xref: /linux/kernel/trace/trace_events_user.c (revision 06ba8020287f43fc13962b158d8dec2689448a5a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2021, Microsoft Corporation.
4  *
5  * Authors:
6  *   Beau Belgrave <beaub@linux.microsoft.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/cdev.h>
11 #include <linux/hashtable.h>
12 #include <linux/list.h>
13 #include <linux/io.h>
14 #include <linux/uio.h>
15 #include <linux/ioctl.h>
16 #include <linux/jhash.h>
17 #include <linux/refcount.h>
18 #include <linux/trace_events.h>
19 #include <linux/tracefs.h>
20 #include <linux/types.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/user_events.h>
25 #include "trace_dynevent.h"
26 #include "trace_output.h"
27 #include "trace.h"
28 
29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30 
31 #define FIELD_DEPTH_TYPE 0
32 #define FIELD_DEPTH_NAME 1
33 #define FIELD_DEPTH_SIZE 2
34 
35 /* Limit how long of an event name plus args within the subsystem. */
36 #define MAX_EVENT_DESC 512
37 #define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
38 #define MAX_FIELD_ARRAY_SIZE 1024
39 
40 /*
41  * Internal bits (kernel side only) to keep track of connected probes:
42  * These are used when status is requested in text form about an event. These
43  * bits are compared against an internal byte on the event to determine which
44  * probes to print out to the user.
45  *
46  * These do not reflect the mapped bytes between the user and kernel space.
47  */
48 #define EVENT_STATUS_FTRACE BIT(0)
49 #define EVENT_STATUS_PERF BIT(1)
50 #define EVENT_STATUS_OTHER BIT(7)
51 
52 /*
53  * Stores the system name, tables, and locks for a group of events. This
54  * allows isolation for events by various means.
55  */
56 struct user_event_group {
57 	char		*system_name;
58 	struct		hlist_node node;
59 	struct		mutex reg_mutex;
60 	DECLARE_HASHTABLE(register_table, 8);
61 };
62 
63 /* Group for init_user_ns mapping, top-most group */
64 static struct user_event_group *init_group;
65 
66 /* Max allowed events for the whole system */
67 static unsigned int max_user_events = 32768;
68 
69 /* Current number of events on the whole system */
70 static unsigned int current_user_events;
71 
72 /*
73  * Stores per-event properties, as users register events
74  * within a file a user_event might be created if it does not
75  * already exist. These are globally used and their lifetime
76  * is tied to the refcnt member. These cannot go away until the
77  * refcnt reaches one.
78  */
79 struct user_event {
80 	struct user_event_group		*group;
81 	struct tracepoint		tracepoint;
82 	struct trace_event_call		call;
83 	struct trace_event_class	class;
84 	struct dyn_event		devent;
85 	struct hlist_node		node;
86 	struct list_head		fields;
87 	struct list_head		validators;
88 	refcount_t			refcnt;
89 	int				min_size;
90 	char				status;
91 };
92 
93 /*
94  * Stores per-mm/event properties that enable an address to be
95  * updated properly for each task. As tasks are forked, we use
96  * these to track enablement sites that are tied to an event.
97  */
98 struct user_event_enabler {
99 	struct list_head	link;
100 	struct user_event	*event;
101 	unsigned long		addr;
102 
103 	/* Track enable bit, flags, etc. Aligned for bitops. */
104 	unsigned int		values;
105 };
106 
107 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
108 #define ENABLE_VAL_BIT_MASK 0x3F
109 
110 /* Bit 6 is for faulting status of enablement */
111 #define ENABLE_VAL_FAULTING_BIT 6
112 
113 /* Bit 7 is for freeing status of enablement */
114 #define ENABLE_VAL_FREEING_BIT 7
115 
116 /* Only duplicate the bit value */
117 #define ENABLE_VAL_DUP_MASK ENABLE_VAL_BIT_MASK
118 
119 #define ENABLE_BITOPS(e) ((unsigned long *)&(e)->values)
120 
121 /* Used for asynchronous faulting in of pages */
122 struct user_event_enabler_fault {
123 	struct work_struct		work;
124 	struct user_event_mm		*mm;
125 	struct user_event_enabler	*enabler;
126 	int				attempt;
127 };
128 
129 static struct kmem_cache *fault_cache;
130 
131 /* Global list of memory descriptors using user_events */
132 static LIST_HEAD(user_event_mms);
133 static DEFINE_SPINLOCK(user_event_mms_lock);
134 
135 /*
136  * Stores per-file events references, as users register events
137  * within a file this structure is modified and freed via RCU.
138  * The lifetime of this struct is tied to the lifetime of the file.
139  * These are not shared and only accessible by the file that created it.
140  */
141 struct user_event_refs {
142 	struct rcu_head		rcu;
143 	int			count;
144 	struct user_event	*events[];
145 };
146 
147 struct user_event_file_info {
148 	struct user_event_group	*group;
149 	struct user_event_refs	*refs;
150 };
151 
152 #define VALIDATOR_ENSURE_NULL (1 << 0)
153 #define VALIDATOR_REL (1 << 1)
154 
155 struct user_event_validator {
156 	struct list_head	link;
157 	int			offset;
158 	int			flags;
159 };
160 
161 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
162 				   void *tpdata, bool *faulted);
163 
164 static int user_event_parse(struct user_event_group *group, char *name,
165 			    char *args, char *flags,
166 			    struct user_event **newuser);
167 
168 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
169 static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
170 static void user_event_mm_put(struct user_event_mm *mm);
171 
172 static u32 user_event_key(char *name)
173 {
174 	return jhash(name, strlen(name), 0);
175 }
176 
177 static void user_event_group_destroy(struct user_event_group *group)
178 {
179 	kfree(group->system_name);
180 	kfree(group);
181 }
182 
183 static char *user_event_group_system_name(struct user_namespace *user_ns)
184 {
185 	char *system_name;
186 	int len = sizeof(USER_EVENTS_SYSTEM) + 1;
187 
188 	if (user_ns != &init_user_ns) {
189 		/*
190 		 * Unexpected at this point:
191 		 * We only currently support init_user_ns.
192 		 * When we enable more, this will trigger a failure so log.
193 		 */
194 		pr_warn("user_events: Namespace other than init_user_ns!\n");
195 		return NULL;
196 	}
197 
198 	system_name = kmalloc(len, GFP_KERNEL);
199 
200 	if (!system_name)
201 		return NULL;
202 
203 	snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
204 
205 	return system_name;
206 }
207 
208 static inline struct user_event_group
209 *user_event_group_from_user_ns(struct user_namespace *user_ns)
210 {
211 	if (user_ns == &init_user_ns)
212 		return init_group;
213 
214 	return NULL;
215 }
216 
217 static struct user_event_group *current_user_event_group(void)
218 {
219 	struct user_namespace *user_ns = current_user_ns();
220 	struct user_event_group *group = NULL;
221 
222 	while (user_ns) {
223 		group = user_event_group_from_user_ns(user_ns);
224 
225 		if (group)
226 			break;
227 
228 		user_ns = user_ns->parent;
229 	}
230 
231 	return group;
232 }
233 
234 static struct user_event_group
235 *user_event_group_create(struct user_namespace *user_ns)
236 {
237 	struct user_event_group *group;
238 
239 	group = kzalloc(sizeof(*group), GFP_KERNEL);
240 
241 	if (!group)
242 		return NULL;
243 
244 	group->system_name = user_event_group_system_name(user_ns);
245 
246 	if (!group->system_name)
247 		goto error;
248 
249 	mutex_init(&group->reg_mutex);
250 	hash_init(group->register_table);
251 
252 	return group;
253 error:
254 	if (group)
255 		user_event_group_destroy(group);
256 
257 	return NULL;
258 };
259 
260 static void user_event_enabler_destroy(struct user_event_enabler *enabler)
261 {
262 	list_del_rcu(&enabler->link);
263 
264 	/* No longer tracking the event via the enabler */
265 	refcount_dec(&enabler->event->refcnt);
266 
267 	kfree(enabler);
268 }
269 
270 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
271 				  int attempt)
272 {
273 	bool unlocked;
274 	int ret;
275 
276 	/*
277 	 * Normally this is low, ensure that it cannot be taken advantage of by
278 	 * bad user processes to cause excessive looping.
279 	 */
280 	if (attempt > 10)
281 		return -EFAULT;
282 
283 	mmap_read_lock(mm->mm);
284 
285 	/* Ensure MM has tasks, cannot use after exit_mm() */
286 	if (refcount_read(&mm->tasks) == 0) {
287 		ret = -ENOENT;
288 		goto out;
289 	}
290 
291 	ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
292 			       &unlocked);
293 out:
294 	mmap_read_unlock(mm->mm);
295 
296 	return ret;
297 }
298 
299 static int user_event_enabler_write(struct user_event_mm *mm,
300 				    struct user_event_enabler *enabler,
301 				    bool fixup_fault, int *attempt);
302 
303 static void user_event_enabler_fault_fixup(struct work_struct *work)
304 {
305 	struct user_event_enabler_fault *fault = container_of(
306 		work, struct user_event_enabler_fault, work);
307 	struct user_event_enabler *enabler = fault->enabler;
308 	struct user_event_mm *mm = fault->mm;
309 	unsigned long uaddr = enabler->addr;
310 	int attempt = fault->attempt;
311 	int ret;
312 
313 	ret = user_event_mm_fault_in(mm, uaddr, attempt);
314 
315 	if (ret && ret != -ENOENT) {
316 		struct user_event *user = enabler->event;
317 
318 		pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
319 			mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
320 	}
321 
322 	/* Prevent state changes from racing */
323 	mutex_lock(&event_mutex);
324 
325 	/* User asked for enabler to be removed during fault */
326 	if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
327 		user_event_enabler_destroy(enabler);
328 		goto out;
329 	}
330 
331 	/*
332 	 * If we managed to get the page, re-issue the write. We do not
333 	 * want to get into a possible infinite loop, which is why we only
334 	 * attempt again directly if the page came in. If we couldn't get
335 	 * the page here, then we will try again the next time the event is
336 	 * enabled/disabled.
