1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2021, Microsoft Corporation. 4 * 5 * Authors: 6 * Beau Belgrave <beaub@linux.microsoft.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/cdev.h> 11 #include <linux/hashtable.h> 12 #include <linux/list.h> 13 #include <linux/io.h> 14 #include <linux/uio.h> 15 #include <linux/ioctl.h> 16 #include <linux/jhash.h> 17 #include <linux/refcount.h> 18 #include <linux/trace_events.h> 19 #include <linux/tracefs.h> 20 #include <linux/types.h> 21 #include <linux/uaccess.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/user_events.h> 25 #include "trace_dynevent.h" 26 #include "trace_output.h" 27 #include "trace.h" 28 29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1) 30 31 #define FIELD_DEPTH_TYPE 0 32 #define FIELD_DEPTH_NAME 1 33 #define FIELD_DEPTH_SIZE 2 34 35 /* Limit how long of an event name plus args within the subsystem. */ 36 #define MAX_EVENT_DESC 512 37 #define EVENT_NAME(user_event) ((user_event)->tracepoint.name) 38 #define MAX_FIELD_ARRAY_SIZE 1024 39 40 /* 41 * Internal bits (kernel side only) to keep track of connected probes: 42 * These are used when status is requested in text form about an event. These 43 * bits are compared against an internal byte on the event to determine which 44 * probes to print out to the user. 45 * 46 * These do not reflect the mapped bytes between the user and kernel space. 47 */ 48 #define EVENT_STATUS_FTRACE BIT(0) 49 #define EVENT_STATUS_PERF BIT(1) 50 #define EVENT_STATUS_OTHER BIT(7) 51 52 /* 53 * Stores the system name, tables, and locks for a group of events. This 54 * allows isolation for events by various means. 55 */ 56 struct user_event_group { 57 char *system_name; 58 struct hlist_node node; 59 struct mutex reg_mutex; 60 DECLARE_HASHTABLE(register_table, 8); 61 }; 62 63 /* Group for init_user_ns mapping, top-most group */ 64 static struct user_event_group *init_group; 65 66 /* Max allowed events for the whole system */ 67 static unsigned int max_user_events = 32768; 68 69 /* Current number of events on the whole system */ 70 static unsigned int current_user_events; 71 72 /* 73 * Stores per-event properties, as users register events 74 * within a file a user_event might be created if it does not 75 * already exist. These are globally used and their lifetime 76 * is tied to the refcnt member. These cannot go away until the 77 * refcnt reaches one. 78 */ 79 struct user_event { 80 struct user_event_group *group; 81 struct tracepoint tracepoint; 82 struct trace_event_call call; 83 struct trace_event_class class; 84 struct dyn_event devent; 85 struct hlist_node node; 86 struct list_head fields; 87 struct list_head validators; 88 struct work_struct put_work; 89 refcount_t refcnt; 90 int min_size; 91 int reg_flags; 92 char status; 93 }; 94 95 /* 96 * Stores per-mm/event properties that enable an address to be 97 * updated properly for each task. As tasks are forked, we use 98 * these to track enablement sites that are tied to an event. 99 */ 100 struct user_event_enabler { 101 struct list_head mm_enablers_link; 102 struct user_event *event; 103 unsigned long addr; 104 105 /* Track enable bit, flags, etc. Aligned for bitops. */ 106 unsigned long values; 107 }; 108 109 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */ 110 #define ENABLE_VAL_BIT_MASK 0x3F 111 112 /* Bit 6 is for faulting status of enablement */ 113 #define ENABLE_VAL_FAULTING_BIT 6 114 115 /* Bit 7 is for freeing status of enablement */ 116 #define ENABLE_VAL_FREEING_BIT 7 117 118 /* Bit 8 is for marking 32-bit on 64-bit */ 119 #define ENABLE_VAL_32_ON_64_BIT 8 120 121 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT) 122 123 /* Only duplicate the bit and compat values */ 124 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK) 125 126 #define ENABLE_BITOPS(e) (&(e)->values) 127 128 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK)) 129 130 /* Used for asynchronous faulting in of pages */ 131 struct user_event_enabler_fault { 132 struct work_struct work; 133 struct user_event_mm *mm; 134 struct user_event_enabler *enabler; 135 int attempt; 136 }; 137 138 static struct kmem_cache *fault_cache; 139 140 /* Global list of memory descriptors using user_events */ 141 static LIST_HEAD(user_event_mms); 142 static DEFINE_SPINLOCK(user_event_mms_lock); 143 144 /* 145 * Stores per-file events references, as users register events 146 * within a file this structure is modified and freed via RCU. 147 * The lifetime of this struct is tied to the lifetime of the file. 148 * These are not shared and only accessible by the file that created it. 149 */ 150 struct user_event_refs { 151 struct rcu_head rcu; 152 int count; 153 struct user_event *events[]; 154 }; 155 156 struct user_event_file_info { 157 struct user_event_group *group; 158 struct user_event_refs *refs; 159 }; 160 161 #define VALIDATOR_ENSURE_NULL (1 << 0) 162 #define VALIDATOR_REL (1 << 1) 163 164 struct user_event_validator { 165 struct list_head user_event_link; 166 int offset; 167 int flags; 168 }; 169 170 static inline void align_addr_bit(unsigned long *addr, int *bit, 171 unsigned long *flags) 172 { 173 if (IS_ALIGNED(*addr, sizeof(long))) { 174 #ifdef __BIG_ENDIAN 175 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */ 176 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags)) 177 *bit += 32; 178 #endif 179 return; 180 } 181 182 *addr = ALIGN_DOWN(*addr, sizeof(long)); 183 184 /* 185 * We only support 32 and 64 bit values. The only time we need 186 * to align is a 32 bit value on a 64 bit kernel, which on LE 187 * is always 32 bits, and on BE requires no change when unaligned. 188 */ 189 #ifdef __LITTLE_ENDIAN 190 *bit += 32; 191 #endif 192 } 193 194 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i, 195 void *tpdata, bool *faulted); 196 197 static int user_event_parse(struct user_event_group *group, char *name, 198 char *args, char *flags, 199 struct user_event **newuser, int reg_flags); 200 201 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm); 202 static struct user_event_mm *user_event_mm_get_all(struct user_event *user); 203 static void user_event_mm_put(struct user_event_mm *mm); 204 static int destroy_user_event(struct user_event *user); 205 206 static u32 user_event_key(char *name) 207 { 208 return jhash(name, strlen(name), 0); 209 } 210 211 static bool user_event_capable(u16 reg_flags) 212 { 213 /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */ 214 if (reg_flags & USER_EVENT_REG_PERSIST) { 215 if (!perfmon_capable()) 216 return false; 217 } 218 219 return true; 220 } 221 222 static struct user_event *user_event_get(struct user_event *user) 223 { 224 refcount_inc(&user->refcnt); 225 226 return user; 227 } 228 229 static void delayed_destroy_user_event(struct work_struct *work) 230 { 231 struct user_event *user = container_of( 232 work, struct user_event, put_work); 233 234 mutex_lock(&event_mutex); 235 236 if (!refcount_dec_and_test(&user->refcnt)) 237 goto out; 238 239 if (destroy_user_event(user)) { 240 /* 241 * The only reason this would fail here is if we cannot 242 * update the visibility of the event. In this case the 243 * event stays in the hashtable, waiting for someone to 244 * attempt to delete it later. 245 */ 246 pr_warn("user_events: Unable to delete event\n"); 247 refcount_set(&user->refcnt, 1); 248 } 249 out: 250 mutex_unlock(&event_mutex); 251 } 252 253 static void user_event_put(struct user_event *user, bool locked) 254 { 255 bool delete; 256 257 if (unlikely(!user)) 258 return; 259 260 /* 261 * When the event is not enabled for auto-delete there will always 262 * be at least 1 reference to the event. During the event creation 263 * we initially set the refcnt to 2 to achieve this. In those cases 264 * the caller must acquire event_mutex and after decrement check if 265 * the refcnt is 1, meaning this is the last reference. When auto 266 * delete is enabled, there will only be 1 ref, IE: refcnt will be 267 * only set to 1 during creation to allow the below checks to go 268 * through upon the last put. The last put must always be done with 269 * the event mutex held. 270 */ 271 if (!locked) { 272 lockdep_assert_not_held(&event_mutex); 273 delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex); 274 } else { 275 lockdep_assert_held(&event_mutex); 276 delete = refcount_dec_and_test(&user->refcnt); 277 } 278 279 if (!delete) 280 return; 281 282 /* 283 * We now have the event_mutex in all cases, which ensures that 284 * no new references will be taken until event_mutex is released. 285 * New references come through find_user_event(), which requires 286 * the event_mutex to be held. 287 */ 288 289 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 290 /* We should not get here when persist flag is set */ 291 pr_alert("BUG: Auto-delete engaged on persistent event\n"); 292 goto out; 293 } 294 295 /* 296 * Unfortunately we have to attempt the actual destroy in a work 297 * queue. This is because not all cases handle a trace_event_call 298 * being removed within the class->reg() operation for unregister. 