1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2021, Microsoft Corporation. 4 * 5 * Authors: 6 * Beau Belgrave <beaub@linux.microsoft.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/cdev.h> 11 #include <linux/hashtable.h> 12 #include <linux/list.h> 13 #include <linux/io.h> 14 #include <linux/uio.h> 15 #include <linux/ioctl.h> 16 #include <linux/jhash.h> 17 #include <linux/refcount.h> 18 #include <linux/trace_events.h> 19 #include <linux/tracefs.h> 20 #include <linux/types.h> 21 #include <linux/uaccess.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/user_events.h> 25 #include "trace_dynevent.h" 26 #include "trace_output.h" 27 #include "trace.h" 28 29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1) 30 31 #define FIELD_DEPTH_TYPE 0 32 #define FIELD_DEPTH_NAME 1 33 #define FIELD_DEPTH_SIZE 2 34 35 /* Limit how long of an event name plus args within the subsystem. */ 36 #define MAX_EVENT_DESC 512 37 #define EVENT_NAME(user_event) ((user_event)->reg_name) 38 #define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name) 39 #define MAX_FIELD_ARRAY_SIZE 1024 40 41 /* 42 * Internal bits (kernel side only) to keep track of connected probes: 43 * These are used when status is requested in text form about an event. These 44 * bits are compared against an internal byte on the event to determine which 45 * probes to print out to the user. 46 * 47 * These do not reflect the mapped bytes between the user and kernel space. 48 */ 49 #define EVENT_STATUS_FTRACE BIT(0) 50 #define EVENT_STATUS_PERF BIT(1) 51 #define EVENT_STATUS_OTHER BIT(7) 52 53 /* 54 * Stores the system name, tables, and locks for a group of events. This 55 * allows isolation for events by various means. 56 */ 57 struct user_event_group { 58 char *system_name; 59 char *system_multi_name; 60 struct hlist_node node; 61 struct mutex reg_mutex; 62 DECLARE_HASHTABLE(register_table, 8); 63 /* ID that moves forward within the group for multi-event names */ 64 u64 multi_id; 65 }; 66 67 /* Group for init_user_ns mapping, top-most group */ 68 static struct user_event_group *init_group; 69 70 /* Max allowed events for the whole system */ 71 static unsigned int max_user_events = 32768; 72 73 /* Current number of events on the whole system */ 74 static unsigned int current_user_events; 75 76 /* 77 * Stores per-event properties, as users register events 78 * within a file a user_event might be created if it does not 79 * already exist. These are globally used and their lifetime 80 * is tied to the refcnt member. These cannot go away until the 81 * refcnt reaches one. 82 */ 83 struct user_event { 84 struct user_event_group *group; 85 char *reg_name; 86 struct tracepoint tracepoint; 87 struct trace_event_call call; 88 struct trace_event_class class; 89 struct dyn_event devent; 90 struct hlist_node node; 91 struct list_head fields; 92 struct list_head validators; 93 struct work_struct put_work; 94 refcount_t refcnt; 95 int min_size; 96 int reg_flags; 97 char status; 98 }; 99 100 /* 101 * Stores per-mm/event properties that enable an address to be 102 * updated properly for each task. As tasks are forked, we use 103 * these to track enablement sites that are tied to an event. 104 */ 105 struct user_event_enabler { 106 struct list_head mm_enablers_link; 107 struct user_event *event; 108 unsigned long addr; 109 110 /* Track enable bit, flags, etc. Aligned for bitops. */ 111 unsigned long values; 112 }; 113 114 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */ 115 #define ENABLE_VAL_BIT_MASK 0x3F 116 117 /* Bit 6 is for faulting status of enablement */ 118 #define ENABLE_VAL_FAULTING_BIT 6 119 120 /* Bit 7 is for freeing status of enablement */ 121 #define ENABLE_VAL_FREEING_BIT 7 122 123 /* Bit 8 is for marking 32-bit on 64-bit */ 124 #define ENABLE_VAL_32_ON_64_BIT 8 125 126 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT) 127 128 /* Only duplicate the bit and compat values */ 129 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK) 130 131 #define ENABLE_BITOPS(e) (&(e)->values) 132 133 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK)) 134 135 #define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT) 136 137 /* Used for asynchronous faulting in of pages */ 138 struct user_event_enabler_fault { 139 struct work_struct work; 140 struct user_event_mm *mm; 141 struct user_event_enabler *enabler; 142 int attempt; 143 }; 144 145 static struct kmem_cache *fault_cache; 146 147 /* Global list of memory descriptors using user_events */ 148 static LIST_HEAD(user_event_mms); 149 static DEFINE_SPINLOCK(user_event_mms_lock); 150 151 /* 152 * Stores per-file events references, as users register events 153 * within a file this structure is modified and freed via RCU. 154 * The lifetime of this struct is tied to the lifetime of the file. 155 * These are not shared and only accessible by the file that created it. 156 */ 157 struct user_event_refs { 158 struct rcu_head rcu; 159 int count; 160 struct user_event *events[]; 161 }; 162 163 struct user_event_file_info { 164 struct user_event_group *group; 165 struct user_event_refs *refs; 166 }; 167 168 #define VALIDATOR_ENSURE_NULL (1 << 0) 169 #define VALIDATOR_REL (1 << 1) 170 171 struct user_event_validator { 172 struct list_head user_event_link; 173 int offset; 174 int flags; 175 }; 176 177 static inline void align_addr_bit(unsigned long *addr, int *bit, 178 unsigned long *flags) 179 { 180 if (IS_ALIGNED(*addr, sizeof(long))) { 181 #ifdef __BIG_ENDIAN 182 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */ 183 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags)) 184 *bit += 32; 185 #endif 186 return; 187 } 188 189 *addr = ALIGN_DOWN(*addr, sizeof(long)); 190 191 /* 192 * We only support 32 and 64 bit values. The only time we need 193 * to align is a 32 bit value on a 64 bit kernel, which on LE 194 * is always 32 bits, and on BE requires no change when unaligned. 195 */ 196 #ifdef __LITTLE_ENDIAN 197 *bit += 32; 198 #endif 199 } 200 201 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i, 202 void *tpdata, bool *faulted); 203 204 static int user_event_parse(struct user_event_group *group, char *name, 205 char *args, char *flags, 206 struct user_event **newuser, int reg_flags); 207 208 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm); 209 static struct user_event_mm *user_event_mm_get_all(struct user_event *user); 210 static void user_event_mm_put(struct user_event_mm *mm); 211 static int destroy_user_event(struct user_event *user); 212 static bool user_fields_match(struct user_event *user, int argc, 213 const char **argv); 214 215 static u32 user_event_key(char *name) 216 { 217 return jhash(name, strlen(name), 0); 218 } 219 220 static bool user_event_capable(u16 reg_flags) 221 { 222 /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */ 223 if (reg_flags & USER_EVENT_REG_PERSIST) { 224 if (!perfmon_capable()) 225 return false; 226 } 227 228 return true; 229 } 230 231 static struct user_event *user_event_get(struct user_event *user) 232 { 233 refcount_inc(&user->refcnt); 234 235 return user; 236 } 237 238 static void delayed_destroy_user_event(struct work_struct *work) 239 { 240 struct user_event *user = container_of( 241 work, struct user_event, put_work); 242 243 mutex_lock(&event_mutex); 244 245 if (!refcount_dec_and_test(&user->refcnt)) 246 goto out; 247 248 if (destroy_user_event(user)) { 249 /* 250 * The only reason this would fail here is if we cannot 251 * update the visibility of the event. In this case the 252 * event stays in the hashtable, waiting for someone to 253 * attempt to delete it later. 254 */ 255 pr_warn("user_events: Unable to delete event\n"); 256 refcount_set(&user->refcnt, 1); 257 } 258 out: 259 mutex_unlock(&event_mutex); 260 } 261 262 static void user_event_put(struct user_event *user, bool locked) 263 { 264 bool delete; 265 266 if (unlikely(!user)) 267 return; 268 269 /* 270 * When the event is not enabled for auto-delete there will always 271 * be at least 1 reference to the event. During the event creation 272 * we initially set the refcnt to 2 to achieve this. In those cases 273 * the caller must acquire event_mutex and after decrement check if 274 * the refcnt is 1, meaning this is the last reference. When auto 275 * delete is enabled, there will only be 1 ref, IE: refcnt will be 276 * only set to 1 during creation to allow the below checks to go 277 * through upon the last put. The last put must always be done with 278 * the event mutex held. 279 */ 280 if (!locked) { 281 lockdep_assert_not_held(&event_mutex); 282 delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex); 283 } else { 284 lockdep_assert_held(&event_mutex); 285 delete = refcount_dec_and_test(&user->refcnt); 286 } 287 288 if (!delete) 289 return; 290 291 /* 292 * We now have the event_mutex in all cases, which ensures that 293 * no new references will be taken until event_mutex is released. 294 * New references come through find_user_event(), which requires 295 * the event_mutex to be held. 296 */ 297 298 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 299 /* We should not get here when persist flag is set */ 300 pr_alert("BUG: Auto-delete engaged on persistent event\n"); 301 goto out; 302 } 303 304 /* 305 * Unfortunately we have to attempt the actual destroy in a work 306 * queue. This is because not all cases handle a trace_event_call 307 * being removed within the class->reg() operation for unregister. 