337 	 */
338 	clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
339 
340 	if (!ret) {
341 		mmap_read_lock(mm->mm);
342 		user_event_enabler_write(mm, enabler, true, &attempt);
343 		mmap_read_unlock(mm->mm);
344 	}
345 out:
346 	mutex_unlock(&event_mutex);
347 
348 	/* In all cases we no longer need the mm or fault */
349 	user_event_mm_put(mm);
350 	kmem_cache_free(fault_cache, fault);
351 }
352 
353 static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
354 					   struct user_event_enabler *enabler,
355 					   int attempt)
356 {
357 	struct user_event_enabler_fault *fault;
358 
359 	fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
360 
361 	if (!fault)
362 		return false;
363 
364 	INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
365 	fault->mm = user_event_mm_get(mm);
366 	fault->enabler = enabler;
367 	fault->attempt = attempt;
368 
369 	/* Don't try to queue in again while we have a pending fault */
370 	set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
371 
372 	if (!schedule_work(&fault->work)) {
373 		/* Allow another attempt later */
374 		clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
375 
376 		user_event_mm_put(mm);
377 		kmem_cache_free(fault_cache, fault);
378 
379 		return false;
380 	}
381 
382 	return true;
383 }
384 
385 static int user_event_enabler_write(struct user_event_mm *mm,
386 				    struct user_event_enabler *enabler,
387 				    bool fixup_fault, int *attempt)
388 {
389 	unsigned long uaddr = enabler->addr;
390 	unsigned long *ptr;
391 	struct page *page;
392 	void *kaddr;
393 	int ret;
394 
395 	lockdep_assert_held(&event_mutex);
396 	mmap_assert_locked(mm->mm);
397 
398 	*attempt += 1;
399 
400 	/* Ensure MM has tasks, cannot use after exit_mm() */
401 	if (refcount_read(&mm->tasks) == 0)
402 		return -ENOENT;
403 
404 	if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
405 		     test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
406 		return -EBUSY;
407 
408 	ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
409 				    &page, NULL, NULL);
410 
411 	if (unlikely(ret <= 0)) {
412 		if (!fixup_fault)
413 			return -EFAULT;
414 
415 		if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
416 			pr_warn("user_events: Unable to queue fault handler\n");
417 
418 		return -EFAULT;
419 	}
420 
421 	kaddr = kmap_local_page(page);
422 	ptr = kaddr + (uaddr & ~PAGE_MASK);
423 
424 	/* Update bit atomically, user tracers must be atomic as well */
425 	if (enabler->event && enabler->event->status)
426 		set_bit(enabler->values & ENABLE_VAL_BIT_MASK, ptr);
427 	else
428 		clear_bit(enabler->values & ENABLE_VAL_BIT_MASK, ptr);
429 
430 	kunmap_local(kaddr);
431 	unpin_user_pages_dirty_lock(&page, 1, true);
432 
433 	return 0;
434 }
435 
436 static bool user_event_enabler_exists(struct user_event_mm *mm,
437 				      unsigned long uaddr, unsigned char bit)
438 {
439 	struct user_event_enabler *enabler;
440 	struct user_event_enabler *next;
441 
442 	list_for_each_entry_safe(enabler, next, &mm->enablers, link) {
443 		if (enabler->addr == uaddr &&
444 		    (enabler->values & ENABLE_VAL_BIT_MASK) == bit)
445 			return true;
446 	}
447 
448 	return false;
449 }
450 
451 static void user_event_enabler_update(struct user_event *user)
452 {
453 	struct user_event_enabler *enabler;
454 	struct user_event_mm *mm = user_event_mm_get_all(user);
455 	struct user_event_mm *next;
456 	int attempt;
457 
458 	while (mm) {
459 		next = mm->next;
460 		mmap_read_lock(mm->mm);
461 		rcu_read_lock();
462 
463 		list_for_each_entry_rcu(enabler, &mm->enablers, link) {
464 			if (enabler->event == user) {
465 				attempt = 0;
466 				user_event_enabler_write(mm, enabler, true, &attempt);
467 			}
468 		}
469 
470 		rcu_read_unlock();
471 		mmap_read_unlock(mm->mm);
472 		user_event_mm_put(mm);
473 		mm = next;
474 	}
475 }
476 
477 static bool user_event_enabler_dup(struct user_event_enabler *orig,
478 				   struct user_event_mm *mm)
479 {
480 	struct user_event_enabler *enabler;
481 
482 	/* Skip pending frees */
483 	if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
484 		return true;
485 
486 	enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
487 
488 	if (!enabler)
489 		return false;
490 
491 	enabler->event = orig->event;
492 	enabler->addr = orig->addr;
493 
494 	/* Only dup part of value (ignore future flags, etc) */
495 	enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
496 
497 	refcount_inc(&enabler->event->refcnt);
498 	list_add_rcu(&enabler->link, &mm->enablers);
499 
500 	return true;
501 }
502 
503 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
504 {
505 	refcount_inc(&mm->refcnt);
506 
507 	return mm;
508 }
509 
510 static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
511 {
512 	struct user_event_mm *found = NULL;
513 	struct user_event_enabler *enabler;
514 	struct user_event_mm *mm;
515 
516 	/*
517 	 * We do not want to block fork/exec while enablements are being
518 	 * updated, so we use RCU to walk the current tasks that have used
519 	 * user_events ABI for 1 or more events. Each enabler found in each
520 	 * task that matches the event being updated has a write to reflect
521 	 * the kernel state back into the process. Waits/faults must not occur
522 	 * during this. So we scan the list under RCU for all the mm that have
523 	 * the event within it. This is needed because mm_read_lock() can wait.
524 	 * Each user mm returned has a ref inc to handle remove RCU races.
525 	 */
526 	rcu_read_lock();
527 
528 	list_for_each_entry_rcu(mm, &user_event_mms, link)
529 		list_for_each_entry_rcu(enabler, &mm->enablers, link)
530 			if (enabler->event == user) {
531 				mm->next = found;
532 				found = user_event_mm_get(mm);
533 				break;
534 			}
535 
536 	rcu_read_unlock();
537 
538 	return found;
539 }
540 
541 static struct user_event_mm *user_event_mm_create(struct task_struct *t)
542 {
543 	struct user_event_mm *user_mm;
544 	unsigned long flags;
545 
546 	user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
547 
548 	if (!user_mm)
549 		return NULL;
550 
551 	user_mm->mm = t->mm;
552 	INIT_LIST_HEAD(&user_mm->enablers);
553 	refcount_set(&user_mm->refcnt, 1);
554 	refcount_set(&user_mm->tasks, 1);
555 
556 	spin_lock_irqsave(&user_event_mms_lock, flags);
557 	list_add_rcu(&user_mm->link, &user_event_mms);
558 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
559 
560 	t->user_event_mm = user_mm;
561 
562 	/*
563 	 * The lifetime of the memory descriptor can slightly outlast
564 	 * the task lifetime if a ref to the user_event_mm is taken
565 	 * between list_del_rcu() and call_rcu(). Therefore we need
566 	 * to take a reference to it to ensure it can live this long
567 	 * under this corner case. This can also occur in clones that
568 	 * outlast the parent.
569 	 */
570 	mmgrab(user_mm->mm);
571 
572 	return user_mm;
573 }
574 
575 static struct user_event_mm *current_user_event_mm(void)
576 {
577 	struct user_event_mm *user_mm = current->user_event_mm;
578 
579 	if (user_mm)
580 		goto inc;
581 
582 	user_mm = user_event_mm_create(current);
583 
584 	if (!user_mm)
585 		goto error;
586 inc:
587 	refcount_inc(&user_mm->refcnt);
588 error:
589 	return user_mm;
590 }
591 
592 static void user_event_mm_destroy(struct user_event_mm *mm)
593 {
594 	struct user_event_enabler *enabler, *next;
595 
596 	list_for_each_entry_safe(enabler, next, &mm->enablers, link)
597 		user_event_enabler_destroy(enabler);
598 
599 	mmdrop(mm->mm);
600 	kfree(mm);
601 }
602 
603 static void user_event_mm_put(struct user_event_mm *mm)
604 {
605 	if (mm && refcount_dec_and_test(&mm->refcnt))
606 		user_event_mm_destroy(mm);
607 }
608 
609 static void delayed_user_event_mm_put(struct work_struct *work)
610 {
611 	struct user_event_mm *mm;
612 
613 	mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
614 	user_event_mm_put(mm);
615 }
616 
617 void user_event_mm_remove(struct task_struct *t)
618 {
619 	struct user_event_mm *mm;
620 	unsigned long flags;
621 
622 	might_sleep();
623 
624 	mm = t->user_event_mm;
625 	t->user_event_mm = NULL;
626 
627 	/* Clone will increment the tasks, only remove if last clone */
628 	if (!refcount_dec_and_test(&mm->tasks))
629 		return;
630 
631 	/* Remove the mm from the list, so it can no longer be enabled */
632 	spin_lock_irqsave(&user_event_mms_lock, flags);
633 	list_del_rcu(&mm->link);
634 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
635 
636 	/*
637 	 * We need to wait for currently occurring writes to stop within
638 	 * the mm. This is required since exit_mm() snaps the current rss
639 	 * stats and clears them. On the final mmdrop(), check_mm() will
640 	 * report a bug if these increment.
