(user->reg_flags)) {
1970 		char *multi_name;
1971 
1972 		multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx",
1973 				       user->reg_name, user->group->multi_id);
1974 
1975 		if (!multi_name)
1976 			return -ENOMEM;
1977 
1978 		user->call.name = multi_name;
1979 		user->tracepoint.name = multi_name;
1980 
1981 		/* Inc to ensure unique multi-event name next time */
1982 		user->group->multi_id++;
1983 	} else {
1984 		/* Non Multi-format uses register name */
1985 		user->call.name = user->reg_name;
1986 		user->tracepoint.name = user->reg_name;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Parses the event name, arguments and flags then registers if successful.
1994  * The name buffer lifetime is owned by this method for success cases only.
1995  * Upon success the returned user_event has its ref count increased by 1.
1996  */
1997 static int user_event_parse(struct user_event_group *group, char *name,
1998 			    char *args, char *flags,
1999 			    struct user_event **newuser, int reg_flags)
2000 {
2001 	struct user_event *user;
2002 	char **argv = NULL;
2003 	int argc = 0;
2004 	int ret;
2005 	u32 key;
2006 
2007 	/* Currently don't support any text based flags */
2008 	if (flags != NULL)
2009 		return -EINVAL;
2010 
2011 	if (!user_event_capable(reg_flags))
2012 		return -EPERM;
2013 
2014 	if (args) {
2015 		argv = argv_split(GFP_KERNEL, args, &argc);
2016 
2017 		if (!argv)
2018 			return -ENOMEM;
2019 	}
2020 
2021 	/* Prevent dyn_event from racing */
2022 	mutex_lock(&event_mutex);
2023 	user = find_user_event(group, name, argc, (const char **)argv,
2024 			       reg_flags, &key);
2025 	mutex_unlock(&event_mutex);
2026 
2027 	if (argv)
2028 		argv_free(argv);
2029 
2030 	if (IS_ERR(user))
2031 		return PTR_ERR(user);
2032 
2033 	if (user) {
2034 		*newuser = user;
2035 		/*
2036 		 * Name is allocated by caller, free it since it already exists.
2037 		 * Caller only worries about failure cases for freeing.
2038 		 */
2039 		kfree(name);
2040 
2041 		return 0;
2042 	}
2043 
2044 	user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
2045 
2046 	if (!user)
2047 		return -ENOMEM;
2048 
2049 	INIT_LIST_HEAD(&user->class.fields);
2050 	INIT_LIST_HEAD(&user->fields);
2051 	INIT_LIST_HEAD(&user->validators);
2052 
2053 	user->group = group;
2054 	user->reg_name = name;
2055 	user->reg_flags = reg_flags;
2056 
2057 	ret = user_event_set_tp_name(user);
2058 
2059 	if (ret)
2060 		goto put_user;
2061 
2062 	ret = user_event_parse_fields(user, args);
2063 
2064 	if (ret)
2065 		goto put_user;
2066 
2067 	ret = user_event_create_print_fmt(user);
2068 
2069 	if (ret)
2070 		goto put_user;
2071 
2072 	user->call.data = user;
2073 	user->call.class = &user->class;
2074 	user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
2075 	user->call.tp = &user->tracepoint;
2076 	user->call.event.funcs = &user_event_funcs;
2077 
2078 	if (EVENT_MULTI_FORMAT(user->reg_flags))
2079 		user->class.system = group->system_multi_name;
2080 	else
2081 		user->class.system = group->system_name;
2082 
2083 	user->class.fields_array = user_event_fields_array;
2084 	user->class.get_fields = user_event_get_fields;
2085 	user->class.reg = user_event_reg;
2086 	user->class.probe = user_event_ftrace;
2087 #ifdef CONFIG_PERF_EVENTS
