xref: /linux/kernel/trace/ring_buffer.c (revision eda40be3a5ff3fdce513d2bcfeaca8cc16cf962a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 /*
36  * The "absolute" timestamp in the buffer is only 59 bits.
37  * If a clock has the 5 MSBs set, it needs to be saved and
38  * reinserted.
39  */
40 #define TS_MSB		(0xf8ULL << 56)
41 #define ABS_TS_MASK	(~TS_MSB)
42 
43 static void update_pages_handler(struct work_struct *work);
44 
45 /*
46  * The ring buffer header is special. We must manually up keep it.
47  */
48 int ring_buffer_print_entry_header(struct trace_seq *s)
49 {
50 	trace_seq_puts(s, "# compressed entry header\n");
51 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
52 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
53 	trace_seq_puts(s, "\tarray       :   32 bits\n");
54 	trace_seq_putc(s, '\n');
55 	trace_seq_printf(s, "\tpadding     : type == %d\n",
56 			 RINGBUF_TYPE_PADDING);
57 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
58 			 RINGBUF_TYPE_TIME_EXTEND);
59 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
60 			 RINGBUF_TYPE_TIME_STAMP);
61 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
62 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
63 
64 	return !trace_seq_has_overflowed(s);
65 }
66 
67 /*
68  * The ring buffer is made up of a list of pages. A separate list of pages is
69  * allocated for each CPU. A writer may only write to a buffer that is
70  * associated with the CPU it is currently executing on.  A reader may read
71  * from any per cpu buffer.
72  *
73  * The reader is special. For each per cpu buffer, the reader has its own
74  * reader page. When a reader has read the entire reader page, this reader
75  * page is swapped with another page in the ring buffer.
76  *
77  * Now, as long as the writer is off the reader page, the reader can do what
78  * ever it wants with that page. The writer will never write to that page
79  * again (as long as it is out of the ring buffer).
80  *
81  * Here's some silly ASCII art.
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *                   |   |-->|   |-->|   |
99  *                   +---+   +---+   +---+
100  *                     ^               |
101  *                     |               |
102  *                     +---------------+
103  *
104  *
105  *   +------+
106  *   |reader|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |-->|   |-->|   |
110  *      |            +---+   +---+   +---+
111  *      |                              |
112  *      |                              |
113  *      +------------------------------+
114  *
115  *
116  *   +------+
117  *   |buffer|          RING BUFFER
118  *   |page  |------------------v
119  *   +------+        +---+   +---+   +---+
120  *      ^            |   |   |   |-->|   |
121  *      |   New      +---+   +---+   +---+
122  *      |  Reader------^               |
123  *      |   page                       |
124  *      +------------------------------+
125  *
126  *
127  * After we make this swap, the reader can hand this page off to the splice
128  * code and be done with it. It can even allocate a new page if it needs to
129  * and swap that into the ring buffer.
130  *
131  * We will be using cmpxchg soon to make all this lockless.
132  *
133  */
134 
135 /* Used for individual buffers (after the counter) */
136 #define RB_BUFFER_OFF		(1 << 20)
137 
138 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
139 
140 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
141 #define RB_ALIGNMENT		4U
142 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
143 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
144 
145 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
146 # define RB_FORCE_8BYTE_ALIGNMENT	0
147 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
148 #else
149 # define RB_FORCE_8BYTE_ALIGNMENT	1
150 # define RB_ARCH_ALIGNMENT		8U
151 #endif
152 
153 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
154 
155 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
156 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
157 
158 enum {
159 	RB_LEN_TIME_EXTEND = 8,
160 	RB_LEN_TIME_STAMP =  8,
161 };
162 
163 #define skip_time_extend(event) \
164 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
165 
166 #define extended_time(event) \
167 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
168 
169 static inline bool rb_null_event(struct ring_buffer_event *event)
170 {
171 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
172 }
173 
174 static void rb_event_set_padding(struct ring_buffer_event *event)
175 {
176 	/* padding has a NULL time_delta */
177 	event->type_len = RINGBUF_TYPE_PADDING;
178 	event->time_delta = 0;
179 }
180 
181 static unsigned
182 rb_event_data_length(struct ring_buffer_event *event)
183 {
184 	unsigned length;
185 
186 	if (event->type_len)
187 		length = event->type_len * RB_ALIGNMENT;
188 	else
189 		length = event->array[0];
190 	return length + RB_EVNT_HDR_SIZE;
191 }
192 
193 /*
194  * Return the length of the given event. Will return
195  * the length of the time extend if the event is a
196  * time extend.
197  */
198 static inline unsigned
199 rb_event_length(struct ring_buffer_event *event)
200 {
201 	switch (event->type_len) {
202 	case RINGBUF_TYPE_PADDING:
203 		if (rb_null_event(event))
204 			/* undefined */
205 			return -1;
206 		return  event->array[0] + RB_EVNT_HDR_SIZE;
207 
208 	case RINGBUF_TYPE_TIME_EXTEND:
209 		return RB_LEN_TIME_EXTEND;
210 
211 	case RINGBUF_TYPE_TIME_STAMP:
212 		return RB_LEN_TIME_STAMP;
213 
214 	case RINGBUF_TYPE_DATA:
215 		return rb_event_data_length(event);
216 	default:
217 		WARN_ON_ONCE(1);
218 	}
219 	/* not hit */
220 	return 0;
221 }
222 
223 /*
224  * Return total length of time extend and data,
225  *   or just the event length for all other events.
226  */
227 static inline unsigned
228 rb_event_ts_length(struct ring_buffer_event *event)
229 {
230 	unsigned len = 0;
231 
232 	if (extended_time(event)) {
233 		/* time extends include the data event after it */
234 		len = RB_LEN_TIME_EXTEND;
235 		event = skip_time_extend(event);
236 	}
237 	return len + rb_event_length(event);
238 }
239 
240 /**
241  * ring_buffer_event_length - return the length of the event
242  * @event: the event to get the length of
243  *
244  * Returns the size of the data load of a data event.
245  * If the event is something other than a data event, it
246  * returns the size of the event itself. With the exception
247  * of a TIME EXTEND, where it still returns the size of the
248  * data load of the data event after it.
249  */
250 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
251 {
252 	unsigned length;
253 
254 	if (extended_time(event))
255 		event = skip_time_extend(event);
256 
257 	length = rb_event_length(event);
258 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
259 		return length;
260 	length -= RB_EVNT_HDR_SIZE;
261 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
262                 length -= sizeof(event->array[0]);
263 	return length;
264 }
265 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
266 
267 /* inline for ring buffer fast paths */
268 static __always_inline void *
269 rb_event_data(struct ring_buffer_event *event)
270 {
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
274 	/* If length is in len field, then array[0] has the data */
275 	if (event->type_len)
276 		return (void *)&event->array[0];
277 	/* Otherwise length is in array[0] and array[1] has the data */
278 	return (void *)&event->array[1];
279 }
280 
281 /**
282  * ring_buffer_event_data - return the data of the event
283  * @event: the event to get the data from
284  */
285 void *ring_buffer_event_data(struct ring_buffer_event *event)
286 {
287 	return rb_event_data(event);
288 }
289 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
290 
291 #define for_each_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu(cpu, buffer->cpumask)
293 
294 #define for_each_online_buffer_cpu(buffer, cpu)		\
295 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
296 
297 #define TS_SHIFT	27
298 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
299 #define TS_DELTA_TEST	(~TS_MASK)
300 
301 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
302 {
303 	u64 ts;
304 
305 	ts = event->array[0];
306 	ts <<= TS_SHIFT;
307 	ts += event->time_delta;
308 
309 	return ts;
310 }
311 
312 /* Flag when events were overwritten */
313 #define RB_MISSED_EVENTS	(1 << 31)
314 /* Missed count stored at end */
315 #define RB_MISSED_STORED	(1 << 30)
316 
317 #define RB_MISSED_MASK		(3 << 30)
318 
319 struct buffer_data_page {
320 	u64		 time_stamp;	/* page time stamp */
321 	local_t		 commit;	/* write committed index */
322 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
323 };
324 
325 struct buffer_data_read_page {
326 	unsigned		order;	/* order of the page */
327 	struct buffer_data_page	*data;	/* actual data, stored in this page */
328 };
329 
330 /*
331  * Note, the buffer_page list must be first. The buffer pages
332  * are allocated in cache lines, which means that each buffer
333  * page will be at the beginning of a cache line, and thus
334  * the least significant bits will be zero. We use this to
335  * add flags in the list struct pointers, to make the ring buffer
336  * lockless.
337  */
338 struct buffer_page {
339 	struct list_head list;		/* list of buffer pages */
340 	local_t		 write;		/* index for next write */
341 	unsigned	 read;		/* index for next read */
342 	local_t		 entries;	/* entries on this page */
343 	unsigned long	 real_end;	/* real end of data */
344 	unsigned	 order;		/* order of the page */
345 	u32		 id;		/* ID for external mapping */
346 	struct buffer_data_page *page;	/* Actual data page */
347 };
348 
349 /*
350  * The buffer page counters, write and entries, must be reset
351  * atomically when crossing page boundaries. To synchronize this
352  * update, two counters are inserted into the number. One is
353  * the actual counter for the write position or count on the page.
354  *
355  * The other is a counter of updaters. Before an update happens
356  * the update partition of the counter is incremented. This will
357  * allow the updater to update the counter atomically.
358  *
359  * The counter is 20 bits, and the state data is 12.
360  */
361 #define RB_WRITE_MASK		0xfffff
362 #define RB_WRITE_INTCNT		(1 << 20)
363 
364 static void rb_init_page(struct buffer_data_page *bpage)
365 {
366 	local_set(&bpage->commit, 0);
367 }
368 
369 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
370 {
371 	return local_read(&bpage->page->commit);
372 }
373 
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376 	free_pages((unsigned long)bpage->page, bpage->order);
377 	kfree(bpage);
378 }
379 
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline bool test_time_stamp(u64 delta)
384 {
385 	return !!(delta & TS_DELTA_TEST);
386 }
387 
388 struct rb_irq_work {
389 	struct irq_work			work;
390 	wait_queue_head_t		waiters;
391 	wait_queue_head_t		full_waiters;
392 	atomic_t			seq;
393 	bool				waiters_pending;
394 	bool				full_waiters_pending;
395 	bool				wakeup_full;
396 };
397 
398 /*
399  * Structure to hold event state and handle nested events.
400  */
401 struct rb_event_info {
402 	u64			ts;
403 	u64			delta;
404 	u64			before;
405 	u64			after;
406 	unsigned long		length;
407 	struct buffer_page	*tail_page;
408 	int			add_timestamp;
409 };
410 
411 /*
412  * Used for the add_timestamp
413  *  NONE
414  *  EXTEND - wants a time extend
415  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
416  *  FORCE - force a full time stamp.
417  */
418 enum {
419 	RB_ADD_STAMP_NONE		= 0,
420 	RB_ADD_STAMP_EXTEND		= BIT(1),
421 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
422 	RB_ADD_STAMP_FORCE		= BIT(3)
423 };
424 /*
425  * Used for which event context the event is in.
426  *  TRANSITION = 0
427  *  NMI     = 1
428  *  IRQ     = 2
429  *  SOFTIRQ = 3
430  *  NORMAL  = 4
431  *
432  * See trace_recursive_lock() comment below for more details.
433  */
434 enum {
435 	RB_CTX_TRANSITION,
436 	RB_CTX_NMI,
437 	RB_CTX_IRQ,
438 	RB_CTX_SOFTIRQ,
439 	RB_CTX_NORMAL,
440 	RB_CTX_MAX
441 };
442 
443 struct rb_time_struct {
444 	local64_t	time;
445 };
446 typedef struct rb_time_struct rb_time_t;
447 
448 #define MAX_NEST	5
449 
450 /*
451  * head_page == tail_page && head == tail then buffer is empty.
452  */
453 struct ring_buffer_per_cpu {
454 	int				cpu;
455 	atomic_t			record_disabled;
456 	atomic_t			resize_disabled;
457 	struct trace_buffer	*buffer;
458 	raw_spinlock_t			reader_lock;	/* serialize readers */
459 	arch_spinlock_t			lock;
460 	struct lock_class_key		lock_key;
461 	struct buffer_data_page		*free_page;
462 	unsigned long			nr_pages;
463 	unsigned int			current_context;
464 	struct list_head		*pages;
465 	struct buffer_page		*head_page;	/* read from head */
466 	struct buffer_page		*tail_page;	/* write to tail */
467 	struct buffer_page		*commit_page;	/* committed pages */
468 	struct buffer_page		*reader_page;
469 	unsigned long			lost_events;
470 	unsigned long			last_overrun;
471 	unsigned long			nest;
472 	local_t				entries_bytes;
473 	local_t				entries;
474 	local_t				overrun;
475 	local_t				commit_overrun;
476 	local_t				dropped_events;
477 	local_t				committing;
478 	local_t				commits;
479 	local_t				pages_touched;
480 	local_t				pages_lost;
481 	local_t				pages_read;
482 	long				last_pages_touch;
483 	size_t				shortest_full;
484 	unsigned long			read;
485 	unsigned long			read_bytes;
486 	rb_time_t			write_stamp;
487 	rb_time_t			before_stamp;
488 	u64				event_stamp[MAX_NEST];
489 	u64				read_stamp;
490 	/* pages removed since last reset */
491 	unsigned long			pages_removed;
492 
493 	unsigned int			mapped;
494 	struct mutex			mapping_lock;
495 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
496 	struct trace_buffer_meta	*meta_page;
497 
498 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
499 	long				nr_pages_to_update;
500 	struct list_head		new_pages; /* new pages to add */
501 	struct work_struct		update_pages_work;
502 	struct completion		update_done;
503 
504 	struct rb_irq_work		irq_work;
505 };
506 
507 struct trace_buffer {
508 	unsigned			flags;
509 	int				cpus;
510 	atomic_t			record_disabled;
511 	atomic_t			resizing;
512 	cpumask_var_t			cpumask;
513 
514 	struct lock_class_key		*reader_lock_key;
515 
516 	struct mutex			mutex;
517 
518 	struct ring_buffer_per_cpu	**buffers;
519 
520 	struct hlist_node		node;
521 	u64				(*clock)(void);
522 
523 	struct rb_irq_work		irq_work;
524 	bool				time_stamp_abs;
525 
526 	unsigned int			subbuf_size;
527 	unsigned int			subbuf_order;
528 	unsigned int			max_data_size;
529 };
530 
531 struct ring_buffer_iter {
532 	struct ring_buffer_per_cpu	*cpu_buffer;
533 	unsigned long			head;
534 	unsigned long			next_event;
535 	struct buffer_page		*head_page;
536 	struct buffer_page		*cache_reader_page;
537 	unsigned long			cache_read;
538 	unsigned long			cache_pages_removed;
539 	u64				read_stamp;
540 	u64				page_stamp;
541 	struct ring_buffer_event	*event;
542 	size_t				event_size;
543 	int				missed_events;
544 };
545 
546 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
547 {
548 	struct buffer_data_page field;
549 
550 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
551 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
552 			 (unsigned int)sizeof(field.time_stamp),
553 			 (unsigned int)is_signed_type(u64));
554 
555 	trace_seq_printf(s, "\tfield: local_t commit;\t"
556 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
557 			 (unsigned int)offsetof(typeof(field), commit),
558 			 (unsigned int)sizeof(field.commit),
559 			 (unsigned int)is_signed_type(long));
560 
561 	trace_seq_printf(s, "\tfield: int overwrite;\t"
562 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
563 			 (unsigned int)offsetof(typeof(field), commit),
564 			 1,
565 			 (unsigned int)is_signed_type(long));
566 
567 	trace_seq_printf(s, "\tfield: char data;\t"
568 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
569 			 (unsigned int)offsetof(typeof(field), data),
570 			 (unsigned int)buffer->subbuf_size,
571 			 (unsigned int)is_signed_type(char));
572 
573 	return !trace_seq_has_overflowed(s);
574 }
575 
576 static inline void rb_time_read(rb_time_t *t, u64 *ret)
577 {
578 	*ret = local64_read(&t->time);
579 }
580 static void rb_time_set(rb_time_t *t, u64 val)
581 {
582 	local64_set(&t->time, val);
583 }
584 
585 /*
586  * Enable this to make sure that the event passed to
587  * ring_buffer_event_time_stamp() is not committed and also
588  * is on the buffer that it passed in.
589  */
590 //#define RB_VERIFY_EVENT
591 #ifdef RB_VERIFY_EVENT
592 static struct list_head *rb_list_head(struct list_head *list);
593 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
594 			 void *event)
595 {
596 	struct buffer_page *page = cpu_buffer->commit_page;
597 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
598 	struct list_head *next;
599 	long commit, write;
600 	unsigned long addr = (unsigned long)event;
601 	bool done = false;
602 	int stop = 0;
603 
604 	/* Make sure the event exists and is not committed yet */
605 	do {
606 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
607 			done = true;
608 		commit = local_read(&page->page->commit);
609 		write = local_read(&page->write);
610 		if (addr >= (unsigned long)&page->page->data[commit] &&
611 		    addr < (unsigned long)&page->page->data[write])
612 			return;
613 
614 		next = rb_list_head(page->list.next);
615 		page = list_entry(next, struct buffer_page, list);
616 	} while (!done);
617 	WARN_ON_ONCE(1);
618 }
619 #else
620 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
621 			 void *event)
622 {
623 }
624 #endif
625 
626 /*
627  * The absolute time stamp drops the 5 MSBs and some clocks may
628  * require them. The rb_fix_abs_ts() will take a previous full
629  * time stamp, and add the 5 MSB of that time stamp on to the
630  * saved absolute time stamp. Then they are compared in case of
631  * the unlikely event that the latest time stamp incremented
632  * the 5 MSB.
633  */
634 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
635 {
636 	if (save_ts & TS_MSB) {
637 		abs |= save_ts & TS_MSB;
638 		/* Check for overflow */
639 		if (unlikely(abs < save_ts))
640 			abs += 1ULL << 59;
641 	}
642 	return abs;
643 }
644 
645 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
646 
647 /**
648  * ring_buffer_event_time_stamp - return the event's current time stamp
649  * @buffer: The buffer that the event is on
650  * @event: the event to get the time stamp of
651  *
652  * Note, this must be called after @event is reserved, and before it is
653  * committed to the ring buffer. And must be called from the same
654  * context where the event was reserved (normal, softirq, irq, etc).
655  *
656  * Returns the time stamp associated with the current event.
657  * If the event has an extended time stamp, then that is used as
658  * the time stamp to return.
659  * In the highly unlikely case that the event was nested more than
660  * the max nesting, then the write_stamp of the buffer is returned,
661  * otherwise  current time is returned, but that really neither of
662  * the last two cases should ever happen.
663  */
664 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
665 				 struct ring_buffer_event *event)
666 {
667 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
668 	unsigned int nest;
669 	u64 ts;
670 
671 	/* If the event includes an absolute time, then just use that */
672 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
673 		ts = rb_event_time_stamp(event);
674 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
675 	}
676 
677 	nest = local_read(&cpu_buffer->committing);
678 	verify_event(cpu_buffer, event);
679 	if (WARN_ON_ONCE(!nest))
680 		goto fail;
681 
682 	/* Read the current saved nesting level time stamp */
683 	if (likely(--nest < MAX_NEST))
684 		return cpu_buffer->event_stamp[nest];
685 
686 	/* Shouldn't happen, warn if it does */
687 	WARN_ONCE(1, "nest (%d) greater than max", nest);
688 
689  fail:
690 	rb_time_read(&cpu_buffer->write_stamp, &ts);
691 
692 	return ts;
693 }
694 
695 /**
696  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
697  * @buffer: The ring_buffer to get the number of pages from
698  * @cpu: The cpu of the ring_buffer to get the number of pages from
699  *
700  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
701  */
702 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
703 {
704 	return buffer->buffers[cpu]->nr_pages;
705 }
706 
707 /**
708  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
709  * @buffer: The ring_buffer to get the number of pages from
710  * @cpu: The cpu of the ring_buffer to get the number of pages from
711  *
712  * Returns the number of pages that have content in the ring buffer.
713  */
714 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
715 {
716 	size_t read;
717 	size_t lost;
718 	size_t cnt;
719 
720 	read = local_read(&buffer->buffers[cpu]->pages_read);
721 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
722 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
723 
724 	if (WARN_ON_ONCE(cnt < lost))
725 		return 0;
726 
727 	cnt -= lost;
728 
729 	/* The reader can read an empty page, but not more than that */
730 	if (cnt < read) {
731 		WARN_ON_ONCE(read > cnt + 1);
732 		return 0;
733 	}
734 
735 	return cnt - read;
736 }
737 
738 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
739 {
740 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
741 	size_t nr_pages;
742 	size_t dirty;
743 
744 	nr_pages = cpu_buffer->nr_pages;
745 	if (!nr_pages || !full)
746 		return true;
747 
748 	/*
749 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
750 	 * that the writer is on is not counted as dirty.
751 	 * This is needed if "buffer_percent" is set to 100.
752 	 */
753 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
754 
755 	return (dirty * 100) >= (full * nr_pages);
756 }
757 
758 /*
759  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
760  *
761  * Schedules a delayed work to wake up any task that is blocked on the
762  * ring buffer waiters queue.
763  */
764 static void rb_wake_up_waiters(struct irq_work *work)
765 {
766 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
767 
768 	/* For waiters waiting for the first wake up */
769 	(void)atomic_fetch_inc_release(&rbwork->seq);
770 
771 	wake_up_all(&rbwork->waiters);
772 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
773 		/* Only cpu_buffer sets the above flags */
774 		struct ring_buffer_per_cpu *cpu_buffer =
775 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
776 
777 		/* Called from interrupt context */
778 		raw_spin_lock(&cpu_buffer->reader_lock);
779 		rbwork->wakeup_full = false;
780 		rbwork->full_waiters_pending = false;
781 
782 		/* Waking up all waiters, they will reset the shortest full */
783 		cpu_buffer->shortest_full = 0;
784 		raw_spin_unlock(&cpu_buffer->reader_lock);
785 
786 		wake_up_all(&rbwork->full_waiters);
787 	}
788 }
789 
790 /**
791  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
792  * @buffer: The ring buffer to wake waiters on
793  * @cpu: The CPU buffer to wake waiters on
794  *
795  * In the case of a file that represents a ring buffer is closing,
796  * it is prudent to wake up any waiters that are on this.
797  */
798 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
799 {
800 	struct ring_buffer_per_cpu *cpu_buffer;
801 	struct rb_irq_work *rbwork;
802 
803 	if (!buffer)
804 		return;
805 
806 	if (cpu == RING_BUFFER_ALL_CPUS) {
807 
808 		/* Wake up individual ones too. One level recursion */
809 		for_each_buffer_cpu(buffer, cpu)
810 			ring_buffer_wake_waiters(buffer, cpu);
811 
812 		rbwork = &buffer->irq_work;
813 	} else {
814 		if (WARN_ON_ONCE(!buffer->buffers))
815 			return;
816 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
817 			return;
818 
819 		cpu_buffer = buffer->buffers[cpu];
820 		/* The CPU buffer may not have been initialized yet */
821 		if (!cpu_buffer)
822 			return;
823 		rbwork = &cpu_buffer->irq_work;
824 	}
825 
826 	/* This can be called in any context */
827 	irq_work_queue(&rbwork->work);
828 }
829 
830 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
831 {
832 	struct ring_buffer_per_cpu *cpu_buffer;
833 	bool ret = false;
834 
835 	/* Reads of all CPUs always waits for any data */
836 	if (cpu == RING_BUFFER_ALL_CPUS)
837 		return !ring_buffer_empty(buffer);
838 
839 	cpu_buffer = buffer->buffers[cpu];
840 
841 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
842 		unsigned long flags;
843 		bool pagebusy;
844 
845 		if (!full)
846 			return true;
847 
848 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
849 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
850 		ret = !pagebusy && full_hit(buffer, cpu, full);
851 
852 		if (!ret && (!cpu_buffer->shortest_full ||
853 			     cpu_buffer->shortest_full > full)) {
854 		    cpu_buffer->shortest_full = full;
855 		}
856 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
857 	}
858 	return ret;
859 }
860 
861 static inline bool
862 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
863 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
864 {
865 	if (rb_watermark_hit(buffer, cpu, full))
866 		return true;
867 
868 	if (cond(data))
869 		return true;
870 
871 	/*
872 	 * The events can happen in critical sections where
873 	 * checking a work queue can cause deadlocks.
874 	 * After adding a task to the queue, this flag is set
875 	 * only to notify events to try to wake up the queue
876 	 * using irq_work.
877 	 *
878 	 * We don't clear it even if the buffer is no longer
879 	 * empty. The flag only causes the next event to run
880 	 * irq_work to do the work queue wake up. The worse
881 	 * that can happen if we race with !trace_empty() is that
882 	 * an event will cause an irq_work to try to wake up
883 	 * an empty queue.
884 	 *
885 	 * There's no reason to protect this flag either, as
886 	 * the work queue and irq_work logic will do the necessary
887 	 * synchronization for the wake ups. The only thing
888 	 * that is necessary is that the wake up happens after
889 	 * a task has been queued. It's OK for spurious wake ups.
890 	 */
891 	if (full)
892 		rbwork->full_waiters_pending = true;
893 	else
894 		rbwork->waiters_pending = true;
895 
896 	return false;
897 }
898 
899 struct rb_wait_data {
900 	struct rb_irq_work		*irq_work;
901 	int				seq;
902 };
903 
904 /*
905  * The default wait condition for ring_buffer_wait() is to just to exit the
906  * wait loop the first time it is woken up.
907  */
908 static bool rb_wait_once(void *data)
909 {
910 	struct rb_wait_data *rdata = data;
911 	struct rb_irq_work *rbwork = rdata->irq_work;
912 
913 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
914 }
915 
916 /**
917  * ring_buffer_wait - wait for input to the ring buffer
918  * @buffer: buffer to wait on
919  * @cpu: the cpu buffer to wait on
920  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
921  * @cond: condition function to break out of wait (NULL to run once)
922  * @data: the data to pass to @cond.
923  *
924  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
925  * as data is added to any of the @buffer's cpu buffers. Otherwise
926  * it will wait for data to be added to a specific cpu buffer.