641 	 *
642 	 * All writes/pins are done under mmap_read lock, take the write
643 	 * lock to ensure in-progress faults have completed. Faults that
644 	 * are pending but yet to run will check the task count and skip
645 	 * the fault since the mm is going away.
646 	 */
647 	mmap_write_lock(mm->mm);
648 	mmap_write_unlock(mm->mm);
649 
650 	/*
651 	 * Put for mm must be done after RCU delay to handle new refs in
652 	 * between the list_del_rcu() and now. This ensures any get refs
653 	 * during rcu_read_lock() are accounted for during list removal.
654 	 *
655 	 * CPU A			|	CPU B
656 	 * ---------------------------------------------------------------
657 	 * user_event_mm_remove()	|	rcu_read_lock();
658 	 * list_del_rcu()		|	list_for_each_entry_rcu();
659 	 * call_rcu()			|	refcount_inc();
660 	 * .				|	rcu_read_unlock();
661 	 * schedule_work()		|	.
662 	 * user_event_mm_put()		|	.
663 	 *
664 	 * mmdrop() cannot be called in the softirq context of call_rcu()
665 	 * so we use a work queue after call_rcu() to run within.
666 	 */
667 	INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
668 	queue_rcu_work(system_wq, &mm->put_rwork);
669 }
670 
671 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
672 {
673 	struct user_event_mm *mm = user_event_mm_create(t);
674 	struct user_event_enabler *enabler;
675 
676 	if (!mm)
677 		return;
678 
679 	rcu_read_lock();
680 
681 	list_for_each_entry_rcu(enabler, &old_mm->enablers, link)
682 		if (!user_event_enabler_dup(enabler, mm))
683 			goto error;
684 
685 	rcu_read_unlock();
686 
687 	return;
688 error:
689 	rcu_read_unlock();
690 	user_event_mm_remove(t);
691 }
692 
693 static bool current_user_event_enabler_exists(unsigned long uaddr,
694 					      unsigned char bit)
695 {
696 	struct user_event_mm *user_mm = current_user_event_mm();
697 	bool exists;
698 
699 	if (!user_mm)
700 		return false;
701 
702 	exists = user_event_enabler_exists(user_mm, uaddr, bit);
703 
704 	user_event_mm_put(user_mm);
705 
706 	return exists;
707 }
708 
709 static struct user_event_enabler
710 *user_event_enabler_create(struct user_reg *reg, struct user_event *user,
711 			   int *write_result)
712 {
713 	struct user_event_enabler *enabler;
714 	struct user_event_mm *user_mm;
715 	unsigned long uaddr = (unsigned long)reg->enable_addr;
716 	int attempt = 0;
717 
718 	user_mm = current_user_event_mm();
719 
720 	if (!user_mm)
721 		return NULL;
722 
723 	enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
724 
725 	if (!enabler)
726 		goto out;
727 
728 	enabler->event = user;
729 	enabler->addr = uaddr;
730 	enabler->values = reg->enable_bit;
731 retry:
732 	/* Prevents state changes from racing with new enablers */
733 	mutex_lock(&event_mutex);
734 
735 	/* Attempt to reflect the current state within the process */
736 	mmap_read_lock(user_mm->mm);
737 	*write_result = user_event_enabler_write(user_mm, enabler, false,
738 						 &attempt);
739 	mmap_read_unlock(user_mm->mm);
740 
741 	/*
742 	 * If the write works, then we will track the enabler. A ref to the
743 	 * underlying user_event is held by the enabler to prevent it going
744 	 * away while the enabler is still in use by a process. The ref is
745 	 * removed when the enabler is destroyed. This means a event cannot
746 	 * be forcefully deleted from the system until all tasks using it
747 	 * exit or run exec(), which includes forks and clones.
748 	 */
749 	if (!*write_result) {
750 		refcount_inc(&enabler->event->refcnt);
751 		list_add_rcu(&enabler->link, &user_mm->enablers);
752 	}
753 
754 	mutex_unlock(&event_mutex);
755 
756 	if (*write_result) {
757 		/* Attempt to fault-in and retry if it worked */
758 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
759 			goto retry;
760 
761 		kfree(enabler);
762 		enabler = NULL;
763 	}
764 out:
765 	user_event_mm_put(user_mm);
766 
767 	return enabler;
768 }
769 
770 static __always_inline __must_check
771 bool user_event_last_ref(struct user_event *user)
772 {
773 	return refcount_read(&user->refcnt) == 1;
774 }
775 
776 static __always_inline __must_check
777 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
778 {
779 	size_t ret;
780 
781 	pagefault_disable();
782 
783 	ret = copy_from_iter_nocache(addr, bytes, i);
784 
785 	pagefault_enable();
786 
787 	return ret;
788 }
789 
790 static struct list_head *user_event_get_fields(struct trace_event_call *call)
791 {
792 	struct user_event *user = (struct user_event *)call->data;
793 
794 	return &user->fields;
795 }
796 
797 /*
798  * Parses a register command for user_events
799  * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
800  *
801  * Example event named 'test' with a 20 char 'msg' field with an unsigned int
802  * 'id' field after:
803  * test char[20] msg;unsigned int id
804  *
805  * NOTE: Offsets are from the user data perspective, they are not from the
806  * trace_entry/buffer perspective. We automatically add the common properties
807  * sizes to the offset for the user.
808  *
809  * Upon success user_event has its ref count increased by 1.
810  */
811 static int user_event_parse_cmd(struct user_event_group *group,
812 				char *raw_command, struct user_event **newuser)
813 {
814 	char *name = raw_command;
815 	char *args = strpbrk(name, " ");
816 	char *flags;
817 
818 	if (args)
819 		*args++ = '\0';
820 
821 	flags = strpbrk(name, ":");
822 
823 	if (flags)
824 		*flags++ = '\0';
825 
826 	return user_event_parse(group, name, args, flags, newuser);
827 }
828 
829 static int user_field_array_size(const char *type)
830 {
831 	const char *start = strchr(type, '[');
832 	char val[8];
833 	char *bracket;
834 	int size = 0;
835 
836 	if (start == NULL)
837 		return -EINVAL;
838 
839 	if (strscpy(val, start + 1, sizeof(val)) <= 0)
840 		return -EINVAL;
841 
842 	bracket = strchr(val, ']');
843 
844 	if (!bracket)
845 		return -EINVAL;
846 
847 	*bracket = '\0';
848 
849 	if (kstrtouint(val, 0, &size))
850 		return -EINVAL;
851 
852 	if (size > MAX_FIELD_ARRAY_SIZE)
853 		return -EINVAL;
854 
855 	return size;
856 }
857 
858 static int user_field_size(const char *type)
859 {
860 	/* long is not allowed from a user, since it's ambigious in size */
861 	if (strcmp(type, "s64") == 0)
862 		return sizeof(s64);
863 	if (strcmp(type, "u64") == 0)
864 		return sizeof(u64);
865 	if (strcmp(type, "s32") == 0)
866 		return sizeof(s32);
867 	if (strcmp(type, "u32") == 0)
868 		return sizeof(u32);
869 	if (strcmp(type, "int") == 0)
870 		return sizeof(int);
871 	if (strcmp(type, "unsigned int") == 0)
872 		return sizeof(unsigned int);
873 	if (strcmp(type, "s16") == 0)
874 		return sizeof(s16);
875 	if (strcmp(type, "u16") == 0)
876 		return sizeof(u16);
877 	if (strcmp(type, "short") == 0)
878 		return sizeof(short);
879 	if (strcmp(type, "unsigned short") == 0)
880 		return sizeof(unsigned short);
881 	if (strcmp(type, "s8") == 0)
882 		return sizeof(s8);
883 	if (strcmp(type, "u8") == 0)
884 		return sizeof(u8);
885 	if (strcmp(type, "char") == 0)
886 		return sizeof(char);
887 	if (strcmp(type, "unsigned char") == 0)
888 		return sizeof(unsigned char);
889 	if (str_has_prefix(type, "char["))
890 		return user_field_array_size(type);
891 	if (str_has_prefix(type, "unsigned char["))
892 		return user_field_array_size(type);
893 	if (str_has_prefix(type, "__data_loc "))
894 		return sizeof(u32);
895 	if (str_has_prefix(type, "__rel_loc "))
896 		return sizeof(u32);
897 
898 	/* Uknown basic type, error */
899 	return -EINVAL;
900 }
901 
902 static void user_event_destroy_validators(struct user_event *user)
903 {
904 	struct user_event_validator *validator, *next;
905 	struct list_head *head = &user->validators;
906 
907 	list_for_each_entry_safe(validator, next, head, link) {
908 		list_del(&validator->link);
909 		kfree(validator);
910 	}
911 }
912 
913 static void user_event_destroy_fields(struct user_event *user)
914 {
915 	struct ftrace_event_field *field, *next;
916 	struct list_head *head = &user->fields;
917 
918 	list_for_each_entry_safe(field, next, head, link) {
919 		list_del(&field->link);
920 		kfree(field);
921 	}
922 }
923 
924 static int user_event_add_field(struct user_event *user, const char *type,
925 				const char *name, int offset, int size,
926 				int is_signed, int filter_type)
927 {
928 	struct user_event_validator *validator;
929 	struct ftrace_event_field *field;
930 	int validator_flags = 0;
931 
932 	field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
933 
934 	if (!field)
935 		return -ENOMEM;
936 
937 	if (str_has_prefix(type, "__data_loc "))
938 		goto add_validator;
939 
940 	if (str_has_prefix(type, "__rel_loc ")) {
941 		validator_flags |= VALIDATOR_REL;
942 		goto add_validator;
943 	}
944 
945 	goto add_field;
946 
947 add_validator:
948 	if (strstr(type, "char") != NULL)
949 		validator_flags |= VALIDATOR_ENSURE_NULL;
950 
951 	validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
952 
953 	if (!validator) {
954 		kfree(field);
955 		return -ENOMEM;
956 	}
957 
958 	validator->flags = validator_flags;
959 	validator->offset = offset;
960 
961 	/* Want sequential access when validating */
962 	list_add_tail(&validator->link, &user->validators);
963 
964 add_field:
965 	field->type = type;
966 	field->name = name;
967 	field->offset = offset;
968 	field->size = size;
969 	field->is_signed = is_signed;
970 	field->filter_type = filter_type;
971 
972 	if (filter_type == FILTER_OTHER)
973 		field->filter_type = filter_assign_type(type);
974 
975 	list_add(&field->link, &user->fields);
976 
977 	/*
978 	 * Min size from user writes that are required, this does not include
979 	 * the size of trace_entry (common fields).