308 */ 309 INIT_WORK(&user->put_work, delayed_destroy_user_event); 310 311 /* 312 * Since the event is still in the hashtable, we have to re-inc 313 * the ref count to 1. This count will be decremented and checked 314 * in the work queue to ensure it's still the last ref. This is 315 * needed because a user-process could register the same event in 316 * between the time of event_mutex release and the work queue 317 * running the delayed destroy. If we removed the item now from 318 * the hashtable, this would result in a timing window where a 319 * user process would fail a register because the trace_event_call 320 * register would fail in the tracing layers. 321 */ 322 refcount_set(&user->refcnt, 1); 323 324 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) { 325 /* 326 * If we fail we must wait for an admin to attempt delete or 327 * another register/close of the event, whichever is first. 328 */ 329 pr_warn("user_events: Unable to queue delayed destroy\n"); 330 } 331 out: 332 /* Ensure if we didn't have event_mutex before we unlock it */ 333 if (!locked) 334 mutex_unlock(&event_mutex); 335 } 336 337 static void user_event_group_destroy(struct user_event_group *group) 338 { 339 kfree(group->system_name); 340 kfree(group->system_multi_name); 341 kfree(group); 342 } 343 344 static char *user_event_group_system_name(void) 345 { 346 char *system_name; 347 int len = sizeof(USER_EVENTS_SYSTEM) + 1; 348 349 system_name = kmalloc(len, GFP_KERNEL); 350 351 if (!system_name) 352 return NULL; 353 354 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM); 355 356 return system_name; 357 } 358 359 static char *user_event_group_system_multi_name(void) 360 { 361 return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL); 362 } 363 364 static struct user_event_group *current_user_event_group(void) 365 { 366 return init_group; 367 } 368 369 static struct user_event_group *user_event_group_create(void) 370 { 371 struct user_event_group *group; 372 373 group = kzalloc(sizeof(*group), GFP_KERNEL); 374 375 if (!group) 376 return NULL; 377 378 group->system_name = user_event_group_system_name(); 379 380 if (!group->system_name) 381 goto error; 382 383 group->system_multi_name = user_event_group_system_multi_name(); 384 385 if (!group->system_multi_name) 386 goto error; 387 388 mutex_init(&group->reg_mutex); 389 hash_init(group->register_table); 390 391 return group; 392 error: 393 if (group) 394 user_event_group_destroy(group); 395 396 return NULL; 397 }; 398 399 static void user_event_enabler_destroy(struct user_event_enabler *enabler, 400 bool locked) 401 { 402 list_del_rcu(&enabler->mm_enablers_link); 403 404 /* No longer tracking the event via the enabler */ 405 user_event_put(enabler->event, locked); 406 407 kfree(enabler); 408 } 409 410 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr, 411 int attempt) 412 { 413 bool unlocked; 414 int ret; 415 416 /* 417 * Normally this is low, ensure that it cannot be taken advantage of by 418 * bad user processes to cause excessive looping. 419 */ 420 if (attempt > 10) 421 return -EFAULT; 422 423 mmap_read_lock(mm->mm); 424 425 /* Ensure MM has tasks, cannot use after exit_mm() */ 426 if (refcount_read(&mm->tasks) == 0) { 427 ret = -ENOENT; 428 goto out; 429 } 430 431 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 432 &unlocked); 433 out: 434 mmap_read_unlock(mm->mm); 435 436 return ret; 437 } 438 439 static int user_event_enabler_write(struct user_event_mm *mm, 440 struct user_event_enabler *enabler, 441 bool fixup_fault, int *attempt); 442 443 static void user_event_enabler_fault_fixup(struct work_struct *work) 444 { 445 struct user_event_enabler_fault *fault = container_of( 446 work, struct user_event_enabler_fault, work); 447 struct user_event_enabler *enabler = fault->enabler; 448 struct user_event_mm *mm = fault->mm; 449 unsigned long uaddr = enabler->addr; 450 int attempt = fault->attempt; 451 int ret; 452 453 ret = user_event_mm_fault_in(mm, uaddr, attempt); 454 455 if (ret && ret != -ENOENT) { 456 struct user_event *user = enabler->event; 457 458 pr_warn("user_events: Fault for mm: 0x%p @ 0x%llx event: %s\n", 459 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user)); 460 } 461 462 /* Prevent state changes from racing */ 463 mutex_lock(&event_mutex); 464 465 /* User asked for enabler to be removed during fault */ 466 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) { 467 user_event_enabler_destroy(enabler, true); 468 goto out; 469 } 470 471 /* 472 * If we managed to get the page, re-issue the write. We do not 473 * want to get into a possible infinite loop, which is why we only 474 * attempt again directly if the page came in. If we couldn't get 475 * the page here, then we will try again the next time the event is 476 * enabled/disabled. 477 */ 478 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 479 480 if (!ret) { 481 mmap_read_lock(mm->mm); 482 user_event_enabler_write(mm, enabler, true, &attempt); 483 mmap_read_unlock(mm->mm); 484 } 485 out: 486 mutex_unlock(&event_mutex); 487 488 /* In all cases we no longer need the mm or fault */ 489 user_event_mm_put(mm); 490 kmem_cache_free(fault_cache, fault); 491 } 492 493 static bool user_event_enabler_queue_fault(struct user_event_mm *mm, 494 struct user_event_enabler *enabler, 495 int attempt) 496 { 497 struct user_event_enabler_fault *fault; 498 499 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT); 500 501 if (!fault) 502 return false; 503 504 INIT_WORK(&fault->work, user_event_enabler_fault_fixup); 505 fault->mm = user_event_mm_get(mm); 506 fault->enabler = enabler; 507 fault->attempt = attempt; 508 509 /* Don't try to queue in again while we have a pending fault */ 510 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 511 512 if (!schedule_work(&fault->work)) { 513 /* Allow another attempt later */ 514 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 515 516 user_event_mm_put(mm); 517 kmem_cache_free(fault_cache, fault); 518 519 return false; 520 } 521 522 return true; 523 } 524 525 static int user_event_enabler_write(struct user_event_mm *mm, 526 struct user_event_enabler *enabler, 527 bool fixup_fault, int *attempt) 528 { 529 unsigned long uaddr = enabler->addr; 530 unsigned long *ptr; 531 struct page *page; 532 void *kaddr; 533 int bit = ENABLE_BIT(enabler); 534 int ret; 535 536 lockdep_assert_held(&event_mutex); 537 mmap_assert_locked(mm->mm); 538 539 *attempt += 1; 540 541 /* Ensure MM has tasks, cannot use after exit_mm() */ 542 if (refcount_read(&mm->tasks) == 0) 543 return -ENOENT; 544 545 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) || 546 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)))) 547 return -EBUSY; 548 549 align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler)); 550 551 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT, 552 &page, NULL); 553 554 if (unlikely(ret <= 0)) { 555 if (!fixup_fault) 556 return -EFAULT; 557 558 if (!user_event_enabler_queue_fault(mm, enabler, *attempt)) 559 pr_warn("user_events: Unable to queue fault handler\n"); 560 561 return -EFAULT; 562 } 563 564 kaddr = kmap_local_page(page); 565 ptr = kaddr + (uaddr & ~PAGE_MASK); 566 567 /* Update bit atomically, user tracers must be atomic as well */ 568 if (enabler->event && enabler->event->status) 569 set_bit(bit, ptr); 570 else 571 clear_bit(bit, ptr); 572 573 kunmap_local(kaddr); 574 unpin_user_pages_dirty_lock(&page, 1, true); 575 576 return 0; 577 } 578 579 static bool user_event_enabler_exists(struct user_event_mm *mm, 580 unsigned long uaddr, unsigned char bit) 581 { 582 struct user_event_enabler *enabler; 583 584 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 585 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit) 586 return true; 587 } 588 589 return false; 590 } 591 592 static void user_event_enabler_update(struct user_event *user) 593 { 594 struct user_event_enabler *enabler; 595 struct user_event_mm *next; 596 struct user_event_mm *mm; 597 int attempt; 598 599 lockdep_assert_held(&event_mutex); 600 601 /* 602 * We need to build a one-shot list of all the mms that have an 603 * enabler for the user_event passed in. This list is only valid 604 * while holding the event_mutex. The only reason for this is due 605 * to the global mm list being RCU protected and we use methods 606 * which can wait (mmap_read_lock and pin_user_pages_remote). 607 * 608 * NOTE: user_event_mm_get_all() increments the ref count of each 609 * mm that is added to the list to prevent removal timing windows. 610 * We must always put each mm after they are used, which may wait. 611 */ 612 mm = user_event_mm_get_all(user); 613 614 while (mm) { 615 next = mm->next; 616 mmap_read_lock(mm->mm); 617 618 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 619 if (enabler->event == user) { 620 attempt = 0; 621 user_event_enabler_write(mm, enabler, true, &attempt); 622 } 623 } 624 625 mmap_read_unlock(mm->mm); 626 user_event_mm_put(mm); 627 mm = next; 628 } 629 } 630 631 static bool user_event_enabler_dup(struct user_event_enabler *orig, 632 struct user_event_mm *mm) 633 { 634 struct user_event_enabler *enabler; 635 636 /* Skip pending frees */ 637 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig)))) 638 return true; 639 640 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT); 641 642 if (!enabler) 643 return false; 644 645 enabler->event = user_event_get(orig->event); 646 enabler->addr = orig->addr; 647 648 /* Only dup part of value (ignore future flags, etc) */ 649 enabler->values = orig->values & ENABLE_VAL_DUP_MASK; 650 651 /* Enablers not exposed yet, RCU not required */ 652 list_add(&enabler->mm_enablers_link, &mm->enablers); 653 654 return true; 655 } 656 657 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm) 658 { 659 refcount_inc(&mm->refcnt); 660 661 return mm; 662 } 663 664 static struct user_event_mm *user_event_mm_get_all(struct user_event *user) 665 { 666 struct user_event_mm *found = NULL; 667 struct user_event_enabler *enabler; 668 struct user_event_mm *mm; 669 670 /* 671 * We use the mm->next field to build a one-shot list from the global 672 * RCU protected list. To build this list the event_mutex must be held. 673 * This lets us build a list without requiring allocs that could fail 674 * when user based events are most wanted for diagnostics. 