927  */
928 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
929 		     ring_buffer_cond_fn cond, void *data)
930 {
931 	struct ring_buffer_per_cpu *cpu_buffer;
932 	struct wait_queue_head *waitq;
933 	struct rb_irq_work *rbwork;
934 	struct rb_wait_data rdata;
935 	int ret = 0;
936 
937 	/*
938 	 * Depending on what the caller is waiting for, either any
939 	 * data in any cpu buffer, or a specific buffer, put the
940 	 * caller on the appropriate wait queue.
941 	 */
942 	if (cpu == RING_BUFFER_ALL_CPUS) {
943 		rbwork = &buffer->irq_work;
944 		/* Full only makes sense on per cpu reads */
945 		full = 0;
946 	} else {
947 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
948 			return -ENODEV;
949 		cpu_buffer = buffer->buffers[cpu];
950 		rbwork = &cpu_buffer->irq_work;
951 	}
952 
953 	if (full)
954 		waitq = &rbwork->full_waiters;
955 	else
956 		waitq = &rbwork->waiters;
957 
958 	/* Set up to exit loop as soon as it is woken */
959 	if (!cond) {
960 		cond = rb_wait_once;
961 		rdata.irq_work = rbwork;
962 		rdata.seq = atomic_read_acquire(&rbwork->seq);
963 		data = &rdata;
964 	}
965 
966 	ret = wait_event_interruptible((*waitq),
967 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
968 
969 	return ret;
970 }
971 
972 /**
973  * ring_buffer_poll_wait - poll on buffer input
974  * @buffer: buffer to wait on
975  * @cpu: the cpu buffer to wait on
976  * @filp: the file descriptor
977  * @poll_table: The poll descriptor
978  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
979  *
980  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
981  * as data is added to any of the @buffer's cpu buffers. Otherwise
982  * it will wait for data to be added to a specific cpu buffer.
983  *
984  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
985  * zero otherwise.
986  */
987 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
988 			  struct file *filp, poll_table *poll_table, int full)
989 {
990 	struct ring_buffer_per_cpu *cpu_buffer;
991 	struct rb_irq_work *rbwork;
992 
993 	if (cpu == RING_BUFFER_ALL_CPUS) {
994 		rbwork = &buffer->irq_work;
995 		full = 0;
996 	} else {
997 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
998 			return EPOLLERR;
999 
1000 		cpu_buffer = buffer->buffers[cpu];
1001 		rbwork = &cpu_buffer->irq_work;
1002 	}
1003 
1004 	if (full) {
1005 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1006 
1007 		if (rb_watermark_hit(buffer, cpu, full))
1008 			return EPOLLIN | EPOLLRDNORM;
1009 		/*
1010 		 * Only allow full_waiters_pending update to be seen after
1011 		 * the shortest_full is set (in rb_watermark_hit). If the
1012 		 * writer sees the full_waiters_pending flag set, it will
1013 		 * compare the amount in the ring buffer to shortest_full.
1014 		 * If the amount in the ring buffer is greater than the
1015 		 * shortest_full percent, it will call the irq_work handler
1016 		 * to wake up this list. The irq_handler will reset shortest_full
1017 		 * back to zero. That's done under the reader_lock, but
1018 		 * the below smp_mb() makes sure that the update to
1019 		 * full_waiters_pending doesn't leak up into the above.
1020 		 */
1021 		smp_mb();
1022 		rbwork->full_waiters_pending = true;
1023 		return 0;
1024 	}
1025 
1026 	poll_wait(filp, &rbwork->waiters, poll_table);
1027 	rbwork->waiters_pending = true;
1028 
1029 	/*
1030 	 * There's a tight race between setting the waiters_pending and
1031 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1032 	 * is set, the next event will wake the task up, but we can get stuck
1033 	 * if there's only a single event in.
1034 	 *
1035 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1036 	 * but adding a memory barrier to all events will cause too much of a
1037 	 * performance hit in the fast path.  We only need a memory barrier when
1038 	 * the buffer goes from empty to having content.  But as this race is
1039 	 * extremely small, and it's not a problem if another event comes in, we
1040 	 * will fix it later.
1041 	 */
1042 	smp_mb();
1043 
1044 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1045 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1046 		return EPOLLIN | EPOLLRDNORM;
1047 	return 0;
1048 }
1049 
1050 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1051 #define RB_WARN_ON(b, cond)						\
1052 	({								\
1053 		int _____ret = unlikely(cond);				\
1054 		if (_____ret) {						\
1055 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1056 				struct ring_buffer_per_cpu *__b =	\
1057 					(void *)b;			\
1058 				atomic_inc(&__b->buffer->record_disabled); \
1059 			} else						\
1060 				atomic_inc(&b->record_disabled);	\
1061 			WARN_ON(1);					\
1062 		}							\
1063 		_____ret;						\
1064 	})
1065 
1066 /* Up this if you want to test the TIME_EXTENTS and normalization */
1067 #define DEBUG_SHIFT 0
1068 
1069 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1070 {
1071 	u64 ts;
1072 
1073 	/* Skip retpolines :-( */
1074 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1075 		ts = trace_clock_local();
1076 	else
1077 		ts = buffer->clock();
1078 
1079 	/* shift to debug/test normalization and TIME_EXTENTS */
1080 	return ts << DEBUG_SHIFT;
1081 }
1082 
1083 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1084 {
1085 	u64 time;
1086 
1087 	preempt_disable_notrace();
1088 	time = rb_time_stamp(buffer);
1089 	preempt_enable_notrace();
1090 
1091 	return time;
1092 }
1093 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1094 
1095 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1096 				      int cpu, u64 *ts)
1097 {
1098 	/* Just stupid testing the normalize function and deltas */
1099 	*ts >>= DEBUG_SHIFT;
1100 }
1101 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1102 
1103 /*
1104  * Making the ring buffer lockless makes things tricky.
1105  * Although writes only happen on the CPU that they are on,
1106  * and they only need to worry about interrupts. Reads can
1107  * happen on any CPU.
1108  *
1109  * The reader page is always off the ring buffer, but when the
1110  * reader finishes with a page, it needs to swap its page with
1111  * a new one from the buffer. The reader needs to take from
1112  * the head (writes go to the tail). But if a writer is in overwrite
1113  * mode and wraps, it must push the head page forward.
1114  *
1115  * Here lies the problem.
1116  *
1117  * The reader must be careful to replace only the head page, and
1118  * not another one. As described at the top of the file in the
1119  * ASCII art, the reader sets its old page to point to the next
1120  * page after head. It then sets the page after head to point to
1121  * the old reader page. But if the writer moves the head page
1122  * during this operation, the reader could end up with the tail.
1123  *
1124  * We use cmpxchg to help prevent this race. We also do something
1125  * special with the page before head. We set the LSB to 1.
1126  *
1127  * When the writer must push the page forward, it will clear the
1128  * bit that points to the head page, move the head, and then set
1129  * the bit that points to the new head page.
1130  *
1131  * We also don't want an interrupt coming in and moving the head
1132  * page on another writer. Thus we use the second LSB to catch
1133  * that too. Thus:
1134  *
1135  * head->list->prev->next        bit 1          bit 0
1136  *                              -------        -------
1137  * Normal page                     0              0
1138  * Points to head page             0              1
1139  * New head page                   1              0
1140  *
1141  * Note we can not trust the prev pointer of the head page, because:
1142  *
1143  * +----+       +-----+        +-----+
1144  * |    |------>|  T  |---X--->|  N  |
1145  * |    |<------|     |        |     |
1146  * +----+       +-----+        +-----+
1147  *   ^                           ^ |
1148  *   |          +-----+          | |
1149  *   +----------|  R  |----------+ |
1150  *              |     |<-----------+
1151  *              +-----+
1152  *
1153  * Key:  ---X-->  HEAD flag set in pointer
1154  *         T      Tail page
1155  *         R      Reader page
1156  *         N      Next page
1157  *
1158  * (see __rb_reserve_next() to see where this happens)
1159  *
1160  *  What the above shows is that the reader just swapped out
1161  *  the reader page with a page in the buffer, but before it
1162  *  could make the new header point back to the new page added
1163  *  it was preempted by a writer. The writer moved forward onto
1164  *  the new page added by the reader and is about to move forward
1165  *  again.
1166  *
1167  *  You can see, it is legitimate for the previous pointer of
1168  *  the head (or any page) not to point back to itself. But only
1169  *  temporarily.
1170  */
1171 
1172 #define RB_PAGE_NORMAL		0UL
1173 #define RB_PAGE_HEAD		1UL
1174 #define RB_PAGE_UPDATE		2UL
1175 
1176 
1177 #define RB_FLAG_MASK		3UL
1178 
1179 /* PAGE_MOVED is not part of the mask */
1180 #define RB_PAGE_MOVED		4UL
1181 
1182 /*
1183  * rb_list_head - remove any bit
1184  */
1185 static struct list_head *rb_list_head(struct list_head *list)
1186 {
1187 	unsigned long val = (unsigned long)list;
1188 
1189 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1190 }
1191 
1192 /*
1193  * rb_is_head_page - test if the given page is the head page
1194  *
1195  * Because the reader may move the head_page pointer, we can
1196  * not trust what the head page is (it may be pointing to
1197  * the reader page). But if the next page is a header page,
1198  * its flags will be non zero.
1199  */
1200 static inline int
1201 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1202 {
1203 	unsigned long val;
1204 
1205 	val = (unsigned long)list->next;
1206 
1207 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1208 		return RB_PAGE_MOVED;
1209 
1210 	return val & RB_FLAG_MASK;
1211 }
1212 
1213 /*
1214  * rb_is_reader_page
1215  *
1216  * The unique thing about the reader page, is that, if the
1217  * writer is ever on it, the previous pointer never points
1218  * back to the reader page.
1219  */
1220 static bool rb_is_reader_page(struct buffer_page *page)
1221 {
1222 	struct list_head *list = page->list.prev;
1223 
1224 	return rb_list_head(list->next) != &page->list;
1225 }
1226 
1227 /*
1228  * rb_set_list_to_head - set a list_head to be pointing to head.
1229  */
1230 static void rb_set_list_to_head(struct list_head *list)
1231 {
1232 	unsigned long *ptr;
1233 
1234 	ptr = (unsigned long *)&list->next;
1235 	*ptr |= RB_PAGE_HEAD;
1236 	*ptr &= ~RB_PAGE_UPDATE;
1237 }
1238 
1239 /*
1240  * rb_head_page_activate - sets up head page
1241  */
1242 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1243 {
1244 	struct buffer_page *head;
1245 
1246 	head = cpu_buffer->head_page;
1247 	if (!head)
1248 		return;
1249 
1250 	/*
1251 	 * Set the previous list pointer to have the HEAD flag.
1252 	 */
1253 	rb_set_list_to_head(head->list.prev);
1254 }
1255 
1256 static void rb_list_head_clear(struct list_head *list)
1257 {
1258 	unsigned long *ptr = (unsigned long *)&list->next;
1259 
1260 	*ptr &= ~RB_FLAG_MASK;
1261 }
1262 
1263 /*
1264  * rb_head_page_deactivate - clears head page ptr (for free list)
1265  */
1266 static void
1267 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1268 {
1269 	struct list_head *hd;
1270 
1271 	/* Go through the whole list and clear any pointers found. */
1272 	rb_list_head_clear(cpu_buffer->pages);
1273 
1274 	list_for_each(hd, cpu_buffer->pages)
1275 		rb_list_head_clear(hd);
1276 }
1277 
1278 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1279 			    struct buffer_page *head,
1280 			    struct buffer_page *prev,
1281 			    int old_flag, int new_flag)
1282 {
1283 	struct list_head *list;
1284 	unsigned long val = (unsigned long)&head->list;
1285 	unsigned long ret;
1286 
1287 	list = &prev->list;
1288 
1289 	val &= ~RB_FLAG_MASK;
1290 
1291 	ret = cmpxchg((unsigned long *)&list->next,
1292 		      val | old_flag, val | new_flag);
1293 
1294 	/* check if the reader took the page */
1295 	if ((ret & ~RB_FLAG_MASK) != val)
1296 		return RB_PAGE_MOVED;
1297 
1298 	return ret & RB_FLAG_MASK;
1299 }
1300 
1301 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1302 				   struct buffer_page *head,
1303 				   struct buffer_page *prev,
1304 				   int old_flag)
1305 {
1306 	return rb_head_page_set(cpu_buffer, head, prev,
1307 				old_flag, RB_PAGE_UPDATE);
1308 }
1309 
1310 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1311 				 struct buffer_page *head,
1312 				 struct buffer_page *prev,
1313 				 int old_flag)
1314 {
1315 	return rb_head_page_set(cpu_buffer, head, prev,
1316 				old_flag, RB_PAGE_HEAD);
1317 }
1318 
1319 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1320 				   struct buffer_page *head,
1321 				   struct buffer_page *prev,
1322 				   int old_flag)
1323 {
1324 	return rb_head_page_set(cpu_buffer, head, prev,
1325 				old_flag, RB_PAGE_NORMAL);
1326 }
1327 
1328 static inline void rb_inc_page(struct buffer_page **bpage)
1329 {
1330 	struct list_head *p = rb_list_head((*bpage)->list.next);
1331 
1332 	*bpage = list_entry(p, struct buffer_page, list);
1333 }
1334 
1335 static struct buffer_page *
1336 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1337 {
1338 	struct buffer_page *head;
1339 	struct buffer_page *page;
1340 	struct list_head *list;
1341 	int i;
1342 
1343 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1344 		return NULL;
1345 
1346 	/* sanity check */
1347 	list = cpu_buffer->pages;
1348 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1349 		return NULL;
1350 
1351 	page = head = cpu_buffer->head_page;
1352 	/*
1353 	 * It is possible that the writer moves the header behind
1354 	 * where we started, and we miss in one loop.
1355 	 * A second loop should grab the header, but we'll do
1356 	 * three loops just because I'm paranoid.
1357 	 */
1358 	for (i = 0; i < 3; i++) {
1359 		do {
1360 			if (rb_is_head_page(page, page->list.prev)) {
1361 				cpu_buffer->head_page = page;
1362 				return page;
1363 			}
1364 			rb_inc_page(&page);
1365 		} while (page != head);
1366 	}
1367 
1368 	RB_WARN_ON(cpu_buffer, 1);
1369 
1370 	return NULL;
1371 }
1372 
1373 static bool rb_head_page_replace(struct buffer_page *old,
1374 				struct buffer_page *new)
1375 {
1376 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1377 	unsigned long val;
1378 
1379 	val = *ptr & ~RB_FLAG_MASK;
1380 	val |= RB_PAGE_HEAD;
1381 
1382 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1383 }
1384 
1385 /*
1386  * rb_tail_page_update - move the tail page forward
1387  */
1388 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1389 			       struct buffer_page *tail_page,
1390 			       struct buffer_page *next_page)
1391 {
1392 	unsigned long old_entries;
1393 	unsigned long old_write;
1394 
1395 	/*
1396 	 * The tail page now needs to be moved forward.
1397 	 *
1398 	 * We need to reset the tail page, but without messing
1399 	 * with possible erasing of data brought in by interrupts
1400 	 * that have moved the tail page and are currently on it.
1401 	 *
1402 	 * We add a counter to the write field to denote this.
1403 	 */
1404 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1405 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1406 
1407 	/*
1408 	 * Just make sure we have seen our old_write and synchronize
1409 	 * with any interrupts that come in.
1410 	 */
1411 	barrier();
1412 
1413 	/*
1414 	 * If the tail page is still the same as what we think
1415 	 * it is, then it is up to us to update the tail
1416 	 * pointer.
1417 	 */
1418 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1419 		/* Zero the write counter */
1420 		unsigned long val = old_write & ~RB_WRITE_MASK;
1421 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1422 
1423 		/*
1424 		 * This will only succeed if an interrupt did
1425 		 * not come in and change it. In which case, we
1426 		 * do not want to modify it.
1427 		 *
1428 		 * We add (void) to let the compiler know that we do not care
1429 		 * about the return value of these functions. We use the
1430 		 * cmpxchg to only update if an interrupt did not already
1431 		 * do it for us. If the cmpxchg fails, we don't care.
1432 		 */
1433 		(void)local_cmpxchg(&next_page->write, old_write, val);
1434 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1435 
1436 		/*
1437 		 * No need to worry about races with clearing out the commit.
1438 		 * it only can increment when a commit takes place. But that
1439 		 * only happens in the outer most nested commit.
1440 		 */
1441 		local_set(&next_page->page->commit, 0);
1442 
1443 		/* Either we update tail_page or an interrupt does */
1444 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1445 			local_inc(&cpu_buffer->pages_touched);
1446 	}
1447 }
1448 
1449 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1450 			  struct buffer_page *bpage)
1451 {
1452 	unsigned long val = (unsigned long)bpage;
1453 
1454 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1455 }
1456 
1457 /**
1458  * rb_check_pages - integrity check of buffer pages
1459  * @cpu_buffer: CPU buffer with pages to test
1460  *
1461  * As a safety measure we check to make sure the data pages have not
1462  * been corrupted.
1463  */
1464 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1465 {
1466 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1467 	struct list_head *tmp;
1468 
1469 	if (RB_WARN_ON(cpu_buffer,
1470 			rb_list_head(rb_list_head(head->next)->prev) != head))
1471 		return;
1472 
1473 	if (RB_WARN_ON(cpu_buffer,
1474 			rb_list_head(rb_list_head(head->prev)->next) != head))
1475 		return;
1476 
1477 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1478 		if (RB_WARN_ON(cpu_buffer,
1479 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1480 			return;
1481 
1482 		if (RB_WARN_ON(cpu_buffer,
1483 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1484 			return;
1485 	}
1486 }
1487 
1488 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1489 		long nr_pages, struct list_head *pages)
1490 {
1491 	struct buffer_page *bpage, *tmp;
1492 	bool user_thread = current->mm != NULL;
1493 	gfp_t mflags;
1494 	long i;
1495 
1496 	/*
1497 	 * Check if the available memory is there first.
1498 	 * Note, si_mem_available() only gives us a rough estimate of available
1499 	 * memory. It may not be accurate. But we don't care, we just want
1500 	 * to prevent doing any allocation when it is obvious that it is
1501 	 * not going to succeed.
1502 	 */
1503 	i = si_mem_available();
1504 	if (i < nr_pages)
1505 		return -ENOMEM;
1506 
1507 	/*
1508 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1509 	 * gracefully without invoking oom-killer and the system is not
1510 	 * destabilized.
1511 	 */
1512 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1513 
1514 	/*
1515 	 * If a user thread allocates too much, and si_mem_available()
1516 	 * reports there's enough memory, even though there is not.
1517 	 * Make sure the OOM killer kills this thread. This can happen
1518 	 * even with RETRY_MAYFAIL because another task may be doing
1519 	 * an allocation after this task has taken all memory.
1520 	 * This is the task the OOM killer needs to take out during this
1521 	 * loop, even if it was triggered by an allocation somewhere else.
1522 	 */
1523 	if (user_thread)
1524 		set_current_oom_origin();
1525 	for (i = 0; i < nr_pages; i++) {
1526 		struct page *page;
1527 
1528 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1529 				    mflags, cpu_to_node(cpu_buffer->cpu));
1530 		if (!bpage)
1531 			goto free_pages;
1532 
1533 		rb_check_bpage(cpu_buffer, bpage);
1534 
1535 		list_add(&bpage->list, pages);
1536 
1537 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1538 					mflags | __GFP_COMP | __GFP_ZERO,
1539 					cpu_buffer->buffer->subbuf_order);
1540 		if (!page)
1541 			goto free_pages;
1542 		bpage->page = page_address(page);
1543 		bpage->order = cpu_buffer->buffer->subbuf_order;
1544 		rb_init_page(bpage->page);
1545 
1546 		if (user_thread && fatal_signal_pending(current))
1547 			goto free_pages;
1548 	}
1549 	if (user_thread)
1550 		clear_current_oom_origin();
1551 
1552 	return 0;
1553 
1554 free_pages:
1555 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1556 		list_del_init(&bpage->list);
1557 		free_buffer_page(bpage);
1558 	}
1559 	if (user_thread)
1560 		clear_current_oom_origin();
1561 
1562 	return -ENOMEM;
1563 }
1564 
1565 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1566 			     unsigned long nr_pages)
1567 {
1568 	LIST_HEAD(pages);
1569 
1570 	WARN_ON(!nr_pages);
1571 
1572 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1573 		return -ENOMEM;
1574 
1575 	/*
1576 	 * The ring buffer page list is a circular list that does not
1577 	 * start and end with a list head. All page list items point to
1578 	 * other pages.
1579 	 */
1580 	cpu_buffer->pages = pages.next;
1581 	list_del(&pages);
1582 
1583 	cpu_buffer->nr_pages = nr_pages;
1584 
1585 	rb_check_pages(cpu_buffer);
1586 
1587 	return 0;
1588 }
1589 
1590 static struct ring_buffer_per_cpu *
1591 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1592 {
1593 	struct ring_buffer_per_cpu *cpu_buffer;
1594 	struct buffer_page *bpage;
1595 	struct page *page;
1596 	int ret;
1597 
1598 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1599 				  GFP_KERNEL, cpu_to_node(cpu));
1600 	if (!cpu_buffer)
1601 		return NULL;
1602 
1603 	cpu_buffer->cpu = cpu;
1604 	cpu_buffer->buffer = buffer;
1605 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1606 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1607 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1608 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1609 	init_completion(&cpu_buffer->update_done);
1610 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1611 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1612 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1613 	mutex_init(&cpu_buffer->mapping_lock);
1614 
1615 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1616 			    GFP_KERNEL, cpu_to_node(cpu));
1617 	if (!bpage)
1618 		goto fail_free_buffer;
1619 
1620 	rb_check_bpage(cpu_buffer, bpage);
1621 
1622 	cpu_buffer->reader_page = bpage;
1623 
1624 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
1625 				cpu_buffer->buffer->subbuf_order);
1626 	if (!page)
1627 		goto fail_free_reader;
1628 	bpage->page = page_address(page);
1629 	rb_init_page(bpage->page);
1630 
1631 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1632 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1633 
1634 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1635 	if (ret < 0)
1636 		goto fail_free_reader;
1637 
1638 	cpu_buffer->head_page
1639 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1640 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1641 
1642 	rb_head_page_activate(cpu_buffer);
1643 
1644 	return cpu_buffer;
1645 
1646  fail_free_reader:
1647 	free_buffer_page(cpu_buffer->reader_page);
1648 
1649  fail_free_buffer:
1650 	kfree(cpu_buffer);
1651 	return NULL;
1652 }
1653 
1654 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1655 {
1656 	struct list_head *head = cpu_buffer->pages;
1657 	struct buffer_page *bpage, *tmp;
1658 
1659 	irq_work_sync(&cpu_buffer->irq_work.work);
1660 
1661 	free_buffer_page(cpu_buffer->reader_page);
1662 
1663 	if (head) {
1664 		rb_head_page_deactivate(cpu_buffer);
1665 
1666 		list_for_each_entry_safe(bpage, tmp, head, list) {
1667 			list_del_init(&bpage->list);
1668 			free_buffer_page(bpage);
1669 		}
1670 		bpage = list_entry(head, struct buffer_page, list);
1671 		free_buffer_page(bpage);
1672 	}
1673 
1674 	free_page((unsigned long)cpu_buffer->free_page);
1675 
1676 	kfree(cpu_buffer);
1677 }
1678 
1679 /**
1680  * __ring_buffer_alloc - allocate a new ring_buffer
1681  * @size: the size in bytes per cpu that is needed.
1682  * @flags: attributes to set for the ring buffer.
1683  * @key: ring buffer reader_lock_key.
1684  *
1685  * Currently the only flag that is available is the RB_FL_OVERWRITE
1686  * flag. This flag means that the buffer will overwrite old data
1687  * when the buffer wraps. If this flag is not set, the buffer will
1688  * drop data when the tail hits the head.
1689  */
1690 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1691 					struct lock_class_key *key)
1692 {
1693 	struct trace_buffer *buffer;
1694 	long nr_pages;
1695 	int bsize;
1696 	int cpu;
1697 	int ret;
1698 
1699 	/* keep it in its own cache line */
1700 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1701 			 GFP_KERNEL);
1702 	if (!buffer)
1703 		return NULL;
1704 
1705 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1706 		goto fail_free_buffer;
1707 
1708 	/* Default buffer page size - one system page */
1709 	buffer->subbuf_order = 0;
1710 	buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1711 
1712 	/* Max payload is buffer page size - header (8bytes) */
1713 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1714 
1715 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1716 	buffer->flags = flags;
1717 	buffer->clock = trace_clock_local;
1718 	buffer->reader_lock_key = key;
1719 
1720 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1721 	init_waitqueue_head(&buffer->irq_work.waiters);
1722 
1723 	/* need at least two pages */
1724 	if (nr_pages < 2)
1725 		nr_pages = 2;
1726 
1727 	buffer->cpus = nr_cpu_ids;
1728 
1729 	bsize = sizeof(void *) * nr_cpu_ids;
1730 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1731 				  GFP_KERNEL);
1732 	if (!buffer->buffers)
1733 		goto fail_free_cpumask;
1734 
1735 	cpu = raw_smp_processor_id();
1736 	cpumask_set_cpu(cpu, buffer->cpumask);
1737 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1738 	if (!buffer->buffers[cpu])
1739 		goto fail_free_buffers;
1740 
1741 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1742 	if (ret < 0)
1743 		goto fail_free_buffers;
1744 
1745 	mutex_init(&buffer->mutex);
1746 
1747 	return buffer;
1748 
1749  fail_free_buffers:
1750 	for_each_buffer_cpu(buffer, cpu) {
1751 		if (buffer->buffers[cpu])
1752 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1753 	}
1754 	kfree(buffer->buffers);
1755 
1756  fail_free_cpumask:
1757 	free_cpumask_var(buffer->cpumask);
1758 
1759  fail_free_buffer:
1760 	kfree(buffer);
1761 	return NULL;
1762 }
1763 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1764 
1765 /**
1766  * ring_buffer_free - free a ring buffer.
1767  * @buffer: the buffer to free.