980 	 */
981 	user->min_size = (offset + size) - sizeof(struct trace_entry);
982 
983 	return 0;
984 }
985 
986 /*
987  * Parses the values of a field within the description
988  * Format: type name [size]
989  */
990 static int user_event_parse_field(char *field, struct user_event *user,
991 				  u32 *offset)
992 {
993 	char *part, *type, *name;
994 	u32 depth = 0, saved_offset = *offset;
995 	int len, size = -EINVAL;
996 	bool is_struct = false;
997 
998 	field = skip_spaces(field);
999 
1000 	if (*field == '\0')
1001 		return 0;
1002 
1003 	/* Handle types that have a space within */
1004 	len = str_has_prefix(field, "unsigned ");
1005 	if (len)
1006 		goto skip_next;
1007 
1008 	len = str_has_prefix(field, "struct ");
1009 	if (len) {
1010 		is_struct = true;
1011 		goto skip_next;
1012 	}
1013 
1014 	len = str_has_prefix(field, "__data_loc unsigned ");
1015 	if (len)
1016 		goto skip_next;
1017 
1018 	len = str_has_prefix(field, "__data_loc ");
1019 	if (len)
1020 		goto skip_next;
1021 
1022 	len = str_has_prefix(field, "__rel_loc unsigned ");
1023 	if (len)
1024 		goto skip_next;
1025 
1026 	len = str_has_prefix(field, "__rel_loc ");
1027 	if (len)
1028 		goto skip_next;
1029 
1030 	goto parse;
1031 skip_next:
1032 	type = field;
1033 	field = strpbrk(field + len, " ");
1034 
1035 	if (field == NULL)
1036 		return -EINVAL;
1037 
1038 	*field++ = '\0';
1039 	depth++;
1040 parse:
1041 	name = NULL;
1042 
1043 	while ((part = strsep(&field, " ")) != NULL) {
1044 		switch (depth++) {
1045 		case FIELD_DEPTH_TYPE:
1046 			type = part;
1047 			break;
1048 		case FIELD_DEPTH_NAME:
1049 			name = part;
1050 			break;
1051 		case FIELD_DEPTH_SIZE:
1052 			if (!is_struct)
1053 				return -EINVAL;
1054 
1055 			if (kstrtou32(part, 10, &size))
1056 				return -EINVAL;
1057 			break;
1058 		default:
1059 			return -EINVAL;
1060 		}
1061 	}
1062 
1063 	if (depth < FIELD_DEPTH_SIZE || !name)
1064 		return -EINVAL;
1065 
1066 	if (depth == FIELD_DEPTH_SIZE)
1067 		size = user_field_size(type);
1068 
1069 	if (size == 0)
1070 		return -EINVAL;
1071 
1072 	if (size < 0)
1073 		return size;
1074 
1075 	*offset = saved_offset + size;
1076 
1077 	return user_event_add_field(user, type, name, saved_offset, size,
1078 				    type[0] != 'u', FILTER_OTHER);
1079 }
1080 
1081 static int user_event_parse_fields(struct user_event *user, char *args)
1082 {
1083 	char *field;
1084 	u32 offset = sizeof(struct trace_entry);
1085 	int ret = -EINVAL;
1086 
1087 	if (args == NULL)
1088 		return 0;
1089 
1090 	while ((field = strsep(&args, ";")) != NULL) {
1091 		ret = user_event_parse_field(field, user, &offset);
1092 
1093 		if (ret)
1094 			break;
1095 	}
1096 
1097 	return ret;
1098 }
1099 
1100 static struct trace_event_fields user_event_fields_array[1];
1101 
1102 static const char *user_field_format(const char *type)
1103 {
1104 	if (strcmp(type, "s64") == 0)
1105 		return "%lld";
1106 	if (strcmp(type, "u64") == 0)
1107 		return "%llu";
1108 	if (strcmp(type, "s32") == 0)
1109 		return "%d";
1110 	if (strcmp(type, "u32") == 0)
1111 		return "%u";
1112 	if (strcmp(type, "int") == 0)
1113 		return "%d";
1114 	if (strcmp(type, "unsigned int") == 0)
1115 		return "%u";
1116 	if (strcmp(type, "s16") == 0)
1117 		return "%d";
1118 	if (strcmp(type, "u16") == 0)
1119 		return "%u";
1120 	if (strcmp(type, "short") == 0)
1121 		return "%d";
1122 	if (strcmp(type, "unsigned short") == 0)
1123 		return "%u";
1124 	if (strcmp(type, "s8") == 0)
1125 		return "%d";
1126 	if (strcmp(type, "u8") == 0)
1127 		return "%u";
1128 	if (strcmp(type, "char") == 0)
1129 		return "%d";
1130 	if (strcmp(type, "unsigned char") == 0)
1131 		return "%u";
1132 	if (strstr(type, "char[") != NULL)
1133 		return "%s";
1134 
1135 	/* Unknown, likely struct, allowed treat as 64-bit */
1136 	return "%llu";
1137 }
1138 
1139 static bool user_field_is_dyn_string(const char *type, const char **str_func)
1140 {
1141 	if (str_has_prefix(type, "__data_loc ")) {
1142 		*str_func = "__get_str";
1143 		goto check;
1144 	}
1145 
1146 	if (str_has_prefix(type, "__rel_loc ")) {
1147 		*str_func = "__get_rel_str";
1148 		goto check;
1149 	}
1150 
1151 	return false;
1152 check:
1153 	return strstr(type, "char") != NULL;
1154 }
1155 
1156 #define LEN_OR_ZERO (len ? len - pos : 0)
1157 static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1158 				     char *buf, int len, bool *colon)
1159 {
1160 	int pos = 0, i = *iout;
1161 
1162 	*colon = false;
1163 
1164 	for (; i < argc; ++i) {
1165 		if (i != *iout)
1166 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1167 
1168 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1169 
1170 		if (strchr(argv[i], ';')) {
1171 			++i;
1172 			*colon = true;
1173 			break;
1174 		}
1175 	}
1176 
1177 	/* Actual set, advance i */
1178 	if (len != 0)
1179 		*iout = i;
1180 
1181 	return pos + 1;
1182 }
1183 
1184 static int user_field_set_string(struct ftrace_event_field *field,
1185 				 char *buf, int len, bool colon)
1186 {
1187 	int pos = 0;
1188 
1189 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1190 	pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1191 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1192 
1193 	if (colon)
1194 		pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1195 
1196 	return pos + 1;
1197 }
1198 
1199 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1200 {
1201 	struct ftrace_event_field *field, *next;
1202 	struct list_head *head = &user->fields;
1203 	int pos = 0, depth = 0;
1204 	const char *str_func;
1205 
1206 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1207 
1208 	list_for_each_entry_safe_reverse(field, next, head, link) {
1209 		if (depth != 0)
1210 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1211 
1212 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1213 				field->name, user_field_format(field->type));
1214 
1215 		depth++;
1216 	}
1217 
1218 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1219 
1220 	list_for_each_entry_safe_reverse(field, next, head, link) {
1221 		if (user_field_is_dyn_string(field->type, &str_func))
1222 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1223 					", %s(%s)", str_func, field->name);
1224 		else
1225 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1226 					", REC->%s", field->name);
1227 	}
1228 
1229 	return pos + 1;
1230 }
1231 #undef LEN_OR_ZERO
1232 
1233 static int user_event_create_print_fmt(struct user_event *user)
1234 {
1235 	char *print_fmt;
1236 	int len;
1237 
1238 	len = user_event_set_print_fmt(user, NULL, 0);
1239 
1240 	print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
1241 
1242 	if (!print_fmt)
1243 		return -ENOMEM;
1244 
1245 	user_event_set_print_fmt(user, print_fmt, len);
1246 
1247 	user->call.print_fmt = print_fmt;
1248 
1249 	return 0;
1250 }
1251 
1252 static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1253 						int flags,
1254 						struct trace_event *event)
1255 {
1256 	return print_event_fields(iter, event);
1257 }
1258 
1259 static struct trace_event_functions user_event_funcs = {
1260 	.trace = user_event_print_trace,
1261 };
1262 
1263 static int user_event_set_call_visible(struct user_event *user, bool visible)
1264 {
1265 	int ret;
1266 	const struct cred *old_cred;
1267 	struct cred *cred;
1268 
1269 	cred = prepare_creds();
1270 
1271 	if (!cred)
1272 		return -ENOMEM;
1273 
1274 	/*
1275 	 * While by default tracefs is locked down, systems can be configured
1276 	 * to allow user_event files to be less locked down. The extreme case
1277 	 * being "other" has read/write access to user_events_data/status.
1278 	 *
1279 	 * When not locked down, processes may not have permissions to
1280 	 * add/remove calls themselves to tracefs. We need to temporarily
1281 	 * switch to root file permission to allow for this scenario.
