xref: /linux/kernel/trace/ring_buffer.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 static void update_pages_handler(struct work_struct *work);
27 
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33 	int ret;
34 
35 	ret = trace_seq_printf(s, "# compressed entry header\n");
36 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39 	ret = trace_seq_printf(s, "\n");
40 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			       RINGBUF_TYPE_PADDING);
42 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			       RINGBUF_TYPE_TIME_EXTEND);
44 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return ret;
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135 
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146 
147 enum {
148 	RB_BUFFERS_ON_BIT	= 0,
149 	RB_BUFFERS_DISABLED_BIT	= 1,
150 };
151 
152 enum {
153 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
154 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156 
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF		(1 << 20)
161 
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163 
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174 
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT		4U
177 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
179 
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT	0
182 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT	1
185 # define RB_ARCH_ALIGNMENT		8U
186 #endif
187 
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190 
191 enum {
192 	RB_LEN_TIME_EXTEND = 8,
193 	RB_LEN_TIME_STAMP = 16,
194 };
195 
196 #define skip_time_extend(event) \
197 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198 
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203 
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206 	/* padding has a NULL time_delta */
207 	event->type_len = RINGBUF_TYPE_PADDING;
208 	event->time_delta = 0;
209 }
210 
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214 	unsigned length;
215 
216 	if (event->type_len)
217 		length = event->type_len * RB_ALIGNMENT;
218 	else
219 		length = event->array[0];
220 	return length + RB_EVNT_HDR_SIZE;
221 }
222 
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231 	switch (event->type_len) {
232 	case RINGBUF_TYPE_PADDING:
233 		if (rb_null_event(event))
234 			/* undefined */
235 			return -1;
236 		return  event->array[0] + RB_EVNT_HDR_SIZE;
237 
238 	case RINGBUF_TYPE_TIME_EXTEND:
239 		return RB_LEN_TIME_EXTEND;
240 
241 	case RINGBUF_TYPE_TIME_STAMP:
242 		return RB_LEN_TIME_STAMP;
243 
244 	case RINGBUF_TYPE_DATA:
245 		return rb_event_data_length(event);
246 	default:
247 		BUG();
248 	}
249 	/* not hit */
250 	return 0;
251 }
252 
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260 	unsigned len = 0;
261 
262 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 		/* time extends include the data event after it */
264 		len = RB_LEN_TIME_EXTEND;
265 		event = skip_time_extend(event);
266 	}
267 	return len + rb_event_length(event);
268 }
269 
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282 	unsigned length;
283 
284 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 		event = skip_time_extend(event);
286 
287 	length = rb_event_length(event);
288 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289 		return length;
290 	length -= RB_EVNT_HDR_SIZE;
291 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293 	return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296 
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 		event = skip_time_extend(event);
303 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304 	/* If length is in len field, then array[0] has the data */
305 	if (event->type_len)
306 		return (void *)&event->array[0];
307 	/* Otherwise length is in array[0] and array[1] has the data */
308 	return (void *)&event->array[1];
309 }
310 
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317 	return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320 
321 #define for_each_buffer_cpu(buffer, cpu)		\
322 	for_each_cpu(cpu, buffer->cpumask)
323 
324 #define TS_SHIFT	27
325 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST	(~TS_MASK)
327 
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS	(1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED	(1 << 30)
332 
333 struct buffer_data_page {
334 	u64		 time_stamp;	/* page time stamp */
335 	local_t		 commit;	/* write committed index */
336 	unsigned char	 data[];	/* data of buffer page */
337 };
338 
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348 	struct list_head list;		/* list of buffer pages */
349 	local_t		 write;		/* index for next write */
350 	unsigned	 read;		/* index for next read */
351 	local_t		 entries;	/* entries on this page */
352 	unsigned long	 real_end;	/* real end of data */
353 	struct buffer_data_page *page;	/* Actual data page */
354 };
355 
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK		0xfffff
369 #define RB_WRITE_INTCNT		(1 << 20)
370 
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373 	local_set(&bpage->commit, 0);
374 }
375 
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384 	return local_read(&((struct buffer_data_page *)page)->commit)
385 		+ BUF_PAGE_HDR_SIZE;
386 }
387 
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	free_page((unsigned long)bpage->page);
395 	kfree(bpage);
396 }
397 
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403 	if (delta & TS_DELTA_TEST)
404 		return 1;
405 	return 0;
406 }
407 
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409 
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412 
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415 	struct buffer_data_page field;
416 	int ret;
417 
418 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
420 			       (unsigned int)sizeof(field.time_stamp),
421 			       (unsigned int)is_signed_type(u64));
422 
423 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
425 			       (unsigned int)offsetof(typeof(field), commit),
426 			       (unsigned int)sizeof(field.commit),
427 			       (unsigned int)is_signed_type(long));
428 
429 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       1,
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: char data;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), data),
438 			       (unsigned int)BUF_PAGE_SIZE,
439 			       (unsigned int)is_signed_type(char));
440 
441 	return ret;
442 }
443 
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448 	int				cpu;
449 	atomic_t			record_disabled;
450 	struct ring_buffer		*buffer;
451 	raw_spinlock_t			reader_lock;	/* serialize readers */
452 	arch_spinlock_t			lock;
453 	struct lock_class_key		lock_key;
454 	unsigned int			nr_pages;
455 	struct list_head		*pages;
456 	struct buffer_page		*head_page;	/* read from head */
457 	struct buffer_page		*tail_page;	/* write to tail */
458 	struct buffer_page		*commit_page;	/* committed pages */
459 	struct buffer_page		*reader_page;
460 	unsigned long			lost_events;
461 	unsigned long			last_overrun;
462 	local_t				entries_bytes;
463 	local_t				commit_overrun;
464 	local_t				overrun;
465 	local_t				entries;
466 	local_t				committing;
467 	local_t				commits;
468 	unsigned long			read;
469 	unsigned long			read_bytes;
470 	u64				write_stamp;
471 	u64				read_stamp;
472 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
473 	int				nr_pages_to_update;
474 	struct list_head		new_pages; /* new pages to add */
475 	struct work_struct		update_pages_work;
476 	struct completion		update_done;
477 };
478 
479 struct ring_buffer {
480 	unsigned			flags;
481 	int				cpus;
482 	atomic_t			record_disabled;
483 	atomic_t			resize_disabled;
484 	cpumask_var_t			cpumask;
485 
486 	struct lock_class_key		*reader_lock_key;
487 
488 	struct mutex			mutex;
489 
490 	struct ring_buffer_per_cpu	**buffers;
491 
492 #ifdef CONFIG_HOTPLUG_CPU
493 	struct notifier_block		cpu_notify;
494 #endif
495 	u64				(*clock)(void);
496 };
497 
498 struct ring_buffer_iter {
499 	struct ring_buffer_per_cpu	*cpu_buffer;
500 	unsigned long			head;
501 	struct buffer_page		*head_page;
502 	struct buffer_page		*cache_reader_page;
503 	unsigned long			cache_read;
504 	u64				read_stamp;
505 };
506 
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond)						\
509 	({								\
510 		int _____ret = unlikely(cond);				\
511 		if (_____ret) {						\
512 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 				struct ring_buffer_per_cpu *__b =	\
514 					(void *)b;			\
515 				atomic_inc(&__b->buffer->record_disabled); \
516 			} else						\
517 				atomic_inc(&b->record_disabled);	\
518 			WARN_ON(1);					\
519 		}							\
520 		_____ret;						\
521 	})
522 
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
525 
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
527 {
528 	/* shift to debug/test normalization and TIME_EXTENTS */
529 	return buffer->clock() << DEBUG_SHIFT;
530 }
531 
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533 {
534 	u64 time;
535 
536 	preempt_disable_notrace();
537 	time = rb_time_stamp(buffer);
538 	preempt_enable_no_resched_notrace();
539 
540 	return time;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543 
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 				      int cpu, u64 *ts)
546 {
547 	/* Just stupid testing the normalize function and deltas */
548 	*ts >>= DEBUG_SHIFT;
549 }
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551 
552 /*
553  * Making the ring buffer lockless makes things tricky.
554  * Although writes only happen on the CPU that they are on,
555  * and they only need to worry about interrupts. Reads can
556  * happen on any CPU.
557  *
558  * The reader page is always off the ring buffer, but when the
559  * reader finishes with a page, it needs to swap its page with
560  * a new one from the buffer. The reader needs to take from
561  * the head (writes go to the tail). But if a writer is in overwrite
562  * mode and wraps, it must push the head page forward.
563  *
564  * Here lies the problem.
565  *
566  * The reader must be careful to replace only the head page, and
567  * not another one. As described at the top of the file in the
568  * ASCII art, the reader sets its old page to point to the next
569  * page after head. It then sets the page after head to point to
570  * the old reader page. But if the writer moves the head page
571  * during this operation, the reader could end up with the tail.
572  *
573  * We use cmpxchg to help prevent this race. We also do something
574  * special with the page before head. We set the LSB to 1.
575  *
576  * When the writer must push the page forward, it will clear the
577  * bit that points to the head page, move the head, and then set
578  * the bit that points to the new head page.
579  *
580  * We also don't want an interrupt coming in and moving the head
581  * page on another writer. Thus we use the second LSB to catch
582  * that too. Thus:
583  *
584  * head->list->prev->next        bit 1          bit 0
585  *                              -------        -------
586  * Normal page                     0              0
587  * Points to head page             0              1
588  * New head page                   1              0
589  *
590  * Note we can not trust the prev pointer of the head page, because:
591  *
592  * +----+       +-----+        +-----+
593  * |    |------>|  T  |---X--->|  N  |
594  * |    |<------|     |        |     |
595  * +----+       +-----+        +-----+
596  *   ^                           ^ |
597  *   |          +-----+          | |
598  *   +----------|  R  |----------+ |
599  *              |     |<-----------+
600  *              +-----+
601  *
602  * Key:  ---X-->  HEAD flag set in pointer
603  *         T      Tail page
604  *         R      Reader page
605  *         N      Next page
606  *
607  * (see __rb_reserve_next() to see where this happens)
608  *
609  *  What the above shows is that the reader just swapped out
610  *  the reader page with a page in the buffer, but before it
611  *  could make the new header point back to the new page added
612  *  it was preempted by a writer. The writer moved forward onto
613  *  the new page added by the reader and is about to move forward
614  *  again.
615  *
616  *  You can see, it is legitimate for the previous pointer of
617  *  the head (or any page) not to point back to itself. But only
618  *  temporarially.
619  */
620 
621 #define RB_PAGE_NORMAL		0UL
622 #define RB_PAGE_HEAD		1UL
623 #define RB_PAGE_UPDATE		2UL
624 
625 
626 #define RB_FLAG_MASK		3UL
627 
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED		4UL
630 
631 /*
632  * rb_list_head - remove any bit
633  */
634 static struct list_head *rb_list_head(struct list_head *list)
635 {
636 	unsigned long val = (unsigned long)list;
637 
638 	return (struct list_head *)(val & ~RB_FLAG_MASK);
639 }
640 
641 /*
642  * rb_is_head_page - test if the given page is the head page
643  *
644  * Because the reader may move the head_page pointer, we can
645  * not trust what the head page is (it may be pointing to
646  * the reader page). But if the next page is a header page,
647  * its flags will be non zero.
648  */
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 		struct buffer_page *page, struct list_head *list)
652 {
653 	unsigned long val;
654 
655 	val = (unsigned long)list->next;
656 
657 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 		return RB_PAGE_MOVED;
659 
660 	return val & RB_FLAG_MASK;
661 }
662 
663 /*
664  * rb_is_reader_page
665  *
666  * The unique thing about the reader page, is that, if the
667  * writer is ever on it, the previous pointer never points
668  * back to the reader page.
669  */
670 static int rb_is_reader_page(struct buffer_page *page)
671 {
672 	struct list_head *list = page->list.prev;
673 
674 	return rb_list_head(list->next) != &page->list;
675 }
676 
677 /*
678  * rb_set_list_to_head - set a list_head to be pointing to head.
679  */
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 				struct list_head *list)
682 {
683 	unsigned long *ptr;
684 
685 	ptr = (unsigned long *)&list->next;
686 	*ptr |= RB_PAGE_HEAD;
687 	*ptr &= ~RB_PAGE_UPDATE;
688 }
689 
690 /*
691  * rb_head_page_activate - sets up head page
692  */
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695 	struct buffer_page *head;
696 
697 	head = cpu_buffer->head_page;
698 	if (!head)
699 		return;
700 
701 	/*
702 	 * Set the previous list pointer to have the HEAD flag.
703 	 */
704 	rb_set_list_to_head(cpu_buffer, head->list.prev);
705 }
706 
707 static void rb_list_head_clear(struct list_head *list)
708 {
709 	unsigned long *ptr = (unsigned long *)&list->next;
710 
711 	*ptr &= ~RB_FLAG_MASK;
712 }
713 
714 /*
715  * rb_head_page_dactivate - clears head page ptr (for free list)
716  */
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720 	struct list_head *hd;
721 
722 	/* Go through the whole list and clear any pointers found. */
723 	rb_list_head_clear(cpu_buffer->pages);
724 
725 	list_for_each(hd, cpu_buffer->pages)
726 		rb_list_head_clear(hd);
727 }
728 
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 			    struct buffer_page *head,
731 			    struct buffer_page *prev,
732 			    int old_flag, int new_flag)
733 {
734 	struct list_head *list;
735 	unsigned long val = (unsigned long)&head->list;
736 	unsigned long ret;
737 
738 	list = &prev->list;
739 
740 	val &= ~RB_FLAG_MASK;
741 
742 	ret = cmpxchg((unsigned long *)&list->next,
743 		      val | old_flag, val | new_flag);
744 
745 	/* check if the reader took the page */
746 	if ((ret & ~RB_FLAG_MASK) != val)
747 		return RB_PAGE_MOVED;
748 
749 	return ret & RB_FLAG_MASK;
750 }
751 
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 				   struct buffer_page *head,
754 				   struct buffer_page *prev,
755 				   int old_flag)
756 {
757 	return rb_head_page_set(cpu_buffer, head, prev,
758 				old_flag, RB_PAGE_UPDATE);
759 }
760 
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 				 struct buffer_page *head,
763 				 struct buffer_page *prev,
764 				 int old_flag)
765 {
766 	return rb_head_page_set(cpu_buffer, head, prev,
767 				old_flag, RB_PAGE_HEAD);
768 }
769 
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 				   struct buffer_page *head,
772 				   struct buffer_page *prev,
773 				   int old_flag)
774 {
775 	return rb_head_page_set(cpu_buffer, head, prev,
776 				old_flag, RB_PAGE_NORMAL);
777 }
778 
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 			       struct buffer_page **bpage)
781 {
782 	struct list_head *p = rb_list_head((*bpage)->list.next);
783 
784 	*bpage = list_entry(p, struct buffer_page, list);
785 }
786 
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790 	struct buffer_page *head;
791 	struct buffer_page *page;
792 	struct list_head *list;
793 	int i;
794 
795 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 		return NULL;
797 
798 	/* sanity check */
799 	list = cpu_buffer->pages;
800 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 		return NULL;
802 
803 	page = head = cpu_buffer->head_page;
804 	/*
805 	 * It is possible that the writer moves the header behind
806 	 * where we started, and we miss in one loop.
807 	 * A second loop should grab the header, but we'll do
808 	 * three loops just because I'm paranoid.