1768  */
1769 void
1770 ring_buffer_free(struct trace_buffer *buffer)
1771 {
1772 	int cpu;
1773 
1774 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1775 
1776 	irq_work_sync(&buffer->irq_work.work);
1777 
1778 	for_each_buffer_cpu(buffer, cpu)
1779 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1780 
1781 	kfree(buffer->buffers);
1782 	free_cpumask_var(buffer->cpumask);
1783 
1784 	kfree(buffer);
1785 }
1786 EXPORT_SYMBOL_GPL(ring_buffer_free);
1787 
1788 void ring_buffer_set_clock(struct trace_buffer *buffer,
1789 			   u64 (*clock)(void))
1790 {
1791 	buffer->clock = clock;
1792 }
1793 
1794 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1795 {
1796 	buffer->time_stamp_abs = abs;
1797 }
1798 
1799 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1800 {
1801 	return buffer->time_stamp_abs;
1802 }
1803 
1804 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1805 {
1806 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1807 }
1808 
1809 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1810 {
1811 	return local_read(&bpage->write) & RB_WRITE_MASK;
1812 }
1813 
1814 static bool
1815 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1816 {
1817 	struct list_head *tail_page, *to_remove, *next_page;
1818 	struct buffer_page *to_remove_page, *tmp_iter_page;
1819 	struct buffer_page *last_page, *first_page;
1820 	unsigned long nr_removed;
1821 	unsigned long head_bit;
1822 	int page_entries;
1823 
1824 	head_bit = 0;
1825 
1826 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1827 	atomic_inc(&cpu_buffer->record_disabled);
1828 	/*
1829 	 * We don't race with the readers since we have acquired the reader
1830 	 * lock. We also don't race with writers after disabling recording.
1831 	 * This makes it easy to figure out the first and the last page to be
1832 	 * removed from the list. We unlink all the pages in between including
1833 	 * the first and last pages. This is done in a busy loop so that we
1834 	 * lose the least number of traces.
1835 	 * The pages are freed after we restart recording and unlock readers.
1836 	 */
1837 	tail_page = &cpu_buffer->tail_page->list;
1838 
1839 	/*
1840 	 * tail page might be on reader page, we remove the next page
1841 	 * from the ring buffer
1842 	 */
1843 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1844 		tail_page = rb_list_head(tail_page->next);
1845 	to_remove = tail_page;
1846 
1847 	/* start of pages to remove */
1848 	first_page = list_entry(rb_list_head(to_remove->next),
1849 				struct buffer_page, list);
1850 
1851 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1852 		to_remove = rb_list_head(to_remove)->next;
1853 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1854 	}
1855 	/* Read iterators need to reset themselves when some pages removed */
1856 	cpu_buffer->pages_removed += nr_removed;
1857 
1858 	next_page = rb_list_head(to_remove)->next;
1859 
1860 	/*
1861 	 * Now we remove all pages between tail_page and next_page.
1862 	 * Make sure that we have head_bit value preserved for the
1863 	 * next page
1864 	 */
1865 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1866 						head_bit);
1867 	next_page = rb_list_head(next_page);
1868 	next_page->prev = tail_page;
1869 
1870 	/* make sure pages points to a valid page in the ring buffer */
1871 	cpu_buffer->pages = next_page;
1872 
1873 	/* update head page */
1874 	if (head_bit)
1875 		cpu_buffer->head_page = list_entry(next_page,
1876 						struct buffer_page, list);
1877 
1878 	/* pages are removed, resume tracing and then free the pages */
1879 	atomic_dec(&cpu_buffer->record_disabled);
1880 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1881 
1882 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1883 
1884 	/* last buffer page to remove */
1885 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1886 				list);
1887 	tmp_iter_page = first_page;
1888 
1889 	do {
1890 		cond_resched();
1891 
1892 		to_remove_page = tmp_iter_page;
1893 		rb_inc_page(&tmp_iter_page);
1894 
1895 		/* update the counters */
1896 		page_entries = rb_page_entries(to_remove_page);
1897 		if (page_entries) {
1898 			/*
1899 			 * If something was added to this page, it was full
1900 			 * since it is not the tail page. So we deduct the
1901 			 * bytes consumed in ring buffer from here.
1902 			 * Increment overrun to account for the lost events.
1903 			 */
1904 			local_add(page_entries, &cpu_buffer->overrun);
1905 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1906 			local_inc(&cpu_buffer->pages_lost);
1907 		}
1908 
1909 		/*
1910 		 * We have already removed references to this list item, just
1911 		 * free up the buffer_page and its page
1912 		 */
1913 		free_buffer_page(to_remove_page);
1914 		nr_removed--;
1915 
1916 	} while (to_remove_page != last_page);
1917 
1918 	RB_WARN_ON(cpu_buffer, nr_removed);
1919 
1920 	return nr_removed == 0;
1921 }
1922 
1923 static bool
1924 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1925 {
1926 	struct list_head *pages = &cpu_buffer->new_pages;
1927 	unsigned long flags;
1928 	bool success;
1929 	int retries;
1930 
1931 	/* Can be called at early boot up, where interrupts must not been enabled */
1932 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1933 	/*
1934 	 * We are holding the reader lock, so the reader page won't be swapped
1935 	 * in the ring buffer. Now we are racing with the writer trying to
1936 	 * move head page and the tail page.
1937 	 * We are going to adapt the reader page update process where:
1938 	 * 1. We first splice the start and end of list of new pages between
1939 	 *    the head page and its previous page.
1940 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1941 	 *    start of new pages list.
1942 	 * 3. Finally, we update the head->prev to the end of new list.
1943 	 *
1944 	 * We will try this process 10 times, to make sure that we don't keep
1945 	 * spinning.
1946 	 */
1947 	retries = 10;
1948 	success = false;
1949 	while (retries--) {
1950 		struct list_head *head_page, *prev_page;
1951 		struct list_head *last_page, *first_page;
1952 		struct list_head *head_page_with_bit;
1953 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1954 
1955 		if (!hpage)
1956 			break;
1957 		head_page = &hpage->list;
1958 		prev_page = head_page->prev;
1959 
1960 		first_page = pages->next;
1961 		last_page  = pages->prev;
1962 
1963 		head_page_with_bit = (struct list_head *)
1964 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1965 
1966 		last_page->next = head_page_with_bit;
1967 		first_page->prev = prev_page;
1968 
1969 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
1970 		if (try_cmpxchg(&prev_page->next,
1971 				&head_page_with_bit, first_page)) {
1972 			/*
1973 			 * yay, we replaced the page pointer to our new list,
1974 			 * now, we just have to update to head page's prev
1975 			 * pointer to point to end of list
1976 			 */
1977 			head_page->prev = last_page;
1978 			success = true;
1979 			break;
1980 		}
1981 	}
1982 
1983 	if (success)
1984 		INIT_LIST_HEAD(pages);
1985 	/*
1986 	 * If we weren't successful in adding in new pages, warn and stop
1987 	 * tracing
1988 	 */
1989 	RB_WARN_ON(cpu_buffer, !success);
1990 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1991 
1992 	/* free pages if they weren't inserted */
1993 	if (!success) {
1994 		struct buffer_page *bpage, *tmp;
1995 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1996 					 list) {
1997 			list_del_init(&bpage->list);
1998 			free_buffer_page(bpage);
1999 		}
2000 	}
2001 	return success;
2002 }
2003 
2004 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2005 {
2006 	bool success;
2007 
2008 	if (cpu_buffer->nr_pages_to_update > 0)
2009 		success = rb_insert_pages(cpu_buffer);
2010 	else
2011 		success = rb_remove_pages(cpu_buffer,
2012 					-cpu_buffer->nr_pages_to_update);
2013 
2014 	if (success)
2015 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2016 }
2017 
2018 static void update_pages_handler(struct work_struct *work)
2019 {
2020 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2021 			struct ring_buffer_per_cpu, update_pages_work);
2022 	rb_update_pages(cpu_buffer);
2023 	complete(&cpu_buffer->update_done);
2024 }
2025 
2026 /**
2027  * ring_buffer_resize - resize the ring buffer
2028  * @buffer: the buffer to resize.
2029  * @size: the new size.
2030  * @cpu_id: the cpu buffer to resize
2031  *
2032  * Minimum size is 2 * buffer->subbuf_size.
2033  *
2034  * Returns 0 on success and < 0 on failure.
2035  */
2036 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2037 			int cpu_id)
2038 {
2039 	struct ring_buffer_per_cpu *cpu_buffer;
2040 	unsigned long nr_pages;
2041 	int cpu, err;
2042 
2043 	/*
2044 	 * Always succeed at resizing a non-existent buffer:
2045 	 */
2046 	if (!buffer)
2047 		return 0;
2048 
2049 	/* Make sure the requested buffer exists */
2050 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2051 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2052 		return 0;
2053 
2054 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2055 
2056 	/* we need a minimum of two pages */
2057 	if (nr_pages < 2)
2058 		nr_pages = 2;
2059 
2060 	/* prevent another thread from changing buffer sizes */
2061 	mutex_lock(&buffer->mutex);
2062 	atomic_inc(&buffer->resizing);
2063 
2064 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2065 		/*
2066 		 * Don't succeed if resizing is disabled, as a reader might be
2067 		 * manipulating the ring buffer and is expecting a sane state while
2068 		 * this is true.
2069 		 */
2070 		for_each_buffer_cpu(buffer, cpu) {
2071 			cpu_buffer = buffer->buffers[cpu];
2072 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2073 				err = -EBUSY;
2074 				goto out_err_unlock;
2075 			}
2076 		}
2077 
2078 		/* calculate the pages to update */
2079 		for_each_buffer_cpu(buffer, cpu) {
2080 			cpu_buffer = buffer->buffers[cpu];
2081 
2082 			cpu_buffer->nr_pages_to_update = nr_pages -
2083 							cpu_buffer->nr_pages;
2084 			/*
2085 			 * nothing more to do for removing pages or no update
2086 			 */
2087 			if (cpu_buffer->nr_pages_to_update <= 0)
2088 				continue;
2089 			/*
2090 			 * to add pages, make sure all new pages can be
2091 			 * allocated without receiving ENOMEM
2092 			 */
2093 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2094 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2095 						&cpu_buffer->new_pages)) {
2096 				/* not enough memory for new pages */
2097 				err = -ENOMEM;
2098 				goto out_err;
2099 			}
2100 
2101 			cond_resched();
2102 		}
2103 
2104 		cpus_read_lock();
2105 		/*
2106 		 * Fire off all the required work handlers
2107 		 * We can't schedule on offline CPUs, but it's not necessary
2108 		 * since we can change their buffer sizes without any race.
2109 		 */
2110 		for_each_buffer_cpu(buffer, cpu) {
2111 			cpu_buffer = buffer->buffers[cpu];
2112 			if (!cpu_buffer->nr_pages_to_update)
2113 				continue;
2114 
2115 			/* Can't run something on an offline CPU. */
2116 			if (!cpu_online(cpu)) {
2117 				rb_update_pages(cpu_buffer);
2118 				cpu_buffer->nr_pages_to_update = 0;
2119 			} else {
2120 				/* Run directly if possible. */
2121 				migrate_disable();
2122 				if (cpu != smp_processor_id()) {
2123 					migrate_enable();
2124 					schedule_work_on(cpu,
2125 							 &cpu_buffer->update_pages_work);
2126 				} else {
2127 					update_pages_handler(&cpu_buffer->update_pages_work);
2128 					migrate_enable();
2129 				}
2130 			}
2131 		}
2132 
2133 		/* wait for all the updates to complete */
2134 		for_each_buffer_cpu(buffer, cpu) {
2135 			cpu_buffer = buffer->buffers[cpu];
2136 			if (!cpu_buffer->nr_pages_to_update)
2137 				continue;
2138 
2139 			if (cpu_online(cpu))
2140 				wait_for_completion(&cpu_buffer->update_done);
2141 			cpu_buffer->nr_pages_to_update = 0;
2142 		}
2143 
2144 		cpus_read_unlock();
2145 	} else {
2146 		cpu_buffer = buffer->buffers[cpu_id];
2147 
2148 		if (nr_pages == cpu_buffer->nr_pages)
2149 			goto out;
2150 
2151 		/*
2152 		 * Don't succeed if resizing is disabled, as a reader might be
2153 		 * manipulating the ring buffer and is expecting a sane state while
2154 		 * this is true.
2155 		 */
2156 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2157 			err = -EBUSY;
2158 			goto out_err_unlock;
2159 		}
2160 
2161 		cpu_buffer->nr_pages_to_update = nr_pages -
2162 						cpu_buffer->nr_pages;
2163 
2164 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2165 		if (cpu_buffer->nr_pages_to_update > 0 &&
2166 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2167 					    &cpu_buffer->new_pages)) {
2168 			err = -ENOMEM;
2169 			goto out_err;
2170 		}
2171 
2172 		cpus_read_lock();
2173 
2174 		/* Can't run something on an offline CPU. */
2175 		if (!cpu_online(cpu_id))
2176 			rb_update_pages(cpu_buffer);
2177 		else {
2178 			/* Run directly if possible. */
2179 			migrate_disable();
2180 			if (cpu_id == smp_processor_id()) {
2181 				rb_update_pages(cpu_buffer);
2182 				migrate_enable();
2183 			} else {
2184 				migrate_enable();
2185 				schedule_work_on(cpu_id,
2186 						 &cpu_buffer->update_pages_work);
2187 				wait_for_completion(&cpu_buffer->update_done);
2188 			}
2189 		}
2190 
2191 		cpu_buffer->nr_pages_to_update = 0;
2192 		cpus_read_unlock();
2193 	}
2194 
2195  out:
2196 	/*
2197 	 * The ring buffer resize can happen with the ring buffer
2198 	 * enabled, so that the update disturbs the tracing as little
2199 	 * as possible. But if the buffer is disabled, we do not need
2200 	 * to worry about that, and we can take the time to verify
2201 	 * that the buffer is not corrupt.
2202 	 */
2203 	if (atomic_read(&buffer->record_disabled)) {
2204 		atomic_inc(&buffer->record_disabled);
2205 		/*
2206 		 * Even though the buffer was disabled, we must make sure
2207 		 * that it is truly disabled before calling rb_check_pages.
2208 		 * There could have been a race between checking
2209 		 * record_disable and incrementing it.
2210 		 */
2211 		synchronize_rcu();
2212 		for_each_buffer_cpu(buffer, cpu) {
2213 			cpu_buffer = buffer->buffers[cpu];
2214 			rb_check_pages(cpu_buffer);
2215 		}
2216 		atomic_dec(&buffer->record_disabled);
2217 	}
2218 
2219 	atomic_dec(&buffer->resizing);
2220 	mutex_unlock(&buffer->mutex);
2221 	return 0;
2222 
2223  out_err:
2224 	for_each_buffer_cpu(buffer, cpu) {
2225 		struct buffer_page *bpage, *tmp;
2226 
2227 		cpu_buffer = buffer->buffers[cpu];
2228 		cpu_buffer->nr_pages_to_update = 0;
2229 
2230 		if (list_empty(&cpu_buffer->new_pages))
2231 			continue;
2232 
2233 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2234 					list) {
2235 			list_del_init(&bpage->list);
2236 			free_buffer_page(bpage);
2237 		}
2238 	}
2239  out_err_unlock:
2240 	atomic_dec(&buffer->resizing);
2241 	mutex_unlock(&buffer->mutex);
2242 	return err;
2243 }
2244 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2245 
2246 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2247 {
2248 	mutex_lock(&buffer->mutex);
2249 	if (val)
2250 		buffer->flags |= RB_FL_OVERWRITE;
2251 	else
2252 		buffer->flags &= ~RB_FL_OVERWRITE;
2253 	mutex_unlock(&buffer->mutex);
2254 }
2255 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2256 
2257 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2258 {
2259 	return bpage->page->data + index;
2260 }
2261 
2262 static __always_inline struct ring_buffer_event *
2263 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2264 {
2265 	return __rb_page_index(cpu_buffer->reader_page,
2266 			       cpu_buffer->reader_page->read);
2267 }
2268 
2269 static struct ring_buffer_event *
2270 rb_iter_head_event(struct ring_buffer_iter *iter)
2271 {
2272 	struct ring_buffer_event *event;
2273 	struct buffer_page *iter_head_page = iter->head_page;
2274 	unsigned long commit;
2275 	unsigned length;
2276 
2277 	if (iter->head != iter->next_event)
2278 		return iter->event;
2279 
2280 	/*
2281 	 * When the writer goes across pages, it issues a cmpxchg which
2282 	 * is a mb(), which will synchronize with the rmb here.
2283 	 * (see rb_tail_page_update() and __rb_reserve_next())
2284 	 */
2285 	commit = rb_page_commit(iter_head_page);
2286 	smp_rmb();
2287 
2288 	/* An event needs to be at least 8 bytes in size */
2289 	if (iter->head > commit - 8)
2290 		goto reset;
2291 
2292 	event = __rb_page_index(iter_head_page, iter->head);
2293 	length = rb_event_length(event);
2294 
2295 	/*
2296 	 * READ_ONCE() doesn't work on functions and we don't want the
2297 	 * compiler doing any crazy optimizations with length.
2298 	 */
2299 	barrier();
2300 
2301 	if ((iter->head + length) > commit || length > iter->event_size)
2302 		/* Writer corrupted the read? */
2303 		goto reset;
2304 
2305 	memcpy(iter->event, event, length);
2306 	/*
2307 	 * If the page stamp is still the same after this rmb() then the
2308 	 * event was safely copied without the writer entering the page.
2309 	 */
2310 	smp_rmb();
2311 
2312 	/* Make sure the page didn't change since we read this */
2313 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2314 	    commit > rb_page_commit(iter_head_page))
2315 		goto reset;
2316 
2317 	iter->next_event = iter->head + length;
2318 	return iter->event;
2319  reset:
2320 	/* Reset to the beginning */
2321 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2322 	iter->head = 0;
2323 	iter->next_event = 0;
2324 	iter->missed_events = 1;
2325 	return NULL;
2326 }
2327 
2328 /* Size is determined by what has been committed */
2329 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2330 {
2331 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
2332 }
2333 
2334 static __always_inline unsigned
2335 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2336 {
2337 	return rb_page_commit(cpu_buffer->commit_page);
2338 }
2339 
2340 static __always_inline unsigned
2341 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2342 {
2343 	unsigned long addr = (unsigned long)event;
2344 
2345 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2346 
2347 	return addr - BUF_PAGE_HDR_SIZE;
2348 }
2349 
2350 static void rb_inc_iter(struct ring_buffer_iter *iter)
2351 {
2352 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2353 
2354 	/*
2355 	 * The iterator could be on the reader page (it starts there).
2356 	 * But the head could have moved, since the reader was
2357 	 * found. Check for this case and assign the iterator
2358 	 * to the head page instead of next.
2359 	 */
2360 	if (iter->head_page == cpu_buffer->reader_page)
2361 		iter->head_page = rb_set_head_page(cpu_buffer);
2362 	else
2363 		rb_inc_page(&iter->head_page);
2364 
2365 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2366 	iter->head = 0;
2367 	iter->next_event = 0;
2368 }
2369 
2370 /*
2371  * rb_handle_head_page - writer hit the head page
2372  *
2373  * Returns: +1 to retry page
2374  *           0 to continue
2375  *          -1 on error
2376  */
2377 static int
2378 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2379 		    struct buffer_page *tail_page,
2380 		    struct buffer_page *next_page)
2381 {
2382 	struct buffer_page *new_head;
2383 	int entries;
2384 	int type;
2385 	int ret;
2386 
2387 	entries = rb_page_entries(next_page);
2388 
2389 	/*
2390 	 * The hard part is here. We need to move the head
2391 	 * forward, and protect against both readers on
2392 	 * other CPUs and writers coming in via interrupts.
2393 	 */
2394 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2395 				       RB_PAGE_HEAD);
2396 
2397 	/*
2398 	 * type can be one of four:
2399 	 *  NORMAL - an interrupt already moved it for us
2400 	 *  HEAD   - we are the first to get here.
2401 	 *  UPDATE - we are the interrupt interrupting
2402 	 *           a current move.
2403 	 *  MOVED  - a reader on another CPU moved the next
2404 	 *           pointer to its reader page. Give up
2405 	 *           and try again.
2406 	 */
2407 
2408 	switch (type) {
2409 	case RB_PAGE_HEAD:
2410 		/*
2411 		 * We changed the head to UPDATE, thus
2412 		 * it is our responsibility to update
2413 		 * the counters.
2414 		 */
2415 		local_add(entries, &cpu_buffer->overrun);
2416 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2417 		local_inc(&cpu_buffer->pages_lost);
2418 
2419 		/*
2420 		 * The entries will be zeroed out when we move the
2421 		 * tail page.
2422 		 */
2423 
2424 		/* still more to do */
2425 		break;
2426 
2427 	case RB_PAGE_UPDATE:
2428 		/*
2429 		 * This is an interrupt that interrupt the
2430 		 * previous update. Still more to do.
2431 		 */
2432 		break;
2433 	case RB_PAGE_NORMAL:
2434 		/*
2435 		 * An interrupt came in before the update
2436 		 * and processed this for us.
2437 		 * Nothing left to do.
2438 		 */
2439 		return 1;
2440 	case RB_PAGE_MOVED:
2441 		/*
2442 		 * The reader is on another CPU and just did
2443 		 * a swap with our next_page.
2444 		 * Try again.
2445 		 */
2446 		return 1;
2447 	default:
2448 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2449 		return -1;
2450 	}
2451 
2452 	/*
2453 	 * Now that we are here, the old head pointer is
2454 	 * set to UPDATE. This will keep the reader from
2455 	 * swapping the head page with the reader page.
2456 	 * The reader (on another CPU) will spin till
2457 	 * we are finished.
2458 	 *
2459 	 * We just need to protect against interrupts
2460 	 * doing the job. We will set the next pointer
2461 	 * to HEAD. After that, we set the old pointer
2462 	 * to NORMAL, but only if it was HEAD before.
2463 	 * otherwise we are an interrupt, and only
2464 	 * want the outer most commit to reset it.
2465 	 */
2466 	new_head = next_page;
2467 	rb_inc_page(&new_head);
2468 
2469 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2470 				    RB_PAGE_NORMAL);
2471 
2472 	/*
2473 	 * Valid returns are:
2474 	 *  HEAD   - an interrupt came in and already set it.
2475 	 *  NORMAL - One of two things:
2476 	 *            1) We really set it.
2477 	 *            2) A bunch of interrupts came in and moved
2478 	 *               the page forward again.
2479 	 */
2480 	switch (ret) {
2481 	case RB_PAGE_HEAD:
2482 	case RB_PAGE_NORMAL:
2483 		/* OK */
2484 		break;
2485 	default:
2486 		RB_WARN_ON(cpu_buffer, 1);
2487 		return -1;
2488 	}
2489 
2490 	/*
2491 	 * It is possible that an interrupt came in,
2492 	 * set the head up, then more interrupts came in
2493 	 * and moved it again. When we get back here,
2494 	 * the page would have been set to NORMAL but we
2495 	 * just set it back to HEAD.
2496 	 *
2497 	 * How do you detect this? Well, if that happened
2498 	 * the tail page would have moved.
2499 	 */
2500 	if (ret == RB_PAGE_NORMAL) {
2501 		struct buffer_page *buffer_tail_page;
2502 
2503 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2504 		/*
2505 		 * If the tail had moved passed next, then we need
2506 		 * to reset the pointer.
2507 		 */
2508 		if (buffer_tail_page != tail_page &&
2509 		    buffer_tail_page != next_page)
2510 			rb_head_page_set_normal(cpu_buffer, new_head,
2511 						next_page,
2512 						RB_PAGE_HEAD);
2513 	}
2514 
2515 	/*
2516 	 * If this was the outer most commit (the one that
2517 	 * changed the original pointer from HEAD to UPDATE),
2518 	 * then it is up to us to reset it to NORMAL.
2519 	 */
2520 	if (type == RB_PAGE_HEAD) {
2521 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2522 					      tail_page,
2523 					      RB_PAGE_UPDATE);
2524 		if (RB_WARN_ON(cpu_buffer,
2525 			       ret != RB_PAGE_UPDATE))
2526 			return -1;
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 static inline void
2533 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2534 	      unsigned long tail, struct rb_event_info *info)
2535 {
2536 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2537 	struct buffer_page *tail_page = info->tail_page;
2538 	struct ring_buffer_event *event;
2539 	unsigned long length = info->length;
2540 
2541 	/*
2542 	 * Only the event that crossed the page boundary
2543 	 * must fill the old tail_page with padding.
2544 	 */
2545 	if (tail >= bsize) {
2546 		/*
2547 		 * If the page was filled, then we still need
2548 		 * to update the real_end. Reset it to zero
2549 		 * and the reader will ignore it.
2550 		 */
2551 		if (tail == bsize)
2552 			tail_page->real_end = 0;
2553 
2554 		local_sub(length, &tail_page->write);
2555 		return;
2556 	}
2557 
2558 	event = __rb_page_index(tail_page, tail);
2559 
2560 	/*
2561 	 * Save the original length to the meta data.
2562 	 * This will be used by the reader to add lost event
2563 	 * counter.
2564 	 */
2565 	tail_page->real_end = tail;
2566 
2567 	/*
2568 	 * If this event is bigger than the minimum size, then
2569 	 * we need to be careful that we don't subtract the
2570 	 * write counter enough to allow another writer to slip
2571 	 * in on this page.
2572 	 * We put in a discarded commit instead, to make sure
2573 	 * that this space is not used again, and this space will
2574 	 * not be accounted into 'entries_bytes'.
2575 	 *
2576 	 * If we are less than the minimum size, we don't need to
2577 	 * worry about it.
2578 	 */
2579 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2580 		/* No room for any events */
2581 
2582 		/* Mark the rest of the page with padding */
2583 		rb_event_set_padding(event);
2584 
2585 		/* Make sure the padding is visible before the write update */
2586 		smp_wmb();
2587 
2588 		/* Set the write back to the previous setting */
2589 		local_sub(length, &tail_page->write);
2590 		return;
2591 	}
2592 
2593 	/* Put in a discarded event */
2594 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2595 	event->type_len = RINGBUF_TYPE_PADDING;
2596 	/* time delta must be non zero */
2597 	event->time_delta = 1;
2598 
2599 	/* account for padding bytes */
2600 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
2601 
2602 	/* Make sure the padding is visible before the tail_page->write update */
2603 	smp_wmb();
2604 
2605 	/* Set write to end of buffer */
2606 	length = (tail + length) - bsize;
2607 	local_sub(length, &tail_page->write);
2608 }
2609 
2610 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2611 
2612 /*
2613  * This is the slow path, force gcc not to inline it.