1282 	 */
1283 	cred->fsuid = GLOBAL_ROOT_UID;
1284 
1285 	old_cred = override_creds(cred);
1286 
1287 	if (visible)
1288 		ret = trace_add_event_call(&user->call);
1289 	else
1290 		ret = trace_remove_event_call(&user->call);
1291 
1292 	revert_creds(old_cred);
1293 	put_cred(cred);
1294 
1295 	return ret;
1296 }
1297 
1298 static int destroy_user_event(struct user_event *user)
1299 {
1300 	int ret = 0;
1301 
1302 	lockdep_assert_held(&event_mutex);
1303 
1304 	/* Must destroy fields before call removal */
1305 	user_event_destroy_fields(user);
1306 
1307 	ret = user_event_set_call_visible(user, false);
1308 
1309 	if (ret)
1310 		return ret;
1311 
1312 	dyn_event_remove(&user->devent);
1313 	hash_del(&user->node);
1314 
1315 	user_event_destroy_validators(user);
1316 	kfree(user->call.print_fmt);
1317 	kfree(EVENT_NAME(user));
1318 	kfree(user);
1319 
1320 	if (current_user_events > 0)
1321 		current_user_events--;
1322 	else
1323 		pr_alert("BUG: Bad current_user_events\n");
1324 
1325 	return ret;
1326 }
1327 
1328 static struct user_event *find_user_event(struct user_event_group *group,
1329 					  char *name, u32 *outkey)
1330 {
1331 	struct user_event *user;
1332 	u32 key = user_event_key(name);
1333 
1334 	*outkey = key;
1335 
1336 	hash_for_each_possible(group->register_table, user, node, key)
1337 		if (!strcmp(EVENT_NAME(user), name)) {
1338 			refcount_inc(&user->refcnt);
1339 			return user;
1340 		}
1341 
1342 	return NULL;
1343 }
1344 
1345 static int user_event_validate(struct user_event *user, void *data, int len)
1346 {
1347 	struct list_head *head = &user->validators;
1348 	struct user_event_validator *validator;
1349 	void *pos, *end = data + len;
1350 	u32 loc, offset, size;
1351 
1352 	list_for_each_entry(validator, head, link) {
1353 		pos = data + validator->offset;
1354 
1355 		/* Already done min_size check, no bounds check here */
1356 		loc = *(u32 *)pos;
1357 		offset = loc & 0xffff;
1358 		size = loc >> 16;
1359 
1360 		if (likely(validator->flags & VALIDATOR_REL))
1361 			pos += offset + sizeof(loc);
1362 		else
1363 			pos = data + offset;
1364 
1365 		pos += size;
1366 
1367 		if (unlikely(pos > end))
1368 			return -EFAULT;
1369 
1370 		if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1371 			if (unlikely(*(char *)(pos - 1) != '\0'))
1372 				return -EFAULT;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 /*
1379  * Writes the user supplied payload out to a trace file.
1380  */
1381 static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
1382 			      void *tpdata, bool *faulted)
1383 {
1384 	struct trace_event_file *file;
1385 	struct trace_entry *entry;
1386 	struct trace_event_buffer event_buffer;
1387 	size_t size = sizeof(*entry) + i->count;
1388 
1389 	file = (struct trace_event_file *)tpdata;
1390 
1391 	if (!file ||
1392 	    !(file->flags & EVENT_FILE_FL_ENABLED) ||
1393 	    trace_trigger_soft_disabled(file))
1394 		return;
1395 
1396 	/* Allocates and fills trace_entry, + 1 of this is data payload */
1397 	entry = trace_event_buffer_reserve(&event_buffer, file, size);
1398 
1399 	if (unlikely(!entry))
1400 		return;
1401 
1402 	if (unlikely(!copy_nofault(entry + 1, i->count, i)))
1403 		goto discard;
1404 
1405 	if (!list_empty(&user->validators) &&
1406 	    unlikely(user_event_validate(user, entry, size)))
1407 		goto discard;
1408 
1409 	trace_event_buffer_commit(&event_buffer);
1410 
1411 	return;
1412 discard:
1413 	*faulted = true;
1414 	__trace_event_discard_commit(event_buffer.buffer,
1415 				     event_buffer.event);
1416 }
1417 
1418 #ifdef CONFIG_PERF_EVENTS
1419 /*
1420  * Writes the user supplied payload out to perf ring buffer.
1421  */
1422 static void user_event_perf(struct user_event *user, struct iov_iter *i,
1423 			    void *tpdata, bool *faulted)
1424 {
1425 	struct hlist_head *perf_head;
1426 
1427 	perf_head = this_cpu_ptr(user->call.perf_events);
1428 
1429 	if (perf_head && !hlist_empty(perf_head)) {
1430 		struct trace_entry *perf_entry;
1431 		struct pt_regs *regs;
1432 		size_t size = sizeof(*perf_entry) + i->count;
1433 		int context;
1434 
1435 		perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1436 						  &regs, &context);
1437 
1438 		if (unlikely(!perf_entry))
1439 			return;
1440 
1441 		perf_fetch_caller_regs(regs);
1442 
1443 		if (unlikely(!copy_nofault(perf_entry + 1, i->count, i)))
1444 			goto discard;
1445 
1446 		if (!list_empty(&user->validators) &&
1447 		    unlikely(user_event_validate(user, perf_entry, size)))
1448 			goto discard;
1449 
1450 		perf_trace_buf_submit(perf_entry, size, context,
1451 				      user->call.event.type, 1, regs,
1452 				      perf_head, NULL);
1453 
1454 		return;
1455 discard:
1456 		*faulted = true;
1457 		perf_swevent_put_recursion_context(context);
1458 	}
1459 }
1460 #endif
1461 
1462 /*
1463  * Update the enabled bit among all user processes.
1464  */
1465 static void update_enable_bit_for(struct user_event *user)
1466 {
1467 	struct tracepoint *tp = &user->tracepoint;
1468 	char status = 0;
1469 
1470 	if (atomic_read(&tp->key.enabled) > 0) {
1471 		struct tracepoint_func *probe_func_ptr;
1472 		user_event_func_t probe_func;
1473 
1474 		rcu_read_lock_sched();
1475 
1476 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
1477 
1478 		if (probe_func_ptr) {
1479 			do {
1480 				probe_func = probe_func_ptr->func;
1481 
1482 				if (probe_func == user_event_ftrace)
1483 					status |= EVENT_STATUS_FTRACE;
1484 #ifdef CONFIG_PERF_EVENTS
1485 				else if (probe_func == user_event_perf)
1486 					status |= EVENT_STATUS_PERF;
1487 #endif
1488 				else
1489 					status |= EVENT_STATUS_OTHER;
1490 			} while ((++probe_func_ptr)->func);
1491 		}
1492 
1493 		rcu_read_unlock_sched();
1494 	}
1495 
1496 	user->status = status;
1497 
1498 	user_event_enabler_update(user);
1499 }
1500 
1501 /*
1502  * Register callback for our events from tracing sub-systems.
1503  */
1504 static int user_event_reg(struct trace_event_call *call,
1505 			  enum trace_reg type,
1506 			  void *data)
1507 {
1508 	struct user_event *user = (struct user_event *)call->data;
1509 	int ret = 0;
1510 
1511 	if (!user)
1512 		return -ENOENT;
1513 
1514 	switch (type) {
1515 	case TRACE_REG_REGISTER:
1516 		ret = tracepoint_probe_register(call->tp,
1517 						call->class->probe,
1518 						data);
1519 		if (!ret)
1520 			goto inc;
1521 		break;
1522 
1523 	case TRACE_REG_UNREGISTER:
1524 		tracepoint_probe_unregister(call->tp,
1525 					    call->class->probe,
1526 					    data);
1527 		goto dec;
1528 
1529 #ifdef CONFIG_PERF_EVENTS
1530 	case TRACE_REG_PERF_REGISTER:
1531 		ret = tracepoint_probe_register(call->tp,
1532 						call->class->perf_probe,
1533 						data);
1534 		if (!ret)
1535 			goto inc;
1536 		break;
1537 
1538 	case TRACE_REG_PERF_UNREGISTER:
1539 		tracepoint_probe_unregister(call->tp,
1540 					    call->class->perf_probe,
1541 					    data);
1542 		goto dec;
1543 
1544 	case TRACE_REG_PERF_OPEN:
1545 	case TRACE_REG_PERF_CLOSE:
1546 	case TRACE_REG_PERF_ADD:
1547 	case TRACE_REG_PERF_DEL:
1548 		break;
1549 #endif
1550 	}
1551 
1552 	return ret;
1553 inc:
1554 	refcount_inc(&user->refcnt);
1555 	update_enable_bit_for(user);
1556 	return 0;
1557 dec:
1558 	update_enable_bit_for(user);
1559 	refcount_dec(&user->refcnt);
1560 	return 0;
1561 }
1562 
1563 static int user_event_create(const char *raw_command)
1564 {
1565 	struct user_event_group *group;
1566 	struct user_event *user;
1567 	char *name;
1568 	int ret;
1569 
1570 	if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1571 		return -ECANCELED;
1572 
1573 	raw_command += USER_EVENTS_PREFIX_LEN;
1574 	raw_command = skip_spaces(raw_command);
1575 
1576 	name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
1577 
1578 	if (!name)
1579 		return -ENOMEM;
1580 
1581 	group = current_user_event_group();
1582 
1583 	if (!group) {
1584 		kfree(name);
1585 		return -ENOENT;
1586 	}
1587 
1588 	mutex_lock(&group->reg_mutex);
1589 
1590 	ret = user_event_parse_cmd(group, name, &user);
1591 
1592 	if (!ret)
1593 		refcount_dec(&user->refcnt);
1594 
1595 	mutex_unlock(&group->reg_mutex);
1596 
1597 	if (ret)
1598 		kfree(name);
1599 
1600 	return ret;
1601 }
1602 
1603 static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1604 {
