1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 static void update_pages_handler(struct work_struct *work); 33 34 /* 35 * The ring buffer header is special. We must manually up keep it. 36 */ 37 int ring_buffer_print_entry_header(struct trace_seq *s) 38 { 39 trace_seq_puts(s, "# compressed entry header\n"); 40 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 trace_seq_puts(s, "\tarray : 32 bits\n"); 43 trace_seq_putc(s, '\n'); 44 trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 49 RINGBUF_TYPE_TIME_STAMP); 50 trace_seq_printf(s, "\tdata max type_len == %d\n", 51 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 52 53 return !trace_seq_has_overflowed(s); 54 } 55 56 /* 57 * The ring buffer is made up of a list of pages. A separate list of pages is 58 * allocated for each CPU. A writer may only write to a buffer that is 59 * associated with the CPU it is currently executing on. A reader may read 60 * from any per cpu buffer. 61 * 62 * The reader is special. For each per cpu buffer, the reader has its own 63 * reader page. When a reader has read the entire reader page, this reader 64 * page is swapped with another page in the ring buffer. 65 * 66 * Now, as long as the writer is off the reader page, the reader can do what 67 * ever it wants with that page. The writer will never write to that page 68 * again (as long as it is out of the ring buffer). 69 * 70 * Here's some silly ASCII art. 71 * 72 * +------+ 73 * |reader| RING BUFFER 74 * |page | 75 * +------+ +---+ +---+ +---+ 76 * | |-->| |-->| | 77 * +---+ +---+ +---+ 78 * ^ | 79 * | | 80 * +---------------+ 81 * 82 * 83 * +------+ 84 * |reader| RING BUFFER 85 * |page |------------------v 86 * +------+ +---+ +---+ +---+ 87 * | |-->| |-->| | 88 * +---+ +---+ +---+ 89 * ^ | 90 * | | 91 * +---------------+ 92 * 93 * 94 * +------+ 95 * |reader| RING BUFFER 96 * |page |------------------v 97 * +------+ +---+ +---+ +---+ 98 * ^ | |-->| |-->| | 99 * | +---+ +---+ +---+ 100 * | | 101 * | | 102 * +------------------------------+ 103 * 104 * 105 * +------+ 106 * |buffer| RING BUFFER 107 * |page |------------------v 108 * +------+ +---+ +---+ +---+ 109 * ^ | | | |-->| | 110 * | New +---+ +---+ +---+ 111 * | Reader------^ | 112 * | page | 113 * +------------------------------+ 114 * 115 * 116 * After we make this swap, the reader can hand this page off to the splice 117 * code and be done with it. It can even allocate a new page if it needs to 118 * and swap that into the ring buffer. 119 * 120 * We will be using cmpxchg soon to make all this lockless. 121 * 122 */ 123 124 /* Used for individual buffers (after the counter) */ 125 #define RB_BUFFER_OFF (1 << 20) 126 127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 128 129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 130 #define RB_ALIGNMENT 4U 131 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 132 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 133 134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 135 # define RB_FORCE_8BYTE_ALIGNMENT 0 136 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 137 #else 138 # define RB_FORCE_8BYTE_ALIGNMENT 1 139 # define RB_ARCH_ALIGNMENT 8U 140 #endif 141 142 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 143 144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 146 147 enum { 148 RB_LEN_TIME_EXTEND = 8, 149 RB_LEN_TIME_STAMP = 8, 150 }; 151 152 #define skip_time_extend(event) \ 153 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 154 155 #define extended_time(event) \ 156 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 157 158 static inline int rb_null_event(struct ring_buffer_event *event) 159 { 160 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 161 } 162 163 static void rb_event_set_padding(struct ring_buffer_event *event) 164 { 165 /* padding has a NULL time_delta */ 166 event->type_len = RINGBUF_TYPE_PADDING; 167 event->time_delta = 0; 168 } 169 170 static unsigned 171 rb_event_data_length(struct ring_buffer_event *event) 172 { 173 unsigned length; 174 175 if (event->type_len) 176 length = event->type_len * RB_ALIGNMENT; 177 else 178 length = event->array[0]; 179 return length + RB_EVNT_HDR_SIZE; 180 } 181 182 /* 183 * Return the length of the given event. Will return 184 * the length of the time extend if the event is a 185 * time extend. 