2088 	user->class.perf_probe = user_event_perf;
2089 #endif
2090 
2091 	mutex_lock(&event_mutex);
2092 
2093 	if (current_user_events >= max_user_events) {
2094 		ret = -EMFILE;
2095 		goto put_user_lock;
2096 	}
2097 
2098 	ret = user_event_trace_register(user);
2099 
2100 	if (ret)
2101 		goto put_user_lock;
2102 
2103 	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2104 		/* Ensure we track self ref and caller ref (2) */
2105 		refcount_set(&user->refcnt, 2);
2106 	} else {
2107 		/* Ensure we track only caller ref (1) */
2108 		refcount_set(&user->refcnt, 1);
2109 	}
2110 
2111 	dyn_event_init(&user->devent, &user_event_dops);
2112 	dyn_event_add(&user->devent, &user->call);
2113 	hash_add(group->register_table, &user->node, key);
2114 	current_user_events++;
2115 
2116 	mutex_unlock(&event_mutex);
2117 
2118 	*newuser = user;
2119 	return 0;
2120 put_user_lock:
2121 	mutex_unlock(&event_mutex);
2122 put_user:
2123 	user_event_destroy_fields(user);
2124 	user_event_destroy_validators(user);
2125 	kfree(user->call.print_fmt);
2126 
2127 	/* Caller frees reg_name on error, but not multi-name */
2128 	if (EVENT_NAME(user) != EVENT_TP_NAME(user))
2129 		kfree(EVENT_TP_NAME(user));
2130 
2131 	kfree(user);
2132 	return ret;
2133 }
2134 
2135 /*
2136  * Deletes previously created events if they are no longer being used.
2137  */
2138 static int delete_user_event(struct user_event_group *group, char *name)
2139 {
2140 	struct user_event *user;
2141 	struct hlist_node *tmp;
2142 	u32 key = user_event_key(name);
2143 	int ret = -ENOENT;
2144 
2145 	/* Attempt to delete all event(s) with the name passed in */
2146 	hash_for_each_possible_safe(group->register_table, user, tmp, node, key) {
2147 		if (strcmp(EVENT_NAME(user), name))
2148 			continue;
2149 
2150 		if (!user_event_last_ref(user))
2151 			return -EBUSY;
2152 
2153 		if (!user_event_capable(user->reg_flags))
2154 			return -EPERM;
2155 
2156 		ret = destroy_user_event(user);
2157 
2158 		if (ret)
2159 			goto out;
2160 	}
2161 out:
2162 	return ret;
2163 }
2164 
2165 /*
2166  * Validates the user payload and writes via iterator.
2167  */
2168 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2169 {
2170 	struct user_event_file_info *info = file->private_data;
2171 	struct user_event_refs *refs;
2172 	struct user_event *user = NULL;
2173 	struct tracepoint *tp;
2174 	ssize_t ret = i->count;
2175 	int idx;
2176 
2177 	if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2178 		return -EFAULT;
2179 
2180 	if (idx < 0)
2181 		return -EINVAL;
2182 
2183 	rcu_read_lock_sched();
2184 
2185 	refs = rcu_dereference_sched(info->refs);
2186 
2187 	/*
2188 	 * The refs->events array is protected by RCU, and new items may be
2189 	 * added. But the user retrieved from indexing into the events array
2190 	 * shall be immutable while the file is opened.
2191 	 */
2192 	if (likely(refs && idx < refs->count))
2193 		user = refs->events[idx];
2194 
2195 	rcu_read_unlock_sched();
2196 
2197 	if (unlikely(user == NULL))
2198 		return -ENOENT;
2199 
2200 	if (unlikely(i->count < user->min_size))
2201 		return -EINVAL;
2202 
2203 	tp = &user->tracepoint;
2204 
2205 	/*
2206 	 * It's possible key.enabled disables after this check, however
2207 	 * we don't mind if a few events are included in this condition.