1605 	struct user_event *user = container_of(ev, struct user_event, devent);
1606 	struct ftrace_event_field *field, *next;
1607 	struct list_head *head;
1608 	int depth = 0;
1609 
1610 	seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1611 
1612 	head = trace_get_fields(&user->call);
1613 
1614 	list_for_each_entry_safe_reverse(field, next, head, link) {
1615 		if (depth == 0)
1616 			seq_puts(m, " ");
1617 		else
1618 			seq_puts(m, "; ");
1619 
1620 		seq_printf(m, "%s %s", field->type, field->name);
1621 
1622 		if (str_has_prefix(field->type, "struct "))
1623 			seq_printf(m, " %d", field->size);
1624 
1625 		depth++;
1626 	}
1627 
1628 	seq_puts(m, "\n");
1629 
1630 	return 0;
1631 }
1632 
1633 static bool user_event_is_busy(struct dyn_event *ev)
1634 {
1635 	struct user_event *user = container_of(ev, struct user_event, devent);
1636 
1637 	return !user_event_last_ref(user);
1638 }
1639 
1640 static int user_event_free(struct dyn_event *ev)
1641 {
1642 	struct user_event *user = container_of(ev, struct user_event, devent);
1643 
1644 	if (!user_event_last_ref(user))
1645 		return -EBUSY;
1646 
1647 	return destroy_user_event(user);
1648 }
1649 
1650 static bool user_field_match(struct ftrace_event_field *field, int argc,
1651 			     const char **argv, int *iout)
1652 {
1653 	char *field_name = NULL, *dyn_field_name = NULL;
1654 	bool colon = false, match = false;
1655 	int dyn_len, len;
1656 
1657 	if (*iout >= argc)
1658 		return false;
1659 
1660 	dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1661 					    0, &colon);
1662 
1663 	len = user_field_set_string(field, field_name, 0, colon);
1664 
1665 	if (dyn_len != len)
1666 		return false;
1667 
1668 	dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1669 	field_name = kmalloc(len, GFP_KERNEL);
1670 
1671 	if (!dyn_field_name || !field_name)
1672 		goto out;
1673 
1674 	user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1675 				  dyn_len, &colon);
1676 
1677 	user_field_set_string(field, field_name, len, colon);
1678 
1679 	match = strcmp(dyn_field_name, field_name) == 0;
1680 out:
1681 	kfree(dyn_field_name);
1682 	kfree(field_name);
1683 
1684 	return match;
1685 }
1686 
1687 static bool user_fields_match(struct user_event *user, int argc,
1688 			      const char **argv)
1689 {
1690 	struct ftrace_event_field *field, *next;
1691 	struct list_head *head = &user->fields;
1692 	int i = 0;
1693 
1694 	list_for_each_entry_safe_reverse(field, next, head, link)
1695 		if (!user_field_match(field, argc, argv, &i))
1696 			return false;
1697 
1698 	if (i != argc)
1699 		return false;
1700 
1701 	return true;
1702 }
1703 
1704 static bool user_event_match(const char *system, const char *event,
1705 			     int argc, const char **argv, struct dyn_event *ev)
1706 {
1707 	struct user_event *user = container_of(ev, struct user_event, devent);
1708 	bool match;
1709 
1710 	match = strcmp(EVENT_NAME(user), event) == 0 &&
1711 		(!system || strcmp(system, USER_EVENTS_SYSTEM) == 0);
1712 
1713 	if (match && argc > 0)
1714 		match = user_fields_match(user, argc, argv);
1715 
1716 	return match;
1717 }
1718 
1719 static struct dyn_event_operations user_event_dops = {
1720 	.create = user_event_create,
1721 	.show = user_event_show,
1722 	.is_busy = user_event_is_busy,
1723 	.free = user_event_free,
1724 	.match = user_event_match,
1725 };
1726 
1727 static int user_event_trace_register(struct user_event *user)
1728 {
1729 	int ret;
1730 
1731 	ret = register_trace_event(&user->call.event);
1732 
1733 	if (!ret)
1734 		return -ENODEV;
1735 
1736 	ret = user_event_set_call_visible(user, true);
1737 
1738 	if (ret)
1739 		unregister_trace_event(&user->call.event);
1740 
1741 	return ret;
1742 }
1743 
1744 /*
1745  * Parses the event name, arguments and flags then registers if successful.
1746  * The name buffer lifetime is owned by this method for success cases only.
1747  * Upon success the returned user_event has its ref count increased by 1.
1748  */
1749 static int user_event_parse(struct user_event_group *group, char *name,
1750 			    char *args, char *flags,
1751 			    struct user_event **newuser)
1752 {
1753 	int ret;
1754 	u32 key;
1755 	struct user_event *user;
1756 
1757 	/* Prevent dyn_event from racing */
1758 	mutex_lock(&event_mutex);
1759 	user = find_user_event(group, name, &key);
1760 	mutex_unlock(&event_mutex);
1761 
1762 	if (user) {
1763 		*newuser = user;
1764 		/*
1765 		 * Name is allocated by caller, free it since it already exists.
1766 		 * Caller only worries about failure cases for freeing.
1767 		 */
1768 		kfree(name);
1769 		return 0;
1770 	}
1771 
1772 	user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
1773 
1774 	if (!user)
1775 		return -ENOMEM;
1776 
1777 	INIT_LIST_HEAD(&user->class.fields);
1778 	INIT_LIST_HEAD(&user->fields);
1779 	INIT_LIST_HEAD(&user->validators);
1780 
1781 	user->group = group;
1782 	user->tracepoint.name = name;
1783 
1784 	ret = user_event_parse_fields(user, args);
1785 
1786 	if (ret)
1787 		goto put_user;
1788 
1789 	ret = user_event_create_print_fmt(user);
1790 
1791 	if (ret)
1792 		goto put_user;
1793 
1794 	user->call.data = user;
1795 	user->call.class = &user->class;
1796 	user->call.name = name;
1797 	user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
1798 	user->call.tp = &user->tracepoint;
1799 	user->call.event.funcs = &user_event_funcs;
1800 	user->class.system = group->system_name;
1801 
1802 	user->class.fields_array = user_event_fields_array;
1803 	user->class.get_fields = user_event_get_fields;
1804 	user->class.reg = user_event_reg;
1805 	user->class.probe = user_event_ftrace;
1806 #ifdef CONFIG_PERF_EVENTS
1807 	user->class.perf_probe = user_event_perf;
1808 #endif
1809 
1810 	mutex_lock(&event_mutex);
1811 
1812 	if (current_user_events >= max_user_events) {
1813 		ret = -EMFILE;
1814 		goto put_user_lock;
1815 	}
1816 
1817 	ret = user_event_trace_register(user);
1818 
1819 	if (ret)
1820 		goto put_user_lock;
1821 
1822 	/* Ensure we track self ref and caller ref (2) */
1823 	refcount_set(&user->refcnt, 2);
1824 
1825 	dyn_event_init(&user->devent, &user_event_dops);
1826 	dyn_event_add(&user->devent, &user->call);
1827 	hash_add(group->register_table, &user->node, key);
1828 	current_user_events++;
1829 
1830 	mutex_unlock(&event_mutex);
1831 
1832 	*newuser = user;
1833 	return 0;
1834 put_user_lock:
1835 	mutex_unlock(&event_mutex);
1836 put_user:
1837 	user_event_destroy_fields(user);
1838 	user_event_destroy_validators(user);
1839 	kfree(user->call.print_fmt);
1840 	kfree(user);
1841 	return ret;
1842 }
1843 
1844 /*
1845  * Deletes a previously created event if it is no longer being used.
1846  */
1847 static int delete_user_event(struct user_event_group *group, char *name)
1848 {
1849 	u32 key;
1850 	struct user_event *user = find_user_event(group, name, &key);
1851 
1852 	if (!user)
1853 		return -ENOENT;
1854 
1855 	refcount_dec(&user->refcnt);
1856 
1857 	if (!user_event_last_ref(user))
1858 		return -EBUSY;
1859 
1860 	return destroy_user_event(user);
1861 }
1862 
1863 /*
1864  * Validates the user payload and writes via iterator.
1865  */
1866 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
1867 {
1868 	struct user_event_file_info *info = file->private_data;
1869 	struct user_event_refs *refs;
1870 	struct user_event *user = NULL;
1871 	struct tracepoint *tp;
1872 	ssize_t ret = i->count;
1873 	int idx;
1874 
1875 	if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
1876 		return -EFAULT;
1877 
1878 	if (idx < 0)
1879 		return -EINVAL;
1880 
1881 	rcu_read_lock_sched();
1882 
1883 	refs = rcu_dereference_sched(info->refs);
1884 
1885 	/*
1886 	 * The refs->events array is protected by RCU, and new items may be
1887 	 * added. But the user retrieved from indexing into the events array
1888 	 * shall be immutable while the file is opened.
1889 	 */
1890 	if (likely(refs && idx < refs->count))
1891 		user = refs->events[idx];
1892 
1893 	rcu_read_unlock_sched();
1894 
1895 	if (unlikely(user == NULL))
1896 		return -ENOENT;
1897 
1898 	if (unlikely(i->count < user->min_size))
1899 		return -EINVAL;
1900 
1901 	tp = &user->tracepoint;
1902 
1903 	/*
1904 	 * It's possible key.enabled disables after this check, however
1905 	 * we don't mind if a few events are included in this condition.