186 */ 187 static inline unsigned 188 rb_event_length(struct ring_buffer_event *event) 189 { 190 switch (event->type_len) { 191 case RINGBUF_TYPE_PADDING: 192 if (rb_null_event(event)) 193 /* undefined */ 194 return -1; 195 return event->array[0] + RB_EVNT_HDR_SIZE; 196 197 case RINGBUF_TYPE_TIME_EXTEND: 198 return RB_LEN_TIME_EXTEND; 199 200 case RINGBUF_TYPE_TIME_STAMP: 201 return RB_LEN_TIME_STAMP; 202 203 case RINGBUF_TYPE_DATA: 204 return rb_event_data_length(event); 205 default: 206 WARN_ON_ONCE(1); 207 } 208 /* not hit */ 209 return 0; 210 } 211 212 /* 213 * Return total length of time extend and data, 214 * or just the event length for all other events. 215 */ 216 static inline unsigned 217 rb_event_ts_length(struct ring_buffer_event *event) 218 { 219 unsigned len = 0; 220 221 if (extended_time(event)) { 222 /* time extends include the data event after it */ 223 len = RB_LEN_TIME_EXTEND; 224 event = skip_time_extend(event); 225 } 226 return len + rb_event_length(event); 227 } 228 229 /** 230 * ring_buffer_event_length - return the length of the event 231 * @event: the event to get the length of 232 * 233 * Returns the size of the data load of a data event. 234 * If the event is something other than a data event, it 235 * returns the size of the event itself. With the exception 236 * of a TIME EXTEND, where it still returns the size of the 237 * data load of the data event after it. 238 */ 239 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 240 { 241 unsigned length; 242 243 if (extended_time(event)) 244 event = skip_time_extend(event); 245 246 length = rb_event_length(event); 247 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 248 return length; 249 length -= RB_EVNT_HDR_SIZE; 250 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 251 length -= sizeof(event->array[0]); 252 return length; 253 } 254 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 255 256 /* inline for ring buffer fast paths */ 257 static __always_inline void * 258 rb_event_data(struct ring_buffer_event *event) 259 { 260 if (extended_time(event)) 261 event = skip_time_extend(event); 262 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 263 /* If length is in len field, then array[0] has the data */ 264 if (event->type_len) 265 return (void *)&event->array[0]; 266 /* Otherwise length is in array[0] and array[1] has the data */ 267 return (void *)&event->array[1]; 268 } 269 270 /** 271 * ring_buffer_event_data - return the data of the event 272 * @event: the event to get the data from 273 */ 274 void *ring_buffer_event_data(struct ring_buffer_event *event) 275 { 276 return rb_event_data(event); 277 } 278 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 279 280 #define for_each_buffer_cpu(buffer, cpu) \ 281 for_each_cpu(cpu, buffer->cpumask) 282 283 #define for_each_online_buffer_cpu(buffer, cpu) \ 284 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 285 286 #define TS_SHIFT 27 287 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 288 #define TS_DELTA_TEST (~TS_MASK) 289 290 /** 291 * ring_buffer_event_time_stamp - return the event's extended timestamp 292 * @event: the event to get the timestamp of 293 * 294 * Returns the extended timestamp associated with a data event. 295 * An extended time_stamp is a 64-bit timestamp represented 296 * internally in a special way that makes the best use of space 297 * contained within a ring buffer event. This function decodes 298 * it and maps it to a straight u64 value. 299 */ 300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 301 { 302 u64 ts; 303 304 ts = event->array[0]; 305 ts <<= TS_SHIFT; 306 ts += event->time_delta; 307 308 return ts; 309 } 310 311 /* Flag when events were overwritten */ 312 #define RB_MISSED_EVENTS (1 << 31) 313 /* Missed count stored at end */ 314 #define RB_MISSED_STORED (1 << 30) 315 316 struct buffer_data_page { 317 u64 time_stamp; /* page time stamp */ 318 local_t commit; /* write committed index */ 319 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 320 }; 321 322 /* 323 * Note, the buffer_page list must be first. The buffer pages 324 * are allocated in cache lines, which means that each buffer 325 * page will be at the beginning of a cache line, and thus 326 * the least significant bits will be zero. We use this to 327 * add flags in the list struct pointers, to make the ring buffer 328 * lockless. 329 */ 330 struct buffer_page { 331 struct list_head list; /* list of buffer pages */ 332 local_t write; /* index for next write */ 333 unsigned read; /* index for next read */ 334 local_t entries; /* entries on this page */ 335 unsigned long real_end; /* real end of data */ 336 struct buffer_data_page *page; /* Actual data page */ 337 }; 338 339 /* 340 * The buffer page counters, write and entries, must be reset 341 * atomically when crossing page boundaries. To synchronize this 342 * update, two counters are inserted into the number. One is 343 * the actual counter for the write position or count on the page. 344 * 345 * The other is a counter of updaters. Before an update happens 346 * the update partition of the counter is incremented. This will 347 * allow the updater to update the counter atomically. 