299 */ 300 INIT_WORK(&user->put_work, delayed_destroy_user_event); 301 302 /* 303 * Since the event is still in the hashtable, we have to re-inc 304 * the ref count to 1. This count will be decremented and checked 305 * in the work queue to ensure it's still the last ref. This is 306 * needed because a user-process could register the same event in 307 * between the time of event_mutex release and the work queue 308 * running the delayed destroy. If we removed the item now from 309 * the hashtable, this would result in a timing window where a 310 * user process would fail a register because the trace_event_call 311 * register would fail in the tracing layers. 312 */ 313 refcount_set(&user->refcnt, 1); 314 315 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) { 316 /* 317 * If we fail we must wait for an admin to attempt delete or 318 * another register/close of the event, whichever is first. 319 */ 320 pr_warn("user_events: Unable to queue delayed destroy\n"); 321 } 322 out: 323 /* Ensure if we didn't have event_mutex before we unlock it */ 324 if (!locked) 325 mutex_unlock(&event_mutex); 326 } 327 328 static void user_event_group_destroy(struct user_event_group *group) 329 { 330 kfree(group->system_name); 331 kfree(group); 332 } 333 334 static char *user_event_group_system_name(void) 335 { 336 char *system_name; 337 int len = sizeof(USER_EVENTS_SYSTEM) + 1; 338 339 system_name = kmalloc(len, GFP_KERNEL); 340 341 if (!system_name) 342 return NULL; 343 344 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM); 345 346 return system_name; 347 } 348 349 static struct user_event_group *current_user_event_group(void) 350 { 351 return init_group; 352 } 353 354 static struct user_event_group *user_event_group_create(void) 355 { 356 struct user_event_group *group; 357 358 group = kzalloc(sizeof(*group), GFP_KERNEL); 359 360 if (!group) 361 return NULL; 362 363 group->system_name = user_event_group_system_name(); 364 365 if (!group->system_name) 366 goto error; 367 368 mutex_init(&group->reg_mutex); 369 hash_init(group->register_table); 370 371 return group; 372 error: 373 if (group) 374 user_event_group_destroy(group); 375 376 return NULL; 377 }; 378 379 static void user_event_enabler_destroy(struct user_event_enabler *enabler, 380 bool locked) 381 { 382 list_del_rcu(&enabler->mm_enablers_link); 383 384 /* No longer tracking the event via the enabler */ 385 user_event_put(enabler->event, locked); 386 387 kfree(enabler); 388 } 389 390 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr, 391 int attempt) 392 { 393 bool unlocked; 394 int ret; 395 396 /* 397 * Normally this is low, ensure that it cannot be taken advantage of by 398 * bad user processes to cause excessive looping. 399 */ 400 if (attempt > 10) 401 return -EFAULT; 402 403 mmap_read_lock(mm->mm); 404 405 /* Ensure MM has tasks, cannot use after exit_mm() */ 406 if (refcount_read(&mm->tasks) == 0) { 407 ret = -ENOENT; 408 goto out; 409 } 410 411 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 412 &unlocked); 413 out: 414 mmap_read_unlock(mm->mm); 415 416 return ret; 417 } 418 419 static int user_event_enabler_write(struct user_event_mm *mm, 420 struct user_event_enabler *enabler, 421 bool fixup_fault, int *attempt); 422 423 static void user_event_enabler_fault_fixup(struct work_struct *work) 424 { 425 struct user_event_enabler_fault *fault = container_of( 426 work, struct user_event_enabler_fault, work); 427 struct user_event_enabler *enabler = fault->enabler; 428 struct user_event_mm *mm = fault->mm; 429 unsigned long uaddr = enabler->addr; 430 int attempt = fault->attempt; 431 int ret; 432 433 ret = user_event_mm_fault_in(mm, uaddr, attempt); 434 435 if (ret && ret != -ENOENT) { 436 struct user_event *user = enabler->event; 437 438 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n", 439 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user)); 440 } 441 442 /* Prevent state changes from racing */ 443 mutex_lock(&event_mutex); 444 445 /* User asked for enabler to be removed during fault */ 446 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) { 447 user_event_enabler_destroy(enabler, true); 448 goto out; 449 } 450 451 /* 452 * If we managed to get the page, re-issue the write. We do not 453 * want to get into a possible infinite loop, which is why we only 454 * attempt again directly if the page came in. If we couldn't get 455 * the page here, then we will try again the next time the event is 456 * enabled/disabled. 457 */ 458 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 459 460 if (!ret) { 461 mmap_read_lock(mm->mm); 462 user_event_enabler_write(mm, enabler, true, &attempt); 463 mmap_read_unlock(mm->mm); 464 } 465 out: 466 mutex_unlock(&event_mutex); 467 468 /* In all cases we no longer need the mm or fault */ 469 user_event_mm_put(mm); 470 kmem_cache_free(fault_cache, fault); 471 } 472 473 static bool user_event_enabler_queue_fault(struct user_event_mm *mm, 474 struct user_event_enabler *enabler, 475 int attempt) 476 { 477 struct user_event_enabler_fault *fault; 478 479 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN); 480 481 if (!fault) 482 return false; 483 484 INIT_WORK(&fault->work, user_event_enabler_fault_fixup); 485 fault->mm = user_event_mm_get(mm); 486 fault->enabler = enabler; 487 fault->attempt = attempt; 488 489 /* Don't try to queue in again while we have a pending fault */ 490 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 491 492 if (!schedule_work(&fault->work)) { 493 /* Allow another attempt later */ 494 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 495 496 user_event_mm_put(mm); 497 kmem_cache_free(fault_cache, fault); 498 499 return false; 500 } 501 502 return true; 503 } 504 505 static int user_event_enabler_write(struct user_event_mm *mm, 506 struct user_event_enabler *enabler, 507 bool fixup_fault, int *attempt) 508 { 509 unsigned long uaddr = enabler->addr; 510 unsigned long *ptr; 511 struct page *page; 512 void *kaddr; 513 int bit = ENABLE_BIT(enabler); 514 int ret; 515 516 lockdep_assert_held(&event_mutex); 517 mmap_assert_locked(mm->mm); 518 519 *attempt += 1; 520 521 /* Ensure MM has tasks, cannot use after exit_mm() */ 522 if (refcount_read(&mm->tasks) == 0) 523 return -ENOENT; 524 525 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) || 526 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)))) 527 return -EBUSY; 528 529 align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler)); 530 531 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT, 532 &page, NULL); 533 534 if (unlikely(ret <= 0)) { 535 if (!fixup_fault) 536 return -EFAULT; 537 538 if (!user_event_enabler_queue_fault(mm, enabler, *attempt)) 539 pr_warn("user_events: Unable to queue fault handler\n"); 540 541 return -EFAULT; 542 } 543 544 kaddr = kmap_local_page(page); 545 ptr = kaddr + (uaddr & ~PAGE_MASK); 546 547 /* Update bit atomically, user tracers must be atomic as well */ 548 if (enabler->event && enabler->event->status) 549 set_bit(bit, ptr); 550 else 551 clear_bit(bit, ptr); 552 553 kunmap_local(kaddr); 554 unpin_user_pages_dirty_lock(&page, 1, true); 555 556 return 0; 557 } 558 559 static bool user_event_enabler_exists(struct user_event_mm *mm, 560 unsigned long uaddr, unsigned char bit) 561 { 562 struct user_event_enabler *enabler; 563 564 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 565 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit) 566 return true; 567 } 568 569 return false; 570 } 571 572 static void user_event_enabler_update(struct user_event *user) 573 { 574 struct user_event_enabler *enabler; 575 struct user_event_mm *next; 576 struct user_event_mm *mm; 577 int attempt; 578 579 lockdep_assert_held(&event_mutex); 580 581 /* 582 * We need to build a one-shot list of all the mms that have an 583 * enabler for the user_event passed in. This list is only valid 584 * while holding the event_mutex. The only reason for this is due 585 * to the global mm list being RCU protected and we use methods 586 * which can wait (mmap_read_lock and pin_user_pages_remote). 587 * 588 * NOTE: user_event_mm_get_all() increments the ref count of each 589 * mm that is added to the list to prevent removal timing windows. 590 * We must always put each mm after they are used, which may wait. 591 */ 592 mm = user_event_mm_get_all(user); 593 594 while (mm) { 595 next = mm->next; 596 mmap_read_lock(mm->mm); 597 598 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 599 if (enabler->event == user) { 600 attempt = 0; 601 user_event_enabler_write(mm, enabler, true, &attempt); 602 } 603 } 604 605 mmap_read_unlock(mm->mm); 606 user_event_mm_put(mm); 607 mm = next; 608 } 609 } 610 611 static bool user_event_enabler_dup(struct user_event_enabler *orig, 612 struct user_event_mm *mm) 613 { 614 struct user_event_enabler *enabler; 615 616 /* Skip pending frees */ 617 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig)))) 618 return true; 619 620 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT); 621 622 if (!enabler) 623 return false; 624 625 enabler->event = user_event_get(orig->event); 626 enabler->addr = orig->addr; 627 628 /* Only dup part of value (ignore future flags, etc) */ 629 enabler->values = orig->values & ENABLE_VAL_DUP_MASK; 630 631 /* Enablers not exposed yet, RCU not required */ 632 list_add(&enabler->mm_enablers_link, &mm->enablers); 633 634 return true; 635 } 636 637 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm) 638 { 639 refcount_inc(&mm->refcnt); 640 641 return mm; 642 } 643 644 static struct user_event_mm *user_event_mm_get_all(struct user_event *user) 645 { 646 struct user_event_mm *found = NULL; 647 struct user_event_enabler *enabler; 648 struct user_event_mm *mm; 649 650 /* 651 * We use the mm->next field to build a one-shot list from the global 652 * RCU protected list. To build this list the event_mutex must be held. 653 * This lets us build a list without requiring allocs that could fail 654 * when user based events are most wanted for diagnostics. 