1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local64.h> 31 #include <asm/local.h> 32 33 /* 34 * The "absolute" timestamp in the buffer is only 59 bits. 35 * If a clock has the 5 MSBs set, it needs to be saved and 36 * reinserted. 37 */ 38 #define TS_MSB (0xf8ULL << 56) 39 #define ABS_TS_MASK (~TS_MSB) 40 41 static void update_pages_handler(struct work_struct *work); 42 43 /* 44 * The ring buffer header is special. We must manually up keep it. 45 */ 46 int ring_buffer_print_entry_header(struct trace_seq *s) 47 { 48 trace_seq_puts(s, "# compressed entry header\n"); 49 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 50 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 51 trace_seq_puts(s, "\tarray : 32 bits\n"); 52 trace_seq_putc(s, '\n'); 53 trace_seq_printf(s, "\tpadding : type == %d\n", 54 RINGBUF_TYPE_PADDING); 55 trace_seq_printf(s, "\ttime_extend : type == %d\n", 56 RINGBUF_TYPE_TIME_EXTEND); 57 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 58 RINGBUF_TYPE_TIME_STAMP); 59 trace_seq_printf(s, "\tdata max type_len == %d\n", 60 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 61 62 return !trace_seq_has_overflowed(s); 63 } 64 65 /* 66 * The ring buffer is made up of a list of pages. A separate list of pages is 67 * allocated for each CPU. A writer may only write to a buffer that is 68 * associated with the CPU it is currently executing on. A reader may read 69 * from any per cpu buffer. 70 * 71 * The reader is special. For each per cpu buffer, the reader has its own 72 * reader page. When a reader has read the entire reader page, this reader 73 * page is swapped with another page in the ring buffer. 74 * 75 * Now, as long as the writer is off the reader page, the reader can do what 76 * ever it wants with that page. The writer will never write to that page 77 * again (as long as it is out of the ring buffer). 78 * 79 * Here's some silly ASCII art. 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page | 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * | |-->| |-->| | 97 * +---+ +---+ +---+ 98 * ^ | 99 * | | 100 * +---------------+ 101 * 102 * 103 * +------+ 104 * |reader| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | |-->| |-->| | 108 * | +---+ +---+ +---+ 109 * | | 110 * | | 111 * +------------------------------+ 112 * 113 * 114 * +------+ 115 * |buffer| RING BUFFER 116 * |page |------------------v 117 * +------+ +---+ +---+ +---+ 118 * ^ | | | |-->| | 119 * | New +---+ +---+ +---+ 120 * | Reader------^ | 121 * | page | 122 * +------------------------------+ 123 * 124 * 125 * After we make this swap, the reader can hand this page off to the splice 126 * code and be done with it. It can even allocate a new page if it needs to 127 * and swap that into the ring buffer. 128 * 129 * We will be using cmpxchg soon to make all this lockless. 130 * 131 */ 132 133 /* Used for individual buffers (after the counter) */ 134 #define RB_BUFFER_OFF (1 << 20) 135 136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 137 138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 139 #define RB_ALIGNMENT 4U 140 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 141 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 142 143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 144 # define RB_FORCE_8BYTE_ALIGNMENT 0 145 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 146 #else 147 # define RB_FORCE_8BYTE_ALIGNMENT 1 148 # define RB_ARCH_ALIGNMENT 8U 149 #endif 150 151 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 152 153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 155 156 enum { 157 RB_LEN_TIME_EXTEND = 8, 158 RB_LEN_TIME_STAMP = 8, 159 }; 160 161 #define skip_time_extend(event) \ 162 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 163 164 #define extended_time(event) \ 165 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 166 167 static inline bool rb_null_event(struct ring_buffer_event *event) 168 { 169 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 170 } 171 172 static void rb_event_set_padding(struct ring_buffer_event *event) 173 { 174 /* padding has a NULL time_delta */ 175 event->type_len = RINGBUF_TYPE_PADDING; 176 event->time_delta = 0; 177 } 178 179 static unsigned 180 rb_event_data_length(struct ring_buffer_event *event) 181 { 182 unsigned length; 183 184 if (event->type_len) 185 length = event->type_len * RB_ALIGNMENT; 186 else 187 length = event->array[0]; 188 return length + RB_EVNT_HDR_SIZE; 189 } 190 191 /* 192 * Return the length of the given event. Will return 193 * the length of the time extend if the event is a 194 * time extend. 195 */ 196 static inline unsigned 197 rb_event_length(struct ring_buffer_event *event) 198 { 199 switch (event->type_len) { 200 case RINGBUF_TYPE_PADDING: 201 if (rb_null_event(event)) 202 /* undefined */ 203 return -1; 204 return event->array[0] + RB_EVNT_HDR_SIZE; 205 206 case RINGBUF_TYPE_TIME_EXTEND: 207 return RB_LEN_TIME_EXTEND; 208 209 case RINGBUF_TYPE_TIME_STAMP: 210 return RB_LEN_TIME_STAMP; 211 212 case RINGBUF_TYPE_DATA: 213 return rb_event_data_length(event); 214 default: 215 WARN_ON_ONCE(1); 216 } 217 /* not hit */ 218 return 0; 219 } 220 221 /* 222 * Return total length of time extend and data, 223 * or just the event length for all other events. 224 */ 225 static inline unsigned 226 rb_event_ts_length(struct ring_buffer_event *event) 227 { 228 unsigned len = 0; 229 230 if (extended_time(event)) { 231 /* time extends include the data event after it */ 232 len = RB_LEN_TIME_EXTEND; 233 event = skip_time_extend(event); 234 } 235 return len + rb_event_length(event); 236 } 237 238 /** 239 * ring_buffer_event_length - return the length of the event 240 * @event: the event to get the length of 241 * 242 * Returns the size of the data load of a data event. 243 * If the event is something other than a data event, it 244 * returns the size of the event itself. With the exception 245 * of a TIME EXTEND, where it still returns the size of the 246 * data load of the data event after it. 247 */ 248 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 249 { 250 unsigned length; 251 252 if (extended_time(event)) 253 event = skip_time_extend(event); 254 255 length = rb_event_length(event); 256 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 257 return length; 258 length -= RB_EVNT_HDR_SIZE; 259 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 260 length -= sizeof(event->array[0]); 261 return length; 262 } 263 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 264 265 /* inline for ring buffer fast paths */ 266 static __always_inline void * 267 rb_event_data(struct ring_buffer_event *event) 268 { 269 if (extended_time(event)) 270 event = skip_time_extend(event); 271 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 272 /* If length is in len field, then array[0] has the data */ 273 if (event->type_len) 274 return (void *)&event->array[0]; 275 /* Otherwise length is in array[0] and array[1] has the data */ 276 return (void *)&event->array[1]; 277 } 278 279 /** 280 * ring_buffer_event_data - return the data of the event 281 * @event: the event to get the data from 282 */ 283 void *ring_buffer_event_data(struct ring_buffer_event *event) 284 { 285 return rb_event_data(event); 286 } 287 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 288 289 #define for_each_buffer_cpu(buffer, cpu) \ 290 for_each_cpu(cpu, buffer->cpumask) 291 292 #define for_each_online_buffer_cpu(buffer, cpu) \ 293 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 294 295 #define TS_SHIFT 27 296 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 297 #define TS_DELTA_TEST (~TS_MASK) 298 299 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 300 { 301 u64 ts; 302 303 ts = event->array[0]; 304 ts <<= TS_SHIFT; 305 ts += event->time_delta; 306 307 return ts; 308 } 309 310 /* Flag when events were overwritten */ 311 #define RB_MISSED_EVENTS (1 << 31) 312 /* Missed count stored at end */ 313 #define RB_MISSED_STORED (1 << 30) 314 315 struct buffer_data_page { 316 u64 time_stamp; /* page time stamp */ 317 local_t commit; /* write committed index */ 318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 319 }; 320 321 struct buffer_data_read_page { 322 unsigned order; /* order of the page */ 323 struct buffer_data_page *data; /* actual data, stored in this page */ 324 }; 325 326 /* 327 * Note, the buffer_page list must be first. The buffer pages 328 * are allocated in cache lines, which means that each buffer 329 * page will be at the beginning of a cache line, and thus 330 * the least significant bits will be zero. We use this to 331 * add flags in the list struct pointers, to make the ring buffer 332 * lockless. 333 */ 334 struct buffer_page { 335 struct list_head list; /* list of buffer pages */ 336 local_t write; /* index for next write */ 337 unsigned read; /* index for next read */ 338 local_t entries; /* entries on this page */ 339 unsigned long real_end; /* real end of data */ 340 unsigned order; /* order of the page */ 341 struct buffer_data_page *page; /* Actual data page */ 342 }; 343 344 /* 345 * The buffer page counters, write and entries, must be reset 346 * atomically when crossing page boundaries. To synchronize this 347 * update, two counters are inserted into the number. One is 348 * the actual counter for the write position or count on the page. 349 * 350 * The other is a counter of updaters. Before an update happens 351 * the update partition of the counter is incremented. This will 352 * allow the updater to update the counter atomically. 353 * 354 * The counter is 20 bits, and the state data is 12. 355 */ 356 #define RB_WRITE_MASK 0xfffff 357 #define RB_WRITE_INTCNT (1 << 20) 358 359 static void rb_init_page(struct buffer_data_page *bpage) 360 { 361 local_set(&bpage->commit, 0); 362 } 363 364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 365 { 366 return local_read(&bpage->page->commit); 367 } 368 369 static void free_buffer_page(struct buffer_page *bpage) 370 { 371 free_pages((unsigned long)bpage->page, bpage->order); 372 kfree(bpage); 373 } 374 375 /* 376 * We need to fit the time_stamp delta into 27 bits. 377 */ 378 static inline bool test_time_stamp(u64 delta) 379 { 380 return !!(delta & TS_DELTA_TEST); 381 } 382 383 struct rb_irq_work { 384 struct irq_work work; 385 wait_queue_head_t waiters; 386 wait_queue_head_t full_waiters; 387 atomic_t seq; 388 bool waiters_pending; 389 bool full_waiters_pending; 390 bool wakeup_full; 391 }; 392 393 /* 394 * Structure to hold event state and handle nested events. 395 */ 396 struct rb_event_info { 397 u64 ts; 398 u64 delta; 399 u64 before; 400 u64 after; 401 unsigned long length; 402 struct buffer_page *tail_page; 403 int add_timestamp; 404 }; 405 406 /* 407 * Used for the add_timestamp 408 * NONE 409 * EXTEND - wants a time extend 410 * ABSOLUTE - the buffer requests all events to have absolute time stamps 411 * FORCE - force a full time stamp. 412 */ 413 enum { 414 RB_ADD_STAMP_NONE = 0, 415 RB_ADD_STAMP_EXTEND = BIT(1), 416 RB_ADD_STAMP_ABSOLUTE = BIT(2), 417 RB_ADD_STAMP_FORCE = BIT(3) 418 }; 419 /* 420 * Used for which event context the event is in. 421 * TRANSITION = 0 422 * NMI = 1 423 * IRQ = 2 424 * SOFTIRQ = 3 425 * NORMAL = 4 426 * 427 * See trace_recursive_lock() comment below for more details. 428 */ 429 enum { 430 RB_CTX_TRANSITION, 431 RB_CTX_NMI, 432 RB_CTX_IRQ, 433 RB_CTX_SOFTIRQ, 434 RB_CTX_NORMAL, 435 RB_CTX_MAX 436 }; 437 438 struct rb_time_struct { 439 local64_t time; 440 }; 441 typedef struct rb_time_struct rb_time_t; 442 443 #define MAX_NEST 5 444 445 /* 446 * head_page == tail_page && head == tail then buffer is empty. 447 */ 448 struct ring_buffer_per_cpu { 449 int cpu; 450 atomic_t record_disabled; 451 atomic_t resize_disabled; 452 struct trace_buffer *buffer; 453 raw_spinlock_t reader_lock; /* serialize readers */ 454 arch_spinlock_t lock; 455 struct lock_class_key lock_key; 456 struct buffer_data_page *free_page; 457 unsigned long nr_pages; 458 unsigned int current_context; 459 struct list_head *pages; 460 struct buffer_page *head_page; /* read from head */ 461 struct buffer_page *tail_page; /* write to tail */ 462 struct buffer_page *commit_page; /* committed pages */ 463 struct buffer_page *reader_page; 464 unsigned long lost_events; 465 unsigned long last_overrun; 466 unsigned long nest; 467 local_t entries_bytes; 468 local_t entries; 469 local_t overrun; 470 local_t commit_overrun; 471 local_t dropped_events; 472 local_t committing; 473 local_t commits; 474 local_t pages_touched; 475 local_t pages_lost; 476 local_t pages_read; 477 long last_pages_touch; 478 size_t shortest_full; 479 unsigned long read; 480 unsigned long read_bytes; 481 rb_time_t write_stamp; 482 rb_time_t before_stamp; 483 u64 event_stamp[MAX_NEST]; 484 u64 read_stamp; 485 /* pages removed since last reset */ 486 unsigned long pages_removed; 487 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 488 long nr_pages_to_update; 489 struct list_head new_pages; /* new pages to add */ 490 struct work_struct update_pages_work; 491 struct completion update_done; 492 493 struct rb_irq_work irq_work; 494 }; 495 496 struct trace_buffer { 497 unsigned flags; 498 int cpus; 499 atomic_t record_disabled; 500 atomic_t resizing; 501 cpumask_var_t cpumask; 502 503 struct lock_class_key *reader_lock_key; 504 505 struct mutex mutex; 506 507 struct ring_buffer_per_cpu **buffers; 508 509 struct hlist_node node; 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 bool time_stamp_abs; 514 515 unsigned int subbuf_size; 516 unsigned int subbuf_order; 517 unsigned int max_data_size; 518 }; 519 520 struct ring_buffer_iter { 521 struct ring_buffer_per_cpu *cpu_buffer; 522 unsigned long head; 523 unsigned long next_event; 524 struct buffer_page *head_page; 525 struct buffer_page *cache_reader_page; 526 unsigned long cache_read; 527 unsigned long cache_pages_removed; 528 u64 read_stamp; 529 u64 page_stamp; 530 struct ring_buffer_event *event; 531 size_t event_size; 532 int missed_events; 533 }; 534 535 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 536 { 537 struct buffer_data_page field; 538 539 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 540 "offset:0;\tsize:%u;\tsigned:%u;\n", 541 (unsigned int)sizeof(field.time_stamp), 542 (unsigned int)is_signed_type(u64)); 543 544 trace_seq_printf(s, "\tfield: local_t commit;\t" 545 "offset:%u;\tsize:%u;\tsigned:%u;\n", 546 (unsigned int)offsetof(typeof(field), commit), 547 (unsigned int)sizeof(field.commit), 548 (unsigned int)is_signed_type(long)); 549 550 trace_seq_printf(s, "\tfield: int overwrite;\t" 551 "offset:%u;\tsize:%u;\tsigned:%u;\n", 552 (unsigned int)offsetof(typeof(field), commit), 553 1, 554 (unsigned int)is_signed_type(long)); 555 556 trace_seq_printf(s, "\tfield: char data;\t" 557 "offset:%u;\tsize:%u;\tsigned:%u;\n", 558 (unsigned int)offsetof(typeof(field), data), 559 (unsigned int)buffer->subbuf_size, 560 (unsigned int)is_signed_type(char)); 561 562 return !trace_seq_has_overflowed(s); 563 } 564 565 static inline void rb_time_read(rb_time_t *t, u64 *ret) 566 { 567 *ret = local64_read(&t->time); 568 } 569 static void rb_time_set(rb_time_t *t, u64 val) 570 { 571 local64_set(&t->time, val); 572 } 573 574 /* 575 * Enable this to make sure that the event passed to 576 * ring_buffer_event_time_stamp() is not committed and also 577 * is on the buffer that it passed in. 578 */ 579 //#define RB_VERIFY_EVENT 580 #ifdef RB_VERIFY_EVENT 581 static struct list_head *rb_list_head(struct list_head *list); 582 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 583 void *event) 584 { 585 struct buffer_page *page = cpu_buffer->commit_page; 586 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 587 struct list_head *next; 588 long commit, write; 589 unsigned long addr = (unsigned long)event; 590 bool done = false; 591 int stop = 0; 592 593 /* Make sure the event exists and is not committed yet */ 594 do { 595 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 596 done = true; 597 commit = local_read(&page->page->commit); 598 write = local_read(&page->write); 599 if (addr >= (unsigned long)&page->page->data[commit] && 600 addr < (unsigned long)&page->page->data[write]) 601 return; 602 603 next = rb_list_head(page->list.next); 604 page = list_entry(next, struct buffer_page, list); 605 } while (!done); 606 WARN_ON_ONCE(1); 607 } 608 #else 609 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 610 void *event) 611 { 612 } 613 #endif 614 615 /* 616 * The absolute time stamp drops the 5 MSBs and some clocks may 617 * require them. The rb_fix_abs_ts() will take a previous full 618 * time stamp, and add the 5 MSB of that time stamp on to the 619 * saved absolute time stamp. Then they are compared in case of 620 * the unlikely event that the latest time stamp incremented 621 * the 5 MSB. 622 */ 623 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 624 { 625 if (save_ts & TS_MSB) { 626 abs |= save_ts & TS_MSB; 627 /* Check for overflow */ 628 if (unlikely(abs < save_ts)) 629 abs += 1ULL << 59; 630 } 631 return abs; 632 } 633 634 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 635 636 /** 637 * ring_buffer_event_time_stamp - return the event's current time stamp 638 * @buffer: The buffer that the event is on 639 * @event: the event to get the time stamp of 640 * 641 * Note, this must be called after @event is reserved, and before it is 642 * committed to the ring buffer. And must be called from the same 643 * context where the event was reserved (normal, softirq, irq, etc). 644 * 645 * Returns the time stamp associated with the current event. 646 * If the event has an extended time stamp, then that is used as 647 * the time stamp to return. 648 * In the highly unlikely case that the event was nested more than 649 * the max nesting, then the write_stamp of the buffer is returned, 650 * otherwise current time is returned, but that really neither of 651 * the last two cases should ever happen. 652 */ 653 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 654 struct ring_buffer_event *event) 655 { 656 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 657 unsigned int nest; 658 u64 ts; 659 660 /* If the event includes an absolute time, then just use that */ 661 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 662 ts = rb_event_time_stamp(event); 663 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 664 } 665 666 nest = local_read(&cpu_buffer->committing); 667 verify_event(cpu_buffer, event); 668 if (WARN_ON_ONCE(!nest)) 669 goto fail; 670 671 /* Read the current saved nesting level time stamp */ 672 if (likely(--nest < MAX_NEST)) 673 return cpu_buffer->event_stamp[nest]; 674 675 /* Shouldn't happen, warn if it does */ 676 WARN_ONCE(1, "nest (%d) greater than max", nest); 677 678 fail: 679 rb_time_read(&cpu_buffer->write_stamp, &ts); 680 681 return ts; 682 } 683 684 /** 685 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 686 * @buffer: The ring_buffer to get the number of pages from 687 * @cpu: The cpu of the ring_buffer to get the number of pages from 688 * 689 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 690 */ 691 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 692 { 693 return buffer->buffers[cpu]->nr_pages; 694 } 695 696 /** 697 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 698 * @buffer: The ring_buffer to get the number of pages from 699 * @cpu: The cpu of the ring_buffer to get the number of pages from 700 * 701 * Returns the number of pages that have content in the ring buffer. 702 */ 703 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 704 { 705 size_t read; 706 size_t lost; 707 size_t cnt; 708 709 read = local_read(&buffer->buffers[cpu]->pages_read); 710 lost = local_read(&buffer->buffers[cpu]->pages_lost); 711 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 712 713 if (WARN_ON_ONCE(cnt < lost)) 714 return 0; 715 716 cnt -= lost; 717 718 /* The reader can read an empty page, but not more than that */ 719 if (cnt < read) { 720 WARN_ON_ONCE(read > cnt + 1); 721 return 0; 722 } 723 724 return cnt - read; 725 } 726 727 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 728 { 729 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 730 size_t nr_pages; 731 size_t dirty; 732 733 nr_pages = cpu_buffer->nr_pages; 734 if (!nr_pages || !full) 735 return true; 736 737 /* 738 * Add one as dirty will never equal nr_pages, as the sub-buffer 739 * that the writer is on is not counted as dirty. 740 * This is needed if "buffer_percent" is set to 100. 741 */ 742 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 743 744 return (dirty * 100) >= (full * nr_pages); 745 } 746 747 /* 748 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 749 * 750 * Schedules a delayed work to wake up any task that is blocked on the 751 * ring buffer waiters queue. 752 */ 753 static void rb_wake_up_waiters(struct irq_work *work) 754 { 755 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 756 757 /* For waiters waiting for the first wake up */ 758 (void)atomic_fetch_inc_release(&rbwork->seq); 759 760 wake_up_all(&rbwork->waiters); 761 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 762 /* Only cpu_buffer sets the above flags */ 763 struct ring_buffer_per_cpu *cpu_buffer = 764 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 765 766 /* Called from interrupt context */ 767 raw_spin_lock(&cpu_buffer->reader_lock); 768 rbwork->wakeup_full = false; 769 rbwork->full_waiters_pending = false; 770 771 /* Waking up all waiters, they will reset the shortest full */ 772 cpu_buffer->shortest_full = 0; 773 raw_spin_unlock(&cpu_buffer->reader_lock); 774 775 wake_up_all(&rbwork->full_waiters); 776 } 777 } 778 779 /** 780 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 781 * @buffer: The ring buffer to wake waiters on 782 * @cpu: The CPU buffer to wake waiters on 783 * 784 * In the case of a file that represents a ring buffer is closing, 785 * it is prudent to wake up any waiters that are on this. 786 */ 787 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 788 { 789 struct ring_buffer_per_cpu *cpu_buffer; 790 struct rb_irq_work *rbwork; 791 792 if (!buffer) 793 return; 794 795 if (cpu == RING_BUFFER_ALL_CPUS) { 796 797 /* Wake up individual ones too. One level recursion */ 798 for_each_buffer_cpu(buffer, cpu) 799 ring_buffer_wake_waiters(buffer, cpu); 800 801 rbwork = &buffer->irq_work; 802 } else { 803 if (WARN_ON_ONCE(!buffer->buffers)) 804 return; 805 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 806 return; 807 808 cpu_buffer = buffer->buffers[cpu]; 809 /* The CPU buffer may not have been initialized yet */ 810 if (!cpu_buffer) 811 return; 812 rbwork = &cpu_buffer->irq_work; 813 } 814 815 /* This can be called in any context */ 816 irq_work_queue(&rbwork->work); 817 } 818 819 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 820 { 821 struct ring_buffer_per_cpu *cpu_buffer; 822 bool ret = false; 823 824 /* Reads of all CPUs always waits for any data */ 825 if (cpu == RING_BUFFER_ALL_CPUS) 826 return !ring_buffer_empty(buffer); 827 828 cpu_buffer = buffer->buffers[cpu]; 829 830 if (!ring_buffer_empty_cpu(buffer, cpu)) { 831 unsigned long flags; 832 bool pagebusy; 833 834 if (!full) 835 return true; 836 837 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 838 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 839 ret = !pagebusy && full_hit(buffer, cpu, full); 840 841 if (!ret && (!cpu_buffer->shortest_full || 842 cpu_buffer->shortest_full > full)) { 843 cpu_buffer->shortest_full = full; 844 } 845 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 846 } 847 return ret; 848 } 849 850 static inline bool 851 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 852 int cpu, int full, ring_buffer_cond_fn cond, void *data) 853 { 854 if (rb_watermark_hit(buffer, cpu, full)) 855 return true; 856 857 if (cond(data)) 858 return true; 859 860 /* 861 * The events can happen in critical sections where 862 * checking a work queue can cause deadlocks. 