348 * 349 * The counter is 20 bits, and the state data is 12. 350 */ 351 #define RB_WRITE_MASK 0xfffff 352 #define RB_WRITE_INTCNT (1 << 20) 353 354 static void rb_init_page(struct buffer_data_page *bpage) 355 { 356 local_set(&bpage->commit, 0); 357 } 358 359 /* 360 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 361 * this issue out. 362 */ 363 static void free_buffer_page(struct buffer_page *bpage) 364 { 365 free_page((unsigned long)bpage->page); 366 kfree(bpage); 367 } 368 369 /* 370 * We need to fit the time_stamp delta into 27 bits. 371 */ 372 static inline int test_time_stamp(u64 delta) 373 { 374 if (delta & TS_DELTA_TEST) 375 return 1; 376 return 0; 377 } 378 379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 380 381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 383 384 int ring_buffer_print_page_header(struct trace_seq *s) 385 { 386 struct buffer_data_page field; 387 388 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 389 "offset:0;\tsize:%u;\tsigned:%u;\n", 390 (unsigned int)sizeof(field.time_stamp), 391 (unsigned int)is_signed_type(u64)); 392 393 trace_seq_printf(s, "\tfield: local_t commit;\t" 394 "offset:%u;\tsize:%u;\tsigned:%u;\n", 395 (unsigned int)offsetof(typeof(field), commit), 396 (unsigned int)sizeof(field.commit), 397 (unsigned int)is_signed_type(long)); 398 399 trace_seq_printf(s, "\tfield: int overwrite;\t" 400 "offset:%u;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)offsetof(typeof(field), commit), 402 1, 403 (unsigned int)is_signed_type(long)); 404 405 trace_seq_printf(s, "\tfield: char data;\t" 406 "offset:%u;\tsize:%u;\tsigned:%u;\n", 407 (unsigned int)offsetof(typeof(field), data), 408 (unsigned int)BUF_PAGE_SIZE, 409 (unsigned int)is_signed_type(char)); 410 411 return !trace_seq_has_overflowed(s); 412 } 413 414 struct rb_irq_work { 415 struct irq_work work; 416 wait_queue_head_t waiters; 417 wait_queue_head_t full_waiters; 418 bool waiters_pending; 419 bool full_waiters_pending; 420 bool wakeup_full; 421 }; 422 423 /* 424 * Structure to hold event state and handle nested events. 425 */ 426 struct rb_event_info { 427 u64 ts; 428 u64 delta; 429 u64 before; 430 u64 after; 431 unsigned long length; 432 struct buffer_page *tail_page; 433 int add_timestamp; 434 }; 435 436 /* 437 * Used for the add_timestamp 438 * NONE 439 * EXTEND - wants a time extend 440 * ABSOLUTE - the buffer requests all events to have absolute time stamps 441 * FORCE - force a full time stamp. 442 */ 443 enum { 444 RB_ADD_STAMP_NONE = 0, 445 RB_ADD_STAMP_EXTEND = BIT(1), 446 RB_ADD_STAMP_ABSOLUTE = BIT(2), 447 RB_ADD_STAMP_FORCE = BIT(3) 448 }; 449 /* 450 * Used for which event context the event is in. 451 * TRANSITION = 0 452 * NMI = 1 453 * IRQ = 2 454 * SOFTIRQ = 3 455 * NORMAL = 4 456 * 457 * See trace_recursive_lock() comment below for more details. 458 */ 459 enum { 460 RB_CTX_TRANSITION, 461 RB_CTX_NMI, 462 RB_CTX_IRQ, 463 RB_CTX_SOFTIRQ, 464 RB_CTX_NORMAL, 465 RB_CTX_MAX 466 }; 467 468 #if BITS_PER_LONG == 32 469 #define RB_TIME_32 470 #endif 471 472 /* To test on 64 bit machines */ 473 //#define RB_TIME_32 474 475 #ifdef RB_TIME_32 476 477 struct rb_time_struct { 478 local_t cnt; 479 local_t top; 480 local_t bottom; 481 }; 482 #else 483 #include <asm/local64.h> 484 struct rb_time_struct { 485 local64_t time; 486 }; 487 #endif 488 typedef struct rb_time_struct rb_time_t; 489 490 /* 491 * head_page == tail_page && head == tail then buffer is empty. 492 */ 493 struct ring_buffer_per_cpu { 494 int cpu; 495 atomic_t record_disabled; 496 atomic_t resize_disabled; 497 struct trace_buffer *buffer; 498 raw_spinlock_t reader_lock; /* serialize readers */ 499 arch_spinlock_t lock; 500 struct lock_class_key lock_key; 501 struct buffer_data_page *free_page; 502 unsigned long nr_pages; 503 unsigned int current_context; 504 struct list_head *pages; 505 struct buffer_page *head_page; /* read from head */ 506 struct buffer_page *tail_page; /* write to tail */ 507 struct buffer_page *commit_page; /* committed pages */ 508 struct buffer_page *reader_page; 509 unsigned long lost_events; 510 unsigned long last_overrun; 511 unsigned long nest; 512 local_t entries_bytes; 513 local_t entries; 514 local_t overrun; 515 local_t commit_overrun; 516 local_t dropped_events; 517 local_t committing; 518 local_t commits; 519 local_t pages_touched; 520 local_t pages_read; 521 long last_pages_touch; 522 size_t shortest_full; 523 unsigned long read; 524 unsigned long