655 */ 656 lockdep_assert_held(&event_mutex); 657 658 /* 659 * We do not want to block fork/exec while enablements are being 660 * updated, so we use RCU to walk the current tasks that have used 661 * user_events ABI for 1 or more events. Each enabler found in each 662 * task that matches the event being updated has a write to reflect 663 * the kernel state back into the process. Waits/faults must not occur 664 * during this. So we scan the list under RCU for all the mm that have 665 * the event within it. This is needed because mm_read_lock() can wait. 666 * Each user mm returned has a ref inc to handle remove RCU races. 667 */ 668 rcu_read_lock(); 669 670 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) { 671 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) { 672 if (enabler->event == user) { 673 mm->next = found; 674 found = user_event_mm_get(mm); 675 break; 676 } 677 } 678 } 679 680 rcu_read_unlock(); 681 682 return found; 683 } 684 685 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t) 686 { 687 struct user_event_mm *user_mm; 688 689 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT); 690 691 if (!user_mm) 692 return NULL; 693 694 user_mm->mm = t->mm; 695 INIT_LIST_HEAD(&user_mm->enablers); 696 refcount_set(&user_mm->refcnt, 1); 697 refcount_set(&user_mm->tasks, 1); 698 699 /* 700 * The lifetime of the memory descriptor can slightly outlast 701 * the task lifetime if a ref to the user_event_mm is taken 702 * between list_del_rcu() and call_rcu(). Therefore we need 703 * to take a reference to it to ensure it can live this long 704 * under this corner case. This can also occur in clones that 705 * outlast the parent. 706 */ 707 mmgrab(user_mm->mm); 708 709 return user_mm; 710 } 711 712 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t) 713 { 714 unsigned long flags; 715 716 spin_lock_irqsave(&user_event_mms_lock, flags); 717 list_add_rcu(&user_mm->mms_link, &user_event_mms); 718 spin_unlock_irqrestore(&user_event_mms_lock, flags); 719 720 t->user_event_mm = user_mm; 721 } 722 723 static struct user_event_mm *current_user_event_mm(void) 724 { 725 struct user_event_mm *user_mm = current->user_event_mm; 726 727 if (user_mm) 728 goto inc; 729 730 user_mm = user_event_mm_alloc(current); 731 732 if (!user_mm) 733 goto error; 734 735 user_event_mm_attach(user_mm, current); 736 inc: 737 refcount_inc(&user_mm->refcnt); 738 error: 739 return user_mm; 740 } 741 742 static void user_event_mm_destroy(struct user_event_mm *mm) 743 { 744 struct user_event_enabler *enabler, *next; 745 746 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) 747 user_event_enabler_destroy(enabler, false); 748 749 mmdrop(mm->mm); 750 kfree(mm); 751 } 752 753 static void user_event_mm_put(struct user_event_mm *mm) 754 { 755 if (mm && refcount_dec_and_test(&mm->refcnt)) 756 user_event_mm_destroy(mm); 757 } 758 759 static void delayed_user_event_mm_put(struct work_struct *work) 760 { 761 struct user_event_mm *mm; 762 763 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork); 764 user_event_mm_put(mm); 765 } 766 767 void user_event_mm_remove(struct task_struct *t) 768 { 769 struct user_event_mm *mm; 770 unsigned long flags; 771 772 might_sleep(); 773 774 mm = t->user_event_mm; 775 t->user_event_mm = NULL; 776 777 /* Clone will increment the tasks, only remove if last clone */ 778 if (!refcount_dec_and_test(&mm->tasks)) 779 return; 780 781 /* Remove the mm from the list, so it can no longer be enabled */ 782 spin_lock_irqsave(&user_event_mms_lock, flags); 783 list_del_rcu(&mm->mms_link); 784 spin_unlock_irqrestore(&user_event_mms_lock, flags); 785 786 /* 787 * We need to wait for currently occurring writes to stop within 788 * the mm. This is required since exit_mm() snaps the current rss 789 * stats and clears them. On the final mmdrop(), check_mm() will 790 * report a bug if these increment. 791 * 792 * All writes/pins are done under mmap_read lock, take the write 793 * lock to ensure in-progress faults have completed. Faults that 794 * are pending but yet to run will check the task count and skip 795 * the fault since the mm is going away. 796 */ 797 mmap_write_lock(mm->mm); 798 mmap_write_unlock(mm->mm); 799 800 /* 801 * Put for mm must be done after RCU delay to handle new refs in 802 * between the list_del_rcu() and now. This ensures any get refs 803 * during rcu_read_lock() are accounted for during list removal. 804 * 805 * CPU A | CPU B 806 * --------------------------------------------------------------- 807 * user_event_mm_remove() | rcu_read_lock(); 808 * list_del_rcu() | list_for_each_entry_rcu(); 809 * call_rcu() | refcount_inc(); 810 * . | rcu_read_unlock(); 811 * schedule_work() | . 812 * user_event_mm_put() | . 813 * 814 * mmdrop() cannot be called in the softirq context of call_rcu() 815 * so we use a work queue after call_rcu() to run within. 816 */ 817 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put); 818 queue_rcu_work(system_wq, &mm->put_rwork); 819 } 820 821 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm) 822 { 823 struct user_event_mm *mm = user_event_mm_alloc(t); 824 struct user_event_enabler *enabler; 825 826 if (!mm) 827 return; 828 829 rcu_read_lock(); 830 831 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) { 832 if (!user_event_enabler_dup(enabler, mm)) 833 goto error; 834 } 835 836 rcu_read_unlock(); 837 838 user_event_mm_attach(mm, t); 839 return; 840 error: 841 rcu_read_unlock(); 842 user_event_mm_destroy(mm); 843 } 844 845 static bool current_user_event_enabler_exists(unsigned long uaddr, 846 unsigned char bit) 847 { 848 struct user_event_mm *user_mm = current_user_event_mm(); 849 bool exists; 850 851 if (!user_mm) 852 return false; 853 854 exists = user_event_enabler_exists(user_mm, uaddr, bit); 855 856 user_event_mm_put(user_mm); 857 858 return exists; 859 } 860 861 static struct user_event_enabler 862 *user_event_enabler_create(struct user_reg *reg, struct user_event *user, 863 int *write_result) 864 { 865 struct user_event_enabler *enabler; 866 struct user_event_mm *user_mm; 867 unsigned long uaddr = (unsigned long)reg->enable_addr; 868 int attempt = 0; 869 870 user_mm = current_user_event_mm(); 871 872 if (!user_mm) 873 return NULL; 874 875 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT); 876 877 if (!enabler) 878 goto out; 879 880 enabler->event = user; 881 enabler->addr = uaddr; 882 enabler->values = reg->enable_bit; 883 884 #if BITS_PER_LONG >= 64 885 if (reg->enable_size == 4) 886 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler)); 887 #endif 888 889 retry: 890 /* Prevents state changes from racing with new enablers */ 891 mutex_lock(&event_mutex); 892 893 /* Attempt to reflect the current state within the process */ 894 mmap_read_lock(user_mm->mm); 895 *write_result = user_event_enabler_write(user_mm, enabler, false, 896 &attempt); 897 mmap_read_unlock(user_mm->mm); 898 899 /* 900 * If the write works, then we will track the enabler. A ref to the 901 * underlying user_event is held by the enabler to prevent it going 902 * away while the enabler is still in use by a process. The ref is 903 * removed when the enabler is destroyed. This means a event cannot 904 * be forcefully deleted from the system until all tasks using it 905 * exit or run exec(), which includes forks and clones. 906 */ 907 if (!*write_result) { 908 user_event_get(user); 909 list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers); 910 } 911 912 mutex_unlock(&event_mutex); 913 914 if (*write_result) { 915 /* Attempt to fault-in and retry if it worked */ 916 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 917 goto retry; 918 919 kfree(enabler); 920 enabler = NULL; 921 } 922 out: 923 user_event_mm_put(user_mm); 924 925 return enabler; 926 } 927 928 static __always_inline __must_check 929 bool user_event_last_ref(struct user_event *user) 930 { 931 int last = 0; 932 933 if (user->reg_flags & USER_EVENT_REG_PERSIST) 934 last = 1; 935 936 return refcount_read(&user->refcnt) == last; 937 } 938 939 static __always_inline __must_check 940 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i) 941 { 942 size_t ret; 943 944 pagefault_disable(); 945 946 ret = copy_from_iter_nocache(addr, bytes, i); 947 948 pagefault_enable(); 949 950 return ret; 951 } 952 953 static struct list_head *user_event_get_fields(struct trace_event_call *call) 954 { 955 struct user_event *user = (struct user_event *)call->data; 956 957 return &user->fields; 958 } 959 960 /* 961 * Parses a register command for user_events 962 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]] 963 * 964 * Example event named 'test' with a 20 char 'msg' field with an unsigned int 965 * 'id' field after: 966 * test char[20] msg;unsigned int id 967 * 968 * NOTE: Offsets are from the user data perspective, they are not from the 969 * trace_entry/buffer perspective. We automatically add the common properties 970 * sizes to the offset for the user. 971 * 972 * Upon success user_event has its ref count increased by 1. 