863 * After adding a task to the queue, this flag is set 864 * only to notify events to try to wake up the queue 865 * using irq_work. 866 * 867 * We don't clear it even if the buffer is no longer 868 * empty. The flag only causes the next event to run 869 * irq_work to do the work queue wake up. The worse 870 * that can happen if we race with !trace_empty() is that 871 * an event will cause an irq_work to try to wake up 872 * an empty queue. 873 * 874 * There's no reason to protect this flag either, as 875 * the work queue and irq_work logic will do the necessary 876 * synchronization for the wake ups. The only thing 877 * that is necessary is that the wake up happens after 878 * a task has been queued. It's OK for spurious wake ups. 879 */ 880 if (full) 881 rbwork->full_waiters_pending = true; 882 else 883 rbwork->waiters_pending = true; 884 885 return false; 886 } 887 888 struct rb_wait_data { 889 struct rb_irq_work *irq_work; 890 int seq; 891 }; 892 893 /* 894 * The default wait condition for ring_buffer_wait() is to just to exit the 895 * wait loop the first time it is woken up. 896 */ 897 static bool rb_wait_once(void *data) 898 { 899 struct rb_wait_data *rdata = data; 900 struct rb_irq_work *rbwork = rdata->irq_work; 901 902 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 903 } 904 905 /** 906 * ring_buffer_wait - wait for input to the ring buffer 907 * @buffer: buffer to wait on 908 * @cpu: the cpu buffer to wait on 909 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 910 * @cond: condition function to break out of wait (NULL to run once) 911 * @data: the data to pass to @cond. 912 * 913 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 914 * as data is added to any of the @buffer's cpu buffers. Otherwise 915 * it will wait for data to be added to a specific cpu buffer. 916 */ 917 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 918 ring_buffer_cond_fn cond, void *data) 919 { 920 struct ring_buffer_per_cpu *cpu_buffer; 921 struct wait_queue_head *waitq; 922 struct rb_irq_work *rbwork; 923 struct rb_wait_data rdata; 924 int ret = 0; 925 926 /* 927 * Depending on what the caller is waiting for, either any 928 * data in any cpu buffer, or a specific buffer, put the 929 * caller on the appropriate wait queue. 930 */ 931 if (cpu == RING_BUFFER_ALL_CPUS) { 932 rbwork = &buffer->irq_work; 933 /* Full only makes sense on per cpu reads */ 934 full = 0; 935 } else { 936 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 937 return -ENODEV; 938 cpu_buffer = buffer->buffers[cpu]; 939 rbwork = &cpu_buffer->irq_work; 940 } 941 942 if (full) 943 waitq = &rbwork->full_waiters; 944 else 945 waitq = &rbwork->waiters; 946 947 /* Set up to exit loop as soon as it is woken */ 948 if (!cond) { 949 cond = rb_wait_once; 950 rdata.irq_work = rbwork; 951 rdata.seq = atomic_read_acquire(&rbwork->seq); 952 data = &rdata; 953 } 954 955 ret = wait_event_interruptible((*waitq), 956 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 957 958 return ret; 959 } 960 961 /** 962 * ring_buffer_poll_wait - poll on buffer input 963 * @buffer: buffer to wait on 964 * @cpu: the cpu buffer to wait on 965 * @filp: the file descriptor 966 * @poll_table: The poll descriptor 967 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 968 * 969 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 970 * as data is added to any of the @buffer's cpu buffers. Otherwise 971 * it will wait for data to be added to a specific cpu buffer. 972 * 973 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 974 * zero otherwise. 975 */ 976 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 977 struct file *filp, poll_table *poll_table, int full) 978 { 979 struct ring_buffer_per_cpu *cpu_buffer; 980 struct rb_irq_work *rbwork; 981 982 if (cpu == RING_BUFFER_ALL_CPUS) { 983 rbwork = &buffer->irq_work; 984 full = 0; 985 } else { 986 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 987 return EPOLLERR; 988 989 cpu_buffer = buffer->buffers[cpu]; 990 rbwork = &cpu_buffer->irq_work; 991 } 992 993 if (full) { 994 poll_wait(filp, &rbwork->full_waiters, poll_table); 995 996 if (rb_watermark_hit(buffer, cpu, full)) 997 return EPOLLIN | EPOLLRDNORM; 998 /* 999 * Only allow full_waiters_pending update to be seen after 1000 * the shortest_full is set (in rb_watermark_hit). If the 1001 * writer sees the full_waiters_pending flag set, it will 1002 * compare the amount in the ring buffer to shortest_full. 1003 * If the amount in the ring buffer is greater than the 1004 * shortest_full percent, it will call the irq_work handler 1005 * to wake up this list. The irq_handler will reset shortest_full 1006 * back to zero. That's done under the reader_lock, but 1007 * the below smp_mb() makes sure that the update to 1008 * full_waiters_pending doesn't leak up into the above. 1009 */ 1010 smp_mb(); 1011 rbwork->full_waiters_pending = true; 1012 return 0; 1013 } 1014 1015 poll_wait(filp, &rbwork->waiters, poll_table); 1016 rbwork->waiters_pending = true; 1017 1018 /* 1019 * There's a tight race between setting the waiters_pending and 1020 * checking if the ring buffer is empty. Once the waiters_pending bit 1021 * is set, the next event will wake the task up, but we can get stuck 1022 * if there's only a single event in. 1023 * 1024 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1025 * but adding a memory barrier to all events will cause too much of a 1026 * performance hit in the fast path. We only need a memory barrier when 1027 * the buffer goes from empty to having content. But as this race is 1028 * extremely small, and it's not a problem if another event comes in, we 1029 * will fix it later. 1030 */ 1031 smp_mb(); 1032 1033 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1034 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1035 return EPOLLIN | EPOLLRDNORM; 1036 return 0; 1037 } 1038 1039 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1040 #define RB_WARN_ON(b, cond) \ 1041 ({ \ 1042 int _____ret = unlikely(cond); \ 1043 if (_____ret) { \ 1044 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1045 struct ring_buffer_per_cpu *__b = \ 1046 (void *)b; \ 1047 atomic_inc(&__b->buffer->record_disabled); \ 1048 } else \ 1049 atomic_inc(&b->record_disabled); \ 1050 WARN_ON(1); \ 1051 } \ 1052 _____ret; \ 1053 }) 1054 1055 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1056 #define DEBUG_SHIFT 0 1057 1058 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1059 { 1060 u64 ts; 1061 1062 /* Skip retpolines :-( */ 1063 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1064 ts = trace_clock_local(); 1065 else 1066 ts = buffer->clock(); 1067 1068 /* shift to debug/test normalization and TIME_EXTENTS */ 1069 return ts << DEBUG_SHIFT; 1070 } 1071 1072 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1073 { 1074 u64 time; 1075 1076 preempt_disable_notrace(); 1077 time = rb_time_stamp(buffer); 1078 preempt_enable_notrace(); 1079 1080 return time; 1081 } 1082 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1083 1084 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1085 int cpu, u64 *ts) 1086 { 1087 /* Just stupid testing the normalize function and deltas */ 1088 *ts >>= DEBUG_SHIFT; 1089 } 1090 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1091 1092 /* 1093 * Making the ring buffer lockless makes things tricky. 1094 * Although writes only happen on the CPU that they are on, 1095 * and they only need to worry about interrupts. Reads can 1096 * happen on any CPU. 1097 * 1098 * The reader page is always off the ring buffer, but when the 1099 * reader finishes with a page, it needs to swap its page with 1100 * a new one from the buffer. The reader needs to take from 1101 * the head (writes go to the tail). But if a writer is in overwrite 1102 * mode and wraps, it must push the head page forward. 1103 * 1104 * Here lies the problem. 1105 * 1106 * The reader must be careful to replace only the head page, and 1107 * not another one. As described at the top of the file in the 1108 * ASCII art, the reader sets its old page to point to the next 1109 * page after head. It then sets the page after head to point to 1110 * the old reader page. But if the writer moves the head page 1111 * during this operation, the reader could end up with the tail. 1112 * 1113 * We use cmpxchg to help prevent this race. We also do something 1114 * special with the page before head. We set the LSB to 1. 1115 * 1116 * When the writer must push the page forward, it will clear the 1117 * bit that points to the head page, move the head, and then set 1118 * the bit that points to the new head page. 1119 * 1120 * We also don't want an interrupt coming in and moving the head 1121 * page on another writer. Thus we use the second LSB to catch 1122 * that too. Thus: 1123 * 1124 * head->list->prev->next bit 1 bit 0 1125 * ------- ------- 1126 * Normal page 0 0 1127 * Points to head page 0 1 1128 * New head page 1 0 1129 * 1130 * Note we can not trust the prev pointer of the head page, because: 1131 * 1132 * +----+ +-----+ +-----+ 1133 * | |------>| T |---X--->| N | 1134 * | |<------| | | | 1135 * +----+ +-----+ +-----+ 1136 * ^ ^ | 1137 * | +-----+ | | 1138 * +----------| R |----------+ | 1139 * | |<-----------+ 1140 * +-----+ 1141 * 1142 * Key: ---X--> HEAD flag set in pointer 1143 * T Tail page 1144 * R Reader page 1145 * N Next page 1146 * 1147 * (see __rb_reserve_next() to see where this happens) 1148 * 1149 * What the above shows is that the reader just swapped out 1150 * the reader page with a page in the buffer, but before it 1151 * could make the new header point back to the new page added 1152 * it was preempted by a writer. The writer moved forward onto 1153 * the new page added by the reader and is about to move forward 1154 * again. 1155 * 1156 * You can see, it is legitimate for the previous pointer of 1157 * the head (or any page) not to point back to itself. But only 1158 * temporarily. 1159 */ 1160 1161 #define RB_PAGE_NORMAL 0UL 1162 #define RB_PAGE_HEAD 1UL 1163 #define RB_PAGE_UPDATE 2UL 1164 1165 1166 #define RB_FLAG_MASK 3UL 1167 1168 /* PAGE_MOVED is not part of the mask */ 1169 #define RB_PAGE_MOVED 4UL 1170 1171 /* 1172 * rb_list_head - remove any bit 1173 */ 1174 static struct list_head *rb_list_head(struct list_head *list) 1175 { 1176 unsigned long val = (unsigned long)list; 1177 1178 return (struct list_head *)(val & ~RB_FLAG_MASK); 1179 } 1180 1181 /* 1182 * rb_is_head_page - test if the given page is the head page 1183 * 1184 * Because the reader may move the head_page pointer, we can 1185 * not trust what the head page is (it may be pointing to 1186 * the reader page). But if the next page is a header page, 1187 * its flags will be non zero. 1188 */ 1189 static inline int 1190 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1191 { 1192 unsigned long val; 1193 1194 val = (unsigned long)list->next; 1195 1196 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1197 return RB_PAGE_MOVED; 1198 1199 return val & RB_FLAG_MASK; 1200 } 1201 1202 /* 1203 * rb_is_reader_page 1204 * 1205 * The unique thing about the reader page, is that, if the 1206 * writer is ever on it, the previous pointer never points 1207 * back to the reader page. 1208 */ 1209 static bool rb_is_reader_page(struct buffer_page *page) 1210 { 1211 struct list_head *list = page->list.prev; 1212 1213 return rb_list_head(list->next) != &page->list; 1214 } 1215 1216 /* 1217 * rb_set_list_to_head - set a list_head to be pointing to head. 1218 */ 1219 static void rb_set_list_to_head(struct list_head *list) 1220 { 1221 unsigned long *ptr; 1222 1223 ptr = (unsigned long *)&list->next; 1224 *ptr |= RB_PAGE_HEAD; 1225 *ptr &= ~RB_PAGE_UPDATE; 1226 } 1227 1228 /* 1229 * rb_head_page_activate - sets up head page 1230 */ 1231 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1232 { 1233 struct buffer_page *head; 1234 1235 head = cpu_buffer->head_page; 1236 if (!head) 1237 return; 1238 1239 /* 1240 * Set the previous list pointer to have the HEAD flag. 1241 */ 1242 rb_set_list_to_head(head->list.prev); 1243 } 1244 1245 static void rb_list_head_clear(struct list_head *list) 1246 { 1247 unsigned long *ptr = (unsigned long *)&list->next; 1248 1249 *ptr &= ~RB_FLAG_MASK; 1250 } 1251 1252 /* 1253 * rb_head_page_deactivate - clears head page ptr (for free list) 1254 */ 1255 static void 1256 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1257 { 1258 struct list_head *hd; 1259 1260 /* Go through the whole list and clear any pointers found. */ 1261 rb_list_head_clear(cpu_buffer->pages); 1262 1263 list_for_each(hd, cpu_buffer->pages) 1264 rb_list_head_clear(hd); 1265 } 1266 1267 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1268 struct buffer_page *head, 1269 struct buffer_page *prev, 1270 int old_flag, int new_flag) 1271 { 1272 struct list_head *list; 1273 unsigned long val = (unsigned long)&head->list; 1274 unsigned long ret; 1275 1276 list = &prev->list; 1277 1278 val &= ~RB_FLAG_MASK; 1279 1280 ret = cmpxchg((unsigned long *)&list->next, 1281 val | old_flag, val | new_flag); 1282 1283 /* check if the reader took the page */ 1284 if ((ret & ~RB_FLAG_MASK) != val) 1285 return RB_PAGE_MOVED; 1286 1287 return ret & RB_FLAG_MASK; 1288 } 1289 1290 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1291 struct buffer_page *head, 1292 struct buffer_page *prev, 1293 int old_flag) 1294 { 1295 return rb_head_page_set(cpu_buffer, head, prev, 1296 old_flag, RB_PAGE_UPDATE); 1297 } 1298 1299 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1300 struct buffer_page *head, 1301 struct buffer_page *prev, 1302 int old_flag) 1303 { 1304 return rb_head_page_set(cpu_buffer, head, prev, 1305 old_flag, RB_PAGE_HEAD); 1306 } 1307 1308 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1309 struct buffer_page *head, 1310 struct buffer_page *prev, 1311 int old_flag) 1312 { 1313 return rb_head_page_set(cpu_buffer, head, prev, 1314 old_flag, RB_PAGE_NORMAL); 1315 } 1316 1317 static inline void rb_inc_page(struct buffer_page **bpage) 1318 { 1319 struct list_head *p = rb_list_head((*bpage)->list.next); 1320 1321 *bpage = list_entry(p, struct buffer_page, list); 1322 } 1323 1324 static struct buffer_page * 1325 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1326 { 1327 struct buffer_page *head; 1328 struct buffer_page *page; 1329 struct list_head *list; 1330 int i; 1331 1332 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1333 return NULL; 1334 1335 /* sanity check */ 1336 list = cpu_buffer->pages; 1337 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1338 return NULL; 1339 1340 page = head = cpu_buffer->head_page; 1341 /* 1342 * It is possible that the writer moves the header behind 1343 * where we started, and we miss in one loop. 1344 * A second loop should grab the header, but we'll do 1345 * three loops just because I'm paranoid. 1346 */ 1347 for (i = 0; i < 3; i++) { 1348 do { 1349 if (rb_is_head_page(page, page->list.prev)) { 1350 cpu_buffer->head_page = page; 1351 return page; 1352 } 1353 rb_inc_page(&page); 1354 } while (page != head); 1355 } 1356 1357 RB_WARN_ON(cpu_buffer, 1); 1358 1359 return NULL; 1360 } 1361 1362 static bool rb_head_page_replace(struct buffer_page *old, 1363 struct buffer_page *new) 1364 { 1365 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1366 unsigned long val; 1367 1368 val = *ptr & ~RB_FLAG_MASK; 1369 val |= RB_PAGE_HEAD; 1370 1371 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1372 } 1373 1374 /* 1375 * rb_tail_page_update - move the tail page forward 1376 */ 1377 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1378 struct buffer_page *tail_page, 1379 struct buffer_page *next_page) 1380 { 1381 unsigned long old_entries; 1382 unsigned long old_write; 1383 1384 /* 1385 * The tail page now needs to be moved forward. 1386 * 1387 * We need to reset the tail page, but without messing 1388 * with possible erasing of data brought in by interrupts 1389 * that have moved the tail page and are currently on it. 1390 * 1391 * We add a counter to the write field to denote this. 1392 */ 1393 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1394 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1395 1396 /* 1397 * Just make sure we have seen our old_write and synchronize 1398 * with any interrupts that come in. 1399 */ 1400 barrier(); 1401 1402 /* 1403 * If the tail page is still the same as what we think 1404 * it is, then it is up to us to update the tail 1405 * pointer. 1406 */ 1407 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1408 /* Zero the write counter */ 1409 unsigned long val = old_write & ~RB_WRITE_MASK; 1410 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1411 1412 /* 1413 * This will only succeed if an interrupt did 1414 * not come in and change it. In which case, we 1415 * do not want to modify it. 1416 * 1417 * We add (void) to let the compiler know that we do not care 1418 * about the return value of these functions. We use the 1419 * cmpxchg to only update if an interrupt did not already 1420 * do it for us. If the cmpxchg fails, we don't care. 1421 */ 1422 (void)local_cmpxchg(&next_page->write, old_write, val); 1423 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1424 1425 /* 1426 * No need to worry about races with clearing out the commit. 1427 * it only can increment when a commit takes place. But that 1428 * only happens in the outer most nested commit. 1429 */ 1430 local_set(&next_page->page->commit, 0); 1431 1432 /* Either we update tail_page or an interrupt does */ 1433 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1434 local_inc(&cpu_buffer->pages_touched); 1435 } 1436 } 1437 1438 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1439 struct buffer_page *bpage) 1440 { 1441 unsigned long val = (unsigned long)bpage; 1442 1443 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1444 } 1445 1446 /** 1447 * rb_check_pages - integrity check of buffer pages 1448 * @cpu_buffer: CPU buffer with pages to test 1449 * 1450 * As a safety measure we check to make sure the data pages have not 1451 * been corrupted. 1452 */ 1453 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1454 { 1455 struct list_head *head = rb_list_head(cpu_buffer->pages); 1456 struct list_head *tmp; 1457 1458 if (RB_WARN_ON(cpu_buffer, 1459 rb_list_head(rb_list_head(head->next)->prev) != head)) 1460 return; 1461 1462 if (RB_WARN_ON(cpu_buffer, 1463 rb_list_head(rb_list_head(head->prev)->next) != head)) 1464 return; 1465 1466 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1467 if (RB_WARN_ON(cpu_buffer, 1468 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1469 return; 1470 1471 if (RB_WARN_ON(cpu_buffer, 1472 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1473 return; 1474 } 1475 } 1476 1477 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1478 long nr_pages, struct list_head *pages) 1479 { 1480 struct buffer_page *bpage, *tmp; 1481 bool user_thread = current->mm != NULL; 1482 gfp_t mflags; 1483 long i; 1484 1485 /* 1486 * Check if the available memory is there first. 1487 * Note, si_mem_available() only gives us a rough estimate of available 1488 * memory. It may not be accurate. But we don't care, we just want 1489 * to prevent doing any allocation when it is obvious that it is 1490 * not going to succeed. 1491 */ 1492 i = si_mem_available(); 1493 if (i < nr_pages) 1494 return -ENOMEM; 1495 1496 /* 1497 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1498 * gracefully without invoking oom-killer and the system is not 1499 * destabilized. 1500 */ 1501 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1502 1503 /* 1504 * If a user thread allocates too much, and si_mem_available() 1505 * reports there's enough memory, even though there is not. 1506 * Make sure the OOM killer kills this thread. This can happen 1507 * even with RETRY_MAYFAIL because another task may be doing 1508 * an allocation after this task has taken all memory. 1509 * This is the task the OOM killer needs to take out during this 1510 * loop, even if it was triggered by an allocation somewhere else. 1511 */ 1512 if (user_thread) 1513 set_current_oom_origin(); 1514 for (i = 0; i < nr_pages; i++) { 1515 struct page *page; 1516 1517 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1518 mflags, cpu_to_node(cpu_buffer->cpu)); 1519 if (!bpage) 1520 goto free_pages; 1521 1522 rb_check_bpage(cpu_buffer, bpage); 1523 1524 list_add(&bpage->list, pages); 1525 1526 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 1527 mflags | __GFP_ZERO, 1528 cpu_buffer->buffer->subbuf_order); 1529 if (!page) 1530 goto free_pages; 1531 bpage->page = page_address(page); 1532 bpage->order = cpu_buffer->buffer->subbuf_order; 1533 rb_init_page(bpage->page); 1534 1535 if (user_thread && fatal_signal_pending(current)) 1536 goto free_pages; 1537 } 1538 if (user_thread) 1539 clear_current_oom_origin(); 1540 1541 return 0; 1542 1543 free_pages: 1544 list_for_each_entry_safe(bpage, tmp, pages, list) { 1545 list_del_init(&bpage->list); 1546 free_buffer_page(bpage); 1547 } 1548 if (user_thread) 1549 clear_current_oom_origin(); 1550 1551 return -ENOMEM; 1552 } 1553 1554 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1555 unsigned long nr_pages) 1556 { 1557 LIST_HEAD(pages); 1558 1559 WARN_ON(!nr_pages); 1560 1561 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1562 return -ENOMEM; 1563 1564 /* 1565 * The ring buffer page list is a circular list that does not 1566 * start and end with a list head. All page list items point to 1567 * other pages. 1568 */ 1569 cpu_buffer->pages = pages.next; 1570 list_del(&pages); 1571 1572 cpu_buffer->nr_pages = nr_pages; 1573 1574 rb_check_pages(cpu_buffer); 1575 1576 return 0; 1577 } 1578 1579 static struct ring_buffer_per_cpu * 1580 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1581 { 1582 struct ring_buffer_per_cpu *cpu_buffer; 1583 struct buffer_page *bpage; 1584 struct page *page; 1585 int ret; 1586 1587 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1588 GFP_KERNEL, cpu_to_node(cpu)); 1589 if (!cpu_buffer) 1590 return NULL; 1591 1592 cpu_buffer->cpu = cpu; 1593 cpu_buffer->buffer = buffer; 1594 raw_spin_lock_init(&cpu_buffer->reader_lock); 1595 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1596 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1597 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1598 init_completion(&cpu_buffer->update_done); 1599 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1600 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1601 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1602 1603 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1604 GFP_KERNEL, cpu_to_node(cpu)); 1605 if (!bpage) 1606 goto fail_free_buffer; 1607 1608 rb_check_bpage(cpu_buffer, bpage); 1609 1610 cpu_buffer->reader_page = bpage; 1611 1612 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_ZERO, 1613 cpu_buffer->buffer->subbuf_order); 1614 if (!page) 1615 goto fail_free_reader; 1616 bpage->page = page_address(page); 1617 rb_init_page(bpage->page); 1618 1619 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1620 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1621 1622 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1623 if (ret < 0) 1624 goto fail_free_reader; 1625 1626 cpu_buffer->head_page 1627 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1628 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1629 1630 rb_head_page_activate(cpu_buffer); 1631 1632 return cpu_buffer; 1633 1634 fail_free_reader: 1635 free_buffer_page(cpu_buffer->reader_page); 1636 1637 fail_free_buffer: 1638 kfree(cpu_buffer); 1639 return NULL; 1640 } 1641 1642 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1643 { 1644 struct list_head *head = cpu_buffer->pages; 1645 struct buffer_page *bpage, *tmp; 1646 1647 irq_work_sync(&cpu_buffer->irq_work.work); 1648 1649 free_buffer_page(cpu_buffer->reader_page); 1650 1651 if (head) { 1652 rb_head_page_deactivate(cpu_buffer); 1653 1654 list_for_each_entry_safe(bpage, tmp, head, list) { 1655 list_del_init(&bpage->list); 1656 free_buffer_page(bpage); 1657 } 1658 bpage = list_entry(head, struct buffer_page, list); 1659 free_buffer_page(bpage); 1660 } 1661 1662 free_page((unsigned long)cpu_buffer->free_page); 1663 1664 kfree(cpu_buffer); 1665 } 1666 1667 /** 1668 * __ring_buffer_alloc - allocate a new ring_buffer 1669 * @size: the size in bytes per cpu that is needed. 