809 	 */
810 	for (i = 0; i < 3; i++) {
811 		do {
812 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 				cpu_buffer->head_page = page;
814 				return page;
815 			}
816 			rb_inc_page(cpu_buffer, &page);
817 		} while (page != head);
818 	}
819 
820 	RB_WARN_ON(cpu_buffer, 1);
821 
822 	return NULL;
823 }
824 
825 static int rb_head_page_replace(struct buffer_page *old,
826 				struct buffer_page *new)
827 {
828 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 	unsigned long val;
830 	unsigned long ret;
831 
832 	val = *ptr & ~RB_FLAG_MASK;
833 	val |= RB_PAGE_HEAD;
834 
835 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
836 
837 	return ret == val;
838 }
839 
840 /*
841  * rb_tail_page_update - move the tail page forward
842  *
843  * Returns 1 if moved tail page, 0 if someone else did.
844  */
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 			       struct buffer_page *tail_page,
847 			       struct buffer_page *next_page)
848 {
849 	struct buffer_page *old_tail;
850 	unsigned long old_entries;
851 	unsigned long old_write;
852 	int ret = 0;
853 
854 	/*
855 	 * The tail page now needs to be moved forward.
856 	 *
857 	 * We need to reset the tail page, but without messing
858 	 * with possible erasing of data brought in by interrupts
859 	 * that have moved the tail page and are currently on it.
860 	 *
861 	 * We add a counter to the write field to denote this.
862 	 */
863 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865 
866 	/*
867 	 * Just make sure we have seen our old_write and synchronize
868 	 * with any interrupts that come in.
869 	 */
870 	barrier();
871 
872 	/*
873 	 * If the tail page is still the same as what we think
874 	 * it is, then it is up to us to update the tail
875 	 * pointer.
876 	 */
877 	if (tail_page == cpu_buffer->tail_page) {
878 		/* Zero the write counter */
879 		unsigned long val = old_write & ~RB_WRITE_MASK;
880 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
881 
882 		/*
883 		 * This will only succeed if an interrupt did
884 		 * not come in and change it. In which case, we
885 		 * do not want to modify it.
886 		 *
887 		 * We add (void) to let the compiler know that we do not care
888 		 * about the return value of these functions. We use the
889 		 * cmpxchg to only update if an interrupt did not already
890 		 * do it for us. If the cmpxchg fails, we don't care.
891 		 */
892 		(void)local_cmpxchg(&next_page->write, old_write, val);
893 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
894 
895 		/*
896 		 * No need to worry about races with clearing out the commit.
897 		 * it only can increment when a commit takes place. But that
898 		 * only happens in the outer most nested commit.
899 		 */
900 		local_set(&next_page->page->commit, 0);
901 
902 		old_tail = cmpxchg(&cpu_buffer->tail_page,
903 				   tail_page, next_page);
904 
905 		if (old_tail == tail_page)
906 			ret = 1;
907 	}
908 
909 	return ret;
910 }
911 
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 			  struct buffer_page *bpage)
914 {
915 	unsigned long val = (unsigned long)bpage;
916 
917 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 		return 1;
919 
920 	return 0;
921 }
922 
923 /**
924  * rb_check_list - make sure a pointer to a list has the last bits zero
925  */
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 			 struct list_head *list)
928 {
929 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 		return 1;
931 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 		return 1;
933 	return 0;
934 }
935 
936 /**
937  * check_pages - integrity check of buffer pages
938  * @cpu_buffer: CPU buffer with pages to test
939  *
940  * As a safety measure we check to make sure the data pages have not
941  * been corrupted.
942  */
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945 	struct list_head *head = cpu_buffer->pages;
946 	struct buffer_page *bpage, *tmp;
947 
948 	/* Reset the head page if it exists */
949 	if (cpu_buffer->head_page)
950 		rb_set_head_page(cpu_buffer);
951 
952 	rb_head_page_deactivate(cpu_buffer);
953 
954 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955 		return -1;
956 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957 		return -1;
958 
959 	if (rb_check_list(cpu_buffer, head))
960 		return -1;
961 
962 	list_for_each_entry_safe(bpage, tmp, head, list) {
963 		if (RB_WARN_ON(cpu_buffer,
964 			       bpage->list.next->prev != &bpage->list))
965 			return -1;
966 		if (RB_WARN_ON(cpu_buffer,
967 			       bpage->list.prev->next != &bpage->list))
968 			return -1;
969 		if (rb_check_list(cpu_buffer, &bpage->list))
970 			return -1;
971 	}
972 
973 	rb_head_page_activate(cpu_buffer);
974 
975 	return 0;
976 }
977 
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
979 {
980 	int i;
981 	struct buffer_page *bpage, *tmp;
982 
983 	for (i = 0; i < nr_pages; i++) {
984 		struct page *page;
985 		/*
986 		 * __GFP_NORETRY flag makes sure that the allocation fails
987 		 * gracefully without invoking oom-killer and the system is
988 		 * not destabilized.
989 		 */
990 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991 				    GFP_KERNEL | __GFP_NORETRY,
992 				    cpu_to_node(cpu));
993 		if (!bpage)
994 			goto free_pages;
995 
996 		list_add(&bpage->list, pages);
997 
998 		page = alloc_pages_node(cpu_to_node(cpu),
999 					GFP_KERNEL | __GFP_NORETRY, 0);
1000 		if (!page)
1001 			goto free_pages;
1002 		bpage->page = page_address(page);
1003 		rb_init_page(bpage->page);
1004 	}
1005 
1006 	return 0;
1007 
1008 free_pages:
1009 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1010 		list_del_init(&bpage->list);
1011 		free_buffer_page(bpage);
1012 	}
1013 
1014 	return -ENOMEM;
1015 }
1016 
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018 			     unsigned nr_pages)
1019 {
1020 	LIST_HEAD(pages);
1021 
1022 	WARN_ON(!nr_pages);
1023 
1024 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025 		return -ENOMEM;
1026 
1027 	/*
1028 	 * The ring buffer page list is a circular list that does not
1029 	 * start and end with a list head. All page list items point to
1030 	 * other pages.
1031 	 */
1032 	cpu_buffer->pages = pages.next;
1033 	list_del(&pages);
1034 
1035 	cpu_buffer->nr_pages = nr_pages;
1036 
1037 	rb_check_pages(cpu_buffer);
1038 
1039 	return 0;
1040 }
1041 
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044 {
1045 	struct ring_buffer_per_cpu *cpu_buffer;
1046 	struct buffer_page *bpage;
1047 	struct page *page;
1048 	int ret;
1049 
1050 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051 				  GFP_KERNEL, cpu_to_node(cpu));
1052 	if (!cpu_buffer)
1053 		return NULL;
1054 
1055 	cpu_buffer->cpu = cpu;
1056 	cpu_buffer->buffer = buffer;
1057 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1058 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061 	init_completion(&cpu_buffer->update_done);
1062 
1063 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064 			    GFP_KERNEL, cpu_to_node(cpu));
1065 	if (!bpage)
1066 		goto fail_free_buffer;
1067 
1068 	rb_check_bpage(cpu_buffer, bpage);
1069 
1070 	cpu_buffer->reader_page = bpage;
1071 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072 	if (!page)
1073 		goto fail_free_reader;
1074 	bpage->page = page_address(page);
1075 	rb_init_page(bpage->page);
1076 
1077 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079 
1080 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081 	if (ret < 0)
1082 		goto fail_free_reader;
1083 
1084 	cpu_buffer->head_page
1085 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1086 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087 
1088 	rb_head_page_activate(cpu_buffer);
1089 
1090 	return cpu_buffer;
1091 
1092  fail_free_reader:
1093 	free_buffer_page(cpu_buffer->reader_page);
1094 
1095  fail_free_buffer:
1096 	kfree(cpu_buffer);
1097 	return NULL;
1098 }
1099 
1100 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101 {
1102 	struct list_head *head = cpu_buffer->pages;
1103 	struct buffer_page *bpage, *tmp;
1104 
1105 	free_buffer_page(cpu_buffer->reader_page);
1106 
1107 	rb_head_page_deactivate(cpu_buffer);
1108 
1109 	if (head) {
1110 		list_for_each_entry_safe(bpage, tmp, head, list) {
1111 			list_del_init(&bpage->list);
1112 			free_buffer_page(bpage);
1113 		}
1114 		bpage = list_entry(head, struct buffer_page, list);
1115 		free_buffer_page(bpage);
1116 	}
1117 
1118 	kfree(cpu_buffer);
1119 }
1120 
1121 #ifdef CONFIG_HOTPLUG_CPU
1122 static int rb_cpu_notify(struct notifier_block *self,
1123 			 unsigned long action, void *hcpu);
1124 #endif
1125 
1126 /**
1127  * ring_buffer_alloc - allocate a new ring_buffer
1128  * @size: the size in bytes per cpu that is needed.
1129  * @flags: attributes to set for the ring buffer.
1130  *
1131  * Currently the only flag that is available is the RB_FL_OVERWRITE
1132  * flag. This flag means that the buffer will overwrite old data
1133  * when the buffer wraps. If this flag is not set, the buffer will
1134  * drop data when the tail hits the head.
1135  */
1136 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137 					struct lock_class_key *key)
1138 {
1139 	struct ring_buffer *buffer;
1140 	int bsize;
1141 	int cpu, nr_pages;
1142 
1143 	/* keep it in its own cache line */
1144 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145 			 GFP_KERNEL);
1146 	if (!buffer)
1147 		return NULL;
1148 
1149 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150 		goto fail_free_buffer;
1151 
1152 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153 	buffer->flags = flags;
1154 	buffer->clock = trace_clock_local;
1155 	buffer->reader_lock_key = key;
1156 
1157 	/* need at least two pages */
1158 	if (nr_pages < 2)
1159 		nr_pages = 2;
1160 
1161 	/*
1162 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163 	 * in early initcall, it will not be notified of secondary cpus.
1164 	 * In that off case, we need to allocate for all possible cpus.
1165 	 */
1166 #ifdef CONFIG_HOTPLUG_CPU
1167 	get_online_cpus();
1168 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1169 #else
1170 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171 #endif
1172 	buffer->cpus = nr_cpu_ids;
1173 
1174 	bsize = sizeof(void *) * nr_cpu_ids;
1175 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176 				  GFP_KERNEL);
1177 	if (!buffer->buffers)
1178 		goto fail_free_cpumask;
1179 
1180 	for_each_buffer_cpu(buffer, cpu) {
1181 		buffer->buffers[cpu] =
1182 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183 		if (!buffer->buffers[cpu])
1184 			goto fail_free_buffers;
1185 	}
1186 
1187 #ifdef CONFIG_HOTPLUG_CPU
1188 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189 	buffer->cpu_notify.priority = 0;
1190 	register_cpu_notifier(&buffer->cpu_notify);
1191 #endif
1192 
1193 	put_online_cpus();
1194 	mutex_init(&buffer->mutex);
1195 
1196 	return buffer;
1197 
1198  fail_free_buffers:
1199 	for_each_buffer_cpu(buffer, cpu) {
1200 		if (buffer->buffers[cpu])
1201 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1202 	}
1203 	kfree(buffer->buffers);
1204 
1205  fail_free_cpumask:
1206 	free_cpumask_var(buffer->cpumask);
1207 	put_online_cpus();
1208 
1209  fail_free_buffer:
1210 	kfree(buffer);
1211 	return NULL;
1212 }
1213 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214 
1215 /**
1216  * ring_buffer_free - free a ring buffer.
1217  * @buffer: the buffer to free.
1218  */
1219 void
1220 ring_buffer_free(struct ring_buffer *buffer)
1221 {
1222 	int cpu;
1223 
1224 	get_online_cpus();
1225 
1226 #ifdef CONFIG_HOTPLUG_CPU
1227 	unregister_cpu_notifier(&buffer->cpu_notify);
1228 #endif
1229 
1230 	for_each_buffer_cpu(buffer, cpu)
1231 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1232 
1233 	put_online_cpus();
1234 
1235 	kfree(buffer->buffers);
1236 	free_cpumask_var(buffer->cpumask);
1237 
1238 	kfree(buffer);
1239 }
1240 EXPORT_SYMBOL_GPL(ring_buffer_free);
1241 
1242 void ring_buffer_set_clock(struct ring_buffer *buffer,
1243 			   u64 (*clock)(void))
1244 {
1245 	buffer->clock = clock;
1246 }
1247 
1248 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249 
1250 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251 {
1252 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1253 }
1254 
1255 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256 {
1257 	return local_read(&bpage->write) & RB_WRITE_MASK;
1258 }
1259 
1260 static int
1261 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262 {
1263 	struct list_head *tail_page, *to_remove, *next_page;
1264 	struct buffer_page *to_remove_page, *tmp_iter_page;
1265 	struct buffer_page *last_page, *first_page;
1266 	unsigned int nr_removed;
1267 	unsigned long head_bit;
1268 	int page_entries;
1269 
1270 	head_bit = 0;
1271 
1272 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273 	atomic_inc(&cpu_buffer->record_disabled);
1274 	/*
1275 	 * We don't race with the readers since we have acquired the reader
1276 	 * lock. We also don't race with writers after disabling recording.
1277 	 * This makes it easy to figure out the first and the last page to be
1278 	 * removed from the list. We unlink all the pages in between including
1279 	 * the first and last pages. This is done in a busy loop so that we
1280 	 * lose the least number of traces.
1281 	 * The pages are freed after we restart recording and unlock readers.
1282 	 */
1283 	tail_page = &cpu_buffer->tail_page->list;
1284 
1285 	/*
1286 	 * tail page might be on reader page, we remove the next page
1287 	 * from the ring buffer
1288 	 */
1289 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290 		tail_page = rb_list_head(tail_page->next);
1291 	to_remove = tail_page;
1292 
1293 	/* start of pages to remove */
1294 	first_page = list_entry(rb_list_head(to_remove->next),
1295 				struct buffer_page, list);
1296 
1297 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298 		to_remove = rb_list_head(to_remove)->next;
1299 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300 	}
1301 
1302 	next_page = rb_list_head(to_remove)->next;
1303 
1304 	/*
1305 	 * Now we remove all pages between tail_page and next_page.
1306 	 * Make sure that we have head_bit value preserved for the
1307 	 * next page
1308 	 */
1309 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1310 						head_bit);
1311 	next_page = rb_list_head(next_page);
1312 	next_page->prev = tail_page;
1313 
1314 	/* make sure pages points to a valid page in the ring buffer */
1315 	cpu_buffer->pages = next_page;
1316 
1317 	/* update head page */
1318 	if (head_bit)
1319 		cpu_buffer->head_page = list_entry(next_page,
1320 						struct buffer_page, list);
1321 
1322 	/*
1323 	 * change read pointer to make sure any read iterators reset
1324 	 * themselves
1325 	 */
1326 	cpu_buffer->read = 0;
1327 
1328 	/* pages are removed, resume tracing and then free the pages */
1329 	atomic_dec(&cpu_buffer->record_disabled);
1330 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331 
1332 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333 
1334 	/* last buffer page to remove */
1335 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336 				list);
1337 	tmp_iter_page = first_page;
1338 
1339 	do {
1340 		to_remove_page = tmp_iter_page;
1341 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1342 
1343 		/* update the counters */
1344 		page_entries = rb_page_entries(to_remove_page);
1345 		if (page_entries) {
1346 			/*
1347 			 * If something was added to this page, it was full
1348 			 * since it is not the tail page. So we deduct the
1349 			 * bytes consumed in ring buffer from here.
1350 			 * Increment overrun to account for the lost events.