2208 	 */
2209 	if (likely(atomic_read(&tp->key.enabled) > 0)) {
2210 		struct tracepoint_func *probe_func_ptr;
2211 		user_event_func_t probe_func;
2212 		struct iov_iter copy;
2213 		void *tpdata;
2214 		bool faulted;
2215 
2216 		if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2217 			return -EFAULT;
2218 
2219 		faulted = false;
2220 
2221 		rcu_read_lock_sched();
2222 
2223 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
2224 
2225 		if (probe_func_ptr) {
2226 			do {
2227 				copy = *i;
2228 				probe_func = probe_func_ptr->func;
2229 				tpdata = probe_func_ptr->data;
2230 				probe_func(user, &copy, tpdata, &faulted);
2231 			} while ((++probe_func_ptr)->func);
2232 		}
2233 
2234 		rcu_read_unlock_sched();
2235 
2236 		if (unlikely(faulted))
2237 			return -EFAULT;
2238 	} else
2239 		return -EBADF;
2240 
2241 	return ret;
2242 }
2243 
2244 static int user_events_open(struct inode *node, struct file *file)
2245 {
2246 	struct user_event_group *group;
2247 	struct user_event_file_info *info;
2248 
2249 	group = current_user_event_group();
2250 
2251 	if (!group)
2252 		return -ENOENT;
2253 
2254 	info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
2255 
2256 	if (!info)
2257 		return -ENOMEM;
2258 
2259 	info->group = group;
2260 
2261 	file->private_data = info;
2262 
2263 	return 0;
2264 }
2265 
2266 static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2267 				 size_t count, loff_t *ppos)
2268 {
2269 	struct iov_iter i;
2270 
2271 	if (unlikely(*ppos != 0))
2272 		return -EFAULT;
2273 
2274 	if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i)))
2275 		return -EFAULT;
2276 
2277 	return user_events_write_core(file, &i);
2278 }
2279 
2280 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2281 {
2282 	return user_events_write_core(kp->ki_filp, i);
2283 }
2284 
2285 static int user_events_ref_add(struct user_event_file_info *info,
2286 			       struct user_event *user)
2287 {
2288 	struct user_event_group *group = info->group;
2289 	struct user_event_refs *refs, *new_refs;
2290 	int i, size, count = 0;
2291 
2292 	refs = rcu_dereference_protected(info->refs,
2293 					 lockdep_is_held(&group->reg_mutex));
2294 
2295 	if (refs) {
2296 		count = refs->count;
2297 
2298 		for (i = 0; i < count; ++i)
2299 			if (refs->events[i] == user)
2300 				return i;
2301 	}
2302 
2303 	size = struct_size(refs, events, count + 1);
2304 
2305 	new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
2306 
2307 	if (!new_refs)
2308 		return -ENOMEM;
2309 
2310 	new_refs->count = count + 1;
2311 
2312 	for (i = 0; i < count; ++i)
2313 		new_refs->events[i] = refs->events[i];
2314 
2315 	new_refs->events[i] = user_event_get(user);
2316 
2317 	rcu_assign_pointer(info->refs, new_refs);
2318 
2319 	if (refs)
2320 		kfree_rcu(refs, rcu);
2321 
2322 	return i;
2323 }
2324 
2325 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2326 {
2327 	u32 size;
2328 	long ret;
2329 
2330 	ret = get_user(size, &ureg->size);
2331 
2332 	if (ret)
2333 		return ret;
2334 
2335 	if (size > PAGE_SIZE)
2336 		return -E2BIG;
2337 
2338 	if (size < offsetofend(struct user_reg, write_index))
2339 		return -EINVAL;
2340 
2341 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2342 
2343 	if (ret)
2344 		return ret;
2345 
2346 	/* Ensure only valid flags */
2347 	if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
2348 		return -EINVAL;
2349 
2350 	/* Ensure supported size */
2351 	switch (kreg->enable_size) {
2352 	case 4:
2353 		/* 32-bit */
2354 		break;
2355 #if BITS_PER_LONG >= 64
2356 	case 8:
2357 		/* 64-bit */
2358 		break;
2359 #endif
2360 	default:
2361 		return -EINVAL;
2362 	}
2363 
2364 	/* Ensure natural alignment */
2365 	if (kreg->enable_addr % kreg->enable_size)
2366 		return -EINVAL;
2367 
2368 	/* Ensure bit range for size */
2369 	if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2370 		return -EINVAL;
2371 
2372 	/* Ensure accessible */
2373 	if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2374 		       kreg->enable_size))
2375 		return -EFAULT;
2376 
2377 	kreg->size = size;
2378 
2379 	return 0;
2380 }
2381 
2382 /*
2383  * Registers a user_event on behalf of a user process.