1670 * @flags: attributes to set for the ring buffer. 1671 * @key: ring buffer reader_lock_key. 1672 * 1673 * Currently the only flag that is available is the RB_FL_OVERWRITE 1674 * flag. This flag means that the buffer will overwrite old data 1675 * when the buffer wraps. If this flag is not set, the buffer will 1676 * drop data when the tail hits the head. 1677 */ 1678 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1679 struct lock_class_key *key) 1680 { 1681 struct trace_buffer *buffer; 1682 long nr_pages; 1683 int bsize; 1684 int cpu; 1685 int ret; 1686 1687 /* keep it in its own cache line */ 1688 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1689 GFP_KERNEL); 1690 if (!buffer) 1691 return NULL; 1692 1693 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1694 goto fail_free_buffer; 1695 1696 /* Default buffer page size - one system page */ 1697 buffer->subbuf_order = 0; 1698 buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE; 1699 1700 /* Max payload is buffer page size - header (8bytes) */ 1701 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 1702 1703 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 1704 buffer->flags = flags; 1705 buffer->clock = trace_clock_local; 1706 buffer->reader_lock_key = key; 1707 1708 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1709 init_waitqueue_head(&buffer->irq_work.waiters); 1710 1711 /* need at least two pages */ 1712 if (nr_pages < 2) 1713 nr_pages = 2; 1714 1715 buffer->cpus = nr_cpu_ids; 1716 1717 bsize = sizeof(void *) * nr_cpu_ids; 1718 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1719 GFP_KERNEL); 1720 if (!buffer->buffers) 1721 goto fail_free_cpumask; 1722 1723 cpu = raw_smp_processor_id(); 1724 cpumask_set_cpu(cpu, buffer->cpumask); 1725 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1726 if (!buffer->buffers[cpu]) 1727 goto fail_free_buffers; 1728 1729 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1730 if (ret < 0) 1731 goto fail_free_buffers; 1732 1733 mutex_init(&buffer->mutex); 1734 1735 return buffer; 1736 1737 fail_free_buffers: 1738 for_each_buffer_cpu(buffer, cpu) { 1739 if (buffer->buffers[cpu]) 1740 rb_free_cpu_buffer(buffer->buffers[cpu]); 1741 } 1742 kfree(buffer->buffers); 1743 1744 fail_free_cpumask: 1745 free_cpumask_var(buffer->cpumask); 1746 1747 fail_free_buffer: 1748 kfree(buffer); 1749 return NULL; 1750 } 1751 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1752 1753 /** 1754 * ring_buffer_free - free a ring buffer. 1755 * @buffer: the buffer to free. 1756 */ 1757 void 1758 ring_buffer_free(struct trace_buffer *buffer) 1759 { 1760 int cpu; 1761 1762 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1763 1764 irq_work_sync(&buffer->irq_work.work); 1765 1766 for_each_buffer_cpu(buffer, cpu) 1767 rb_free_cpu_buffer(buffer->buffers[cpu]); 1768 1769 kfree(buffer->buffers); 1770 free_cpumask_var(buffer->cpumask); 1771 1772 kfree(buffer); 1773 } 1774 EXPORT_SYMBOL_GPL(ring_buffer_free); 1775 1776 void ring_buffer_set_clock(struct trace_buffer *buffer, 1777 u64 (*clock)(void)) 1778 { 1779 buffer->clock = clock; 1780 } 1781 1782 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1783 { 1784 buffer->time_stamp_abs = abs; 1785 } 1786 1787 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1788 { 1789 return buffer->time_stamp_abs; 1790 } 1791 1792 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1793 1794 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1795 { 1796 return local_read(&bpage->entries) & RB_WRITE_MASK; 1797 } 1798 1799 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1800 { 1801 return local_read(&bpage->write) & RB_WRITE_MASK; 1802 } 1803 1804 static bool 1805 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1806 { 1807 struct list_head *tail_page, *to_remove, *next_page; 1808 struct buffer_page *to_remove_page, *tmp_iter_page; 1809 struct buffer_page *last_page, *first_page; 1810 unsigned long nr_removed; 1811 unsigned long head_bit; 1812 int page_entries; 1813 1814 head_bit = 0; 1815 1816 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1817 atomic_inc(&cpu_buffer->record_disabled); 1818 /* 1819 * We don't race with the readers since we have acquired the reader 1820 * lock. We also don't race with writers after disabling recording. 1821 * This makes it easy to figure out the first and the last page to be 1822 * removed from the list. We unlink all the pages in between including 1823 * the first and last pages. This is done in a busy loop so that we 1824 * lose the least number of traces. 1825 * The pages are freed after we restart recording and unlock readers. 1826 */ 1827 tail_page = &cpu_buffer->tail_page->list; 1828 1829 /* 1830 * tail page might be on reader page, we remove the next page 1831 * from the ring buffer 1832 */ 1833 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1834 tail_page = rb_list_head(tail_page->next); 1835 to_remove = tail_page; 1836 1837 /* start of pages to remove */ 1838 first_page = list_entry(rb_list_head(to_remove->next), 1839 struct buffer_page, list); 1840 1841 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1842 to_remove = rb_list_head(to_remove)->next; 1843 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1844 } 1845 /* Read iterators need to reset themselves when some pages removed */ 1846 cpu_buffer->pages_removed += nr_removed; 1847 1848 next_page = rb_list_head(to_remove)->next; 1849 1850 /* 1851 * Now we remove all pages between tail_page and next_page. 1852 * Make sure that we have head_bit value preserved for the 1853 * next page 1854 */ 1855 tail_page->next = (struct list_head *)((unsigned long)next_page | 1856 head_bit); 1857 next_page = rb_list_head(next_page); 1858 next_page->prev = tail_page; 1859 1860 /* make sure pages points to a valid page in the ring buffer */ 1861 cpu_buffer->pages = next_page; 1862 1863 /* update head page */ 1864 if (head_bit) 1865 cpu_buffer->head_page = list_entry(next_page, 1866 struct buffer_page, list); 1867 1868 /* pages are removed, resume tracing and then free the pages */ 1869 atomic_dec(&cpu_buffer->record_disabled); 1870 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1871 1872 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1873 1874 /* last buffer page to remove */ 1875 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1876 list); 1877 tmp_iter_page = first_page; 1878 1879 do { 1880 cond_resched(); 1881 1882 to_remove_page = tmp_iter_page; 1883 rb_inc_page(&tmp_iter_page); 1884 1885 /* update the counters */ 1886 page_entries = rb_page_entries(to_remove_page); 1887 if (page_entries) { 1888 /* 1889 * If something was added to this page, it was full 1890 * since it is not the tail page. So we deduct the 1891 * bytes consumed in ring buffer from here. 1892 * Increment overrun to account for the lost events. 1893 */ 1894 local_add(page_entries, &cpu_buffer->overrun); 1895 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 1896 local_inc(&cpu_buffer->pages_lost); 1897 } 1898 1899 /* 1900 * We have already removed references to this list item, just 1901 * free up the buffer_page and its page 1902 */ 1903 free_buffer_page(to_remove_page); 1904 nr_removed--; 1905 1906 } while (to_remove_page != last_page); 1907 1908 RB_WARN_ON(cpu_buffer, nr_removed); 1909 1910 return nr_removed == 0; 1911 } 1912 1913 static bool 1914 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1915 { 1916 struct list_head *pages = &cpu_buffer->new_pages; 1917 unsigned long flags; 1918 bool success; 1919 int retries; 1920 1921 /* Can be called at early boot up, where interrupts must not been enabled */ 1922 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1923 /* 1924 * We are holding the reader lock, so the reader page won't be swapped 1925 * in the ring buffer. Now we are racing with the writer trying to 1926 * move head page and the tail page. 1927 * We are going to adapt the reader page update process where: 1928 * 1. We first splice the start and end of list of new pages between 1929 * the head page and its previous page. 1930 * 2. We cmpxchg the prev_page->next to point from head page to the 1931 * start of new pages list. 1932 * 3. Finally, we update the head->prev to the end of new list. 1933 * 1934 * We will try this process 10 times, to make sure that we don't keep 1935 * spinning. 1936 */ 1937 retries = 10; 1938 success = false; 1939 while (retries--) { 1940 struct list_head *head_page, *prev_page; 1941 struct list_head *last_page, *first_page; 1942 struct list_head *head_page_with_bit; 1943 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 1944 1945 if (!hpage) 1946 break; 1947 head_page = &hpage->list; 1948 prev_page = head_page->prev; 1949 1950 first_page = pages->next; 1951 last_page = pages->prev; 1952 1953 head_page_with_bit = (struct list_head *) 1954 ((unsigned long)head_page | RB_PAGE_HEAD); 1955 1956 last_page->next = head_page_with_bit; 1957 first_page->prev = prev_page; 1958 1959 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 1960 if (try_cmpxchg(&prev_page->next, 1961 &head_page_with_bit, first_page)) { 1962 /* 1963 * yay, we replaced the page pointer to our new list, 1964 * now, we just have to update to head page's prev 1965 * pointer to point to end of list 1966 */ 1967 head_page->prev = last_page; 1968 success = true; 1969 break; 1970 } 1971 } 1972 1973 if (success) 1974 INIT_LIST_HEAD(pages); 1975 /* 1976 * If we weren't successful in adding in new pages, warn and stop 1977 * tracing 1978 */ 1979 RB_WARN_ON(cpu_buffer, !success); 1980 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1981 1982 /* free pages if they weren't inserted */ 1983 if (!success) { 1984 struct buffer_page *bpage, *tmp; 1985 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1986 list) { 1987 list_del_init(&bpage->list); 1988 free_buffer_page(bpage); 1989 } 1990 } 1991 return success; 1992 } 1993 1994 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1995 { 1996 bool success; 1997 1998 if (cpu_buffer->nr_pages_to_update > 0) 1999 success = rb_insert_pages(cpu_buffer); 2000 else 2001 success = rb_remove_pages(cpu_buffer, 2002 -cpu_buffer->nr_pages_to_update); 2003 2004 if (success) 2005 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2006 } 2007 2008 static void update_pages_handler(struct work_struct *work) 2009 { 2010 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2011 struct ring_buffer_per_cpu, update_pages_work); 2012 rb_update_pages(cpu_buffer); 2013 complete(&cpu_buffer->update_done); 2014 } 2015 2016 /** 2017 * ring_buffer_resize - resize the ring buffer 2018 * @buffer: the buffer to resize. 2019 * @size: the new size. 2020 * @cpu_id: the cpu buffer to resize 2021 * 2022 * Minimum size is 2 * buffer->subbuf_size. 2023 * 2024 * Returns 0 on success and < 0 on failure. 2025 */ 2026 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2027 int cpu_id) 2028 { 2029 struct ring_buffer_per_cpu *cpu_buffer; 2030 unsigned long nr_pages; 2031 int cpu, err; 2032 2033 /* 2034 * Always succeed at resizing a non-existent buffer: 2035 */ 2036 if (!buffer) 2037 return 0; 2038 2039 /* Make sure the requested buffer exists */ 2040 if (cpu_id != RING_BUFFER_ALL_CPUS && 2041 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2042 return 0; 2043 2044 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2045 2046 /* we need a minimum of two pages */ 2047 if (nr_pages < 2) 2048 nr_pages = 2; 2049 2050 /* prevent another thread from changing buffer sizes */ 2051 mutex_lock(&buffer->mutex); 2052 atomic_inc(&buffer->resizing); 2053 2054 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2055 /* 2056 * Don't succeed if resizing is disabled, as a reader might be 2057 * manipulating the ring buffer and is expecting a sane state while 2058 * this is true. 2059 */ 2060 for_each_buffer_cpu(buffer, cpu) { 2061 cpu_buffer = buffer->buffers[cpu]; 2062 if (atomic_read(&cpu_buffer->resize_disabled)) { 2063 err = -EBUSY; 2064 goto out_err_unlock; 2065 } 2066 } 2067 2068 /* calculate the pages to update */ 2069 for_each_buffer_cpu(buffer, cpu) { 2070 cpu_buffer = buffer->buffers[cpu]; 2071 2072 cpu_buffer->nr_pages_to_update = nr_pages - 2073 cpu_buffer->nr_pages; 2074 /* 2075 * nothing more to do for removing pages or no update 2076 */ 2077 if (cpu_buffer->nr_pages_to_update <= 0) 2078 continue; 2079 /* 2080 * to add pages, make sure all new pages can be 2081 * allocated without receiving ENOMEM 2082 */ 2083 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2084 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2085 &cpu_buffer->new_pages)) { 2086 /* not enough memory for new pages */ 2087 err = -ENOMEM; 2088 goto out_err; 2089 } 2090 2091 cond_resched(); 2092 } 2093 2094 cpus_read_lock(); 2095 /* 2096 * Fire off all the required work handlers 2097 * We can't schedule on offline CPUs, but it's not necessary 2098 * since we can change their buffer sizes without any race. 2099 */ 2100 for_each_buffer_cpu(buffer, cpu) { 2101 cpu_buffer = buffer->buffers[cpu]; 2102 if (!cpu_buffer->nr_pages_to_update) 2103 continue; 2104 2105 /* Can't run something on an offline CPU. */ 2106 if (!cpu_online(cpu)) { 2107 rb_update_pages(cpu_buffer); 2108 cpu_buffer->nr_pages_to_update = 0; 2109 } else { 2110 /* Run directly if possible. */ 2111 migrate_disable(); 2112 if (cpu != smp_processor_id()) { 2113 migrate_enable(); 2114 schedule_work_on(cpu, 2115 &cpu_buffer->update_pages_work); 2116 } else { 2117 update_pages_handler(&cpu_buffer->update_pages_work); 2118 migrate_enable(); 2119 } 2120 } 2121 } 2122 2123 /* wait for all the updates to complete */ 2124 for_each_buffer_cpu(buffer, cpu) { 2125 cpu_buffer = buffer->buffers[cpu]; 2126 if (!cpu_buffer->nr_pages_to_update) 2127 continue; 2128 2129 if (cpu_online(cpu)) 2130 wait_for_completion(&cpu_buffer->update_done); 2131 cpu_buffer->nr_pages_to_update = 0; 2132 } 2133 2134 cpus_read_unlock(); 2135 } else { 2136 cpu_buffer = buffer->buffers[cpu_id]; 2137 2138 if (nr_pages == cpu_buffer->nr_pages) 2139 goto out; 2140 2141 /* 2142 * Don't succeed if resizing is disabled, as a reader might be 2143 * manipulating the ring buffer and is expecting a sane state while 2144 * this is true. 2145 */ 2146 if (atomic_read(&cpu_buffer->resize_disabled)) { 2147 err = -EBUSY; 2148 goto out_err_unlock; 2149 } 2150 2151 cpu_buffer->nr_pages_to_update = nr_pages - 2152 cpu_buffer->nr_pages; 2153 2154 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2155 if (cpu_buffer->nr_pages_to_update > 0 && 2156 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2157 &cpu_buffer->new_pages)) { 2158 err = -ENOMEM; 2159 goto out_err; 2160 } 2161 2162 cpus_read_lock(); 2163 2164 /* Can't run something on an offline CPU. */ 2165 if (!cpu_online(cpu_id)) 2166 rb_update_pages(cpu_buffer); 2167 else { 2168 /* Run directly if possible. */ 2169 migrate_disable(); 2170 if (cpu_id == smp_processor_id()) { 2171 rb_update_pages(cpu_buffer); 2172 migrate_enable(); 2173 } else { 2174 migrate_enable(); 2175 schedule_work_on(cpu_id, 2176 &cpu_buffer->update_pages_work); 2177 wait_for_completion(&cpu_buffer->update_done); 2178 } 2179 } 2180 2181 cpu_buffer->nr_pages_to_update = 0; 2182 cpus_read_unlock(); 2183 } 2184 2185 out: 2186 /* 2187 * The ring buffer resize can happen with the ring buffer 2188 * enabled, so that the update disturbs the tracing as little 2189 * as possible. But if the buffer is disabled, we do not need 2190 * to worry about that, and we can take the time to verify 2191 * that the buffer is not corrupt. 2192 */ 2193 if (atomic_read(&buffer->record_disabled)) { 2194 atomic_inc(&buffer->record_disabled); 2195 /* 2196 * Even though the buffer was disabled, we must make sure 2197 * that it is truly disabled before calling rb_check_pages. 2198 * There could have been a race between checking 2199 * record_disable and incrementing it. 2200 */ 2201 synchronize_rcu(); 2202 for_each_buffer_cpu(buffer, cpu) { 2203 cpu_buffer = buffer->buffers[cpu]; 2204 rb_check_pages(cpu_buffer); 2205 } 2206 atomic_dec(&buffer->record_disabled); 2207 } 2208 2209 atomic_dec(&buffer->resizing); 2210 mutex_unlock(&buffer->mutex); 2211 return 0; 2212 2213 out_err: 2214 for_each_buffer_cpu(buffer, cpu) { 2215 struct buffer_page *bpage, *tmp; 2216 2217 cpu_buffer = buffer->buffers[cpu]; 2218 cpu_buffer->nr_pages_to_update = 0; 2219 2220 if (list_empty(&cpu_buffer->new_pages)) 2221 continue; 2222 2223 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2224 list) { 2225 list_del_init(&bpage->list); 2226 free_buffer_page(bpage); 2227 } 2228 } 2229 out_err_unlock: 2230 atomic_dec(&buffer->resizing); 2231 mutex_unlock(&buffer->mutex); 2232 return err; 2233 } 2234 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2235 2236 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2237 { 2238 mutex_lock(&buffer->mutex); 2239 if (val) 2240 buffer->flags |= RB_FL_OVERWRITE; 2241 else 2242 buffer->flags &= ~RB_FL_OVERWRITE; 2243 mutex_unlock(&buffer->mutex); 2244 } 2245 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2246 2247 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2248 { 2249 return bpage->page->data + index; 2250 } 2251 2252 static __always_inline struct ring_buffer_event * 2253 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2254 { 2255 return __rb_page_index(cpu_buffer->reader_page, 2256 cpu_buffer->reader_page->read); 2257 } 2258 2259 static struct ring_buffer_event * 2260 rb_iter_head_event(struct ring_buffer_iter *iter) 2261 { 2262 struct ring_buffer_event *event; 2263 struct buffer_page *iter_head_page = iter->head_page; 2264 unsigned long commit; 2265 unsigned length; 2266 2267 if (iter->head != iter->next_event) 2268 return iter->event; 2269 2270 /* 2271 * When the writer goes across pages, it issues a cmpxchg which 2272 * is a mb(), which will synchronize with the rmb here. 2273 * (see rb_tail_page_update() and __rb_reserve_next()) 2274 */ 2275 commit = rb_page_commit(iter_head_page); 2276 smp_rmb(); 2277 2278 /* An event needs to be at least 8 bytes in size */ 2279 if (iter->head > commit - 8) 2280 goto reset; 2281 2282 event = __rb_page_index(iter_head_page, iter->head); 2283 length = rb_event_length(event); 2284 2285 /* 2286 * READ_ONCE() doesn't work on functions and we don't want the 2287 * compiler doing any crazy optimizations with length. 2288 */ 2289 barrier(); 2290 2291 if ((iter->head + length) > commit || length > iter->event_size) 2292 /* Writer corrupted the read? */ 2293 goto reset; 2294 2295 memcpy(iter->event, event, length); 2296 /* 2297 * If the page stamp is still the same after this rmb() then the 2298 * event was safely copied without the writer entering the page. 2299 */ 2300 smp_rmb(); 2301 2302 /* Make sure the page didn't change since we read this */ 2303 if (iter->page_stamp != iter_head_page->page->time_stamp || 2304 commit > rb_page_commit(iter_head_page)) 2305 goto reset; 2306 2307 iter->next_event = iter->head + length; 2308 return iter->event; 2309 reset: 2310 /* Reset to the beginning */ 2311 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2312 iter->head = 0; 2313 iter->next_event = 0; 2314 iter->missed_events = 1; 2315 return NULL; 2316 } 2317 2318 /* Size is determined by what has been committed */ 2319 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2320 { 2321 return rb_page_commit(bpage); 2322 } 2323 2324 static __always_inline unsigned 2325 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2326 { 2327 return rb_page_commit(cpu_buffer->commit_page); 2328 } 2329 2330 static __always_inline unsigned 2331 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 2332 { 2333 unsigned long addr = (unsigned long)event; 2334 2335 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 2336 2337 return addr - BUF_PAGE_HDR_SIZE; 2338 } 2339 2340 static void rb_inc_iter(struct ring_buffer_iter *iter) 2341 { 2342 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2343 2344 /* 2345 * The iterator could be on the reader page (it starts there). 2346 * But the head could have moved, since the reader was 2347 * found. Check for this case and assign the iterator 2348 * to the head page instead of next. 2349 */ 2350 if (iter->head_page == cpu_buffer->reader_page) 2351 iter->head_page = rb_set_head_page(cpu_buffer); 2352 else 2353 rb_inc_page(&iter->head_page); 2354 2355 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2356 iter->head = 0; 2357 iter->next_event = 0; 2358 } 2359 2360 /* 2361 * rb_handle_head_page - writer hit the head page 2362 * 2363 * Returns: +1 to retry page 2364 * 0 to continue 2365 * -1 on error 2366 */ 2367 static int 2368 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2369 struct buffer_page *tail_page, 2370 struct buffer_page *next_page) 2371 { 2372 struct buffer_page *new_head; 2373 int entries; 2374 int type; 2375 int ret; 2376 2377 entries = rb_page_entries(next_page); 2378 2379 /* 2380 * The hard part is here. We need to move the head 2381 * forward, and protect against both readers on 2382 * other CPUs and writers coming in via interrupts. 2383 */ 2384 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2385 RB_PAGE_HEAD); 2386 2387 /* 2388 * type can be one of four: 2389 * NORMAL - an interrupt already moved it for us 2390 * HEAD - we are the first to get here. 2391 * UPDATE - we are the interrupt interrupting 2392 * a current move. 2393 * MOVED - a reader on another CPU moved the next 2394 * pointer to its reader page. Give up 2395 * and try again. 2396 */ 2397 2398 switch (type) { 2399 case RB_PAGE_HEAD: 2400 /* 2401 * We changed the head to UPDATE, thus 2402 * it is our responsibility to update 2403 * the counters. 2404 */ 2405 local_add(entries, &cpu_buffer->overrun); 2406 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2407 local_inc(&cpu_buffer->pages_lost); 2408 2409 /* 2410 * The entries will be zeroed out when we move the 2411 * tail page. 2412 */ 2413 2414 /* still more to do */ 2415 break; 2416 2417 case RB_PAGE_UPDATE: 2418 /* 2419 * This is an interrupt that interrupt the 2420 * previous update. Still more to do. 2421 */ 2422 break; 2423 case RB_PAGE_NORMAL: 2424 /* 2425 * An interrupt came in before the update 2426 * and processed this for us. 2427 * Nothing left to do. 2428 */ 2429 return 1; 2430 case RB_PAGE_MOVED: 2431 /* 2432 * The reader is on another CPU and just did 2433 * a swap with our next_page. 2434 * Try again. 2435 */ 2436 return 1; 2437 default: 2438 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2439 return -1; 2440 } 2441 2442 /* 2443 * Now that we are here, the old head pointer is 2444 * set to UPDATE. This will keep the reader from 2445 * swapping the head page with the reader page. 2446 * The reader (on another CPU) will spin till 2447 * we are finished. 2448 * 2449 * We just need to protect against interrupts 2450 * doing the job. We will set the next pointer 2451 * to HEAD. After that, we set the old pointer 2452 * to NORMAL, but only if it was HEAD before. 2453 * otherwise we are an interrupt, and only 2454 * want the outer most commit to reset it. 2455 */ 2456 new_head = next_page; 2457 rb_inc_page(&new_head); 2458 2459 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2460 RB_PAGE_NORMAL); 2461 2462 /* 2463 * Valid returns are: 2464 * HEAD - an interrupt came in and already set it. 2465 * NORMAL - One of two things: 2466 * 1) We really set it. 2467 * 2) A bunch of interrupts came in and moved 2468 * the page forward again. 