xref: /linux/kernel/trace/trace_clock.c (revision 300e812db26f4aa022e346f5fb9af1af134d98d8)
1 /*
2  * tracing clocks
3  *
4  *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  * Implements 3 trace clock variants, with differing scalability/precision
7  * tradeoffs:
8  *
9  *  -   local: CPU-local trace clock
10  *  -  medium: scalable global clock with some jitter
11  *  -  global: globally monotonic, serialized clock
12  *
13  * Tracer plugins will chose a default from these clocks.
14  */
15 #include <linux/spinlock.h>
16 #include <linux/irqflags.h>
17 #include <linux/hardirq.h>
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/sched.h>
21 #include <linux/ktime.h>
22 #include <linux/trace_clock.h>
23 
24 #include "trace.h"
25 
26 /*
27  * trace_clock_local(): the simplest and least coherent tracing clock.
28  *
29  * Useful for tracing that does not cross to other CPUs nor
30  * does it go through idle events.
31  */
32 u64 notrace trace_clock_local(void)
33 {
34 	u64 clock;
35 
36 	/*
37 	 * sched_clock() is an architecture implemented, fast, scalable,
38 	 * lockless clock. It is not guaranteed to be coherent across
39 	 * CPUs, nor across CPU idle events.
40 	 */
41 	preempt_disable_notrace();
42 	clock = sched_clock();
43 	preempt_enable_notrace();
44 
45 	return clock;
46 }
47 
48 /*
49  * trace_clock(): 'between' trace clock. Not completely serialized,
50  * but not completely incorrect when crossing CPUs either.
51  *
52  * This is based on cpu_clock(), which will allow at most ~1 jiffy of
53  * jitter between CPUs. So it's a pretty scalable clock, but there
54  * can be offsets in the trace data.
55  */
56 u64 notrace trace_clock(void)
57 {
58 	return local_clock();
59 }
60 
61 
62 /*
63  * trace_clock_global(): special globally coherent trace clock
64  *
65  * It has higher overhead than the other trace clocks but is still
66  * an order of magnitude faster than GTOD derived hardware clocks.
67  *
68  * Used by plugins that need globally coherent timestamps.
69  */
70 
71 /* keep prev_time and lock in the same cacheline. */
72 static struct {
73 	u64 prev_time;
74 	arch_spinlock_t lock;
75 } trace_clock_struct ____cacheline_aligned_in_smp =
76 	{
77 		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
78 	};
79 
80 u64 notrace trace_clock_global(void)
81 {
82 	unsigned long flags;
83 	int this_cpu;
84 	u64 now;
85 
86 	local_irq_save(flags);
87 
88 	this_cpu = raw_smp_processor_id();
89 	now = cpu_clock(this_cpu);
90 	/*
91 	 * If in an NMI context then dont risk lockups and return the
92 	 * cpu_clock() time:
93 	 */
94 	if (unlikely(in_nmi()))
95 		goto out;
96 
97 	arch_spin_lock(&trace_clock_struct.lock);
98 
99 	/*
100 	 * TODO: if this happens often then maybe we should reset
101 	 * my_scd->clock to prev_time+1, to make sure
102 	 * we start ticking with the local clock from now on?
103 	 */
104 	if ((s64)(now - trace_clock_struct.prev_time) < 0)
105 		now = trace_clock_struct.prev_time + 1;
106 
107 	trace_clock_struct.prev_time = now;
108 
109 	arch_spin_unlock(&trace_clock_struct.lock);
110 
111  out:
112 	local_irq_restore(flags);
113 
114 	return now;
115 }
116 
117 static atomic64_t trace_counter;
118 
119 /*
120  * trace_clock_counter(): simply an atomic counter.
121  * Use the trace_counter "counter" for cases where you do not care
122  * about timings, but are interested in strict ordering.
123  */
124 u64 notrace trace_clock_counter(void)
125 {
126 	return atomic64_add_return(1, &trace_counter);
127 }
128