973 */ 974 static int user_event_parse_cmd(struct user_event_group *group, 975 char *raw_command, struct user_event **newuser, 976 int reg_flags) 977 { 978 char *name = raw_command; 979 char *args = strpbrk(name, " "); 980 char *flags; 981 982 if (args) 983 *args++ = '\0'; 984 985 flags = strpbrk(name, ":"); 986 987 if (flags) 988 *flags++ = '\0'; 989 990 return user_event_parse(group, name, args, flags, newuser, reg_flags); 991 } 992 993 static int user_field_array_size(const char *type) 994 { 995 const char *start = strchr(type, '['); 996 char val[8]; 997 char *bracket; 998 int size = 0; 999 1000 if (start == NULL) 1001 return -EINVAL; 1002 1003 if (strscpy(val, start + 1, sizeof(val)) <= 0) 1004 return -EINVAL; 1005 1006 bracket = strchr(val, ']'); 1007 1008 if (!bracket) 1009 return -EINVAL; 1010 1011 *bracket = '\0'; 1012 1013 if (kstrtouint(val, 0, &size)) 1014 return -EINVAL; 1015 1016 if (size > MAX_FIELD_ARRAY_SIZE) 1017 return -EINVAL; 1018 1019 return size; 1020 } 1021 1022 static int user_field_size(const char *type) 1023 { 1024 /* long is not allowed from a user, since it's ambigious in size */ 1025 if (strcmp(type, "s64") == 0) 1026 return sizeof(s64); 1027 if (strcmp(type, "u64") == 0) 1028 return sizeof(u64); 1029 if (strcmp(type, "s32") == 0) 1030 return sizeof(s32); 1031 if (strcmp(type, "u32") == 0) 1032 return sizeof(u32); 1033 if (strcmp(type, "int") == 0) 1034 return sizeof(int); 1035 if (strcmp(type, "unsigned int") == 0) 1036 return sizeof(unsigned int); 1037 if (strcmp(type, "s16") == 0) 1038 return sizeof(s16); 1039 if (strcmp(type, "u16") == 0) 1040 return sizeof(u16); 1041 if (strcmp(type, "short") == 0) 1042 return sizeof(short); 1043 if (strcmp(type, "unsigned short") == 0) 1044 return sizeof(unsigned short); 1045 if (strcmp(type, "s8") == 0) 1046 return sizeof(s8); 1047 if (strcmp(type, "u8") == 0) 1048 return sizeof(u8); 1049 if (strcmp(type, "char") == 0) 1050 return sizeof(char); 1051 if (strcmp(type, "unsigned char") == 0) 1052 return sizeof(unsigned char); 1053 if (str_has_prefix(type, "char[")) 1054 return user_field_array_size(type); 1055 if (str_has_prefix(type, "unsigned char[")) 1056 return user_field_array_size(type); 1057 if (str_has_prefix(type, "__data_loc ")) 1058 return sizeof(u32); 1059 if (str_has_prefix(type, "__rel_loc ")) 1060 return sizeof(u32); 1061 1062 /* Uknown basic type, error */ 1063 return -EINVAL; 1064 } 1065 1066 static void user_event_destroy_validators(struct user_event *user) 1067 { 1068 struct user_event_validator *validator, *next; 1069 struct list_head *head = &user->validators; 1070 1071 list_for_each_entry_safe(validator, next, head, user_event_link) { 1072 list_del(&validator->user_event_link); 1073 kfree(validator); 1074 } 1075 } 1076 1077 static void user_event_destroy_fields(struct user_event *user) 1078 { 1079 struct ftrace_event_field *field, *next; 1080 struct list_head *head = &user->fields; 1081 1082 list_for_each_entry_safe(field, next, head, link) { 1083 list_del(&field->link); 1084 kfree(field); 1085 } 1086 } 1087 1088 static int user_event_add_field(struct user_event *user, const char *type, 1089 const char *name, int offset, int size, 1090 int is_signed, int filter_type) 1091 { 1092 struct user_event_validator *validator; 1093 struct ftrace_event_field *field; 1094 int validator_flags = 0; 1095 1096 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT); 1097 1098 if (!field) 1099 return -ENOMEM; 1100 1101 if (str_has_prefix(type, "__data_loc ")) 1102 goto add_validator; 1103 1104 if (str_has_prefix(type, "__rel_loc ")) { 1105 validator_flags |= VALIDATOR_REL; 1106 goto add_validator; 1107 } 1108 1109 goto add_field; 1110 1111 add_validator: 1112 if (strstr(type, "char") != NULL) 1113 validator_flags |= VALIDATOR_ENSURE_NULL; 1114 1115 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT); 1116 1117 if (!validator) { 1118 kfree(field); 1119 return -ENOMEM; 1120 } 1121 1122 validator->flags = validator_flags; 1123 validator->offset = offset; 1124 1125 /* Want sequential access when validating */ 1126 list_add_tail(&validator->user_event_link, &user->validators); 1127 1128 add_field: 1129 field->type = type; 1130 field->name = name; 1131 field->offset = offset; 1132 field->size = size; 1133 field->is_signed = is_signed; 1134 field->filter_type = filter_type; 1135 1136 if (filter_type == FILTER_OTHER) 1137 field->filter_type = filter_assign_type(type); 1138 1139 list_add(&field->link, &user->fields); 1140 1141 /* 1142 * Min size from user writes that are required, this does not include 1143 * the size of trace_entry (common fields). 1144 */ 1145 user->min_size = (offset + size) - sizeof(struct trace_entry); 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * Parses the values of a field within the description 1152 * Format: type name [size] 1153 */ 1154 static int user_event_parse_field(char *field, struct user_event *user, 1155 u32 *offset) 1156 { 1157 char *part, *type, *name; 1158 u32 depth = 0, saved_offset = *offset; 1159 int len, size = -EINVAL; 1160 bool is_struct = false; 1161 1162 field = skip_spaces(field); 1163 1164 if (*field == '\0') 1165 return 0; 1166 1167 /* Handle types that have a space within */ 1168 len = str_has_prefix(field, "unsigned "); 1169 if (len) 1170 goto skip_next; 1171 1172 len = str_has_prefix(field, "struct "); 1173 if (len) { 1174 is_struct = true; 1175 goto skip_next; 1176 } 1177 1178 len = str_has_prefix(field, "__data_loc unsigned "); 1179 if (len) 1180 goto skip_next; 1181 1182 len = str_has_prefix(field, "__data_loc "); 1183 if (len) 1184 goto skip_next; 1185 1186 len = str_has_prefix(field, "__rel_loc unsigned "); 1187 if (len) 1188 goto skip_next; 1189 1190 len = str_has_prefix(field, "__rel_loc "); 1191 if (len) 1192 goto skip_next; 1193 1194 goto parse; 1195 skip_next: 1196 type = field; 1197 field = strpbrk(field + len, " "); 1198 1199 if (field == NULL) 1200 return -EINVAL; 1201 1202 *field++ = '\0'; 1203 depth++; 1204 parse: 1205 name = NULL; 1206 1207 while ((part = strsep(&field, " ")) != NULL) { 1208 switch (depth++) { 1209 case FIELD_DEPTH_TYPE: 1210 type = part; 1211 break; 1212 case FIELD_DEPTH_NAME: 1213 name = part; 1214 break; 1215 case FIELD_DEPTH_SIZE: 1216 if (!is_struct) 1217 return -EINVAL; 1218 1219 if (kstrtou32(part, 10, &size)) 1220 return -EINVAL; 1221 break; 1222 default: 1223 return -EINVAL; 1224 } 1225 } 1226 1227 if (depth < FIELD_DEPTH_SIZE || !name) 1228 return -EINVAL; 1229 1230 if (depth == FIELD_DEPTH_SIZE) 1231 size = user_field_size(type); 1232 1233 if (size == 0) 1234 return -EINVAL; 1235 1236 if (size < 0) 1237 return size; 1238 1239 *offset = saved_offset + size; 1240 1241 return user_event_add_field(user, type, name, saved_offset, size, 1242 type[0] != 'u', FILTER_OTHER); 1243 } 1244 1245 static int user_event_parse_fields(struct user_event *user, char *args) 1246 { 1247 char *field; 1248 u32 offset = sizeof(struct trace_entry); 1249 int ret = -EINVAL; 1250 1251 if (args == NULL) 1252 return 0; 1253 1254 while ((field = strsep(&args, ";")) != NULL) { 1255 ret = user_event_parse_field(field, user, &offset); 1256 1257 if (ret) 1258 break; 1259 } 1260 1261 return ret; 1262 } 1263 1264 static struct trace_event_fields user_event_fields_array[1]; 1265 1266 static const char *user_field_format(const char *type) 1267 { 1268 if (strcmp(type, "s64") == 0) 1269 return "%lld"; 1270 if (strcmp(type, "u64") == 0) 1271 return "%llu"; 1272 if (strcmp(type, "s32") == 0) 1273 return "%d"; 1274 if (strcmp(type, "u32") == 0) 1275 return "%u"; 1276 if (strcmp(type, "int") == 0) 1277 return "%d"; 1278 if (strcmp(type, "unsigned int") == 0) 1279 return "%u"; 1280 if (strcmp(type, "s16") == 0) 1281 return "%d"; 1282 if (strcmp(type, "u16") == 0) 1283 return "%u"; 1284 if (strcmp(type, "short") == 0) 1285 return "%d"; 1286 if (strcmp(type, "unsigned short") == 0) 1287 return "%u"; 1288 if (strcmp(type, "s8") == 0) 1289 return "%d"; 1290 if (strcmp(type, "u8") == 0) 1291 return "%u"; 1292 if (strcmp(type, "char") == 0) 1293 return "%d"; 1294 if (strcmp(type, "unsigned char") == 0) 1295 return "%u"; 1296 if (strstr(type, "char[") != NULL) 1297 return "%s"; 1298 1299 /* Unknown, likely struct, allowed treat as 64-bit */ 1300 return "%llu"; 1301 } 1302 1303 static bool user_field_is_dyn_string(const char *type, const char **str_func) 1304 { 1305 if (str_has_prefix(type, "__data_loc ")) { 1306 *str_func = "__get_str"; 1307 goto check; 1308 } 1309 1310 if (str_has_prefix(type, "__rel_loc ")) { 1311 *str_func = "__get_rel_str"; 1312 goto check; 1313 } 1314 1315 return false; 1316 check: 1317 return strstr(type, "char") != NULL; 1318 } 1319 1320 #define LEN_OR_ZERO (len ? len - pos : 0) 1321 static int user_dyn_field_set_string(int argc, const char **argv, int *iout, 1322 char *buf, int