2469 */ 2470 switch (ret) { 2471 case RB_PAGE_HEAD: 2472 case RB_PAGE_NORMAL: 2473 /* OK */ 2474 break; 2475 default: 2476 RB_WARN_ON(cpu_buffer, 1); 2477 return -1; 2478 } 2479 2480 /* 2481 * It is possible that an interrupt came in, 2482 * set the head up, then more interrupts came in 2483 * and moved it again. When we get back here, 2484 * the page would have been set to NORMAL but we 2485 * just set it back to HEAD. 2486 * 2487 * How do you detect this? Well, if that happened 2488 * the tail page would have moved. 2489 */ 2490 if (ret == RB_PAGE_NORMAL) { 2491 struct buffer_page *buffer_tail_page; 2492 2493 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2494 /* 2495 * If the tail had moved passed next, then we need 2496 * to reset the pointer. 2497 */ 2498 if (buffer_tail_page != tail_page && 2499 buffer_tail_page != next_page) 2500 rb_head_page_set_normal(cpu_buffer, new_head, 2501 next_page, 2502 RB_PAGE_HEAD); 2503 } 2504 2505 /* 2506 * If this was the outer most commit (the one that 2507 * changed the original pointer from HEAD to UPDATE), 2508 * then it is up to us to reset it to NORMAL. 2509 */ 2510 if (type == RB_PAGE_HEAD) { 2511 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2512 tail_page, 2513 RB_PAGE_UPDATE); 2514 if (RB_WARN_ON(cpu_buffer, 2515 ret != RB_PAGE_UPDATE)) 2516 return -1; 2517 } 2518 2519 return 0; 2520 } 2521 2522 static inline void 2523 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2524 unsigned long tail, struct rb_event_info *info) 2525 { 2526 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 2527 struct buffer_page *tail_page = info->tail_page; 2528 struct ring_buffer_event *event; 2529 unsigned long length = info->length; 2530 2531 /* 2532 * Only the event that crossed the page boundary 2533 * must fill the old tail_page with padding. 2534 */ 2535 if (tail >= bsize) { 2536 /* 2537 * If the page was filled, then we still need 2538 * to update the real_end. Reset it to zero 2539 * and the reader will ignore it. 2540 */ 2541 if (tail == bsize) 2542 tail_page->real_end = 0; 2543 2544 local_sub(length, &tail_page->write); 2545 return; 2546 } 2547 2548 event = __rb_page_index(tail_page, tail); 2549 2550 /* 2551 * Save the original length to the meta data. 2552 * This will be used by the reader to add lost event 2553 * counter. 2554 */ 2555 tail_page->real_end = tail; 2556 2557 /* 2558 * If this event is bigger than the minimum size, then 2559 * we need to be careful that we don't subtract the 2560 * write counter enough to allow another writer to slip 2561 * in on this page. 2562 * We put in a discarded commit instead, to make sure 2563 * that this space is not used again, and this space will 2564 * not be accounted into 'entries_bytes'. 2565 * 2566 * If we are less than the minimum size, we don't need to 2567 * worry about it. 2568 */ 2569 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 2570 /* No room for any events */ 2571 2572 /* Mark the rest of the page with padding */ 2573 rb_event_set_padding(event); 2574 2575 /* Make sure the padding is visible before the write update */ 2576 smp_wmb(); 2577 2578 /* Set the write back to the previous setting */ 2579 local_sub(length, &tail_page->write); 2580 return; 2581 } 2582 2583 /* Put in a discarded event */ 2584 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 2585 event->type_len = RINGBUF_TYPE_PADDING; 2586 /* time delta must be non zero */ 2587 event->time_delta = 1; 2588 2589 /* account for padding bytes */ 2590 local_add(bsize - tail, &cpu_buffer->entries_bytes); 2591 2592 /* Make sure the padding is visible before the tail_page->write update */ 2593 smp_wmb(); 2594 2595 /* Set write to end of buffer */ 2596 length = (tail + length) - bsize; 2597 local_sub(length, &tail_page->write); 2598 } 2599 2600 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2601 2602 /* 2603 * This is the slow path, force gcc not to inline it. 2604 */ 2605 static noinline struct ring_buffer_event * 2606 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2607 unsigned long tail, struct rb_event_info *info) 2608 { 2609 struct buffer_page *tail_page = info->tail_page; 2610 struct buffer_page *commit_page = cpu_buffer->commit_page; 2611 struct trace_buffer *buffer = cpu_buffer->buffer; 2612 struct buffer_page *next_page; 2613 int ret; 2614 2615 next_page = tail_page; 2616 2617 rb_inc_page(&next_page); 2618 2619 /* 2620 * If for some reason, we had an interrupt storm that made 2621 * it all the way around the buffer, bail, and warn 2622 * about it. 2623 */ 2624 if (unlikely(next_page == commit_page)) { 2625 local_inc(&cpu_buffer->commit_overrun); 2626 goto out_reset; 2627 } 2628 2629 /* 2630 * This is where the fun begins! 2631 * 2632 * We are fighting against races between a reader that 2633 * could be on another CPU trying to swap its reader 2634 * page with the buffer head. 2635 * 2636 * We are also fighting against interrupts coming in and 2637 * moving the head or tail on us as well. 2638 * 2639 * If the next page is the head page then we have filled 2640 * the buffer, unless the commit page is still on the 2641 * reader page. 2642 */ 2643 if (rb_is_head_page(next_page, &tail_page->list)) { 2644 2645 /* 2646 * If the commit is not on the reader page, then 2647 * move the header page. 2648 */ 2649 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2650 /* 2651 * If we are not in overwrite mode, 2652 * this is easy, just stop here. 2653 */ 2654 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2655 local_inc(&cpu_buffer->dropped_events); 2656 goto out_reset; 2657 } 2658 2659 ret = rb_handle_head_page(cpu_buffer, 2660 tail_page, 2661 next_page); 2662 if (ret < 0) 2663 goto out_reset; 2664 if (ret) 2665 goto out_again; 2666 } else { 2667 /* 2668 * We need to be careful here too. The 2669 * commit page could still be on the reader 2670 * page. We could have a small buffer, and 2671 * have filled up the buffer with events 2672 * from interrupts and such, and wrapped. 2673 * 2674 * Note, if the tail page is also on the 2675 * reader_page, we let it move out. 2676 */ 2677 if (unlikely((cpu_buffer->commit_page != 2678 cpu_buffer->tail_page) && 2679 (cpu_buffer->commit_page == 2680 cpu_buffer->reader_page))) { 2681 local_inc(&cpu_buffer->commit_overrun); 2682 goto out_reset; 2683 } 2684 } 2685 } 2686 2687 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2688 2689 out_again: 2690 2691 rb_reset_tail(cpu_buffer, tail, info); 2692 2693 /* Commit what we have for now. */ 2694 rb_end_commit(cpu_buffer); 2695 /* rb_end_commit() decs committing */ 2696 local_inc(&cpu_buffer->committing); 2697 2698 /* fail and let the caller try again */ 2699 return ERR_PTR(-EAGAIN); 2700 2701 out_reset: 2702 /* reset write */ 2703 rb_reset_tail(cpu_buffer, tail, info); 2704 2705 return NULL; 2706 } 2707 2708 /* Slow path */ 2709 static struct ring_buffer_event * 2710 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2711 struct ring_buffer_event *event, u64 delta, bool abs) 2712 { 2713 if (abs) 2714 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2715 else 2716 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2717 2718 /* Not the first event on the page, or not delta? */ 2719 if (abs || rb_event_index(cpu_buffer, event)) { 2720 event->time_delta = delta & TS_MASK; 2721 event->array[0] = delta >> TS_SHIFT; 2722 } else { 2723 /* nope, just zero it */ 2724 event->time_delta = 0; 2725 event->array[0] = 0; 2726 } 2727 2728 return skip_time_extend(event); 2729 } 2730 2731 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2732 static inline bool sched_clock_stable(void) 2733 { 2734 return true; 2735 } 2736 #endif 2737 2738 static void 2739 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2740 struct rb_event_info *info) 2741 { 2742 u64 write_stamp; 2743 2744 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2745 (unsigned long long)info->delta, 2746 (unsigned long long)info->ts, 2747 (unsigned long long)info->before, 2748 (unsigned long long)info->after, 2749 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 2750 sched_clock_stable() ? "" : 2751 "If you just came from a suspend/resume,\n" 2752 "please switch to the trace global clock:\n" 2753 " echo global > /sys/kernel/tracing/trace_clock\n" 2754 "or add trace_clock=global to the kernel command line\n"); 2755 } 2756 2757 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2758 struct ring_buffer_event **event, 2759 struct rb_event_info *info, 2760 u64 *delta, 2761 unsigned int *length) 2762 { 2763 bool abs = info->add_timestamp & 2764 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2765 2766 if (unlikely(info->delta > (1ULL << 59))) { 2767 /* 2768 * Some timers can use more than 59 bits, and when a timestamp 2769 * is added to the buffer, it will lose those bits. 2770 */ 2771 if (abs && (info->ts & TS_MSB)) { 2772 info->delta &= ABS_TS_MASK; 2773 2774 /* did the clock go backwards */ 2775 } else if (info->before == info->after && info->before > info->ts) { 2776 /* not interrupted */ 2777 static int once; 2778 2779 /* 2780 * This is possible with a recalibrating of the TSC. 2781 * Do not produce a call stack, but just report it. 2782 */ 2783 if (!once) { 2784 once++; 2785 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2786 info->before, info->ts); 2787 } 2788 } else 2789 rb_check_timestamp(cpu_buffer, info); 2790 if (!abs) 2791 info->delta = 0; 2792 } 2793 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 2794 *length -= RB_LEN_TIME_EXTEND; 2795 *delta = 0; 2796 } 2797 2798 /** 2799 * rb_update_event - update event type and data 2800 * @cpu_buffer: The per cpu buffer of the @event 2801 * @event: the event to update 2802 * @info: The info to update the @event with (contains length and delta) 2803 * 2804 * Update the type and data fields of the @event. The length 2805 * is the actual size that is written to the ring buffer, 2806 * and with this, we can determine what to place into the 2807 * data field. 2808 */ 2809 static void 2810 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2811 struct ring_buffer_event *event, 2812 struct rb_event_info *info) 2813 { 2814 unsigned length = info->length; 2815 u64 delta = info->delta; 2816 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2817 2818 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2819 cpu_buffer->event_stamp[nest] = info->ts; 2820 2821 /* 2822 * If we need to add a timestamp, then we 2823 * add it to the start of the reserved space. 2824 */ 2825 if (unlikely(info->add_timestamp)) 2826 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2827 2828 event->time_delta = delta; 2829 length -= RB_EVNT_HDR_SIZE; 2830 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2831 event->type_len = 0; 2832 event->array[0] = length; 2833 } else 2834 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2835 } 2836 2837 static unsigned rb_calculate_event_length(unsigned length) 2838 { 2839 struct ring_buffer_event event; /* Used only for sizeof array */ 2840 2841 /* zero length can cause confusions */ 2842 if (!length) 2843 length++; 2844 2845 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2846 length += sizeof(event.array[0]); 2847 2848 length += RB_EVNT_HDR_SIZE; 2849 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2850 2851 /* 2852 * In case the time delta is larger than the 27 bits for it 2853 * in the header, we need to add a timestamp. If another 2854 * event comes in when trying to discard this one to increase 2855 * the length, then the timestamp will be added in the allocated 2856 * space of this event. If length is bigger than the size needed 2857 * for the TIME_EXTEND, then padding has to be used. The events 2858 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2859 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2860 * As length is a multiple of 4, we only need to worry if it 2861 * is 12 (RB_LEN_TIME_EXTEND + 4). 2862 */ 2863 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2864 length += RB_ALIGNMENT; 2865 2866 return length; 2867 } 2868 2869 static inline bool 2870 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2871 struct ring_buffer_event *event) 2872 { 2873 unsigned long new_index, old_index; 2874 struct buffer_page *bpage; 2875 unsigned long addr; 2876 2877 new_index = rb_event_index(cpu_buffer, event); 2878 old_index = new_index + rb_event_ts_length(event); 2879 addr = (unsigned long)event; 2880 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 2881 2882 bpage = READ_ONCE(cpu_buffer->tail_page); 2883 2884 /* 2885 * Make sure the tail_page is still the same and 2886 * the next write location is the end of this event 2887 */ 2888 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2889 unsigned long write_mask = 2890 local_read(&bpage->write) & ~RB_WRITE_MASK; 2891 unsigned long event_length = rb_event_length(event); 2892 2893 /* 2894 * For the before_stamp to be different than the write_stamp 2895 * to make sure that the next event adds an absolute 2896 * value and does not rely on the saved write stamp, which 2897 * is now going to be bogus. 2898 * 2899 * By setting the before_stamp to zero, the next event 2900 * is not going to use the write_stamp and will instead 2901 * create an absolute timestamp. This means there's no 2902 * reason to update the wirte_stamp! 2903 */ 2904 rb_time_set(&cpu_buffer->before_stamp, 0); 2905 2906 /* 2907 * If an event were to come in now, it would see that the 2908 * write_stamp and the before_stamp are different, and assume 2909 * that this event just added itself before updating 2910 * the write stamp. The interrupting event will fix the 2911 * write stamp for us, and use an absolute timestamp. 2912 */ 2913 2914 /* 2915 * This is on the tail page. It is possible that 2916 * a write could come in and move the tail page 2917 * and write to the next page. That is fine 2918 * because we just shorten what is on this page. 2919 */ 2920 old_index += write_mask; 2921 new_index += write_mask; 2922 2923 /* caution: old_index gets updated on cmpxchg failure */ 2924 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 2925 /* update counters */ 2926 local_sub(event_length, &cpu_buffer->entries_bytes); 2927 return true; 2928 } 2929 } 2930 2931 /* could not discard */ 2932 return false; 2933 } 2934 2935 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2936 { 2937 local_inc(&cpu_buffer->committing); 2938 local_inc(&cpu_buffer->commits); 2939 } 2940 2941 static __always_inline void 2942 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2943 { 2944 unsigned long max_count; 2945 2946 /* 2947 * We only race with interrupts and NMIs on this CPU. 2948 * If we own the commit event, then we can commit 2949 * all others that interrupted us, since the interruptions 2950 * are in stack format (they finish before they come 2951 * back to us). This allows us to do a simple loop to 2952 * assign the commit to the tail. 2953 */ 2954 again: 2955 max_count = cpu_buffer->nr_pages * 100; 2956 2957 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2958 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2959 return; 2960 if (RB_WARN_ON(cpu_buffer, 2961 rb_is_reader_page(cpu_buffer->tail_page))) 2962 return; 2963 /* 2964 * No need for a memory barrier here, as the update 2965 * of the tail_page did it for this page. 2966 */ 2967 local_set(&cpu_buffer->commit_page->page->commit, 2968 rb_page_write(cpu_buffer->commit_page)); 2969 rb_inc_page(&cpu_buffer->commit_page); 2970 /* add barrier to keep gcc from optimizing too much */ 2971 barrier(); 2972 } 2973 while (rb_commit_index(cpu_buffer) != 2974 rb_page_write(cpu_buffer->commit_page)) { 2975 2976 /* Make sure the readers see the content of what is committed. */ 2977 smp_wmb(); 2978 local_set(&cpu_buffer->commit_page->page->commit, 2979 rb_page_write(cpu_buffer->commit_page)); 2980 RB_WARN_ON(cpu_buffer, 2981 local_read(&cpu_buffer->commit_page->page->commit) & 2982 ~RB_WRITE_MASK); 2983 barrier(); 2984 } 2985 2986 /* again, keep gcc from optimizing */ 2987 barrier(); 2988 2989 /* 2990 * If an interrupt came in just after the first while loop 2991 * and pushed the tail page forward, we will be left with 2992 * a dangling commit that will never go forward. 2993 */ 2994 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2995 goto again; 2996 } 2997 2998 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2999 { 3000 unsigned long commits; 3001 3002 if (RB_WARN_ON(cpu_buffer, 3003 !local_read(&cpu_buffer->committing))) 3004 return; 3005 3006 again: 3007 commits = local_read(&cpu_buffer->commits); 3008 /* synchronize with interrupts */ 3009 barrier(); 3010 if (local_read(&cpu_buffer->committing) == 1) 3011 rb_set_commit_to_write(cpu_buffer); 3012 3013 local_dec(&cpu_buffer->committing); 3014 3015 /* synchronize with interrupts */ 3016 barrier(); 3017 3018 /* 3019 * Need to account for interrupts coming in between the 3020 * updating of the commit page and the clearing of the 3021 * committing counter. 3022 */ 3023 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3024 !local_read(&cpu_buffer->committing)) { 3025 local_inc(&cpu_buffer->committing); 3026 goto again; 3027 } 3028 } 3029 3030 static inline void rb_event_discard(struct ring_buffer_event *event) 3031 { 3032 if (extended_time(event)) 3033 event = skip_time_extend(event); 3034 3035 /* array[0] holds the actual length for the discarded event */ 3036 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3037 event->type_len = RINGBUF_TYPE_PADDING; 3038 /* time delta must be non zero */ 3039 if (!event->time_delta) 3040 event->time_delta = 1; 3041 } 3042 3043 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3044 { 3045 local_inc(&cpu_buffer->entries); 3046 rb_end_commit(cpu_buffer); 3047 } 3048 3049 static __always_inline void 3050 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3051 { 3052 if (buffer->irq_work.waiters_pending) { 3053 buffer->irq_work.waiters_pending = false; 3054 /* irq_work_queue() supplies it's own memory barriers */ 3055 irq_work_queue(&buffer->irq_work.work); 3056 } 3057 3058 if (cpu_buffer->irq_work.waiters_pending) { 3059 cpu_buffer->irq_work.waiters_pending = false; 3060 /* irq_work_queue() supplies it's own memory barriers */ 3061 irq_work_queue(&cpu_buffer->irq_work.work); 3062 } 3063 3064 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3065 return; 3066 3067 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3068 return; 3069 3070 if (!cpu_buffer->irq_work.full_waiters_pending) 3071 return; 3072 3073 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3074 3075 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3076 return; 3077 3078 cpu_buffer->irq_work.wakeup_full = true; 3079 cpu_buffer->irq_work.full_waiters_pending = false; 3080 /* irq_work_queue() supplies it's own memory barriers */ 3081 irq_work_queue(&cpu_buffer->irq_work.work); 3082 } 3083 3084 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3085 # define do_ring_buffer_record_recursion() \ 3086 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3087 #else 3088 # define do_ring_buffer_record_recursion() do { } while (0) 3089 #endif 3090 3091 /* 3092 * The lock and unlock are done within a preempt disable section. 3093 * The current_context per_cpu variable can only be modified 3094 * by the current task between lock and unlock. But it can 3095 * be modified more than once via an interrupt. To pass this 3096 * information from the lock to the unlock without having to 3097 * access the 'in_interrupt()' functions again (which do show 3098 * a bit of overhead in something as critical as function tracing, 3099 * we use a bitmask trick. 3100 * 3101 * bit 1 = NMI context 3102 * bit 2 = IRQ context 3103 * bit 3 = SoftIRQ context 3104 * bit 4 = normal context. 3105 * 3106 * This works because this is the order of contexts that can 3107 * preempt other contexts. A SoftIRQ never preempts an IRQ 3108 * context. 3109 * 3110 * When the context is determined, the corresponding bit is 3111 * checked and set (if it was set, then a recursion of that context 3112 * happened). 3113 * 3114 * On unlock, we need to clear this bit. To do so, just subtract 3115 * 1 from the current_context and AND it to itself. 3116 * 3117 * (binary) 3118 * 101 - 1 = 100 3119 * 101 & 100 = 100 (clearing bit zero) 3120 * 3121 * 1010 - 1 = 1001 3122 * 1010 & 1001 = 1000 (clearing bit 1) 3123 * 3124 * The least significant bit can be cleared this way, and it 3125 * just so happens that it is the same bit corresponding to 3126 * the current context. 3127 * 3128 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3129 * is set when a recursion is detected at the current context, and if 3130 * the TRANSITION bit is already set, it will fail the recursion. 3131 * This is needed because there's a lag between the changing of 3132 * interrupt context and updating the preempt count. In this case, 3133 * a false positive will be found. To handle this, one extra recursion 3134 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3135 * bit is already set, then it is considered a recursion and the function 3136 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3137 * 3138 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3139 * to be cleared. Even if it wasn't the context that set it. That is, 3140 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3141 * is called before preempt_count() is updated, since the check will 3142 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3143 * NMI then comes in, it will set the NMI bit, but when the NMI code 3144 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3145 * and leave the NMI bit set. But this is fine, because the interrupt 3146 * code that set the TRANSITION bit will then clear the NMI bit when it 3147 * calls trace_recursive_unlock(). If another NMI comes in, it will 3148 * set the TRANSITION bit and continue. 3149 * 3150 * Note: The TRANSITION bit only handles a single transition between context. 3151 */ 3152 3153 static __always_inline bool 3154 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3155 { 3156 unsigned int val = cpu_buffer->current_context; 3157 int bit = interrupt_context_level(); 3158 3159 bit = RB_CTX_NORMAL - bit; 3160 3161 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3162 /* 3163 * It is possible that this was called by transitioning 3164 * between interrupt context, and preempt_count() has not 3165 * been updated yet. In this case, use the TRANSITION bit. 3166 */ 3167 bit = RB_CTX_TRANSITION; 3168 if (val & (1 << (bit + cpu_buffer->nest))) { 3169 do_ring_buffer_record_recursion(); 3170 return true; 3171 } 3172 } 3173 3174 val |= (1 << (bit + cpu_buffer->nest)); 3175 cpu_buffer->current_context = val; 3176 3177 return false; 3178 } 3179 3180 static __always_inline void 3181 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3182 { 3183 cpu_buffer->current_context &= 3184 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3185 } 3186 3187 /* The recursive locking above uses 5 bits */ 3188 #define NESTED_BITS 5 3189 3190 /** 3191 * ring_buffer_nest_start - Allow to trace while nested 3192 * @buffer: The ring buffer to modify 3193 * 3194 * The ring buffer has a safety mechanism to prevent recursion. 3195 * But there may be a case where a trace needs to be done while 3196 * tracing something else. In this case, calling this function 3197 * will allow this function to nest within a currently active 3198 * ring_buffer_lock_reserve(). 3199 * 3200 * Call this function before calling another ring_buffer_lock_reserve() and 3201 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3202 */ 3203 void ring_buffer_nest_start(struct trace_buffer *buffer) 3204 { 3205 struct ring_buffer_per_cpu *cpu_buffer; 3206 int cpu; 3207 3208 /* Enabled by ring_buffer_nest_end() */ 3209 preempt_disable_notrace(); 3210 cpu = raw_smp_processor_id(); 3211 cpu_buffer = buffer->buffers[cpu]; 3212 /* This is the shift value for the above recursive locking */ 3213 cpu_buffer->nest += NESTED_BITS; 3214 } 3215 3216 /** 3217 * ring_buffer_nest_end - Allow to trace while nested 3218 * @buffer: The ring buffer to modify 3219 * 3220 * Must be called after ring_buffer_nest_start() and after the 3221 * ring_buffer_unlock_commit(). 