1351 			 */
1352 			local_add(page_entries, &cpu_buffer->overrun);
1353 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354 		}
1355 
1356 		/*
1357 		 * We have already removed references to this list item, just
1358 		 * free up the buffer_page and its page
1359 		 */
1360 		free_buffer_page(to_remove_page);
1361 		nr_removed--;
1362 
1363 	} while (to_remove_page != last_page);
1364 
1365 	RB_WARN_ON(cpu_buffer, nr_removed);
1366 
1367 	return nr_removed == 0;
1368 }
1369 
1370 static int
1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372 {
1373 	struct list_head *pages = &cpu_buffer->new_pages;
1374 	int retries, success;
1375 
1376 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377 	/*
1378 	 * We are holding the reader lock, so the reader page won't be swapped
1379 	 * in the ring buffer. Now we are racing with the writer trying to
1380 	 * move head page and the tail page.
1381 	 * We are going to adapt the reader page update process where:
1382 	 * 1. We first splice the start and end of list of new pages between
1383 	 *    the head page and its previous page.
1384 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1385 	 *    start of new pages list.
1386 	 * 3. Finally, we update the head->prev to the end of new list.
1387 	 *
1388 	 * We will try this process 10 times, to make sure that we don't keep
1389 	 * spinning.
1390 	 */
1391 	retries = 10;
1392 	success = 0;
1393 	while (retries--) {
1394 		struct list_head *head_page, *prev_page, *r;
1395 		struct list_head *last_page, *first_page;
1396 		struct list_head *head_page_with_bit;
1397 
1398 		head_page = &rb_set_head_page(cpu_buffer)->list;
1399 		prev_page = head_page->prev;
1400 
1401 		first_page = pages->next;
1402 		last_page  = pages->prev;
1403 
1404 		head_page_with_bit = (struct list_head *)
1405 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1406 
1407 		last_page->next = head_page_with_bit;
1408 		first_page->prev = prev_page;
1409 
1410 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411 
1412 		if (r == head_page_with_bit) {
1413 			/*
1414 			 * yay, we replaced the page pointer to our new list,
1415 			 * now, we just have to update to head page's prev
1416 			 * pointer to point to end of list
1417 			 */
1418 			head_page->prev = last_page;
1419 			success = 1;
1420 			break;
1421 		}
1422 	}
1423 
1424 	if (success)
1425 		INIT_LIST_HEAD(pages);
1426 	/*
1427 	 * If we weren't successful in adding in new pages, warn and stop
1428 	 * tracing
1429 	 */
1430 	RB_WARN_ON(cpu_buffer, !success);
1431 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432 
1433 	/* free pages if they weren't inserted */
1434 	if (!success) {
1435 		struct buffer_page *bpage, *tmp;
1436 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437 					 list) {
1438 			list_del_init(&bpage->list);
1439 			free_buffer_page(bpage);
1440 		}
1441 	}
1442 	return success;
1443 }
1444 
1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447 	int success;
1448 
1449 	if (cpu_buffer->nr_pages_to_update > 0)
1450 		success = rb_insert_pages(cpu_buffer);
1451 	else
1452 		success = rb_remove_pages(cpu_buffer,
1453 					-cpu_buffer->nr_pages_to_update);
1454 
1455 	if (success)
1456 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457 }
1458 
1459 static void update_pages_handler(struct work_struct *work)
1460 {
1461 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462 			struct ring_buffer_per_cpu, update_pages_work);
1463 	rb_update_pages(cpu_buffer);
1464 	complete(&cpu_buffer->update_done);
1465 }
1466 
1467 /**
1468  * ring_buffer_resize - resize the ring buffer
1469  * @buffer: the buffer to resize.
1470  * @size: the new size.
1471  *
1472  * Minimum size is 2 * BUF_PAGE_SIZE.
1473  *
1474  * Returns 0 on success and < 0 on failure.
1475  */
1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477 			int cpu_id)
1478 {
1479 	struct ring_buffer_per_cpu *cpu_buffer;
1480 	unsigned nr_pages;
1481 	int cpu, err = 0;
1482 
1483 	/*
1484 	 * Always succeed at resizing a non-existent buffer:
1485 	 */
1486 	if (!buffer)
1487 		return size;
1488 
1489 	/* Make sure the requested buffer exists */
1490 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492 		return size;
1493 
1494 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495 	size *= BUF_PAGE_SIZE;
1496 
1497 	/* we need a minimum of two pages */
1498 	if (size < BUF_PAGE_SIZE * 2)
1499 		size = BUF_PAGE_SIZE * 2;
1500 
1501 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1502 
1503 	/*
1504 	 * Don't succeed if resizing is disabled, as a reader might be
1505 	 * manipulating the ring buffer and is expecting a sane state while
1506 	 * this is true.
1507 	 */
1508 	if (atomic_read(&buffer->resize_disabled))
1509 		return -EBUSY;
1510 
1511 	/* prevent another thread from changing buffer sizes */
1512 	mutex_lock(&buffer->mutex);
1513 
1514 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515 		/* calculate the pages to update */
1516 		for_each_buffer_cpu(buffer, cpu) {
1517 			cpu_buffer = buffer->buffers[cpu];
1518 
1519 			cpu_buffer->nr_pages_to_update = nr_pages -
1520 							cpu_buffer->nr_pages;
1521 			/*
1522 			 * nothing more to do for removing pages or no update
1523 			 */
1524 			if (cpu_buffer->nr_pages_to_update <= 0)
1525 				continue;
1526 			/*
1527 			 * to add pages, make sure all new pages can be
1528 			 * allocated without receiving ENOMEM
1529 			 */
1530 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532 						&cpu_buffer->new_pages, cpu)) {
1533 				/* not enough memory for new pages */
1534 				err = -ENOMEM;
1535 				goto out_err;
1536 			}
1537 		}
1538 
1539 		get_online_cpus();
1540 		/*
1541 		 * Fire off all the required work handlers
1542 		 * We can't schedule on offline CPUs, but it's not necessary
1543 		 * since we can change their buffer sizes without any race.
1544 		 */
1545 		for_each_buffer_cpu(buffer, cpu) {
1546 			cpu_buffer = buffer->buffers[cpu];
1547 			if (!cpu_buffer->nr_pages_to_update)
1548 				continue;
1549 
1550 			if (cpu_online(cpu))
1551 				schedule_work_on(cpu,
1552 						&cpu_buffer->update_pages_work);
1553 			else
1554 				rb_update_pages(cpu_buffer);
1555 		}
1556 
1557 		/* wait for all the updates to complete */
1558 		for_each_buffer_cpu(buffer, cpu) {
1559 			cpu_buffer = buffer->buffers[cpu];
1560 			if (!cpu_buffer->nr_pages_to_update)
1561 				continue;
1562 
1563 			if (cpu_online(cpu))
1564 				wait_for_completion(&cpu_buffer->update_done);
1565 			cpu_buffer->nr_pages_to_update = 0;
1566 		}
1567 
1568 		put_online_cpus();
1569 	} else {
1570 		/* Make sure this CPU has been intitialized */
1571 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1572 			goto out;
1573 
1574 		cpu_buffer = buffer->buffers[cpu_id];
1575 
1576 		if (nr_pages == cpu_buffer->nr_pages)
1577 			goto out;
1578 
1579 		cpu_buffer->nr_pages_to_update = nr_pages -
1580 						cpu_buffer->nr_pages;
1581 
1582 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1583 		if (cpu_buffer->nr_pages_to_update > 0 &&
1584 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1585 					    &cpu_buffer->new_pages, cpu_id)) {
1586 			err = -ENOMEM;
1587 			goto out_err;
1588 		}
1589 
1590 		get_online_cpus();
1591 
1592 		if (cpu_online(cpu_id)) {
1593 			schedule_work_on(cpu_id,
1594 					 &cpu_buffer->update_pages_work);
1595 			wait_for_completion(&cpu_buffer->update_done);
1596 		} else
1597 			rb_update_pages(cpu_buffer);
1598 
1599 		cpu_buffer->nr_pages_to_update = 0;
1600 		put_online_cpus();
1601 	}
1602 
1603  out:
1604 	/*
1605 	 * The ring buffer resize can happen with the ring buffer
1606 	 * enabled, so that the update disturbs the tracing as little
1607 	 * as possible. But if the buffer is disabled, we do not need
1608 	 * to worry about that, and we can take the time to verify
1609 	 * that the buffer is not corrupt.
1610 	 */
1611 	if (atomic_read(&buffer->record_disabled)) {
1612 		atomic_inc(&buffer->record_disabled);
1613 		/*
1614 		 * Even though the buffer was disabled, we must make sure
1615 		 * that it is truly disabled before calling rb_check_pages.
1616 		 * There could have been a race between checking
1617 		 * record_disable and incrementing it.
1618 		 */
1619 		synchronize_sched();
1620 		for_each_buffer_cpu(buffer, cpu) {
1621 			cpu_buffer = buffer->buffers[cpu];
1622 			rb_check_pages(cpu_buffer);
1623 		}
1624 		atomic_dec(&buffer->record_disabled);
1625 	}
1626 
1627 	mutex_unlock(&buffer->mutex);
1628 	return size;
1629 
1630  out_err:
1631 	for_each_buffer_cpu(buffer, cpu) {
1632 		struct buffer_page *bpage, *tmp;
1633 
1634 		cpu_buffer = buffer->buffers[cpu];
1635 		cpu_buffer->nr_pages_to_update = 0;
1636 
1637 		if (list_empty(&cpu_buffer->new_pages))
1638 			continue;
1639 
1640 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1641 					list) {
1642 			list_del_init(&bpage->list);
1643 			free_buffer_page(bpage);
1644 		}
1645 	}
1646 	mutex_unlock(&buffer->mutex);
1647 	return err;
1648 }
1649 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1650 
1651 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1652 {
1653 	mutex_lock(&buffer->mutex);
1654 	if (val)
1655 		buffer->flags |= RB_FL_OVERWRITE;
1656 	else
1657 		buffer->flags &= ~RB_FL_OVERWRITE;
1658 	mutex_unlock(&buffer->mutex);
1659 }
1660 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1661 
1662 static inline void *
1663 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1664 {
1665 	return bpage->data + index;
1666 }
1667 
1668 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1669 {
1670 	return bpage->page->data + index;
1671 }
1672 
1673 static inline struct ring_buffer_event *
1674 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1675 {
1676 	return __rb_page_index(cpu_buffer->reader_page,
1677 			       cpu_buffer->reader_page->read);
1678 }
1679 
1680 static inline struct ring_buffer_event *
1681 rb_iter_head_event(struct ring_buffer_iter *iter)
1682 {
1683 	return __rb_page_index(iter->head_page, iter->head);
1684 }
1685 
1686 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1687 {
1688 	return local_read(&bpage->page->commit);
1689 }
1690 
1691 /* Size is determined by what has been committed */
1692 static inline unsigned rb_page_size(struct buffer_page *bpage)
1693 {
1694 	return rb_page_commit(bpage);
1695 }
1696 
1697 static inline unsigned
1698 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1699 {
1700 	return rb_page_commit(cpu_buffer->commit_page);
1701 }
1702 
1703 static inline unsigned
1704 rb_event_index(struct ring_buffer_event *event)
1705 {
1706 	unsigned long addr = (unsigned long)event;
1707 
1708 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1709 }
1710 
1711 static inline int
1712 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1713 		   struct ring_buffer_event *event)
1714 {
1715 	unsigned long addr = (unsigned long)event;
1716 	unsigned long index;
1717 
1718 	index = rb_event_index(event);
1719 	addr &= PAGE_MASK;
1720 
1721 	return cpu_buffer->commit_page->page == (void *)addr &&
1722 		rb_commit_index(cpu_buffer) == index;
1723 }
1724 
1725 static void
1726 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1727 {
1728 	unsigned long max_count;
1729 
1730 	/*
1731 	 * We only race with interrupts and NMIs on this CPU.
1732 	 * If we own the commit event, then we can commit
1733 	 * all others that interrupted us, since the interruptions
1734 	 * are in stack format (they finish before they come
1735 	 * back to us). This allows us to do a simple loop to
1736 	 * assign the commit to the tail.
1737 	 */
1738  again:
1739 	max_count = cpu_buffer->nr_pages * 100;
1740 
1741 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1742 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1743 			return;
1744 		if (RB_WARN_ON(cpu_buffer,
1745 			       rb_is_reader_page(cpu_buffer->tail_page)))
1746 			return;
1747 		local_set(&cpu_buffer->commit_page->page->commit,
1748 			  rb_page_write(cpu_buffer->commit_page));
1749 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1750 		cpu_buffer->write_stamp =
1751 			cpu_buffer->commit_page->page->time_stamp;
1752 		/* add barrier to keep gcc from optimizing too much */
1753 		barrier();
1754 	}
1755 	while (rb_commit_index(cpu_buffer) !=
1756 	       rb_page_write(cpu_buffer->commit_page)) {
1757 
1758 		local_set(&cpu_buffer->commit_page->page->commit,
1759 			  rb_page_write(cpu_buffer->commit_page));
1760 		RB_WARN_ON(cpu_buffer,
1761 			   local_read(&cpu_buffer->commit_page->page->commit) &
1762 			   ~RB_WRITE_MASK);
1763 		barrier();
1764 	}
1765 
1766 	/* again, keep gcc from optimizing */
1767 	barrier();
1768 
1769 	/*
1770 	 * If an interrupt came in just after the first while loop
1771 	 * and pushed the tail page forward, we will be left with
1772 	 * a dangling commit that will never go forward.
1773 	 */
1774 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1775 		goto again;
1776 }
1777 
1778 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1779 {
1780 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1781 	cpu_buffer->reader_page->read = 0;
1782 }
1783 
1784 static void rb_inc_iter(struct ring_buffer_iter *iter)
1785 {
1786 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1787 
1788 	/*
1789 	 * The iterator could be on the reader page (it starts there).
1790 	 * But the head could have moved, since the reader was
1791 	 * found. Check for this case and assign the iterator
1792 	 * to the head page instead of next.
1793 	 */
1794 	if (iter->head_page == cpu_buffer->reader_page)
1795 		iter->head_page = rb_set_head_page(cpu_buffer);
1796 	else
1797 		rb_inc_page(cpu_buffer, &iter->head_page);
1798 
1799 	iter->read_stamp = iter->head_page->page->time_stamp;
1800 	iter->head = 0;
1801 }
1802 
1803 /* Slow path, do not inline */
1804 static noinline struct ring_buffer_event *
1805 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1806 {
1807 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1808 
1809 	/* Not the first event on the page? */
1810 	if (rb_event_index(event)) {
1811 		event->time_delta = delta & TS_MASK;
1812 		event->array[0] = delta >> TS_SHIFT;
1813 	} else {
1814 		/* nope, just zero it */
1815 		event->time_delta = 0;
1816 		event->array[0] = 0;
1817 	}
1818 
1819 	return skip_time_extend(event);
1820 }
1821 
1822 /**
1823  * ring_buffer_update_event - update event type and data
1824  * @event: the even to update
1825  * @type: the type of event
1826  * @length: the size of the event field in the ring buffer
1827  *
1828  * Update the type and data fields of the event. The length
1829  * is the actual size that is written to the ring buffer,
1830  * and with this, we can determine what to place into the
1831  * data field.
1832  */
1833 static void
1834 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1835 		struct ring_buffer_event *event, unsigned length,
1836 		int add_timestamp, u64 delta)
1837 {
1838 	/* Only a commit updates the timestamp */
1839 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1840 		delta = 0;
1841 
1842 	/*
1843 	 * If we need to add a timestamp, then we
1844 	 * add it to the start of the resevered space.