675 */ 676 lockdep_assert_held(&event_mutex); 677 678 /* 679 * We do not want to block fork/exec while enablements are being 680 * updated, so we use RCU to walk the current tasks that have used 681 * user_events ABI for 1 or more events. Each enabler found in each 682 * task that matches the event being updated has a write to reflect 683 * the kernel state back into the process. Waits/faults must not occur 684 * during this. So we scan the list under RCU for all the mm that have 685 * the event within it. This is needed because mm_read_lock() can wait. 686 * Each user mm returned has a ref inc to handle remove RCU races. 687 */ 688 rcu_read_lock(); 689 690 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) { 691 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) { 692 if (enabler->event == user) { 693 mm->next = found; 694 found = user_event_mm_get(mm); 695 break; 696 } 697 } 698 } 699 700 rcu_read_unlock(); 701 702 return found; 703 } 704 705 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t) 706 { 707 struct user_event_mm *user_mm; 708 709 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT); 710 711 if (!user_mm) 712 return NULL; 713 714 user_mm->mm = t->mm; 715 INIT_LIST_HEAD(&user_mm->enablers); 716 refcount_set(&user_mm->refcnt, 1); 717 refcount_set(&user_mm->tasks, 1); 718 719 /* 720 * The lifetime of the memory descriptor can slightly outlast 721 * the task lifetime if a ref to the user_event_mm is taken 722 * between list_del_rcu() and call_rcu(). Therefore we need 723 * to take a reference to it to ensure it can live this long 724 * under this corner case. This can also occur in clones that 725 * outlast the parent. 726 */ 727 mmgrab(user_mm->mm); 728 729 return user_mm; 730 } 731 732 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t) 733 { 734 unsigned long flags; 735 736 spin_lock_irqsave(&user_event_mms_lock, flags); 737 list_add_rcu(&user_mm->mms_link, &user_event_mms); 738 spin_unlock_irqrestore(&user_event_mms_lock, flags); 739 740 t->user_event_mm = user_mm; 741 } 742 743 static struct user_event_mm *current_user_event_mm(void) 744 { 745 struct user_event_mm *user_mm = current->user_event_mm; 746 747 if (user_mm) 748 goto inc; 749 750 user_mm = user_event_mm_alloc(current); 751 752 if (!user_mm) 753 goto error; 754 755 user_event_mm_attach(user_mm, current); 756 inc: 757 refcount_inc(&user_mm->refcnt); 758 error: 759 return user_mm; 760 } 761 762 static void user_event_mm_destroy(struct user_event_mm *mm) 763 { 764 struct user_event_enabler *enabler, *next; 765 766 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) 767 user_event_enabler_destroy(enabler, false); 768 769 mmdrop(mm->mm); 770 kfree(mm); 771 } 772 773 static void user_event_mm_put(struct user_event_mm *mm) 774 { 775 if (mm && refcount_dec_and_test(&mm->refcnt)) 776 user_event_mm_destroy(mm); 777 } 778 779 static void delayed_user_event_mm_put(struct work_struct *work) 780 { 781 struct user_event_mm *mm; 782 783 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork); 784 user_event_mm_put(mm); 785 } 786 787 void user_event_mm_remove(struct task_struct *t) 788 { 789 struct user_event_mm *mm; 790 unsigned long flags; 791 792 might_sleep(); 793 794 mm = t->user_event_mm; 795 t->user_event_mm = NULL; 796 797 /* Clone will increment the tasks, only remove if last clone */ 798 if (!refcount_dec_and_test(&mm->tasks)) 799 return; 800 801 /* Remove the mm from the list, so it can no longer be enabled */ 802 spin_lock_irqsave(&user_event_mms_lock, flags); 803 list_del_rcu(&mm->mms_link); 804 spin_unlock_irqrestore(&user_event_mms_lock, flags); 805 806 /* 807 * We need to wait for currently occurring writes to stop within 808 * the mm. This is required since exit_mm() snaps the current rss 809 * stats and clears them. On the final mmdrop(), check_mm() will 810 * report a bug if these increment. 811 * 812 * All writes/pins are done under mmap_read lock, take the write 813 * lock to ensure in-progress faults have completed. Faults that 814 * are pending but yet to run will check the task count and skip 815 * the fault since the mm is going away. 816 */ 817 mmap_write_lock(mm->mm); 818 mmap_write_unlock(mm->mm); 819 820 /* 821 * Put for mm must be done after RCU delay to handle new refs in 822 * between the list_del_rcu() and now. This ensures any get refs 823 * during rcu_read_lock() are accounted for during list removal. 824 * 825 * CPU A | CPU B 826 * --------------------------------------------------------------- 827 * user_event_mm_remove() | rcu_read_lock(); 828 * list_del_rcu() | list_for_each_entry_rcu(); 829 * call_rcu() | refcount_inc(); 830 * . | rcu_read_unlock(); 831 * schedule_work() | . 832 * user_event_mm_put() | . 833 * 834 * mmdrop() cannot be called in the softirq context of call_rcu() 835 * so we use a work queue after call_rcu() to run within. 836 */ 837 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put); 838 queue_rcu_work(system_percpu_wq, &mm->put_rwork); 839 } 840 841 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm) 842 { 843 struct user_event_mm *mm = user_event_mm_alloc(t); 844 struct user_event_enabler *enabler; 845 846 if (!mm) 847 return; 848 849 rcu_read_lock(); 850 851 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) { 852 if (!user_event_enabler_dup(enabler, mm)) 853 goto error; 854 } 855 856 rcu_read_unlock(); 857 858 user_event_mm_attach(mm, t); 859 return; 860 error: 861 rcu_read_unlock(); 862 user_event_mm_destroy(mm); 863 } 864 865 static bool current_user_event_enabler_exists(unsigned long uaddr, 866 unsigned char bit) 867 { 868 struct user_event_mm *user_mm = current_user_event_mm(); 869 bool exists; 870 871 if (!user_mm) 872 return false; 873 874 exists = user_event_enabler_exists(user_mm, uaddr, bit); 875 876 user_event_mm_put(user_mm); 877 878 return exists; 879 } 880 881 static struct user_event_enabler 882 *user_event_enabler_create(struct user_reg *reg, struct user_event *user, 883 int *write_result) 884 { 885 struct user_event_enabler *enabler; 886 struct user_event_mm *user_mm; 887 unsigned long uaddr = (unsigned long)reg->enable_addr; 888 int attempt = 0; 889 890 user_mm = current_user_event_mm(); 891 892 if (!user_mm) 893 return NULL; 894 895 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT); 896 897 if (!enabler) 898 goto out; 899 900 enabler->event = user; 901 enabler->addr = uaddr; 902 enabler->values = reg->enable_bit; 903 904 #if BITS_PER_LONG >= 64 905 if (reg->enable_size == 4) 906 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler)); 907 #endif 908 909 retry: 910 /* Prevents state changes from racing with new enablers */ 911 mutex_lock(&event_mutex); 912 913 /* Attempt to reflect the current state within the process */ 914 mmap_read_lock(user_mm->mm); 915 *write_result = user_event_enabler_write(user_mm, enabler, false, 916 &attempt); 917 mmap_read_unlock(user_mm->mm); 918 919 /* 920 * If the write works, then we will track the enabler. A ref to the 921 * underlying user_event is held by the enabler to prevent it going 922 * away while the enabler is still in use by a process. The ref is 923 * removed when the enabler is destroyed. This means a event cannot 924 * be forcefully deleted from the system until all tasks using it 925 * exit or run exec(), which includes forks and clones. 926 */ 927 if (!*write_result) { 928 user_event_get(user); 929 list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers); 930 } 931 932 mutex_unlock(&event_mutex); 933 934 if (*write_result) { 935 /* Attempt to fault-in and retry if it worked */ 936 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 937 goto retry; 938 939 kfree(enabler); 940 enabler = NULL; 941 } 942 out: 943 user_event_mm_put(user_mm); 944 945 return enabler; 946 } 947 948 static __always_inline __must_check 949 bool user_event_last_ref(struct user_event *user) 950 { 951 int last = 0; 952 953 if (user->reg_flags & USER_EVENT_REG_PERSIST) 954 last = 1; 955 956 return refcount_read(&user->refcnt) == last; 957 } 958 959 static __always_inline __must_check 960 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i) 961 { 962 size_t ret; 963 964 pagefault_disable(); 965 966 ret = copy_from_iter_nocache(addr, bytes, i); 967 968 pagefault_enable(); 969 970 return ret; 971 } 972 973 static struct list_head *user_event_get_fields(struct trace_event_call *call) 974 { 975 struct user_event *user = (struct user_event *)call->data; 976 977 return &user->fields; 978 } 979 980 /* 981 * Parses a register command for user_events 982 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]] 983 * 984 * Example event named 'test' with a 20 char 'msg' field with an unsigned int 985 * 'id' field after: 986 * test char[20] msg;unsigned int id 987 * 988 * NOTE: Offsets are from the user data perspective, they are not from the 989 * trace_entry/buffer perspective. We automatically add the common properties 990 * sizes to the offset for the user. 991 * 992 * Upon success user_event has its ref count increased by 1. 