3222 */ 3223 void ring_buffer_nest_end(struct trace_buffer *buffer) 3224 { 3225 struct ring_buffer_per_cpu *cpu_buffer; 3226 int cpu; 3227 3228 /* disabled by ring_buffer_nest_start() */ 3229 cpu = raw_smp_processor_id(); 3230 cpu_buffer = buffer->buffers[cpu]; 3231 /* This is the shift value for the above recursive locking */ 3232 cpu_buffer->nest -= NESTED_BITS; 3233 preempt_enable_notrace(); 3234 } 3235 3236 /** 3237 * ring_buffer_unlock_commit - commit a reserved 3238 * @buffer: The buffer to commit to 3239 * 3240 * This commits the data to the ring buffer, and releases any locks held. 3241 * 3242 * Must be paired with ring_buffer_lock_reserve. 3243 */ 3244 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3245 { 3246 struct ring_buffer_per_cpu *cpu_buffer; 3247 int cpu = raw_smp_processor_id(); 3248 3249 cpu_buffer = buffer->buffers[cpu]; 3250 3251 rb_commit(cpu_buffer); 3252 3253 rb_wakeups(buffer, cpu_buffer); 3254 3255 trace_recursive_unlock(cpu_buffer); 3256 3257 preempt_enable_notrace(); 3258 3259 return 0; 3260 } 3261 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3262 3263 /* Special value to validate all deltas on a page. */ 3264 #define CHECK_FULL_PAGE 1L 3265 3266 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3267 3268 static const char *show_irq_str(int bits) 3269 { 3270 const char *type[] = { 3271 ".", // 0 3272 "s", // 1 3273 "h", // 2 3274 "Hs", // 3 3275 "n", // 4 3276 "Ns", // 5 3277 "Nh", // 6 3278 "NHs", // 7 3279 }; 3280 3281 return type[bits]; 3282 } 3283 3284 /* Assume this is an trace event */ 3285 static const char *show_flags(struct ring_buffer_event *event) 3286 { 3287 struct trace_entry *entry; 3288 int bits = 0; 3289 3290 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3291 return "X"; 3292 3293 entry = ring_buffer_event_data(event); 3294 3295 if (entry->flags & TRACE_FLAG_SOFTIRQ) 3296 bits |= 1; 3297 3298 if (entry->flags & TRACE_FLAG_HARDIRQ) 3299 bits |= 2; 3300 3301 if (entry->flags & TRACE_FLAG_NMI) 3302 bits |= 4; 3303 3304 return show_irq_str(bits); 3305 } 3306 3307 static const char *show_irq(struct ring_buffer_event *event) 3308 { 3309 struct trace_entry *entry; 3310 3311 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3312 return ""; 3313 3314 entry = ring_buffer_event_data(event); 3315 if (entry->flags & TRACE_FLAG_IRQS_OFF) 3316 return "d"; 3317 return ""; 3318 } 3319 3320 static const char *show_interrupt_level(void) 3321 { 3322 unsigned long pc = preempt_count(); 3323 unsigned char level = 0; 3324 3325 if (pc & SOFTIRQ_OFFSET) 3326 level |= 1; 3327 3328 if (pc & HARDIRQ_MASK) 3329 level |= 2; 3330 3331 if (pc & NMI_MASK) 3332 level |= 4; 3333 3334 return show_irq_str(level); 3335 } 3336 3337 static void dump_buffer_page(struct buffer_data_page *bpage, 3338 struct rb_event_info *info, 3339 unsigned long tail) 3340 { 3341 struct ring_buffer_event *event; 3342 u64 ts, delta; 3343 int e; 3344 3345 ts = bpage->time_stamp; 3346 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3347 3348 for (e = 0; e < tail; e += rb_event_length(event)) { 3349 3350 event = (struct ring_buffer_event *)(bpage->data + e); 3351 3352 switch (event->type_len) { 3353 3354 case RINGBUF_TYPE_TIME_EXTEND: 3355 delta = rb_event_time_stamp(event); 3356 ts += delta; 3357 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 3358 e, ts, delta); 3359 break; 3360 3361 case RINGBUF_TYPE_TIME_STAMP: 3362 delta = rb_event_time_stamp(event); 3363 ts = rb_fix_abs_ts(delta, ts); 3364 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 3365 e, ts, delta); 3366 break; 3367 3368 case RINGBUF_TYPE_PADDING: 3369 ts += event->time_delta; 3370 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 3371 e, ts, event->time_delta); 3372 break; 3373 3374 case RINGBUF_TYPE_DATA: 3375 ts += event->time_delta; 3376 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 3377 e, ts, event->time_delta, 3378 show_flags(event), show_irq(event)); 3379 break; 3380 3381 default: 3382 break; 3383 } 3384 } 3385 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 3386 } 3387 3388 static DEFINE_PER_CPU(atomic_t, checking); 3389 static atomic_t ts_dump; 3390 3391 #define buffer_warn_return(fmt, ...) \ 3392 do { \ 3393 /* If another report is happening, ignore this one */ \ 3394 if (atomic_inc_return(&ts_dump) != 1) { \ 3395 atomic_dec(&ts_dump); \ 3396 goto out; \ 3397 } \ 3398 atomic_inc(&cpu_buffer->record_disabled); \ 3399 pr_warn(fmt, ##__VA_ARGS__); \ 3400 dump_buffer_page(bpage, info, tail); \ 3401 atomic_dec(&ts_dump); \ 3402 /* There's some cases in boot up that this can happen */ \ 3403 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 3404 /* Do not re-enable checking */ \ 3405 return; \ 3406 } while (0) 3407 3408 /* 3409 * Check if the current event time stamp matches the deltas on 3410 * the buffer page. 3411 */ 3412 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3413 struct rb_event_info *info, 3414 unsigned long tail) 3415 { 3416 struct ring_buffer_event *event; 3417 struct buffer_data_page *bpage; 3418 u64 ts, delta; 3419 bool full = false; 3420 int e; 3421 3422 bpage = info->tail_page->page; 3423 3424 if (tail == CHECK_FULL_PAGE) { 3425 full = true; 3426 tail = local_read(&bpage->commit); 3427 } else if (info->add_timestamp & 3428 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3429 /* Ignore events with absolute time stamps */ 3430 return; 3431 } 3432 3433 /* 3434 * Do not check the first event (skip possible extends too). 3435 * Also do not check if previous events have not been committed. 3436 */ 3437 if (tail <= 8 || tail > local_read(&bpage->commit)) 3438 return; 3439 3440 /* 3441 * If this interrupted another event, 3442 */ 3443 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3444 goto out; 3445 3446 ts = bpage->time_stamp; 3447 3448 for (e = 0; e < tail; e += rb_event_length(event)) { 3449 3450 event = (struct ring_buffer_event *)(bpage->data + e); 3451 3452 switch (event->type_len) { 3453 3454 case RINGBUF_TYPE_TIME_EXTEND: 3455 delta = rb_event_time_stamp(event); 3456 ts += delta; 3457 break; 3458 3459 case RINGBUF_TYPE_TIME_STAMP: 3460 delta = rb_event_time_stamp(event); 3461 delta = rb_fix_abs_ts(delta, ts); 3462 if (delta < ts) { 3463 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 3464 cpu_buffer->cpu, ts, delta); 3465 } 3466 ts = delta; 3467 break; 3468 3469 case RINGBUF_TYPE_PADDING: 3470 if (event->time_delta == 1) 3471 break; 3472 fallthrough; 3473 case RINGBUF_TYPE_DATA: 3474 ts += event->time_delta; 3475 break; 3476 3477 default: 3478 RB_WARN_ON(cpu_buffer, 1); 3479 } 3480 } 3481 if ((full && ts > info->ts) || 3482 (!full && ts + info->delta != info->ts)) { 3483 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 3484 cpu_buffer->cpu, 3485 ts + info->delta, info->ts, info->delta, 3486 info->before, info->after, 3487 full ? " (full)" : "", show_interrupt_level()); 3488 } 3489 out: 3490 atomic_dec(this_cpu_ptr(&checking)); 3491 } 3492 #else 3493 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3494 struct rb_event_info *info, 3495 unsigned long tail) 3496 { 3497 } 3498 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3499 3500 static struct ring_buffer_event * 3501 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3502 struct rb_event_info *info) 3503 { 3504 struct ring_buffer_event *event; 3505 struct buffer_page *tail_page; 3506 unsigned long tail, write, w; 3507 3508 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3509 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3510 3511 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3512 barrier(); 3513 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3514 rb_time_read(&cpu_buffer->write_stamp, &info->after); 3515 barrier(); 3516 info->ts = rb_time_stamp(cpu_buffer->buffer); 3517 3518 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3519 info->delta = info->ts; 3520 } else { 3521 /* 3522 * If interrupting an event time update, we may need an 3523 * absolute timestamp. 3524 * Don't bother if this is the start of a new page (w == 0). 3525 */ 3526 if (!w) { 3527 /* Use the sub-buffer timestamp */ 3528 info->delta = 0; 3529 } else if (unlikely(info->before != info->after)) { 3530 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3531 info->length += RB_LEN_TIME_EXTEND; 3532 } else { 3533 info->delta = info->ts - info->after; 3534 if (unlikely(test_time_stamp(info->delta))) { 3535 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3536 info->length += RB_LEN_TIME_EXTEND; 3537 } 3538 } 3539 } 3540 3541 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3542 3543 /*C*/ write = local_add_return(info->length, &tail_page->write); 3544 3545 /* set write to only the index of the write */ 3546 write &= RB_WRITE_MASK; 3547 3548 tail = write - info->length; 3549 3550 /* See if we shot pass the end of this buffer page */ 3551 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 3552 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3553 return rb_move_tail(cpu_buffer, tail, info); 3554 } 3555 3556 if (likely(tail == w)) { 3557 /* Nothing interrupted us between A and C */ 3558 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3559 /* 3560 * If something came in between C and D, the write stamp 3561 * may now not be in sync. But that's fine as the before_stamp 3562 * will be different and then next event will just be forced 3563 * to use an absolute timestamp. 3564 */ 3565 if (likely(!(info->add_timestamp & 3566 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3567 /* This did not interrupt any time update */ 3568 info->delta = info->ts - info->after; 3569 else 3570 /* Just use full timestamp for interrupting event */ 3571 info->delta = info->ts; 3572 check_buffer(cpu_buffer, info, tail); 3573 } else { 3574 u64 ts; 3575 /* SLOW PATH - Interrupted between A and C */ 3576 3577 /* Save the old before_stamp */ 3578 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3579 3580 /* 3581 * Read a new timestamp and update the before_stamp to make 3582 * the next event after this one force using an absolute 3583 * timestamp. This is in case an interrupt were to come in 3584 * between E and F. 3585 */ 3586 ts = rb_time_stamp(cpu_buffer->buffer); 3587 rb_time_set(&cpu_buffer->before_stamp, ts); 3588 3589 barrier(); 3590 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 3591 barrier(); 3592 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3593 info->after == info->before && info->after < ts) { 3594 /* 3595 * Nothing came after this event between C and F, it is 3596 * safe to use info->after for the delta as it 3597 * matched info->before and is still valid. 3598 */ 3599 info->delta = ts - info->after; 3600 } else { 3601 /* 3602 * Interrupted between C and F: 3603 * Lost the previous events time stamp. Just set the 3604 * delta to zero, and this will be the same time as 3605 * the event this event interrupted. And the events that 3606 * came after this will still be correct (as they would 3607 * have built their delta on the previous event. 3608 */ 3609 info->delta = 0; 3610 } 3611 info->ts = ts; 3612 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3613 } 3614 3615 /* 3616 * If this is the first commit on the page, then it has the same 3617 * timestamp as the page itself. 3618 */ 3619 if (unlikely(!tail && !(info->add_timestamp & 3620 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3621 info->delta = 0; 3622 3623 /* We reserved something on the buffer */ 3624 3625 event = __rb_page_index(tail_page, tail); 3626 rb_update_event(cpu_buffer, event, info); 3627 3628 local_inc(&tail_page->entries); 3629 3630 /* 3631 * If this is the first commit on the page, then update 3632 * its timestamp. 3633 */ 3634 if (unlikely(!tail)) 3635 tail_page->page->time_stamp = info->ts; 3636 3637 /* account for these added bytes */ 3638 local_add(info->length, &cpu_buffer->entries_bytes); 3639 3640 return event; 3641 } 3642 3643 static __always_inline struct ring_buffer_event * 3644 rb_reserve_next_event(struct trace_buffer *buffer, 3645 struct ring_buffer_per_cpu *cpu_buffer, 3646 unsigned long length) 3647 { 3648 struct ring_buffer_event *event; 3649 struct rb_event_info info; 3650 int nr_loops = 0; 3651 int add_ts_default; 3652 3653 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 3654 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 3655 (unlikely(in_nmi()))) { 3656 return NULL; 3657 } 3658 3659 rb_start_commit(cpu_buffer); 3660 /* The commit page can not change after this */ 3661 3662 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3663 /* 3664 * Due to the ability to swap a cpu buffer from a buffer 3665 * it is possible it was swapped before we committed. 3666 * (committing stops a swap). We check for it here and 3667 * if it happened, we have to fail the write. 3668 */ 3669 barrier(); 3670 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3671 local_dec(&cpu_buffer->committing); 3672 local_dec(&cpu_buffer->commits); 3673 return NULL; 3674 } 3675 #endif 3676 3677 info.length = rb_calculate_event_length(length); 3678 3679 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3680 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3681 info.length += RB_LEN_TIME_EXTEND; 3682 if (info.length > cpu_buffer->buffer->max_data_size) 3683 goto out_fail; 3684 } else { 3685 add_ts_default = RB_ADD_STAMP_NONE; 3686 } 3687 3688 again: 3689 info.add_timestamp = add_ts_default; 3690 info.delta = 0; 3691 3692 /* 3693 * We allow for interrupts to reenter here and do a trace. 3694 * If one does, it will cause this original code to loop 3695 * back here. Even with heavy interrupts happening, this 3696 * should only happen a few times in a row. If this happens 3697 * 1000 times in a row, there must be either an interrupt 3698 * storm or we have something buggy. 3699 * Bail! 3700 */ 3701 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3702 goto out_fail; 3703 3704 event = __rb_reserve_next(cpu_buffer, &info); 3705 3706 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3707 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3708 info.length -= RB_LEN_TIME_EXTEND; 3709 goto again; 3710 } 3711 3712 if (likely(event)) 3713 return event; 3714 out_fail: 3715 rb_end_commit(cpu_buffer); 3716 return NULL; 3717 } 3718 3719 /** 3720 * ring_buffer_lock_reserve - reserve a part of the buffer 3721 * @buffer: the ring buffer to reserve from 3722 * @length: the length of the data to reserve (excluding event header) 3723 * 3724 * Returns a reserved event on the ring buffer to copy directly to. 3725 * The user of this interface will need to get the body to write into 3726 * and can use the ring_buffer_event_data() interface. 3727 * 3728 * The length is the length of the data needed, not the event length 3729 * which also includes the event header. 3730 * 3731 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3732 * If NULL is returned, then nothing has been allocated or locked. 3733 */ 3734 struct ring_buffer_event * 3735 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3736 { 3737 struct ring_buffer_per_cpu *cpu_buffer; 3738 struct ring_buffer_event *event; 3739 int cpu; 3740 3741 /* If we are tracing schedule, we don't want to recurse */ 3742 preempt_disable_notrace(); 3743 3744 if (unlikely(atomic_read(&buffer->record_disabled))) 3745 goto out; 3746 3747 cpu = raw_smp_processor_id(); 3748 3749 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3750 goto out; 3751 3752 cpu_buffer = buffer->buffers[cpu]; 3753 3754 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3755 goto out; 3756 3757 if (unlikely(length > buffer->max_data_size)) 3758 goto out; 3759 3760 if (unlikely(trace_recursive_lock(cpu_buffer))) 3761 goto out; 3762 3763 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3764 if (!event) 3765 goto out_unlock; 3766 3767 return event; 3768 3769 out_unlock: 3770 trace_recursive_unlock(cpu_buffer); 3771 out: 3772 preempt_enable_notrace(); 3773 return NULL; 3774 } 3775 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3776 3777 /* 3778 * Decrement the entries to the page that an event is on. 3779 * The event does not even need to exist, only the pointer 3780 * to the page it is on. This may only be called before the commit 3781 * takes place. 3782 */ 3783 static inline void 3784 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3785 struct ring_buffer_event *event) 3786 { 3787 unsigned long addr = (unsigned long)event; 3788 struct buffer_page *bpage = cpu_buffer->commit_page; 3789 struct buffer_page *start; 3790 3791 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3792 3793 /* Do the likely case first */ 3794 if (likely(bpage->page == (void *)addr)) { 3795 local_dec(&bpage->entries); 3796 return; 3797 } 3798 3799 /* 3800 * Because the commit page may be on the reader page we 3801 * start with the next page and check the end loop there. 3802 */ 3803 rb_inc_page(&bpage); 3804 start = bpage; 3805 do { 3806 if (bpage->page == (void *)addr) { 3807 local_dec(&bpage->entries); 3808 return; 3809 } 3810 rb_inc_page(&bpage); 3811 } while (bpage != start); 3812 3813 /* commit not part of this buffer?? */ 3814 RB_WARN_ON(cpu_buffer, 1); 3815 } 3816 3817 /** 3818 * ring_buffer_discard_commit - discard an event that has not been committed 3819 * @buffer: the ring buffer 3820 * @event: non committed event to discard 3821 * 3822 * Sometimes an event that is in the ring buffer needs to be ignored. 3823 * This function lets the user discard an event in the ring buffer 3824 * and then that event will not be read later. 3825 * 3826 * This function only works if it is called before the item has been 3827 * committed. It will try to free the event from the ring buffer 3828 * if another event has not been added behind it. 3829 * 3830 * If another event has been added behind it, it will set the event 3831 * up as discarded, and perform the commit. 3832 * 3833 * If this function is called, do not call ring_buffer_unlock_commit on 3834 * the event. 3835 */ 3836 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3837 struct ring_buffer_event *event) 3838 { 3839 struct ring_buffer_per_cpu *cpu_buffer; 3840 int cpu; 3841 3842 /* The event is discarded regardless */ 3843 rb_event_discard(event); 3844 3845 cpu = smp_processor_id(); 3846 cpu_buffer = buffer->buffers[cpu]; 3847 3848 /* 3849 * This must only be called if the event has not been 3850 * committed yet. Thus we can assume that preemption 3851 * is still disabled. 3852 */ 3853 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3854 3855 rb_decrement_entry(cpu_buffer, event); 3856 if (rb_try_to_discard(cpu_buffer, event)) 3857 goto out; 3858 3859 out: 3860 rb_end_commit(cpu_buffer); 3861 3862 trace_recursive_unlock(cpu_buffer); 3863 3864 preempt_enable_notrace(); 3865 3866 } 3867 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3868 3869 /** 3870 * ring_buffer_write - write data to the buffer without reserving 3871 * @buffer: The ring buffer to write to. 3872 * @length: The length of the data being written (excluding the event header) 3873 * @data: The data to write to the buffer. 3874 * 3875 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3876 * one function. If you already have the data to write to the buffer, it 3877 * may be easier to simply call this function. 3878 * 3879 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3880 * and not the length of the event which would hold the header. 3881 */ 3882 int ring_buffer_write(struct trace_buffer *buffer, 3883 unsigned long length, 3884 void *data) 3885 { 3886 struct ring_buffer_per_cpu *cpu_buffer; 3887 struct ring_buffer_event *event; 3888 void *body; 3889 int ret = -EBUSY; 3890 int cpu; 3891 3892 preempt_disable_notrace(); 3893 3894 if (atomic_read(&buffer->record_disabled)) 3895 goto out; 3896 3897 cpu = raw_smp_processor_id(); 3898 3899 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3900 goto out; 3901 3902 cpu_buffer = buffer->buffers[cpu]; 3903 3904 if (atomic_read(&cpu_buffer->record_disabled)) 3905 goto out; 3906 3907 if (length > buffer->max_data_size) 3908 goto out; 3909 3910 if (unlikely(trace_recursive_lock(cpu_buffer))) 3911 goto out; 3912 3913 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3914 if (!event) 3915 goto out_unlock; 3916 3917 body = rb_event_data(event); 3918 3919 memcpy(body, data, length); 3920 3921 rb_commit(cpu_buffer); 3922 3923 rb_wakeups(buffer, cpu_buffer); 3924 3925 ret = 0; 3926 3927 out_unlock: 3928 trace_recursive_unlock(cpu_buffer); 3929 3930 out: 3931 preempt_enable_notrace(); 3932 3933 return ret; 3934 } 3935 EXPORT_SYMBOL_GPL(ring_buffer_write); 3936 3937 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3938 { 3939 struct buffer_page *reader = cpu_buffer->reader_page; 3940 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3941 struct buffer_page *commit = cpu_buffer->commit_page; 3942 3943 /* In case of error, head will be NULL */ 3944 if (unlikely(!head)) 3945 return true; 3946 3947 /* Reader should exhaust content in reader page */ 3948 if (reader->read != rb_page_commit(reader)) 3949 return false; 3950 3951 /* 3952 * If writers are committing on the reader page, knowing all 3953 * committed content has been read, the ring buffer is empty. 3954 */ 3955 if (commit == reader) 3956 return true; 3957 3958 /* 3959 * If writers are committing on a page other than reader page 3960 * and head page, there should always be content to read. 3961 */ 3962 if (commit != head) 3963 return false; 3964 3965 /* 3966 * Writers are committing on the head page, we just need 3967 * to care about there're committed data, and the reader will 3968 * swap reader page with head page when it is to read data. 3969 */ 3970 return rb_page_commit(commit) == 0; 3971 } 3972 3973 /** 3974 * ring_buffer_record_disable - stop all writes into the buffer 3975 * @buffer: The ring buffer to stop writes to. 3976 * 3977 * This prevents all writes to the buffer. Any attempt to write 3978 * to the buffer after this will fail and return NULL. 3979 * 3980 * The caller should call synchronize_rcu() after this. 3981 */ 3982 void ring_buffer_record_disable(struct trace_buffer *buffer) 3983 { 3984 atomic_inc(&buffer->record_disabled); 3985 } 3986 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3987 3988 /** 3989 * ring_buffer_record_enable - enable writes to the buffer 3990 * @buffer: The ring buffer to enable writes 3991 * 3992 * Note, multiple disables will need the same number of enables 3993 * to truly enable the writing (much like preempt_disable). 3994 */ 3995 void ring_buffer_record_enable(struct trace_buffer *buffer) 3996 { 3997 atomic_dec(&buffer->record_disabled); 3998 } 3999 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4000 4001 /** 4002 * ring_buffer_record_off - stop all writes into the buffer 4003 * @buffer: The ring buffer to stop writes to. 4004 * 4005 * This prevents all writes to the buffer. Any attempt to write 4006 * to the buffer after this will fail and return NULL. 4007 * 4008 * This is different than ring_buffer_record_disable() as 4009 * it works like an on/off switch, where as the disable() version 4010 * must be paired with a enable(). 4011 */ 4012 void ring_buffer_record_off(struct trace_buffer *buffer) 4013 { 4014 unsigned int rd; 4015 unsigned int new_rd; 4016 4017 rd = atomic_read(&buffer->record_disabled); 4018 do { 4019 new_rd = rd | RB_BUFFER_OFF; 4020 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4021 } 4022 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4023 4024 /** 4025 * ring_buffer_record_on - restart writes into the buffer 4026 * @buffer: The ring buffer to start writes to. 4027 * 4028 * This enables all writes to the buffer that was disabled by 4029 * ring_buffer_record_off(). 4030 * 4031 * This is different than ring_buffer_record_enable() as 4032 * it works like an on/off switch, where as the enable() version 4033 * must be paired with a disable(). 