2384  */
2385 static long user_events_ioctl_reg(struct user_event_file_info *info,
2386 				  unsigned long uarg)
2387 {
2388 	struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2389 	struct user_reg reg;
2390 	struct user_event *user;
2391 	struct user_event_enabler *enabler;
2392 	char *name;
2393 	long ret;
2394 	int write_result;
2395 
2396 	ret = user_reg_get(ureg, &reg);
2397 
2398 	if (ret)
2399 		return ret;
2400 
2401 	/*
2402 	 * Prevent users from using the same address and bit multiple times
2403 	 * within the same mm address space. This can cause unexpected behavior
2404 	 * for user processes that is far easier to debug if this is explictly
2405 	 * an error upon registering.
2406 	 */
2407 	if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2408 					      reg.enable_bit))
2409 		return -EADDRINUSE;
2410 
2411 	name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2412 			    MAX_EVENT_DESC);
2413 
2414 	if (IS_ERR(name)) {
2415 		ret = PTR_ERR(name);
2416 		return ret;
2417 	}
2418 
2419 	ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
2420 
2421 	if (ret) {
2422 		kfree(name);
2423 		return ret;
2424 	}
2425 
2426 	ret = user_events_ref_add(info, user);
2427 
2428 	/* No longer need parse ref, ref_add either worked or not */
2429 	user_event_put(user, false);
2430 
2431 	/* Positive number is index and valid */
2432 	if (ret < 0)
2433 		return ret;
2434 
2435 	/*
2436 	 * user_events_ref_add succeeded:
2437 	 * At this point we have a user_event, it's lifetime is bound by the
2438 	 * reference count, not this file. If anything fails, the user_event
2439 	 * still has a reference until the file is released. During release
2440 	 * any remaining references (from user_events_ref_add) are decremented.
2441 	 *
2442 	 * Attempt to create an enabler, which too has a lifetime tied in the
2443 	 * same way for the event. Once the task that caused the enabler to be
2444 	 * created exits or issues exec() then the enablers it has created
2445 	 * will be destroyed and the ref to the event will be decremented.
2446 	 */
2447 	enabler = user_event_enabler_create(&reg, user, &write_result);
2448 
2449 	if (!enabler)
2450 		return -ENOMEM;
2451 
2452 	/* Write failed/faulted, give error back to caller */
2453 	if (write_result)
2454 		return write_result;
2455 
2456 	put_user((u32)ret, &ureg->write_index);
2457 
2458 	return 0;
2459 }
2460 
2461 /*
2462  * Deletes a user_event on behalf of a user process.