1845 	 */
1846 	if (unlikely(add_timestamp)) {
1847 		event = rb_add_time_stamp(event, delta);
1848 		length -= RB_LEN_TIME_EXTEND;
1849 		delta = 0;
1850 	}
1851 
1852 	event->time_delta = delta;
1853 	length -= RB_EVNT_HDR_SIZE;
1854 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1855 		event->type_len = 0;
1856 		event->array[0] = length;
1857 	} else
1858 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1859 }
1860 
1861 /*
1862  * rb_handle_head_page - writer hit the head page
1863  *
1864  * Returns: +1 to retry page
1865  *           0 to continue
1866  *          -1 on error
1867  */
1868 static int
1869 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1870 		    struct buffer_page *tail_page,
1871 		    struct buffer_page *next_page)
1872 {
1873 	struct buffer_page *new_head;
1874 	int entries;
1875 	int type;
1876 	int ret;
1877 
1878 	entries = rb_page_entries(next_page);
1879 
1880 	/*
1881 	 * The hard part is here. We need to move the head
1882 	 * forward, and protect against both readers on
1883 	 * other CPUs and writers coming in via interrupts.
1884 	 */
1885 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1886 				       RB_PAGE_HEAD);
1887 
1888 	/*
1889 	 * type can be one of four:
1890 	 *  NORMAL - an interrupt already moved it for us
1891 	 *  HEAD   - we are the first to get here.
1892 	 *  UPDATE - we are the interrupt interrupting
1893 	 *           a current move.
1894 	 *  MOVED  - a reader on another CPU moved the next
1895 	 *           pointer to its reader page. Give up
1896 	 *           and try again.
1897 	 */
1898 
1899 	switch (type) {
1900 	case RB_PAGE_HEAD:
1901 		/*
1902 		 * We changed the head to UPDATE, thus
1903 		 * it is our responsibility to update
1904 		 * the counters.
1905 		 */
1906 		local_add(entries, &cpu_buffer->overrun);
1907 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1908 
1909 		/*
1910 		 * The entries will be zeroed out when we move the
1911 		 * tail page.
1912 		 */
1913 
1914 		/* still more to do */
1915 		break;
1916 
1917 	case RB_PAGE_UPDATE:
1918 		/*
1919 		 * This is an interrupt that interrupt the
1920 		 * previous update. Still more to do.
1921 		 */
1922 		break;
1923 	case RB_PAGE_NORMAL:
1924 		/*
1925 		 * An interrupt came in before the update
1926 		 * and processed this for us.
1927 		 * Nothing left to do.
1928 		 */
1929 		return 1;
1930 	case RB_PAGE_MOVED:
1931 		/*
1932 		 * The reader is on another CPU and just did
1933 		 * a swap with our next_page.
1934 		 * Try again.
1935 		 */
1936 		return 1;
1937 	default:
1938 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1939 		return -1;
1940 	}
1941 
1942 	/*
1943 	 * Now that we are here, the old head pointer is
1944 	 * set to UPDATE. This will keep the reader from
1945 	 * swapping the head page with the reader page.
1946 	 * The reader (on another CPU) will spin till
1947 	 * we are finished.
1948 	 *
1949 	 * We just need to protect against interrupts
1950 	 * doing the job. We will set the next pointer
1951 	 * to HEAD. After that, we set the old pointer
1952 	 * to NORMAL, but only if it was HEAD before.
1953 	 * otherwise we are an interrupt, and only
1954 	 * want the outer most commit to reset it.
1955 	 */
1956 	new_head = next_page;
1957 	rb_inc_page(cpu_buffer, &new_head);
1958 
1959 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1960 				    RB_PAGE_NORMAL);
1961 
1962 	/*
1963 	 * Valid returns are:
1964 	 *  HEAD   - an interrupt came in and already set it.
1965 	 *  NORMAL - One of two things:
1966 	 *            1) We really set it.
1967 	 *            2) A bunch of interrupts came in and moved
1968 	 *               the page forward again.
1969 	 */
1970 	switch (ret) {
1971 	case RB_PAGE_HEAD:
1972 	case RB_PAGE_NORMAL:
1973 		/* OK */
1974 		break;
1975 	default:
1976 		RB_WARN_ON(cpu_buffer, 1);
1977 		return -1;
1978 	}
1979 
1980 	/*
1981 	 * It is possible that an interrupt came in,
1982 	 * set the head up, then more interrupts came in
1983 	 * and moved it again. When we get back here,
1984 	 * the page would have been set to NORMAL but we
1985 	 * just set it back to HEAD.
1986 	 *
1987 	 * How do you detect this? Well, if that happened
1988 	 * the tail page would have moved.
1989 	 */
1990 	if (ret == RB_PAGE_NORMAL) {
1991 		/*
1992 		 * If the tail had moved passed next, then we need
1993 		 * to reset the pointer.
1994 		 */
1995 		if (cpu_buffer->tail_page != tail_page &&
1996 		    cpu_buffer->tail_page != next_page)
1997 			rb_head_page_set_normal(cpu_buffer, new_head,
1998 						next_page,
1999 						RB_PAGE_HEAD);
2000 	}
2001 
2002 	/*
2003 	 * If this was the outer most commit (the one that
2004 	 * changed the original pointer from HEAD to UPDATE),
2005 	 * then it is up to us to reset it to NORMAL.
2006 	 */
2007 	if (type == RB_PAGE_HEAD) {
2008 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2009 					      tail_page,
2010 					      RB_PAGE_UPDATE);
2011 		if (RB_WARN_ON(cpu_buffer,
2012 			       ret != RB_PAGE_UPDATE))
2013 			return -1;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 static unsigned rb_calculate_event_length(unsigned length)
2020 {
2021 	struct ring_buffer_event event; /* Used only for sizeof array */
2022 
2023 	/* zero length can cause confusions */
2024 	if (!length)
2025 		length = 1;
2026 
2027 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2028 		length += sizeof(event.array[0]);
2029 
2030 	length += RB_EVNT_HDR_SIZE;
2031 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2032 
2033 	return length;
2034 }
2035 
2036 static inline void
2037 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2038 	      struct buffer_page *tail_page,
2039 	      unsigned long tail, unsigned long length)
2040 {
2041 	struct ring_buffer_event *event;
2042 
2043 	/*
2044 	 * Only the event that crossed the page boundary
2045 	 * must fill the old tail_page with padding.
2046 	 */
2047 	if (tail >= BUF_PAGE_SIZE) {
2048 		/*
2049 		 * If the page was filled, then we still need
2050 		 * to update the real_end. Reset it to zero
2051 		 * and the reader will ignore it.
2052 		 */
2053 		if (tail == BUF_PAGE_SIZE)
2054 			tail_page->real_end = 0;
2055 
2056 		local_sub(length, &tail_page->write);
2057 		return;
2058 	}
2059 
2060 	event = __rb_page_index(tail_page, tail);
2061 	kmemcheck_annotate_bitfield(event, bitfield);
2062 
2063 	/* account for padding bytes */
2064 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2065 
2066 	/*
2067 	 * Save the original length to the meta data.
2068 	 * This will be used by the reader to add lost event
2069 	 * counter.
2070 	 */
2071 	tail_page->real_end = tail;
2072 
2073 	/*
2074 	 * If this event is bigger than the minimum size, then
2075 	 * we need to be careful that we don't subtract the
2076 	 * write counter enough to allow another writer to slip
2077 	 * in on this page.
2078 	 * We put in a discarded commit instead, to make sure
2079 	 * that this space is not used again.
2080 	 *
2081 	 * If we are less than the minimum size, we don't need to
2082 	 * worry about it.
2083 	 */
2084 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2085 		/* No room for any events */
2086 
2087 		/* Mark the rest of the page with padding */
2088 		rb_event_set_padding(event);
2089 
2090 		/* Set the write back to the previous setting */
2091 		local_sub(length, &tail_page->write);
2092 		return;
2093 	}
2094 
2095 	/* Put in a discarded event */
2096 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2097 	event->type_len = RINGBUF_TYPE_PADDING;
2098 	/* time delta must be non zero */
2099 	event->time_delta = 1;
2100 
2101 	/* Set write to end of buffer */
2102 	length = (tail + length) - BUF_PAGE_SIZE;
2103 	local_sub(length, &tail_page->write);
2104 }
2105 
2106 /*
2107  * This is the slow path, force gcc not to inline it.
2108  */
2109 static noinline struct ring_buffer_event *
2110 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2111 	     unsigned long length, unsigned long tail,
2112 	     struct buffer_page *tail_page, u64 ts)
2113 {
2114 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2115 	struct ring_buffer *buffer = cpu_buffer->buffer;
2116 	struct buffer_page *next_page;
2117 	int ret;
2118 
2119 	next_page = tail_page;
2120 
2121 	rb_inc_page(cpu_buffer, &next_page);
2122 
2123 	/*
2124 	 * If for some reason, we had an interrupt storm that made
2125 	 * it all the way around the buffer, bail, and warn
2126 	 * about it.
2127 	 */
2128 	if (unlikely(next_page == commit_page)) {
2129 		local_inc(&cpu_buffer->commit_overrun);
2130 		goto out_reset;
2131 	}
2132 
2133 	/*
2134 	 * This is where the fun begins!
2135 	 *
2136 	 * We are fighting against races between a reader that
2137 	 * could be on another CPU trying to swap its reader
2138 	 * page with the buffer head.
2139 	 *
2140 	 * We are also fighting against interrupts coming in and
2141 	 * moving the head or tail on us as well.
2142 	 *
2143 	 * If the next page is the head page then we have filled
2144 	 * the buffer, unless the commit page is still on the
2145 	 * reader page.
2146 	 */
2147 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2148 
2149 		/*
2150 		 * If the commit is not on the reader page, then
2151 		 * move the header page.
2152 		 */
2153 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2154 			/*
2155 			 * If we are not in overwrite mode,
2156 			 * this is easy, just stop here.
2157 			 */
2158 			if (!(buffer->flags & RB_FL_OVERWRITE))
2159 				goto out_reset;
2160 
2161 			ret = rb_handle_head_page(cpu_buffer,
2162 						  tail_page,
2163 						  next_page);
2164 			if (ret < 0)
2165 				goto out_reset;
2166 			if (ret)
2167 				goto out_again;
2168 		} else {
2169 			/*
2170 			 * We need to be careful here too. The
2171 			 * commit page could still be on the reader
2172 			 * page. We could have a small buffer, and
2173 			 * have filled up the buffer with events
2174 			 * from interrupts and such, and wrapped.
2175 			 *
2176 			 * Note, if the tail page is also the on the
2177 			 * reader_page, we let it move out.
2178 			 */
2179 			if (unlikely((cpu_buffer->commit_page !=
2180 				      cpu_buffer->tail_page) &&
2181 				     (cpu_buffer->commit_page ==
2182 				      cpu_buffer->reader_page))) {
2183 				local_inc(&cpu_buffer->commit_overrun);
2184 				goto out_reset;
2185 			}
2186 		}
2187 	}
2188 
2189 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2190 	if (ret) {
2191 		/*
2192 		 * Nested commits always have zero deltas, so
2193 		 * just reread the time stamp
2194 		 */
2195 		ts = rb_time_stamp(buffer);
2196 		next_page->page->time_stamp = ts;
2197 	}
2198 
2199  out_again:
2200 
2201 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2202 
2203 	/* fail and let the caller try again */
2204 	return ERR_PTR(-EAGAIN);
2205 
2206  out_reset:
2207 	/* reset write */
2208 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2209 
2210 	return NULL;
2211 }
2212 
2213 static struct ring_buffer_event *
2214 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2215 		  unsigned long length, u64 ts,
2216 		  u64 delta, int add_timestamp)
2217 {
2218 	struct buffer_page *tail_page;
2219 	struct ring_buffer_event *event;
2220 	unsigned long tail, write;
2221 
2222 	/*
2223 	 * If the time delta since the last event is too big to
2224 	 * hold in the time field of the event, then we append a
2225 	 * TIME EXTEND event ahead of the data event.
2226 	 */
2227 	if (unlikely(add_timestamp))
2228 		length += RB_LEN_TIME_EXTEND;
2229 
2230 	tail_page = cpu_buffer->tail_page;
2231 	write = local_add_return(length, &tail_page->write);
2232 
2233 	/* set write to only the index of the write */
2234 	write &= RB_WRITE_MASK;
2235 	tail = write - length;
2236 
2237 	/* See if we shot pass the end of this buffer page */
2238 	if (unlikely(write > BUF_PAGE_SIZE))
2239 		return rb_move_tail(cpu_buffer, length, tail,
2240 				    tail_page, ts);
2241 
2242 	/* We reserved something on the buffer */
2243 
2244 	event = __rb_page_index(tail_page, tail);
2245 	kmemcheck_annotate_bitfield(event, bitfield);
2246 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2247 
2248 	local_inc(&tail_page->entries);
2249 
2250 	/*
2251 	 * If this is the first commit on the page, then update
2252 	 * its timestamp.
2253 	 */
2254 	if (!tail)
2255 		tail_page->page->time_stamp = ts;
2256 
2257 	/* account for these added bytes */
2258 	local_add(length, &cpu_buffer->entries_bytes);
2259 
2260 	return event;
2261 }
2262 
2263 static inline int
2264 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2265 		  struct ring_buffer_event *event)
2266 {
2267 	unsigned long new_index, old_index;
2268 	struct buffer_page *bpage;
2269 	unsigned long index;
2270 	unsigned long addr;
2271 
2272 	new_index = rb_event_index(event);
2273 	old_index = new_index + rb_event_ts_length(event);
2274 	addr = (unsigned long)event;
2275 	addr &= PAGE_MASK;
2276 
2277 	bpage = cpu_buffer->tail_page;
2278 
2279 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2280 		unsigned long write_mask =
2281 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2282 		unsigned long event_length = rb_event_length(event);
2283 		/*
2284 		 * This is on the tail page. It is possible that
2285 		 * a write could come in and move the tail page
2286 		 * and write to the next page. That is fine
2287 		 * because we just shorten what is on this page.
2288 		 */
2289 		old_index += write_mask;
2290 		new_index += write_mask;
2291 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2292 		if (index == old_index) {
2293 			/* update counters */
2294 			local_sub(event_length, &cpu_buffer->entries_bytes);
2295 			return 1;
2296 		}
2297 	}
2298 
2299 	/* could not discard */
2300 	return 0;
2301 }
2302 
2303 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2304 {
2305 	local_inc(&cpu_buffer->committing);
2306 	local_inc(&cpu_buffer->commits);
2307 }
2308 
2309 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2310 {
2311 	unsigned long commits;
2312 
2313 	if (RB_WARN_ON(cpu_buffer,
2314 		       !local_read(&cpu_buffer->committing)))
2315 		return;
2316 
2317  again:
2318 	commits = local_read(&cpu_buffer->commits);
2319 	/* synchronize with interrupts */
2320 	barrier();
2321 	if (local_read(&cpu_buffer->committing) == 1)
2322 		rb_set_commit_to_write(cpu_buffer);
2323 
2324 	local_dec(&cpu_buffer->committing);
2325 
2326 	/* synchronize with interrupts */
2327 	barrier();
2328 
2329 	/*
2330 	 * Need to account for interrupts coming in between the
2331 	 * updating of the commit page and the clearing of the
2332 	 * committing counter.
2333 	 */
2334 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2335 	    !local_read(&cpu_buffer->committing)) {
2336 		local_inc(&cpu_buffer->committing);
2337 		goto again;
2338 	}
2339 }
2340 
2341 static struct ring_buffer_event *
2342 rb_reserve_next_event(struct ring_buffer *buffer,
2343 		      struct ring_buffer_per_cpu *cpu_buffer,
2344 		      unsigned long length)
2345 {
2346 	struct ring_buffer_event *event;
2347 	u64 ts, delta;
2348 	int nr_loops = 0;
2349 	int add_timestamp;
2350 	u64 diff;
2351 
2352 	rb_start_commit(cpu_buffer);
2353 
2354 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2355 	/*
2356 	 * Due to the ability to swap a cpu buffer from a buffer
2357 	 * it is possible it was swapped before we committed.