4034 */ 4035 void ring_buffer_record_on(struct trace_buffer *buffer) 4036 { 4037 unsigned int rd; 4038 unsigned int new_rd; 4039 4040 rd = atomic_read(&buffer->record_disabled); 4041 do { 4042 new_rd = rd & ~RB_BUFFER_OFF; 4043 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4044 } 4045 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4046 4047 /** 4048 * ring_buffer_record_is_on - return true if the ring buffer can write 4049 * @buffer: The ring buffer to see if write is enabled 4050 * 4051 * Returns true if the ring buffer is in a state that it accepts writes. 4052 */ 4053 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4054 { 4055 return !atomic_read(&buffer->record_disabled); 4056 } 4057 4058 /** 4059 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4060 * @buffer: The ring buffer to see if write is set enabled 4061 * 4062 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4063 * Note that this does NOT mean it is in a writable state. 4064 * 4065 * It may return true when the ring buffer has been disabled by 4066 * ring_buffer_record_disable(), as that is a temporary disabling of 4067 * the ring buffer. 4068 */ 4069 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4070 { 4071 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4072 } 4073 4074 /** 4075 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4076 * @buffer: The ring buffer to stop writes to. 4077 * @cpu: The CPU buffer to stop 4078 * 4079 * This prevents all writes to the buffer. Any attempt to write 4080 * to the buffer after this will fail and return NULL. 4081 * 4082 * The caller should call synchronize_rcu() after this. 4083 */ 4084 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4085 { 4086 struct ring_buffer_per_cpu *cpu_buffer; 4087 4088 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4089 return; 4090 4091 cpu_buffer = buffer->buffers[cpu]; 4092 atomic_inc(&cpu_buffer->record_disabled); 4093 } 4094 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4095 4096 /** 4097 * ring_buffer_record_enable_cpu - enable writes to the buffer 4098 * @buffer: The ring buffer to enable writes 4099 * @cpu: The CPU to enable. 4100 * 4101 * Note, multiple disables will need the same number of enables 4102 * to truly enable the writing (much like preempt_disable). 4103 */ 4104 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4105 { 4106 struct ring_buffer_per_cpu *cpu_buffer; 4107 4108 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4109 return; 4110 4111 cpu_buffer = buffer->buffers[cpu]; 4112 atomic_dec(&cpu_buffer->record_disabled); 4113 } 4114 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4115 4116 /* 4117 * The total entries in the ring buffer is the running counter 4118 * of entries entered into the ring buffer, minus the sum of 4119 * the entries read from the ring buffer and the number of 4120 * entries that were overwritten. 4121 */ 4122 static inline unsigned long 4123 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4124 { 4125 return local_read(&cpu_buffer->entries) - 4126 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4127 } 4128 4129 /** 4130 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4131 * @buffer: The ring buffer 4132 * @cpu: The per CPU buffer to read from. 4133 */ 4134 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4135 { 4136 unsigned long flags; 4137 struct ring_buffer_per_cpu *cpu_buffer; 4138 struct buffer_page *bpage; 4139 u64 ret = 0; 4140 4141 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4142 return 0; 4143 4144 cpu_buffer = buffer->buffers[cpu]; 4145 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4146 /* 4147 * if the tail is on reader_page, oldest time stamp is on the reader 4148 * page 4149 */ 4150 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4151 bpage = cpu_buffer->reader_page; 4152 else 4153 bpage = rb_set_head_page(cpu_buffer); 4154 if (bpage) 4155 ret = bpage->page->time_stamp; 4156 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4157 4158 return ret; 4159 } 4160 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4161 4162 /** 4163 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4164 * @buffer: The ring buffer 4165 * @cpu: The per CPU buffer to read from. 4166 */ 4167 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4168 { 4169 struct ring_buffer_per_cpu *cpu_buffer; 4170 unsigned long ret; 4171 4172 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4173 return 0; 4174 4175 cpu_buffer = buffer->buffers[cpu]; 4176 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4177 4178 return ret; 4179 } 4180 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4181 4182 /** 4183 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4184 * @buffer: The ring buffer 4185 * @cpu: The per CPU buffer to get the entries from. 4186 */ 4187 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4188 { 4189 struct ring_buffer_per_cpu *cpu_buffer; 4190 4191 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4192 return 0; 4193 4194 cpu_buffer = buffer->buffers[cpu]; 4195 4196 return rb_num_of_entries(cpu_buffer); 4197 } 4198 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4199 4200 /** 4201 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4202 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4203 * @buffer: The ring buffer 4204 * @cpu: The per CPU buffer to get the number of overruns from 4205 */ 4206 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4207 { 4208 struct ring_buffer_per_cpu *cpu_buffer; 4209 unsigned long ret; 4210 4211 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4212 return 0; 4213 4214 cpu_buffer = buffer->buffers[cpu]; 4215 ret = local_read(&cpu_buffer->overrun); 4216 4217 return ret; 4218 } 4219 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4220 4221 /** 4222 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4223 * commits failing due to the buffer wrapping around while there are uncommitted 4224 * events, such as during an interrupt storm. 4225 * @buffer: The ring buffer 4226 * @cpu: The per CPU buffer to get the number of overruns from 4227 */ 4228 unsigned long 4229 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4230 { 4231 struct ring_buffer_per_cpu *cpu_buffer; 4232 unsigned long ret; 4233 4234 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4235 return 0; 4236 4237 cpu_buffer = buffer->buffers[cpu]; 4238 ret = local_read(&cpu_buffer->commit_overrun); 4239 4240 return ret; 4241 } 4242 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4243 4244 /** 4245 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4246 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4247 * @buffer: The ring buffer 4248 * @cpu: The per CPU buffer to get the number of overruns from 4249 */ 4250 unsigned long 4251 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4252 { 4253 struct ring_buffer_per_cpu *cpu_buffer; 4254 unsigned long ret; 4255 4256 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4257 return 0; 4258 4259 cpu_buffer = buffer->buffers[cpu]; 4260 ret = local_read(&cpu_buffer->dropped_events); 4261 4262 return ret; 4263 } 4264 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4265 4266 /** 4267 * ring_buffer_read_events_cpu - get the number of events successfully read 4268 * @buffer: The ring buffer 4269 * @cpu: The per CPU buffer to get the number of events read 4270 */ 4271 unsigned long 4272 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4273 { 4274 struct ring_buffer_per_cpu *cpu_buffer; 4275 4276 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4277 return 0; 4278 4279 cpu_buffer = buffer->buffers[cpu]; 4280 return cpu_buffer->read; 4281 } 4282 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4283 4284 /** 4285 * ring_buffer_entries - get the number of entries in a buffer 4286 * @buffer: The ring buffer 4287 * 4288 * Returns the total number of entries in the ring buffer 4289 * (all CPU entries) 4290 */ 4291 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4292 { 4293 struct ring_buffer_per_cpu *cpu_buffer; 4294 unsigned long entries = 0; 4295 int cpu; 4296 4297 /* if you care about this being correct, lock the buffer */ 4298 for_each_buffer_cpu(buffer, cpu) { 4299 cpu_buffer = buffer->buffers[cpu]; 4300 entries += rb_num_of_entries(cpu_buffer); 4301 } 4302 4303 return entries; 4304 } 4305 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4306 4307 /** 4308 * ring_buffer_overruns - get the number of overruns in buffer 4309 * @buffer: The ring buffer 4310 * 4311 * Returns the total number of overruns in the ring buffer 4312 * (all CPU entries) 4313 */ 4314 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4315 { 4316 struct ring_buffer_per_cpu *cpu_buffer; 4317 unsigned long overruns = 0; 4318 int cpu; 4319 4320 /* if you care about this being correct, lock the buffer */ 4321 for_each_buffer_cpu(buffer, cpu) { 4322 cpu_buffer = buffer->buffers[cpu]; 4323 overruns += local_read(&cpu_buffer->overrun); 4324 } 4325 4326 return overruns; 4327 } 4328 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4329 4330 static void rb_iter_reset(struct ring_buffer_iter *iter) 4331 { 4332 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4333 4334 /* Iterator usage is expected to have record disabled */ 4335 iter->head_page = cpu_buffer->reader_page; 4336 iter->head = cpu_buffer->reader_page->read; 4337 iter->next_event = iter->head; 4338 4339 iter->cache_reader_page = iter->head_page; 4340 iter->cache_read = cpu_buffer->read; 4341 iter->cache_pages_removed = cpu_buffer->pages_removed; 4342 4343 if (iter->head) { 4344 iter->read_stamp = cpu_buffer->read_stamp; 4345 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4346 } else { 4347 iter->read_stamp = iter->head_page->page->time_stamp; 4348 iter->page_stamp = iter->read_stamp; 4349 } 4350 } 4351 4352 /** 4353 * ring_buffer_iter_reset - reset an iterator 4354 * @iter: The iterator to reset 4355 * 4356 * Resets the iterator, so that it will start from the beginning 4357 * again. 4358 */ 4359 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4360 { 4361 struct ring_buffer_per_cpu *cpu_buffer; 4362 unsigned long flags; 4363 4364 if (!iter) 4365 return; 4366 4367 cpu_buffer = iter->cpu_buffer; 4368 4369 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4370 rb_iter_reset(iter); 4371 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4372 } 4373 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4374 4375 /** 4376 * ring_buffer_iter_empty - check if an iterator has no more to read 4377 * @iter: The iterator to check 4378 */ 4379 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4380 { 4381 struct ring_buffer_per_cpu *cpu_buffer; 4382 struct buffer_page *reader; 4383 struct buffer_page *head_page; 4384 struct buffer_page *commit_page; 4385 struct buffer_page *curr_commit_page; 4386 unsigned commit; 4387 u64 curr_commit_ts; 4388 u64 commit_ts; 4389 4390 cpu_buffer = iter->cpu_buffer; 4391 reader = cpu_buffer->reader_page; 4392 head_page = cpu_buffer->head_page; 4393 commit_page = READ_ONCE(cpu_buffer->commit_page); 4394 commit_ts = commit_page->page->time_stamp; 4395 4396 /* 4397 * When the writer goes across pages, it issues a cmpxchg which 4398 * is a mb(), which will synchronize with the rmb here. 4399 * (see rb_tail_page_update()) 4400 */ 4401 smp_rmb(); 4402 commit = rb_page_commit(commit_page); 4403 /* We want to make sure that the commit page doesn't change */ 4404 smp_rmb(); 4405 4406 /* Make sure commit page didn't change */ 4407 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4408 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4409 4410 /* If the commit page changed, then there's more data */ 4411 if (curr_commit_page != commit_page || 4412 curr_commit_ts != commit_ts) 4413 return 0; 4414 4415 /* Still racy, as it may return a false positive, but that's OK */ 4416 return ((iter->head_page == commit_page && iter->head >= commit) || 4417 (iter->head_page == reader && commit_page == head_page && 4418 head_page->read == commit && 4419 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4420 } 4421 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4422 4423 static void 4424 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4425 struct ring_buffer_event *event) 4426 { 4427 u64 delta; 4428 4429 switch (event->type_len) { 4430 case RINGBUF_TYPE_PADDING: 4431 return; 4432 4433 case RINGBUF_TYPE_TIME_EXTEND: 4434 delta = rb_event_time_stamp(event); 4435 cpu_buffer->read_stamp += delta; 4436 return; 4437 4438 case RINGBUF_TYPE_TIME_STAMP: 4439 delta = rb_event_time_stamp(event); 4440 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4441 cpu_buffer->read_stamp = delta; 4442 return; 4443 4444 case RINGBUF_TYPE_DATA: 4445 cpu_buffer->read_stamp += event->time_delta; 4446 return; 4447 4448 default: 4449 RB_WARN_ON(cpu_buffer, 1); 4450 } 4451 } 4452 4453 static void 4454 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4455 struct ring_buffer_event *event) 4456 { 4457 u64 delta; 4458 4459 switch (event->type_len) { 4460 case RINGBUF_TYPE_PADDING: 4461 return; 4462 4463 case RINGBUF_TYPE_TIME_EXTEND: 4464 delta = rb_event_time_stamp(event); 4465 iter->read_stamp += delta; 4466 return; 4467 4468 case RINGBUF_TYPE_TIME_STAMP: 4469 delta = rb_event_time_stamp(event); 4470 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4471 iter->read_stamp = delta; 4472 return; 4473 4474 case RINGBUF_TYPE_DATA: 4475 iter->read_stamp += event->time_delta; 4476 return; 4477 4478 default: 4479 RB_WARN_ON(iter->cpu_buffer, 1); 4480 } 4481 } 4482 4483 static struct buffer_page * 4484 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4485 { 4486 struct buffer_page *reader = NULL; 4487 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 4488 unsigned long overwrite; 4489 unsigned long flags; 4490 int nr_loops = 0; 4491 bool ret; 4492 4493 local_irq_save(flags); 4494 arch_spin_lock(&cpu_buffer->lock); 4495 4496 again: 4497 /* 4498 * This should normally only loop twice. But because the 4499 * start of the reader inserts an empty page, it causes 4500 * a case where we will loop three times. There should be no 4501 * reason to loop four times (that I know of). 4502 */ 4503 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4504 reader = NULL; 4505 goto out; 4506 } 4507 4508 reader = cpu_buffer->reader_page; 4509 4510 /* If there's more to read, return this page */ 4511 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4512 goto out; 4513 4514 /* Never should we have an index greater than the size */ 4515 if (RB_WARN_ON(cpu_buffer, 4516 cpu_buffer->reader_page->read > rb_page_size(reader))) 4517 goto out; 4518 4519 /* check if we caught up to the tail */ 4520 reader = NULL; 4521 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4522 goto out; 4523 4524 /* Don't bother swapping if the ring buffer is empty */ 4525 if (rb_num_of_entries(cpu_buffer) == 0) 4526 goto out; 4527 4528 /* 4529 * Reset the reader page to size zero. 4530 */ 4531 local_set(&cpu_buffer->reader_page->write, 0); 4532 local_set(&cpu_buffer->reader_page->entries, 0); 4533 local_set(&cpu_buffer->reader_page->page->commit, 0); 4534 cpu_buffer->reader_page->real_end = 0; 4535 4536 spin: 4537 /* 4538 * Splice the empty reader page into the list around the head. 4539 */ 4540 reader = rb_set_head_page(cpu_buffer); 4541 if (!reader) 4542 goto out; 4543 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4544 cpu_buffer->reader_page->list.prev = reader->list.prev; 4545 4546 /* 4547 * cpu_buffer->pages just needs to point to the buffer, it 4548 * has no specific buffer page to point to. Lets move it out 4549 * of our way so we don't accidentally swap it. 4550 */ 4551 cpu_buffer->pages = reader->list.prev; 4552 4553 /* The reader page will be pointing to the new head */ 4554 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4555 4556 /* 4557 * We want to make sure we read the overruns after we set up our 4558 * pointers to the next object. The writer side does a 4559 * cmpxchg to cross pages which acts as the mb on the writer 4560 * side. Note, the reader will constantly fail the swap 4561 * while the writer is updating the pointers, so this 4562 * guarantees that the overwrite recorded here is the one we 4563 * want to compare with the last_overrun. 4564 */ 4565 smp_mb(); 4566 overwrite = local_read(&(cpu_buffer->overrun)); 4567 4568 /* 4569 * Here's the tricky part. 4570 * 4571 * We need to move the pointer past the header page. 4572 * But we can only do that if a writer is not currently 4573 * moving it. The page before the header page has the 4574 * flag bit '1' set if it is pointing to the page we want. 4575 * but if the writer is in the process of moving it 4576 * than it will be '2' or already moved '0'. 4577 */ 4578 4579 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4580 4581 /* 4582 * If we did not convert it, then we must try again. 4583 */ 4584 if (!ret) 4585 goto spin; 4586 4587 /* 4588 * Yay! We succeeded in replacing the page. 4589 * 4590 * Now make the new head point back to the reader page. 4591 */ 4592 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4593 rb_inc_page(&cpu_buffer->head_page); 4594 4595 local_inc(&cpu_buffer->pages_read); 4596 4597 /* Finally update the reader page to the new head */ 4598 cpu_buffer->reader_page = reader; 4599 cpu_buffer->reader_page->read = 0; 4600 4601 if (overwrite != cpu_buffer->last_overrun) { 4602 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4603 cpu_buffer->last_overrun = overwrite; 4604 } 4605 4606 goto again; 4607 4608 out: 4609 /* Update the read_stamp on the first event */ 4610 if (reader && reader->read == 0) 4611 cpu_buffer->read_stamp = reader->page->time_stamp; 4612 4613 arch_spin_unlock(&cpu_buffer->lock); 4614 local_irq_restore(flags); 4615 4616 /* 4617 * The writer has preempt disable, wait for it. But not forever 4618 * Although, 1 second is pretty much "forever" 4619 */ 4620 #define USECS_WAIT 1000000 4621 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4622 /* If the write is past the end of page, a writer is still updating it */ 4623 if (likely(!reader || rb_page_write(reader) <= bsize)) 4624 break; 4625 4626 udelay(1); 4627 4628 /* Get the latest version of the reader write value */ 4629 smp_rmb(); 4630 } 4631 4632 /* The writer is not moving forward? Something is wrong */ 4633 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4634 reader = NULL; 4635 4636 /* 4637 * Make sure we see any padding after the write update 4638 * (see rb_reset_tail()). 4639 * 4640 * In addition, a writer may be writing on the reader page 4641 * if the page has not been fully filled, so the read barrier 4642 * is also needed to make sure we see the content of what is 4643 * committed by the writer (see rb_set_commit_to_write()). 4644 */ 4645 smp_rmb(); 4646 4647 4648 return reader; 4649 } 4650 4651 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4652 { 4653 struct ring_buffer_event *event; 4654 struct buffer_page *reader; 4655 unsigned length; 4656 4657 reader = rb_get_reader_page(cpu_buffer); 4658 4659 /* This function should not be called when buffer is empty */ 4660 if (RB_WARN_ON(cpu_buffer, !reader)) 4661 return; 4662 4663 event = rb_reader_event(cpu_buffer); 4664 4665 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4666 cpu_buffer->read++; 4667 4668 rb_update_read_stamp(cpu_buffer, event); 4669 4670 length = rb_event_length(event); 4671 cpu_buffer->reader_page->read += length; 4672 cpu_buffer->read_bytes += length; 4673 } 4674 4675 static void rb_advance_iter(struct ring_buffer_iter *iter) 4676 { 4677 struct ring_buffer_per_cpu *cpu_buffer; 4678 4679 cpu_buffer = iter->cpu_buffer; 4680 4681 /* If head == next_event then we need to jump to the next event */ 4682 if (iter->head == iter->next_event) { 4683 /* If the event gets overwritten again, there's nothing to do */ 4684 if (rb_iter_head_event(iter) == NULL) 4685 return; 4686 } 4687 4688 iter->head = iter->next_event; 4689 4690 /* 4691 * Check if we are at the end of the buffer. 4692 */ 4693 if (iter->next_event >= rb_page_size(iter->head_page)) { 4694 /* discarded commits can make the page empty */ 4695 if (iter->head_page == cpu_buffer->commit_page) 4696 return; 4697 rb_inc_iter(iter); 4698 return; 4699 } 4700 4701 rb_update_iter_read_stamp(iter, iter->event); 4702 } 4703 4704 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4705 { 4706 return cpu_buffer->lost_events; 4707 } 4708 4709 static struct ring_buffer_event * 4710 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4711 unsigned long *lost_events) 4712 { 4713 struct ring_buffer_event *event; 4714 struct buffer_page *reader; 4715 int nr_loops = 0; 4716 4717 if (ts) 4718 *ts = 0; 4719 again: 4720 /* 4721 * We repeat when a time extend is encountered. 4722 * Since the time extend is always attached to a data event, 4723 * we should never loop more than once. 4724 * (We never hit the following condition more than twice). 4725 */ 4726 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4727 return NULL; 4728 4729 reader = rb_get_reader_page(cpu_buffer); 4730 if (!reader) 4731 return NULL; 4732 4733 event = rb_reader_event(cpu_buffer); 4734 4735 switch (event->type_len) { 4736 case RINGBUF_TYPE_PADDING: 4737 if (rb_null_event(event)) 4738 RB_WARN_ON(cpu_buffer, 1); 4739 /* 4740 * Because the writer could be discarding every 4741 * event it creates (which would probably be bad) 4742 * if we were to go back to "again" then we may never 4743 * catch up, and will trigger the warn on, or lock 4744 * the box. Return the padding, and we will release 4745 * the current locks, and try again. 4746 */ 4747 return event; 4748 4749 case RINGBUF_TYPE_TIME_EXTEND: 4750 /* Internal data, OK to advance */ 4751 rb_advance_reader(cpu_buffer); 4752 goto again; 4753 4754 case RINGBUF_TYPE_TIME_STAMP: 4755 if (ts) { 4756 *ts = rb_event_time_stamp(event); 4757 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4758 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4759 cpu_buffer->cpu, ts); 4760 } 4761 /* Internal data, OK to advance */ 4762 rb_advance_reader(cpu_buffer); 4763 goto again; 4764 4765 case RINGBUF_TYPE_DATA: 4766 if (ts && !(*ts)) { 4767 *ts = cpu_buffer->read_stamp + event->time_delta; 4768 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4769 cpu_buffer->cpu, ts); 4770 } 4771 if (lost_events) 4772 *lost_events = rb_lost_events(cpu_buffer); 4773 return event; 4774 4775 default: 4776 RB_WARN_ON(cpu_buffer, 1); 4777 } 4778 4779 return NULL; 4780 } 4781 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4782 4783 static struct ring_buffer_event * 4784 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4785 { 4786 struct trace_buffer *buffer; 4787 struct ring_buffer_per_cpu *cpu_buffer; 4788 struct ring_buffer_event *event; 4789 int nr_loops = 0; 4790 4791 if (ts) 4792 *ts = 0; 4793 4794 cpu_buffer = iter->cpu_buffer; 4795 buffer = cpu_buffer->buffer; 4796 4797 /* 4798 * Check if someone performed a consuming read to the buffer 4799 * or removed some pages from the buffer. In these cases, 4800 * iterator was invalidated and we need to reset it. 4801 */ 4802 if (unlikely(iter->cache_read != cpu_buffer->read || 4803 iter->cache_reader_page != cpu_buffer->reader_page || 4804 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4805 rb_iter_reset(iter); 4806 4807 again: 4808 if (ring_buffer_iter_empty(iter)) 4809 return NULL; 4810 4811 /* 4812 * As the writer can mess with what the iterator is trying 4813 * to read, just give up if we fail to get an event after 4814 * three tries. The iterator is not as reliable when reading 4815 * the ring buffer with an active write as the consumer is. 4816 * Do not warn if the three failures is reached. 