len, bool *colon) 1323 { 1324 int pos = 0, i = *iout; 1325 1326 *colon = false; 1327 1328 for (; i < argc; ++i) { 1329 if (i != *iout) 1330 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1331 1332 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]); 1333 1334 if (strchr(argv[i], ';')) { 1335 ++i; 1336 *colon = true; 1337 break; 1338 } 1339 } 1340 1341 /* Actual set, advance i */ 1342 if (len != 0) 1343 *iout = i; 1344 1345 return pos + 1; 1346 } 1347 1348 static int user_field_set_string(struct ftrace_event_field *field, 1349 char *buf, int len, bool colon) 1350 { 1351 int pos = 0; 1352 1353 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type); 1354 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1355 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name); 1356 1357 if (str_has_prefix(field->type, "struct ")) 1358 pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size); 1359 1360 if (colon) 1361 pos += snprintf(buf + pos, LEN_OR_ZERO, ";"); 1362 1363 return pos + 1; 1364 } 1365 1366 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len) 1367 { 1368 struct ftrace_event_field *field; 1369 struct list_head *head = &user->fields; 1370 int pos = 0, depth = 0; 1371 const char *str_func; 1372 1373 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1374 1375 list_for_each_entry_reverse(field, head, link) { 1376 if (depth != 0) 1377 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1378 1379 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s", 1380 field->name, user_field_format(field->type)); 1381 1382 depth++; 1383 } 1384 1385 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1386 1387 list_for_each_entry_reverse(field, head, link) { 1388 if (user_field_is_dyn_string(field->type, &str_func)) 1389 pos += snprintf(buf + pos, LEN_OR_ZERO, 1390 ", %s(%s)", str_func, field->name); 1391 else 1392 pos += snprintf(buf + pos, LEN_OR_ZERO, 1393 ", REC->%s", field->name); 1394 } 1395 1396 return pos + 1; 1397 } 1398 #undef LEN_OR_ZERO 1399 1400 static int user_event_create_print_fmt(struct user_event *user) 1401 { 1402 char *print_fmt; 1403 int len; 1404 1405 len = user_event_set_print_fmt(user, NULL, 0); 1406 1407 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT); 1408 1409 if (!print_fmt) 1410 return -ENOMEM; 1411 1412 user_event_set_print_fmt(user, print_fmt, len); 1413 1414 user->call.print_fmt = print_fmt; 1415 1416 return 0; 1417 } 1418 1419 static enum print_line_t user_event_print_trace(struct trace_iterator *iter, 1420 int flags, 1421 struct trace_event *event) 1422 { 1423 return print_event_fields(iter, event); 1424 } 1425 1426 static struct trace_event_functions user_event_funcs = { 1427 .trace = user_event_print_trace, 1428 }; 1429 1430 static int user_event_set_call_visible(struct user_event *user, bool visible) 1431 { 1432 int ret; 1433 const struct cred *old_cred; 1434 struct cred *cred; 1435 1436 cred = prepare_creds(); 1437 1438 if (!cred) 1439 return -ENOMEM; 1440 1441 /* 1442 * While by default tracefs is locked down, systems can be configured 1443 * to allow user_event files to be less locked down. The extreme case 1444 * being "other" has read/write access to user_events_data/status. 1445 * 1446 * When not locked down, processes may not have permissions to 1447 * add/remove calls themselves to tracefs. We need to temporarily 1448 * switch to root file permission to allow for this scenario. 1449 */ 1450 cred->fsuid = GLOBAL_ROOT_UID; 1451 1452 old_cred = override_creds(cred); 1453 1454 if (visible) 1455 ret = trace_add_event_call(&user->call); 1456 else 1457 ret = trace_remove_event_call(&user->call); 1458 1459 revert_creds(old_cred); 1460 put_cred(cred); 1461 1462 return ret; 1463 } 1464 1465 static int destroy_user_event(struct user_event *user) 1466 { 1467 int ret = 0; 1468 1469 lockdep_assert_held(&event_mutex); 1470 1471 /* Must destroy fields before call removal */ 1472 user_event_destroy_fields(user); 1473 1474 ret = user_event_set_call_visible(user, false); 1475 1476 if (ret) 1477 return ret; 1478 1479 dyn_event_remove(&user->devent); 1480 hash_del(&user->node); 1481 1482 user_event_destroy_validators(user); 1483 kfree(user->call.print_fmt); 1484 kfree(EVENT_NAME(user)); 1485 kfree(user); 1486 1487 if (current_user_events > 0) 1488 current_user_events--; 1489 else 1490 pr_alert("BUG: Bad current_user_events\n"); 1491 1492 return ret; 1493 } 1494 1495 static struct user_event *find_user_event(struct user_event_group *group, 1496 char *name, u32 *outkey) 1497 { 1498 struct user_event *user; 1499 u32 key = user_event_key(name); 1500 1501 *outkey = key; 1502 1503 hash_for_each_possible(group->register_table, user, node, key) 1504 if (!strcmp(EVENT_NAME(user), name)) 1505 return user_event_get(user); 1506 1507 return NULL; 1508 } 1509 1510 static int user_event_validate(struct user_event *user, void *data, int len) 1511 { 1512 struct list_head *head = &user->validators; 1513 struct user_event_validator *validator; 1514 void *pos, *end = data + len; 1515 u32 loc, offset, size; 1516 1517 list_for_each_entry(validator, head, user_event_link) { 1518 pos = data + validator->offset; 1519 1520 /* Already done min_size check, no bounds check here */ 1521 loc = *(u32 *)pos; 1522 offset = loc & 0xffff; 1523 size = loc >> 16; 1524 1525 if (likely(validator->flags & VALIDATOR_REL)) 1526 pos += offset + sizeof(loc); 1527 else 1528 pos = data + offset; 1529 1530 pos += size; 1531 1532 if (unlikely(pos > end)) 1533 return -EFAULT; 1534 1535 if (likely(validator->flags & VALIDATOR_ENSURE_NULL)) 1536 if (unlikely(*(char *)(pos - 1) != '\0')) 1537 return -EFAULT; 1538 } 1539 1540 return 0; 1541 } 1542 1543 /* 1544 * Writes the user supplied payload out to a trace file. 1545 */ 1546 static void user_event_ftrace(struct user_event *user, struct iov_iter *i, 1547 void *tpdata, bool *faulted) 1548 { 1549 struct trace_event_file *file; 1550 struct trace_entry *entry; 1551 struct trace_event_buffer event_buffer; 1552 size_t size = sizeof(*entry) + i->count; 1553 1554 file = (struct trace_event_file *)tpdata; 1555 1556 if (!file || 1557 !(file->flags & EVENT_FILE_FL_ENABLED) || 1558 trace_trigger_soft_disabled(file)) 1559 return; 1560 1561 /* Allocates and fills trace_entry, + 1 of this is data payload */ 1562 entry = trace_event_buffer_reserve(&event_buffer, file, size); 1563 1564 if (unlikely(!entry)) 1565 return; 1566 1567 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i))) 1568 goto discard; 1569 1570 if (!list_empty(&user->validators) && 1571 unlikely(user_event_validate(user, entry, size))) 1572 goto discard; 1573 1574 trace_event_buffer_commit(&event_buffer); 1575 1576 return; 1577 discard: 1578 *faulted = true; 1579 __trace_event_discard_commit(event_buffer.buffer, 1580 event_buffer.event); 1581 } 1582 1583 #ifdef CONFIG_PERF_EVENTS 1584 /* 1585 * Writes the user supplied payload out to perf ring buffer. 1586 */ 1587 static void user_event_perf(struct user_event *user, struct iov_iter *i, 1588 void *tpdata, bool *faulted) 1589 { 1590 struct hlist_head *perf_head; 1591 1592 perf_head = this_cpu_ptr(user->call.perf_events); 1593 1594 if (perf_head && !hlist_empty(perf_head)) { 1595 struct trace_entry *perf_entry; 1596 struct pt_regs *regs; 1597 size_t size = sizeof(*perf_entry) + i->count; 1598 int context; 1599 1600 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8), 1601 ®s, &context); 1602 1603 if (unlikely(!perf_entry)) 1604 return; 1605 1606 perf_fetch_caller_regs(regs); 1607 1608 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i))) 1609 goto discard; 1610 1611 if (!list_empty(&user->validators) && 1612 unlikely(user_event_validate(user, perf_entry, size))) 1613 goto discard; 1614 1615 perf_trace_buf_submit(perf_entry, size, context, 1616 user->call.event.type, 1, regs, 1617 perf_head, NULL); 1618 1619 return; 1620 discard: 1621 *faulted = true; 1622 perf_swevent_put_recursion_context(context); 1623 } 1624 } 1625 #endif 1626 1627 /* 1628 * Update the enabled bit among all user processes. 1629 */ 1630 static void update_enable_bit_for(struct user_event *user) 1631 { 1632 struct tracepoint *tp = &user->tracepoint; 1633 char status = 0; 1634 1635 if (atomic_read(&tp->key.enabled) > 0) { 1636 struct tracepoint_func *probe_func_ptr; 1637 user_event_func_t probe_func; 1638 1639 rcu_read_lock_sched(); 1640 1641 probe_func_ptr = rcu_dereference_sched(tp->funcs); 1642 1643 if (probe_func_ptr) { 1644 do { 1645 probe_func = probe_func_ptr->func; 1646 1647 if (probe_func == user_event_ftrace) 1648 status |= EVENT_STATUS_FTRACE; 1649 #ifdef CONFIG_PERF_EVENTS 1650 else if (probe_func == user_event_perf) 1651 status |= EVENT_STATUS_PERF; 1652 #endif 1653 else 1654 status |= EVENT_STATUS_OTHER; 1655 } while ((++probe_func_ptr)->func); 1656 } 1657 1658 rcu_read_unlock_sched(); 1659 } 1660 1661 user->status = status; 1662 1663 user_event_enabler_update(user); 1664 } 1665 1666 /* 1667 * Register callback for our events from tracing sub-systems. 