2614  */
2615 static noinline struct ring_buffer_event *
2616 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2617 	     unsigned long tail, struct rb_event_info *info)
2618 {
2619 	struct buffer_page *tail_page = info->tail_page;
2620 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2621 	struct trace_buffer *buffer = cpu_buffer->buffer;
2622 	struct buffer_page *next_page;
2623 	int ret;
2624 
2625 	next_page = tail_page;
2626 
2627 	rb_inc_page(&next_page);
2628 
2629 	/*
2630 	 * If for some reason, we had an interrupt storm that made
2631 	 * it all the way around the buffer, bail, and warn
2632 	 * about it.
2633 	 */
2634 	if (unlikely(next_page == commit_page)) {
2635 		local_inc(&cpu_buffer->commit_overrun);
2636 		goto out_reset;
2637 	}
2638 
2639 	/*
2640 	 * This is where the fun begins!
2641 	 *
2642 	 * We are fighting against races between a reader that
2643 	 * could be on another CPU trying to swap its reader
2644 	 * page with the buffer head.
2645 	 *
2646 	 * We are also fighting against interrupts coming in and
2647 	 * moving the head or tail on us as well.
2648 	 *
2649 	 * If the next page is the head page then we have filled
2650 	 * the buffer, unless the commit page is still on the
2651 	 * reader page.
2652 	 */
2653 	if (rb_is_head_page(next_page, &tail_page->list)) {
2654 
2655 		/*
2656 		 * If the commit is not on the reader page, then
2657 		 * move the header page.
2658 		 */
2659 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2660 			/*
2661 			 * If we are not in overwrite mode,
2662 			 * this is easy, just stop here.
2663 			 */
2664 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2665 				local_inc(&cpu_buffer->dropped_events);
2666 				goto out_reset;
2667 			}
2668 
2669 			ret = rb_handle_head_page(cpu_buffer,
2670 						  tail_page,
2671 						  next_page);
2672 			if (ret < 0)
2673 				goto out_reset;
2674 			if (ret)
2675 				goto out_again;
2676 		} else {
2677 			/*
2678 			 * We need to be careful here too. The
2679 			 * commit page could still be on the reader
2680 			 * page. We could have a small buffer, and
2681 			 * have filled up the buffer with events
2682 			 * from interrupts and such, and wrapped.
2683 			 *
2684 			 * Note, if the tail page is also on the
2685 			 * reader_page, we let it move out.
2686 			 */
2687 			if (unlikely((cpu_buffer->commit_page !=
2688 				      cpu_buffer->tail_page) &&
2689 				     (cpu_buffer->commit_page ==
2690 				      cpu_buffer->reader_page))) {
2691 				local_inc(&cpu_buffer->commit_overrun);
2692 				goto out_reset;
2693 			}
2694 		}
2695 	}
2696 
2697 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2698 
2699  out_again:
2700 
2701 	rb_reset_tail(cpu_buffer, tail, info);
2702 
2703 	/* Commit what we have for now. */
2704 	rb_end_commit(cpu_buffer);
2705 	/* rb_end_commit() decs committing */
2706 	local_inc(&cpu_buffer->committing);
2707 
2708 	/* fail and let the caller try again */
2709 	return ERR_PTR(-EAGAIN);
2710 
2711  out_reset:
2712 	/* reset write */
2713 	rb_reset_tail(cpu_buffer, tail, info);
2714 
2715 	return NULL;
2716 }
2717 
2718 /* Slow path */
2719 static struct ring_buffer_event *
2720 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2721 		  struct ring_buffer_event *event, u64 delta, bool abs)
2722 {
2723 	if (abs)
2724 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2725 	else
2726 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2727 
2728 	/* Not the first event on the page, or not delta? */
2729 	if (abs || rb_event_index(cpu_buffer, event)) {
2730 		event->time_delta = delta & TS_MASK;
2731 		event->array[0] = delta >> TS_SHIFT;
2732 	} else {
2733 		/* nope, just zero it */
2734 		event->time_delta = 0;
2735 		event->array[0] = 0;
2736 	}
2737 
2738 	return skip_time_extend(event);
2739 }
2740 
2741 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2742 static inline bool sched_clock_stable(void)
2743 {
2744 	return true;
2745 }
2746 #endif
2747 
2748 static void
2749 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2750 		   struct rb_event_info *info)
2751 {
2752 	u64 write_stamp;
2753 
2754 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2755 		  (unsigned long long)info->delta,
2756 		  (unsigned long long)info->ts,
2757 		  (unsigned long long)info->before,
2758 		  (unsigned long long)info->after,
2759 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2760 		  sched_clock_stable() ? "" :
2761 		  "If you just came from a suspend/resume,\n"
2762 		  "please switch to the trace global clock:\n"
2763 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2764 		  "or add trace_clock=global to the kernel command line\n");
2765 }
2766 
2767 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2768 				      struct ring_buffer_event **event,
2769 				      struct rb_event_info *info,
2770 				      u64 *delta,
2771 				      unsigned int *length)
2772 {
2773 	bool abs = info->add_timestamp &
2774 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2775 
2776 	if (unlikely(info->delta > (1ULL << 59))) {
2777 		/*
2778 		 * Some timers can use more than 59 bits, and when a timestamp
2779 		 * is added to the buffer, it will lose those bits.
2780 		 */
2781 		if (abs && (info->ts & TS_MSB)) {
2782 			info->delta &= ABS_TS_MASK;
2783 
2784 		/* did the clock go backwards */
2785 		} else if (info->before == info->after && info->before > info->ts) {
2786 			/* not interrupted */
2787 			static int once;
2788 
2789 			/*
2790 			 * This is possible with a recalibrating of the TSC.
2791 			 * Do not produce a call stack, but just report it.
2792 			 */
2793 			if (!once) {
2794 				once++;
2795 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2796 					info->before, info->ts);
2797 			}
2798 		} else
2799 			rb_check_timestamp(cpu_buffer, info);
2800 		if (!abs)
2801 			info->delta = 0;
2802 	}
2803 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2804 	*length -= RB_LEN_TIME_EXTEND;
2805 	*delta = 0;
2806 }
2807 
2808 /**
2809  * rb_update_event - update event type and data
2810  * @cpu_buffer: The per cpu buffer of the @event
2811  * @event: the event to update
2812  * @info: The info to update the @event with (contains length and delta)
2813  *
2814  * Update the type and data fields of the @event. The length
2815  * is the actual size that is written to the ring buffer,
2816  * and with this, we can determine what to place into the
2817  * data field.
2818  */
2819 static void
2820 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2821 		struct ring_buffer_event *event,
2822 		struct rb_event_info *info)
2823 {
2824 	unsigned length = info->length;
2825 	u64 delta = info->delta;
2826 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2827 
2828 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2829 		cpu_buffer->event_stamp[nest] = info->ts;
2830 
2831 	/*
2832 	 * If we need to add a timestamp, then we
2833 	 * add it to the start of the reserved space.
2834 	 */
2835 	if (unlikely(info->add_timestamp))
2836 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2837 
2838 	event->time_delta = delta;
2839 	length -= RB_EVNT_HDR_SIZE;
2840 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2841 		event->type_len = 0;
2842 		event->array[0] = length;
2843 	} else
2844 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2845 }
2846 
2847 static unsigned rb_calculate_event_length(unsigned length)
2848 {
2849 	struct ring_buffer_event event; /* Used only for sizeof array */
2850 
2851 	/* zero length can cause confusions */
2852 	if (!length)
2853 		length++;
2854 
2855 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2856 		length += sizeof(event.array[0]);
2857 
2858 	length += RB_EVNT_HDR_SIZE;
2859 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2860 
2861 	/*
2862 	 * In case the time delta is larger than the 27 bits for it
2863 	 * in the header, we need to add a timestamp. If another
2864 	 * event comes in when trying to discard this one to increase
2865 	 * the length, then the timestamp will be added in the allocated
2866 	 * space of this event. If length is bigger than the size needed
2867 	 * for the TIME_EXTEND, then padding has to be used. The events
2868 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2869 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2870 	 * As length is a multiple of 4, we only need to worry if it
2871 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2872 	 */
2873 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2874 		length += RB_ALIGNMENT;
2875 
2876 	return length;
2877 }
2878 
2879 static inline bool
2880 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2881 		  struct ring_buffer_event *event)
2882 {
2883 	unsigned long new_index, old_index;
2884 	struct buffer_page *bpage;
2885 	unsigned long addr;
2886 
2887 	new_index = rb_event_index(cpu_buffer, event);
2888 	old_index = new_index + rb_event_ts_length(event);
2889 	addr = (unsigned long)event;
2890 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2891 
2892 	bpage = READ_ONCE(cpu_buffer->tail_page);
2893 
2894 	/*
2895 	 * Make sure the tail_page is still the same and
2896 	 * the next write location is the end of this event
2897 	 */
2898 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2899 		unsigned long write_mask =
2900 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2901 		unsigned long event_length = rb_event_length(event);
2902 
2903 		/*
2904 		 * For the before_stamp to be different than the write_stamp
2905 		 * to make sure that the next event adds an absolute
2906 		 * value and does not rely on the saved write stamp, which
2907 		 * is now going to be bogus.
2908 		 *
2909 		 * By setting the before_stamp to zero, the next event
2910 		 * is not going to use the write_stamp and will instead
2911 		 * create an absolute timestamp. This means there's no
2912 		 * reason to update the wirte_stamp!
2913 		 */
2914 		rb_time_set(&cpu_buffer->before_stamp, 0);
2915 
2916 		/*
2917 		 * If an event were to come in now, it would see that the
2918 		 * write_stamp and the before_stamp are different, and assume
2919 		 * that this event just added itself before updating
2920 		 * the write stamp. The interrupting event will fix the
2921 		 * write stamp for us, and use an absolute timestamp.
2922 		 */
2923 
2924 		/*
2925 		 * This is on the tail page. It is possible that
2926 		 * a write could come in and move the tail page
2927 		 * and write to the next page. That is fine
2928 		 * because we just shorten what is on this page.
2929 		 */
2930 		old_index += write_mask;
2931 		new_index += write_mask;
2932 
2933 		/* caution: old_index gets updated on cmpxchg failure */
2934 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2935 			/* update counters */
2936 			local_sub(event_length, &cpu_buffer->entries_bytes);
2937 			return true;
2938 		}
2939 	}
2940 
2941 	/* could not discard */
2942 	return false;
2943 }
2944 
2945 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2946 {
2947 	local_inc(&cpu_buffer->committing);
2948 	local_inc(&cpu_buffer->commits);
2949 }
2950 
2951 static __always_inline void
2952 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2953 {
2954 	unsigned long max_count;
2955 
2956 	/*
2957 	 * We only race with interrupts and NMIs on this CPU.
2958 	 * If we own the commit event, then we can commit
2959 	 * all others that interrupted us, since the interruptions
2960 	 * are in stack format (they finish before they come
2961 	 * back to us). This allows us to do a simple loop to
2962 	 * assign the commit to the tail.
2963 	 */
2964  again:
2965 	max_count = cpu_buffer->nr_pages * 100;
2966 
2967 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2968 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2969 			return;
2970 		if (RB_WARN_ON(cpu_buffer,
2971 			       rb_is_reader_page(cpu_buffer->tail_page)))
2972 			return;
2973 		/*
2974 		 * No need for a memory barrier here, as the update
2975 		 * of the tail_page did it for this page.
2976 		 */
2977 		local_set(&cpu_buffer->commit_page->page->commit,
2978 			  rb_page_write(cpu_buffer->commit_page));
2979 		rb_inc_page(&cpu_buffer->commit_page);
2980 		/* add barrier to keep gcc from optimizing too much */
2981 		barrier();
2982 	}
2983 	while (rb_commit_index(cpu_buffer) !=
2984 	       rb_page_write(cpu_buffer->commit_page)) {
2985 
2986 		/* Make sure the readers see the content of what is committed. */
2987 		smp_wmb();
2988 		local_set(&cpu_buffer->commit_page->page->commit,
2989 			  rb_page_write(cpu_buffer->commit_page));
2990 		RB_WARN_ON(cpu_buffer,
2991 			   local_read(&cpu_buffer->commit_page->page->commit) &
2992 			   ~RB_WRITE_MASK);
2993 		barrier();
2994 	}
2995 
2996 	/* again, keep gcc from optimizing */
2997 	barrier();
2998 
2999 	/*
3000 	 * If an interrupt came in just after the first while loop
3001 	 * and pushed the tail page forward, we will be left with
3002 	 * a dangling commit that will never go forward.
3003 	 */
3004 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3005 		goto again;
3006 }
3007 
3008 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3009 {
3010 	unsigned long commits;
3011 
3012 	if (RB_WARN_ON(cpu_buffer,
3013 		       !local_read(&cpu_buffer->committing)))
3014 		return;
3015 
3016  again:
3017 	commits = local_read(&cpu_buffer->commits);
3018 	/* synchronize with interrupts */
3019 	barrier();
3020 	if (local_read(&cpu_buffer->committing) == 1)
3021 		rb_set_commit_to_write(cpu_buffer);
3022 
3023 	local_dec(&cpu_buffer->committing);
3024 
3025 	/* synchronize with interrupts */
3026 	barrier();
3027 
3028 	/*
3029 	 * Need to account for interrupts coming in between the
3030 	 * updating of the commit page and the clearing of the
3031 	 * committing counter.
3032 	 */
3033 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3034 	    !local_read(&cpu_buffer->committing)) {
3035 		local_inc(&cpu_buffer->committing);
3036 		goto again;
3037 	}
3038 }
3039 
3040 static inline void rb_event_discard(struct ring_buffer_event *event)
3041 {
3042 	if (extended_time(event))
3043 		event = skip_time_extend(event);
3044 
3045 	/* array[0] holds the actual length for the discarded event */
3046 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3047 	event->type_len = RINGBUF_TYPE_PADDING;
3048 	/* time delta must be non zero */
3049 	if (!event->time_delta)
3050 		event->time_delta = 1;
3051 }
3052 
3053 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3054 {
3055 	local_inc(&cpu_buffer->entries);
3056 	rb_end_commit(cpu_buffer);
3057 }
3058 
3059 static __always_inline void
3060 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3061 {
3062 	if (buffer->irq_work.waiters_pending) {
3063 		buffer->irq_work.waiters_pending = false;
3064 		/* irq_work_queue() supplies it's own memory barriers */
3065 		irq_work_queue(&buffer->irq_work.work);
3066 	}
3067 
3068 	if (cpu_buffer->irq_work.waiters_pending) {
3069 		cpu_buffer->irq_work.waiters_pending = false;
3070 		/* irq_work_queue() supplies it's own memory barriers */
3071 		irq_work_queue(&cpu_buffer->irq_work.work);
3072 	}
3073 
3074 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3075 		return;
3076 
3077 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3078 		return;
3079 
3080 	if (!cpu_buffer->irq_work.full_waiters_pending)
3081 		return;
3082 
3083 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3084 
3085 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3086 		return;
3087 
3088 	cpu_buffer->irq_work.wakeup_full = true;
3089 	cpu_buffer->irq_work.full_waiters_pending = false;
3090 	/* irq_work_queue() supplies it's own memory barriers */
3091 	irq_work_queue(&cpu_buffer->irq_work.work);
3092 }
3093 
3094 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3095 # define do_ring_buffer_record_recursion()	\
3096 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3097 #else
3098 # define do_ring_buffer_record_recursion() do { } while (0)
3099 #endif
3100 
3101 /*
3102  * The lock and unlock are done within a preempt disable section.
3103  * The current_context per_cpu variable can only be modified
3104  * by the current task between lock and unlock. But it can
3105  * be modified more than once via an interrupt. To pass this
3106  * information from the lock to the unlock without having to
3107  * access the 'in_interrupt()' functions again (which do show
3108  * a bit of overhead in something as critical as function tracing,
3109  * we use a bitmask trick.
3110  *
3111  *  bit 1 =  NMI context
3112  *  bit 2 =  IRQ context
3113  *  bit 3 =  SoftIRQ context
3114  *  bit 4 =  normal context.
3115  *
3116  * This works because this is the order of contexts that can
3117  * preempt other contexts. A SoftIRQ never preempts an IRQ
3118  * context.
3119  *
3120  * When the context is determined, the corresponding bit is
3121  * checked and set (if it was set, then a recursion of that context
3122  * happened).
3123  *
3124  * On unlock, we need to clear this bit. To do so, just subtract
3125  * 1 from the current_context and AND it to itself.
3126  *
3127  * (binary)
3128  *  101 - 1 = 100
3129  *  101 & 100 = 100 (clearing bit zero)
3130  *
3131  *  1010 - 1 = 1001
3132  *  1010 & 1001 = 1000 (clearing bit 1)
3133  *
3134  * The least significant bit can be cleared this way, and it
3135  * just so happens that it is the same bit corresponding to
3136  * the current context.
3137  *
3138  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3139  * is set when a recursion is detected at the current context, and if
3140  * the TRANSITION bit is already set, it will fail the recursion.
3141  * This is needed because there's a lag between the changing of
3142  * interrupt context and updating the preempt count. In this case,
3143  * a false positive will be found. To handle this, one extra recursion
3144  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3145  * bit is already set, then it is considered a recursion and the function
3146  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3147  *
3148  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3149  * to be cleared. Even if it wasn't the context that set it. That is,
3150  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3151  * is called before preempt_count() is updated, since the check will
3152  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3153  * NMI then comes in, it will set the NMI bit, but when the NMI code
3154  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3155  * and leave the NMI bit set. But this is fine, because the interrupt
3156  * code that set the TRANSITION bit will then clear the NMI bit when it
3157  * calls trace_recursive_unlock(). If another NMI comes in, it will
3158  * set the TRANSITION bit and continue.
3159  *
3160  * Note: The TRANSITION bit only handles a single transition between context.
3161  */
3162 
3163 static __always_inline bool
3164 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3165 {
3166 	unsigned int val = cpu_buffer->current_context;
3167 	int bit = interrupt_context_level();
3168 
3169 	bit = RB_CTX_NORMAL - bit;
3170 
3171 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3172 		/*
3173 		 * It is possible that this was called by transitioning
3174 		 * between interrupt context, and preempt_count() has not
3175 		 * been updated yet. In this case, use the TRANSITION bit.
3176 		 */
3177 		bit = RB_CTX_TRANSITION;
3178 		if (val & (1 << (bit + cpu_buffer->nest))) {
3179 			do_ring_buffer_record_recursion();
3180 			return true;
3181 		}
3182 	}
3183 
3184 	val |= (1 << (bit + cpu_buffer->nest));
3185 	cpu_buffer->current_context = val;
3186 
3187 	return false;
3188 }
3189 
3190 static __always_inline void
3191 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3192 {
3193 	cpu_buffer->current_context &=
3194 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3195 }
3196 
3197 /* The recursive locking above uses 5 bits */
3198 #define NESTED_BITS 5
3199 
3200 /**
3201  * ring_buffer_nest_start - Allow to trace while nested
3202  * @buffer: The ring buffer to modify
3203  *
3204  * The ring buffer has a safety mechanism to prevent recursion.
3205  * But there may be a case where a trace needs to be done while
3206  * tracing something else. In this case, calling this function
3207  * will allow this function to nest within a currently active
3208  * ring_buffer_lock_reserve().
3209  *
3210  * Call this function before calling another ring_buffer_lock_reserve() and
3211  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3212  */
3213 void ring_buffer_nest_start(struct trace_buffer *buffer)
3214 {
3215 	struct ring_buffer_per_cpu *cpu_buffer;
3216 	int cpu;
3217 
3218 	/* Enabled by ring_buffer_nest_end() */
3219 	preempt_disable_notrace();
3220 	cpu = raw_smp_processor_id();
3221 	cpu_buffer = buffer->buffers[cpu];
3222 	/* This is the shift value for the above recursive locking */
3223 	cpu_buffer->nest += NESTED_BITS;
3224 }
3225 
3226 /**
3227  * ring_buffer_nest_end - Allow to trace while nested
3228  * @buffer: The ring buffer to modify
3229  *
3230  * Must be called after ring_buffer_nest_start() and after the
3231  * ring_buffer_unlock_commit().
3232  */
3233 void ring_buffer_nest_end(struct trace_buffer *buffer)
3234 {
3235 	struct ring_buffer_per_cpu *cpu_buffer;
3236 	int cpu;
3237 
3238 	/* disabled by ring_buffer_nest_start() */
3239 	cpu = raw_smp_processor_id();
3240 	cpu_buffer = buffer->buffers[cpu];
3241 	/* This is the shift value for the above recursive locking */
3242 	cpu_buffer->nest -= NESTED_BITS;
3243 	preempt_enable_notrace();
3244 }
3245 
3246 /**
3247  * ring_buffer_unlock_commit - commit a reserved
3248  * @buffer: The buffer to commit to
3249  *
3250  * This commits the data to the ring buffer, and releases any locks held.
3251  *
3252  * Must be paired with ring_buffer_lock_reserve.
3253  */
3254 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3255 {
3256 	struct ring_buffer_per_cpu *cpu_buffer;
3257 	int cpu = raw_smp_processor_id();
3258 
3259 	cpu_buffer = buffer->buffers[cpu];
3260 
3261 	rb_commit(cpu_buffer);
3262 
3263 	rb_wakeups(buffer, cpu_buffer);
3264 
3265 	trace_recursive_unlock(cpu_buffer);
3266 
3267 	preempt_enable_notrace();
3268 
3269 	return 0;
3270 }
3271 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3272 
3273 /* Special value to validate all deltas on a page. */
3274 #define CHECK_FULL_PAGE		1L
3275 
3276 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3277 
3278 static const char *show_irq_str(int bits)
3279 {
3280 	const char *type[] = {
3281 		".",	// 0
3282 		"s",	// 1
3283 		"h",	// 2
3284 		"Hs",	// 3
3285 		"n",	// 4
3286 		"Ns",	// 5
3287 		"Nh",	// 6
3288 		"NHs",	// 7
3289 	};
3290 
3291 	return type[bits];
3292 }
3293 
3294 /* Assume this is an trace event */
3295 static const char *show_flags(struct ring_buffer_event *event)
3296 {
3297 	struct trace_entry *entry;
3298 	int bits = 0;
3299 
3300 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3301 		return "X";
3302 
3303 	entry = ring_buffer_event_data(event);
3304 
3305 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
3306 		bits |= 1;
3307 
3308 	if (entry->flags & TRACE_FLAG_HARDIRQ)
3309 		bits |= 2;
3310 
3311 	if (entry->flags & TRACE_FLAG_NMI)
3312 		bits |= 4;
3313 
3314 	return show_irq_str(bits);
3315 }
3316 
3317 static const char *show_irq(struct ring_buffer_event *event)
3318 {
3319 	struct trace_entry *entry;
3320 
3321 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3322 		return "";
3323 
3324 	entry = ring_buffer_event_data(event);
3325 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
3326 		return "d";
3327 	return "";
3328 }
3329 
3330 static const char *show_interrupt_level(void)
3331 {
3332 	unsigned long pc = preempt_count();
3333 	unsigned char level = 0;
3334 
3335 	if (pc & SOFTIRQ_OFFSET)
3336 		level |= 1;
3337 
3338 	if (pc & HARDIRQ_MASK)
3339 		level |= 2;
3340 
3341 	if (pc & NMI_MASK)
3342 		level |= 4;
3343 
3344 	return show_irq_str(level);
3345 }
3346 
3347 static void dump_buffer_page(struct buffer_data_page *bpage,
3348 			     struct rb_event_info *info,
3349 			     unsigned long tail)
3350 {
3351 	struct ring_buffer_event *event;
3352 	u64 ts, delta;
3353 	int e;
3354 
3355 	ts = bpage->time_stamp;
3356 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3357 
3358 	for (e = 0; e < tail; e += rb_event_length(event)) {
3359 
3360 		event = (struct ring_buffer_event *)(bpage->data + e);
3361 
3362 		switch (event->type_len) {
3363 
3364 		case RINGBUF_TYPE_TIME_EXTEND:
3365 			delta = rb_event_time_stamp(event);
3366 			ts += delta;
3367 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3368 				e, ts, delta);
3369 			break;
3370 
3371 		case RINGBUF_TYPE_TIME_STAMP:
3372 			delta = rb_event_time_stamp(event);
3373 			ts = rb_fix_abs_ts(delta, ts);
3374 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3375 				e, ts, delta);
3376 			break;
3377 
3378 		case RINGBUF_TYPE_PADDING:
3379 			ts += event->time_delta;
3380 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3381 				e, ts, event->time_delta);
3382 			break;
3383 
3384 		case RINGBUF_TYPE_DATA:
3385 			ts += event->time_delta;
3386 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3387 				e, ts, event->time_delta,
3388 				show_flags(event), show_irq(event));
3389 			break;
3390 
3391 		default:
3392 			break;
3393 		}
3394 	}
3395 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3396 }
3397 
3398 static DEFINE_PER_CPU(atomic_t, checking);
3399 static atomic_t ts_dump;
3400 
3401 #define buffer_warn_return(fmt, ...)					\
3402 	do {								\
3403 		/* If another report is happening, ignore this one */	\
3404 		if (atomic_inc_return(&ts_dump) != 1) {			\
3405 			atomic_dec(&ts_dump);				\
3406 			goto out;					\
3407 		}							\
3408 		atomic_inc(&cpu_buffer->record_disabled);		\
3409 		pr_warn(fmt, ##__VA_ARGS__);				\
3410 		dump_buffer_page(bpage, info, tail);			\
3411 		atomic_dec(&ts_dump);					\
3412 		/* There's some cases in boot up that this can happen */ \
3413 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
3414 			/* Do not re-enable checking */			\
3415 			return;						\
3416 	} while (0)
3417 
3418 /*
3419  * Check if the current event time stamp matches the deltas on
3420  * the buffer page.
3421  */
3422 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3423 			 struct rb_event_info *info,
3424 			 unsigned long tail)
3425 {
3426 	struct ring_buffer_event *event;
3427 	struct buffer_data_page *bpage;
3428 	u64 ts, delta;
3429 	bool full = false;
3430 	int e;
3431 
3432 	bpage = info->tail_page->page;
3433 
3434 	if (tail == CHECK_FULL_PAGE) {
3435 		full = true;
3436 		tail = local_read(&bpage->commit);
3437 	} else if (info->add_timestamp &
3438 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3439 		/* Ignore events with absolute time stamps */
3440 		return;
3441 	}
3442 
3443 	/*
3444 	 * Do not check the first event (skip possible extends too).