993 */ 994 static int user_event_parse_cmd(struct user_event_group *group, 995 char *raw_command, struct user_event **newuser, 996 int reg_flags) 997 { 998 char *name = raw_command; 999 char *args = strpbrk(name, " "); 1000 char *flags; 1001 1002 if (args) 1003 *args++ = '\0'; 1004 1005 flags = strpbrk(name, ":"); 1006 1007 if (flags) 1008 *flags++ = '\0'; 1009 1010 return user_event_parse(group, name, args, flags, newuser, reg_flags); 1011 } 1012 1013 static int user_field_array_size(const char *type) 1014 { 1015 const char *start = strchr(type, '['); 1016 char val[8]; 1017 char *bracket; 1018 int size = 0; 1019 1020 if (start == NULL) 1021 return -EINVAL; 1022 1023 if (strscpy(val, start + 1, sizeof(val)) <= 0) 1024 return -EINVAL; 1025 1026 bracket = strchr(val, ']'); 1027 1028 if (!bracket) 1029 return -EINVAL; 1030 1031 *bracket = '\0'; 1032 1033 if (kstrtouint(val, 0, &size)) 1034 return -EINVAL; 1035 1036 if (size > MAX_FIELD_ARRAY_SIZE) 1037 return -EINVAL; 1038 1039 return size; 1040 } 1041 1042 static int user_field_size(const char *type) 1043 { 1044 /* long is not allowed from a user, since it's ambigious in size */ 1045 if (strcmp(type, "s64") == 0) 1046 return sizeof(s64); 1047 if (strcmp(type, "u64") == 0) 1048 return sizeof(u64); 1049 if (strcmp(type, "s32") == 0) 1050 return sizeof(s32); 1051 if (strcmp(type, "u32") == 0) 1052 return sizeof(u32); 1053 if (strcmp(type, "int") == 0) 1054 return sizeof(int); 1055 if (strcmp(type, "unsigned int") == 0) 1056 return sizeof(unsigned int); 1057 if (strcmp(type, "s16") == 0) 1058 return sizeof(s16); 1059 if (strcmp(type, "u16") == 0) 1060 return sizeof(u16); 1061 if (strcmp(type, "short") == 0) 1062 return sizeof(short); 1063 if (strcmp(type, "unsigned short") == 0) 1064 return sizeof(unsigned short); 1065 if (strcmp(type, "s8") == 0) 1066 return sizeof(s8); 1067 if (strcmp(type, "u8") == 0) 1068 return sizeof(u8); 1069 if (strcmp(type, "char") == 0) 1070 return sizeof(char); 1071 if (strcmp(type, "unsigned char") == 0) 1072 return sizeof(unsigned char); 1073 if (str_has_prefix(type, "char[")) 1074 return user_field_array_size(type); 1075 if (str_has_prefix(type, "unsigned char[")) 1076 return user_field_array_size(type); 1077 if (str_has_prefix(type, "__data_loc ")) 1078 return sizeof(u32); 1079 if (str_has_prefix(type, "__rel_loc ")) 1080 return sizeof(u32); 1081 1082 /* Uknown basic type, error */ 1083 return -EINVAL; 1084 } 1085 1086 static void user_event_destroy_validators(struct user_event *user) 1087 { 1088 struct user_event_validator *validator, *next; 1089 struct list_head *head = &user->validators; 1090 1091 list_for_each_entry_safe(validator, next, head, user_event_link) { 1092 list_del(&validator->user_event_link); 1093 kfree(validator); 1094 } 1095 } 1096 1097 static void user_event_destroy_fields(struct user_event *user) 1098 { 1099 struct ftrace_event_field *field, *next; 1100 struct list_head *head = &user->fields; 1101 1102 list_for_each_entry_safe(field, next, head, link) { 1103 list_del(&field->link); 1104 kfree(field); 1105 } 1106 } 1107 1108 static int user_event_add_field(struct user_event *user, const char *type, 1109 const char *name, int offset, int size, 1110 int is_signed, int filter_type) 1111 { 1112 struct user_event_validator *validator; 1113 struct ftrace_event_field *field; 1114 int validator_flags = 0; 1115 1116 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT); 1117 1118 if (!field) 1119 return -ENOMEM; 1120 1121 if (str_has_prefix(type, "__data_loc ")) 1122 goto add_validator; 1123 1124 if (str_has_prefix(type, "__rel_loc ")) { 1125 validator_flags |= VALIDATOR_REL; 1126 goto add_validator; 1127 } 1128 1129 goto add_field; 1130 1131 add_validator: 1132 if (strstr(type, "char") != NULL) 1133 validator_flags |= VALIDATOR_ENSURE_NULL; 1134 1135 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT); 1136 1137 if (!validator) { 1138 kfree(field); 1139 return -ENOMEM; 1140 } 1141 1142 validator->flags = validator_flags; 1143 validator->offset = offset; 1144 1145 /* Want sequential access when validating */ 1146 list_add_tail(&validator->user_event_link, &user->validators); 1147 1148 add_field: 1149 field->type = type; 1150 field->name = name; 1151 field->offset = offset; 1152 field->size = size; 1153 field->is_signed = is_signed; 1154 field->filter_type = filter_type; 1155 1156 if (filter_type == FILTER_OTHER) 1157 field->filter_type = filter_assign_type(type); 1158 1159 list_add(&field->link, &user->fields); 1160 1161 /* 1162 * Min size from user writes that are required, this does not include 1163 * the size of trace_entry (common fields). 1164 */ 1165 user->min_size = (offset + size) - sizeof(struct trace_entry); 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * Parses the values of a field within the description 1172 * Format: type name [size] 1173 */ 1174 static int user_event_parse_field(char *field, struct user_event *user, 1175 u32 *offset) 1176 { 1177 char *part, *type, *name; 1178 u32 depth = 0, saved_offset = *offset; 1179 int len, size = -EINVAL; 1180 bool is_struct = false; 1181 1182 field = skip_spaces(field); 1183 1184 if (*field == '\0') 1185 return 0; 1186 1187 /* Handle types that have a space within */ 1188 len = str_has_prefix(field, "unsigned "); 1189 if (len) 1190 goto skip_next; 1191 1192 len = str_has_prefix(field, "struct "); 1193 if (len) { 1194 is_struct = true; 1195 goto skip_next; 1196 } 1197 1198 len = str_has_prefix(field, "__data_loc unsigned "); 1199 if (len) 1200 goto skip_next; 1201 1202 len = str_has_prefix(field, "__data_loc "); 1203 if (len) 1204 goto skip_next; 1205 1206 len = str_has_prefix(field, "__rel_loc unsigned "); 1207 if (len) 1208 goto skip_next; 1209 1210 len = str_has_prefix(field, "__rel_loc "); 1211 if (len) 1212 goto skip_next; 1213 1214 goto parse; 1215 skip_next: 1216 type = field; 1217 field = strpbrk(field + len, " "); 1218 1219 if (field == NULL) 1220 return -EINVAL; 1221 1222 *field++ = '\0'; 1223 depth++; 1224 parse: 1225 name = NULL; 1226 1227 while ((part = strsep(&field, " ")) != NULL) { 1228 switch (depth++) { 1229 case FIELD_DEPTH_TYPE: 1230 type = part; 1231 break; 1232 case FIELD_DEPTH_NAME: 1233 name = part; 1234 break; 1235 case FIELD_DEPTH_SIZE: 1236 if (!is_struct) 1237 return -EINVAL; 1238 1239 if (kstrtou32(part, 10, &size)) 1240 return -EINVAL; 1241 break; 1242 default: 1243 return -EINVAL; 1244 } 1245 } 1246 1247 if (depth < FIELD_DEPTH_SIZE || !name) 1248 return -EINVAL; 1249 1250 if (depth == FIELD_DEPTH_SIZE) 1251 size = user_field_size(type); 1252 1253 if (size == 0) 1254 return -EINVAL; 1255 1256 if (size < 0) 1257 return size; 1258 1259 *offset = saved_offset + size; 1260 1261 return user_event_add_field(user, type, name, saved_offset, size, 1262 type[0] != 'u', FILTER_OTHER); 1263 } 1264 1265 static int user_event_parse_fields(struct user_event *user, char *args) 1266 { 1267 char *field; 1268 u32 offset = sizeof(struct trace_entry); 1269 int ret = -EINVAL; 1270 1271 if (args == NULL) 1272 return 0; 1273 1274 while ((field = strsep(&args, ";")) != NULL) { 1275 ret = user_event_parse_field(field, user, &offset); 1276 1277 if (ret) 1278 break; 1279 } 1280 1281 return ret; 1282 } 1283 1284 static struct trace_event_fields user_event_fields_array[1]; 1285 1286 static const char *user_field_format(const char *type) 1287 { 1288 if (strcmp(type, "s64") == 0) 1289 return "%lld"; 1290 if (strcmp(type, "u64") == 0) 1291 return "%llu"; 1292 if (strcmp(type, "s32") == 0) 1293 return "%d"; 1294 if (strcmp(type, "u32") == 0) 1295 return "%u"; 1296 if (strcmp(type, "int") == 0) 1297 return "%d"; 1298 if (strcmp(type, "unsigned int") == 0) 1299 return "%u"; 1300 if (strcmp(type, "s16") == 0) 1301 return "%d"; 1302 if (strcmp(type, "u16") == 0) 1303 return "%u"; 1304 if (strcmp(type, "short") == 0) 1305 return "%d"; 1306 if (strcmp(type, "unsigned short") == 0) 1307 return "%u"; 1308 if (strcmp(type, "s8") == 0) 1309 return "%d"; 1310 if (strcmp(type, "u8") == 0) 1311 return "%u"; 1312 if (strcmp(type, "char") == 0) 1313 return "%d"; 1314 if (strcmp(type, "unsigned char") == 0) 1315 return "%u"; 1316 if (strstr(type, "char[") != NULL) 1317 return "%s"; 1318 1319 /* Unknown, likely struct, allowed treat as 64-bit */ 1320 return "%llu"; 1321 } 1322 1323 static bool user_field_is_dyn_string(const char *type, const char **str_func) 1324 { 1325 if (str_has_prefix(type, "__data_loc ")) { 1326 *str_func = "__get_str"; 1327 goto check; 1328 } 1329 1330 if (str_has_prefix(type, "__rel_loc ")) { 1331 *str_func = "__get_rel_str"; 1332 goto check; 1333 } 1334 1335 return false; 1336 check: 1337 return strstr(type, "char") != NULL; 1338 } 1339 1340 #define LEN_OR_ZERO (len ? len - pos : 0) 1341 static int user_dyn_field_set_string(int argc, const char **argv, int *iout, 1342 char *buf, int len, bool *colon) 1343 { 1344 int pos = 0, i = *iout; 1345 1346 *colon = false; 1347 1348 for (; i < argc; ++i) { 1349 if (i != *iout) 1350 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1351 1352 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]); 1353 1354 if (strchr(argv[i], ';')) { 1355 ++i; 1356 *colon = true; 1357 break; 1358 } 1359 } 1360 1361 /* Actual set, advance i */ 1362 if (len != 0) 1363 *iout = i; 1364 1365 return pos + 1; 1366 } 1367 1368 static int user_field_set_string(struct ftrace_event_field *field, 1369 char *buf, int len, bool colon) 1370 { 1371 int pos = 0; 1372 1373 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type); 1374 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1375 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name); 1376 1377 if (str_has_prefix(field->type, "struct ")) 1378 pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size); 1379 1380 if (colon) 1381 pos += snprintf(buf + pos, LEN_OR_ZERO, ";"); 1382 1383 return pos + 1; 1384 } 1385 1386 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len) 1387 { 1388 struct ftrace_event_field *field; 1389 struct list_head *head = &user->fields; 1390 int pos = 0, depth = 0; 1391 const char *str_func; 1392 1393 