4817 */ 4818 if (++nr_loops > 3) 4819 return NULL; 4820 4821 if (rb_per_cpu_empty(cpu_buffer)) 4822 return NULL; 4823 4824 if (iter->head >= rb_page_size(iter->head_page)) { 4825 rb_inc_iter(iter); 4826 goto again; 4827 } 4828 4829 event = rb_iter_head_event(iter); 4830 if (!event) 4831 goto again; 4832 4833 switch (event->type_len) { 4834 case RINGBUF_TYPE_PADDING: 4835 if (rb_null_event(event)) { 4836 rb_inc_iter(iter); 4837 goto again; 4838 } 4839 rb_advance_iter(iter); 4840 return event; 4841 4842 case RINGBUF_TYPE_TIME_EXTEND: 4843 /* Internal data, OK to advance */ 4844 rb_advance_iter(iter); 4845 goto again; 4846 4847 case RINGBUF_TYPE_TIME_STAMP: 4848 if (ts) { 4849 *ts = rb_event_time_stamp(event); 4850 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4851 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4852 cpu_buffer->cpu, ts); 4853 } 4854 /* Internal data, OK to advance */ 4855 rb_advance_iter(iter); 4856 goto again; 4857 4858 case RINGBUF_TYPE_DATA: 4859 if (ts && !(*ts)) { 4860 *ts = iter->read_stamp + event->time_delta; 4861 ring_buffer_normalize_time_stamp(buffer, 4862 cpu_buffer->cpu, ts); 4863 } 4864 return event; 4865 4866 default: 4867 RB_WARN_ON(cpu_buffer, 1); 4868 } 4869 4870 return NULL; 4871 } 4872 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4873 4874 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4875 { 4876 if (likely(!in_nmi())) { 4877 raw_spin_lock(&cpu_buffer->reader_lock); 4878 return true; 4879 } 4880 4881 /* 4882 * If an NMI die dumps out the content of the ring buffer 4883 * trylock must be used to prevent a deadlock if the NMI 4884 * preempted a task that holds the ring buffer locks. If 4885 * we get the lock then all is fine, if not, then continue 4886 * to do the read, but this can corrupt the ring buffer, 4887 * so it must be permanently disabled from future writes. 4888 * Reading from NMI is a oneshot deal. 4889 */ 4890 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4891 return true; 4892 4893 /* Continue without locking, but disable the ring buffer */ 4894 atomic_inc(&cpu_buffer->record_disabled); 4895 return false; 4896 } 4897 4898 static inline void 4899 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4900 { 4901 if (likely(locked)) 4902 raw_spin_unlock(&cpu_buffer->reader_lock); 4903 } 4904 4905 /** 4906 * ring_buffer_peek - peek at the next event to be read 4907 * @buffer: The ring buffer to read 4908 * @cpu: The cpu to peak at 4909 * @ts: The timestamp counter of this event. 4910 * @lost_events: a variable to store if events were lost (may be NULL) 4911 * 4912 * This will return the event that will be read next, but does 4913 * not consume the data. 4914 */ 4915 struct ring_buffer_event * 4916 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4917 unsigned long *lost_events) 4918 { 4919 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4920 struct ring_buffer_event *event; 4921 unsigned long flags; 4922 bool dolock; 4923 4924 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4925 return NULL; 4926 4927 again: 4928 local_irq_save(flags); 4929 dolock = rb_reader_lock(cpu_buffer); 4930 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4931 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4932 rb_advance_reader(cpu_buffer); 4933 rb_reader_unlock(cpu_buffer, dolock); 4934 local_irq_restore(flags); 4935 4936 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4937 goto again; 4938 4939 return event; 4940 } 4941 4942 /** ring_buffer_iter_dropped - report if there are dropped events 4943 * @iter: The ring buffer iterator 4944 * 4945 * Returns true if there was dropped events since the last peek. 4946 */ 4947 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4948 { 4949 bool ret = iter->missed_events != 0; 4950 4951 iter->missed_events = 0; 4952 return ret; 4953 } 4954 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4955 4956 /** 4957 * ring_buffer_iter_peek - peek at the next event to be read 4958 * @iter: The ring buffer iterator 4959 * @ts: The timestamp counter of this event. 4960 * 4961 * This will return the event that will be read next, but does 4962 * not increment the iterator. 4963 */ 4964 struct ring_buffer_event * 4965 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4966 { 4967 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4968 struct ring_buffer_event *event; 4969 unsigned long flags; 4970 4971 again: 4972 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4973 event = rb_iter_peek(iter, ts); 4974 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4975 4976 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4977 goto again; 4978 4979 return event; 4980 } 4981 4982 /** 4983 * ring_buffer_consume - return an event and consume it 4984 * @buffer: The ring buffer to get the next event from 4985 * @cpu: the cpu to read the buffer from 4986 * @ts: a variable to store the timestamp (may be NULL) 4987 * @lost_events: a variable to store if events were lost (may be NULL) 4988 * 4989 * Returns the next event in the ring buffer, and that event is consumed. 4990 * Meaning, that sequential reads will keep returning a different event, 4991 * and eventually empty the ring buffer if the producer is slower. 4992 */ 4993 struct ring_buffer_event * 4994 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4995 unsigned long *lost_events) 4996 { 4997 struct ring_buffer_per_cpu *cpu_buffer; 4998 struct ring_buffer_event *event = NULL; 4999 unsigned long flags; 5000 bool dolock; 5001 5002 again: 5003 /* might be called in atomic */ 5004 preempt_disable(); 5005 5006 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5007 goto out; 5008 5009 cpu_buffer = buffer->buffers[cpu]; 5010 local_irq_save(flags); 5011 dolock = rb_reader_lock(cpu_buffer); 5012 5013 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5014 if (event) { 5015 cpu_buffer->lost_events = 0; 5016 rb_advance_reader(cpu_buffer); 5017 } 5018 5019 rb_reader_unlock(cpu_buffer, dolock); 5020 local_irq_restore(flags); 5021 5022 out: 5023 preempt_enable(); 5024 5025 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5026 goto again; 5027 5028 return event; 5029 } 5030 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5031 5032 /** 5033 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5034 * @buffer: The ring buffer to read from 5035 * @cpu: The cpu buffer to iterate over 5036 * @flags: gfp flags to use for memory allocation 5037 * 5038 * This performs the initial preparations necessary to iterate 5039 * through the buffer. Memory is allocated, buffer recording 5040 * is disabled, and the iterator pointer is returned to the caller. 5041 * 5042 * Disabling buffer recording prevents the reading from being 5043 * corrupted. This is not a consuming read, so a producer is not 5044 * expected. 5045 * 5046 * After a sequence of ring_buffer_read_prepare calls, the user is 5047 * expected to make at least one call to ring_buffer_read_prepare_sync. 5048 * Afterwards, ring_buffer_read_start is invoked to get things going 5049 * for real. 5050 * 5051 * This overall must be paired with ring_buffer_read_finish. 5052 */ 5053 struct ring_buffer_iter * 5054 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5055 { 5056 struct ring_buffer_per_cpu *cpu_buffer; 5057 struct ring_buffer_iter *iter; 5058 5059 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5060 return NULL; 5061 5062 iter = kzalloc(sizeof(*iter), flags); 5063 if (!iter) 5064 return NULL; 5065 5066 /* Holds the entire event: data and meta data */ 5067 iter->event_size = buffer->subbuf_size; 5068 iter->event = kmalloc(iter->event_size, flags); 5069 if (!iter->event) { 5070 kfree(iter); 5071 return NULL; 5072 } 5073 5074 cpu_buffer = buffer->buffers[cpu]; 5075 5076 iter->cpu_buffer = cpu_buffer; 5077 5078 atomic_inc(&cpu_buffer->resize_disabled); 5079 5080 return iter; 5081 } 5082 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5083 5084 /** 5085 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5086 * 5087 * All previously invoked ring_buffer_read_prepare calls to prepare 5088 * iterators will be synchronized. Afterwards, read_buffer_read_start 5089 * calls on those iterators are allowed. 5090 */ 5091 void 5092 ring_buffer_read_prepare_sync(void) 5093 { 5094 synchronize_rcu(); 5095 } 5096 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5097 5098 /** 5099 * ring_buffer_read_start - start a non consuming read of the buffer 5100 * @iter: The iterator returned by ring_buffer_read_prepare 5101 * 5102 * This finalizes the startup of an iteration through the buffer. 5103 * The iterator comes from a call to ring_buffer_read_prepare and 5104 * an intervening ring_buffer_read_prepare_sync must have been 5105 * performed. 5106 * 5107 * Must be paired with ring_buffer_read_finish. 5108 */ 5109 void 5110 ring_buffer_read_start(struct ring_buffer_iter *iter) 5111 { 5112 struct ring_buffer_per_cpu *cpu_buffer; 5113 unsigned long flags; 5114 5115 if (!iter) 5116 return; 5117 5118 cpu_buffer = iter->cpu_buffer; 5119 5120 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5121 arch_spin_lock(&cpu_buffer->lock); 5122 rb_iter_reset(iter); 5123 arch_spin_unlock(&cpu_buffer->lock); 5124 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5125 } 5126 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5127 5128 /** 5129 * ring_buffer_read_finish - finish reading the iterator of the buffer 5130 * @iter: The iterator retrieved by ring_buffer_start 5131 * 5132 * This re-enables the recording to the buffer, and frees the 5133 * iterator. 5134 */ 5135 void 5136 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5137 { 5138 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5139 unsigned long flags; 5140 5141 /* 5142 * Ring buffer is disabled from recording, here's a good place 5143 * to check the integrity of the ring buffer. 5144 * Must prevent readers from trying to read, as the check 5145 * clears the HEAD page and readers require it. 5146 */ 5147 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5148 rb_check_pages(cpu_buffer); 5149 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5150 5151 atomic_dec(&cpu_buffer->resize_disabled); 5152 kfree(iter->event); 5153 kfree(iter); 5154 } 5155 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5156 5157 /** 5158 * ring_buffer_iter_advance - advance the iterator to the next location 5159 * @iter: The ring buffer iterator 5160 * 5161 * Move the location of the iterator such that the next read will 5162 * be the next location of the iterator. 5163 */ 5164 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5165 { 5166 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5167 unsigned long flags; 5168 5169 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5170 5171 rb_advance_iter(iter); 5172 5173 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5174 } 5175 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5176 5177 /** 5178 * ring_buffer_size - return the size of the ring buffer (in bytes) 5179 * @buffer: The ring buffer. 5180 * @cpu: The CPU to get ring buffer size from. 5181 */ 5182 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5183 { 5184 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5185 return 0; 5186 5187 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5188 } 5189 EXPORT_SYMBOL_GPL(ring_buffer_size); 5190 5191 /** 5192 * ring_buffer_max_event_size - return the max data size of an event 5193 * @buffer: The ring buffer. 5194 * 5195 * Returns the maximum size an event can be. 5196 */ 5197 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5198 { 5199 /* If abs timestamp is requested, events have a timestamp too */ 5200 if (ring_buffer_time_stamp_abs(buffer)) 5201 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5202 return buffer->max_data_size; 5203 } 5204 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5205 5206 static void rb_clear_buffer_page(struct buffer_page *page) 5207 { 5208 local_set(&page->write, 0); 5209 local_set(&page->entries, 0); 5210 rb_init_page(page->page); 5211 page->read = 0; 5212 } 5213 5214 static void 5215 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5216 { 5217 struct buffer_page *page; 5218 5219 rb_head_page_deactivate(cpu_buffer); 5220 5221 cpu_buffer->head_page 5222 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5223 rb_clear_buffer_page(cpu_buffer->head_page); 5224 list_for_each_entry(page, cpu_buffer->pages, list) { 5225 rb_clear_buffer_page(page); 5226 } 5227 5228 cpu_buffer->tail_page = cpu_buffer->head_page; 5229 cpu_buffer->commit_page = cpu_buffer->head_page; 5230 5231 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5232 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5233 rb_clear_buffer_page(cpu_buffer->reader_page); 5234 5235 local_set(&cpu_buffer->entries_bytes, 0); 5236 local_set(&cpu_buffer->overrun, 0); 5237 local_set(&cpu_buffer->commit_overrun, 0); 5238 local_set(&cpu_buffer->dropped_events, 0); 5239 local_set(&cpu_buffer->entries, 0); 5240 local_set(&cpu_buffer->committing, 0); 5241 local_set(&cpu_buffer->commits, 0); 5242 local_set(&cpu_buffer->pages_touched, 0); 5243 local_set(&cpu_buffer->pages_lost, 0); 5244 local_set(&cpu_buffer->pages_read, 0); 5245 cpu_buffer->last_pages_touch = 0; 5246 cpu_buffer->shortest_full = 0; 5247 cpu_buffer->read = 0; 5248 cpu_buffer->read_bytes = 0; 5249 5250 rb_time_set(&cpu_buffer->write_stamp, 0); 5251 rb_time_set(&cpu_buffer->before_stamp, 0); 5252 5253 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5254 5255 cpu_buffer->lost_events = 0; 5256 cpu_buffer->last_overrun = 0; 5257 5258 rb_head_page_activate(cpu_buffer); 5259 cpu_buffer->pages_removed = 0; 5260 } 5261 5262 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5263 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5264 { 5265 unsigned long flags; 5266 5267 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5268 5269 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5270 goto out; 5271 5272 arch_spin_lock(&cpu_buffer->lock); 5273 5274 rb_reset_cpu(cpu_buffer); 5275 5276 arch_spin_unlock(&cpu_buffer->lock); 5277 5278 out: 5279 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5280 } 5281 5282 /** 5283 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5284 * @buffer: The ring buffer to reset a per cpu buffer of 5285 * @cpu: The CPU buffer to be reset 5286 */ 5287 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5288 { 5289 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5290 5291 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5292 return; 5293 5294 /* prevent another thread from changing buffer sizes */ 5295 mutex_lock(&buffer->mutex); 5296 5297 atomic_inc(&cpu_buffer->resize_disabled); 5298 atomic_inc(&cpu_buffer->record_disabled); 5299 5300 /* Make sure all commits have finished */ 5301 synchronize_rcu(); 5302 5303 reset_disabled_cpu_buffer(cpu_buffer); 5304 5305 atomic_dec(&cpu_buffer->record_disabled); 5306 atomic_dec(&cpu_buffer->resize_disabled); 5307 5308 mutex_unlock(&buffer->mutex); 5309 } 5310 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5311 5312 /* Flag to ensure proper resetting of atomic variables */ 5313 #define RESET_BIT (1 << 30) 5314 5315 /** 5316 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5317 * @buffer: The ring buffer to reset a per cpu buffer of 5318 */ 5319 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5320 { 5321 struct ring_buffer_per_cpu *cpu_buffer; 5322 int cpu; 5323 5324 /* prevent another thread from changing buffer sizes */ 5325 mutex_lock(&buffer->mutex); 5326 5327 for_each_online_buffer_cpu(buffer, cpu) { 5328 cpu_buffer = buffer->buffers[cpu]; 5329 5330 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5331 atomic_inc(&cpu_buffer->record_disabled); 5332 } 5333 5334 /* Make sure all commits have finished */ 5335 synchronize_rcu(); 5336 5337 for_each_buffer_cpu(buffer, cpu) { 5338 cpu_buffer = buffer->buffers[cpu]; 5339 5340 /* 5341 * If a CPU came online during the synchronize_rcu(), then 5342 * ignore it. 5343 */ 5344 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5345 continue; 5346 5347 reset_disabled_cpu_buffer(cpu_buffer); 5348 5349 atomic_dec(&cpu_buffer->record_disabled); 5350 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5351 } 5352 5353 mutex_unlock(&buffer->mutex); 5354 } 5355 5356 /** 5357 * ring_buffer_reset - reset a ring buffer 5358 * @buffer: The ring buffer to reset all cpu buffers 5359 */ 5360 void ring_buffer_reset(struct trace_buffer *buffer) 5361 { 5362 struct ring_buffer_per_cpu *cpu_buffer; 5363 int cpu; 5364 5365 /* prevent another thread from changing buffer sizes */ 5366 mutex_lock(&buffer->mutex); 5367 5368 for_each_buffer_cpu(buffer, cpu) { 5369 cpu_buffer = buffer->buffers[cpu]; 5370 5371 atomic_inc(&cpu_buffer->resize_disabled); 5372 atomic_inc(&cpu_buffer->record_disabled); 5373 } 5374 5375 /* Make sure all commits have finished */ 5376 synchronize_rcu(); 5377 5378 for_each_buffer_cpu(buffer, cpu) { 5379 cpu_buffer = buffer->buffers[cpu]; 5380 5381 reset_disabled_cpu_buffer(cpu_buffer); 5382 5383 atomic_dec(&cpu_buffer->record_disabled); 5384 atomic_dec(&cpu_buffer->resize_disabled); 5385 } 5386 5387 mutex_unlock(&buffer->mutex); 5388 } 5389 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5390 5391 /** 5392 * ring_buffer_empty - is the ring buffer empty? 5393 * @buffer: The ring buffer to test 5394 */ 5395 bool ring_buffer_empty(struct trace_buffer *buffer) 5396 { 5397 struct ring_buffer_per_cpu *cpu_buffer; 5398 unsigned long flags; 5399 bool dolock; 5400 bool ret; 5401 int cpu; 5402 5403 /* yes this is racy, but if you don't like the race, lock the buffer */ 5404 for_each_buffer_cpu(buffer, cpu) { 5405 cpu_buffer = buffer->buffers[cpu]; 5406 local_irq_save(flags); 5407 dolock = rb_reader_lock(cpu_buffer); 5408 ret = rb_per_cpu_empty(cpu_buffer); 5409 rb_reader_unlock(cpu_buffer, dolock); 5410 local_irq_restore(flags); 5411 5412 if (!ret) 5413 return false; 5414 } 5415 5416 return true; 5417 } 5418 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5419 5420 /** 5421 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5422 * @buffer: The ring buffer 5423 * @cpu: The CPU buffer to test 5424 */ 5425 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5426 { 5427 struct ring_buffer_per_cpu *cpu_buffer; 5428 unsigned long flags; 5429 bool dolock; 5430 bool ret; 5431 5432 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5433 return true; 5434 5435 cpu_buffer = buffer->buffers[cpu]; 5436 local_irq_save(flags); 5437 dolock = rb_reader_lock(cpu_buffer); 5438 ret = rb_per_cpu_empty(cpu_buffer); 5439 rb_reader_unlock(cpu_buffer, dolock); 5440 local_irq_restore(flags); 5441 5442 return ret; 5443 } 5444 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5445 5446 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5447 /** 5448 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5449 * @buffer_a: One buffer to swap with 5450 * @buffer_b: The other buffer to swap with 5451 * @cpu: the CPU of the buffers to swap 5452 * 5453 * This function is useful for tracers that want to take a "snapshot" 5454 * of a CPU buffer and has another back up buffer lying around. 5455 * it is expected that the tracer handles the cpu buffer not being 5456 * used at the moment. 5457 */ 5458 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5459 struct trace_buffer *buffer_b, int cpu) 5460 { 5461 struct ring_buffer_per_cpu *cpu_buffer_a; 5462 struct ring_buffer_per_cpu *cpu_buffer_b; 5463 int ret = -EINVAL; 5464 5465 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5466 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5467 goto out; 5468 5469 cpu_buffer_a = buffer_a->buffers[cpu]; 5470 cpu_buffer_b = buffer_b->buffers[cpu]; 5471 5472 /* At least make sure the two buffers are somewhat the same */ 5473 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5474 goto out; 5475 5476 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 5477 goto out; 5478 5479 ret = -EAGAIN; 5480 5481 if (atomic_read(&buffer_a->record_disabled)) 5482 goto out; 5483 5484 if (atomic_read(&buffer_b->record_disabled)) 5485 goto out; 5486 5487 if (atomic_read(&cpu_buffer_a->record_disabled)) 5488 goto out; 5489 5490 if (atomic_read(&cpu_buffer_b->record_disabled)) 5491 goto out; 5492 5493 /* 5494 * We can't do a synchronize_rcu here because this 5495 * function can be called in atomic context. 5496 * Normally this will be called from the same CPU as cpu. 5497 * If not it's up to the caller to protect this. 5498 */ 5499 atomic_inc(&cpu_buffer_a->record_disabled); 5500 atomic_inc(&cpu_buffer_b->record_disabled); 5501 5502 ret = -EBUSY; 5503 if (local_read(&cpu_buffer_a->committing)) 5504 goto out_dec; 5505 if (local_read(&cpu_buffer_b->committing)) 5506 goto out_dec; 5507 5508 /* 5509 * When resize is in progress, we cannot swap it because 5510 * it will mess the state of the cpu buffer. 5511 */ 5512 if (atomic_read(&buffer_a->resizing)) 5513 goto out_dec; 5514 if (atomic_read(&buffer_b->resizing)) 5515 goto out_dec; 5516 5517 buffer_a->buffers[cpu] = cpu_buffer_b; 5518 buffer_b->buffers[cpu] = cpu_buffer_a; 5519 5520 cpu_buffer_b->buffer = buffer_a; 5521 cpu_buffer_a->buffer = buffer_b; 5522 5523 ret = 0; 5524 5525 out_dec: 5526 atomic_dec(&cpu_buffer_a->record_disabled); 5527 atomic_dec(&cpu_buffer_b->record_disabled); 5528 out: 5529 return ret; 5530 } 5531 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5532 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5533 5534 /** 5535 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5536 * @buffer: the buffer to allocate for. 5537 * @cpu: the cpu buffer to allocate. 5538 * 5539 * This function is used in conjunction with ring_buffer_read_page. 5540 * When reading a full page from the ring buffer, these functions 5541 * can be used to speed up the process. The calling function should 5542 * allocate a few pages first with this function. Then when it 5543 * needs to get pages from the ring buffer, it passes the result 5544 * of this function into ring_buffer_read_page, which will swap 5545 * the page that was allocated, with the read page of the buffer. 5546 * 5547 * Returns: 5548 * The page allocated, or ERR_PTR 5549 */ 5550 struct buffer_data_read_page * 5551 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5552 { 5553 struct ring_buffer_per_cpu *cpu_buffer; 5554 struct buffer_data_read_page *bpage = NULL; 5555 unsigned long flags; 5556 struct page *page; 5557 5558 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5559 return ERR_PTR(-ENODEV); 5560 5561 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 5562 if (!bpage) 5563 return ERR_PTR(-ENOMEM); 5564 5565 bpage->order = buffer->subbuf_order; 5566 cpu_buffer = buffer->buffers[cpu]; 5567 local_irq_save(flags); 5568 arch_spin_lock(&cpu_buffer->lock); 5569 5570 if (cpu_buffer->free_page) { 5571 bpage->data = cpu_buffer->free_page; 5572 cpu_buffer->free_page = NULL; 5573 } 5574 5575 arch_spin_unlock(&cpu_buffer->lock); 5576 local_irq_restore(flags); 5577 5578 if (bpage->data) 5579 goto out; 5580 5581 page = alloc_pages_node(cpu_to_node(cpu), 5582 GFP_KERNEL | __GFP_NORETRY | __GFP_ZERO, 5583 cpu_buffer->buffer->subbuf_order); 5584 if (!page) { 5585 kfree(bpage); 5586 return ERR_PTR(-ENOMEM); 5587 } 5588 5589 bpage->data = page_address(page); 5590 5591 out: 5592 rb_init_page(bpage->data); 5593 5594 return bpage; 5595 } 5596 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5597 5598 /** 5599 * ring_buffer_free_read_page - free an allocated read page 5600 * @buffer: the buffer the page was allocate for 5601 * @cpu: the cpu buffer the page came from 5602 * @data_page: the page to free 5603 * 5604 * Free a page allocated from ring_buffer_alloc_read_page. 5605 */ 5606 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 5607 struct buffer_data_read_page *data_page) 5608 { 5609 struct ring_buffer_per_cpu *cpu_buffer; 5610 struct buffer_data_page *bpage = data_page->data; 5611 struct page *page = virt_to_page(bpage); 5612 unsigned long flags; 5613 5614 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5615 return; 5616 5617 cpu_buffer = buffer->buffers[cpu]; 5618 5619 /* 5620 * If the page is still in use someplace else, or order of the page 5621 * is different from the subbuffer order of the buffer - 5622 * we can't reuse it 5623 */ 5624 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 5625 goto out; 5626 5627 local_irq_save(flags); 5628 arch_spin_lock(&cpu_buffer->lock); 5629 5630 if (!cpu_buffer->free_page) { 5631 cpu_buffer->free_page = bpage; 5632 bpage = NULL; 5633 } 5634 5635 arch_spin_unlock(&cpu_buffer->lock); 5636 local_irq_restore(flags); 5637 5638 out: 5639 free_pages((unsigned long)bpage, data_page->order); 5640 kfree(data_page); 5641 } 5642 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5643 5644 /** 5645 * ring_buffer_read_page - extract a page from the ring buffer 5646 * @buffer: buffer to extract from 5647 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5648 * @len: amount to extract 5649 * @cpu: the cpu of the buffer to extract 5650 * @full: should the extraction only happen when the page is full. 5651 * 5652 * This function will pull out a page from the ring buffer and consume it. 5653 * @data_page must be the address of the variable that was returned 5654 * from ring_buffer_alloc_read_page. This is because the page might be used 5655 * to swap with a page in the ring buffer. 