2358 	 * (committing stops a swap). We check for it here and
2359 	 * if it happened, we have to fail the write.
2360 	 */
2361 	barrier();
2362 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2363 		local_dec(&cpu_buffer->committing);
2364 		local_dec(&cpu_buffer->commits);
2365 		return NULL;
2366 	}
2367 #endif
2368 
2369 	length = rb_calculate_event_length(length);
2370  again:
2371 	add_timestamp = 0;
2372 	delta = 0;
2373 
2374 	/*
2375 	 * We allow for interrupts to reenter here and do a trace.
2376 	 * If one does, it will cause this original code to loop
2377 	 * back here. Even with heavy interrupts happening, this
2378 	 * should only happen a few times in a row. If this happens
2379 	 * 1000 times in a row, there must be either an interrupt
2380 	 * storm or we have something buggy.
2381 	 * Bail!
2382 	 */
2383 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2384 		goto out_fail;
2385 
2386 	ts = rb_time_stamp(cpu_buffer->buffer);
2387 	diff = ts - cpu_buffer->write_stamp;
2388 
2389 	/* make sure this diff is calculated here */
2390 	barrier();
2391 
2392 	/* Did the write stamp get updated already? */
2393 	if (likely(ts >= cpu_buffer->write_stamp)) {
2394 		delta = diff;
2395 		if (unlikely(test_time_stamp(delta))) {
2396 			int local_clock_stable = 1;
2397 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2398 			local_clock_stable = sched_clock_stable;
2399 #endif
2400 			WARN_ONCE(delta > (1ULL << 59),
2401 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2402 				  (unsigned long long)delta,
2403 				  (unsigned long long)ts,
2404 				  (unsigned long long)cpu_buffer->write_stamp,
2405 				  local_clock_stable ? "" :
2406 				  "If you just came from a suspend/resume,\n"
2407 				  "please switch to the trace global clock:\n"
2408 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2409 			add_timestamp = 1;
2410 		}
2411 	}
2412 
2413 	event = __rb_reserve_next(cpu_buffer, length, ts,
2414 				  delta, add_timestamp);
2415 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2416 		goto again;
2417 
2418 	if (!event)
2419 		goto out_fail;
2420 
2421 	return event;
2422 
2423  out_fail:
2424 	rb_end_commit(cpu_buffer);
2425 	return NULL;
2426 }
2427 
2428 #ifdef CONFIG_TRACING
2429 
2430 #define TRACE_RECURSIVE_DEPTH 16
2431 
2432 /* Keep this code out of the fast path cache */
2433 static noinline void trace_recursive_fail(void)
2434 {
2435 	/* Disable all tracing before we do anything else */
2436 	tracing_off_permanent();
2437 
2438 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2439 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2440 		    trace_recursion_buffer(),
2441 		    hardirq_count() >> HARDIRQ_SHIFT,
2442 		    softirq_count() >> SOFTIRQ_SHIFT,
2443 		    in_nmi());
2444 
2445 	WARN_ON_ONCE(1);
2446 }
2447 
2448 static inline int trace_recursive_lock(void)
2449 {
2450 	trace_recursion_inc();
2451 
2452 	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2453 		return 0;
2454 
2455 	trace_recursive_fail();
2456 
2457 	return -1;
2458 }
2459 
2460 static inline void trace_recursive_unlock(void)
2461 {
2462 	WARN_ON_ONCE(!trace_recursion_buffer());
2463 
2464 	trace_recursion_dec();
2465 }
2466 
2467 #else
2468 
2469 #define trace_recursive_lock()		(0)
2470 #define trace_recursive_unlock()	do { } while (0)
2471 
2472 #endif
2473 
2474 /**
2475  * ring_buffer_lock_reserve - reserve a part of the buffer
2476  * @buffer: the ring buffer to reserve from
2477  * @length: the length of the data to reserve (excluding event header)
2478  *
2479  * Returns a reseverd event on the ring buffer to copy directly to.
2480  * The user of this interface will need to get the body to write into
2481  * and can use the ring_buffer_event_data() interface.
2482  *
2483  * The length is the length of the data needed, not the event length
2484  * which also includes the event header.
2485  *
2486  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2487  * If NULL is returned, then nothing has been allocated or locked.
2488  */
2489 struct ring_buffer_event *
2490 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2491 {
2492 	struct ring_buffer_per_cpu *cpu_buffer;
2493 	struct ring_buffer_event *event;
2494 	int cpu;
2495 
2496 	if (ring_buffer_flags != RB_BUFFERS_ON)
2497 		return NULL;
2498 
2499 	/* If we are tracing schedule, we don't want to recurse */
2500 	preempt_disable_notrace();
2501 
2502 	if (atomic_read(&buffer->record_disabled))
2503 		goto out_nocheck;
2504 
2505 	if (trace_recursive_lock())
2506 		goto out_nocheck;
2507 
2508 	cpu = raw_smp_processor_id();
2509 
2510 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2511 		goto out;
2512 
2513 	cpu_buffer = buffer->buffers[cpu];
2514 
2515 	if (atomic_read(&cpu_buffer->record_disabled))
2516 		goto out;
2517 
2518 	if (length > BUF_MAX_DATA_SIZE)
2519 		goto out;
2520 
2521 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2522 	if (!event)
2523 		goto out;
2524 
2525 	return event;
2526 
2527  out:
2528 	trace_recursive_unlock();
2529 
2530  out_nocheck:
2531 	preempt_enable_notrace();
2532 	return NULL;
2533 }
2534 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2535 
2536 static void
2537 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2538 		      struct ring_buffer_event *event)
2539 {
2540 	u64 delta;
2541 
2542 	/*
2543 	 * The event first in the commit queue updates the
2544 	 * time stamp.
2545 	 */
2546 	if (rb_event_is_commit(cpu_buffer, event)) {
2547 		/*
2548 		 * A commit event that is first on a page
2549 		 * updates the write timestamp with the page stamp
2550 		 */
2551 		if (!rb_event_index(event))
2552 			cpu_buffer->write_stamp =
2553 				cpu_buffer->commit_page->page->time_stamp;
2554 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2555 			delta = event->array[0];
2556 			delta <<= TS_SHIFT;
2557 			delta += event->time_delta;
2558 			cpu_buffer->write_stamp += delta;
2559 		} else
2560 			cpu_buffer->write_stamp += event->time_delta;
2561 	}
2562 }
2563 
2564 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2565 		      struct ring_buffer_event *event)
2566 {
2567 	local_inc(&cpu_buffer->entries);
2568 	rb_update_write_stamp(cpu_buffer, event);
2569 	rb_end_commit(cpu_buffer);
2570 }
2571 
2572 /**
2573  * ring_buffer_unlock_commit - commit a reserved
2574  * @buffer: The buffer to commit to
2575  * @event: The event pointer to commit.
2576  *
2577  * This commits the data to the ring buffer, and releases any locks held.
2578  *
2579  * Must be paired with ring_buffer_lock_reserve.
2580  */
2581 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2582 			      struct ring_buffer_event *event)
2583 {
2584 	struct ring_buffer_per_cpu *cpu_buffer;
2585 	int cpu = raw_smp_processor_id();
2586 
2587 	cpu_buffer = buffer->buffers[cpu];
2588 
2589 	rb_commit(cpu_buffer, event);
2590 
2591 	trace_recursive_unlock();
2592 
2593 	preempt_enable_notrace();
2594 
2595 	return 0;
2596 }
2597 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2598 
2599 static inline void rb_event_discard(struct ring_buffer_event *event)
2600 {
2601 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2602 		event = skip_time_extend(event);
2603 
2604 	/* array[0] holds the actual length for the discarded event */
2605 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2606 	event->type_len = RINGBUF_TYPE_PADDING;
2607 	/* time delta must be non zero */
2608 	if (!event->time_delta)
2609 		event->time_delta = 1;
2610 }
2611 
2612 /*
2613  * Decrement the entries to the page that an event is on.
2614  * The event does not even need to exist, only the pointer
2615  * to the page it is on. This may only be called before the commit
2616  * takes place.
2617  */
2618 static inline void
2619 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2620 		   struct ring_buffer_event *event)
2621 {
2622 	unsigned long addr = (unsigned long)event;
2623 	struct buffer_page *bpage = cpu_buffer->commit_page;
2624 	struct buffer_page *start;
2625 
2626 	addr &= PAGE_MASK;
2627 
2628 	/* Do the likely case first */
2629 	if (likely(bpage->page == (void *)addr)) {
2630 		local_dec(&bpage->entries);
2631 		return;
2632 	}
2633 
2634 	/*
2635 	 * Because the commit page may be on the reader page we
2636 	 * start with the next page and check the end loop there.
2637 	 */
2638 	rb_inc_page(cpu_buffer, &bpage);
2639 	start = bpage;
2640 	do {
2641 		if (bpage->page == (void *)addr) {
2642 			local_dec(&bpage->entries);
2643 			return;
2644 		}
2645 		rb_inc_page(cpu_buffer, &bpage);
2646 	} while (bpage != start);
2647 
2648 	/* commit not part of this buffer?? */
2649 	RB_WARN_ON(cpu_buffer, 1);
2650 }
2651 
2652 /**
2653  * ring_buffer_commit_discard - discard an event that has not been committed
2654  * @buffer: the ring buffer
2655  * @event: non committed event to discard
2656  *
2657  * Sometimes an event that is in the ring buffer needs to be ignored.
2658  * This function lets the user discard an event in the ring buffer
2659  * and then that event will not be read later.
2660  *
2661  * This function only works if it is called before the the item has been
2662  * committed. It will try to free the event from the ring buffer
2663  * if another event has not been added behind it.
2664  *
2665  * If another event has been added behind it, it will set the event
2666  * up as discarded, and perform the commit.
2667  *
2668  * If this function is called, do not call ring_buffer_unlock_commit on
2669  * the event.
2670  */
2671 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2672 				struct ring_buffer_event *event)
2673 {
2674 	struct ring_buffer_per_cpu *cpu_buffer;
2675 	int cpu;
2676 
2677 	/* The event is discarded regardless */
2678 	rb_event_discard(event);
2679 
2680 	cpu = smp_processor_id();
2681 	cpu_buffer = buffer->buffers[cpu];
2682 
2683 	/*
2684 	 * This must only be called if the event has not been
2685 	 * committed yet. Thus we can assume that preemption
2686 	 * is still disabled.
2687 	 */
2688 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2689 
2690 	rb_decrement_entry(cpu_buffer, event);
2691 	if (rb_try_to_discard(cpu_buffer, event))
2692 		goto out;
2693 
2694 	/*
2695 	 * The commit is still visible by the reader, so we
2696 	 * must still update the timestamp.
2697 	 */
2698 	rb_update_write_stamp(cpu_buffer, event);
2699  out:
2700 	rb_end_commit(cpu_buffer);
2701 
2702 	trace_recursive_unlock();
2703 
2704 	preempt_enable_notrace();
2705 
2706 }
2707 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2708 
2709 /**
2710  * ring_buffer_write - write data to the buffer without reserving
2711  * @buffer: The ring buffer to write to.
2712  * @length: The length of the data being written (excluding the event header)
2713  * @data: The data to write to the buffer.
2714  *
2715  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2716  * one function. If you already have the data to write to the buffer, it
2717  * may be easier to simply call this function.
2718  *
2719  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2720  * and not the length of the event which would hold the header.
2721  */
2722 int ring_buffer_write(struct ring_buffer *buffer,
2723 			unsigned long length,
2724 			void *data)
2725 {
2726 	struct ring_buffer_per_cpu *cpu_buffer;
2727 	struct ring_buffer_event *event;
2728 	void *body;
2729 	int ret = -EBUSY;
2730 	int cpu;
2731 
2732 	if (ring_buffer_flags != RB_BUFFERS_ON)
2733 		return -EBUSY;
2734 
2735 	preempt_disable_notrace();
2736 
2737 	if (atomic_read(&buffer->record_disabled))
2738 		goto out;
2739 
2740 	cpu = raw_smp_processor_id();
2741 
2742 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2743 		goto out;
2744 
2745 	cpu_buffer = buffer->buffers[cpu];
2746 
2747 	if (atomic_read(&cpu_buffer->record_disabled))
2748 		goto out;
2749 
2750 	if (length > BUF_MAX_DATA_SIZE)
2751 		goto out;
2752 
2753 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2754 	if (!event)
2755 		goto out;
2756 
2757 	body = rb_event_data(event);
2758 
2759 	memcpy(body, data, length);
2760 
2761 	rb_commit(cpu_buffer, event);
2762 
2763 	ret = 0;
2764  out:
2765 	preempt_enable_notrace();
2766 
2767 	return ret;
2768 }
2769 EXPORT_SYMBOL_GPL(ring_buffer_write);
2770 
2771 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2772 {
2773 	struct buffer_page *reader = cpu_buffer->reader_page;
2774 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2775 	struct buffer_page *commit = cpu_buffer->commit_page;
2776 
2777 	/* In case of error, head will be NULL */
2778 	if (unlikely(!head))
2779 		return 1;
2780 
2781 	return reader->read == rb_page_commit(reader) &&
2782 		(commit == reader ||
2783 		 (commit == head &&
2784 		  head->read == rb_page_commit(commit)));
2785 }
2786 
2787 /**
2788  * ring_buffer_record_disable - stop all writes into the buffer
2789  * @buffer: The ring buffer to stop writes to.
2790  *
2791  * This prevents all writes to the buffer. Any attempt to write
2792  * to the buffer after this will fail and return NULL.
2793  *
2794  * The caller should call synchronize_sched() after this.
2795  */
2796 void ring_buffer_record_disable(struct ring_buffer *buffer)
2797 {
2798 	atomic_inc(&buffer->record_disabled);
2799 }
2800 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2801 
2802 /**
2803  * ring_buffer_record_enable - enable writes to the buffer
2804  * @buffer: The ring buffer to enable writes
2805  *
2806  * Note, multiple disables will need the same number of enables
2807  * to truly enable the writing (much like preempt_disable).
2808  */
2809 void ring_buffer_record_enable(struct ring_buffer *buffer)
2810 {
2811 	atomic_dec(&buffer->record_disabled);
2812 }
2813 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2814 
2815 /**
2816  * ring_buffer_record_off - stop all writes into the buffer
2817  * @buffer: The ring buffer to stop writes to.
2818  *
2819  * This prevents all writes to the buffer. Any attempt to write
2820  * to the buffer after this will fail and return NULL.
2821  *
2822  * This is different than ring_buffer_record_disable() as
2823  * it works like an on/off switch, where as the disable() version
2824  * must be paired with a enable().
2825  */
2826 void ring_buffer_record_off(struct ring_buffer *buffer)
2827 {
2828 	unsigned int rd;
2829 	unsigned int new_rd;
2830 
2831 	do {
2832 		rd = atomic_read(&buffer->record_disabled);
2833 		new_rd = rd | RB_BUFFER_OFF;
2834 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2835 }
2836 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2837 
2838 /**
2839  * ring_buffer_record_on - restart writes into the buffer
2840  * @buffer: The ring buffer to start writes to.
2841  *
2842  * This enables all writes to the buffer that was disabled by
2843  * ring_buffer_record_off().