1668 */ 1669 static int user_event_reg(struct trace_event_call *call, 1670 enum trace_reg type, 1671 void *data) 1672 { 1673 struct user_event *user = (struct user_event *)call->data; 1674 int ret = 0; 1675 1676 if (!user) 1677 return -ENOENT; 1678 1679 switch (type) { 1680 case TRACE_REG_REGISTER: 1681 ret = tracepoint_probe_register(call->tp, 1682 call->class->probe, 1683 data); 1684 if (!ret) 1685 goto inc; 1686 break; 1687 1688 case TRACE_REG_UNREGISTER: 1689 tracepoint_probe_unregister(call->tp, 1690 call->class->probe, 1691 data); 1692 goto dec; 1693 1694 #ifdef CONFIG_PERF_EVENTS 1695 case TRACE_REG_PERF_REGISTER: 1696 ret = tracepoint_probe_register(call->tp, 1697 call->class->perf_probe, 1698 data); 1699 if (!ret) 1700 goto inc; 1701 break; 1702 1703 case TRACE_REG_PERF_UNREGISTER: 1704 tracepoint_probe_unregister(call->tp, 1705 call->class->perf_probe, 1706 data); 1707 goto dec; 1708 1709 case TRACE_REG_PERF_OPEN: 1710 case TRACE_REG_PERF_CLOSE: 1711 case TRACE_REG_PERF_ADD: 1712 case TRACE_REG_PERF_DEL: 1713 break; 1714 #endif 1715 } 1716 1717 return ret; 1718 inc: 1719 user_event_get(user); 1720 update_enable_bit_for(user); 1721 return 0; 1722 dec: 1723 update_enable_bit_for(user); 1724 user_event_put(user, true); 1725 return 0; 1726 } 1727 1728 static int user_event_create(const char *raw_command) 1729 { 1730 struct user_event_group *group; 1731 struct user_event *user; 1732 char *name; 1733 int ret; 1734 1735 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX)) 1736 return -ECANCELED; 1737 1738 raw_command += USER_EVENTS_PREFIX_LEN; 1739 raw_command = skip_spaces(raw_command); 1740 1741 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT); 1742 1743 if (!name) 1744 return -ENOMEM; 1745 1746 group = current_user_event_group(); 1747 1748 if (!group) { 1749 kfree(name); 1750 return -ENOENT; 1751 } 1752 1753 mutex_lock(&group->reg_mutex); 1754 1755 /* Dyn events persist, otherwise they would cleanup immediately */ 1756 ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST); 1757 1758 if (!ret) 1759 user_event_put(user, false); 1760 1761 mutex_unlock(&group->reg_mutex); 1762 1763 if (ret) 1764 kfree(name); 1765 1766 return ret; 1767 } 1768 1769 static int user_event_show(struct seq_file *m, struct dyn_event *ev) 1770 { 1771 struct user_event *user = container_of(ev, struct user_event, devent); 1772 struct ftrace_event_field *field; 1773 struct list_head *head; 1774 int depth = 0; 1775 1776 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user)); 1777 1778 head = trace_get_fields(&user->call); 1779 1780 list_for_each_entry_reverse(field, head, link) { 1781 if (depth == 0) 1782 seq_puts(m, " "); 1783 else 1784 seq_puts(m, "; "); 1785 1786 seq_printf(m, "%s %s", field->type, field->name); 1787 1788 if (str_has_prefix(field->type, "struct ")) 1789 seq_printf(m, " %d", field->size); 1790 1791 depth++; 1792 } 1793 1794 seq_puts(m, "\n"); 1795 1796 return 0; 1797 } 1798 1799 static bool user_event_is_busy(struct dyn_event *ev) 1800 { 1801 struct user_event *user = container_of(ev, struct user_event, devent); 1802 1803 return !user_event_last_ref(user); 1804 } 1805 1806 static int user_event_free(struct dyn_event *ev) 1807 { 1808 struct user_event *user = container_of(ev, struct user_event, devent); 1809 1810 if (!user_event_last_ref(user)) 1811 return -EBUSY; 1812 1813 if (!user_event_capable(user->reg_flags)) 1814 return -EPERM; 1815 1816 return destroy_user_event(user); 1817 } 1818 1819 static bool user_field_match(struct ftrace_event_field *field, int argc, 1820 const char **argv, int *iout) 1821 { 1822 char *field_name = NULL, *dyn_field_name = NULL; 1823 bool colon = false, match = false; 1824 int dyn_len, len; 1825 1826 if (*iout >= argc) 1827 return false; 1828 1829 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1830 0, &colon); 1831 1832 len = user_field_set_string(field, field_name, 0, colon); 1833 1834 if (dyn_len != len) 1835 return false; 1836 1837 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL); 1838 field_name = kmalloc(len, GFP_KERNEL); 1839 1840 if (!dyn_field_name || !field_name) 1841 goto out; 1842 1843 user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1844 dyn_len, &colon); 1845 1846 user_field_set_string(field, field_name, len, colon); 1847 1848 match = strcmp(dyn_field_name, field_name) == 0; 1849 out: 1850 kfree(dyn_field_name); 1851 kfree(field_name); 1852 1853 return match; 1854 } 1855 1856 static bool user_fields_match(struct user_event *user, int argc, 1857 const char **argv) 1858 { 1859 struct ftrace_event_field *field; 1860 struct list_head *head = &user->fields; 1861 int i = 0; 1862 1863 list_for_each_entry_reverse(field, head, link) { 1864 if (!user_field_match(field, argc, argv, &i)) 1865 return false; 1866 } 1867 1868 if (i != argc) 1869 return false; 1870 1871 return true; 1872 } 1873 1874 static bool user_event_match(const char *system, const char *event, 1875 int argc, const char **argv, struct dyn_event *ev) 1876 { 1877 struct user_event *user = container_of(ev, struct user_event, devent); 1878 bool match; 1879 1880 match = strcmp(EVENT_NAME(user), event) == 0 && 1881 (!system || strcmp(system, USER_EVENTS_SYSTEM) == 0); 1882 1883 if (match && argc > 0) 1884 match = user_fields_match(user, argc, argv); 1885 else if (match && argc == 0) 1886 match = list_empty(&user->fields); 1887 1888 return match; 1889 } 1890 1891 static struct dyn_event_operations user_event_dops = { 1892 .create = user_event_create, 1893 .show = user_event_show, 1894 .is_busy = user_event_is_busy, 1895 .free = user_event_free, 1896 .match = user_event_match, 1897 }; 1898 1899 static int user_event_trace_register(struct user_event *user) 1900 { 1901 int ret; 1902 1903 ret = register_trace_event(&user->call.event); 1904 1905 if (!ret) 1906 return -ENODEV; 1907 1908 ret = user_event_set_call_visible(user, true); 1909 1910 if (ret) 1911 unregister_trace_event(&user->call.event); 1912 1913 return ret; 1914 } 1915 1916 /* 1917 * Parses the event name, arguments and flags then registers if successful. 1918 * The name buffer lifetime is owned by this method for success cases only. 1919 * Upon success the returned user_event has its ref count increased by 1. 1920 */ 1921 static int user_event_parse(struct user_event_group *group, char *name, 1922 char *args, char *flags, 1923 struct user_event **newuser, int reg_flags) 1924 { 1925 int ret; 1926 u32 key; 1927 struct user_event *user; 1928 int argc = 0; 1929 char **argv; 1930 1931 /* Currently don't support any text based flags */ 1932 if (flags != NULL) 1933 return -EINVAL; 1934 1935 if (!user_event_capable(reg_flags)) 1936 return -EPERM; 1937 1938 /* Prevent dyn_event from racing */ 1939 mutex_lock(&event_mutex); 1940 user = find_user_event(group, name, &key); 1941 mutex_unlock(&event_mutex); 1942 1943 if (user) { 1944 if (args) { 1945 argv = argv_split(GFP_KERNEL, args, &argc); 1946 if (!argv) { 1947 ret = -ENOMEM; 1948 goto error; 1949 } 1950 1951 ret = user_fields_match(user, argc, (const char **)argv); 1952 argv_free(argv); 1953 1954 } else 1955 ret = list_empty(&user->fields); 1956 1957 if (ret) { 1958 *newuser = user; 1959 /* 1960 * Name is allocated by caller, free it since it already exists. 1961 * Caller only worries about failure cases for freeing. 1962 */ 1963 kfree(name); 1964 } else { 1965 ret = -EADDRINUSE; 1966 goto error; 1967 } 1968 1969 return 0; 1970 error: 1971 user_event_put(user, false); 1972 return ret; 1973 } 1974 1975 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT); 1976 1977 if (!user) 1978 return -ENOMEM; 1979 1980 INIT_LIST_HEAD(&user->class.fields); 1981 INIT_LIST_HEAD(&user->fields); 1982 INIT_LIST_HEAD(&user->validators); 1983 1984 user->group = group; 1985 user->tracepoint.name = name; 1986 1987 ret = user_event_parse_fields(user, args); 1988 1989 if (ret) 1990 goto put_user; 1991 1992 ret = user_event_create_print_fmt(user); 1993 1994 if (ret) 1995 goto put_user; 1996 1997 user->call.data = user; 1998 user->call.class = &user->class; 1999 user->call.name = name; 2000 user->call.flags = TRACE_EVENT_FL_TRACEPOINT; 2001 user->call.tp = &user->tracepoint; 2002 user->call.event.funcs = &user_event_funcs; 2003 user->class.system = group->system_name; 2004 2005 user->class.fields_array = user_event_fields_array; 2006 user->class.get_fields = user_event_get_fields; 2007 user->class.reg = user_event_reg; 2008 user->class.probe = user_event_ftrace; 2009 #ifdef CONFIG_PERF_EVENTS 2010 user->class.perf_probe = user_event_perf; 2011 #endif 2012 2013 mutex_lock(&event_mutex); 2014 2015 if (current_user_events >= max_user_events) { 2016 ret = -EMFILE; 2017 goto put_user_lock; 2018 } 2019 2020 ret = user_event_trace_register(user); 2021 2022 if (ret) 2023 goto put_user_lock; 2024 2025 user->reg_flags = reg_flags; 2026 2027 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 2028 /* Ensure we track self ref and caller ref (2) */ 2029 refcount_set(&user->refcnt, 2); 2030 } else { 2031 /* Ensure we track only caller ref (1) */ 2032 refcount_set(&user->refcnt, 1); 2033 } 2034 2035 dyn_event_init(&user->devent, &user_event_dops); 2036 dyn_event_add(&user->devent, &user->call); 2037 hash_add(group->register_table, &user->node, key); 2038 current_user_events++; 2039 2040 mutex_unlock(&event_mutex); 2041 2042 *newuser = user; 2043 return 0; 2044 put_user_lock: 2045 mutex_unlock(&event_mutex); 2046 put_user: 2047 user_event_destroy_fields(user); 2048 user_event_destroy_validators(user); 2049 kfree(user->call.print_fmt); 2050 kfree(user); 2051 return ret; 2052 } 2053 2054 /* 2055 * Deletes a previously created event if it is no longer being used. 2056 */ 2057 static int delete_user_event(struct user_event_group *group, char *name) 2058 { 2059 u32 key; 2060 struct user_event *user = find_user_event(group, name, &key); 2061 2062 if (!user) 2063 return -ENOENT; 2064 2065 user_event_put(user, true); 2066 2067 if (!user_event_last_ref(user)) 2068 return -EBUSY; 2069 2070 if (!user_event_capable(user->reg_flags)) 2071 return -EPERM; 2072 2073 return destroy_user_event(user); 2074 } 2075 2076 /* 2077 * Validates the user payload and writes via iterator. 