3445 	 * Also do not check if previous events have not been committed.
3446 	 */
3447 	if (tail <= 8 || tail > local_read(&bpage->commit))
3448 		return;
3449 
3450 	/*
3451 	 * If this interrupted another event,
3452 	 */
3453 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3454 		goto out;
3455 
3456 	ts = bpage->time_stamp;
3457 
3458 	for (e = 0; e < tail; e += rb_event_length(event)) {
3459 
3460 		event = (struct ring_buffer_event *)(bpage->data + e);
3461 
3462 		switch (event->type_len) {
3463 
3464 		case RINGBUF_TYPE_TIME_EXTEND:
3465 			delta = rb_event_time_stamp(event);
3466 			ts += delta;
3467 			break;
3468 
3469 		case RINGBUF_TYPE_TIME_STAMP:
3470 			delta = rb_event_time_stamp(event);
3471 			delta = rb_fix_abs_ts(delta, ts);
3472 			if (delta < ts) {
3473 				buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3474 						   cpu_buffer->cpu, ts, delta);
3475 			}
3476 			ts = delta;
3477 			break;
3478 
3479 		case RINGBUF_TYPE_PADDING:
3480 			if (event->time_delta == 1)
3481 				break;
3482 			fallthrough;
3483 		case RINGBUF_TYPE_DATA:
3484 			ts += event->time_delta;
3485 			break;
3486 
3487 		default:
3488 			RB_WARN_ON(cpu_buffer, 1);
3489 		}
3490 	}
3491 	if ((full && ts > info->ts) ||
3492 	    (!full && ts + info->delta != info->ts)) {
3493 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3494 				   cpu_buffer->cpu,
3495 				   ts + info->delta, info->ts, info->delta,
3496 				   info->before, info->after,
3497 				   full ? " (full)" : "", show_interrupt_level());
3498 	}
3499 out:
3500 	atomic_dec(this_cpu_ptr(&checking));
3501 }
3502 #else
3503 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3504 			 struct rb_event_info *info,
3505 			 unsigned long tail)
3506 {
3507 }
3508 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3509 
3510 static struct ring_buffer_event *
3511 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3512 		  struct rb_event_info *info)
3513 {
3514 	struct ring_buffer_event *event;
3515 	struct buffer_page *tail_page;
3516 	unsigned long tail, write, w;
3517 
3518 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3519 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3520 
3521  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3522 	barrier();
3523 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
3524 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
3525 	barrier();
3526 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3527 
3528 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3529 		info->delta = info->ts;
3530 	} else {
3531 		/*
3532 		 * If interrupting an event time update, we may need an
3533 		 * absolute timestamp.
3534 		 * Don't bother if this is the start of a new page (w == 0).
3535 		 */
3536 		if (!w) {
3537 			/* Use the sub-buffer timestamp */
3538 			info->delta = 0;
3539 		} else if (unlikely(info->before != info->after)) {
3540 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3541 			info->length += RB_LEN_TIME_EXTEND;
3542 		} else {
3543 			info->delta = info->ts - info->after;
3544 			if (unlikely(test_time_stamp(info->delta))) {
3545 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3546 				info->length += RB_LEN_TIME_EXTEND;
3547 			}
3548 		}
3549 	}
3550 
3551  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3552 
3553  /*C*/	write = local_add_return(info->length, &tail_page->write);
3554 
3555 	/* set write to only the index of the write */
3556 	write &= RB_WRITE_MASK;
3557 
3558 	tail = write - info->length;
3559 
3560 	/* See if we shot pass the end of this buffer page */
3561 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3562 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3563 		return rb_move_tail(cpu_buffer, tail, info);
3564 	}
3565 
3566 	if (likely(tail == w)) {
3567 		/* Nothing interrupted us between A and C */
3568  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3569 		/*
3570 		 * If something came in between C and D, the write stamp
3571 		 * may now not be in sync. But that's fine as the before_stamp
3572 		 * will be different and then next event will just be forced
3573 		 * to use an absolute timestamp.
3574 		 */
3575 		if (likely(!(info->add_timestamp &
3576 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3577 			/* This did not interrupt any time update */
3578 			info->delta = info->ts - info->after;
3579 		else
3580 			/* Just use full timestamp for interrupting event */
3581 			info->delta = info->ts;
3582 		check_buffer(cpu_buffer, info, tail);
3583 	} else {
3584 		u64 ts;
3585 		/* SLOW PATH - Interrupted between A and C */
3586 
3587 		/* Save the old before_stamp */
3588 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
3589 
3590 		/*
3591 		 * Read a new timestamp and update the before_stamp to make
3592 		 * the next event after this one force using an absolute
3593 		 * timestamp. This is in case an interrupt were to come in
3594 		 * between E and F.
3595 		 */
3596 		ts = rb_time_stamp(cpu_buffer->buffer);
3597 		rb_time_set(&cpu_buffer->before_stamp, ts);
3598 
3599 		barrier();
3600  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
3601 		barrier();
3602  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3603 		    info->after == info->before && info->after < ts) {
3604 			/*
3605 			 * Nothing came after this event between C and F, it is
3606 			 * safe to use info->after for the delta as it
3607 			 * matched info->before and is still valid.
3608 			 */
3609 			info->delta = ts - info->after;
3610 		} else {
3611 			/*
3612 			 * Interrupted between C and F:
3613 			 * Lost the previous events time stamp. Just set the
3614 			 * delta to zero, and this will be the same time as
3615 			 * the event this event interrupted. And the events that
3616 			 * came after this will still be correct (as they would
3617 			 * have built their delta on the previous event.
3618 			 */
3619 			info->delta = 0;
3620 		}
3621 		info->ts = ts;
3622 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3623 	}
3624 
3625 	/*
3626 	 * If this is the first commit on the page, then it has the same
3627 	 * timestamp as the page itself.
3628 	 */
3629 	if (unlikely(!tail && !(info->add_timestamp &
3630 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3631 		info->delta = 0;
3632 
3633 	/* We reserved something on the buffer */
3634 
3635 	event = __rb_page_index(tail_page, tail);
3636 	rb_update_event(cpu_buffer, event, info);
3637 
3638 	local_inc(&tail_page->entries);
3639 
3640 	/*
3641 	 * If this is the first commit on the page, then update
3642 	 * its timestamp.
3643 	 */
3644 	if (unlikely(!tail))
3645 		tail_page->page->time_stamp = info->ts;
3646 
3647 	/* account for these added bytes */
3648 	local_add(info->length, &cpu_buffer->entries_bytes);
3649 
3650 	return event;
3651 }
3652 
3653 static __always_inline struct ring_buffer_event *
3654 rb_reserve_next_event(struct trace_buffer *buffer,
3655 		      struct ring_buffer_per_cpu *cpu_buffer,
3656 		      unsigned long length)
3657 {
3658 	struct ring_buffer_event *event;
3659 	struct rb_event_info info;
3660 	int nr_loops = 0;
3661 	int add_ts_default;
3662 
3663 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3664 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3665 	    (unlikely(in_nmi()))) {
3666 		return NULL;
3667 	}
3668 
3669 	rb_start_commit(cpu_buffer);
3670 	/* The commit page can not change after this */
3671 
3672 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3673 	/*
3674 	 * Due to the ability to swap a cpu buffer from a buffer
3675 	 * it is possible it was swapped before we committed.
3676 	 * (committing stops a swap). We check for it here and
3677 	 * if it happened, we have to fail the write.
3678 	 */
3679 	barrier();
3680 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3681 		local_dec(&cpu_buffer->committing);
3682 		local_dec(&cpu_buffer->commits);
3683 		return NULL;
3684 	}
3685 #endif
3686 
3687 	info.length = rb_calculate_event_length(length);
3688 
3689 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3690 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3691 		info.length += RB_LEN_TIME_EXTEND;
3692 		if (info.length > cpu_buffer->buffer->max_data_size)
3693 			goto out_fail;
3694 	} else {
3695 		add_ts_default = RB_ADD_STAMP_NONE;
3696 	}
3697 
3698  again:
3699 	info.add_timestamp = add_ts_default;
3700 	info.delta = 0;
3701 
3702 	/*
3703 	 * We allow for interrupts to reenter here and do a trace.
3704 	 * If one does, it will cause this original code to loop
3705 	 * back here. Even with heavy interrupts happening, this
3706 	 * should only happen a few times in a row. If this happens
3707 	 * 1000 times in a row, there must be either an interrupt
3708 	 * storm or we have something buggy.
3709 	 * Bail!
3710 	 */
3711 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3712 		goto out_fail;
3713 
3714 	event = __rb_reserve_next(cpu_buffer, &info);
3715 
3716 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3717 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3718 			info.length -= RB_LEN_TIME_EXTEND;
3719 		goto again;
3720 	}
3721 
3722 	if (likely(event))
3723 		return event;
3724  out_fail:
3725 	rb_end_commit(cpu_buffer);
3726 	return NULL;
3727 }
3728 
3729 /**
3730  * ring_buffer_lock_reserve - reserve a part of the buffer
3731  * @buffer: the ring buffer to reserve from
3732  * @length: the length of the data to reserve (excluding event header)
3733  *
3734  * Returns a reserved event on the ring buffer to copy directly to.
3735  * The user of this interface will need to get the body to write into
3736  * and can use the ring_buffer_event_data() interface.
3737  *
3738  * The length is the length of the data needed, not the event length
3739  * which also includes the event header.
3740  *
3741  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3742  * If NULL is returned, then nothing has been allocated or locked.
3743  */
3744 struct ring_buffer_event *
3745 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3746 {
3747 	struct ring_buffer_per_cpu *cpu_buffer;
3748 	struct ring_buffer_event *event;
3749 	int cpu;
3750 
3751 	/* If we are tracing schedule, we don't want to recurse */
3752 	preempt_disable_notrace();
3753 
3754 	if (unlikely(atomic_read(&buffer->record_disabled)))
3755 		goto out;
3756 
3757 	cpu = raw_smp_processor_id();
3758 
3759 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3760 		goto out;
3761 
3762 	cpu_buffer = buffer->buffers[cpu];
3763 
3764 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3765 		goto out;
3766 
3767 	if (unlikely(length > buffer->max_data_size))
3768 		goto out;
3769 
3770 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3771 		goto out;
3772 
3773 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3774 	if (!event)
3775 		goto out_unlock;
3776 
3777 	return event;
3778 
3779  out_unlock:
3780 	trace_recursive_unlock(cpu_buffer);
3781  out:
3782 	preempt_enable_notrace();
3783 	return NULL;
3784 }
3785 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3786 
3787 /*
3788  * Decrement the entries to the page that an event is on.
3789  * The event does not even need to exist, only the pointer
3790  * to the page it is on. This may only be called before the commit
3791  * takes place.
3792  */
3793 static inline void
3794 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3795 		   struct ring_buffer_event *event)
3796 {
3797 	unsigned long addr = (unsigned long)event;
3798 	struct buffer_page *bpage = cpu_buffer->commit_page;
3799 	struct buffer_page *start;
3800 
3801 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3802 
3803 	/* Do the likely case first */
3804 	if (likely(bpage->page == (void *)addr)) {
3805 		local_dec(&bpage->entries);
3806 		return;
3807 	}
3808 
3809 	/*
3810 	 * Because the commit page may be on the reader page we
3811 	 * start with the next page and check the end loop there.
3812 	 */
3813 	rb_inc_page(&bpage);
3814 	start = bpage;
3815 	do {
3816 		if (bpage->page == (void *)addr) {
3817 			local_dec(&bpage->entries);
3818 			return;
3819 		}
3820 		rb_inc_page(&bpage);
3821 	} while (bpage != start);
3822 
3823 	/* commit not part of this buffer?? */
3824 	RB_WARN_ON(cpu_buffer, 1);
3825 }
3826 
3827 /**
3828  * ring_buffer_discard_commit - discard an event that has not been committed
3829  * @buffer: the ring buffer
3830  * @event: non committed event to discard
3831  *
3832  * Sometimes an event that is in the ring buffer needs to be ignored.
3833  * This function lets the user discard an event in the ring buffer
3834  * and then that event will not be read later.
3835  *
3836  * This function only works if it is called before the item has been
3837  * committed. It will try to free the event from the ring buffer
3838  * if another event has not been added behind it.
3839  *
3840  * If another event has been added behind it, it will set the event
3841  * up as discarded, and perform the commit.
3842  *
3843  * If this function is called, do not call ring_buffer_unlock_commit on
3844  * the event.
3845  */
3846 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3847 				struct ring_buffer_event *event)
3848 {
3849 	struct ring_buffer_per_cpu *cpu_buffer;
3850 	int cpu;
3851 
3852 	/* The event is discarded regardless */
3853 	rb_event_discard(event);
3854 
3855 	cpu = smp_processor_id();
3856 	cpu_buffer = buffer->buffers[cpu];
3857 
3858 	/*
3859 	 * This must only be called if the event has not been
3860 	 * committed yet. Thus we can assume that preemption
3861 	 * is still disabled.
3862 	 */
3863 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3864 
3865 	rb_decrement_entry(cpu_buffer, event);
3866 	if (rb_try_to_discard(cpu_buffer, event))
3867 		goto out;
3868 
3869  out:
3870 	rb_end_commit(cpu_buffer);
3871 
3872 	trace_recursive_unlock(cpu_buffer);
3873 
3874 	preempt_enable_notrace();
3875 
3876 }
3877 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3878 
3879 /**
3880  * ring_buffer_write - write data to the buffer without reserving
3881  * @buffer: The ring buffer to write to.
3882  * @length: The length of the data being written (excluding the event header)
3883  * @data: The data to write to the buffer.
3884  *
3885  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3886  * one function. If you already have the data to write to the buffer, it
3887  * may be easier to simply call this function.
3888  *
3889  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3890  * and not the length of the event which would hold the header.
3891  */
3892 int ring_buffer_write(struct trace_buffer *buffer,
3893 		      unsigned long length,
3894 		      void *data)
3895 {
3896 	struct ring_buffer_per_cpu *cpu_buffer;
3897 	struct ring_buffer_event *event;
3898 	void *body;
3899 	int ret = -EBUSY;
3900 	int cpu;
3901 
3902 	preempt_disable_notrace();
3903 
3904 	if (atomic_read(&buffer->record_disabled))
3905 		goto out;
3906 
3907 	cpu = raw_smp_processor_id();
3908 
3909 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910 		goto out;
3911 
3912 	cpu_buffer = buffer->buffers[cpu];
3913 
3914 	if (atomic_read(&cpu_buffer->record_disabled))
3915 		goto out;
3916 
3917 	if (length > buffer->max_data_size)
3918 		goto out;
3919 
3920 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3921 		goto out;
3922 
3923 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3924 	if (!event)
3925 		goto out_unlock;
3926 
3927 	body = rb_event_data(event);
3928 
3929 	memcpy(body, data, length);
3930 
3931 	rb_commit(cpu_buffer);
3932 
3933 	rb_wakeups(buffer, cpu_buffer);
3934 
3935 	ret = 0;
3936 
3937  out_unlock:
3938 	trace_recursive_unlock(cpu_buffer);
3939 
3940  out:
3941 	preempt_enable_notrace();
3942 
3943 	return ret;
3944 }
3945 EXPORT_SYMBOL_GPL(ring_buffer_write);
3946 
3947 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3948 {
3949 	struct buffer_page *reader = cpu_buffer->reader_page;
3950 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3951 	struct buffer_page *commit = cpu_buffer->commit_page;
3952 
3953 	/* In case of error, head will be NULL */
3954 	if (unlikely(!head))
3955 		return true;
3956 
3957 	/* Reader should exhaust content in reader page */
3958 	if (reader->read != rb_page_size(reader))
3959 		return false;
3960 
3961 	/*
3962 	 * If writers are committing on the reader page, knowing all
3963 	 * committed content has been read, the ring buffer is empty.
3964 	 */
3965 	if (commit == reader)
3966 		return true;
3967 
3968 	/*
3969 	 * If writers are committing on a page other than reader page
3970 	 * and head page, there should always be content to read.
3971 	 */
3972 	if (commit != head)
3973 		return false;
3974 
3975 	/*
3976 	 * Writers are committing on the head page, we just need
3977 	 * to care about there're committed data, and the reader will
3978 	 * swap reader page with head page when it is to read data.
3979 	 */
3980 	return rb_page_commit(commit) == 0;
3981 }
3982 
3983 /**
3984  * ring_buffer_record_disable - stop all writes into the buffer
3985  * @buffer: The ring buffer to stop writes to.
3986  *
3987  * This prevents all writes to the buffer. Any attempt to write
3988  * to the buffer after this will fail and return NULL.
3989  *
3990  * The caller should call synchronize_rcu() after this.
3991  */
3992 void ring_buffer_record_disable(struct trace_buffer *buffer)
3993 {
3994 	atomic_inc(&buffer->record_disabled);
3995 }
3996 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3997 
3998 /**
3999  * ring_buffer_record_enable - enable writes to the buffer
4000  * @buffer: The ring buffer to enable writes
4001  *
4002  * Note, multiple disables will need the same number of enables
4003  * to truly enable the writing (much like preempt_disable).
4004  */
4005 void ring_buffer_record_enable(struct trace_buffer *buffer)
4006 {
4007 	atomic_dec(&buffer->record_disabled);
4008 }
4009 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4010 
4011 /**
4012  * ring_buffer_record_off - stop all writes into the buffer
4013  * @buffer: The ring buffer to stop writes to.
4014  *
4015  * This prevents all writes to the buffer. Any attempt to write
4016  * to the buffer after this will fail and return NULL.
4017  *
4018  * This is different than ring_buffer_record_disable() as
4019  * it works like an on/off switch, where as the disable() version
4020  * must be paired with a enable().
4021  */
4022 void ring_buffer_record_off(struct trace_buffer *buffer)
4023 {
4024 	unsigned int rd;
4025 	unsigned int new_rd;
4026 
4027 	rd = atomic_read(&buffer->record_disabled);
4028 	do {
4029 		new_rd = rd | RB_BUFFER_OFF;
4030 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4031 }
4032 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4033 
4034 /**
4035  * ring_buffer_record_on - restart writes into the buffer
4036  * @buffer: The ring buffer to start writes to.
4037  *
4038  * This enables all writes to the buffer that was disabled by
4039  * ring_buffer_record_off().
4040  *
4041  * This is different than ring_buffer_record_enable() as
4042  * it works like an on/off switch, where as the enable() version
4043  * must be paired with a disable().
4044  */
4045 void ring_buffer_record_on(struct trace_buffer *buffer)
4046 {
4047 	unsigned int rd;
4048 	unsigned int new_rd;
4049 
4050 	rd = atomic_read(&buffer->record_disabled);
4051 	do {
4052 		new_rd = rd & ~RB_BUFFER_OFF;
4053 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4054 }
4055 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4056 
4057 /**
4058  * ring_buffer_record_is_on - return true if the ring buffer can write
4059  * @buffer: The ring buffer to see if write is enabled
4060  *
4061  * Returns true if the ring buffer is in a state that it accepts writes.
4062  */
4063 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4064 {
4065 	return !atomic_read(&buffer->record_disabled);
4066 }
4067 
4068 /**
4069  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4070  * @buffer: The ring buffer to see if write is set enabled
4071  *
4072  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4073  * Note that this does NOT mean it is in a writable state.
4074  *
4075  * It may return true when the ring buffer has been disabled by
4076  * ring_buffer_record_disable(), as that is a temporary disabling of
4077  * the ring buffer.
4078  */
4079 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4080 {
4081 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4082 }
4083 
4084 /**
4085  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4086  * @buffer: The ring buffer to stop writes to.
4087  * @cpu: The CPU buffer to stop
4088  *
4089  * This prevents all writes to the buffer. Any attempt to write
4090  * to the buffer after this will fail and return NULL.
4091  *
4092  * The caller should call synchronize_rcu() after this.
4093  */
4094 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4095 {
4096 	struct ring_buffer_per_cpu *cpu_buffer;
4097 
4098 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4099 		return;
4100 
4101 	cpu_buffer = buffer->buffers[cpu];
4102 	atomic_inc(&cpu_buffer->record_disabled);
4103 }
4104 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4105 
4106 /**
4107  * ring_buffer_record_enable_cpu - enable writes to the buffer
4108  * @buffer: The ring buffer to enable writes
4109  * @cpu: The CPU to enable.
4110  *
4111  * Note, multiple disables will need the same number of enables
4112  * to truly enable the writing (much like preempt_disable).
4113  */
4114 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4115 {
4116 	struct ring_buffer_per_cpu *cpu_buffer;
4117 
4118 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4119 		return;
4120 
4121 	cpu_buffer = buffer->buffers[cpu];
4122 	atomic_dec(&cpu_buffer->record_disabled);
4123 }
4124 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4125 
4126 /*
4127  * The total entries in the ring buffer is the running counter
4128  * of entries entered into the ring buffer, minus the sum of
4129  * the entries read from the ring buffer and the number of
4130  * entries that were overwritten.
4131  */
4132 static inline unsigned long
4133 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4134 {
4135 	return local_read(&cpu_buffer->entries) -
4136 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4137 }
4138 
4139 /**
4140  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4141  * @buffer: The ring buffer
4142  * @cpu: The per CPU buffer to read from.
4143  */
4144 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4145 {
4146 	unsigned long flags;
4147 	struct ring_buffer_per_cpu *cpu_buffer;
4148 	struct buffer_page *bpage;
4149 	u64 ret = 0;
4150 
4151 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4152 		return 0;
4153 
4154 	cpu_buffer = buffer->buffers[cpu];
4155 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4156 	/*
4157 	 * if the tail is on reader_page, oldest time stamp is on the reader
4158 	 * page
4159 	 */
4160 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4161 		bpage = cpu_buffer->reader_page;
4162 	else
4163 		bpage = rb_set_head_page(cpu_buffer);
4164 	if (bpage)
4165 		ret = bpage->page->time_stamp;
4166 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4167 
4168 	return ret;
4169 }
4170 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4171 
4172 /**
4173  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4174  * @buffer: The ring buffer
4175  * @cpu: The per CPU buffer to read from.
4176  */
4177 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4178 {
4179 	struct ring_buffer_per_cpu *cpu_buffer;
4180 	unsigned long ret;
4181 
4182 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4183 		return 0;
4184 
4185 	cpu_buffer = buffer->buffers[cpu];
4186 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4187 
4188 	return ret;
4189 }
4190 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4191 
4192 /**
4193  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4194  * @buffer: The ring buffer
4195  * @cpu: The per CPU buffer to get the entries from.
4196  */
4197 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4198 {
4199 	struct ring_buffer_per_cpu *cpu_buffer;
4200 
4201 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4202 		return 0;
4203 
4204 	cpu_buffer = buffer->buffers[cpu];
4205 
4206 	return rb_num_of_entries(cpu_buffer);
4207 }
4208 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4209 
4210 /**
4211  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4212  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4213  * @buffer: The ring buffer
4214  * @cpu: The per CPU buffer to get the number of overruns from
4215  */
4216 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4217 {
4218 	struct ring_buffer_per_cpu *cpu_buffer;
4219 	unsigned long ret;
4220 
4221 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222 		return 0;
4223 
4224 	cpu_buffer = buffer->buffers[cpu];
4225 	ret = local_read(&cpu_buffer->overrun);
4226 
4227 	return ret;
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4230 
4231 /**
4232  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4233  * commits failing due to the buffer wrapping around while there are uncommitted
4234  * events, such as during an interrupt storm.
4235  * @buffer: The ring buffer
4236  * @cpu: The per CPU buffer to get the number of overruns from
4237  */
4238 unsigned long
4239 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4240 {
4241 	struct ring_buffer_per_cpu *cpu_buffer;
4242 	unsigned long ret;
4243 
4244 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4245 		return 0;
4246 
4247 	cpu_buffer = buffer->buffers[cpu];
4248 	ret = local_read(&cpu_buffer->commit_overrun);
4249 
4250 	return ret;
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4253 
4254 /**
4255  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4256  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4257  * @buffer: The ring buffer
4258  * @cpu: The per CPU buffer to get the number of overruns from
4259  */
4260 unsigned long
4261 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4262 {
4263 	struct ring_buffer_per_cpu *cpu_buffer;
4264 	unsigned long ret;
4265 
4266 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4267 		return 0;
4268 
4269 	cpu_buffer = buffer->buffers[cpu];
4270 	ret = local_read(&cpu_buffer->dropped_events);
4271 
4272 	return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4275 
4276 /**
4277  * ring_buffer_read_events_cpu - get the number of events successfully read
4278  * @buffer: The ring buffer
4279  * @cpu: The per CPU buffer to get the number of events read
4280  */
4281 unsigned long
4282 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4283 {
4284 	struct ring_buffer_per_cpu *cpu_buffer;
4285 
4286 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287 		return 0;
4288 
4289 	cpu_buffer = buffer->buffers[cpu];
4290 	return cpu_buffer->read;
4291 }
4292 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4293 
4294 /**
4295  * ring_buffer_entries - get the number of entries in a buffer
4296  * @buffer: The ring buffer
4297  *
4298  * Returns the total number of entries in the ring buffer
4299  * (all CPU entries)
4300  */
4301 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4302 {
4303 	struct ring_buffer_per_cpu *cpu_buffer;
4304 	unsigned long entries = 0;
4305 	int cpu;
4306 
4307 	/* if you care about this being correct, lock the buffer */
4308 	for_each_buffer_cpu(buffer, cpu) {
4309 		cpu_buffer = buffer->buffers[cpu];
4310 		entries += rb_num_of_entries(cpu_buffer);
4311 	}
4312 
4313 	return entries;
4314 }
4315 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4316 
4317 /**
4318  * ring_buffer_overruns - get the number of overruns in buffer
4319  * @buffer: The ring buffer
4320  *
4321  * Returns the total number of overruns in the ring buffer
4322  * (all CPU entries)
4323  */
4324 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4325 {
4326 	struct ring_buffer_per_cpu *cpu_buffer;
4327 	unsigned long overruns = 0;
4328 	int cpu;
4329 
4330 	/* if you care about this being correct, lock the buffer */
4331 	for_each_buffer_cpu(buffer, cpu) {
4332 		cpu_buffer = buffer->buffers[cpu];
4333 		overruns += local_read(&cpu_buffer->overrun);
4334 	}
4335 
4336 	return overruns;
4337 }
4338 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4339 
4340 static void rb_iter_reset(struct ring_buffer_iter *iter)
4341 {
4342 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4343 
4344 	/* Iterator usage is expected to have record disabled */
4345 	iter->head_page = cpu_buffer->reader_page;
4346 	iter->head = cpu_buffer->reader_page->read;
4347 	iter->next_event = iter->head;
4348 
4349 	iter->cache_reader_page = iter->head_page;
4350 	iter->cache_read = cpu_buffer->read;
4351 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4352 
4353 	if (iter->head) {
4354 		iter->read_stamp = cpu_buffer->read_stamp;
4355 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4356 	} else {
4357 		iter->read_stamp = iter->head_page->page->time_stamp;
4358 		iter->page_stamp = iter->read_stamp;
4359 	}
4360 }
4361 
4362 /**
4363  * ring_buffer_iter_reset - reset an iterator
4364  * @iter: The iterator to reset
4365  *
4366  * Resets the iterator, so that it will start from the beginning
4367  * again.