read_bytes; 525 rb_time_t write_stamp; 526 rb_time_t before_stamp; 527 u64 read_stamp; 528 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 529 long nr_pages_to_update; 530 struct list_head new_pages; /* new pages to add */ 531 struct work_struct update_pages_work; 532 struct completion update_done; 533 534 struct rb_irq_work irq_work; 535 }; 536 537 struct trace_buffer { 538 unsigned flags; 539 int cpus; 540 atomic_t record_disabled; 541 cpumask_var_t cpumask; 542 543 struct lock_class_key *reader_lock_key; 544 545 struct mutex mutex; 546 547 struct ring_buffer_per_cpu **buffers; 548 549 struct hlist_node node; 550 u64 (*clock)(void); 551 552 struct rb_irq_work irq_work; 553 bool time_stamp_abs; 554 }; 555 556 struct ring_buffer_iter { 557 struct ring_buffer_per_cpu *cpu_buffer; 558 unsigned long head; 559 unsigned long next_event; 560 struct buffer_page *head_page; 561 struct buffer_page *cache_reader_page; 562 unsigned long cache_read; 563 u64 read_stamp; 564 u64 page_stamp; 565 struct ring_buffer_event *event; 566 int missed_events; 567 }; 568 569 #ifdef RB_TIME_32 570 571 /* 572 * On 32 bit machines, local64_t is very expensive. As the ring 573 * buffer doesn't need all the features of a true 64 bit atomic, 574 * on 32 bit, it uses these functions (64 still uses local64_t). 575 * 576 * For the ring buffer, 64 bit required operations for the time is 577 * the following: 578 * 579 * - Only need 59 bits (uses 60 to make it even). 580 * - Reads may fail if it interrupted a modification of the time stamp. 581 * It will succeed if it did not interrupt another write even if 582 * the read itself is interrupted by a write. 583 * It returns whether it was successful or not. 584 * 585 * - Writes always succeed and will overwrite other writes and writes 586 * that were done by events interrupting the current write. 587 * 588 * - A write followed by a read of the same time stamp will always succeed, 589 * but may not contain the same value. 590 * 591 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 592 * Other than that, it acts like a normal cmpxchg. 593 * 594 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 595 * (bottom being the least significant 30 bits of the 60 bit time stamp). 596 * 597 * The two most significant bits of each half holds a 2 bit counter (0-3). 598 * Each update will increment this counter by one. 599 * When reading the top and bottom, if the two counter bits match then the 600 * top and bottom together make a valid 60 bit number. 601 */ 602 #define RB_TIME_SHIFT 30 603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 604 605 static inline int rb_time_cnt(unsigned long val) 606 { 607 return (val >> RB_TIME_SHIFT) & 3; 608 } 609 610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 611 { 612 u64 val; 613 614 val = top & RB_TIME_VAL_MASK; 615 val <<= RB_TIME_SHIFT; 616 val |= bottom & RB_TIME_VAL_MASK; 617 618 return val; 619 } 620 621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 622 { 623 unsigned long top, bottom; 624 unsigned long c; 625 626 /* 627 * If the read is interrupted by a write, then the cnt will 628 * be different. Loop until both top and bottom have been read 629 * without interruption. 630 */ 631 do { 632 c = local_read(&t->cnt); 633 top = local_read(&t->top); 634 bottom = local_read(&t->bottom); 635 } while (c != local_read(&t->cnt)); 636 637 *cnt = rb_time_cnt(top); 638 639 /* If top and bottom counts don't match, this interrupted a write */ 640 if (*cnt != rb_time_cnt(bottom)) 641 return false; 642 643 *ret = rb_time_val(top, bottom); 644 return true; 645 } 646 647 static bool rb_time_read(rb_time_t *t, u64 *ret) 648 { 649 unsigned long cnt; 650 651 return __rb_time_read(t, ret, &cnt); 652 } 653 654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 655 { 656 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 657 } 658 659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom) 660 { 661 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 662 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 663 } 664 665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 666 { 667 val = rb_time_val_cnt(val, cnt); 668 local_set(t, val); 669 } 670 671 static void rb_time_set(rb_time_t *t, u64 val) 672 { 673 unsigned long cnt, top, bottom; 674 675 rb_time_split(val, &top, &bottom); 676 677 /* Writes always succeed with a valid number even if it gets interrupted. */ 678 do { 679 cnt = local_inc_return(&t->cnt); 680 rb_time_val_set(&t->top, top, cnt); 681 rb_time_val_set(&t->bottom, bottom, cnt); 682 } while (cnt != local_read(&t->cnt)); 683 } 684 685 static inline bool 686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 687 { 688 unsigned long ret; 689 690 ret = local_cmpxchg(l, expect, set); 691 return ret == expect; 692 } 693 694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 695 { 696 unsigned long cnt, top, bottom; 697 unsigned long cnt2, top2, bottom2; 698 u64 val; 699 700 /* The cmpxchg always fails if it interrupted an update */ 701 if (!