2463  */
2464 static long user_events_ioctl_del(struct user_event_file_info *info,
2465 				  unsigned long uarg)
2466 {
2467 	void __user *ubuf = (void __user *)uarg;
2468 	char *name;
2469 	long ret;
2470 
2471 	name = strndup_user(ubuf, MAX_EVENT_DESC);
2472 
2473 	if (IS_ERR(name))
2474 		return PTR_ERR(name);
2475 
2476 	/* event_mutex prevents dyn_event from racing */
2477 	mutex_lock(&event_mutex);
2478 	ret = delete_user_event(info->group, name);
2479 	mutex_unlock(&event_mutex);
2480 
2481 	kfree(name);
2482 
2483 	return ret;
2484 }
2485 
2486 static long user_unreg_get(struct user_unreg __user *ureg,
2487 			   struct user_unreg *kreg)
2488 {
2489 	u32 size;
2490 	long ret;
2491 
2492 	ret = get_user(size, &ureg->size);
2493 
2494 	if (ret)
2495 		return ret;
2496 
2497 	if (size > PAGE_SIZE)
2498 		return -E2BIG;
2499 
2500 	if (size < offsetofend(struct user_unreg, disable_addr))
2501 		return -EINVAL;
2502 
2503 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2504 
2505 	/* Ensure no reserved values, since we don't support any yet */
2506 	if (kreg->__reserved || kreg->__reserved2)
2507 		return -EINVAL;
2508 
2509 	return ret;
2510 }
2511 
2512 static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2513 				   unsigned long uaddr, unsigned char bit,
2514 				   unsigned long flags)
2515 {
2516 	struct user_event_enabler enabler;
2517 	int result;
2518 	int attempt = 0;
2519 
2520 	memset(&enabler, 0, sizeof(enabler));
2521 	enabler.addr = uaddr;
2522 	enabler.values = bit | flags;
2523 retry:
2524 	/* Prevents state changes from racing with new enablers */
2525 	mutex_lock(&event_mutex);
2526 
2527 	/* Force the bit to be cleared, since no event is attached */
2528 	mmap_read_lock(user_mm->mm);
2529 	result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
2530 	mmap_read_unlock(user_mm->mm);
2531 
2532 	mutex_unlock(&event_mutex);
2533 
2534 	if (result) {
2535 		/* Attempt to fault-in and retry if it worked */
2536 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
2537 			goto retry;
2538 	}
2539 
2540 	return result;
2541 }
2542 
2543 /*
2544  * Unregisters an enablement address/bit within a task/user mm.
2545  */
2546 static long user_events_ioctl_unreg(unsigned long uarg)
2547 {
2548 	struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2549 	struct user_event_mm *mm = current->user_event_mm;
2550 	struct user_event_enabler *enabler, *next;
2551 	struct user_unreg reg;
2552 	unsigned long flags;
2553 	long ret;
2554 
2555 	ret = user_unreg_get(ureg, &reg);
2556 
2557 	if (ret)
2558 		return ret;
2559 
2560 	if (!mm)
2561 		return -ENOENT;
2562 
2563 	flags = 0;
2564 	ret = -ENOENT;
2565 
2566 	/*
2567 	 * Flags freeing and faulting are used to indicate if the enabler is in
2568 	 * use at all. When faulting is set a page-fault is occurring asyncly.
2569 	 * During async fault if freeing is set, the enabler will be destroyed.
2570 	 * If no async fault is happening, we can destroy it now since we hold
2571 	 * the event_mutex during these checks.
2572 	 */
2573 	mutex_lock(&event_mutex);
2574 
2575 	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
2576 		if (enabler->addr == reg.disable_addr &&
2577 		    ENABLE_BIT(enabler) == reg.disable_bit) {
2578 			set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2579 
2580 			/* We must keep compat flags for the clear */
2581 			flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2582 
2583 			if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2584 				user_event_enabler_destroy(enabler, true);
2585 
2586 			/* Removed at least one */
2587 			ret = 0;
2588 		}
2589 	}
2590 
2591 	mutex_unlock(&event_mutex);
2592 
2593 	/* Ensure bit is now cleared for user, regardless of event status */
2594 	if (!ret)
2595 		ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2596 					      reg.disable_bit, flags);
2597 
2598 	return ret;
2599 }
2600 
2601 /*
2602  * Handles the ioctl from user mode to register or alter operations.