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1394 1395 list_for_each_entry_reverse(field, head, link) { 1396 if (depth != 0) 1397 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1398 1399 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s", 1400 field->name, user_field_format(field->type)); 1401 1402 depth++; 1403 } 1404 1405 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1406 1407 list_for_each_entry_reverse(field, head, link) { 1408 if (user_field_is_dyn_string(field->type, &str_func)) 1409 pos += snprintf(buf + pos, LEN_OR_ZERO, 1410 ", %s(%s)", str_func, field->name); 1411 else 1412 pos += snprintf(buf + pos, LEN_OR_ZERO, 1413 ", REC->%s", field->name); 1414 } 1415 1416 return pos + 1; 1417 } 1418 #undef LEN_OR_ZERO 1419 1420 static int user_event_create_print_fmt(struct user_event *user) 1421 { 1422 char *print_fmt; 1423 int len; 1424 1425 len = user_event_set_print_fmt(user, NULL, 0); 1426 1427 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT); 1428 1429 if (!print_fmt) 1430 return -ENOMEM; 1431 1432 user_event_set_print_fmt(user, print_fmt, len); 1433 1434 user->call.print_fmt = print_fmt; 1435 1436 return 0; 1437 } 1438 1439 static enum print_line_t user_event_print_trace(struct trace_iterator *iter, 1440 int flags, 1441 struct trace_event *event) 1442 { 1443 return print_event_fields(iter, event); 1444 } 1445 1446 static struct trace_event_functions user_event_funcs = { 1447 .trace = user_event_print_trace, 1448 }; 1449 1450 static int user_event_set_call_visible(struct user_event *user, bool visible) 1451 { 1452 CLASS(prepare_creds, cred)(); 1453 if (!cred) 1454 return -ENOMEM; 1455 1456 /* 1457 * While by default tracefs is locked down, systems can be configured 1458 * to allow user_event files to be less locked down. The extreme case 1459 * being "other" has read/write access to user_events_data/status. 1460 * 1461 * When not locked down, processes may not have permissions to 1462 * add/remove calls themselves to tracefs. We need to temporarily 1463 * switch to root file permission to allow for this scenario. 1464 */ 1465 cred->fsuid = GLOBAL_ROOT_UID; 1466 1467 scoped_with_creds(cred) { 1468 if (visible) 1469 return trace_add_event_call(&user->call); 1470 1471 return trace_remove_event_call(&user->call); 1472 } 1473 } 1474 1475 static int destroy_user_event(struct user_event *user) 1476 { 1477 int ret = 0; 1478 1479 lockdep_assert_held(&event_mutex); 1480 1481 /* Must destroy fields before call removal */ 1482 user_event_destroy_fields(user); 1483 1484 ret = user_event_set_call_visible(user, false); 1485 1486 if (ret) 1487 return ret; 1488 1489 dyn_event_remove(&user->devent); 1490 hash_del(&user->node); 1491 1492 user_event_destroy_validators(user); 1493 1494 /* If we have different names, both must be freed */ 1495 if (EVENT_NAME(user) != EVENT_TP_NAME(user)) 1496 kfree(EVENT_TP_NAME(user)); 1497 1498 kfree(user->call.print_fmt); 1499 kfree(EVENT_NAME(user)); 1500 kfree(user); 1501 1502 if (current_user_events > 0) 1503 current_user_events--; 1504 else 1505 pr_alert("BUG: Bad current_user_events\n"); 1506 1507 return ret; 1508 } 1509 1510 static struct user_event *find_user_event(struct user_event_group *group, 1511 char *name, int argc, const char **argv, 1512 u32 flags, u32 *outkey) 1513 { 1514 struct user_event *user; 1515 u32 key = user_event_key(name); 1516 1517 *outkey = key; 1518 1519 hash_for_each_possible(group->register_table, user, node, key) { 1520 /* 1521 * Single-format events shouldn't return multi-format 1522 * events. Callers expect the underlying tracepoint to match 1523 * the name exactly in these cases. Only check like-formats. 1524 */ 1525 if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags)) 1526 continue; 1527 1528 if (strcmp(EVENT_NAME(user), name)) 1529 continue; 1530 1531 if (user_fields_match(user, argc, argv)) 1532 return user_event_get(user); 1533 1534 /* Scan others if this is a multi-format event */ 1535 if (EVENT_MULTI_FORMAT(flags)) 1536 continue; 1537 1538 return ERR_PTR(-EADDRINUSE); 1539 } 1540 1541 return NULL; 1542 } 1543 1544 static int user_event_validate(struct user_event *user, void *data, int len) 1545 { 1546 struct list_head *head = &user->validators; 1547 struct user_event_validator *validator; 1548 void *pos, *end = data + len; 1549 u32 loc, offset, size; 1550 1551 list_for_each_entry(validator, head, user_event_link) { 1552 pos = data + validator->offset; 1553 1554 /* Already done min_size check, no bounds check here */ 1555 loc = *(u32 *)pos; 1556 offset = loc & 0xffff; 1557 size = loc >> 16; 1558 1559 if (likely(validator->flags & VALIDATOR_REL)) 1560 pos += offset + sizeof(loc); 1561 else 1562 pos = data + offset; 1563 1564 pos += size; 1565 1566 if (unlikely(pos > end)) 1567 return -EFAULT; 1568 1569 if (likely(validator->flags & VALIDATOR_ENSURE_NULL)) 1570 if (unlikely(*(char *)(pos - 1) != '\0')) 1571 return -EFAULT; 1572 } 1573 1574 return 0; 1575 } 1576 1577 /* 1578 * Writes the user supplied payload out to a trace file. 1579 */ 1580 static void user_event_ftrace(struct user_event *user, struct iov_iter *i, 1581 void *tpdata, bool *faulted) 1582 { 1583 struct trace_event_file *file; 1584 struct trace_entry *entry; 1585 struct trace_event_buffer event_buffer; 1586 size_t size = sizeof(*entry) + i->count; 1587 1588 file = (struct trace_event_file *)tpdata; 1589 1590 if (!file || 1591 !(file->flags & EVENT_FILE_FL_ENABLED) || 1592 trace_trigger_soft_disabled(file)) 1593 return; 1594 1595 /* Allocates and fills trace_entry, + 1 of this is data payload */ 1596 entry = trace_event_buffer_reserve(&event_buffer, file, size); 1597 1598 if (unlikely(!entry)) 1599 return; 1600 1601 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i))) 1602 goto discard; 1603 1604 if (!list_empty(&user->validators) && 1605 unlikely(user_event_validate(user, entry, size))) 1606 goto discard; 1607 1608 trace_event_buffer_commit(&event_buffer); 1609 1610 return; 1611 discard: 1612 *faulted = true; 1613 __trace_event_discard_commit(event_buffer.buffer, 1614 event_buffer.event); 1615 } 1616 1617 #ifdef CONFIG_PERF_EVENTS 1618 /* 1619 * Writes the user supplied payload out to perf ring buffer. 1620 */ 1621 static void user_event_perf(struct user_event *user, struct iov_iter *i, 1622 void *tpdata, bool *faulted) 1623 { 1624 struct hlist_head *perf_head; 1625 1626 perf_head = this_cpu_ptr(user->call.perf_events); 1627 1628 if (perf_head && !hlist_empty(perf_head)) { 1629 struct trace_entry *perf_entry; 1630 struct pt_regs *regs; 1631 size_t size = sizeof(*perf_entry) + i->count; 1632 int context; 1633 1634 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8), 1635 ®s, &context); 1636 1637 if (unlikely(!perf_entry)) 1638 return; 1639 1640 perf_fetch_caller_regs(regs); 1641 1642 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i))) 1643 goto discard; 1644 1645 if (!list_empty(&user->validators) && 1646 unlikely(user_event_validate(user, perf_entry, size))) 1647 goto discard; 1648 1649 perf_trace_buf_submit(perf_entry, size, context, 1650 user->call.event.type, 1, regs, 1651 perf_head, NULL); 1652 1653 return; 1654 discard: 1655 *faulted = true; 1656 perf_swevent_put_recursion_context(context); 1657 } 1658 } 1659 #endif 1660 1661 /* 1662 * Update the enabled bit among all user processes. 1663 */ 1664 static void update_enable_bit_for(struct user_event *user) 1665 { 1666 struct tracepoint *tp = &user->tracepoint; 1667 char status = 0; 1668 1669 if (static_key_enabled(&tp->key)) { 1670 struct tracepoint_func *probe_func_ptr; 1671 user_event_func_t probe_func; 1672 1673 rcu_read_lock_sched(); 1674 1675 probe_func_ptr = rcu_dereference_sched(tp->funcs); 1676 1677 if (probe_func_ptr) { 1678 do { 1679 probe_func = probe_func_ptr->func; 1680 1681 if (probe_func == user_event_ftrace) 1682 status |= EVENT_STATUS_FTRACE; 1683 #ifdef CONFIG_PERF_EVENTS 1684 else if (probe_func == user_event_perf) 1685 status |= EVENT_STATUS_PERF; 1686 #endif 1687 else 1688 status |= EVENT_STATUS_OTHER; 1689 } while ((++probe_func_ptr)->func); 1690 } 1691 1692 rcu_read_unlock_sched(); 1693 } 1694 1695 user->status = status; 1696 1697 user_event_enabler_update(user); 1698 } 1699 1700 /* 1701 * Register callback for our events from tracing sub-systems. 1702 */ 1703 static int user_event_reg(struct trace_event_call *call, 1704 enum trace_reg type, 1705 void *data) 1706 { 1707 struct user_event *user = (struct user_event *)call->data; 1708 int ret = 0; 1709 1710 if (!user) 1711 return -ENOENT; 1712 1713 switch (type) { 1714 case TRACE_REG_REGISTER: 1715 ret = tracepoint_probe_register(call->tp, 1716 call->class->probe, 1717 data); 1718 if (!ret) 1719 goto inc; 1720 break; 1721 1722 case TRACE_REG_UNREGISTER: 1723 tracepoint_probe_unregister(call->tp, 1724 call->class->probe, 1725 data); 1726 goto dec; 1727 1728 #ifdef CONFIG_PERF_EVENTS 1729 case TRACE_REG_PERF_REGISTER: 1730 ret = tracepoint_probe_register(call->tp, 1731 call->class->perf_probe, 1732 data); 1733 if (!ret) 1734 goto inc; 1735 break; 1736 1737 case TRACE_REG_PERF_UNREGISTER: 1738 tracepoint_probe_unregister(call->tp, 1739 call->class->perf_probe, 1740 data); 1741 goto dec; 1742 1743 case TRACE_REG_PERF_OPEN: 1744 case TRACE_REG_PERF_CLOSE: 1745 case TRACE_REG_PERF_ADD: 1746 case TRACE_REG_PERF_DEL: 1747 break; 1748 #endif 1749 } 1750 1751 return ret; 1752 inc: 1753 user_event_get(user); 1754 update_enable_bit_for(user); 1755 return 0; 1756 dec: 1757 update_enable_bit_for(user); 1758 user_event_put(user, true); 1759 return 0; 1760 } 1761 1762 static int user_event_create(const char *raw_command) 1763 { 1764 struct user_event_group *group; 1765 struct user_event *user; 1766 char *name; 1767 int ret; 1768 1769 