2844  *
2845  * This is different than ring_buffer_record_enable() as
2846  * it works like an on/off switch, where as the enable() version
2847  * must be paired with a disable().
2848  */
2849 void ring_buffer_record_on(struct ring_buffer *buffer)
2850 {
2851 	unsigned int rd;
2852 	unsigned int new_rd;
2853 
2854 	do {
2855 		rd = atomic_read(&buffer->record_disabled);
2856 		new_rd = rd & ~RB_BUFFER_OFF;
2857 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2858 }
2859 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2860 
2861 /**
2862  * ring_buffer_record_is_on - return true if the ring buffer can write
2863  * @buffer: The ring buffer to see if write is enabled
2864  *
2865  * Returns true if the ring buffer is in a state that it accepts writes.
2866  */
2867 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2868 {
2869 	return !atomic_read(&buffer->record_disabled);
2870 }
2871 
2872 /**
2873  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2874  * @buffer: The ring buffer to stop writes to.
2875  * @cpu: The CPU buffer to stop
2876  *
2877  * This prevents all writes to the buffer. Any attempt to write
2878  * to the buffer after this will fail and return NULL.
2879  *
2880  * The caller should call synchronize_sched() after this.
2881  */
2882 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2883 {
2884 	struct ring_buffer_per_cpu *cpu_buffer;
2885 
2886 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2887 		return;
2888 
2889 	cpu_buffer = buffer->buffers[cpu];
2890 	atomic_inc(&cpu_buffer->record_disabled);
2891 }
2892 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2893 
2894 /**
2895  * ring_buffer_record_enable_cpu - enable writes to the buffer
2896  * @buffer: The ring buffer to enable writes
2897  * @cpu: The CPU to enable.
2898  *
2899  * Note, multiple disables will need the same number of enables
2900  * to truly enable the writing (much like preempt_disable).
2901  */
2902 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2903 {
2904 	struct ring_buffer_per_cpu *cpu_buffer;
2905 
2906 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2907 		return;
2908 
2909 	cpu_buffer = buffer->buffers[cpu];
2910 	atomic_dec(&cpu_buffer->record_disabled);
2911 }
2912 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2913 
2914 /*
2915  * The total entries in the ring buffer is the running counter
2916  * of entries entered into the ring buffer, minus the sum of
2917  * the entries read from the ring buffer and the number of
2918  * entries that were overwritten.
2919  */
2920 static inline unsigned long
2921 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2922 {
2923 	return local_read(&cpu_buffer->entries) -
2924 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2925 }
2926 
2927 /**
2928  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2929  * @buffer: The ring buffer
2930  * @cpu: The per CPU buffer to read from.
2931  */
2932 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2933 {
2934 	unsigned long flags;
2935 	struct ring_buffer_per_cpu *cpu_buffer;
2936 	struct buffer_page *bpage;
2937 	unsigned long ret;
2938 
2939 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2940 		return 0;
2941 
2942 	cpu_buffer = buffer->buffers[cpu];
2943 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2944 	/*
2945 	 * if the tail is on reader_page, oldest time stamp is on the reader
2946 	 * page
2947 	 */
2948 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2949 		bpage = cpu_buffer->reader_page;
2950 	else
2951 		bpage = rb_set_head_page(cpu_buffer);
2952 	ret = bpage->page->time_stamp;
2953 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2954 
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2958 
2959 /**
2960  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2961  * @buffer: The ring buffer
2962  * @cpu: The per CPU buffer to read from.
2963  */
2964 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2965 {
2966 	struct ring_buffer_per_cpu *cpu_buffer;
2967 	unsigned long ret;
2968 
2969 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2970 		return 0;
2971 
2972 	cpu_buffer = buffer->buffers[cpu];
2973 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2974 
2975 	return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2978 
2979 /**
2980  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2981  * @buffer: The ring buffer
2982  * @cpu: The per CPU buffer to get the entries from.
2983  */
2984 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2985 {
2986 	struct ring_buffer_per_cpu *cpu_buffer;
2987 
2988 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2989 		return 0;
2990 
2991 	cpu_buffer = buffer->buffers[cpu];
2992 
2993 	return rb_num_of_entries(cpu_buffer);
2994 }
2995 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2996 
2997 /**
2998  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2999  * @buffer: The ring buffer
3000  * @cpu: The per CPU buffer to get the number of overruns from
3001  */
3002 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3003 {
3004 	struct ring_buffer_per_cpu *cpu_buffer;
3005 	unsigned long ret;
3006 
3007 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3008 		return 0;
3009 
3010 	cpu_buffer = buffer->buffers[cpu];
3011 	ret = local_read(&cpu_buffer->overrun);
3012 
3013 	return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3016 
3017 /**
3018  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3019  * @buffer: The ring buffer
3020  * @cpu: The per CPU buffer to get the number of overruns from
3021  */
3022 unsigned long
3023 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3024 {
3025 	struct ring_buffer_per_cpu *cpu_buffer;
3026 	unsigned long ret;
3027 
3028 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3029 		return 0;
3030 
3031 	cpu_buffer = buffer->buffers[cpu];
3032 	ret = local_read(&cpu_buffer->commit_overrun);
3033 
3034 	return ret;
3035 }
3036 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3037 
3038 /**
3039  * ring_buffer_entries - get the number of entries in a buffer
3040  * @buffer: The ring buffer
3041  *
3042  * Returns the total number of entries in the ring buffer
3043  * (all CPU entries)
3044  */
3045 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3046 {
3047 	struct ring_buffer_per_cpu *cpu_buffer;
3048 	unsigned long entries = 0;
3049 	int cpu;
3050 
3051 	/* if you care about this being correct, lock the buffer */
3052 	for_each_buffer_cpu(buffer, cpu) {
3053 		cpu_buffer = buffer->buffers[cpu];
3054 		entries += rb_num_of_entries(cpu_buffer);
3055 	}
3056 
3057 	return entries;
3058 }
3059 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3060 
3061 /**
3062  * ring_buffer_overruns - get the number of overruns in buffer
3063  * @buffer: The ring buffer
3064  *
3065  * Returns the total number of overruns in the ring buffer
3066  * (all CPU entries)
3067  */
3068 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3069 {
3070 	struct ring_buffer_per_cpu *cpu_buffer;
3071 	unsigned long overruns = 0;
3072 	int cpu;
3073 
3074 	/* if you care about this being correct, lock the buffer */
3075 	for_each_buffer_cpu(buffer, cpu) {
3076 		cpu_buffer = buffer->buffers[cpu];
3077 		overruns += local_read(&cpu_buffer->overrun);
3078 	}
3079 
3080 	return overruns;
3081 }
3082 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3083 
3084 static void rb_iter_reset(struct ring_buffer_iter *iter)
3085 {
3086 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3087 
3088 	/* Iterator usage is expected to have record disabled */
3089 	if (list_empty(&cpu_buffer->reader_page->list)) {
3090 		iter->head_page = rb_set_head_page(cpu_buffer);
3091 		if (unlikely(!iter->head_page))
3092 			return;
3093 		iter->head = iter->head_page->read;
3094 	} else {
3095 		iter->head_page = cpu_buffer->reader_page;
3096 		iter->head = cpu_buffer->reader_page->read;
3097 	}
3098 	if (iter->head)
3099 		iter->read_stamp = cpu_buffer->read_stamp;
3100 	else
3101 		iter->read_stamp = iter->head_page->page->time_stamp;
3102 	iter->cache_reader_page = cpu_buffer->reader_page;
3103 	iter->cache_read = cpu_buffer->read;
3104 }
3105 
3106 /**
3107  * ring_buffer_iter_reset - reset an iterator
3108  * @iter: The iterator to reset
3109  *
3110  * Resets the iterator, so that it will start from the beginning
3111  * again.
3112  */
3113 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3114 {
3115 	struct ring_buffer_per_cpu *cpu_buffer;
3116 	unsigned long flags;
3117 
3118 	if (!iter)
3119 		return;
3120 
3121 	cpu_buffer = iter->cpu_buffer;
3122 
3123 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3124 	rb_iter_reset(iter);
3125 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3126 }
3127 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3128 
3129 /**
3130  * ring_buffer_iter_empty - check if an iterator has no more to read
3131  * @iter: The iterator to check
3132  */
3133 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3134 {
3135 	struct ring_buffer_per_cpu *cpu_buffer;
3136 
3137 	cpu_buffer = iter->cpu_buffer;
3138 
3139 	return iter->head_page == cpu_buffer->commit_page &&
3140 		iter->head == rb_commit_index(cpu_buffer);
3141 }
3142 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3143 
3144 static void
3145 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3146 		     struct ring_buffer_event *event)
3147 {
3148 	u64 delta;
3149 
3150 	switch (event->type_len) {
3151 	case RINGBUF_TYPE_PADDING:
3152 		return;
3153 
3154 	case RINGBUF_TYPE_TIME_EXTEND:
3155 		delta = event->array[0];
3156 		delta <<= TS_SHIFT;
3157 		delta += event->time_delta;
3158 		cpu_buffer->read_stamp += delta;
3159 		return;
3160 
3161 	case RINGBUF_TYPE_TIME_STAMP:
3162 		/* FIXME: not implemented */
3163 		return;
3164 
3165 	case RINGBUF_TYPE_DATA:
3166 		cpu_buffer->read_stamp += event->time_delta;
3167 		return;
3168 
3169 	default:
3170 		BUG();
3171 	}
3172 	return;
3173 }
3174 
3175 static void
3176 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3177 			  struct ring_buffer_event *event)
3178 {
3179 	u64 delta;
3180 
3181 	switch (event->type_len) {
3182 	case RINGBUF_TYPE_PADDING:
3183 		return;
3184 
3185 	case RINGBUF_TYPE_TIME_EXTEND:
3186 		delta = event->array[0];
3187 		delta <<= TS_SHIFT;
3188 		delta += event->time_delta;
3189 		iter->read_stamp += delta;
3190 		return;
3191 
3192 	case RINGBUF_TYPE_TIME_STAMP:
3193 		/* FIXME: not implemented */
3194 		return;
3195 
3196 	case RINGBUF_TYPE_DATA:
3197 		iter->read_stamp += event->time_delta;
3198 		return;
3199 
3200 	default:
3201 		BUG();
3202 	}
3203 	return;
3204 }
3205 
3206 static struct buffer_page *
3207 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3208 {
3209 	struct buffer_page *reader = NULL;
3210 	unsigned long overwrite;
3211 	unsigned long flags;
3212 	int nr_loops = 0;
3213 	int ret;
3214 
3215 	local_irq_save(flags);
3216 	arch_spin_lock(&cpu_buffer->lock);
3217 
3218  again:
3219 	/*
3220 	 * This should normally only loop twice. But because the
3221 	 * start of the reader inserts an empty page, it causes
3222 	 * a case where we will loop three times. There should be no
3223 	 * reason to loop four times (that I know of).
3224 	 */
3225 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3226 		reader = NULL;
3227 		goto out;
3228 	}
3229 
3230 	reader = cpu_buffer->reader_page;
3231 
3232 	/* If there's more to read, return this page */
3233 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3234 		goto out;
3235 
3236 	/* Never should we have an index greater than the size */
3237 	if (RB_WARN_ON(cpu_buffer,
3238 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3239 		goto out;
3240 
3241 	/* check if we caught up to the tail */
3242 	reader = NULL;
3243 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3244 		goto out;
3245 
3246 	/* Don't bother swapping if the ring buffer is empty */
3247 	if (rb_num_of_entries(cpu_buffer) == 0)
3248 		goto out;
3249 
3250 	/*
3251 	 * Reset the reader page to size zero.
3252 	 */
3253 	local_set(&cpu_buffer->reader_page->write, 0);
3254 	local_set(&cpu_buffer->reader_page->entries, 0);
3255 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3256 	cpu_buffer->reader_page->real_end = 0;
3257 
3258  spin:
3259 	/*
3260 	 * Splice the empty reader page into the list around the head.
3261 	 */
3262 	reader = rb_set_head_page(cpu_buffer);
3263 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3264 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3265 
3266 	/*
3267 	 * cpu_buffer->pages just needs to point to the buffer, it
3268 	 *  has no specific buffer page to point to. Lets move it out
3269 	 *  of our way so we don't accidentally swap it.
3270 	 */
3271 	cpu_buffer->pages = reader->list.prev;
3272 
3273 	/* The reader page will be pointing to the new head */
3274 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3275 
3276 	/*
3277 	 * We want to make sure we read the overruns after we set up our
3278 	 * pointers to the next object. The writer side does a
3279 	 * cmpxchg to cross pages which acts as the mb on the writer
3280 	 * side. Note, the reader will constantly fail the swap
3281 	 * while the writer is updating the pointers, so this
3282 	 * guarantees that the overwrite recorded here is the one we
3283 	 * want to compare with the last_overrun.
3284 	 */
3285 	smp_mb();
3286 	overwrite = local_read(&(cpu_buffer->overrun));
3287 
3288 	/*
3289 	 * Here's the tricky part.
3290 	 *
3291 	 * We need to move the pointer past the header page.
3292 	 * But we can only do that if a writer is not currently
3293 	 * moving it. The page before the header page has the
3294 	 * flag bit '1' set if it is pointing to the page we want.
3295 	 * but if the writer is in the process of moving it
3296 	 * than it will be '2' or already moved '0'.
3297 	 */
3298 
3299 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3300 
3301 	/*
3302 	 * If we did not convert it, then we must try again.
3303 	 */
3304 	if (!ret)
3305 		goto spin;
3306 
3307 	/*
3308 	 * Yeah! We succeeded in replacing the page.
3309 	 *
3310 	 * Now make the new head point back to the reader page.
3311 	 */
3312 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3313 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3314 
3315 	/* Finally update the reader page to the new head */
3316 	cpu_buffer->reader_page = reader;
3317 	rb_reset_reader_page(cpu_buffer);
3318 
3319 	if (overwrite != cpu_buffer->last_overrun) {
3320 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3321 		cpu_buffer->last_overrun = overwrite;
3322 	}
3323 
3324 	goto again;
3325 
3326  out:
3327 	arch_spin_unlock(&cpu_buffer->lock);
3328 	local_irq_restore(flags);
3329 
3330 	return reader;
3331 }
3332 
3333 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3334 {
3335 	struct ring_buffer_event *event;
3336 	struct buffer_page *reader;
3337 	unsigned length;
3338 
3339 	reader = rb_get_reader_page(cpu_buffer);
3340 
3341 	/* This function should not be called when buffer is empty */
3342 	if (RB_WARN_ON(cpu_buffer, !reader))
3343 		return;
3344 
3345 	event = rb_reader_event(cpu_buffer);
3346 
3347 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3348 		cpu_buffer->read++;
3349 
3350 	rb_update_read_stamp(cpu_buffer, event);
3351 
3352 	length = rb_event_length(event);
3353 	cpu_buffer->reader_page->read += length;
3354 }
3355 
3356 static void rb_advance_iter(struct ring_buffer_iter *iter)
3357 {
3358 	struct ring_buffer_per_cpu *cpu_buffer;
3359 	struct ring_buffer_event *event;
3360 	unsigned length;
3361 
3362 	cpu_buffer = iter->cpu_buffer;
3363 
3364 	/*
3365 	 * Check if we are at the end of the buffer.
3366 	 */
3367 	if (iter->head >= rb_page_size(iter->head_page)) {
3368 		/* discarded commits can make the page empty */
3369 		if (iter->head_page == cpu_buffer->commit_page)
3370 			return;
3371 		rb_inc_iter(iter);
3372 		return;
3373 	}
3374 
3375 	event = rb_iter_head_event(iter);
3376 
3377 	length = rb_event_length(event);
3378 
3379 	/*
3380 	 * This should not be called to advance the header if we are
3381 	 * at the tail of the buffer.