1906 	 */
1907 	if (likely(atomic_read(&tp->key.enabled) > 0)) {
1908 		struct tracepoint_func *probe_func_ptr;
1909 		user_event_func_t probe_func;
1910 		struct iov_iter copy;
1911 		void *tpdata;
1912 		bool faulted;
1913 
1914 		if (unlikely(fault_in_iov_iter_readable(i, i->count)))
1915 			return -EFAULT;
1916 
1917 		faulted = false;
1918 
1919 		rcu_read_lock_sched();
1920 
1921 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
1922 
1923 		if (probe_func_ptr) {
1924 			do {
1925 				copy = *i;
1926 				probe_func = probe_func_ptr->func;
1927 				tpdata = probe_func_ptr->data;
1928 				probe_func(user, &copy, tpdata, &faulted);
1929 			} while ((++probe_func_ptr)->func);
1930 		}
1931 
1932 		rcu_read_unlock_sched();
1933 
1934 		if (unlikely(faulted))
1935 			return -EFAULT;
1936 	}
1937 
1938 	return ret;
1939 }
1940 
1941 static int user_events_open(struct inode *node, struct file *file)
1942 {
1943 	struct user_event_group *group;
1944 	struct user_event_file_info *info;
1945 
1946 	group = current_user_event_group();
1947 
1948 	if (!group)
1949 		return -ENOENT;
1950 
1951 	info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
1952 
1953 	if (!info)
1954 		return -ENOMEM;
1955 
1956 	info->group = group;
1957 
1958 	file->private_data = info;
1959 
1960 	return 0;
1961 }
1962 
1963 static ssize_t user_events_write(struct file *file, const char __user *ubuf,
1964 				 size_t count, loff_t *ppos)
1965 {
1966 	struct iovec iov;
1967 	struct iov_iter i;
1968 
1969 	if (unlikely(*ppos != 0))
1970 		return -EFAULT;
1971 
1972 	if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf,
1973 					 count, &iov, &i)))
1974 		return -EFAULT;
1975 
1976 	return user_events_write_core(file, &i);
1977 }
1978 
1979 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
1980 {
1981 	return user_events_write_core(kp->ki_filp, i);
1982 }
1983 
1984 static int user_events_ref_add(struct user_event_file_info *info,
1985 			       struct user_event *user)
1986 {
1987 	struct user_event_group *group = info->group;
1988 	struct user_event_refs *refs, *new_refs;
1989 	int i, size, count = 0;
1990 
1991 	refs = rcu_dereference_protected(info->refs,
1992 					 lockdep_is_held(&group->reg_mutex));
1993 
1994 	if (refs) {
1995 		count = refs->count;
1996 
1997 		for (i = 0; i < count; ++i)
1998 			if (refs->events[i] == user)
1999 				return i;
2000 	}
2001 
2002 	size = struct_size(refs, events, count + 1);
2003 
2004 	new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
2005 
2006 	if (!new_refs)
2007 		return -ENOMEM;
2008 
2009 	new_refs->count = count + 1;
2010 
2011 	for (i = 0; i < count; ++i)
2012 		new_refs->events[i] = refs->events[i];
2013 
2014 	new_refs->events[i] = user;
2015 
2016 	refcount_inc(&user->refcnt);
2017 
2018 	rcu_assign_pointer(info->refs, new_refs);
2019 
2020 	if (refs)
2021 		kfree_rcu(refs, rcu);
2022 
2023 	return i;
2024 }
2025 
2026 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2027 {
2028 	u32 size;
2029 	long ret;
2030 
2031 	ret = get_user(size, &ureg->size);
2032 
2033 	if (ret)
2034 		return ret;
2035 
2036 	if (size > PAGE_SIZE)
2037 		return -E2BIG;
2038 
2039 	if (size < offsetofend(struct user_reg, write_index))
2040 		return -EINVAL;
2041 
2042 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2043 
2044 	if (ret)
2045 		return ret;
2046 
2047 	/* Ensure no flags, since we don't support any yet */
2048 	if (kreg->flags != 0)
2049 		return -EINVAL;
2050 
2051 	/* Ensure supported size */
2052 	switch (kreg->enable_size) {
2053 	case 4:
2054 		/* 32-bit */
2055 		break;
2056 #if BITS_PER_LONG >= 64
2057 	case 8:
2058 		/* 64-bit */
2059 		break;
2060 #endif
2061 	default:
2062 		return -EINVAL;
2063 	}
2064 
2065 	/* Ensure natural alignment */
2066 	if (kreg->enable_addr % kreg->enable_size)
2067 		return -EINVAL;
2068 
2069 	/* Ensure bit range for size */
2070 	if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2071 		return -EINVAL;
2072 
2073 	/* Ensure accessible */
2074 	if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2075 		       kreg->enable_size))
2076 		return -EFAULT;
2077 
2078 	kreg->size = size;
2079 
2080 	return 0;
2081 }
2082 
2083 /*
2084  * Registers a user_event on behalf of a user process.
2085  */
2086 static long user_events_ioctl_reg(struct user_event_file_info *info,
2087 				  unsigned long uarg)
2088 {
2089 	struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2090 	struct user_reg reg;
2091 	struct user_event *user;
2092 	struct user_event_enabler *enabler;
2093 	char *name;
2094 	long ret;
2095 	int write_result;
2096 
2097 	ret = user_reg_get(ureg, &reg);
2098 
2099 	if (ret)
2100 		return ret;
2101 
2102 	/*
2103 	 * Prevent users from using the same address and bit multiple times
2104 	 * within the same mm address space. This can cause unexpected behavior
2105 	 * for user processes that is far easier to debug if this is explictly
2106 	 * an error upon registering.
2107 	 */
2108 	if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2109 					      reg.enable_bit))
2110 		return -EADDRINUSE;
2111 
2112 	name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2113 			    MAX_EVENT_DESC);
2114 
2115 	if (IS_ERR(name)) {
2116 		ret = PTR_ERR(name);
2117 		return ret;
2118 	}
2119 
2120 	ret = user_event_parse_cmd(info->group, name, &user);
2121 
2122 	if (ret) {
2123 		kfree(name);
2124 		return ret;
2125 	}
2126 
2127 	ret = user_events_ref_add(info, user);
2128 
2129 	/* No longer need parse ref, ref_add either worked or not */
2130 	refcount_dec(&user->refcnt);
2131 
2132 	/* Positive number is index and valid */
2133 	if (ret < 0)
2134 		return ret;
2135 
2136 	/*
2137 	 * user_events_ref_add succeeded:
2138 	 * At this point we have a user_event, it's lifetime is bound by the
2139 	 * reference count, not this file. If anything fails, the user_event
2140 	 * still has a reference until the file is released. During release
2141 	 * any remaining references (from user_events_ref_add) are decremented.
2142 	 *
2143 	 * Attempt to create an enabler, which too has a lifetime tied in the
2144 	 * same way for the event. Once the task that caused the enabler to be
2145 	 * created exits or issues exec() then the enablers it has created
2146 	 * will be destroyed and the ref to the event will be decremented.
2147 	 */
2148 	enabler = user_event_enabler_create(&reg, user, &write_result);
2149 
2150 	if (!enabler)
2151 		return -ENOMEM;
2152 
2153 	/* Write failed/faulted, give error back to caller */
2154 	if (write_result)
2155 		return write_result;
2156 
2157 	put_user((u32)ret, &ureg->write_index);
2158 
2159 	return 0;
2160 }
2161 
2162 /*
2163  * Deletes a user_event on behalf of a user process.
2164  */
2165 static long user_events_ioctl_del(struct user_event_file_info *info,
2166 				  unsigned long uarg)
2167 {
2168 	void __user *ubuf = (void __user *)uarg;
2169 	char *name;
2170 	long ret;
2171 
2172 	name = strndup_user(ubuf, MAX_EVENT_DESC);
2173 
2174 	if (IS_ERR(name))
2175 		return PTR_ERR(name);
2176 
2177 	/* event_mutex prevents dyn_event from racing */
2178 	mutex_lock(&event_mutex);
2179 	ret = delete_user_event(info->group, name);
2180 	mutex_unlock(&event_mutex);
2181 
2182 	kfree(name);
2183 
2184 	return ret;
2185 }
2186 
2187 static long user_unreg_get(struct user_unreg __user *ureg,
2188 			   struct user_unreg *kreg)
2189 {
2190 	u32 size;
2191 	long ret;
2192 
2193 	ret = get_user(size, &ureg->size);
2194 
2195 	if (ret)
2196 		return ret;
2197 
2198 	if (size > PAGE_SIZE)
2199 		return -E2BIG;
2200 
2201 	if (size < offsetofend(struct user_unreg, disable_addr))
2202 		return -EINVAL;
2203 
2204 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2205 
2206 	/* Ensure no reserved values, since we don't support any yet */
2207 	if (kreg->__reserved || kreg->__reserved2)
2208 		return -EINVAL;
2209 
2210 	return ret;
2211 }
2212 
2213 static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2214 				   unsigned long uaddr, unsigned char bit)
2215 {
2216 	struct user_event_enabler enabler;
2217 	int result;
2218 	int attempt = 0;
2219 
2220 	memset(&enabler, 0, sizeof(enabler));
2221 	enabler.addr = uaddr;
2222 	enabler.values = bit;
2223 retry:
2224 	/* Prevents state changes from racing with new enablers */
2225 	mutex_lock(&event_mutex);
2226 
2227 	/* Force the bit to be cleared, since no event is attached */
2228 	mmap_read_lock(user_mm->mm);
2229 	result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
2230 	mmap_read_unlock(user_mm->mm);
2231 
2232 	mutex_unlock(&event_mutex);
2233 
2234 	if (result) {
2235 		/* Attempt to fault-in and retry if it worked */
2236 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
2237 			goto retry;
2238 	}
2239 
2240 	return result;
2241 }
2242 
2243 /*
2244  * Unregisters an enablement address/bit within a task/user mm.