__rb_time_read(t, &val, &cnt2)) 702 return false; 703 704 if (val != expect) 705 return false; 706 707 cnt = local_read(&t->cnt); 708 if ((cnt & 3) != cnt2) 709 return false; 710 711 cnt2 = cnt + 1; 712 713 rb_time_split(val, &top, &bottom); 714 top = rb_time_val_cnt(top, cnt); 715 bottom = rb_time_val_cnt(bottom, cnt); 716 717 rb_time_split(set, &top2, &bottom2); 718 top2 = rb_time_val_cnt(top2, cnt2); 719 bottom2 = rb_time_val_cnt(bottom2, cnt2); 720 721 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 722 return false; 723 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 724 return false; 725 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 726 return false; 727 return true; 728 } 729 730 #else /* 64 bits */ 731 732 /* local64_t always succeeds */ 733 734 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 735 { 736 *ret = local64_read(&t->time); 737 return true; 738 } 739 static void rb_time_set(rb_time_t *t, u64 val) 740 { 741 local64_set(&t->time, val); 742 } 743 744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 745 { 746 u64 val; 747 val = local64_cmpxchg(&t->time, expect, set); 748 return val == expect; 749 } 750 #endif 751 752 /** 753 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 754 * @buffer: The ring_buffer to get the number of pages from 755 * @cpu: The cpu of the ring_buffer to get the number of pages from 756 * 757 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 758 */ 759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 760 { 761 return buffer->buffers[cpu]->nr_pages; 762 } 763 764 /** 765 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 766 * @buffer: The ring_buffer to get the number of pages from 767 * @cpu: The cpu of the ring_buffer to get the number of pages from 768 * 769 * Returns the number of pages that have content in the ring buffer. 770 */ 771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 772 { 773 size_t read; 774 size_t cnt; 775 776 read = local_read(&buffer->buffers[cpu]->pages_read); 777 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 778 /* The reader can read an empty page, but not more than that */ 779 if (cnt < read) { 780 WARN_ON_ONCE(read > cnt + 1); 781 return 0; 782 } 783 784 return cnt - read; 785 } 786 787 /* 788 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 789 * 790 * Schedules a delayed work to wake up any task that is blocked on the 791 * ring buffer waiters queue. 792 */ 793 static void rb_wake_up_waiters(struct irq_work *work) 794 { 795 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 796 797 wake_up_all(&rbwork->waiters); 798 if (rbwork->wakeup_full) { 799 rbwork->wakeup_full = false; 800 wake_up_all(&rbwork->full_waiters); 801 } 802 } 803 804 /** 805 * ring_buffer_wait - wait for input to the ring buffer 806 * @buffer: buffer to wait on 807 * @cpu: the cpu buffer to wait on 808 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 809 * 810 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 811 * as data is added to any of the @buffer's cpu buffers. Otherwise 812 * it will wait for data to be added to a specific cpu buffer. 813 */ 814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 815 { 816 struct ring_buffer_per_cpu *cpu_buffer; 817 DEFINE_WAIT(wait); 818 struct rb_irq_work *work; 819 int ret = 0; 820 821 /* 822 * Depending on what the caller is waiting for, either any 823 * data in any cpu buffer, or a specific buffer, put the 824 * caller on the appropriate wait queue. 825 */ 826 if (cpu == RING_BUFFER_ALL_CPUS) { 827 work = &buffer->irq_work; 828 /* Full only makes sense on per cpu reads */ 829 full = 0; 830 } else { 831 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 832 return -ENODEV; 833 cpu_buffer = buffer->buffers[cpu]; 834 work = &cpu_buffer->irq_work; 835 } 836 837 838 while (true) { 839 if (full) 840 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 841 else 842 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 843 844 /* 845 * The events can happen in critical sections where 846 * checking a work queue can cause deadlocks. 847 * After adding a task to the queue, this flag is set 848 * only to notify events to try to wake up the queue 849 * using irq_work. 850 * 851 * We don't clear it even if the buffer is no longer 852 * empty. The flag only causes the next event to run 853 * irq_work to do the work queue wake up. The worse 854 * that can happen if we race with !trace_empty() is that 855 * an event will cause an irq_work to try to wake up 856 * an empty queue. 