2603  */
2604 static long user_events_ioctl(struct file *file, unsigned int cmd,
2605 			      unsigned long uarg)
2606 {
2607 	struct user_event_file_info *info = file->private_data;
2608 	struct user_event_group *group = info->group;
2609 	long ret = -ENOTTY;
2610 
2611 	switch (cmd) {
2612 	case DIAG_IOCSREG:
2613 		mutex_lock(&group->reg_mutex);
2614 		ret = user_events_ioctl_reg(info, uarg);
2615 		mutex_unlock(&group->reg_mutex);
2616 		break;
2617 
2618 	case DIAG_IOCSDEL:
2619 		mutex_lock(&group->reg_mutex);
2620 		ret = user_events_ioctl_del(info, uarg);
2621 		mutex_unlock(&group->reg_mutex);
2622 		break;
2623 
2624 	case DIAG_IOCSUNREG:
2625 		mutex_lock(&group->reg_mutex);
2626 		ret = user_events_ioctl_unreg(uarg);
2627 		mutex_unlock(&group->reg_mutex);
2628 		break;
2629 	}
2630 
2631 	return ret;
2632 }
2633 
2634 /*
2635  * Handles the final close of the file from user mode.
2636  */
2637 static int user_events_release(struct inode *node, struct file *file)
2638 {
2639 	struct user_event_file_info *info = file->private_data;
2640 	struct user_event_group *group;
2641 	struct user_event_refs *refs;
2642 	int i;
2643 
2644 	if (!info)
2645 		return -EINVAL;
2646 
2647 	group = info->group;
2648 
2649 	/*
2650 	 * Ensure refs cannot change under any situation by taking the
2651 	 * register mutex during the final freeing of the references.
2652 	 */
2653 	mutex_lock(&group->reg_mutex);
2654 
2655 	refs = info->refs;
2656 
2657 	if (!refs)
2658 		goto out;
2659 
2660 	/*
2661 	 * The lifetime of refs has reached an end, it's tied to this file.
2662 	 * The underlying user_events are ref counted, and cannot be freed.
2663 	 * After this decrement, the user_events may be freed elsewhere.
2664 	 */
2665 	for (i = 0; i < refs->count; ++i)
2666 		user_event_put(refs->events[i], false);
2667 
2668 out:
2669 	file->private_data = NULL;
2670 
2671 	mutex_unlock(&group->reg_mutex);
2672 
2673 	kfree(refs);
2674 	kfree(info);
2675 
2676 	return 0;
2677 }
2678 
2679 static const struct file_operations user_data_fops = {
2680 	.open		= user_events_open,
2681 	.write		= user_events_write,
2682 	.write_iter	= user_events_write_iter,
2683 	.unlocked_ioctl	= user_events_ioctl,
2684 	.release	= user_events_release,
2685 };
2686 
2687 static void *user_seq_start(struct seq_file *m, loff_t *pos)
2688 {
2689 	if (*pos)
2690 		return NULL;
2691 
2692 	return (void *)1;
2693 }
2694 
2695 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2696 {
2697 	++*pos;
2698 	return NULL;
2699 }
2700 
2701 static void user_seq_stop(struct seq_file *m, void *p)
2702 {
2703 }
2704 
2705 static int user_seq_show(struct seq_file *m, void *p)
2706 {
2707 	struct user_event_group *group = m->private;
2708 	struct user_event *user;
2709 	char status;
2710 	int i, active = 0, busy = 0;
2711 
2712 	if (!group)
2713 		return -EINVAL;
2714 
2715 	mutex_lock(&group->reg_mutex);
2716 
2717 	hash_for_each(group->register_table, i, user, node) {
2718 		status = user->status;
2719 
2720 		seq_printf(m, "%s", EVENT_TP_NAME(user));
2721 
2722 		if (status != 0)
2723 			seq_puts(m, " #");
2724 
2725 		if (status != 0) {
2726 			seq_puts(m, " Used by");
2727 			if (status & EVENT_STATUS_FTRACE)
2728 				seq_puts(m, " ftrace");
2729 			if (status & EVENT_STATUS_PERF)
2730 				seq_puts(m, " perf");
2731 			if (status & EVENT_STATUS_OTHER)