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX)) 1770 return -ECANCELED; 1771 1772 raw_command += USER_EVENTS_PREFIX_LEN; 1773 raw_command = skip_spaces(raw_command); 1774 1775 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT); 1776 1777 if (!name) 1778 return -ENOMEM; 1779 1780 group = current_user_event_group(); 1781 1782 if (!group) { 1783 kfree(name); 1784 return -ENOENT; 1785 } 1786 1787 mutex_lock(&group->reg_mutex); 1788 1789 /* Dyn events persist, otherwise they would cleanup immediately */ 1790 ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST); 1791 1792 if (!ret) 1793 user_event_put(user, false); 1794 1795 mutex_unlock(&group->reg_mutex); 1796 1797 if (ret) 1798 kfree(name); 1799 1800 return ret; 1801 } 1802 1803 static int user_event_show(struct seq_file *m, struct dyn_event *ev) 1804 { 1805 struct user_event *user = container_of(ev, struct user_event, devent); 1806 struct ftrace_event_field *field; 1807 struct list_head *head; 1808 int depth = 0; 1809 1810 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user)); 1811 1812 head = trace_get_fields(&user->call); 1813 1814 list_for_each_entry_reverse(field, head, link) { 1815 if (depth == 0) 1816 seq_puts(m, " "); 1817 else 1818 seq_puts(m, "; "); 1819 1820 seq_printf(m, "%s %s", field->type, field->name); 1821 1822 if (str_has_prefix(field->type, "struct ")) 1823 seq_printf(m, " %d", field->size); 1824 1825 depth++; 1826 } 1827 1828 seq_puts(m, "\n"); 1829 1830 return 0; 1831 } 1832 1833 static bool user_event_is_busy(struct dyn_event *ev) 1834 { 1835 struct user_event *user = container_of(ev, struct user_event, devent); 1836 1837 return !user_event_last_ref(user); 1838 } 1839 1840 static int user_event_free(struct dyn_event *ev) 1841 { 1842 struct user_event *user = container_of(ev, struct user_event, devent); 1843 1844 if (!user_event_last_ref(user)) 1845 return -EBUSY; 1846 1847 if (!user_event_capable(user->reg_flags)) 1848 return -EPERM; 1849 1850 return destroy_user_event(user); 1851 } 1852 1853 static bool user_field_match(struct ftrace_event_field *field, int argc, 1854 const char **argv, int *iout) 1855 { 1856 char *field_name = NULL, *dyn_field_name = NULL; 1857 bool colon = false, match = false; 1858 int dyn_len, len; 1859 1860 if (*iout >= argc) 1861 return false; 1862 1863 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1864 0, &colon); 1865 1866 len = user_field_set_string(field, field_name, 0, colon); 1867 1868 if (dyn_len != len) 1869 return false; 1870 1871 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL); 1872 field_name = kmalloc(len, GFP_KERNEL); 1873 1874 if (!dyn_field_name || !field_name) 1875 goto out; 1876 1877 user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1878 dyn_len, &colon); 1879 1880 user_field_set_string(field, field_name, len, colon); 1881 1882 match = strcmp(dyn_field_name, field_name) == 0; 1883 out: 1884 kfree(dyn_field_name); 1885 kfree(field_name); 1886 1887 return match; 1888 } 1889 1890 static bool user_fields_match(struct user_event *user, int argc, 1891 const char **argv) 1892 { 1893 struct ftrace_event_field *field; 1894 struct list_head *head = &user->fields; 1895 int i = 0; 1896 1897 if (argc == 0) 1898 return list_empty(head); 1899 1900 list_for_each_entry_reverse(field, head, link) { 1901 if (!user_field_match(field, argc, argv, &i)) 1902 return false; 1903 } 1904 1905 if (i != argc) 1906 return false; 1907 1908 return true; 1909 } 1910 1911 static bool user_event_match(const char *system, const char *event, 1912 int argc, const char **argv, struct dyn_event *ev) 1913 { 1914 struct user_event *user = container_of(ev, struct user_event, devent); 1915 bool match; 1916 1917 match = strcmp(EVENT_NAME(user), event) == 0; 1918 1919 if (match && system) { 1920 match = strcmp(system, user->group->system_name) == 0 || 1921 strcmp(system, user->group->system_multi_name) == 0; 1922 } 1923 1924 if (match) 1925 match = user_fields_match(user, argc, argv); 1926 1927 return match; 1928 } 1929 1930 static struct dyn_event_operations user_event_dops = { 1931 .create = user_event_create, 1932 .show = user_event_show, 1933 .is_busy = user_event_is_busy, 1934 .free = user_event_free, 1935 .match = user_event_match, 1936 }; 1937 1938 static int user_event_trace_register(struct user_event *user) 1939 { 1940 int ret; 1941 1942 ret = register_trace_event(&user->call.event); 1943 1944 if (!ret) 1945 return -ENODEV; 1946 1947 ret = user_event_set_call_visible(user, true); 1948 1949 if (ret) 1950 unregister_trace_event(&user->call.event); 1951 1952 return ret; 1953 } 1954 1955 static int user_event_set_tp_name(struct user_event *user) 1956 { 1957 lockdep_assert_held(&user->group->reg_mutex); 1958 1959 if (EVENT_MULTI_FORMAT(user->reg_flags)) { 1960 char *multi_name; 1961 1962 multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx", 1963 user->reg_name, user->group->multi_id); 1964 1965 if (!multi_name) 1966 return -ENOMEM; 1967 1968 user->call.name = multi_name; 1969 user->tracepoint.name = multi_name; 1970 1971 /* Inc to ensure unique multi-event name next time */ 1972 user->group->multi_id++; 1973 } else { 1974 /* Non Multi-format uses register name */ 1975 user->call.name = user->reg_name; 1976 user->tracepoint.name = user->reg_name; 1977 } 1978 1979 return 0; 1980 } 1981 1982 /* 1983 * Counts how many ';' without a trailing space are in the args. 1984 */ 1985 static int count_semis_no_space(char *args) 1986 { 1987 int count = 0; 1988 1989 while ((args = strchr(args, ';'))) { 1990 args++; 1991 1992 if (!isspace(*args)) 1993 count++; 1994 } 1995 1996 return count; 1997 } 1998 1999 /* 2000 * Copies the arguments while ensuring all ';' have a trailing space. 2001 */ 2002 static char *insert_space_after_semis(char *args, int count) 2003 { 2004 char *fixed, *pos; 2005 int len; 2006 2007 len = strlen(args) + count; 2008 fixed = kmalloc(len + 1, GFP_KERNEL); 2009 2010 if (!fixed) 2011 return NULL; 2012 2013 pos = fixed; 2014 2015 /* Insert a space after ';' if there is no trailing space. */ 2016 while (*args) { 2017 *pos = *args++; 2018 2019 if (*pos++ == ';' && !isspace(*args)) 2020 *pos++ = ' '; 2021 } 2022 2023 *pos = '\0'; 2024 2025 return fixed; 2026 } 2027 2028 static char **user_event_argv_split(char *args, int *argc) 2029 { 2030 char **split; 2031 char *fixed; 2032 int count; 2033 2034 /* Count how many ';' without a trailing space */ 2035 count = count_semis_no_space(args); 2036 2037 /* No fixup is required */ 2038 if (!count) 2039 return argv_split(GFP_KERNEL, args, argc); 2040 2041 /* We must fixup 'field;field' to 'field; field' */ 2042 fixed = insert_space_after_semis(args, count); 2043 2044 if (!fixed) 2045 return NULL; 2046 2047 /* We do a normal split afterwards */ 2048 split = argv_split(GFP_KERNEL, fixed, argc); 2049 2050 /* We can free since argv_split makes a copy */ 2051 kfree(fixed); 2052 2053 return split; 2054 } 2055 2056 /* 2057 * Parses the event name, arguments and flags then registers if successful. 2058 * The name buffer lifetime is owned by this method for success cases only. 2059 * Upon success the returned user_event has its ref count increased by 1. 2060 */ 2061 static int user_event_parse(struct user_event_group *group, char *name, 2062 char *args, char *flags, 2063 struct user_event **newuser, int reg_flags) 2064 { 2065 struct user_event *user; 2066 char **argv = NULL; 2067 int argc = 0; 2068 int ret; 2069 u32 key; 2070 2071 /* Currently don't support any text based flags */ 2072 if (flags != NULL) 2073 return -EINVAL; 2074 2075 if (!user_event_capable(reg_flags)) 2076 return -EPERM; 2077 2078 if (args) { 2079 argv = user_event_argv_split(args, &argc); 2080 2081 if (!argv) 2082 return -ENOMEM; 2083 } 2084 2085 /* Prevent dyn_event from racing */ 2086 mutex_lock(&event_mutex); 2087 user = find_user_event(group, name, argc, (const char **)argv, 2088 reg_flags, &key); 2089 mutex_unlock(&event_mutex); 2090 2091 if (argv) 2092 argv_free(argv); 2093 2094 if (IS_ERR(user)) 2095 return PTR_ERR(user); 2096 2097 if (user) { 2098 *newuser = user; 2099 /* 2100 * Name is allocated by caller, free it since it already exists. 2101 * Caller only worries about failure cases for freeing. 2102 */ 2103 kfree(name); 2104 2105 return 0; 2106 } 2107 2108 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT); 2109 2110 if (!user) 2111 return -ENOMEM; 2112 2113 INIT_LIST_HEAD(&user->class.fields); 2114 INIT_LIST_HEAD(&user->fields); 2115 INIT_LIST_HEAD(&user->validators); 2116 2117 user->group = group; 2118 user->reg_name = name; 2119 user->reg_flags = reg_flags; 2120 2121 ret = user_event_set_tp_name(user); 2122 2123 if (ret) 2124 goto put_user; 2125 2126 ret = user_event_parse_fields(user, args); 2127 2128 if (ret) 2129 goto put_user; 2130 2131 ret = user_event_create_print_fmt(user); 2132 2133 if (ret) 2134 goto put_user; 2135 2136 user->call.data = user; 2137 user->call.class = &user->class; 2138 user->call.flags = TRACE_EVENT_FL_TRACEPOINT; 2139 user->call.tp = &user->tracepoint; 2140 user->call.event.funcs = &user_event_funcs; 2141 2142 if (EVENT_MULTI_FORMAT(user->reg_flags)) 2143 user->class.system = group->system_multi_name; 2144 else 2145 user->class.system = group->system_name; 2146 2147 user->class.fields_array = user_event_fields_array; 2148 user->class.get_fields = user_event_get_fields; 2149 user->class.reg = user_event_reg; 2150 user->class.probe = user_event_ftrace; 2151 #ifdef CONFIG_PERF_EVENTS 2152 user->class.perf_probe = user_event_perf; 2153 #endif 2154 2155 mutex_lock(&event_mutex); 2156 2157 if (current_user_events >= max_user_events) { 2158 ret = -EMFILE; 2159 goto put_user_lock; 2160 } 2161 2162 ret = user_event_trace_register(user); 2163 2164 if (ret) 2165 goto put_user_lock; 