2078 */ 2079 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i) 2080 { 2081 struct user_event_file_info *info = file->private_data; 2082 struct user_event_refs *refs; 2083 struct user_event *user = NULL; 2084 struct tracepoint *tp; 2085 ssize_t ret = i->count; 2086 int idx; 2087 2088 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx))) 2089 return -EFAULT; 2090 2091 if (idx < 0) 2092 return -EINVAL; 2093 2094 rcu_read_lock_sched(); 2095 2096 refs = rcu_dereference_sched(info->refs); 2097 2098 /* 2099 * The refs->events array is protected by RCU, and new items may be 2100 * added. But the user retrieved from indexing into the events array 2101 * shall be immutable while the file is opened. 2102 */ 2103 if (likely(refs && idx < refs->count)) 2104 user = refs->events[idx]; 2105 2106 rcu_read_unlock_sched(); 2107 2108 if (unlikely(user == NULL)) 2109 return -ENOENT; 2110 2111 if (unlikely(i->count < user->min_size)) 2112 return -EINVAL; 2113 2114 tp = &user->tracepoint; 2115 2116 /* 2117 * It's possible key.enabled disables after this check, however 2118 * we don't mind if a few events are included in this condition. 2119 */ 2120 if (likely(atomic_read(&tp->key.enabled) > 0)) { 2121 struct tracepoint_func *probe_func_ptr; 2122 user_event_func_t probe_func; 2123 struct iov_iter copy; 2124 void *tpdata; 2125 bool faulted; 2126 2127 if (unlikely(fault_in_iov_iter_readable(i, i->count))) 2128 return -EFAULT; 2129 2130 faulted = false; 2131 2132 rcu_read_lock_sched(); 2133 2134 probe_func_ptr = rcu_dereference_sched(tp->funcs); 2135 2136 if (probe_func_ptr) { 2137 do { 2138 copy = *i; 2139 probe_func = probe_func_ptr->func; 2140 tpdata = probe_func_ptr->data; 2141 probe_func(user, ©, tpdata, &faulted); 2142 } while ((++probe_func_ptr)->func); 2143 } 2144 2145 rcu_read_unlock_sched(); 2146 2147 if (unlikely(faulted)) 2148 return -EFAULT; 2149 } else 2150 return -EBADF; 2151 2152 return ret; 2153 } 2154 2155 static int user_events_open(struct inode *node, struct file *file) 2156 { 2157 struct user_event_group *group; 2158 struct user_event_file_info *info; 2159 2160 group = current_user_event_group(); 2161 2162 if (!group) 2163 return -ENOENT; 2164 2165 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT); 2166 2167 if (!info) 2168 return -ENOMEM; 2169 2170 info->group = group; 2171 2172 file->private_data = info; 2173 2174 return 0; 2175 } 2176 2177 static ssize_t user_events_write(struct file *file, const char __user *ubuf, 2178 size_t count, loff_t *ppos) 2179 { 2180 struct iovec iov; 2181 struct iov_iter i; 2182 2183 if (unlikely(*ppos != 0)) 2184 return -EFAULT; 2185 2186 if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf, 2187 count, &iov, &i))) 2188 return -EFAULT; 2189 2190 return user_events_write_core(file, &i); 2191 } 2192 2193 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i) 2194 { 2195 return user_events_write_core(kp->ki_filp, i); 2196 } 2197 2198 static int user_events_ref_add(struct user_event_file_info *info, 2199 struct user_event *user) 2200 { 2201 struct user_event_group *group = info->group; 2202 struct user_event_refs *refs, *new_refs; 2203 int i, size, count = 0; 2204 2205 refs = rcu_dereference_protected(info->refs, 2206 lockdep_is_held(&group->reg_mutex)); 2207 2208 if (refs) { 2209 count = refs->count; 2210 2211 for (i = 0; i < count; ++i) 2212 if (refs->events[i] == user) 2213 return i; 2214 } 2215 2216 size = struct_size(refs, events, count + 1); 2217 2218 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT); 2219 2220 if (!new_refs) 2221 return -ENOMEM; 2222 2223 new_refs->count = count + 1; 2224 2225 for (i = 0; i < count; ++i) 2226 new_refs->events[i] = refs->events[i]; 2227 2228 new_refs->events[i] = user_event_get(user); 2229 2230 rcu_assign_pointer(info->refs, new_refs); 2231 2232 if (refs) 2233 kfree_rcu(refs, rcu); 2234 2235 return i; 2236 } 2237 2238 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg) 2239 { 2240 u32 size; 2241 long ret; 2242 2243 ret = get_user(size, &ureg->size); 2244 2245 if (ret) 2246 return ret; 2247 2248 if (size > PAGE_SIZE) 2249 return -E2BIG; 2250 2251 if (size < offsetofend(struct user_reg, write_index)) 2252 return -EINVAL; 2253 2254 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2255 2256 if (ret) 2257 return ret; 2258 2259 /* Ensure only valid flags */ 2260 if (kreg->flags & ~(USER_EVENT_REG_MAX-1)) 2261 return -EINVAL; 2262 2263 /* Ensure supported size */ 2264 switch (kreg->enable_size) { 2265 case 4: 2266 /* 32-bit */ 2267 break; 2268 #if BITS_PER_LONG >= 64 2269 case 8: 2270 /* 64-bit */ 2271 break; 2272 #endif 2273 default: 2274 return -EINVAL; 2275 } 2276 2277 /* Ensure natural alignment */ 2278 if (kreg->enable_addr % kreg->enable_size) 2279 return -EINVAL; 2280 2281 /* Ensure bit range for size */ 2282 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1) 2283 return -EINVAL; 2284 2285 /* Ensure accessible */ 2286 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr, 2287 kreg->enable_size)) 2288 return -EFAULT; 2289 2290 kreg->size = size; 2291 2292 return 0; 2293 } 2294 2295 /* 2296 * Registers a user_event on behalf of a user process. 2297 */ 2298 static long user_events_ioctl_reg(struct user_event_file_info *info, 2299 unsigned long uarg) 2300 { 2301 struct user_reg __user *ureg = (struct user_reg __user *)uarg; 2302 struct user_reg reg; 2303 struct user_event *user; 2304 struct user_event_enabler *enabler; 2305 char *name; 2306 long ret; 2307 int write_result; 2308 2309 ret = user_reg_get(ureg, ®); 2310 2311 if (ret) 2312 return ret; 2313 2314 /* 2315 * Prevent users from using the same address and bit multiple times 2316 * within the same mm address space. This can cause unexpected behavior 2317 * for user processes that is far easier to debug if this is explictly 2318 * an error upon registering. 2319 */ 2320 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr, 2321 reg.enable_bit)) 2322 return -EADDRINUSE; 2323 2324 name = strndup_user((const char __user *)(uintptr_t)reg.name_args, 2325 MAX_EVENT_DESC); 2326 2327 if (IS_ERR(name)) { 2328 ret = PTR_ERR(name); 2329 return ret; 2330 } 2331 2332 ret = user_event_parse_cmd(info->group, name, &user, reg.flags); 2333 2334 if (ret) { 2335 kfree(name); 2336 return ret; 2337 } 2338 2339 ret = user_events_ref_add(info, user); 2340 2341 /* No longer need parse ref, ref_add either worked or not */ 2342 user_event_put(user, false); 2343 2344 /* Positive number is index and valid */ 2345 if (ret < 0) 2346 return ret; 2347 2348 /* 2349 * user_events_ref_add succeeded: 2350 * At this point we have a user_event, it's lifetime is bound by the 2351 * reference count, not this file. If anything fails, the user_event 2352 * still has a reference until the file is released. During release 2353 * any remaining references (from user_events_ref_add) are decremented. 2354 * 2355 * Attempt to create an enabler, which too has a lifetime tied in the 2356 * same way for the event. Once the task that caused the enabler to be 2357 * created exits or issues exec() then the enablers it has created 2358 * will be destroyed and the ref to the event will be decremented. 2359 */ 2360 enabler = user_event_enabler_create(®, user, &write_result); 2361 2362 if (!enabler) 2363 return -ENOMEM; 2364 2365 /* Write failed/faulted, give error back to caller */ 2366 if (write_result) 2367 return write_result; 2368 2369 put_user((u32)ret, &ureg->write_index); 2370 2371 return 0; 2372 } 2373 2374 /* 2375 * Deletes a user_event on behalf of a user process. 