2245  */
2246 static long user_events_ioctl_unreg(unsigned long uarg)
2247 {
2248 	struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2249 	struct user_event_mm *mm = current->user_event_mm;
2250 	struct user_event_enabler *enabler, *next;
2251 	struct user_unreg reg;
2252 	long ret;
2253 
2254 	ret = user_unreg_get(ureg, &reg);
2255 
2256 	if (ret)
2257 		return ret;
2258 
2259 	if (!mm)
2260 		return -ENOENT;
2261 
2262 	ret = -ENOENT;
2263 
2264 	/*
2265 	 * Flags freeing and faulting are used to indicate if the enabler is in
2266 	 * use at all. When faulting is set a page-fault is occurring asyncly.
2267 	 * During async fault if freeing is set, the enabler will be destroyed.
2268 	 * If no async fault is happening, we can destroy it now since we hold
2269 	 * the event_mutex during these checks.
2270 	 */
2271 	mutex_lock(&event_mutex);
2272 
2273 	list_for_each_entry_safe(enabler, next, &mm->enablers, link)
2274 		if (enabler->addr == reg.disable_addr &&
2275 		    (enabler->values & ENABLE_VAL_BIT_MASK) == reg.disable_bit) {
2276 			set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2277 
2278 			if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2279 				user_event_enabler_destroy(enabler);
2280 
2281 			/* Removed at least one */
2282 			ret = 0;
2283 		}
2284 
2285 	mutex_unlock(&event_mutex);
2286 
2287 	/* Ensure bit is now cleared for user, regardless of event status */
2288 	if (!ret)
2289 		ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2290 					      reg.disable_bit);
2291 
2292 	return ret;
2293 }
2294 
2295 /*
2296  * Handles the ioctl from user mode to register or alter operations.
2297  */
2298 static long user_events_ioctl(struct file *file, unsigned int cmd,
2299 			      unsigned long uarg)
2300 {
2301 	struct user_event_file_info *info = file->private_data;
2302 	struct user_event_group *group = info->group;
2303 	long ret = -ENOTTY;
2304 
2305 	switch (cmd) {
2306 	case DIAG_IOCSREG:
2307 		mutex_lock(&group->reg_mutex);
2308 		ret = user_events_ioctl_reg(info, uarg);
2309 		mutex_unlock(&group->reg_mutex);
2310 		break;
2311 
2312 	case DIAG_IOCSDEL:
2313 		mutex_lock(&group->reg_mutex);
2314 		ret = user_events_ioctl_del(info, uarg);
2315 		mutex_unlock(&group->reg_mutex);
2316 		break;
2317 
2318 	case DIAG_IOCSUNREG:
2319 		mutex_lock(&group->reg_mutex);
2320 		ret = user_events_ioctl_unreg(uarg);
2321 		mutex_unlock(&group->reg_mutex);
2322 		break;
2323 	}
2324 
2325 	return ret;
2326 }
2327 
2328 /*
2329  * Handles the final close of the file from user mode.
2330  */
2331 static int user_events_release(struct inode *node, struct file *file)
2332 {
2333 	struct user_event_file_info *info = file->private_data;
2334 	struct user_event_group *group;
2335 	struct user_event_refs *refs;
2336 	struct user_event *user;
2337 	int i;
2338 
2339 	if (!info)
2340 		return -EINVAL;
2341 
2342 	group = info->group;
2343 
2344 	/*
2345 	 * Ensure refs cannot change under any situation by taking the
2346 	 * register mutex during the final freeing of the references.
2347 	 */
2348 	mutex_lock(&group->reg_mutex);
2349 
2350 	refs = info->refs;
2351 
2352 	if (!refs)
2353 		goto out;
2354 
2355 	/*
2356 	 * The lifetime of refs has reached an end, it's tied to this file.
2357 	 * The underlying user_events are ref counted, and cannot be freed.
2358 	 * After this decrement, the user_events may be freed elsewhere.
2359 	 */
2360 	for (i = 0; i < refs->count; ++i) {
2361 		user = refs->events[i];
2362 
2363 		if (user)
2364 			refcount_dec(&user->refcnt);
2365 	}
2366 out:
2367 	file->private_data = NULL;
2368 
2369 	mutex_unlock(&group->reg_mutex);
2370 
2371 	kfree(refs);
2372 	kfree(info);
2373 
2374 	return 0;
2375 }
2376 
2377 static const struct file_operations user_data_fops = {
2378 	.open		= user_events_open,
2379 	.write		= user_events_write,
2380 	.write_iter	= user_events_write_iter,
2381 	.unlocked_ioctl	= user_events_ioctl,
2382 	.release	= user_events_release,
2383 };
2384 
2385 static void *user_seq_start(struct seq_file *m, loff_t *pos)
2386 {
2387 	if (*pos)
2388 		return NULL;
2389 
2390 	return (void *)1;
2391 }
2392 
2393 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2394 {
2395 	++*pos;
2396 	return NULL;
2397 }
2398 
2399 static void user_seq_stop(struct seq_file *m, void *p)
2400 {
2401 }
2402 
2403 static int user_seq_show(struct seq_file *m, void *p)
2404 {
2405 	struct user_event_group *group = m->private;
2406 	struct user_event *user;
2407 	char status;
2408 	int i, active = 0, busy = 0;
2409 
2410 	if (!group)
2411 		return -EINVAL;
2412 
2413 	mutex_lock(&group->reg_mutex);
2414 
2415 	hash_for_each(group->register_table, i, user, node) {
2416 		status = user->status;
2417 
2418 		seq_printf(m, "%s", EVENT_NAME(user));
2419 
2420 		if (status != 0)
2421 			seq_puts(m, " #");
2422 
2423 		if (status != 0) {
2424 			seq_puts(m, " Used by");
2425 			if (status & EVENT_STATUS_FTRACE)
2426 				seq_puts(m, " ftrace");
2427 			if (status & EVENT_STATUS_PERF)
2428 				seq_puts(m, " perf");
2429 			if (status & EVENT_STATUS_OTHER)
2430 				seq_puts(m, " other");
2431 			busy++;
2432 		}
2433 
2434 		seq_puts(m, "\n");
2435 		active++;
2436 	}
2437 
2438 	mutex_unlock(&group->reg_mutex);
2439 
2440 	seq_puts(m, "\n");
2441 	seq_printf(m, "Active: %d\n", active);
2442 	seq_printf(m, "Busy: %d\n", busy);
2443 
2444 	return 0;
2445 }
2446 
2447 static const struct seq_operations user_seq_ops = {
2448 	.start	= user_seq_start,
2449 	.next	= user_seq_next,
2450 	.stop	= user_seq_stop,
2451 	.show	= user_seq_show,
2452 };
2453 
2454 static int user_status_open(struct inode *node, struct file *file)
2455 {
2456 	struct user_event_group *group;
2457 	int ret;
2458 
2459 	group = current_user_event_group();
2460 
2461 	if (!group)
2462 		return -ENOENT;
2463 
2464 	ret = seq_open(file, &user_seq_ops);
2465 
2466 	if (!ret) {
2467 		/* Chain group to seq_file */
2468 		struct seq_file *m = file->private_data;
2469 
2470 		m->private = group;
2471 	}
2472 
2473 	return ret;
2474 }
2475 
2476 static const struct file_operations user_status_fops = {
2477 	.open		= user_status_open,
2478 	.read		= seq_read,
2479 	.llseek		= seq_lseek,
2480 	.release	= seq_release,
2481 };
2482 
2483 /*
2484  * Creates a set of tracefs files to allow user mode interactions.
2485  */
2486 static int create_user_tracefs(void)
2487 {
2488 	struct dentry *edata, *emmap;
2489 
2490 	edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2491 				    NULL, NULL, &user_data_fops);
2492 
2493 	if (!edata) {
2494 		pr_warn("Could not create tracefs 'user_events_data' entry\n");
2495 		goto err;
2496 	}
2497 
2498 	emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
2499 				    NULL, NULL, &user_status_fops);
2500 
2501 	if (!emmap) {
2502 		tracefs_remove(edata);
2503 		pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2504 		goto err;
2505 	}
2506 
2507 	return 0;
2508 err:
2509 	return -ENODEV;
2510 }
2511 
2512 static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2513 				      void *buffer, size_t *lenp, loff_t *ppos)
2514 {
2515 	int ret;
2516 
2517 	mutex_lock(&event_mutex);
2518 
2519 	ret = proc_douintvec(table, write, buffer, lenp, ppos);
2520 
2521 	mutex_unlock(&event_mutex);
2522 
2523 	return ret;
2524 }
2525 
2526 static struct ctl_table user_event_sysctls[] = {
2527 	{
2528 		.procname	= "user_events_max",
2529 		.data		= &max_user_events,
2530 		.maxlen		= sizeof(unsigned int),
2531 		.mode		= 0644,
2532 		.proc_handler	= set_max_user_events_sysctl,
2533 	},
2534 	{}
2535 };
2536 
2537 static int __init trace_events_user_init(void)
2538 {
2539 	int ret;
2540 
2541 	fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2542 
2543 	if (!fault_cache)
2544 		return -ENOMEM;
2545 
2546 	init_group = user_event_group_create(&init_user_ns);
2547 
2548 	if (!init_group) {
2549 		kmem_cache_destroy(fault_cache);
2550 		return -ENOMEM;
2551 	}
2552 
2553 	ret = create_user_tracefs();
2554 
2555 	if (ret) {
2556 		pr_warn("user_events could not register with tracefs\n");
2557 		user_event_group_destroy(init_group);
2558 		kmem_cache_destroy(fault_cache);
2559 		init_group = NULL;
2560 		return ret;
2561 	}
2562 
2563 	if (dyn_event_register(&user_event_dops))
2564 		pr_warn("user_events could not register with dyn_events\n");
2565 
2566 	register_sysctl_init("kernel", user_event_sysctls);
2567 
2568 	return 0;
2569 }
2570 
2571 fs_initcall(trace_events_user_init);
2572