4368  */
4369 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4370 {
4371 	struct ring_buffer_per_cpu *cpu_buffer;
4372 	unsigned long flags;
4373 
4374 	if (!iter)
4375 		return;
4376 
4377 	cpu_buffer = iter->cpu_buffer;
4378 
4379 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4380 	rb_iter_reset(iter);
4381 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4384 
4385 /**
4386  * ring_buffer_iter_empty - check if an iterator has no more to read
4387  * @iter: The iterator to check
4388  */
4389 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4390 {
4391 	struct ring_buffer_per_cpu *cpu_buffer;
4392 	struct buffer_page *reader;
4393 	struct buffer_page *head_page;
4394 	struct buffer_page *commit_page;
4395 	struct buffer_page *curr_commit_page;
4396 	unsigned commit;
4397 	u64 curr_commit_ts;
4398 	u64 commit_ts;
4399 
4400 	cpu_buffer = iter->cpu_buffer;
4401 	reader = cpu_buffer->reader_page;
4402 	head_page = cpu_buffer->head_page;
4403 	commit_page = READ_ONCE(cpu_buffer->commit_page);
4404 	commit_ts = commit_page->page->time_stamp;
4405 
4406 	/*
4407 	 * When the writer goes across pages, it issues a cmpxchg which
4408 	 * is a mb(), which will synchronize with the rmb here.
4409 	 * (see rb_tail_page_update())
4410 	 */
4411 	smp_rmb();
4412 	commit = rb_page_commit(commit_page);
4413 	/* We want to make sure that the commit page doesn't change */
4414 	smp_rmb();
4415 
4416 	/* Make sure commit page didn't change */
4417 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4418 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4419 
4420 	/* If the commit page changed, then there's more data */
4421 	if (curr_commit_page != commit_page ||
4422 	    curr_commit_ts != commit_ts)
4423 		return 0;
4424 
4425 	/* Still racy, as it may return a false positive, but that's OK */
4426 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4427 		(iter->head_page == reader && commit_page == head_page &&
4428 		 head_page->read == commit &&
4429 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
4430 }
4431 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4432 
4433 static void
4434 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4435 		     struct ring_buffer_event *event)
4436 {
4437 	u64 delta;
4438 
4439 	switch (event->type_len) {
4440 	case RINGBUF_TYPE_PADDING:
4441 		return;
4442 
4443 	case RINGBUF_TYPE_TIME_EXTEND:
4444 		delta = rb_event_time_stamp(event);
4445 		cpu_buffer->read_stamp += delta;
4446 		return;
4447 
4448 	case RINGBUF_TYPE_TIME_STAMP:
4449 		delta = rb_event_time_stamp(event);
4450 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4451 		cpu_buffer->read_stamp = delta;
4452 		return;
4453 
4454 	case RINGBUF_TYPE_DATA:
4455 		cpu_buffer->read_stamp += event->time_delta;
4456 		return;
4457 
4458 	default:
4459 		RB_WARN_ON(cpu_buffer, 1);
4460 	}
4461 }
4462 
4463 static void
4464 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4465 			  struct ring_buffer_event *event)
4466 {
4467 	u64 delta;
4468 
4469 	switch (event->type_len) {
4470 	case RINGBUF_TYPE_PADDING:
4471 		return;
4472 
4473 	case RINGBUF_TYPE_TIME_EXTEND:
4474 		delta = rb_event_time_stamp(event);
4475 		iter->read_stamp += delta;
4476 		return;
4477 
4478 	case RINGBUF_TYPE_TIME_STAMP:
4479 		delta = rb_event_time_stamp(event);
4480 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4481 		iter->read_stamp = delta;
4482 		return;
4483 
4484 	case RINGBUF_TYPE_DATA:
4485 		iter->read_stamp += event->time_delta;
4486 		return;
4487 
4488 	default:
4489 		RB_WARN_ON(iter->cpu_buffer, 1);
4490 	}
4491 }
4492 
4493 static struct buffer_page *
4494 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4495 {
4496 	struct buffer_page *reader = NULL;
4497 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4498 	unsigned long overwrite;
4499 	unsigned long flags;
4500 	int nr_loops = 0;
4501 	bool ret;
4502 
4503 	local_irq_save(flags);
4504 	arch_spin_lock(&cpu_buffer->lock);
4505 
4506  again:
4507 	/*
4508 	 * This should normally only loop twice. But because the
4509 	 * start of the reader inserts an empty page, it causes
4510 	 * a case where we will loop three times. There should be no
4511 	 * reason to loop four times (that I know of).
4512 	 */
4513 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4514 		reader = NULL;
4515 		goto out;
4516 	}
4517 
4518 	reader = cpu_buffer->reader_page;
4519 
4520 	/* If there's more to read, return this page */
4521 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4522 		goto out;
4523 
4524 	/* Never should we have an index greater than the size */
4525 	if (RB_WARN_ON(cpu_buffer,
4526 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4527 		goto out;
4528 
4529 	/* check if we caught up to the tail */
4530 	reader = NULL;
4531 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4532 		goto out;
4533 
4534 	/* Don't bother swapping if the ring buffer is empty */
4535 	if (rb_num_of_entries(cpu_buffer) == 0)
4536 		goto out;
4537 
4538 	/*
4539 	 * Reset the reader page to size zero.
4540 	 */
4541 	local_set(&cpu_buffer->reader_page->write, 0);
4542 	local_set(&cpu_buffer->reader_page->entries, 0);
4543 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4544 	cpu_buffer->reader_page->real_end = 0;
4545 
4546  spin:
4547 	/*
4548 	 * Splice the empty reader page into the list around the head.
4549 	 */
4550 	reader = rb_set_head_page(cpu_buffer);
4551 	if (!reader)
4552 		goto out;
4553 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4554 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4555 
4556 	/*
4557 	 * cpu_buffer->pages just needs to point to the buffer, it
4558 	 *  has no specific buffer page to point to. Lets move it out
4559 	 *  of our way so we don't accidentally swap it.
4560 	 */
4561 	cpu_buffer->pages = reader->list.prev;
4562 
4563 	/* The reader page will be pointing to the new head */
4564 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4565 
4566 	/*
4567 	 * We want to make sure we read the overruns after we set up our
4568 	 * pointers to the next object. The writer side does a
4569 	 * cmpxchg to cross pages which acts as the mb on the writer
4570 	 * side. Note, the reader will constantly fail the swap
4571 	 * while the writer is updating the pointers, so this
4572 	 * guarantees that the overwrite recorded here is the one we
4573 	 * want to compare with the last_overrun.
4574 	 */
4575 	smp_mb();
4576 	overwrite = local_read(&(cpu_buffer->overrun));
4577 
4578 	/*
4579 	 * Here's the tricky part.
4580 	 *
4581 	 * We need to move the pointer past the header page.
4582 	 * But we can only do that if a writer is not currently
4583 	 * moving it. The page before the header page has the
4584 	 * flag bit '1' set if it is pointing to the page we want.
4585 	 * but if the writer is in the process of moving it
4586 	 * than it will be '2' or already moved '0'.
4587 	 */
4588 
4589 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4590 
4591 	/*
4592 	 * If we did not convert it, then we must try again.
4593 	 */
4594 	if (!ret)
4595 		goto spin;
4596 
4597 	/*
4598 	 * Yay! We succeeded in replacing the page.
4599 	 *
4600 	 * Now make the new head point back to the reader page.
4601 	 */
4602 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4603 	rb_inc_page(&cpu_buffer->head_page);
4604 
4605 	local_inc(&cpu_buffer->pages_read);
4606 
4607 	/* Finally update the reader page to the new head */
4608 	cpu_buffer->reader_page = reader;
4609 	cpu_buffer->reader_page->read = 0;
4610 
4611 	if (overwrite != cpu_buffer->last_overrun) {
4612 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4613 		cpu_buffer->last_overrun = overwrite;
4614 	}
4615 
4616 	goto again;
4617 
4618  out:
4619 	/* Update the read_stamp on the first event */
4620 	if (reader && reader->read == 0)
4621 		cpu_buffer->read_stamp = reader->page->time_stamp;
4622 
4623 	arch_spin_unlock(&cpu_buffer->lock);
4624 	local_irq_restore(flags);
4625 
4626 	/*
4627 	 * The writer has preempt disable, wait for it. But not forever
4628 	 * Although, 1 second is pretty much "forever"
4629 	 */
4630 #define USECS_WAIT	1000000
4631         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4632 		/* If the write is past the end of page, a writer is still updating it */
4633 		if (likely(!reader || rb_page_write(reader) <= bsize))
4634 			break;
4635 
4636 		udelay(1);
4637 
4638 		/* Get the latest version of the reader write value */
4639 		smp_rmb();
4640 	}
4641 
4642 	/* The writer is not moving forward? Something is wrong */
4643 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4644 		reader = NULL;
4645 
4646 	/*
4647 	 * Make sure we see any padding after the write update
4648 	 * (see rb_reset_tail()).
4649 	 *
4650 	 * In addition, a writer may be writing on the reader page
4651 	 * if the page has not been fully filled, so the read barrier
4652 	 * is also needed to make sure we see the content of what is
4653 	 * committed by the writer (see rb_set_commit_to_write()).
4654 	 */
4655 	smp_rmb();
4656 
4657 
4658 	return reader;
4659 }
4660 
4661 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4662 {
4663 	struct ring_buffer_event *event;
4664 	struct buffer_page *reader;
4665 	unsigned length;
4666 
4667 	reader = rb_get_reader_page(cpu_buffer);
4668 
4669 	/* This function should not be called when buffer is empty */
4670 	if (RB_WARN_ON(cpu_buffer, !reader))
4671 		return;
4672 
4673 	event = rb_reader_event(cpu_buffer);
4674 
4675 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4676 		cpu_buffer->read++;
4677 
4678 	rb_update_read_stamp(cpu_buffer, event);
4679 
4680 	length = rb_event_length(event);
4681 	cpu_buffer->reader_page->read += length;
4682 	cpu_buffer->read_bytes += length;
4683 }
4684 
4685 static void rb_advance_iter(struct ring_buffer_iter *iter)
4686 {
4687 	struct ring_buffer_per_cpu *cpu_buffer;
4688 
4689 	cpu_buffer = iter->cpu_buffer;
4690 
4691 	/* If head == next_event then we need to jump to the next event */
4692 	if (iter->head == iter->next_event) {
4693 		/* If the event gets overwritten again, there's nothing to do */
4694 		if (rb_iter_head_event(iter) == NULL)
4695 			return;
4696 	}
4697 
4698 	iter->head = iter->next_event;
4699 
4700 	/*
4701 	 * Check if we are at the end of the buffer.
4702 	 */
4703 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4704 		/* discarded commits can make the page empty */
4705 		if (iter->head_page == cpu_buffer->commit_page)
4706 			return;
4707 		rb_inc_iter(iter);
4708 		return;
4709 	}
4710 
4711 	rb_update_iter_read_stamp(iter, iter->event);
4712 }
4713 
4714 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4715 {
4716 	return cpu_buffer->lost_events;
4717 }
4718 
4719 static struct ring_buffer_event *
4720 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4721 	       unsigned long *lost_events)
4722 {
4723 	struct ring_buffer_event *event;
4724 	struct buffer_page *reader;
4725 	int nr_loops = 0;
4726 
4727 	if (ts)
4728 		*ts = 0;
4729  again:
4730 	/*
4731 	 * We repeat when a time extend is encountered.
4732 	 * Since the time extend is always attached to a data event,
4733 	 * we should never loop more than once.
4734 	 * (We never hit the following condition more than twice).
4735 	 */
4736 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4737 		return NULL;
4738 
4739 	reader = rb_get_reader_page(cpu_buffer);
4740 	if (!reader)
4741 		return NULL;
4742 
4743 	event = rb_reader_event(cpu_buffer);
4744 
4745 	switch (event->type_len) {
4746 	case RINGBUF_TYPE_PADDING:
4747 		if (rb_null_event(event))
4748 			RB_WARN_ON(cpu_buffer, 1);
4749 		/*
4750 		 * Because the writer could be discarding every
4751 		 * event it creates (which would probably be bad)
4752 		 * if we were to go back to "again" then we may never
4753 		 * catch up, and will trigger the warn on, or lock
4754 		 * the box. Return the padding, and we will release
4755 		 * the current locks, and try again.
4756 		 */
4757 		return event;
4758 
4759 	case RINGBUF_TYPE_TIME_EXTEND:
4760 		/* Internal data, OK to advance */
4761 		rb_advance_reader(cpu_buffer);
4762 		goto again;
4763 
4764 	case RINGBUF_TYPE_TIME_STAMP:
4765 		if (ts) {
4766 			*ts = rb_event_time_stamp(event);
4767 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4768 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4769 							 cpu_buffer->cpu, ts);
4770 		}
4771 		/* Internal data, OK to advance */
4772 		rb_advance_reader(cpu_buffer);
4773 		goto again;
4774 
4775 	case RINGBUF_TYPE_DATA:
4776 		if (ts && !(*ts)) {
4777 			*ts = cpu_buffer->read_stamp + event->time_delta;
4778 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4779 							 cpu_buffer->cpu, ts);
4780 		}
4781 		if (lost_events)
4782 			*lost_events = rb_lost_events(cpu_buffer);
4783 		return event;
4784 
4785 	default:
4786 		RB_WARN_ON(cpu_buffer, 1);
4787 	}
4788 
4789 	return NULL;
4790 }
4791 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4792 
4793 static struct ring_buffer_event *
4794 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4795 {
4796 	struct trace_buffer *buffer;
4797 	struct ring_buffer_per_cpu *cpu_buffer;
4798 	struct ring_buffer_event *event;
4799 	int nr_loops = 0;
4800 
4801 	if (ts)
4802 		*ts = 0;
4803 
4804 	cpu_buffer = iter->cpu_buffer;
4805 	buffer = cpu_buffer->buffer;
4806 
4807 	/*
4808 	 * Check if someone performed a consuming read to the buffer
4809 	 * or removed some pages from the buffer. In these cases,
4810 	 * iterator was invalidated and we need to reset it.
4811 	 */
4812 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4813 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4814 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4815 		rb_iter_reset(iter);
4816 
4817  again:
4818 	if (ring_buffer_iter_empty(iter))
4819 		return NULL;
4820 
4821 	/*
4822 	 * As the writer can mess with what the iterator is trying
4823 	 * to read, just give up if we fail to get an event after
4824 	 * three tries. The iterator is not as reliable when reading
4825 	 * the ring buffer with an active write as the consumer is.
4826 	 * Do not warn if the three failures is reached.
4827 	 */
4828 	if (++nr_loops > 3)
4829 		return NULL;
4830 
4831 	if (rb_per_cpu_empty(cpu_buffer))
4832 		return NULL;
4833 
4834 	if (iter->head >= rb_page_size(iter->head_page)) {
4835 		rb_inc_iter(iter);
4836 		goto again;
4837 	}
4838 
4839 	event = rb_iter_head_event(iter);
4840 	if (!event)
4841 		goto again;
4842 
4843 	switch (event->type_len) {
4844 	case RINGBUF_TYPE_PADDING:
4845 		if (rb_null_event(event)) {
4846 			rb_inc_iter(iter);
4847 			goto again;
4848 		}
4849 		rb_advance_iter(iter);
4850 		return event;
4851 
4852 	case RINGBUF_TYPE_TIME_EXTEND:
4853 		/* Internal data, OK to advance */
4854 		rb_advance_iter(iter);
4855 		goto again;
4856 
4857 	case RINGBUF_TYPE_TIME_STAMP:
4858 		if (ts) {
4859 			*ts = rb_event_time_stamp(event);
4860 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4861 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4862 							 cpu_buffer->cpu, ts);
4863 		}
4864 		/* Internal data, OK to advance */
4865 		rb_advance_iter(iter);
4866 		goto again;
4867 
4868 	case RINGBUF_TYPE_DATA:
4869 		if (ts && !(*ts)) {
4870 			*ts = iter->read_stamp + event->time_delta;
4871 			ring_buffer_normalize_time_stamp(buffer,
4872 							 cpu_buffer->cpu, ts);
4873 		}
4874 		return event;
4875 
4876 	default:
4877 		RB_WARN_ON(cpu_buffer, 1);
4878 	}
4879 
4880 	return NULL;
4881 }
4882 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4883 
4884 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4885 {
4886 	if (likely(!in_nmi())) {
4887 		raw_spin_lock(&cpu_buffer->reader_lock);
4888 		return true;
4889 	}
4890 
4891 	/*
4892 	 * If an NMI die dumps out the content of the ring buffer
4893 	 * trylock must be used to prevent a deadlock if the NMI
4894 	 * preempted a task that holds the ring buffer locks. If
4895 	 * we get the lock then all is fine, if not, then continue
4896 	 * to do the read, but this can corrupt the ring buffer,
4897 	 * so it must be permanently disabled from future writes.
4898 	 * Reading from NMI is a oneshot deal.
4899 	 */
4900 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4901 		return true;
4902 
4903 	/* Continue without locking, but disable the ring buffer */
4904 	atomic_inc(&cpu_buffer->record_disabled);
4905 	return false;
4906 }
4907 
4908 static inline void
4909 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4910 {
4911 	if (likely(locked))
4912 		raw_spin_unlock(&cpu_buffer->reader_lock);
4913 }
4914 
4915 /**
4916  * ring_buffer_peek - peek at the next event to be read
4917  * @buffer: The ring buffer to read
4918  * @cpu: The cpu to peak at
4919  * @ts: The timestamp counter of this event.
4920  * @lost_events: a variable to store if events were lost (may be NULL)
4921  *
4922  * This will return the event that will be read next, but does
4923  * not consume the data.
4924  */
4925 struct ring_buffer_event *
4926 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4927 		 unsigned long *lost_events)
4928 {
4929 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4930 	struct ring_buffer_event *event;
4931 	unsigned long flags;
4932 	bool dolock;
4933 
4934 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4935 		return NULL;
4936 
4937  again:
4938 	local_irq_save(flags);
4939 	dolock = rb_reader_lock(cpu_buffer);
4940 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4941 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4942 		rb_advance_reader(cpu_buffer);
4943 	rb_reader_unlock(cpu_buffer, dolock);
4944 	local_irq_restore(flags);
4945 
4946 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4947 		goto again;
4948 
4949 	return event;
4950 }
4951 
4952 /** ring_buffer_iter_dropped - report if there are dropped events
4953  * @iter: The ring buffer iterator
4954  *
4955  * Returns true if there was dropped events since the last peek.
4956  */
4957 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4958 {
4959 	bool ret = iter->missed_events != 0;
4960 
4961 	iter->missed_events = 0;
4962 	return ret;
4963 }
4964 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4965 
4966 /**
4967  * ring_buffer_iter_peek - peek at the next event to be read
4968  * @iter: The ring buffer iterator
4969  * @ts: The timestamp counter of this event.
4970  *
4971  * This will return the event that will be read next, but does
4972  * not increment the iterator.
4973  */
4974 struct ring_buffer_event *
4975 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4976 {
4977 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4978 	struct ring_buffer_event *event;
4979 	unsigned long flags;
4980 
4981  again:
4982 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4983 	event = rb_iter_peek(iter, ts);
4984 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4985 
4986 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4987 		goto again;
4988 
4989 	return event;
4990 }
4991 
4992 /**
4993  * ring_buffer_consume - return an event and consume it
4994  * @buffer: The ring buffer to get the next event from
4995  * @cpu: the cpu to read the buffer from
4996  * @ts: a variable to store the timestamp (may be NULL)
4997  * @lost_events: a variable to store if events were lost (may be NULL)
4998  *
4999  * Returns the next event in the ring buffer, and that event is consumed.
5000  * Meaning, that sequential reads will keep returning a different event,
5001  * and eventually empty the ring buffer if the producer is slower.
5002  */
5003 struct ring_buffer_event *
5004 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5005 		    unsigned long *lost_events)
5006 {
5007 	struct ring_buffer_per_cpu *cpu_buffer;
5008 	struct ring_buffer_event *event = NULL;
5009 	unsigned long flags;
5010 	bool dolock;
5011 
5012  again:
5013 	/* might be called in atomic */
5014 	preempt_disable();
5015 
5016 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5017 		goto out;
5018 
5019 	cpu_buffer = buffer->buffers[cpu];
5020 	local_irq_save(flags);
5021 	dolock = rb_reader_lock(cpu_buffer);
5022 
5023 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5024 	if (event) {
5025 		cpu_buffer->lost_events = 0;
5026 		rb_advance_reader(cpu_buffer);
5027 	}
5028 
5029 	rb_reader_unlock(cpu_buffer, dolock);
5030 	local_irq_restore(flags);
5031 
5032  out:
5033 	preempt_enable();
5034 
5035 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5036 		goto again;
5037 
5038 	return event;
5039 }
5040 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5041 
5042 /**
5043  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5044  * @buffer: The ring buffer to read from
5045  * @cpu: The cpu buffer to iterate over
5046  * @flags: gfp flags to use for memory allocation
5047  *
5048  * This performs the initial preparations necessary to iterate
5049  * through the buffer.  Memory is allocated, buffer recording
5050  * is disabled, and the iterator pointer is returned to the caller.
5051  *
5052  * Disabling buffer recording prevents the reading from being
5053  * corrupted. This is not a consuming read, so a producer is not
5054  * expected.
5055  *
5056  * After a sequence of ring_buffer_read_prepare calls, the user is
5057  * expected to make at least one call to ring_buffer_read_prepare_sync.
5058  * Afterwards, ring_buffer_read_start is invoked to get things going
5059  * for real.
5060  *
5061  * This overall must be paired with ring_buffer_read_finish.
5062  */
5063 struct ring_buffer_iter *
5064 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5065 {
5066 	struct ring_buffer_per_cpu *cpu_buffer;
5067 	struct ring_buffer_iter *iter;
5068 
5069 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5070 		return NULL;
5071 
5072 	iter = kzalloc(sizeof(*iter), flags);
5073 	if (!iter)
5074 		return NULL;
5075 
5076 	/* Holds the entire event: data and meta data */
5077 	iter->event_size = buffer->subbuf_size;
5078 	iter->event = kmalloc(iter->event_size, flags);
5079 	if (!iter->event) {
5080 		kfree(iter);
5081 		return NULL;
5082 	}
5083 
5084 	cpu_buffer = buffer->buffers[cpu];
5085 
5086 	iter->cpu_buffer = cpu_buffer;
5087 
5088 	atomic_inc(&cpu_buffer->resize_disabled);
5089 
5090 	return iter;
5091 }
5092 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5093 
5094 /**
5095  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5096  *
5097  * All previously invoked ring_buffer_read_prepare calls to prepare
5098  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5099  * calls on those iterators are allowed.
5100  */
5101 void
5102 ring_buffer_read_prepare_sync(void)
5103 {
5104 	synchronize_rcu();
5105 }
5106 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5107 
5108 /**
5109  * ring_buffer_read_start - start a non consuming read of the buffer
5110  * @iter: The iterator returned by ring_buffer_read_prepare
5111  *
5112  * This finalizes the startup of an iteration through the buffer.
5113  * The iterator comes from a call to ring_buffer_read_prepare and
5114  * an intervening ring_buffer_read_prepare_sync must have been
5115  * performed.
5116  *
5117  * Must be paired with ring_buffer_read_finish.
5118  */
5119 void
5120 ring_buffer_read_start(struct ring_buffer_iter *iter)
5121 {
5122 	struct ring_buffer_per_cpu *cpu_buffer;
5123 	unsigned long flags;
5124 
5125 	if (!iter)
5126 		return;
5127 
5128 	cpu_buffer = iter->cpu_buffer;
5129 
5130 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5131 	arch_spin_lock(&cpu_buffer->lock);
5132 	rb_iter_reset(iter);
5133 	arch_spin_unlock(&cpu_buffer->lock);
5134 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5135 }
5136 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5137 
5138 /**
5139  * ring_buffer_read_finish - finish reading the iterator of the buffer
5140  * @iter: The iterator retrieved by ring_buffer_start
5141  *
5142  * This re-enables the recording to the buffer, and frees the
5143  * iterator.
5144  */
5145 void
5146 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5147 {
5148 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5149 	unsigned long flags;
5150 
5151 	/*
5152 	 * Ring buffer is disabled from recording, here's a good place
5153 	 * to check the integrity of the ring buffer.
5154 	 * Must prevent readers from trying to read, as the check
5155 	 * clears the HEAD page and readers require it.
5156 	 */
5157 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5158 	rb_check_pages(cpu_buffer);
5159 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5160 
5161 	atomic_dec(&cpu_buffer->resize_disabled);
5162 	kfree(iter->event);
5163 	kfree(iter);
5164 }
5165 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5166 
5167 /**
5168  * ring_buffer_iter_advance - advance the iterator to the next location
5169  * @iter: The ring buffer iterator
5170  *
5171  * Move the location of the iterator such that the next read will
5172  * be the next location of the iterator.
5173  */
5174 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5175 {
5176 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5177 	unsigned long flags;
5178 
5179 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5180 
5181 	rb_advance_iter(iter);
5182 
5183 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5184 }
5185 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5186 
5187 /**
5188  * ring_buffer_size - return the size of the ring buffer (in bytes)
5189  * @buffer: The ring buffer.
5190  * @cpu: The CPU to get ring buffer size from.