3382 	 */
3383 	if (RB_WARN_ON(cpu_buffer,
3384 		       (iter->head_page == cpu_buffer->commit_page) &&
3385 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3386 		return;
3387 
3388 	rb_update_iter_read_stamp(iter, event);
3389 
3390 	iter->head += length;
3391 
3392 	/* check for end of page padding */
3393 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3394 	    (iter->head_page != cpu_buffer->commit_page))
3395 		rb_advance_iter(iter);
3396 }
3397 
3398 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3399 {
3400 	return cpu_buffer->lost_events;
3401 }
3402 
3403 static struct ring_buffer_event *
3404 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3405 	       unsigned long *lost_events)
3406 {
3407 	struct ring_buffer_event *event;
3408 	struct buffer_page *reader;
3409 	int nr_loops = 0;
3410 
3411  again:
3412 	/*
3413 	 * We repeat when a time extend is encountered.
3414 	 * Since the time extend is always attached to a data event,
3415 	 * we should never loop more than once.
3416 	 * (We never hit the following condition more than twice).
3417 	 */
3418 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3419 		return NULL;
3420 
3421 	reader = rb_get_reader_page(cpu_buffer);
3422 	if (!reader)
3423 		return NULL;
3424 
3425 	event = rb_reader_event(cpu_buffer);
3426 
3427 	switch (event->type_len) {
3428 	case RINGBUF_TYPE_PADDING:
3429 		if (rb_null_event(event))
3430 			RB_WARN_ON(cpu_buffer, 1);
3431 		/*
3432 		 * Because the writer could be discarding every
3433 		 * event it creates (which would probably be bad)
3434 		 * if we were to go back to "again" then we may never
3435 		 * catch up, and will trigger the warn on, or lock
3436 		 * the box. Return the padding, and we will release
3437 		 * the current locks, and try again.
3438 		 */
3439 		return event;
3440 
3441 	case RINGBUF_TYPE_TIME_EXTEND:
3442 		/* Internal data, OK to advance */
3443 		rb_advance_reader(cpu_buffer);
3444 		goto again;
3445 
3446 	case RINGBUF_TYPE_TIME_STAMP:
3447 		/* FIXME: not implemented */
3448 		rb_advance_reader(cpu_buffer);
3449 		goto again;
3450 
3451 	case RINGBUF_TYPE_DATA:
3452 		if (ts) {
3453 			*ts = cpu_buffer->read_stamp + event->time_delta;
3454 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3455 							 cpu_buffer->cpu, ts);
3456 		}
3457 		if (lost_events)
3458 			*lost_events = rb_lost_events(cpu_buffer);
3459 		return event;
3460 
3461 	default:
3462 		BUG();
3463 	}
3464 
3465 	return NULL;
3466 }
3467 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3468 
3469 static struct ring_buffer_event *
3470 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3471 {
3472 	struct ring_buffer *buffer;
3473 	struct ring_buffer_per_cpu *cpu_buffer;
3474 	struct ring_buffer_event *event;
3475 	int nr_loops = 0;
3476 
3477 	cpu_buffer = iter->cpu_buffer;
3478 	buffer = cpu_buffer->buffer;
3479 
3480 	/*
3481 	 * Check if someone performed a consuming read to
3482 	 * the buffer. A consuming read invalidates the iterator
3483 	 * and we need to reset the iterator in this case.
3484 	 */
3485 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3486 		     iter->cache_reader_page != cpu_buffer->reader_page))
3487 		rb_iter_reset(iter);
3488 
3489  again:
3490 	if (ring_buffer_iter_empty(iter))
3491 		return NULL;
3492 
3493 	/*
3494 	 * We repeat when a time extend is encountered.
3495 	 * Since the time extend is always attached to a data event,
3496 	 * we should never loop more than once.
3497 	 * (We never hit the following condition more than twice).
3498 	 */
3499 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3500 		return NULL;
3501 
3502 	if (rb_per_cpu_empty(cpu_buffer))
3503 		return NULL;
3504 
3505 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3506 		rb_inc_iter(iter);
3507 		goto again;
3508 	}
3509 
3510 	event = rb_iter_head_event(iter);
3511 
3512 	switch (event->type_len) {
3513 	case RINGBUF_TYPE_PADDING:
3514 		if (rb_null_event(event)) {
3515 			rb_inc_iter(iter);
3516 			goto again;
3517 		}
3518 		rb_advance_iter(iter);
3519 		return event;
3520 
3521 	case RINGBUF_TYPE_TIME_EXTEND:
3522 		/* Internal data, OK to advance */
3523 		rb_advance_iter(iter);
3524 		goto again;
3525 
3526 	case RINGBUF_TYPE_TIME_STAMP:
3527 		/* FIXME: not implemented */
3528 		rb_advance_iter(iter);
3529 		goto again;
3530 
3531 	case RINGBUF_TYPE_DATA:
3532 		if (ts) {
3533 			*ts = iter->read_stamp + event->time_delta;
3534 			ring_buffer_normalize_time_stamp(buffer,
3535 							 cpu_buffer->cpu, ts);
3536 		}
3537 		return event;
3538 
3539 	default:
3540 		BUG();
3541 	}
3542 
3543 	return NULL;
3544 }
3545 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3546 
3547 static inline int rb_ok_to_lock(void)
3548 {
3549 	/*
3550 	 * If an NMI die dumps out the content of the ring buffer
3551 	 * do not grab locks. We also permanently disable the ring
3552 	 * buffer too. A one time deal is all you get from reading
3553 	 * the ring buffer from an NMI.
3554 	 */
3555 	if (likely(!in_nmi()))
3556 		return 1;
3557 
3558 	tracing_off_permanent();
3559 	return 0;
3560 }
3561 
3562 /**
3563  * ring_buffer_peek - peek at the next event to be read
3564  * @buffer: The ring buffer to read
3565  * @cpu: The cpu to peak at
3566  * @ts: The timestamp counter of this event.
3567  * @lost_events: a variable to store if events were lost (may be NULL)
3568  *
3569  * This will return the event that will be read next, but does
3570  * not consume the data.
3571  */
3572 struct ring_buffer_event *
3573 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3574 		 unsigned long *lost_events)
3575 {
3576 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3577 	struct ring_buffer_event *event;
3578 	unsigned long flags;
3579 	int dolock;
3580 
3581 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3582 		return NULL;
3583 
3584 	dolock = rb_ok_to_lock();
3585  again:
3586 	local_irq_save(flags);
3587 	if (dolock)
3588 		raw_spin_lock(&cpu_buffer->reader_lock);
3589 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3590 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3591 		rb_advance_reader(cpu_buffer);
3592 	if (dolock)
3593 		raw_spin_unlock(&cpu_buffer->reader_lock);
3594 	local_irq_restore(flags);
3595 
3596 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3597 		goto again;
3598 
3599 	return event;
3600 }
3601 
3602 /**
3603  * ring_buffer_iter_peek - peek at the next event to be read
3604  * @iter: The ring buffer iterator
3605  * @ts: The timestamp counter of this event.
3606  *
3607  * This will return the event that will be read next, but does
3608  * not increment the iterator.
3609  */
3610 struct ring_buffer_event *
3611 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3612 {
3613 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3614 	struct ring_buffer_event *event;
3615 	unsigned long flags;
3616 
3617  again:
3618 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3619 	event = rb_iter_peek(iter, ts);
3620 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3621 
3622 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3623 		goto again;
3624 
3625 	return event;
3626 }
3627 
3628 /**
3629  * ring_buffer_consume - return an event and consume it
3630  * @buffer: The ring buffer to get the next event from
3631  * @cpu: the cpu to read the buffer from
3632  * @ts: a variable to store the timestamp (may be NULL)
3633  * @lost_events: a variable to store if events were lost (may be NULL)
3634  *
3635  * Returns the next event in the ring buffer, and that event is consumed.
3636  * Meaning, that sequential reads will keep returning a different event,
3637  * and eventually empty the ring buffer if the producer is slower.
3638  */
3639 struct ring_buffer_event *
3640 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3641 		    unsigned long *lost_events)
3642 {
3643 	struct ring_buffer_per_cpu *cpu_buffer;
3644 	struct ring_buffer_event *event = NULL;
3645 	unsigned long flags;
3646 	int dolock;
3647 
3648 	dolock = rb_ok_to_lock();
3649 
3650  again:
3651 	/* might be called in atomic */
3652 	preempt_disable();
3653 
3654 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3655 		goto out;
3656 
3657 	cpu_buffer = buffer->buffers[cpu];
3658 	local_irq_save(flags);
3659 	if (dolock)
3660 		raw_spin_lock(&cpu_buffer->reader_lock);
3661 
3662 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3663 	if (event) {
3664 		cpu_buffer->lost_events = 0;
3665 		rb_advance_reader(cpu_buffer);
3666 	}
3667 
3668 	if (dolock)
3669 		raw_spin_unlock(&cpu_buffer->reader_lock);
3670 	local_irq_restore(flags);
3671 
3672  out:
3673 	preempt_enable();
3674 
3675 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3676 		goto again;
3677 
3678 	return event;
3679 }
3680 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3681 
3682 /**
3683  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3684  * @buffer: The ring buffer to read from
3685  * @cpu: The cpu buffer to iterate over
3686  *
3687  * This performs the initial preparations necessary to iterate
3688  * through the buffer.  Memory is allocated, buffer recording
3689  * is disabled, and the iterator pointer is returned to the caller.
3690  *
3691  * Disabling buffer recordng prevents the reading from being
3692  * corrupted. This is not a consuming read, so a producer is not
3693  * expected.
3694  *
3695  * After a sequence of ring_buffer_read_prepare calls, the user is
3696  * expected to make at least one call to ring_buffer_prepare_sync.
3697  * Afterwards, ring_buffer_read_start is invoked to get things going
3698  * for real.
3699  *
3700  * This overall must be paired with ring_buffer_finish.
3701  */
3702 struct ring_buffer_iter *
3703 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3704 {
3705 	struct ring_buffer_per_cpu *cpu_buffer;
3706 	struct ring_buffer_iter *iter;
3707 
3708 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3709 		return NULL;
3710 
3711 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3712 	if (!iter)
3713 		return NULL;
3714 
3715 	cpu_buffer = buffer->buffers[cpu];
3716 
3717 	iter->cpu_buffer = cpu_buffer;
3718 
3719 	atomic_inc(&buffer->resize_disabled);
3720 	atomic_inc(&cpu_buffer->record_disabled);
3721 
3722 	return iter;
3723 }
3724 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3725 
3726 /**
3727  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3728  *
3729  * All previously invoked ring_buffer_read_prepare calls to prepare
3730  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3731  * calls on those iterators are allowed.
3732  */
3733 void
3734 ring_buffer_read_prepare_sync(void)
3735 {
3736 	synchronize_sched();
3737 }
3738 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3739 
3740 /**
3741  * ring_buffer_read_start - start a non consuming read of the buffer
3742  * @iter: The iterator returned by ring_buffer_read_prepare
3743  *
3744  * This finalizes the startup of an iteration through the buffer.
3745  * The iterator comes from a call to ring_buffer_read_prepare and
3746  * an intervening ring_buffer_read_prepare_sync must have been
3747  * performed.
3748  *
3749  * Must be paired with ring_buffer_finish.
3750  */
3751 void
3752 ring_buffer_read_start(struct ring_buffer_iter *iter)
3753 {
3754 	struct ring_buffer_per_cpu *cpu_buffer;
3755 	unsigned long flags;
3756 
3757 	if (!iter)
3758 		return;
3759 
3760 	cpu_buffer = iter->cpu_buffer;
3761 
3762 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3763 	arch_spin_lock(&cpu_buffer->lock);
3764 	rb_iter_reset(iter);
3765 	arch_spin_unlock(&cpu_buffer->lock);
3766 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3767 }
3768 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3769 
3770 /**
3771  * ring_buffer_finish - finish reading the iterator of the buffer
3772  * @iter: The iterator retrieved by ring_buffer_start
3773  *
3774  * This re-enables the recording to the buffer, and frees the
3775  * iterator.
3776  */
3777 void
3778 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3779 {
3780 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3781 
3782 	/*
3783 	 * Ring buffer is disabled from recording, here's a good place
3784 	 * to check the integrity of the ring buffer.
3785 	 */
3786 	rb_check_pages(cpu_buffer);
3787 
3788 	atomic_dec(&cpu_buffer->record_disabled);
3789 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3790 	kfree(iter);
3791 }
3792 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3793 
3794 /**
3795  * ring_buffer_read - read the next item in the ring buffer by the iterator
3796  * @iter: The ring buffer iterator
3797  * @ts: The time stamp of the event read.
3798  *
3799  * This reads the next event in the ring buffer and increments the iterator.
3800  */
3801 struct ring_buffer_event *
3802 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3803 {
3804 	struct ring_buffer_event *event;
3805 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3806 	unsigned long flags;
3807 
3808 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3809  again:
3810 	event = rb_iter_peek(iter, ts);
3811 	if (!event)
3812 		goto out;
3813 
3814 	if (event->type_len == RINGBUF_TYPE_PADDING)
3815 		goto again;
3816 
3817 	rb_advance_iter(iter);
3818  out:
3819 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3820 
3821 	return event;
3822 }
3823 EXPORT_SYMBOL_GPL(ring_buffer_read);
3824 
3825 /**
3826  * ring_buffer_size - return the size of the ring buffer (in bytes)
3827  * @buffer: The ring buffer.
3828  */
3829 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3830 {
3831 	/*
3832 	 * Earlier, this method returned
3833 	 *	BUF_PAGE_SIZE * buffer->nr_pages
3834 	 * Since the nr_pages field is now removed, we have converted this to
3835 	 * return the per cpu buffer value.
3836 	 */
3837 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3838 		return 0;
3839 
3840 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3841 }
3842 EXPORT_SYMBOL_GPL(ring_buffer_size);
3843 
3844 static void
3845 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3846 {
3847 	rb_head_page_deactivate(cpu_buffer);
3848 
3849 	cpu_buffer->head_page
3850 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3851 	local_set(&cpu_buffer->head_page->write, 0);
3852 	local_set(&cpu_buffer->head_page->entries, 0);
3853 	local_set(&cpu_buffer->head_page->page->commit, 0);
3854 
3855 	cpu_buffer->head_page->read = 0;
3856 
3857 	cpu_buffer->tail_page = cpu_buffer->head_page;
3858 	cpu_buffer->commit_page = cpu_buffer->head_page;
3859 
3860 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3861 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3862 	local_set(&cpu_buffer->reader_page->write, 0);
3863 	local_set(&cpu_buffer->reader_page->entries, 0);
3864 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3865 	cpu_buffer->reader_page->read = 0;
3866 
3867 	local_set(&cpu_buffer->commit_overrun, 0);
3868 	local_set(&cpu_buffer->entries_bytes, 0);
3869 	local_set(&cpu_buffer->overrun, 0);
3870 	local_set(&cpu_buffer->entries, 0);
3871 	local_set(&cpu_buffer->committing, 0);
3872 	local_set(&cpu_buffer->commits, 0);
3873 	cpu_buffer->read = 0;
3874 	cpu_buffer->read_bytes = 0;
3875 
3876 	cpu_buffer->write_stamp = 0;
3877 	cpu_buffer->read_stamp = 0;
3878 
3879 	cpu_buffer->lost_events = 0;
3880 	cpu_buffer->last_overrun = 0;
3881 
3882 	rb_head_page_activate(cpu_buffer);
3883 }
3884 
3885 /**
3886  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3887  * @buffer: The ring buffer to reset a per cpu buffer of
3888  * @cpu: The CPU buffer to be reset
3889  */
3890 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3891 {
3892 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3893 	unsigned long flags;
3894 
3895 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3896 		return;
3897 
3898 	atomic_inc(&buffer->resize_disabled);
3899 	atomic_inc(&cpu_buffer->record_disabled);
3900 
3901 	/* Make sure all commits have finished */
3902 	synchronize_sched();
3903 
3904 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3905 
3906 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3907 		goto out;
3908 
3909 	arch_spin_lock(&cpu_buffer->lock);
3910 
3911 	rb_reset_cpu(cpu_buffer);
3912 
3913 	arch_spin_unlock(&cpu_buffer->lock);
3914 
3915  out:
3916 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3917 
3918 	atomic_dec(&cpu_buffer->record_disabled);
3919 	atomic_dec(&buffer->resize_disabled);
3920 }
3921 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3922 
3923 /**
3924  * ring_buffer_reset - reset a ring buffer
3925  * @buffer: The ring buffer to reset all cpu buffers
3926  */
3927 void ring_buffer_reset(struct ring_buffer *buffer)
3928 {
3929 	int cpu;
3930 
3931 	for_each_buffer_cpu(buffer, cpu)
3932 		ring_buffer_reset_cpu(buffer, cpu);
3933 }
3934 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3935 
3936 /**
3937  * rind_buffer_empty - is the ring buffer empty?