857 * 858 * There's no reason to protect this flag either, as 859 * the work queue and irq_work logic will do the necessary 860 * synchronization for the wake ups. The only thing 861 * that is necessary is that the wake up happens after 862 * a task has been queued. It's OK for spurious wake ups. 863 */ 864 if (full) 865 work->full_waiters_pending = true; 866 else 867 work->waiters_pending = true; 868 869 if (signal_pending(current)) { 870 ret = -EINTR; 871 break; 872 } 873 874 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 875 break; 876 877 if (cpu != RING_BUFFER_ALL_CPUS && 878 !ring_buffer_empty_cpu(buffer, cpu)) { 879 unsigned long flags; 880 bool pagebusy; 881 size_t nr_pages; 882 size_t dirty; 883 884 if (!full) 885 break; 886 887 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 888 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 889 nr_pages = cpu_buffer->nr_pages; 890 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 891 if (!cpu_buffer->shortest_full || 892 cpu_buffer->shortest_full < full) 893 cpu_buffer->shortest_full = full; 894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 895 if (!pagebusy && 896 (!nr_pages || (dirty * 100) > full * nr_pages)) 897 break; 898 } 899 900 schedule(); 901 } 902 903 if (full) 904 finish_wait(&work->full_waiters, &wait); 905 else 906 finish_wait(&work->waiters, &wait); 907 908 return ret; 909 } 910 911 /** 912 * ring_buffer_poll_wait - poll on buffer input 913 * @buffer: buffer to wait on 914 * @cpu: the cpu buffer to wait on 915 * @filp: the file descriptor 916 * @poll_table: The poll descriptor 917 * 918 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 919 * as data is added to any of the @buffer's cpu buffers. Otherwise 920 * it will wait for data to be added to a specific cpu buffer. 921 * 922 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 923 * zero otherwise. 924 */ 925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 926 struct file *filp, poll_table *poll_table) 927 { 928 struct ring_buffer_per_cpu *cpu_buffer; 929 struct rb_irq_work *work; 930 931 if (cpu == RING_BUFFER_ALL_CPUS) 932 work = &buffer->irq_work; 933 else { 934 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 935 return -EINVAL; 936 937 cpu_buffer = buffer->buffers[cpu]; 938 work = &cpu_buffer->irq_work; 939 } 940 941 poll_wait(filp, &work->waiters, poll_table); 942 work->waiters_pending = true; 943 /* 944 * There's a tight race between setting the waiters_pending and 945 * checking if the ring buffer is empty. Once the waiters_pending bit 946 * is set, the next event will wake the task up, but we can get stuck 947 * if there's only a single event in. 948 * 949 * FIXME: Ideally, we need a memory barrier on the writer side as well, 950 * but adding a memory barrier to all events will cause too much of a 951 * performance hit in the fast path. We only need a memory barrier when 952 * the buffer goes from empty to having content. But as this race is 953 * extremely small, and it's not a problem if another event comes in, we 954 * will fix it later. 955 */ 956 smp_mb(); 957 958 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 959 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 960 return EPOLLIN | EPOLLRDNORM; 961 return 0; 962 } 963 964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 965 #define RB_WARN_ON(b, cond) \ 966 ({ \ 967 int _____ret = unlikely(cond); \ 968 if (_____ret) { \ 969 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 970 struct ring_buffer_per_cpu *__b = \ 971 (void *)b; \ 972 atomic_inc(&__b->buffer->record_disabled); \ 973 } else \ 974 atomic_inc(&b->record_disabled); \ 975 WARN_ON(1); \ 976 } \ 977 _____ret; \ 978 }) 979 980 /* Up this if you want to test the TIME_EXTENTS and normalization */ 981 #define DEBUG_SHIFT 0 982 983 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 984 { 985 u64 ts; 986 987 /* Skip retpolines :-( */ 988 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 989 ts = trace_clock_local(); 990 else 991 ts = buffer->clock(); 992 993 /* shift to debug/test normalization and TIME_EXTENTS */ 994 return ts << DEBUG_SHIFT; 995 } 996 997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu) 998 { 999 u64 time; 1000 1001 preempt_disable_notrace(); 1002 time = rb_time_stamp(buffer); 1003 preempt_enable_notrace(); 1004 1005 return time; 1006 } 1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1008 1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1010 int cpu, u64 *ts) 1011 { 1012 /* Just stupid testing the normalize function and deltas */ 1013 *ts >>= DEBUG_SHIFT; 1014 } 1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1016 1017 /* 1018 * Making the ring buffer lockless makes things tricky. 