5191  */
5192 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5193 {
5194 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5195 		return 0;
5196 
5197 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5198 }
5199 EXPORT_SYMBOL_GPL(ring_buffer_size);
5200 
5201 /**
5202  * ring_buffer_max_event_size - return the max data size of an event
5203  * @buffer: The ring buffer.
5204  *
5205  * Returns the maximum size an event can be.
5206  */
5207 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5208 {
5209 	/* If abs timestamp is requested, events have a timestamp too */
5210 	if (ring_buffer_time_stamp_abs(buffer))
5211 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5212 	return buffer->max_data_size;
5213 }
5214 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5215 
5216 static void rb_clear_buffer_page(struct buffer_page *page)
5217 {
5218 	local_set(&page->write, 0);
5219 	local_set(&page->entries, 0);
5220 	rb_init_page(page->page);
5221 	page->read = 0;
5222 }
5223 
5224 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5225 {
5226 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5227 
5228 	meta->reader.read = cpu_buffer->reader_page->read;
5229 	meta->reader.id = cpu_buffer->reader_page->id;
5230 	meta->reader.lost_events = cpu_buffer->lost_events;
5231 
5232 	meta->entries = local_read(&cpu_buffer->entries);
5233 	meta->overrun = local_read(&cpu_buffer->overrun);
5234 	meta->read = cpu_buffer->read;
5235 
5236 	/* Some archs do not have data cache coherency between kernel and user-space */
5237 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5238 }
5239 
5240 static void
5241 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5242 {
5243 	struct buffer_page *page;
5244 
5245 	rb_head_page_deactivate(cpu_buffer);
5246 
5247 	cpu_buffer->head_page
5248 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5249 	rb_clear_buffer_page(cpu_buffer->head_page);
5250 	list_for_each_entry(page, cpu_buffer->pages, list) {
5251 		rb_clear_buffer_page(page);
5252 	}
5253 
5254 	cpu_buffer->tail_page = cpu_buffer->head_page;
5255 	cpu_buffer->commit_page = cpu_buffer->head_page;
5256 
5257 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5258 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5259 	rb_clear_buffer_page(cpu_buffer->reader_page);
5260 
5261 	local_set(&cpu_buffer->entries_bytes, 0);
5262 	local_set(&cpu_buffer->overrun, 0);
5263 	local_set(&cpu_buffer->commit_overrun, 0);
5264 	local_set(&cpu_buffer->dropped_events, 0);
5265 	local_set(&cpu_buffer->entries, 0);
5266 	local_set(&cpu_buffer->committing, 0);
5267 	local_set(&cpu_buffer->commits, 0);
5268 	local_set(&cpu_buffer->pages_touched, 0);
5269 	local_set(&cpu_buffer->pages_lost, 0);
5270 	local_set(&cpu_buffer->pages_read, 0);
5271 	cpu_buffer->last_pages_touch = 0;
5272 	cpu_buffer->shortest_full = 0;
5273 	cpu_buffer->read = 0;
5274 	cpu_buffer->read_bytes = 0;
5275 
5276 	rb_time_set(&cpu_buffer->write_stamp, 0);
5277 	rb_time_set(&cpu_buffer->before_stamp, 0);
5278 
5279 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5280 
5281 	cpu_buffer->lost_events = 0;
5282 	cpu_buffer->last_overrun = 0;
5283 
5284 	if (cpu_buffer->mapped)
5285 		rb_update_meta_page(cpu_buffer);
5286 
5287 	rb_head_page_activate(cpu_buffer);
5288 	cpu_buffer->pages_removed = 0;
5289 }
5290 
5291 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5292 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5293 {
5294 	unsigned long flags;
5295 
5296 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5297 
5298 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5299 		goto out;
5300 
5301 	arch_spin_lock(&cpu_buffer->lock);
5302 
5303 	rb_reset_cpu(cpu_buffer);
5304 
5305 	arch_spin_unlock(&cpu_buffer->lock);
5306 
5307  out:
5308 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5309 }
5310 
5311 /**
5312  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5313  * @buffer: The ring buffer to reset a per cpu buffer of
5314  * @cpu: The CPU buffer to be reset
5315  */
5316 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5317 {
5318 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5319 
5320 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5321 		return;
5322 
5323 	/* prevent another thread from changing buffer sizes */
5324 	mutex_lock(&buffer->mutex);
5325 
5326 	atomic_inc(&cpu_buffer->resize_disabled);
5327 	atomic_inc(&cpu_buffer->record_disabled);
5328 
5329 	/* Make sure all commits have finished */
5330 	synchronize_rcu();
5331 
5332 	reset_disabled_cpu_buffer(cpu_buffer);
5333 
5334 	atomic_dec(&cpu_buffer->record_disabled);
5335 	atomic_dec(&cpu_buffer->resize_disabled);
5336 
5337 	mutex_unlock(&buffer->mutex);
5338 }
5339 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5340 
5341 /* Flag to ensure proper resetting of atomic variables */
5342 #define RESET_BIT	(1 << 30)
5343 
5344 /**
5345  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5346  * @buffer: The ring buffer to reset a per cpu buffer of
5347  */
5348 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5349 {
5350 	struct ring_buffer_per_cpu *cpu_buffer;
5351 	int cpu;
5352 
5353 	/* prevent another thread from changing buffer sizes */
5354 	mutex_lock(&buffer->mutex);
5355 
5356 	for_each_online_buffer_cpu(buffer, cpu) {
5357 		cpu_buffer = buffer->buffers[cpu];
5358 
5359 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5360 		atomic_inc(&cpu_buffer->record_disabled);
5361 	}
5362 
5363 	/* Make sure all commits have finished */
5364 	synchronize_rcu();
5365 
5366 	for_each_buffer_cpu(buffer, cpu) {
5367 		cpu_buffer = buffer->buffers[cpu];
5368 
5369 		/*
5370 		 * If a CPU came online during the synchronize_rcu(), then
5371 		 * ignore it.
5372 		 */
5373 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5374 			continue;
5375 
5376 		reset_disabled_cpu_buffer(cpu_buffer);
5377 
5378 		atomic_dec(&cpu_buffer->record_disabled);
5379 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5380 	}
5381 
5382 	mutex_unlock(&buffer->mutex);
5383 }
5384 
5385 /**
5386  * ring_buffer_reset - reset a ring buffer
5387  * @buffer: The ring buffer to reset all cpu buffers
5388  */
5389 void ring_buffer_reset(struct trace_buffer *buffer)
5390 {
5391 	struct ring_buffer_per_cpu *cpu_buffer;
5392 	int cpu;
5393 
5394 	/* prevent another thread from changing buffer sizes */
5395 	mutex_lock(&buffer->mutex);
5396 
5397 	for_each_buffer_cpu(buffer, cpu) {
5398 		cpu_buffer = buffer->buffers[cpu];
5399 
5400 		atomic_inc(&cpu_buffer->resize_disabled);
5401 		atomic_inc(&cpu_buffer->record_disabled);
5402 	}
5403 
5404 	/* Make sure all commits have finished */
5405 	synchronize_rcu();
5406 
5407 	for_each_buffer_cpu(buffer, cpu) {
5408 		cpu_buffer = buffer->buffers[cpu];
5409 
5410 		reset_disabled_cpu_buffer(cpu_buffer);
5411 
5412 		atomic_dec(&cpu_buffer->record_disabled);
5413 		atomic_dec(&cpu_buffer->resize_disabled);
5414 	}
5415 
5416 	mutex_unlock(&buffer->mutex);
5417 }
5418 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5419 
5420 /**
5421  * ring_buffer_empty - is the ring buffer empty?
5422  * @buffer: The ring buffer to test
5423  */
5424 bool ring_buffer_empty(struct trace_buffer *buffer)
5425 {
5426 	struct ring_buffer_per_cpu *cpu_buffer;
5427 	unsigned long flags;
5428 	bool dolock;
5429 	bool ret;
5430 	int cpu;
5431 
5432 	/* yes this is racy, but if you don't like the race, lock the buffer */
5433 	for_each_buffer_cpu(buffer, cpu) {
5434 		cpu_buffer = buffer->buffers[cpu];
5435 		local_irq_save(flags);
5436 		dolock = rb_reader_lock(cpu_buffer);
5437 		ret = rb_per_cpu_empty(cpu_buffer);
5438 		rb_reader_unlock(cpu_buffer, dolock);
5439 		local_irq_restore(flags);
5440 
5441 		if (!ret)
5442 			return false;
5443 	}
5444 
5445 	return true;
5446 }
5447 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5448 
5449 /**
5450  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5451  * @buffer: The ring buffer
5452  * @cpu: The CPU buffer to test
5453  */
5454 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5455 {
5456 	struct ring_buffer_per_cpu *cpu_buffer;
5457 	unsigned long flags;
5458 	bool dolock;
5459 	bool ret;
5460 
5461 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5462 		return true;
5463 
5464 	cpu_buffer = buffer->buffers[cpu];
5465 	local_irq_save(flags);
5466 	dolock = rb_reader_lock(cpu_buffer);
5467 	ret = rb_per_cpu_empty(cpu_buffer);
5468 	rb_reader_unlock(cpu_buffer, dolock);
5469 	local_irq_restore(flags);
5470 
5471 	return ret;
5472 }
5473 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5474 
5475 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5476 /**
5477  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5478  * @buffer_a: One buffer to swap with
5479  * @buffer_b: The other buffer to swap with
5480  * @cpu: the CPU of the buffers to swap
5481  *
5482  * This function is useful for tracers that want to take a "snapshot"
5483  * of a CPU buffer and has another back up buffer lying around.
5484  * it is expected that the tracer handles the cpu buffer not being
5485  * used at the moment.
5486  */
5487 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5488 			 struct trace_buffer *buffer_b, int cpu)
5489 {
5490 	struct ring_buffer_per_cpu *cpu_buffer_a;
5491 	struct ring_buffer_per_cpu *cpu_buffer_b;
5492 	int ret = -EINVAL;
5493 
5494 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5495 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5496 		goto out;
5497 
5498 	cpu_buffer_a = buffer_a->buffers[cpu];
5499 	cpu_buffer_b = buffer_b->buffers[cpu];
5500 
5501 	/* It's up to the callers to not try to swap mapped buffers */
5502 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
5503 		ret = -EBUSY;
5504 		goto out;
5505 	}
5506 
5507 	/* At least make sure the two buffers are somewhat the same */
5508 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5509 		goto out;
5510 
5511 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5512 		goto out;
5513 
5514 	ret = -EAGAIN;
5515 
5516 	if (atomic_read(&buffer_a->record_disabled))
5517 		goto out;
5518 
5519 	if (atomic_read(&buffer_b->record_disabled))
5520 		goto out;
5521 
5522 	if (atomic_read(&cpu_buffer_a->record_disabled))
5523 		goto out;
5524 
5525 	if (atomic_read(&cpu_buffer_b->record_disabled))
5526 		goto out;
5527 
5528 	/*
5529 	 * We can't do a synchronize_rcu here because this
5530 	 * function can be called in atomic context.
5531 	 * Normally this will be called from the same CPU as cpu.
5532 	 * If not it's up to the caller to protect this.
5533 	 */
5534 	atomic_inc(&cpu_buffer_a->record_disabled);
5535 	atomic_inc(&cpu_buffer_b->record_disabled);
5536 
5537 	ret = -EBUSY;
5538 	if (local_read(&cpu_buffer_a->committing))
5539 		goto out_dec;
5540 	if (local_read(&cpu_buffer_b->committing))
5541 		goto out_dec;
5542 
5543 	/*
5544 	 * When resize is in progress, we cannot swap it because
5545 	 * it will mess the state of the cpu buffer.
5546 	 */
5547 	if (atomic_read(&buffer_a->resizing))
5548 		goto out_dec;
5549 	if (atomic_read(&buffer_b->resizing))
5550 		goto out_dec;
5551 
5552 	buffer_a->buffers[cpu] = cpu_buffer_b;
5553 	buffer_b->buffers[cpu] = cpu_buffer_a;
5554 
5555 	cpu_buffer_b->buffer = buffer_a;
5556 	cpu_buffer_a->buffer = buffer_b;
5557 
5558 	ret = 0;
5559 
5560 out_dec:
5561 	atomic_dec(&cpu_buffer_a->record_disabled);
5562 	atomic_dec(&cpu_buffer_b->record_disabled);
5563 out:
5564 	return ret;
5565 }
5566 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5567 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5568 
5569 /**
5570  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5571  * @buffer: the buffer to allocate for.
5572  * @cpu: the cpu buffer to allocate.
5573  *
5574  * This function is used in conjunction with ring_buffer_read_page.
5575  * When reading a full page from the ring buffer, these functions
5576  * can be used to speed up the process. The calling function should
5577  * allocate a few pages first with this function. Then when it
5578  * needs to get pages from the ring buffer, it passes the result
5579  * of this function into ring_buffer_read_page, which will swap
5580  * the page that was allocated, with the read page of the buffer.
5581  *
5582  * Returns:
5583  *  The page allocated, or ERR_PTR
5584  */
5585 struct buffer_data_read_page *
5586 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5587 {
5588 	struct ring_buffer_per_cpu *cpu_buffer;
5589 	struct buffer_data_read_page *bpage = NULL;
5590 	unsigned long flags;
5591 	struct page *page;
5592 
5593 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5594 		return ERR_PTR(-ENODEV);
5595 
5596 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5597 	if (!bpage)
5598 		return ERR_PTR(-ENOMEM);
5599 
5600 	bpage->order = buffer->subbuf_order;
5601 	cpu_buffer = buffer->buffers[cpu];
5602 	local_irq_save(flags);
5603 	arch_spin_lock(&cpu_buffer->lock);
5604 
5605 	if (cpu_buffer->free_page) {
5606 		bpage->data = cpu_buffer->free_page;
5607 		cpu_buffer->free_page = NULL;
5608 	}
5609 
5610 	arch_spin_unlock(&cpu_buffer->lock);
5611 	local_irq_restore(flags);
5612 
5613 	if (bpage->data)
5614 		goto out;
5615 
5616 	page = alloc_pages_node(cpu_to_node(cpu),
5617 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
5618 				cpu_buffer->buffer->subbuf_order);
5619 	if (!page) {
5620 		kfree(bpage);
5621 		return ERR_PTR(-ENOMEM);
5622 	}
5623 
5624 	bpage->data = page_address(page);
5625 
5626  out:
5627 	rb_init_page(bpage->data);
5628 
5629 	return bpage;
5630 }
5631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5632 
5633 /**
5634  * ring_buffer_free_read_page - free an allocated read page
5635  * @buffer: the buffer the page was allocate for
5636  * @cpu: the cpu buffer the page came from
5637  * @data_page: the page to free
5638  *
5639  * Free a page allocated from ring_buffer_alloc_read_page.
5640  */
5641 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5642 				struct buffer_data_read_page *data_page)
5643 {
5644 	struct ring_buffer_per_cpu *cpu_buffer;
5645 	struct buffer_data_page *bpage = data_page->data;
5646 	struct page *page = virt_to_page(bpage);
5647 	unsigned long flags;
5648 
5649 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5650 		return;
5651 
5652 	cpu_buffer = buffer->buffers[cpu];
5653 
5654 	/*
5655 	 * If the page is still in use someplace else, or order of the page
5656 	 * is different from the subbuffer order of the buffer -
5657 	 * we can't reuse it
5658 	 */
5659 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5660 		goto out;
5661 
5662 	local_irq_save(flags);
5663 	arch_spin_lock(&cpu_buffer->lock);
5664 
5665 	if (!cpu_buffer->free_page) {
5666 		cpu_buffer->free_page = bpage;
5667 		bpage = NULL;
5668 	}
5669 
5670 	arch_spin_unlock(&cpu_buffer->lock);
5671 	local_irq_restore(flags);
5672 
5673  out:
5674 	free_pages((unsigned long)bpage, data_page->order);
5675 	kfree(data_page);
5676 }
5677 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5678 
5679 /**
5680  * ring_buffer_read_page - extract a page from the ring buffer
5681  * @buffer: buffer to extract from
5682  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5683  * @len: amount to extract
5684  * @cpu: the cpu of the buffer to extract
5685  * @full: should the extraction only happen when the page is full.
5686  *
5687  * This function will pull out a page from the ring buffer and consume it.
5688  * @data_page must be the address of the variable that was returned
5689  * from ring_buffer_alloc_read_page. This is because the page might be used
5690  * to swap with a page in the ring buffer.
5691  *
5692  * for example:
5693  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5694  *	if (IS_ERR(rpage))
5695  *		return PTR_ERR(rpage);
5696  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5697  *	if (ret >= 0)
5698  *		process_page(ring_buffer_read_page_data(rpage), ret);
5699  *	ring_buffer_free_read_page(buffer, cpu, rpage);
5700  *
5701  * When @full is set, the function will not return true unless
5702  * the writer is off the reader page.
5703  *
5704  * Note: it is up to the calling functions to handle sleeps and wakeups.
5705  *  The ring buffer can be used anywhere in the kernel and can not
5706  *  blindly call wake_up. The layer that uses the ring buffer must be
5707  *  responsible for that.
5708  *
5709  * Returns:
5710  *  >=0 if data has been transferred, returns the offset of consumed data.
5711  *  <0 if no data has been transferred.
5712  */
5713 int ring_buffer_read_page(struct trace_buffer *buffer,
5714 			  struct buffer_data_read_page *data_page,
5715 			  size_t len, int cpu, int full)
5716 {
5717 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5718 	struct ring_buffer_event *event;
5719 	struct buffer_data_page *bpage;
5720 	struct buffer_page *reader;
5721 	unsigned long missed_events;
5722 	unsigned long flags;
5723 	unsigned int commit;
5724 	unsigned int read;
5725 	u64 save_timestamp;
5726 	int ret = -1;
5727 
5728 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5729 		goto out;
5730 
5731 	/*
5732 	 * If len is not big enough to hold the page header, then
5733 	 * we can not copy anything.
5734 	 */
5735 	if (len <= BUF_PAGE_HDR_SIZE)
5736 		goto out;
5737 
5738 	len -= BUF_PAGE_HDR_SIZE;
5739 
5740 	if (!data_page || !data_page->data)
5741 		goto out;
5742 	if (data_page->order != buffer->subbuf_order)
5743 		goto out;
5744 
5745 	bpage = data_page->data;
5746 	if (!bpage)
5747 		goto out;
5748 
5749 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5750 
5751 	reader = rb_get_reader_page(cpu_buffer);
5752 	if (!reader)
5753 		goto out_unlock;
5754 
5755 	event = rb_reader_event(cpu_buffer);
5756 
5757 	read = reader->read;
5758 	commit = rb_page_size(reader);
5759 
5760 	/* Check if any events were dropped */
5761 	missed_events = cpu_buffer->lost_events;
5762 
5763 	/*
5764 	 * If this page has been partially read or
5765 	 * if len is not big enough to read the rest of the page or
5766 	 * a writer is still on the page, then
5767 	 * we must copy the data from the page to the buffer.
5768 	 * Otherwise, we can simply swap the page with the one passed in.
5769 	 */
5770 	if (read || (len < (commit - read)) ||
5771 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
5772 	    cpu_buffer->mapped) {
5773 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5774 		unsigned int rpos = read;
5775 		unsigned int pos = 0;
5776 		unsigned int size;
5777 
5778 		/*
5779 		 * If a full page is expected, this can still be returned
5780 		 * if there's been a previous partial read and the
5781 		 * rest of the page can be read and the commit page is off
5782 		 * the reader page.
5783 		 */
5784 		if (full &&
5785 		    (!read || (len < (commit - read)) ||
5786 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5787 			goto out_unlock;
5788 
5789 		if (len > (commit - read))
5790 			len = (commit - read);
5791 
5792 		/* Always keep the time extend and data together */
5793 		size = rb_event_ts_length(event);
5794 
5795 		if (len < size)
5796 			goto out_unlock;
5797 
5798 		/* save the current timestamp, since the user will need it */
5799 		save_timestamp = cpu_buffer->read_stamp;
5800 
5801 		/* Need to copy one event at a time */
5802 		do {
5803 			/* We need the size of one event, because
5804 			 * rb_advance_reader only advances by one event,
5805 			 * whereas rb_event_ts_length may include the size of
5806 			 * one or two events.
5807 			 * We have already ensured there's enough space if this
5808 			 * is a time extend. */
5809 			size = rb_event_length(event);
5810 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5811 
5812 			len -= size;
5813 
5814 			rb_advance_reader(cpu_buffer);
5815 			rpos = reader->read;
5816 			pos += size;
5817 
5818 			if (rpos >= commit)
5819 				break;
5820 
5821 			event = rb_reader_event(cpu_buffer);
5822 			/* Always keep the time extend and data together */
5823 			size = rb_event_ts_length(event);
5824 		} while (len >= size);
5825 
5826 		/* update bpage */
5827 		local_set(&bpage->commit, pos);
5828 		bpage->time_stamp = save_timestamp;
5829 
5830 		/* we copied everything to the beginning */
5831 		read = 0;
5832 	} else {
5833 		/* update the entry counter */
5834 		cpu_buffer->read += rb_page_entries(reader);
5835 		cpu_buffer->read_bytes += rb_page_size(reader);
5836 
5837 		/* swap the pages */
5838 		rb_init_page(bpage);
5839 		bpage = reader->page;
5840 		reader->page = data_page->data;
5841 		local_set(&reader->write, 0);
5842 		local_set(&reader->entries, 0);
5843 		reader->read = 0;
5844 		data_page->data = bpage;
5845 
5846 		/*
5847 		 * Use the real_end for the data size,
5848 		 * This gives us a chance to store the lost events
5849 		 * on the page.
5850 		 */
5851 		if (reader->real_end)
5852 			local_set(&bpage->commit, reader->real_end);
5853 	}
5854 	ret = read;
5855 
5856 	cpu_buffer->lost_events = 0;
5857 
5858 	commit = local_read(&bpage->commit);
5859 	/*
5860 	 * Set a flag in the commit field if we lost events
5861 	 */
5862 	if (missed_events) {
5863 		/* If there is room at the end of the page to save the
5864 		 * missed events, then record it there.
5865 		 */
5866 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5867 			memcpy(&bpage->data[commit], &missed_events,
5868 			       sizeof(missed_events));
5869 			local_add(RB_MISSED_STORED, &bpage->commit);
5870 			commit += sizeof(missed_events);
5871 		}
5872 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5873 	}
5874 
5875 	/*
5876 	 * This page may be off to user land. Zero it out here.
5877 	 */
5878 	if (commit < buffer->subbuf_size)
5879 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5880 
5881  out_unlock:
5882 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5883 
5884  out:
5885 	return ret;
5886 }
5887 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5888 
5889 /**
5890  * ring_buffer_read_page_data - get pointer to the data in the page.
5891  * @page:  the page to get the data from
5892  *
5893  * Returns pointer to the actual data in this page.
5894  */
5895 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5896 {
5897 	return page->data;
5898 }
5899 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5900 
5901 /**
5902  * ring_buffer_subbuf_size_get - get size of the sub buffer.
5903  * @buffer: the buffer to get the sub buffer size from
5904  *
5905  * Returns size of the sub buffer, in bytes.
5906  */
5907 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5908 {
5909 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5910 }
5911 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5912 
5913 /**
5914  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5915  * @buffer: The ring_buffer to get the system sub page order from
5916  *
5917  * By default, one ring buffer sub page equals to one system page. This parameter
5918  * is configurable, per ring buffer. The size of the ring buffer sub page can be
5919  * extended, but must be an order of system page size.
5920  *
5921  * Returns the order of buffer sub page size, in system pages:
5922  * 0 means the sub buffer size is 1 system page and so forth.
5923  * In case of an error < 0 is returned.
5924  */
5925 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5926 {
5927 	if (!buffer)
5928 		return -EINVAL;
5929 
5930 	return buffer->subbuf_order;
5931 }
5932 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5933 
5934 /**
5935  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5936  * @buffer: The ring_buffer to set the new page size.
5937  * @order: Order of the system pages in one sub buffer page
5938  *
5939  * By default, one ring buffer pages equals to one system page. This API can be
5940  * used to set new size of the ring buffer page. The size must be order of
5941  * system page size, that's why the input parameter @order is the order of
5942  * system pages that are allocated for one ring buffer page:
5943  *  0 - 1 system page
5944  *  1 - 2 system pages
5945  *  3 - 4 system pages
5946  *  ...
5947  *
5948  * Returns 0 on success or < 0 in case of an error.