5656 * 5657 * for example: 5658 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5659 * if (IS_ERR(rpage)) 5660 * return PTR_ERR(rpage); 5661 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 5662 * if (ret >= 0) 5663 * process_page(ring_buffer_read_page_data(rpage), ret); 5664 * ring_buffer_free_read_page(buffer, cpu, rpage); 5665 * 5666 * When @full is set, the function will not return true unless 5667 * the writer is off the reader page. 5668 * 5669 * Note: it is up to the calling functions to handle sleeps and wakeups. 5670 * The ring buffer can be used anywhere in the kernel and can not 5671 * blindly call wake_up. The layer that uses the ring buffer must be 5672 * responsible for that. 5673 * 5674 * Returns: 5675 * >=0 if data has been transferred, returns the offset of consumed data. 5676 * <0 if no data has been transferred. 5677 */ 5678 int ring_buffer_read_page(struct trace_buffer *buffer, 5679 struct buffer_data_read_page *data_page, 5680 size_t len, int cpu, int full) 5681 { 5682 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5683 struct ring_buffer_event *event; 5684 struct buffer_data_page *bpage; 5685 struct buffer_page *reader; 5686 unsigned long missed_events; 5687 unsigned long flags; 5688 unsigned int commit; 5689 unsigned int read; 5690 u64 save_timestamp; 5691 int ret = -1; 5692 5693 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5694 goto out; 5695 5696 /* 5697 * If len is not big enough to hold the page header, then 5698 * we can not copy anything. 5699 */ 5700 if (len <= BUF_PAGE_HDR_SIZE) 5701 goto out; 5702 5703 len -= BUF_PAGE_HDR_SIZE; 5704 5705 if (!data_page || !data_page->data) 5706 goto out; 5707 if (data_page->order != buffer->subbuf_order) 5708 goto out; 5709 5710 bpage = data_page->data; 5711 if (!bpage) 5712 goto out; 5713 5714 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5715 5716 reader = rb_get_reader_page(cpu_buffer); 5717 if (!reader) 5718 goto out_unlock; 5719 5720 event = rb_reader_event(cpu_buffer); 5721 5722 read = reader->read; 5723 commit = rb_page_commit(reader); 5724 5725 /* Check if any events were dropped */ 5726 missed_events = cpu_buffer->lost_events; 5727 5728 /* 5729 * If this page has been partially read or 5730 * if len is not big enough to read the rest of the page or 5731 * a writer is still on the page, then 5732 * we must copy the data from the page to the buffer. 5733 * Otherwise, we can simply swap the page with the one passed in. 5734 */ 5735 if (read || (len < (commit - read)) || 5736 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5737 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5738 unsigned int rpos = read; 5739 unsigned int pos = 0; 5740 unsigned int size; 5741 5742 /* 5743 * If a full page is expected, this can still be returned 5744 * if there's been a previous partial read and the 5745 * rest of the page can be read and the commit page is off 5746 * the reader page. 5747 */ 5748 if (full && 5749 (!read || (len < (commit - read)) || 5750 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5751 goto out_unlock; 5752 5753 if (len > (commit - read)) 5754 len = (commit - read); 5755 5756 /* Always keep the time extend and data together */ 5757 size = rb_event_ts_length(event); 5758 5759 if (len < size) 5760 goto out_unlock; 5761 5762 /* save the current timestamp, since the user will need it */ 5763 save_timestamp = cpu_buffer->read_stamp; 5764 5765 /* Need to copy one event at a time */ 5766 do { 5767 /* We need the size of one event, because 5768 * rb_advance_reader only advances by one event, 5769 * whereas rb_event_ts_length may include the size of 5770 * one or two events. 5771 * We have already ensured there's enough space if this 5772 * is a time extend. */ 5773 size = rb_event_length(event); 5774 memcpy(bpage->data + pos, rpage->data + rpos, size); 5775 5776 len -= size; 5777 5778 rb_advance_reader(cpu_buffer); 5779 rpos = reader->read; 5780 pos += size; 5781 5782 if (rpos >= commit) 5783 break; 5784 5785 event = rb_reader_event(cpu_buffer); 5786 /* Always keep the time extend and data together */ 5787 size = rb_event_ts_length(event); 5788 } while (len >= size); 5789 5790 /* update bpage */ 5791 local_set(&bpage->commit, pos); 5792 bpage->time_stamp = save_timestamp; 5793 5794 /* we copied everything to the beginning */ 5795 read = 0; 5796 } else { 5797 /* update the entry counter */ 5798 cpu_buffer->read += rb_page_entries(reader); 5799 cpu_buffer->read_bytes += rb_page_commit(reader); 5800 5801 /* swap the pages */ 5802 rb_init_page(bpage); 5803 bpage = reader->page; 5804 reader->page = data_page->data; 5805 local_set(&reader->write, 0); 5806 local_set(&reader->entries, 0); 5807 reader->read = 0; 5808 data_page->data = bpage; 5809 5810 /* 5811 * Use the real_end for the data size, 5812 * This gives us a chance to store the lost events 5813 * on the page. 5814 */ 5815 if (reader->real_end) 5816 local_set(&bpage->commit, reader->real_end); 5817 } 5818 ret = read; 5819 5820 cpu_buffer->lost_events = 0; 5821 5822 commit = local_read(&bpage->commit); 5823 /* 5824 * Set a flag in the commit field if we lost events 5825 */ 5826 if (missed_events) { 5827 /* If there is room at the end of the page to save the 5828 * missed events, then record it there. 5829 */ 5830 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 5831 memcpy(&bpage->data[commit], &missed_events, 5832 sizeof(missed_events)); 5833 local_add(RB_MISSED_STORED, &bpage->commit); 5834 commit += sizeof(missed_events); 5835 } 5836 local_add(RB_MISSED_EVENTS, &bpage->commit); 5837 } 5838 5839 /* 5840 * This page may be off to user land. Zero it out here. 5841 */ 5842 if (commit < buffer->subbuf_size) 5843 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 5844 5845 out_unlock: 5846 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5847 5848 out: 5849 return ret; 5850 } 5851 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5852 5853 /** 5854 * ring_buffer_read_page_data - get pointer to the data in the page. 5855 * @page: the page to get the data from 5856 * 5857 * Returns pointer to the actual data in this page. 5858 */ 5859 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 5860 { 5861 return page->data; 5862 } 5863 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 5864 5865 /** 5866 * ring_buffer_subbuf_size_get - get size of the sub buffer. 5867 * @buffer: the buffer to get the sub buffer size from 5868 * 5869 * Returns size of the sub buffer, in bytes. 5870 */ 5871 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 5872 { 5873 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 5874 } 5875 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 5876 5877 /** 5878 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 5879 * @buffer: The ring_buffer to get the system sub page order from 5880 * 5881 * By default, one ring buffer sub page equals to one system page. This parameter 5882 * is configurable, per ring buffer. The size of the ring buffer sub page can be 5883 * extended, but must be an order of system page size. 5884 * 5885 * Returns the order of buffer sub page size, in system pages: 5886 * 0 means the sub buffer size is 1 system page and so forth. 5887 * In case of an error < 0 is returned. 5888 */ 5889 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 5890 { 5891 if (!buffer) 5892 return -EINVAL; 5893 5894 return buffer->subbuf_order; 5895 } 5896 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 5897 5898 /** 5899 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 5900 * @buffer: The ring_buffer to set the new page size. 5901 * @order: Order of the system pages in one sub buffer page 5902 * 5903 * By default, one ring buffer pages equals to one system page. This API can be 5904 * used to set new size of the ring buffer page. The size must be order of 5905 * system page size, that's why the input parameter @order is the order of 5906 * system pages that are allocated for one ring buffer page: 5907 * 0 - 1 system page 5908 * 1 - 2 system pages 5909 * 3 - 4 system pages 5910 * ... 5911 * 5912 * Returns 0 on success or < 0 in case of an error. 5913 */ 5914 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 5915 { 5916 struct ring_buffer_per_cpu *cpu_buffer; 5917 struct buffer_page *bpage, *tmp; 5918 int old_order, old_size; 5919 int nr_pages; 5920 int psize; 5921 int err; 5922 int cpu; 5923 5924 if (!buffer || order < 0) 5925 return -EINVAL; 5926 5927 if (buffer->subbuf_order == order) 5928 return 0; 5929 5930 psize = (1 << order) * PAGE_SIZE; 5931 if (psize <= BUF_PAGE_HDR_SIZE) 5932 return -EINVAL; 5933 5934 /* Size of a subbuf cannot be greater than the write counter */ 5935 if (psize > RB_WRITE_MASK + 1) 5936 return -EINVAL; 5937 5938 old_order = buffer->subbuf_order; 5939 old_size = buffer->subbuf_size; 5940 5941 /* prevent another thread from changing buffer sizes */ 5942 mutex_lock(&buffer->mutex); 5943 atomic_inc(&buffer->record_disabled); 5944 5945 /* Make sure all commits have finished */ 5946 synchronize_rcu(); 5947 5948 buffer->subbuf_order = order; 5949 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 5950 5951 /* Make sure all new buffers are allocated, before deleting the old ones */ 5952 for_each_buffer_cpu(buffer, cpu) { 5953 5954 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5955 continue; 5956 5957 cpu_buffer = buffer->buffers[cpu]; 5958 5959 /* Update the number of pages to match the new size */ 5960 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 5961 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 5962 5963 /* we need a minimum of two pages */ 5964 if (nr_pages < 2) 5965 nr_pages = 2; 5966 5967 cpu_buffer->nr_pages_to_update = nr_pages; 5968 5969 /* Include the reader page */ 5970 nr_pages++; 5971 5972 /* Allocate the new size buffer */ 5973 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5974 if (__rb_allocate_pages(cpu_buffer, nr_pages, 5975 &cpu_buffer->new_pages)) { 5976 /* not enough memory for new pages */ 5977 err = -ENOMEM; 5978 goto error; 5979 } 5980 } 5981 5982 for_each_buffer_cpu(buffer, cpu) { 5983 5984 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5985 continue; 5986 5987 cpu_buffer = buffer->buffers[cpu]; 5988 5989 /* Clear the head bit to make the link list normal to read */ 5990 rb_head_page_deactivate(cpu_buffer); 5991 5992 /* Now walk the list and free all the old sub buffers */ 5993 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) { 5994 list_del_init(&bpage->list); 5995 free_buffer_page(bpage); 5996 } 5997 /* The above loop stopped an the last page needing to be freed */ 5998 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list); 5999 free_buffer_page(bpage); 6000 6001 /* Free the current reader page */ 6002 free_buffer_page(cpu_buffer->reader_page); 6003 6004 /* One page was allocated for the reader page */ 6005 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6006 struct buffer_page, list); 6007 list_del_init(&cpu_buffer->reader_page->list); 6008 6009 /* The cpu_buffer pages are a link list with no head */ 6010 cpu_buffer->pages = cpu_buffer->new_pages.next; 6011 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev; 6012 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next; 6013 6014 /* Clear the new_pages list */ 6015 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6016 6017 cpu_buffer->head_page 6018 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6019 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6020 6021 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6022 cpu_buffer->nr_pages_to_update = 0; 6023 6024 free_pages((unsigned long)cpu_buffer->free_page, old_order); 6025 cpu_buffer->free_page = NULL; 6026 6027 rb_head_page_activate(cpu_buffer); 6028 6029 rb_check_pages(cpu_buffer); 6030 } 6031 6032 atomic_dec(&buffer->record_disabled); 6033 mutex_unlock(&buffer->mutex); 6034 6035 return 0; 6036 6037 error: 6038 buffer->subbuf_order = old_order; 6039 buffer->subbuf_size = old_size; 6040 6041 atomic_dec(&buffer->record_disabled); 6042 mutex_unlock(&buffer->mutex); 6043 6044 for_each_buffer_cpu(buffer, cpu) { 6045 cpu_buffer = buffer->buffers[cpu]; 6046 6047 if (!cpu_buffer->nr_pages_to_update) 6048 continue; 6049 6050 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6051 list_del_init(&bpage->list); 6052 free_buffer_page(bpage); 6053 } 6054 } 6055 6056 return err; 6057 } 6058 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6059 6060 /* 6061 * We only allocate new buffers, never free them if the CPU goes down. 6062 * If we were to free the buffer, then the user would lose any trace that was in 6063 * the buffer. 6064 */ 6065 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 6066 { 6067 struct trace_buffer *buffer; 6068 long nr_pages_same; 6069 int cpu_i; 6070 unsigned long nr_pages; 6071 6072 buffer = container_of(node, struct trace_buffer, node); 6073 if (cpumask_test_cpu(cpu, buffer->cpumask)) 6074 return 0; 6075 6076 nr_pages = 0; 6077 nr_pages_same = 1; 6078 /* check if all cpu sizes are same */ 6079 for_each_buffer_cpu(buffer, cpu_i) { 6080 /* fill in the size from first enabled cpu */ 6081 if (nr_pages == 0) 6082 nr_pages = buffer->buffers[cpu_i]->nr_pages; 6083 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 6084 nr_pages_same = 0; 6085 break; 6086 } 6087 } 6088 /* allocate minimum pages, user can later expand it */ 6089 if (!nr_pages_same) 6090 nr_pages = 2; 6091 buffer->buffers[cpu] = 6092 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 6093 if (!buffer->buffers[cpu]) { 6094 WARN(1, "failed to allocate ring buffer on CPU %u\n", 6095 cpu); 6096 return -ENOMEM; 6097 } 6098 smp_wmb(); 6099 cpumask_set_cpu(cpu, buffer->cpumask); 6100 return 0; 6101 } 6102 6103 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 6104 /* 6105 * This is a basic integrity check of the ring buffer. 6106 * Late in the boot cycle this test will run when configured in. 6107 * It will kick off a thread per CPU that will go into a loop 6108 * writing to the per cpu ring buffer various sizes of data. 6109 * Some of the data will be large items, some small. 6110 * 6111 * Another thread is created that goes into a spin, sending out 6112 * IPIs to the other CPUs to also write into the ring buffer. 6113 * this is to test the nesting ability of the buffer. 6114 * 6115 * Basic stats are recorded and reported. If something in the 6116 * ring buffer should happen that's not expected, a big warning 6117 * is displayed and all ring buffers are disabled. 6118 */ 6119 static struct task_struct *rb_threads[NR_CPUS] __initdata; 6120 6121 struct rb_test_data { 6122 struct trace_buffer *buffer; 6123 unsigned long events; 6124 unsigned long bytes_written; 6125 unsigned long bytes_alloc; 6126 unsigned long bytes_dropped; 6127 unsigned long events_nested; 6128 unsigned long bytes_written_nested; 6129 unsigned long bytes_alloc_nested; 6130 unsigned long bytes_dropped_nested; 6131 int min_size_nested; 6132 int max_size_nested; 6133 int max_size; 6134 int min_size; 6135 int cpu; 6136 int cnt; 6137 }; 6138 6139 static struct rb_test_data rb_data[NR_CPUS] __initdata; 6140 6141 /* 1 meg per cpu */ 6142 #define RB_TEST_BUFFER_SIZE 1048576 6143 6144 static char rb_string[] __initdata = 6145 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 6146 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 6147 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 6148 6149 static bool rb_test_started __initdata; 6150 6151 struct rb_item { 6152 int size; 6153 char str[]; 6154 }; 6155 6156 static __init int rb_write_something(struct rb_test_data *data, bool nested) 6157 { 6158 struct ring_buffer_event *event; 6159 struct rb_item *item; 6160 bool started; 6161 int event_len; 6162 int size; 6163 int len; 6164 int cnt; 6165 6166 /* Have nested writes different that what is written */ 6167 cnt = data->cnt + (nested ? 27 : 0); 6168 6169 /* Multiply cnt by ~e, to make some unique increment */ 6170 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 6171 6172 len = size + sizeof(struct rb_item); 6173 6174 started = rb_test_started; 6175 /* read rb_test_started before checking buffer enabled */ 6176 smp_rmb(); 6177 6178 event = ring_buffer_lock_reserve(data->buffer, len); 6179 if (!event) { 6180 /* Ignore dropped events before test starts. */ 6181 if (started) { 6182 if (nested) 6183 data->bytes_dropped += len; 6184 else 6185 data->bytes_dropped_nested += len; 6186 } 6187 return len; 6188 } 6189 6190 event_len = ring_buffer_event_length(event); 6191 6192 if (RB_WARN_ON(data->buffer, event_len < len)) 6193 goto out; 6194 6195 item = ring_buffer_event_data(event); 6196 item->size = size; 6197 memcpy(item->str, rb_string, size); 6198 6199 if (nested) { 6200 data->bytes_alloc_nested += event_len; 6201 data->bytes_written_nested += len; 6202 data->events_nested++; 6203 if (!data->min_size_nested || len < data->min_size_nested) 6204 data->min_size_nested = len; 6205 if (len > data->max_size_nested) 6206 data->max_size_nested = len; 6207 } else { 6208 data->bytes_alloc += event_len; 6209 data->bytes_written += len; 6210 data->events++; 6211 if (!data->min_size || len < data->min_size) 6212 data->max_size = len; 6213 if (len > data->max_size) 6214 data->max_size = len; 6215 } 6216 6217 out: 6218 ring_buffer_unlock_commit(data->buffer); 6219 6220 return 0; 6221 } 6222 6223 static __init int rb_test(void *arg) 6224 { 6225 struct rb_test_data *data = arg; 6226 6227 while (!kthread_should_stop()) { 6228 rb_write_something(data, false); 6229 data->cnt++; 6230 6231 set_current_state(TASK_INTERRUPTIBLE); 6232 /* Now sleep between a min of 100-300us and a max of 1ms */ 6233 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6234 } 6235 6236 return 0; 6237 } 6238 6239 static __init void rb_ipi(void *ignore) 6240 { 6241 struct rb_test_data *data; 6242 int cpu = smp_processor_id(); 6243 6244 data = &rb_data[cpu]; 6245 rb_write_something(data, true); 6246 } 6247 6248 static __init int rb_hammer_test(void *arg) 6249 { 6250 while (!kthread_should_stop()) { 6251 6252 /* Send an IPI to all cpus to write data! */ 6253 smp_call_function(rb_ipi, NULL, 1); 6254 /* No sleep, but for non preempt, let others run */ 6255 schedule(); 6256 } 6257 6258 return 0; 6259 } 6260 6261 static __init int test_ringbuffer(void) 6262 { 6263 struct task_struct *rb_hammer; 6264 struct trace_buffer *buffer; 6265 int cpu; 6266 int ret = 0; 6267 6268 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6269 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6270 return 0; 6271 } 6272 6273 pr_info("Running ring buffer tests...\n"); 6274 6275 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6276 if (WARN_ON(!buffer)) 6277 return 0; 6278 6279 /* Disable buffer so that threads can't write to it yet */ 6280 ring_buffer_record_off(buffer); 6281 6282 for_each_online_cpu(cpu) { 6283 rb_data[cpu].buffer = buffer; 6284 rb_data[cpu].cpu = cpu; 6285 rb_data[cpu].cnt = cpu; 6286 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6287 cpu, "rbtester/%u"); 6288 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6289 pr_cont("FAILED\n"); 6290 ret = PTR_ERR(rb_threads[cpu]); 6291 goto out_free; 6292 } 6293 } 6294 6295 /* Now create the rb hammer! */ 6296 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6297 if (WARN_ON(IS_ERR(rb_hammer))) { 6298 pr_cont("FAILED\n"); 6299 ret = PTR_ERR(rb_hammer); 6300 goto out_free; 6301 } 6302 6303 ring_buffer_record_on(buffer); 6304 /* 6305 * Show buffer is enabled before setting rb_test_started. 6306 * Yes there's a small race window where events could be 6307 * dropped and the thread wont catch it. But when a ring 6308 * buffer gets enabled, there will always be some kind of 6309 * delay before other CPUs see it. Thus, we don't care about 6310 * those dropped events. We care about events dropped after 6311 * the threads see that the buffer is active. 6312 */ 6313 smp_wmb(); 6314 rb_test_started = true; 6315 6316 set_current_state(TASK_INTERRUPTIBLE); 6317 /* Just run for 10 seconds */; 6318 schedule_timeout(10 * HZ); 6319 6320 kthread_stop(rb_hammer); 6321 6322 out_free: 6323 for_each_online_cpu(cpu) { 6324 if (!rb_threads[cpu]) 6325 break; 6326 kthread_stop(rb_threads[cpu]); 6327 } 6328 if (ret) { 6329 ring_buffer_free(buffer); 6330 return ret; 6331 } 6332 6333 /* Report! */ 6334 pr_info("finished\n"); 6335 for_each_online_cpu(cpu) { 6336 struct ring_buffer_event *event; 6337 struct rb_test_data *data = &rb_data[cpu]; 6338 struct rb_item *item; 6339 unsigned long total_events; 6340 unsigned long total_dropped; 6341 unsigned long total_written; 6342 unsigned long total_alloc; 6343 unsigned long total_read = 0; 6344 unsigned long total_size = 0; 6345 unsigned long total_len = 0; 6346 unsigned long total_lost = 0; 6347 unsigned long lost; 6348 int big_event_size; 6349 int small_event_size; 6350 6351 ret = -1; 6352 6353 total_events = data->events + data->events_nested; 6354 total_written = data->bytes_written + data->bytes_written_nested; 6355 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6356 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6357 6358 big_event_size = data->max_size + data->max_size_nested; 6359 small_event_size = data->min_size + data->min_size_nested; 6360 6361 pr_info("CPU %d:\n", cpu); 6362 pr_info(" events: %ld\n", total_events); 6363 pr_info(" dropped bytes: %ld\n", total_dropped); 6364 pr_info(" alloced bytes: %ld\n", total_alloc); 6365 pr_info(" written bytes: %ld\n", total_written); 6366 pr_info(" biggest event: %d\n", big_event_size); 6367 pr_info(" smallest event: %d\n", small_event_size); 6368 6369 if (RB_WARN_ON(buffer, total_dropped)) 6370 break; 6371 6372 ret = 0; 6373 6374 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6375 total_lost += lost; 6376 item = ring_buffer_event_data(event); 6377 total_len += ring_buffer_event_length(event); 6378 total_size += item->size + sizeof(struct rb_item); 6379 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6380 pr_info("FAILED!\n"); 6381 pr_info("buffer had: %.*s\n", item->size, item->str); 6382 pr_info("expected: %.*s\n", item->size, rb_string); 6383 RB_WARN_ON(buffer, 1); 6384 ret = -1; 6385 break; 6386 } 6387 total_read++; 6388 } 6389 if (ret) 6390 break; 6391 6392 ret = -1; 6393 6394 pr_info(" read events: %ld\n", total_read); 6395 pr_info(" lost events: %ld\n", total_lost); 6396 pr_info(" total events: %ld\n", total_lost + total_read); 6397 pr_info(" recorded len bytes: %ld\n", total_len); 6398 pr_info(" recorded size bytes: %ld\n", total_size); 6399 if (total_lost) { 6400 pr_info(" With dropped events, record len and size may not match\n" 6401 " alloced and written from above\n"); 6402 } else { 6403 if (RB_WARN_ON(buffer, total_len != total_alloc || 6404 total_size != total_written)) 6405 break; 6406 } 6407 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6408 break; 6409 6410 ret = 0; 6411 } 6412 if (!ret) 6413 pr_info("Ring buffer PASSED!\n"); 6414 6415 ring_buffer_free(buffer); 6416 return 0; 6417 } 6418 6419 late_initcall(test_ringbuffer); 6420 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6421