1019 * Although writes only happen on the CPU that they are on, 1020 * and they only need to worry about interrupts. Reads can 1021 * happen on any CPU. 1022 * 1023 * The reader page is always off the ring buffer, but when the 1024 * reader finishes with a page, it needs to swap its page with 1025 * a new one from the buffer. The reader needs to take from 1026 * the head (writes go to the tail). But if a writer is in overwrite 1027 * mode and wraps, it must push the head page forward. 1028 * 1029 * Here lies the problem. 1030 * 1031 * The reader must be careful to replace only the head page, and 1032 * not another one. As described at the top of the file in the 1033 * ASCII art, the reader sets its old page to point to the next 1034 * page after head. It then sets the page after head to point to 1035 * the old reader page. But if the writer moves the head page 1036 * during this operation, the reader could end up with the tail. 1037 * 1038 * We use cmpxchg to help prevent this race. We also do something 1039 * special with the page before head. We set the LSB to 1. 1040 * 1041 * When the writer must push the page forward, it will clear the 1042 * bit that points to the head page, move the head, and then set 1043 * the bit that points to the new head page. 1044 * 1045 * We also don't want an interrupt coming in and moving the head 1046 * page on another writer. Thus we use the second LSB to catch 1047 * that too. Thus: 1048 * 1049 * head->list->prev->next bit 1 bit 0 1050 * ------- ------- 1051 * Normal page 0 0 1052 * Points to head page 0 1 1053 * New head page 1 0 1054 * 1055 * Note we can not trust the prev pointer of the head page, because: 1056 * 1057 * +----+ +-----+ +-----+ 1058 * | |------>| T |---X--->| N | 1059 * | |<------| | | | 1060 * +----+ +-----+ +-----+ 1061 * ^ ^ | 1062 * | +-----+ | | 1063 * +----------| R |----------+ | 1064 * | |<-----------+ 1065 * +-----+ 1066 * 1067 * Key: ---X--> HEAD flag set in pointer 1068 * T Tail page 1069 * R Reader page 1070 * N Next page 1071 * 1072 * (see __rb_reserve_next() to see where this happens) 1073 * 1074 * What the above shows is that the reader just swapped out 1075 * the reader page with a page in the buffer, but before it 1076 * could make the new header point back to the new page added 1077 * it was preempted by a writer. The writer moved forward onto 1078 * the new page added by the reader and is about to move forward 1079 * again. 1080 * 1081 * You can see, it is legitimate for the previous pointer of 1082 * the head (or any page) not to point back to itself. But only 1083 * temporarily. 1084 */ 1085 1086 #define RB_PAGE_NORMAL 0UL 1087 #define RB_PAGE_HEAD 1UL 1088 #define RB_PAGE_UPDATE 2UL 1089 1090 1091 #define RB_FLAG_MASK 3UL 1092 1093 /* PAGE_MOVED is not part of the mask */ 1094 #define RB_PAGE_MOVED 4UL 1095 1096 /* 1097 * rb_list_head - remove any bit 1098 */ 1099 static struct list_head *rb_list_head(struct list_head *list) 1100 { 1101 unsigned long val = (unsigned long)list; 1102 1103 return (struct list_head *)(val & ~RB_FLAG_MASK); 1104 } 1105 1106 /* 1107 * rb_is_head_page - test if the given page is the head page 1108 * 1109 * Because the reader may move the head_page pointer, we can 1110 * not trust what the head page is (it may be pointing to 1111 * the reader page). But if the next page is a header page, 1112 * its flags will be non zero. 1113 */ 1114 static inline int 1115 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1116 struct buffer_page *page, struct list_head *list) 1117 { 1118 unsigned long val; 1119 1120 val = (unsigned long)list->next; 1121 1122 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1123 return RB_PAGE_MOVED; 1124 1125 return val & RB_FLAG_MASK; 1126 } 1127 1128 /* 1129 * rb_is_reader_page 1130 * 1131 * The unique thing about the reader page, is that, if the 1132 * writer is ever on it, the previous pointer never points 1133 * back to the reader page. 1134 */ 1135 static bool rb_is_reader_page(struct buffer_page *page) 1136 { 1137 struct list_head *list = page->list.prev; 1138 1139 return rb_list_head(list->next) != &page->list; 1140 } 1141 1142 /* 1143 * rb_set_list_to_head - set a list_head to be pointing to head. 1144 */ 1145 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 1146 struct list_head *list) 1147 { 1148 unsigned long *ptr; 1149 1150 ptr = (unsigned long *)&list->next; 1151 *ptr |= RB_PAGE_HEAD; 