5949  */
5950 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5951 {
5952 	struct ring_buffer_per_cpu *cpu_buffer;
5953 	struct buffer_page *bpage, *tmp;
5954 	int old_order, old_size;
5955 	int nr_pages;
5956 	int psize;
5957 	int err;
5958 	int cpu;
5959 
5960 	if (!buffer || order < 0)
5961 		return -EINVAL;
5962 
5963 	if (buffer->subbuf_order == order)
5964 		return 0;
5965 
5966 	psize = (1 << order) * PAGE_SIZE;
5967 	if (psize <= BUF_PAGE_HDR_SIZE)
5968 		return -EINVAL;
5969 
5970 	/* Size of a subbuf cannot be greater than the write counter */
5971 	if (psize > RB_WRITE_MASK + 1)
5972 		return -EINVAL;
5973 
5974 	old_order = buffer->subbuf_order;
5975 	old_size = buffer->subbuf_size;
5976 
5977 	/* prevent another thread from changing buffer sizes */
5978 	mutex_lock(&buffer->mutex);
5979 	atomic_inc(&buffer->record_disabled);
5980 
5981 	/* Make sure all commits have finished */
5982 	synchronize_rcu();
5983 
5984 	buffer->subbuf_order = order;
5985 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5986 
5987 	/* Make sure all new buffers are allocated, before deleting the old ones */
5988 	for_each_buffer_cpu(buffer, cpu) {
5989 
5990 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5991 			continue;
5992 
5993 		cpu_buffer = buffer->buffers[cpu];
5994 
5995 		if (cpu_buffer->mapped) {
5996 			err = -EBUSY;
5997 			goto error;
5998 		}
5999 
6000 		/* Update the number of pages to match the new size */
6001 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6002 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6003 
6004 		/* we need a minimum of two pages */
6005 		if (nr_pages < 2)
6006 			nr_pages = 2;
6007 
6008 		cpu_buffer->nr_pages_to_update = nr_pages;
6009 
6010 		/* Include the reader page */
6011 		nr_pages++;
6012 
6013 		/* Allocate the new size buffer */
6014 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6015 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6016 					&cpu_buffer->new_pages)) {
6017 			/* not enough memory for new pages */
6018 			err = -ENOMEM;
6019 			goto error;
6020 		}
6021 	}
6022 
6023 	for_each_buffer_cpu(buffer, cpu) {
6024 
6025 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6026 			continue;
6027 
6028 		cpu_buffer = buffer->buffers[cpu];
6029 
6030 		/* Clear the head bit to make the link list normal to read */
6031 		rb_head_page_deactivate(cpu_buffer);
6032 
6033 		/* Now walk the list and free all the old sub buffers */
6034 		list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
6035 			list_del_init(&bpage->list);
6036 			free_buffer_page(bpage);
6037 		}
6038 		/* The above loop stopped an the last page needing to be freed */
6039 		bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
6040 		free_buffer_page(bpage);
6041 
6042 		/* Free the current reader page */
6043 		free_buffer_page(cpu_buffer->reader_page);
6044 
6045 		/* One page was allocated for the reader page */
6046 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6047 						     struct buffer_page, list);
6048 		list_del_init(&cpu_buffer->reader_page->list);
6049 
6050 		/* The cpu_buffer pages are a link list with no head */
6051 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6052 		cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
6053 		cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
6054 
6055 		/* Clear the new_pages list */
6056 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6057 
6058 		cpu_buffer->head_page
6059 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6060 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6061 
6062 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6063 		cpu_buffer->nr_pages_to_update = 0;
6064 
6065 		free_pages((unsigned long)cpu_buffer->free_page, old_order);
6066 		cpu_buffer->free_page = NULL;
6067 
6068 		rb_head_page_activate(cpu_buffer);
6069 
6070 		rb_check_pages(cpu_buffer);
6071 	}
6072 
6073 	atomic_dec(&buffer->record_disabled);
6074 	mutex_unlock(&buffer->mutex);
6075 
6076 	return 0;
6077 
6078 error:
6079 	buffer->subbuf_order = old_order;
6080 	buffer->subbuf_size = old_size;
6081 
6082 	atomic_dec(&buffer->record_disabled);
6083 	mutex_unlock(&buffer->mutex);
6084 
6085 	for_each_buffer_cpu(buffer, cpu) {
6086 		cpu_buffer = buffer->buffers[cpu];
6087 
6088 		if (!cpu_buffer->nr_pages_to_update)
6089 			continue;
6090 
6091 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6092 			list_del_init(&bpage->list);
6093 			free_buffer_page(bpage);
6094 		}
6095 	}
6096 
6097 	return err;
6098 }
6099 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6100 
6101 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6102 {
6103 	struct page *page;
6104 
6105 	if (cpu_buffer->meta_page)
6106 		return 0;
6107 
6108 	page = alloc_page(GFP_USER | __GFP_ZERO);
6109 	if (!page)
6110 		return -ENOMEM;
6111 
6112 	cpu_buffer->meta_page = page_to_virt(page);
6113 
6114 	return 0;
6115 }
6116 
6117 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6118 {
6119 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6120 
6121 	free_page(addr);
6122 	cpu_buffer->meta_page = NULL;
6123 }
6124 
6125 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6126 				   unsigned long *subbuf_ids)
6127 {
6128 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6129 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6130 	struct buffer_page *first_subbuf, *subbuf;
6131 	int id = 0;
6132 
6133 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6134 	cpu_buffer->reader_page->id = id++;
6135 
6136 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6137 	do {
6138 		if (WARN_ON(id >= nr_subbufs))
6139 			break;
6140 
6141 		subbuf_ids[id] = (unsigned long)subbuf->page;
6142 		subbuf->id = id;
6143 
6144 		rb_inc_page(&subbuf);
6145 		id++;
6146 	} while (subbuf != first_subbuf);
6147 
6148 	/* install subbuf ID to kern VA translation */
6149 	cpu_buffer->subbuf_ids = subbuf_ids;
6150 
6151 	meta->meta_page_size = PAGE_SIZE;
6152 	meta->meta_struct_len = sizeof(*meta);
6153 	meta->nr_subbufs = nr_subbufs;
6154 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6155 
6156 	rb_update_meta_page(cpu_buffer);
6157 }
6158 
6159 static struct ring_buffer_per_cpu *
6160 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6161 {
6162 	struct ring_buffer_per_cpu *cpu_buffer;
6163 
6164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6165 		return ERR_PTR(-EINVAL);
6166 
6167 	cpu_buffer = buffer->buffers[cpu];
6168 
6169 	mutex_lock(&cpu_buffer->mapping_lock);
6170 
6171 	if (!cpu_buffer->mapped) {
6172 		mutex_unlock(&cpu_buffer->mapping_lock);
6173 		return ERR_PTR(-ENODEV);
6174 	}
6175 
6176 	return cpu_buffer;
6177 }
6178 
6179 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6180 {
6181 	mutex_unlock(&cpu_buffer->mapping_lock);
6182 }
6183 
6184 /*
6185  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6186  * to be set-up or torn-down.
6187  */
6188 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6189 			       bool inc)
6190 {
6191 	unsigned long flags;
6192 
6193 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6194 
6195 	if (inc && cpu_buffer->mapped == UINT_MAX)
6196 		return -EBUSY;
6197 
6198 	if (WARN_ON(!inc && cpu_buffer->mapped == 0))
6199 		return -EINVAL;
6200 
6201 	mutex_lock(&cpu_buffer->buffer->mutex);
6202 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6203 
6204 	if (inc)
6205 		cpu_buffer->mapped++;
6206 	else
6207 		cpu_buffer->mapped--;
6208 
6209 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6210 	mutex_unlock(&cpu_buffer->buffer->mutex);
6211 
6212 	return 0;
6213 }
6214 
6215 /*
6216  *   +--------------+  pgoff == 0
6217  *   |   meta page  |
6218  *   +--------------+  pgoff == 1
6219  *   | subbuffer 0  |
6220  *   |              |
6221  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6222  *   | subbuffer 1  |
6223  *   |              |
6224  *         ...
6225  */
6226 #ifdef CONFIG_MMU
6227 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6228 			struct vm_area_struct *vma)
6229 {
6230 	unsigned long nr_subbufs, nr_pages, vma_pages, pgoff = vma->vm_pgoff;
6231 	unsigned int subbuf_pages, subbuf_order;
6232 	struct page **pages;
6233 	int p = 0, s = 0;
6234 	int err;
6235 
6236 	/* Refuse MP_PRIVATE or writable mappings */
6237 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6238 	    !(vma->vm_flags & VM_MAYSHARE))
6239 		return -EPERM;
6240 
6241 	/*
6242 	 * Make sure the mapping cannot become writable later. Also tell the VM
6243 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
6244 	 */
6245 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
6246 		     VM_MAYWRITE);
6247 
6248 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6249 
6250 	subbuf_order = cpu_buffer->buffer->subbuf_order;
6251 	subbuf_pages = 1 << subbuf_order;
6252 
6253 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
6254 	nr_pages = ((nr_subbufs) << subbuf_order) - pgoff + 1; /* + meta-page */
6255 
6256 	vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
6257 	if (!vma_pages || vma_pages > nr_pages)
6258 		return -EINVAL;
6259 
6260 	nr_pages = vma_pages;
6261 
6262 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
6263 	if (!pages)
6264 		return -ENOMEM;
6265 
6266 	if (!pgoff) {
6267 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
6268 
6269 		/*
6270 		 * TODO: Align sub-buffers on their size, once
6271 		 * vm_insert_pages() supports the zero-page.
6272 		 */
6273 	} else {
6274 		/* Skip the meta-page */
6275 		pgoff--;
6276 
6277 		if (pgoff % subbuf_pages) {
6278 			err = -EINVAL;
6279 			goto out;
6280 		}
6281 
6282 		s += pgoff / subbuf_pages;
6283 	}
6284 
6285 	while (p < nr_pages) {
6286 		struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
6287 		int off = 0;
6288 
6289 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
6290 			err = -EINVAL;
6291 			goto out;
6292 		}
6293 
6294 		for (; off < (1 << (subbuf_order)); off++, page++) {
6295 			if (p >= nr_pages)
6296 				break;
6297 
6298 			pages[p++] = page;
6299 		}
6300 		s++;
6301 	}
6302 
6303 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
6304 
6305 out:
6306 	kfree(pages);
6307 
6308 	return err;
6309 }
6310 #else
6311 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6312 			struct vm_area_struct *vma)
6313 {
6314 	return -EOPNOTSUPP;
6315 }
6316 #endif
6317 
6318 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
6319 		    struct vm_area_struct *vma)
6320 {
6321 	struct ring_buffer_per_cpu *cpu_buffer;
6322 	unsigned long flags, *subbuf_ids;
6323 	int err = 0;
6324 
6325 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6326 		return -EINVAL;
6327 
6328 	cpu_buffer = buffer->buffers[cpu];
6329 
6330 	mutex_lock(&cpu_buffer->mapping_lock);
6331 
6332 	if (cpu_buffer->mapped) {
6333 		err = __rb_map_vma(cpu_buffer, vma);
6334 		if (!err)
6335 			err = __rb_inc_dec_mapped(cpu_buffer, true);
6336 		mutex_unlock(&cpu_buffer->mapping_lock);
6337 		return err;
6338 	}
6339 
6340 	/* prevent another thread from changing buffer/sub-buffer sizes */
6341 	mutex_lock(&buffer->mutex);
6342 
6343 	err = rb_alloc_meta_page(cpu_buffer);
6344 	if (err)
6345 		goto unlock;
6346 
6347 	/* subbuf_ids include the reader while nr_pages does not */
6348 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
6349 	if (!subbuf_ids) {
6350 		rb_free_meta_page(cpu_buffer);
6351 		err = -ENOMEM;
6352 		goto unlock;
6353 	}
6354 
6355 	atomic_inc(&cpu_buffer->resize_disabled);
6356 
6357 	/*
6358 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
6359 	 * assigned.
6360 	 */
6361 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6362 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
6363 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6364 
6365 	err = __rb_map_vma(cpu_buffer, vma);
6366 	if (!err) {
6367 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6368 		cpu_buffer->mapped = 1;
6369 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6370 	} else {
6371 		kfree(cpu_buffer->subbuf_ids);
6372 		cpu_buffer->subbuf_ids = NULL;
6373 		rb_free_meta_page(cpu_buffer);
6374 	}
6375 
6376 unlock:
6377 	mutex_unlock(&buffer->mutex);
6378 	mutex_unlock(&cpu_buffer->mapping_lock);
6379 
6380 	return err;
6381 }
6382 
6383 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
6384 {
6385 	struct ring_buffer_per_cpu *cpu_buffer;
6386 	unsigned long flags;
6387 	int err = 0;
6388 
6389 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6390 		return -EINVAL;
6391 
6392 	cpu_buffer = buffer->buffers[cpu];
6393 
6394 	mutex_lock(&cpu_buffer->mapping_lock);
6395 
6396 	if (!cpu_buffer->mapped) {
6397 		err = -ENODEV;
6398 		goto out;
6399 	} else if (cpu_buffer->mapped > 1) {
6400 		__rb_inc_dec_mapped(cpu_buffer, false);
6401 		goto out;
6402 	}
6403 
6404 	mutex_lock(&buffer->mutex);
6405 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6406 
6407 	cpu_buffer->mapped = 0;
6408 
6409 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6410 
6411 	kfree(cpu_buffer->subbuf_ids);
6412 	cpu_buffer->subbuf_ids = NULL;
6413 	rb_free_meta_page(cpu_buffer);
6414 	atomic_dec(&cpu_buffer->resize_disabled);
6415 
6416 	mutex_unlock(&buffer->mutex);
6417 
6418 out:
6419 	mutex_unlock(&cpu_buffer->mapping_lock);
6420 
6421 	return err;
6422 }
6423 
6424 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
6425 {
6426 	struct ring_buffer_per_cpu *cpu_buffer;
6427 	struct buffer_page *reader;
6428 	unsigned long missed_events;
6429 	unsigned long reader_size;
6430 	unsigned long flags;
6431 
6432 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
6433 	if (IS_ERR(cpu_buffer))
6434 		return (int)PTR_ERR(cpu_buffer);
6435 
6436 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6437 
6438 consume:
6439 	if (rb_per_cpu_empty(cpu_buffer))
6440 		goto out;
6441 
6442 	reader_size = rb_page_size(cpu_buffer->reader_page);
6443 
6444 	/*
6445 	 * There are data to be read on the current reader page, we can
6446 	 * return to the caller. But before that, we assume the latter will read
6447 	 * everything. Let's update the kernel reader accordingly.
6448 	 */
6449 	if (cpu_buffer->reader_page->read < reader_size) {
6450 		while (cpu_buffer->reader_page->read < reader_size)
6451 			rb_advance_reader(cpu_buffer);
6452 		goto out;
6453 	}
6454 
6455 	reader = rb_get_reader_page(cpu_buffer);
6456 	if (WARN_ON(!reader))
6457 		goto out;
6458 
6459 	/* Check if any events were dropped */
6460 	missed_events = cpu_buffer->lost_events;
6461 
6462 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
6463 		if (missed_events) {
6464 			struct buffer_data_page *bpage = reader->page;
6465 			unsigned int commit;
6466 			/*
6467 			 * Use the real_end for the data size,
6468 			 * This gives us a chance to store the lost events
6469 			 * on the page.
6470 			 */
6471 			if (reader->real_end)
6472 				local_set(&bpage->commit, reader->real_end);
6473 			/*
6474 			 * If there is room at the end of the page to save the
6475 			 * missed events, then record it there.
6476 			 */
6477 			commit = rb_page_size(reader);
6478 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6479 				memcpy(&bpage->data[commit], &missed_events,
6480 				       sizeof(missed_events));
6481 				local_add(RB_MISSED_STORED, &bpage->commit);
6482 			}
6483 			local_add(RB_MISSED_EVENTS, &bpage->commit);
6484 		}
6485 	} else {
6486 		/*
6487 		 * There really shouldn't be any missed events if the commit
6488 		 * is on the reader page.
6489 		 */
6490 		WARN_ON_ONCE(missed_events);
6491 	}
6492 
6493 	cpu_buffer->lost_events = 0;
6494 
6495 	goto consume;
6496 
6497 out:
6498 	/* Some archs do not have data cache coherency between kernel and user-space */
6499 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
6500 
6501 	rb_update_meta_page(cpu_buffer);
6502 
6503 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6504 	rb_put_mapped_buffer(cpu_buffer);
6505 
6506 	return 0;
6507 }
6508 
6509 /*
6510  * We only allocate new buffers, never free them if the CPU goes down.
6511  * If we were to free the buffer, then the user would lose any trace that was in
6512  * the buffer.
6513  */
6514 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6515 {
6516 	struct trace_buffer *buffer;
6517 	long nr_pages_same;
6518 	int cpu_i;
6519 	unsigned long nr_pages;
6520 
6521 	buffer = container_of(node, struct trace_buffer, node);
6522 	if (cpumask_test_cpu(cpu, buffer->cpumask))
6523 		return 0;
6524 
6525 	nr_pages = 0;
6526 	nr_pages_same = 1;
6527 	/* check if all cpu sizes are same */
6528 	for_each_buffer_cpu(buffer, cpu_i) {
6529 		/* fill in the size from first enabled cpu */
6530 		if (nr_pages == 0)
6531 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
6532 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6533 			nr_pages_same = 0;
6534 			break;
6535 		}
6536 	}
6537 	/* allocate minimum pages, user can later expand it */
6538 	if (!nr_pages_same)
6539 		nr_pages = 2;
6540 	buffer->buffers[cpu] =
6541 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6542 	if (!buffer->buffers[cpu]) {
6543 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
6544 		     cpu);
6545 		return -ENOMEM;
6546 	}
6547 	smp_wmb();
6548 	cpumask_set_cpu(cpu, buffer->cpumask);
6549 	return 0;
6550 }
6551 
6552 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6553 /*
6554  * This is a basic integrity check of the ring buffer.
6555  * Late in the boot cycle this test will run when configured in.
6556  * It will kick off a thread per CPU that will go into a loop
6557  * writing to the per cpu ring buffer various sizes of data.
6558  * Some of the data will be large items, some small.
6559  *
6560  * Another thread is created that goes into a spin, sending out
6561  * IPIs to the other CPUs to also write into the ring buffer.
6562  * this is to test the nesting ability of the buffer.
6563  *
6564  * Basic stats are recorded and reported. If something in the
6565  * ring buffer should happen that's not expected, a big warning
6566  * is displayed and all ring buffers are disabled.
6567  */
6568 static struct task_struct *rb_threads[NR_CPUS] __initdata;
6569 
6570 struct rb_test_data {
6571 	struct trace_buffer *buffer;
6572 	unsigned long		events;
6573 	unsigned long		bytes_written;
6574 	unsigned long		bytes_alloc;
6575 	unsigned long		bytes_dropped;
6576 	unsigned long		events_nested;
6577 	unsigned long		bytes_written_nested;
6578 	unsigned long		bytes_alloc_nested;
6579 	unsigned long		bytes_dropped_nested;
6580 	int			min_size_nested;
6581 	int			max_size_nested;
6582 	int			max_size;
6583 	int			min_size;
6584 	int			cpu;
6585 	int			cnt;
6586 };
6587 
6588 static struct rb_test_data rb_data[NR_CPUS] __initdata;
6589 
6590 /* 1 meg per cpu */
6591 #define RB_TEST_BUFFER_SIZE	1048576
6592 
6593 static char rb_string[] __initdata =
6594 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6595 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6596 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6597 
6598 static bool rb_test_started __initdata;
6599 
6600 struct rb_item {
6601 	int size;
6602 	char str[];
6603 };
6604 
6605 static __init int rb_write_something(struct rb_test_data *data, bool nested)
6606 {
6607 	struct ring_buffer_event *event;
6608 	struct rb_item *item;
6609 	bool started;
6610 	int event_len;
6611 	int size;
6612 	int len;
6613 	int cnt;
6614 
6615 	/* Have nested writes different that what is written */
6616 	cnt = data->cnt + (nested ? 27 : 0);
6617 
6618 	/* Multiply cnt by ~e, to make some unique increment */
6619 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6620 
6621 	len = size + sizeof(struct rb_item);
6622 
6623 	started = rb_test_started;
6624 	/* read rb_test_started before checking buffer enabled */
6625 	smp_rmb();
6626 
6627 	event = ring_buffer_lock_reserve(data->buffer, len);
6628 	if (!event) {
6629 		/* Ignore dropped events before test starts. */
6630 		if (started) {
6631 			if (nested)
6632 				data->bytes_dropped += len;
6633 			else
6634 				data->bytes_dropped_nested += len;
6635 		}
6636 		return len;
6637 	}
6638 
6639 	event_len = ring_buffer_event_length(event);
6640 
6641 	if (RB_WARN_ON(data->buffer, event_len < len))
6642 		goto out;
6643 
6644 	item = ring_buffer_event_data(event);
6645 	item->size = size;
6646 	memcpy(item->str, rb_string, size);
6647 
6648 	if (nested) {
6649 		data->bytes_alloc_nested += event_len;
6650 		data->bytes_written_nested += len;
6651 		data->events_nested++;
6652 		if (!data->min_size_nested || len < data->min_size_nested)
6653 			data->min_size_nested = len;
6654 		if (len > data->max_size_nested)
6655 			data->max_size_nested = len;
6656 	} else {
6657 		data->bytes_alloc += event_len;
6658 		data->bytes_written += len;
6659 		data->events++;
6660 		if (!data->min_size || len < data->min_size)
6661 			data->max_size = len;
6662 		if (len > data->max_size)
6663 			data->max_size = len;
6664 	}
6665 
6666  out:
6667 	ring_buffer_unlock_commit(data->buffer);
6668 
6669 	return 0;
6670 }
6671 
6672 static __init int rb_test(void *arg)
6673 {
6674 	struct rb_test_data *data = arg;
6675 
6676 	while (!kthread_should_stop()) {
6677 		rb_write_something(data, false);
6678 		data->cnt++;
6679 
6680 		set_current_state(TASK_INTERRUPTIBLE);
6681 		/* Now sleep between a min of 100-300us and a max of 1ms */
6682 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6683 	}
6684 
6685 	return 0;
6686 }
6687 
6688 static __init void rb_ipi(void *ignore)
6689 {
6690 	struct rb_test_data *data;
6691 	int cpu = smp_processor_id();
6692 
6693 	data = &rb_data[cpu];
6694 	rb_write_something(data, true);
6695 }
6696 
6697 static __init int rb_hammer_test(void *arg)
6698 {
6699 	while (!kthread_should_stop()) {
6700 
6701 		/* Send an IPI to all cpus to write data! */
6702 		smp_call_function(rb_ipi, NULL, 1);
6703 		/* No sleep, but for non preempt, let others run */
6704 		schedule();
6705 	}
6706 
6707 	return 0;
6708 }
6709 
6710 static __init int test_ringbuffer(void)
6711 {
6712 	struct task_struct *rb_hammer;
6713 	struct trace_buffer *buffer;
6714 	int cpu;
6715 	int ret = 0;
6716 
6717 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6718 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6719 		return 0;
6720 	}
6721 
6722 	pr_info("Running ring buffer tests...\n");
6723 
6724 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6725 	if (WARN_ON(!buffer))
6726 		return 0;
6727 
6728 	/* Disable buffer so that threads can't write to it yet */
6729 	ring_buffer_record_off(buffer);
6730 
6731 	for_each_online_cpu(cpu) {
6732 		rb_data[cpu].buffer = buffer;
6733 		rb_data[cpu].cpu = cpu;
6734 		rb_data[cpu].cnt = cpu;
6735 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6736 						     cpu, "rbtester/%u");
6737 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6738 			pr_cont("FAILED\n");
6739 			ret = PTR_ERR(rb_threads[cpu]);
6740 			goto out_free;
6741 		}
6742 	}
6743 
6744 	/* Now create the rb hammer! */
6745 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6746 	if (WARN_ON(IS_ERR(rb_hammer))) {
6747 		pr_cont("FAILED\n");
6748 		ret = PTR_ERR(rb_hammer);
6749 		goto out_free;
6750 	}
6751 
6752 	ring_buffer_record_on(buffer);
6753 	/*
6754 	 * Show buffer is enabled before setting rb_test_started.
6755 	 * Yes there's a small race window where events could be
6756 	 * dropped and the thread wont catch it. But when a ring
6757 	 * buffer gets enabled, there will always be some kind of
6758 	 * delay before other CPUs see it. Thus, we don't care about
6759 	 * those dropped events. We care about events dropped after
6760 	 * the threads see that the buffer is active.
6761 	 */
6762 	smp_wmb();
6763 	rb_test_started = true;
6764 
6765 	set_current_state(TASK_INTERRUPTIBLE);
6766 	/* Just run for 10 seconds */;
6767 	schedule_timeout(10 * HZ);
6768 
6769 	kthread_stop(rb_hammer);
6770 
6771  out_free:
6772 	for_each_online_cpu(cpu) {
6773 		if (!rb_threads[cpu])
6774 			break;
6775 		kthread_stop(rb_threads[cpu]);
6776 	}
6777 	if (ret) {
6778 		ring_buffer_free(buffer);
6779 		return ret;
6780 	}
6781 
6782 	/* Report! */
6783 	pr_info("finished\n");
6784 	for_each_online_cpu(cpu) {
6785 		struct ring_buffer_event *event;
6786 		struct rb_test_data *data = &rb_data[cpu];
6787 		struct rb_item *item;
6788 		unsigned long total_events;
6789 		unsigned long total_dropped;
6790 		unsigned long total_written;
6791 		unsigned long total_alloc;
6792 		unsigned long total_read = 0;
6793 		unsigned long total_size = 0;
6794 		unsigned long total_len = 0;
6795 		unsigned long total_lost = 0;
6796 		unsigned long lost;
6797 		int big_event_size;
6798 		int small_event_size;
6799 
6800 		ret = -1;
6801 
6802 		total_events = data->events + data->events_nested;
6803 		total_written = data->bytes_written + data->bytes_written_nested;
6804 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6805 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6806 
6807 		big_event_size = data->max_size + data->max_size_nested;
6808 		small_event_size = data->min_size + data->min_size_nested;
6809 
6810 		pr_info("CPU %d:\n", cpu);
6811 		pr_info("              events:    %ld\n", total_events);
6812 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6813 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6814 		pr_info("       written bytes:    %ld\n", total_written);
6815 		pr_info("       biggest event:    %d\n", big_event_size);
6816 		pr_info("      smallest event:    %d\n", small_event_size);
6817 
6818 		if (RB_WARN_ON(buffer, total_dropped))
6819 			break;
6820 
6821 		ret = 0;
6822 
6823 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6824 			total_lost += lost;
6825 			item = ring_buffer_event_data(event);
6826 			total_len += ring_buffer_event_length(event);
6827 			total_size += item->size + sizeof(struct rb_item);
6828 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6829 				pr_info("FAILED!\n");
6830 				pr_info("buffer had: %.*s\n", item->size, item->str);
6831 				pr_info("expected:   %.*s\n", item->size, rb_string);
6832 				RB_WARN_ON(buffer, 1);
6833 				ret = -1;
6834 				break;
6835 			}
6836 			total_read++;
6837 		}
6838 		if (ret)
6839 			break;
6840 
6841 		ret = -1;
6842 
6843 		pr_info("         read events:   %ld\n", total_read);
6844 		pr_info("         lost events:   %ld\n", total_lost);
6845 		pr_info("        total events:   %ld\n", total_lost + total_read);
6846 		pr_info("  recorded len bytes:   %ld\n", total_len);
6847 		pr_info(" recorded size bytes:   %ld\n", total_size);
6848 		if (total_lost) {
6849 			pr_info(" With dropped events, record len and size may not match\n"
6850 				" alloced and written from above\n");
6851 		} else {
6852 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6853 				       total_size != total_written))
6854 				break;
6855 		}
6856 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6857 			break;
6858 
6859 		ret = 0;
6860 	}
6861 	if (!ret)
6862 		pr_info("Ring buffer PASSED!\n");
6863 
6864 	ring_buffer_free(buffer);
6865 	return 0;
6866 }
6867 
6868 late_initcall(test_ringbuffer);
6869 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6870