2166 2167 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 2168 /* Ensure we track self ref and caller ref (2) */ 2169 refcount_set(&user->refcnt, 2); 2170 } else { 2171 /* Ensure we track only caller ref (1) */ 2172 refcount_set(&user->refcnt, 1); 2173 } 2174 2175 dyn_event_init(&user->devent, &user_event_dops); 2176 dyn_event_add(&user->devent, &user->call); 2177 hash_add(group->register_table, &user->node, key); 2178 current_user_events++; 2179 2180 mutex_unlock(&event_mutex); 2181 2182 *newuser = user; 2183 return 0; 2184 put_user_lock: 2185 mutex_unlock(&event_mutex); 2186 put_user: 2187 user_event_destroy_fields(user); 2188 user_event_destroy_validators(user); 2189 kfree(user->call.print_fmt); 2190 2191 /* Caller frees reg_name on error, but not multi-name */ 2192 if (EVENT_NAME(user) != EVENT_TP_NAME(user)) 2193 kfree(EVENT_TP_NAME(user)); 2194 2195 kfree(user); 2196 return ret; 2197 } 2198 2199 /* 2200 * Deletes previously created events if they are no longer being used. 2201 */ 2202 static int delete_user_event(struct user_event_group *group, char *name) 2203 { 2204 struct user_event *user; 2205 struct hlist_node *tmp; 2206 u32 key = user_event_key(name); 2207 int ret = -ENOENT; 2208 2209 /* Attempt to delete all event(s) with the name passed in */ 2210 hash_for_each_possible_safe(group->register_table, user, tmp, node, key) { 2211 if (strcmp(EVENT_NAME(user), name)) 2212 continue; 2213 2214 if (!user_event_last_ref(user)) 2215 return -EBUSY; 2216 2217 if (!user_event_capable(user->reg_flags)) 2218 return -EPERM; 2219 2220 ret = destroy_user_event(user); 2221 2222 if (ret) 2223 goto out; 2224 } 2225 out: 2226 return ret; 2227 } 2228 2229 /* 2230 * Validates the user payload and writes via iterator. 2231 */ 2232 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i) 2233 { 2234 struct user_event_file_info *info = file->private_data; 2235 struct user_event_refs *refs; 2236 struct user_event *user = NULL; 2237 struct tracepoint *tp; 2238 ssize_t ret = i->count; 2239 int idx; 2240 2241 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx))) 2242 return -EFAULT; 2243 2244 if (idx < 0) 2245 return -EINVAL; 2246 2247 rcu_read_lock_sched(); 2248 2249 refs = rcu_dereference_sched(info->refs); 2250 2251 /* 2252 * The refs->events array is protected by RCU, and new items may be 2253 * added. But the user retrieved from indexing into the events array 2254 * shall be immutable while the file is opened. 2255 */ 2256 if (likely(refs && idx < refs->count)) 2257 user = refs->events[idx]; 2258 2259 rcu_read_unlock_sched(); 2260 2261 if (unlikely(user == NULL)) 2262 return -ENOENT; 2263 2264 if (unlikely(i->count < user->min_size)) 2265 return -EINVAL; 2266 2267 tp = &user->tracepoint; 2268 2269 /* 2270 * It's possible key.enabled disables after this check, however 2271 * we don't mind if a few events are included in this condition. 2272 */ 2273 if (likely(static_key_enabled(&tp->key))) { 2274 struct tracepoint_func *probe_func_ptr; 2275 user_event_func_t probe_func; 2276 struct iov_iter copy; 2277 void *tpdata; 2278 bool faulted; 2279 2280 if (unlikely(fault_in_iov_iter_readable(i, i->count))) 2281 return -EFAULT; 2282 2283 faulted = false; 2284 2285 rcu_read_lock_sched(); 2286 2287 probe_func_ptr = rcu_dereference_sched(tp->funcs); 2288 2289 if (probe_func_ptr) { 2290 do { 2291 copy = *i; 2292 probe_func = probe_func_ptr->func; 2293 tpdata = probe_func_ptr->data; 2294 probe_func(user, ©, tpdata, &faulted); 2295 } while ((++probe_func_ptr)->func); 2296 } 2297 2298 rcu_read_unlock_sched(); 2299 2300 if (unlikely(faulted)) 2301 return -EFAULT; 2302 } else 2303 return -EBADF; 2304 2305 return ret; 2306 } 2307 2308 static int user_events_open(struct inode *node, struct file *file) 2309 { 2310 struct user_event_group *group; 2311 struct user_event_file_info *info; 2312 2313 group = current_user_event_group(); 2314 2315 if (!group) 2316 return -ENOENT; 2317 2318 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT); 2319 2320 if (!info) 2321 return -ENOMEM; 2322 2323 info->group = group; 2324 2325 file->private_data = info; 2326 2327 return 0; 2328 } 2329 2330 static ssize_t user_events_write(struct file *file, const char __user *ubuf, 2331 size_t count, loff_t *ppos) 2332 { 2333 struct iov_iter i; 2334 2335 if (unlikely(*ppos != 0)) 2336 return -EFAULT; 2337 2338 if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i))) 2339 return -EFAULT; 2340 2341 return user_events_write_core(file, &i); 2342 } 2343 2344 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i) 2345 { 2346 return user_events_write_core(kp->ki_filp, i); 2347 } 2348 2349 static int user_events_ref_add(struct user_event_file_info *info, 2350 struct user_event *user) 2351 { 2352 struct user_event_group *group = info->group; 2353 struct user_event_refs *refs, *new_refs; 2354 int i, size, count = 0; 2355 2356 refs = rcu_dereference_protected(info->refs, 2357 lockdep_is_held(&group->reg_mutex)); 2358 2359 if (refs) { 2360 count = refs->count; 2361 2362 for (i = 0; i < count; ++i) 2363 if (refs->events[i] == user) 2364 return i; 2365 } 2366 2367 size = struct_size(refs, events, count + 1); 2368 2369 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT); 2370 2371 if (!new_refs) 2372 return -ENOMEM; 2373 2374 new_refs->count = count + 1; 2375 2376 for (i = 0; i < count; ++i) 2377 new_refs->events[i] = refs->events[i]; 2378 2379 new_refs->events[i] = user_event_get(user); 2380 2381 rcu_assign_pointer(info->refs, new_refs); 2382 2383 if (refs) 2384 kfree_rcu(refs, rcu); 2385 2386 return i; 2387 } 2388 2389 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg) 2390 { 2391 u32 size; 2392 long ret; 2393 2394 ret = get_user(size, &ureg->size); 2395 2396 if (ret) 2397 return ret; 2398 2399 if (size > PAGE_SIZE) 2400 return -E2BIG; 2401 2402 if (size < offsetofend(struct user_reg, write_index)) 2403 return -EINVAL; 2404 2405 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2406 2407 if (ret) 2408 return ret; 2409 2410 /* Ensure only valid flags */ 2411 if (kreg->flags & ~(USER_EVENT_REG_MAX-1)) 2412 return -EINVAL; 2413 2414 /* Ensure supported size */ 2415 switch (kreg->enable_size) { 2416 case 4: 2417 /* 32-bit */ 2418 break; 2419 #if BITS_PER_LONG >= 64 2420 case 8: 2421 /* 64-bit */ 2422 break; 2423 #endif 2424 default: 2425 return -EINVAL; 2426 } 2427 2428 /* Ensure natural alignment */ 2429 if (kreg->enable_addr % kreg->enable_size) 2430 return -EINVAL; 2431 2432 /* Ensure bit range for size */ 2433 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1) 2434 return -EINVAL; 2435 2436 /* Ensure accessible */ 2437 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr, 2438 kreg->enable_size)) 2439 return -EFAULT; 2440 2441 kreg->size = size; 2442 2443 return 0; 2444 } 2445 2446 /* 2447 * Registers a user_event on behalf of a user process. 2448 */ 2449 static long user_events_ioctl_reg(struct user_event_file_info *info, 2450 unsigned long uarg) 2451 { 2452 struct user_reg __user *ureg = (struct user_reg __user *)uarg; 2453 struct user_reg reg; 2454 struct user_event *user; 2455 struct user_event_enabler *enabler; 2456 char *name; 2457 long ret; 2458 int write_result; 2459 2460 ret = user_reg_get(ureg, ®); 2461 2462 if (ret) 2463 return ret; 2464 2465 /* 2466 * Prevent users from using the same address and bit multiple times 2467 * within the same mm address space. This can cause unexpected behavior 2468 * for user processes that is far easier to debug if this is explictly 2469 * an error upon registering. 2470 */ 2471 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr, 2472 reg.enable_bit)) 2473 return -EADDRINUSE; 2474 2475 name = strndup_user((const char __user *)(uintptr_t)reg.name_args, 2476 MAX_EVENT_DESC); 2477 2478 if (IS_ERR(name)) { 2479 ret = PTR_ERR(name); 2480 return ret; 2481 } 2482 2483 ret = user_event_parse_cmd(info->group, name, &user, reg.flags); 2484 2485 if (ret) { 2486 kfree(name); 2487 return ret; 2488 } 2489 2490 ret = user_events_ref_add(info, user); 2491 2492 /* No longer need parse ref, ref_add either worked or not */ 2493 user_event_put(user, false); 2494 2495 /* Positive number is index and valid */ 2496 if (ret < 0) 2497 return ret; 2498 2499 /* 2500 * user_events_ref_add succeeded: 2501 * At this point we have a user_event, it's lifetime is bound by the 2502 * reference count, not this file. If anything fails, the user_event 2503 * still has a reference until the file is released. During release 2504 * any remaining references (from user_events_ref_add) are decremented. 2505 * 2506 * Attempt to create an enabler, which too has a lifetime tied in the 2507 * same way for the event. Once the task that caused the enabler to be 2508 * created exits or issues exec() then the enablers it has created 2509 * will be destroyed and the ref to the event will be decremented. 2510 */ 2511 enabler = user_event_enabler_create(®, user, &write_result); 2512 2513 if (!enabler) 2514 return -ENOMEM; 2515 2516 /* Write failed/faulted, give error back to caller */ 2517 if (write_result) 2518 return write_result; 2519 2520 put_user((u32)ret, &ureg->write_index); 2521 2522 return 0; 2523 } 2524 2525 /* 2526 * Deletes a user_event on behalf of a user process. 