2732 				seq_puts(m, " other");
2733 			busy++;
2734 		}
2735 
2736 		seq_puts(m, "\n");
2737 		active++;
2738 	}
2739 
2740 	mutex_unlock(&group->reg_mutex);
2741 
2742 	seq_puts(m, "\n");
2743 	seq_printf(m, "Active: %d\n", active);
2744 	seq_printf(m, "Busy: %d\n", busy);
2745 
2746 	return 0;
2747 }
2748 
2749 static const struct seq_operations user_seq_ops = {
2750 	.start	= user_seq_start,
2751 	.next	= user_seq_next,
2752 	.stop	= user_seq_stop,
2753 	.show	= user_seq_show,
2754 };
2755 
2756 static int user_status_open(struct inode *node, struct file *file)
2757 {
2758 	struct user_event_group *group;
2759 	int ret;
2760 
2761 	group = current_user_event_group();
2762 
2763 	if (!group)
2764 		return -ENOENT;
2765 
2766 	ret = seq_open(file, &user_seq_ops);
2767 
2768 	if (!ret) {
2769 		/* Chain group to seq_file */
2770 		struct seq_file *m = file->private_data;
2771 
2772 		m->private = group;
2773 	}
2774 
2775 	return ret;
2776 }
2777 
2778 static const struct file_operations user_status_fops = {
2779 	.open		= user_status_open,
2780 	.read		= seq_read,
2781 	.llseek		= seq_lseek,
2782 	.release	= seq_release,
2783 };
2784 
2785 /*
2786  * Creates a set of tracefs files to allow user mode interactions.
2787  */
2788 static int create_user_tracefs(void)
2789 {
2790 	struct dentry *edata, *emmap;
2791 
2792 	edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2793 				    NULL, NULL, &user_data_fops);
2794 
2795 	if (!edata) {
2796 		pr_warn("Could not create tracefs 'user_events_data' entry\n");
2797 		goto err;
2798 	}
2799 
2800 	emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
2801 				    NULL, NULL, &user_status_fops);
2802 
2803 	if (!emmap) {
2804 		tracefs_remove(edata);
2805 		pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2806 		goto err;
2807 	}
2808 
2809 	return 0;
2810 err:
2811 	return -ENODEV;
2812 }
2813 
2814 static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2815 				      void *buffer, size_t *lenp, loff_t *ppos)
2816 {
2817 	int ret;
2818 
2819 	mutex_lock(&event_mutex);
2820 
2821 	ret = proc_douintvec(table, write, buffer, lenp, ppos);
2822 
2823 	mutex_unlock(&event_mutex);
2824 
2825 	return ret;
2826 }
2827 
2828 static struct ctl_table user_event_sysctls[] = {
2829 	{
2830 		.procname	= "user_events_max",
2831 		.data		= &max_user_events,
2832 		.maxlen		= sizeof(unsigned int),
2833 		.mode		= 0644,
2834 		.proc_handler	= set_max_user_events_sysctl,
2835 	},
2836 	{}
2837 };
2838 
2839 static int __init trace_events_user_init(void)
2840 {
2841 	int ret;
2842 
2843 	fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2844 
2845 	if (!fault_cache)
2846 		return -ENOMEM;
2847 
2848 	init_group = user_event_group_create();
2849 
2850 	if (!init_group) {
2851 		kmem_cache_destroy(fault_cache);
2852 		return -ENOMEM;
2853 	}
2854 
2855 	ret = create_user_tracefs();
2856 
2857 	if (ret) {
2858 		pr_warn("user_events could not register with tracefs\n");
2859 		user_event_group_destroy(init_group);
2860 		kmem_cache_destroy(fault_cache);
2861 		init_group = NULL;
2862 		return ret;
2863 	}
2864 
2865 	if (dyn_event_register(&user_event_dops))
2866 		pr_warn("user_events could not register with dyn_events\n");
2867 
2868 	register_sysctl_init("kernel", user_event_sysctls);
2869 
2870 	return 0;
2871 }
2872 
2873 fs_initcall(trace_events_user_init);
2874