2376 */ 2377 static long user_events_ioctl_del(struct user_event_file_info *info, 2378 unsigned long uarg) 2379 { 2380 void __user *ubuf = (void __user *)uarg; 2381 char *name; 2382 long ret; 2383 2384 name = strndup_user(ubuf, MAX_EVENT_DESC); 2385 2386 if (IS_ERR(name)) 2387 return PTR_ERR(name); 2388 2389 /* event_mutex prevents dyn_event from racing */ 2390 mutex_lock(&event_mutex); 2391 ret = delete_user_event(info->group, name); 2392 mutex_unlock(&event_mutex); 2393 2394 kfree(name); 2395 2396 return ret; 2397 } 2398 2399 static long user_unreg_get(struct user_unreg __user *ureg, 2400 struct user_unreg *kreg) 2401 { 2402 u32 size; 2403 long ret; 2404 2405 ret = get_user(size, &ureg->size); 2406 2407 if (ret) 2408 return ret; 2409 2410 if (size > PAGE_SIZE) 2411 return -E2BIG; 2412 2413 if (size < offsetofend(struct user_unreg, disable_addr)) 2414 return -EINVAL; 2415 2416 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2417 2418 /* Ensure no reserved values, since we don't support any yet */ 2419 if (kreg->__reserved || kreg->__reserved2) 2420 return -EINVAL; 2421 2422 return ret; 2423 } 2424 2425 static int user_event_mm_clear_bit(struct user_event_mm *user_mm, 2426 unsigned long uaddr, unsigned char bit, 2427 unsigned long flags) 2428 { 2429 struct user_event_enabler enabler; 2430 int result; 2431 int attempt = 0; 2432 2433 memset(&enabler, 0, sizeof(enabler)); 2434 enabler.addr = uaddr; 2435 enabler.values = bit | flags; 2436 retry: 2437 /* Prevents state changes from racing with new enablers */ 2438 mutex_lock(&event_mutex); 2439 2440 /* Force the bit to be cleared, since no event is attached */ 2441 mmap_read_lock(user_mm->mm); 2442 result = user_event_enabler_write(user_mm, &enabler, false, &attempt); 2443 mmap_read_unlock(user_mm->mm); 2444 2445 mutex_unlock(&event_mutex); 2446 2447 if (result) { 2448 /* Attempt to fault-in and retry if it worked */ 2449 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 2450 goto retry; 2451 } 2452 2453 return result; 2454 } 2455 2456 /* 2457 * Unregisters an enablement address/bit within a task/user mm. 2458 */ 2459 static long user_events_ioctl_unreg(unsigned long uarg) 2460 { 2461 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg; 2462 struct user_event_mm *mm = current->user_event_mm; 2463 struct user_event_enabler *enabler, *next; 2464 struct user_unreg reg; 2465 unsigned long flags; 2466 long ret; 2467 2468 ret = user_unreg_get(ureg, ®); 2469 2470 if (ret) 2471 return ret; 2472 2473 if (!mm) 2474 return -ENOENT; 2475 2476 flags = 0; 2477 ret = -ENOENT; 2478 2479 /* 2480 * Flags freeing and faulting are used to indicate if the enabler is in 2481 * use at all. When faulting is set a page-fault is occurring asyncly. 2482 * During async fault if freeing is set, the enabler will be destroyed. 2483 * If no async fault is happening, we can destroy it now since we hold 2484 * the event_mutex during these checks. 2485 */ 2486 mutex_lock(&event_mutex); 2487 2488 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) { 2489 if (enabler->addr == reg.disable_addr && 2490 ENABLE_BIT(enabler) == reg.disable_bit) { 2491 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)); 2492 2493 /* We must keep compat flags for the clear */ 2494 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK; 2495 2496 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler))) 2497 user_event_enabler_destroy(enabler, true); 2498 2499 /* Removed at least one */ 2500 ret = 0; 2501 } 2502 } 2503 2504 mutex_unlock(&event_mutex); 2505 2506 /* Ensure bit is now cleared for user, regardless of event status */ 2507 if (!ret) 2508 ret = user_event_mm_clear_bit(mm, reg.disable_addr, 2509 reg.disable_bit, flags); 2510 2511 return ret; 2512 } 2513 2514 /* 2515 * Handles the ioctl from user mode to register or alter operations. 2516 */ 2517 static long user_events_ioctl(struct file *file, unsigned int cmd, 2518 unsigned long uarg) 2519 { 2520 struct user_event_file_info *info = file->private_data; 2521 struct user_event_group *group = info->group; 2522 long ret = -ENOTTY; 2523 2524 switch (cmd) { 2525 case DIAG_IOCSREG: 2526 mutex_lock(&group->reg_mutex); 2527 ret = user_events_ioctl_reg(info, uarg); 2528 mutex_unlock(&group->reg_mutex); 2529 break; 2530 2531 case DIAG_IOCSDEL: 2532 mutex_lock(&group->reg_mutex); 2533 ret = user_events_ioctl_del(info, uarg); 2534 mutex_unlock(&group->reg_mutex); 2535 break; 2536 2537 case DIAG_IOCSUNREG: 2538 mutex_lock(&group->reg_mutex); 2539 ret = user_events_ioctl_unreg(uarg); 2540 mutex_unlock(&group->reg_mutex); 2541 break; 2542 } 2543 2544 return ret; 2545 } 2546 2547 /* 2548 * Handles the final close of the file from user mode. 2549 */ 2550 static int user_events_release(struct inode *node, struct file *file) 2551 { 2552 struct user_event_file_info *info = file->private_data; 2553 struct user_event_group *group; 2554 struct user_event_refs *refs; 2555 int i; 2556 2557 if (!info) 2558 return -EINVAL; 2559 2560 group = info->group; 2561 2562 /* 2563 * Ensure refs cannot change under any situation by taking the 2564 * register mutex during the final freeing of the references. 2565 */ 2566 mutex_lock(&group->reg_mutex); 2567 2568 refs = info->refs; 2569 2570 if (!refs) 2571 goto out; 2572 2573 /* 2574 * The lifetime of refs has reached an end, it's tied to this file. 2575 * The underlying user_events are ref counted, and cannot be freed. 2576 * After this decrement, the user_events may be freed elsewhere. 2577 */ 2578 for (i = 0; i < refs->count; ++i) 2579 user_event_put(refs->events[i], false); 2580 2581 out: 2582 file->private_data = NULL; 2583 2584 mutex_unlock(&group->reg_mutex); 2585 2586 kfree(refs); 2587 kfree(info); 2588 2589 return 0; 2590 } 2591 2592 static const struct file_operations user_data_fops = { 2593 .open = user_events_open, 2594 .write = user_events_write, 2595 .write_iter = user_events_write_iter, 2596 .unlocked_ioctl = user_events_ioctl, 2597 .release = user_events_release, 2598 }; 2599 2600 static void *user_seq_start(struct seq_file *m, loff_t *pos) 2601 { 2602 if (*pos) 2603 return NULL; 2604 2605 return (void *)1; 2606 } 2607 2608 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos) 2609 { 2610 ++*pos; 2611 return NULL; 2612 } 2613 2614 static void user_seq_stop(struct seq_file *m, void *p) 2615 { 2616 } 2617 2618 static int user_seq_show(struct seq_file *m, void *p) 2619 { 2620 struct user_event_group *group = m->private; 2621 struct user_event *user; 2622 char status; 2623 int i, active = 0, busy = 0; 2624 2625 if (!group) 2626 return -EINVAL; 2627 2628 mutex_lock(&group->reg_mutex); 2629 2630 hash_for_each(group->register_table, i, user, node) { 2631 status = user->status; 2632 2633 seq_printf(m, "%s", EVENT_NAME(user)); 2634 2635 if (status != 0) 2636 seq_puts(m, " #"); 2637 2638 if (status != 0) { 2639 seq_puts(m, " Used by"); 2640 if (status & EVENT_STATUS_FTRACE) 2641 seq_puts(m, " ftrace"); 2642 if (status & EVENT_STATUS_PERF) 2643 seq_puts(m, " perf"); 2644 if (status & EVENT_STATUS_OTHER) 2645 seq_puts(m, " other"); 2646 busy++; 2647 } 2648 2649 seq_puts(m, "\n"); 2650 active++; 2651 } 2652 2653 mutex_unlock(&group->reg_mutex); 2654 2655 seq_puts(m, "\n"); 2656 seq_printf(m, "Active: %d\n", active); 2657 seq_printf(m, "Busy: %d\n", busy); 2658 2659 return 0; 2660 } 2661 2662 static const struct seq_operations user_seq_ops = { 2663 .start = user_seq_start, 2664 .next = user_seq_next, 2665 .stop = user_seq_stop, 2666 .show = user_seq_show, 2667 }; 2668 2669 static int user_status_open(struct inode *node, struct file *file) 2670 { 2671 struct user_event_group *group; 2672 int ret; 2673 2674 group = current_user_event_group(); 2675 2676 if (!group) 2677 return -ENOENT; 2678 2679 ret = seq_open(file, &user_seq_ops); 2680 2681 if (!ret) { 2682 /* Chain group to seq_file */ 2683 struct seq_file *m = file->private_data; 2684 2685 m->private = group; 2686 } 2687 2688 return ret; 2689 } 2690 2691 static const struct file_operations user_status_fops = { 2692 .open = user_status_open, 2693 .read = seq_read, 2694 .llseek = seq_lseek, 2695 .release = seq_release, 2696 }; 2697 2698 /* 2699 * Creates a set of tracefs files to allow user mode interactions. 2700 */ 2701 static int create_user_tracefs(void) 2702 { 2703 struct dentry *edata, *emmap; 2704 2705 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE, 2706 NULL, NULL, &user_data_fops); 2707 2708 if (!edata) { 2709 pr_warn("Could not create tracefs 'user_events_data' entry\n"); 2710 goto err; 2711 } 2712 2713 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ, 2714 NULL, NULL, &user_status_fops); 2715 2716 if (!emmap) { 2717 tracefs_remove(edata); 2718 pr_warn("Could not create tracefs 'user_events_mmap' entry\n"); 2719 goto err; 2720 } 2721 2722 return 0; 2723 err: 2724 return -ENODEV; 2725 } 2726 2727 static int set_max_user_events_sysctl(struct ctl_table *table, int write, 2728 void *buffer, size_t *lenp, loff_t *ppos) 2729 { 2730 int ret; 2731 2732 mutex_lock(&event_mutex); 2733 2734 ret = proc_douintvec(table, write, buffer, lenp, ppos); 2735 2736 mutex_unlock(&event_mutex); 2737 2738 return ret; 2739 } 2740 2741 static struct ctl_table user_event_sysctls[] = { 2742 { 2743 .procname = "user_events_max", 2744 .data = &max_user_events, 2745 .maxlen = sizeof(unsigned int), 2746 .mode = 0644, 2747 .proc_handler = set_max_user_events_sysctl, 2748 }, 2749 {} 2750 }; 2751 2752 static int __init trace_events_user_init(void) 2753 { 2754 int ret; 2755 2756 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0); 2757 2758 if (!fault_cache) 2759 return -ENOMEM; 2760 2761 init_group = user_event_group_create(); 2762 2763 if (!init_group) { 2764 kmem_cache_destroy(fault_cache); 2765 return -ENOMEM; 2766 } 2767 2768 ret = create_user_tracefs(); 2769 2770 if (ret) { 2771 pr_warn("user_events could not register with tracefs\n"); 2772 user_event_group_destroy(init_group); 2773 kmem_cache_destroy(fault_cache); 2774 init_group = NULL; 2775 return ret; 2776 } 2777 2778 if (dyn_event_register(&user_event_dops)) 2779 pr_warn("user_events could not register with dyn_events\n"); 2780 2781 register_sysctl_init("kernel", user_event_sysctls); 2782 2783 return 0; 2784 } 2785 2786 fs_initcall(trace_events_user_init); 2787