3938  * @buffer: The ring buffer to test
3939  */
3940 int ring_buffer_empty(struct ring_buffer *buffer)
3941 {
3942 	struct ring_buffer_per_cpu *cpu_buffer;
3943 	unsigned long flags;
3944 	int dolock;
3945 	int cpu;
3946 	int ret;
3947 
3948 	dolock = rb_ok_to_lock();
3949 
3950 	/* yes this is racy, but if you don't like the race, lock the buffer */
3951 	for_each_buffer_cpu(buffer, cpu) {
3952 		cpu_buffer = buffer->buffers[cpu];
3953 		local_irq_save(flags);
3954 		if (dolock)
3955 			raw_spin_lock(&cpu_buffer->reader_lock);
3956 		ret = rb_per_cpu_empty(cpu_buffer);
3957 		if (dolock)
3958 			raw_spin_unlock(&cpu_buffer->reader_lock);
3959 		local_irq_restore(flags);
3960 
3961 		if (!ret)
3962 			return 0;
3963 	}
3964 
3965 	return 1;
3966 }
3967 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3968 
3969 /**
3970  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3971  * @buffer: The ring buffer
3972  * @cpu: The CPU buffer to test
3973  */
3974 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3975 {
3976 	struct ring_buffer_per_cpu *cpu_buffer;
3977 	unsigned long flags;
3978 	int dolock;
3979 	int ret;
3980 
3981 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982 		return 1;
3983 
3984 	dolock = rb_ok_to_lock();
3985 
3986 	cpu_buffer = buffer->buffers[cpu];
3987 	local_irq_save(flags);
3988 	if (dolock)
3989 		raw_spin_lock(&cpu_buffer->reader_lock);
3990 	ret = rb_per_cpu_empty(cpu_buffer);
3991 	if (dolock)
3992 		raw_spin_unlock(&cpu_buffer->reader_lock);
3993 	local_irq_restore(flags);
3994 
3995 	return ret;
3996 }
3997 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3998 
3999 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4000 /**
4001  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4002  * @buffer_a: One buffer to swap with
4003  * @buffer_b: The other buffer to swap with
4004  *
4005  * This function is useful for tracers that want to take a "snapshot"
4006  * of a CPU buffer and has another back up buffer lying around.
4007  * it is expected that the tracer handles the cpu buffer not being
4008  * used at the moment.
4009  */
4010 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4011 			 struct ring_buffer *buffer_b, int cpu)
4012 {
4013 	struct ring_buffer_per_cpu *cpu_buffer_a;
4014 	struct ring_buffer_per_cpu *cpu_buffer_b;
4015 	int ret = -EINVAL;
4016 
4017 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4018 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4019 		goto out;
4020 
4021 	cpu_buffer_a = buffer_a->buffers[cpu];
4022 	cpu_buffer_b = buffer_b->buffers[cpu];
4023 
4024 	/* At least make sure the two buffers are somewhat the same */
4025 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4026 		goto out;
4027 
4028 	ret = -EAGAIN;
4029 
4030 	if (ring_buffer_flags != RB_BUFFERS_ON)
4031 		goto out;
4032 
4033 	if (atomic_read(&buffer_a->record_disabled))
4034 		goto out;
4035 
4036 	if (atomic_read(&buffer_b->record_disabled))
4037 		goto out;
4038 
4039 	if (atomic_read(&cpu_buffer_a->record_disabled))
4040 		goto out;
4041 
4042 	if (atomic_read(&cpu_buffer_b->record_disabled))
4043 		goto out;
4044 
4045 	/*
4046 	 * We can't do a synchronize_sched here because this
4047 	 * function can be called in atomic context.
4048 	 * Normally this will be called from the same CPU as cpu.
4049 	 * If not it's up to the caller to protect this.
4050 	 */
4051 	atomic_inc(&cpu_buffer_a->record_disabled);
4052 	atomic_inc(&cpu_buffer_b->record_disabled);
4053 
4054 	ret = -EBUSY;
4055 	if (local_read(&cpu_buffer_a->committing))
4056 		goto out_dec;
4057 	if (local_read(&cpu_buffer_b->committing))
4058 		goto out_dec;
4059 
4060 	buffer_a->buffers[cpu] = cpu_buffer_b;
4061 	buffer_b->buffers[cpu] = cpu_buffer_a;
4062 
4063 	cpu_buffer_b->buffer = buffer_a;
4064 	cpu_buffer_a->buffer = buffer_b;
4065 
4066 	ret = 0;
4067 
4068 out_dec:
4069 	atomic_dec(&cpu_buffer_a->record_disabled);
4070 	atomic_dec(&cpu_buffer_b->record_disabled);
4071 out:
4072 	return ret;
4073 }
4074 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4075 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4076 
4077 /**
4078  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4079  * @buffer: the buffer to allocate for.
4080  *
4081  * This function is used in conjunction with ring_buffer_read_page.
4082  * When reading a full page from the ring buffer, these functions
4083  * can be used to speed up the process. The calling function should
4084  * allocate a few pages first with this function. Then when it
4085  * needs to get pages from the ring buffer, it passes the result
4086  * of this function into ring_buffer_read_page, which will swap
4087  * the page that was allocated, with the read page of the buffer.
4088  *
4089  * Returns:
4090  *  The page allocated, or NULL on error.
4091  */
4092 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4093 {
4094 	struct buffer_data_page *bpage;
4095 	struct page *page;
4096 
4097 	page = alloc_pages_node(cpu_to_node(cpu),
4098 				GFP_KERNEL | __GFP_NORETRY, 0);
4099 	if (!page)
4100 		return NULL;
4101 
4102 	bpage = page_address(page);
4103 
4104 	rb_init_page(bpage);
4105 
4106 	return bpage;
4107 }
4108 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4109 
4110 /**
4111  * ring_buffer_free_read_page - free an allocated read page
4112  * @buffer: the buffer the page was allocate for
4113  * @data: the page to free
4114  *
4115  * Free a page allocated from ring_buffer_alloc_read_page.
4116  */
4117 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4118 {
4119 	free_page((unsigned long)data);
4120 }
4121 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4122 
4123 /**
4124  * ring_buffer_read_page - extract a page from the ring buffer
4125  * @buffer: buffer to extract from
4126  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4127  * @len: amount to extract
4128  * @cpu: the cpu of the buffer to extract
4129  * @full: should the extraction only happen when the page is full.
4130  *
4131  * This function will pull out a page from the ring buffer and consume it.
4132  * @data_page must be the address of the variable that was returned
4133  * from ring_buffer_alloc_read_page. This is because the page might be used
4134  * to swap with a page in the ring buffer.
4135  *
4136  * for example:
4137  *	rpage = ring_buffer_alloc_read_page(buffer);
4138  *	if (!rpage)
4139  *		return error;
4140  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4141  *	if (ret >= 0)
4142  *		process_page(rpage, ret);
4143  *
4144  * When @full is set, the function will not return true unless
4145  * the writer is off the reader page.
4146  *
4147  * Note: it is up to the calling functions to handle sleeps and wakeups.
4148  *  The ring buffer can be used anywhere in the kernel and can not
4149  *  blindly call wake_up. The layer that uses the ring buffer must be
4150  *  responsible for that.
4151  *
4152  * Returns:
4153  *  >=0 if data has been transferred, returns the offset of consumed data.
4154  *  <0 if no data has been transferred.
4155  */
4156 int ring_buffer_read_page(struct ring_buffer *buffer,
4157 			  void **data_page, size_t len, int cpu, int full)
4158 {
4159 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4160 	struct ring_buffer_event *event;
4161 	struct buffer_data_page *bpage;
4162 	struct buffer_page *reader;
4163 	unsigned long missed_events;
4164 	unsigned long flags;
4165 	unsigned int commit;
4166 	unsigned int read;
4167 	u64 save_timestamp;
4168 	int ret = -1;
4169 
4170 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171 		goto out;
4172 
4173 	/*
4174 	 * If len is not big enough to hold the page header, then
4175 	 * we can not copy anything.
4176 	 */
4177 	if (len <= BUF_PAGE_HDR_SIZE)
4178 		goto out;
4179 
4180 	len -= BUF_PAGE_HDR_SIZE;
4181 
4182 	if (!data_page)
4183 		goto out;
4184 
4185 	bpage = *data_page;
4186 	if (!bpage)
4187 		goto out;
4188 
4189 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4190 
4191 	reader = rb_get_reader_page(cpu_buffer);
4192 	if (!reader)
4193 		goto out_unlock;
4194 
4195 	event = rb_reader_event(cpu_buffer);
4196 
4197 	read = reader->read;
4198 	commit = rb_page_commit(reader);
4199 
4200 	/* Check if any events were dropped */
4201 	missed_events = cpu_buffer->lost_events;
4202 
4203 	/*
4204 	 * If this page has been partially read or
4205 	 * if len is not big enough to read the rest of the page or
4206 	 * a writer is still on the page, then
4207 	 * we must copy the data from the page to the buffer.
4208 	 * Otherwise, we can simply swap the page with the one passed in.
4209 	 */
4210 	if (read || (len < (commit - read)) ||
4211 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4212 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4213 		unsigned int rpos = read;
4214 		unsigned int pos = 0;
4215 		unsigned int size;
4216 
4217 		if (full)
4218 			goto out_unlock;
4219 
4220 		if (len > (commit - read))
4221 			len = (commit - read);
4222 
4223 		/* Always keep the time extend and data together */
4224 		size = rb_event_ts_length(event);
4225 
4226 		if (len < size)
4227 			goto out_unlock;
4228 
4229 		/* save the current timestamp, since the user will need it */
4230 		save_timestamp = cpu_buffer->read_stamp;
4231 
4232 		/* Need to copy one event at a time */
4233 		do {
4234 			/* We need the size of one event, because
4235 			 * rb_advance_reader only advances by one event,
4236 			 * whereas rb_event_ts_length may include the size of
4237 			 * one or two events.
4238 			 * We have already ensured there's enough space if this
4239 			 * is a time extend. */
4240 			size = rb_event_length(event);
4241 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4242 
4243 			len -= size;
4244 
4245 			rb_advance_reader(cpu_buffer);
4246 			rpos = reader->read;
4247 			pos += size;
4248 
4249 			if (rpos >= commit)
4250 				break;
4251 
4252 			event = rb_reader_event(cpu_buffer);
4253 			/* Always keep the time extend and data together */
4254 			size = rb_event_ts_length(event);
4255 		} while (len >= size);
4256 
4257 		/* update bpage */
4258 		local_set(&bpage->commit, pos);
4259 		bpage->time_stamp = save_timestamp;
4260 
4261 		/* we copied everything to the beginning */
4262 		read = 0;
4263 	} else {
4264 		/* update the entry counter */
4265 		cpu_buffer->read += rb_page_entries(reader);
4266 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4267 
4268 		/* swap the pages */
4269 		rb_init_page(bpage);
4270 		bpage = reader->page;
4271 		reader->page = *data_page;
4272 		local_set(&reader->write, 0);
4273 		local_set(&reader->entries, 0);
4274 		reader->read = 0;
4275 		*data_page = bpage;
4276 
4277 		/*
4278 		 * Use the real_end for the data size,
4279 		 * This gives us a chance to store the lost events
4280 		 * on the page.
4281 		 */
4282 		if (reader->real_end)
4283 			local_set(&bpage->commit, reader->real_end);
4284 	}
4285 	ret = read;
4286 
4287 	cpu_buffer->lost_events = 0;
4288 
4289 	commit = local_read(&bpage->commit);
4290 	/*
4291 	 * Set a flag in the commit field if we lost events
4292 	 */
4293 	if (missed_events) {
4294 		/* If there is room at the end of the page to save the
4295 		 * missed events, then record it there.
4296 		 */
4297 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4298 			memcpy(&bpage->data[commit], &missed_events,
4299 			       sizeof(missed_events));
4300 			local_add(RB_MISSED_STORED, &bpage->commit);
4301 			commit += sizeof(missed_events);
4302 		}
4303 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4304 	}
4305 
4306 	/*
4307 	 * This page may be off to user land. Zero it out here.
4308 	 */
4309 	if (commit < BUF_PAGE_SIZE)
4310 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4311 
4312  out_unlock:
4313 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4314 
4315  out:
4316 	return ret;
4317 }
4318 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4319 
4320 #ifdef CONFIG_HOTPLUG_CPU
4321 static int rb_cpu_notify(struct notifier_block *self,
4322 			 unsigned long action, void *hcpu)
4323 {
4324 	struct ring_buffer *buffer =
4325 		container_of(self, struct ring_buffer, cpu_notify);
4326 	long cpu = (long)hcpu;
4327 	int cpu_i, nr_pages_same;
4328 	unsigned int nr_pages;
4329 
4330 	switch (action) {
4331 	case CPU_UP_PREPARE:
4332 	case CPU_UP_PREPARE_FROZEN:
4333 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4334 			return NOTIFY_OK;
4335 
4336 		nr_pages = 0;
4337 		nr_pages_same = 1;
4338 		/* check if all cpu sizes are same */
4339 		for_each_buffer_cpu(buffer, cpu_i) {
4340 			/* fill in the size from first enabled cpu */
4341 			if (nr_pages == 0)
4342 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4343 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4344 				nr_pages_same = 0;
4345 				break;
4346 			}
4347 		}
4348 		/* allocate minimum pages, user can later expand it */
4349 		if (!nr_pages_same)
4350 			nr_pages = 2;
4351 		buffer->buffers[cpu] =
4352 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4353 		if (!buffer->buffers[cpu]) {
4354 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4355 			     cpu);
4356 			return NOTIFY_OK;
4357 		}
4358 		smp_wmb();
4359 		cpumask_set_cpu(cpu, buffer->cpumask);
4360 		break;
4361 	case CPU_DOWN_PREPARE:
4362 	case CPU_DOWN_PREPARE_FROZEN:
4363 		/*
4364 		 * Do nothing.
4365 		 *  If we were to free the buffer, then the user would
4366 		 *  lose any trace that was in the buffer.
4367 		 */
4368 		break;
4369 	default:
4370 		break;
4371 	}
4372 	return NOTIFY_OK;
4373 }
4374 #endif
4375