2527 */ 2528 static long user_events_ioctl_del(struct user_event_file_info *info, 2529 unsigned long uarg) 2530 { 2531 void __user *ubuf = (void __user *)uarg; 2532 char *name; 2533 long ret; 2534 2535 name = strndup_user(ubuf, MAX_EVENT_DESC); 2536 2537 if (IS_ERR(name)) 2538 return PTR_ERR(name); 2539 2540 /* event_mutex prevents dyn_event from racing */ 2541 mutex_lock(&event_mutex); 2542 ret = delete_user_event(info->group, name); 2543 mutex_unlock(&event_mutex); 2544 2545 kfree(name); 2546 2547 return ret; 2548 } 2549 2550 static long user_unreg_get(struct user_unreg __user *ureg, 2551 struct user_unreg *kreg) 2552 { 2553 u32 size; 2554 long ret; 2555 2556 ret = get_user(size, &ureg->size); 2557 2558 if (ret) 2559 return ret; 2560 2561 if (size > PAGE_SIZE) 2562 return -E2BIG; 2563 2564 if (size < offsetofend(struct user_unreg, disable_addr)) 2565 return -EINVAL; 2566 2567 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2568 2569 /* Ensure no reserved values, since we don't support any yet */ 2570 if (kreg->__reserved || kreg->__reserved2) 2571 return -EINVAL; 2572 2573 return ret; 2574 } 2575 2576 static int user_event_mm_clear_bit(struct user_event_mm *user_mm, 2577 unsigned long uaddr, unsigned char bit, 2578 unsigned long flags) 2579 { 2580 struct user_event_enabler enabler; 2581 int result; 2582 int attempt = 0; 2583 2584 memset(&enabler, 0, sizeof(enabler)); 2585 enabler.addr = uaddr; 2586 enabler.values = bit | flags; 2587 retry: 2588 /* Prevents state changes from racing with new enablers */ 2589 mutex_lock(&event_mutex); 2590 2591 /* Force the bit to be cleared, since no event is attached */ 2592 mmap_read_lock(user_mm->mm); 2593 result = user_event_enabler_write(user_mm, &enabler, false, &attempt); 2594 mmap_read_unlock(user_mm->mm); 2595 2596 mutex_unlock(&event_mutex); 2597 2598 if (result) { 2599 /* Attempt to fault-in and retry if it worked */ 2600 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 2601 goto retry; 2602 } 2603 2604 return result; 2605 } 2606 2607 /* 2608 * Unregisters an enablement address/bit within a task/user mm. 2609 */ 2610 static long user_events_ioctl_unreg(unsigned long uarg) 2611 { 2612 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg; 2613 struct user_event_mm *mm = current->user_event_mm; 2614 struct user_event_enabler *enabler, *next; 2615 struct user_unreg reg; 2616 unsigned long flags; 2617 long ret; 2618 2619 ret = user_unreg_get(ureg, ®); 2620 2621 if (ret) 2622 return ret; 2623 2624 if (!mm) 2625 return -ENOENT; 2626 2627 flags = 0; 2628 ret = -ENOENT; 2629 2630 /* 2631 * Flags freeing and faulting are used to indicate if the enabler is in 2632 * use at all. When faulting is set a page-fault is occurring asyncly. 2633 * During async fault if freeing is set, the enabler will be destroyed. 2634 * If no async fault is happening, we can destroy it now since we hold 2635 * the event_mutex during these checks. 2636 */ 2637 mutex_lock(&event_mutex); 2638 2639 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) { 2640 if (enabler->addr == reg.disable_addr && 2641 ENABLE_BIT(enabler) == reg.disable_bit) { 2642 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)); 2643 2644 /* We must keep compat flags for the clear */ 2645 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK; 2646 2647 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler))) 2648 user_event_enabler_destroy(enabler, true); 2649 2650 /* Removed at least one */ 2651 ret = 0; 2652 } 2653 } 2654 2655 mutex_unlock(&event_mutex); 2656 2657 /* Ensure bit is now cleared for user, regardless of event status */ 2658 if (!ret) 2659 ret = user_event_mm_clear_bit(mm, reg.disable_addr, 2660 reg.disable_bit, flags); 2661 2662 return ret; 2663 } 2664 2665 /* 2666 * Handles the ioctl from user mode to register or alter operations. 2667 */ 2668 static long user_events_ioctl(struct file *file, unsigned int cmd, 2669 unsigned long uarg) 2670 { 2671 struct user_event_file_info *info = file->private_data; 2672 struct user_event_group *group = info->group; 2673 long ret = -ENOTTY; 2674 2675 switch (cmd) { 2676 case DIAG_IOCSREG: 2677 mutex_lock(&group->reg_mutex); 2678 ret = user_events_ioctl_reg(info, uarg); 2679 mutex_unlock(&group->reg_mutex); 2680 break; 2681 2682 case DIAG_IOCSDEL: 2683 mutex_lock(&group->reg_mutex); 2684 ret = user_events_ioctl_del(info, uarg); 2685 mutex_unlock(&group->reg_mutex); 2686 break; 2687 2688 case DIAG_IOCSUNREG: 2689 mutex_lock(&group->reg_mutex); 2690 ret = user_events_ioctl_unreg(uarg); 2691 mutex_unlock(&group->reg_mutex); 2692 break; 2693 } 2694 2695 return ret; 2696 } 2697 2698 /* 2699 * Handles the final close of the file from user mode. 2700 */ 2701 static int user_events_release(struct inode *node, struct file *file) 2702 { 2703 struct user_event_file_info *info = file->private_data; 2704 struct user_event_group *group; 2705 struct user_event_refs *refs; 2706 int i; 2707 2708 if (!info) 2709 return -EINVAL; 2710 2711 group = info->group; 2712 2713 /* 2714 * Ensure refs cannot change under any situation by taking the 2715 * register mutex during the final freeing of the references. 2716 */ 2717 mutex_lock(&group->reg_mutex); 2718 2719 refs = info->refs; 2720 2721 if (!refs) 2722 goto out; 2723 2724 /* 2725 * The lifetime of refs has reached an end, it's tied to this file. 2726 * The underlying user_events are ref counted, and cannot be freed. 2727 * After this decrement, the user_events may be freed elsewhere. 2728 */ 2729 for (i = 0; i < refs->count; ++i) 2730 user_event_put(refs->events[i], false); 2731 2732 out: 2733 file->private_data = NULL; 2734 2735 mutex_unlock(&group->reg_mutex); 2736 2737 kfree(refs); 2738 kfree(info); 2739 2740 return 0; 2741 } 2742 2743 static const struct file_operations user_data_fops = { 2744 .open = user_events_open, 2745 .write = user_events_write, 2746 .write_iter = user_events_write_iter, 2747 .unlocked_ioctl = user_events_ioctl, 2748 .release = user_events_release, 2749 }; 2750 2751 static void *user_seq_start(struct seq_file *m, loff_t *pos) 2752 { 2753 if (*pos) 2754 return NULL; 2755 2756 return (void *)1; 2757 } 2758 2759 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos) 2760 { 2761 ++*pos; 2762 return NULL; 2763 } 2764 2765 static void user_seq_stop(struct seq_file *m, void *p) 2766 { 2767 } 2768 2769 static int user_seq_show(struct seq_file *m, void *p) 2770 { 2771 struct user_event_group *group = m->private; 2772 struct user_event *user; 2773 char status; 2774 int i, active = 0, busy = 0; 2775 2776 if (!group) 2777 return -EINVAL; 2778 2779 mutex_lock(&group->reg_mutex); 2780 2781 hash_for_each(group->register_table, i, user, node) { 2782 status = user->status; 2783 2784 seq_printf(m, "%s", EVENT_TP_NAME(user)); 2785 2786 if (status != 0) { 2787 seq_puts(m, " # Used by"); 2788 if (status & EVENT_STATUS_FTRACE) 2789 seq_puts(m, " ftrace"); 2790 if (status & EVENT_STATUS_PERF) 2791 seq_puts(m, " perf"); 2792 if (status & EVENT_STATUS_OTHER) 2793 seq_puts(m, " other"); 2794 busy++; 2795 } 2796 2797 seq_puts(m, "\n"); 2798 active++; 2799 } 2800 2801 mutex_unlock(&group->reg_mutex); 2802 2803 seq_puts(m, "\n"); 2804 seq_printf(m, "Active: %d\n", active); 2805 seq_printf(m, "Busy: %d\n", busy); 2806 2807 return 0; 2808 } 2809 2810 static const struct seq_operations user_seq_ops = { 2811 .start = user_seq_start, 2812 .next = user_seq_next, 2813 .stop = user_seq_stop, 2814 .show = user_seq_show, 2815 }; 2816 2817 static int user_status_open(struct inode *node, struct file *file) 2818 { 2819 struct user_event_group *group; 2820 int ret; 2821 2822 group = current_user_event_group(); 2823 2824 if (!group) 2825 return -ENOENT; 2826 2827 ret = seq_open(file, &user_seq_ops); 2828 2829 if (!ret) { 2830 /* Chain group to seq_file */ 2831 struct seq_file *m = file->private_data; 2832 2833 m->private = group; 2834 } 2835 2836 return ret; 2837 } 2838 2839 static const struct file_operations user_status_fops = { 2840 .open = user_status_open, 2841 .read = seq_read, 2842 .llseek = seq_lseek, 2843 .release = seq_release, 2844 }; 2845 2846 /* 2847 * Creates a set of tracefs files to allow user mode interactions. 2848 */ 2849 static int create_user_tracefs(void) 2850 { 2851 struct dentry *edata, *emmap; 2852 2853 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE, 2854 NULL, NULL, &user_data_fops); 2855 2856 if (!edata) { 2857 pr_warn("Could not create tracefs 'user_events_data' entry\n"); 2858 goto err; 2859 } 2860 2861 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ, 2862 NULL, NULL, &user_status_fops); 2863 2864 if (!emmap) { 2865 tracefs_remove(edata); 2866 pr_warn("Could not create tracefs 'user_events_mmap' entry\n"); 2867 goto err; 2868 } 2869 2870 return 0; 2871 err: 2872 return -ENODEV; 2873 } 2874 2875 static int set_max_user_events_sysctl(const struct ctl_table *table, int write, 2876 void *buffer, size_t *lenp, loff_t *ppos) 2877 { 2878 int ret; 2879 2880 mutex_lock(&event_mutex); 2881 2882 ret = proc_douintvec(table, write, buffer, lenp, ppos); 2883 2884 mutex_unlock(&event_mutex); 2885 2886 return ret; 2887 } 2888 2889 static const struct ctl_table user_event_sysctls[] = { 2890 { 2891 .procname = "user_events_max", 2892 .data = &max_user_events, 2893 .maxlen = sizeof(unsigned int), 2894 .mode = 0644, 2895 .proc_handler = set_max_user_events_sysctl, 2896 }, 2897 }; 2898 2899 static int __init trace_events_user_init(void) 2900 { 2901 int ret; 2902 2903 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0); 2904 2905 if (!fault_cache) 2906 return -ENOMEM; 2907 2908 init_group = user_event_group_create(); 2909 2910 if (!init_group) { 2911 kmem_cache_destroy(fault_cache); 2912 return -ENOMEM; 2913 } 2914 2915 ret = create_user_tracefs(); 2916 2917 if (ret) { 2918 pr_warn("user_events could not register with tracefs\n"); 2919 user_event_group_destroy(init_group); 2920 kmem_cache_destroy(fault_cache); 2921 init_group = NULL; 2922 return ret; 2923 } 2924 2925 if (dyn_event_register(&user_event_dops)) 2926 pr_warn("user_events could not register with dyn_events\n"); 2927 2928 register_sysctl_init("kernel", user_event_sysctls); 2929 2930 return 0; 2931 } 2932 2933 fs_initcall(trace_events_user_init); 2934