1152 *ptr &= ~RB_PAGE_UPDATE; 1153 } 1154 1155 /* 1156 * rb_head_page_activate - sets up head page 1157 */ 1158 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1159 { 1160 struct buffer_page *head; 1161 1162 head = cpu_buffer->head_page; 1163 if (!head) 1164 return; 1165 1166 /* 1167 * Set the previous list pointer to have the HEAD flag. 1168 */ 1169 rb_set_list_to_head(cpu_buffer, head->list.prev); 1170 } 1171 1172 static void rb_list_head_clear(struct list_head *list) 1173 { 1174 unsigned long *ptr = (unsigned long *)&list->next; 1175 1176 *ptr &= ~RB_FLAG_MASK; 1177 } 1178 1179 /* 1180 * rb_head_page_deactivate - clears head page ptr (for free list) 1181 */ 1182 static void 1183 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1184 { 1185 struct list_head *hd; 1186 1187 /* Go through the whole list and clear any pointers found. */ 1188 rb_list_head_clear(cpu_buffer->pages); 1189 1190 list_for_each(hd, cpu_buffer->pages) 1191 rb_list_head_clear(hd); 1192 } 1193 1194 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1195 struct buffer_page *head, 1196 struct buffer_page *prev, 1197 int old_flag, int new_flag) 1198 { 1199 struct list_head *list; 1200 unsigned long val = (unsigned long)&head->list; 1201 unsigned long ret; 1202 1203 list = &prev->list; 1204 1205 val &= ~RB_FLAG_MASK; 1206 1207 ret = cmpxchg((unsigned long *)&list->next, 1208 val | old_flag, val | new_flag); 1209 1210 /* check if the reader took the page */ 1211 if ((ret & ~RB_FLAG_MASK) != val) 1212 return RB_PAGE_MOVED; 1213 1214 return ret & RB_FLAG_MASK; 1215 } 1216 1217 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1218 struct buffer_page *head, 1219 struct buffer_page *prev, 1220 int old_flag) 1221 { 1222 return rb_head_page_set(cpu_buffer, head, prev, 1223 old_flag, RB_PAGE_UPDATE); 1224 } 1225 1226 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1227 struct buffer_page *head, 1228 struct buffer_page *prev, 1229 int old_flag) 1230 { 1231 return rb_head_page_set(cpu_buffer, head, prev, 1232 old_flag, RB_PAGE_HEAD); 1233 } 1234 1235 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1236 struct buffer_page *head, 1237 struct buffer_page *prev, 1238 int old_flag) 1239 { 1240 return rb_head_page_set(cpu_buffer, head, prev, 1241 old_flag, RB_PAGE_NORMAL); 1242 } 1243 1244 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 1245 struct buffer_page **bpage) 1246 { 1247 struct list_head *p = rb_list_head((*bpage)->list.next); 1248 1249 *bpage = list_entry(p, struct buffer_page, list); 1250 } 1251 1252 static struct buffer_page * 1253 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1254 { 1255 struct buffer_page *head; 1256 struct buffer_page *page; 1257 struct list_head *list; 1258 int i; 1259 1260 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1261 return NULL; 1262 1263 /* sanity check */ 1264 list = cpu_buffer->pages; 1265 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1266 return NULL; 1267 1268 page = head = cpu_buffer->head_page; 1269 /* 1270 * It is possible that the writer moves the header behind 1271 * where we started, and we miss in one loop. 1272 * A second loop should grab the header, but we'll do 1273 * three loops just because I'm paranoid. 1274 */ 1275 for (i = 0; i < 3; i++) { 1276 do { 1277 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1278 cpu_buffer->head_page = page; 1279 return page; 1280 } 1281 rb_inc_page(cpu_buffer, &page); 1282 } while (page != head); 1283 } 1284 1285 RB_WARN_ON(cpu_buffer, 1); 1286 1287 return NULL; 1288 } 1289 1290 static int rb_head_page_replace(struct buffer_page *old, 1291 struct buffer_page *new) 1292 { 1293 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1294 unsigned long val; 1295 unsigned long ret; 1296 1297 val = *ptr & ~RB_FLAG_MASK; 1298 val |= RB_PAGE_HEAD; 1299 1300 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1301 1302 return ret == val; 1303 } 1304 1305 /* 1306 * rb_tail_page_update - move the tail page forward 1307 */ 1308 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1309 struct buffer_page *tail_page, 1310 struct buffer_page *next_page) 1311 { 1312 unsigned long old_entries; 1313 unsigned long old_write; 1314 1315 /* 1316 * The tail page now needs to be moved forward. 1317 * 1318 * We need to reset the tail page, but without messing 1319 * with possible erasing of data brought in by interrupts 1320 * that have moved the tail page and are currently on it. 1321 * 1322 * We add a counter to the write field to denote this. 1323 */ 1324 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1325 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1326 1327 local_inc(&cpu_buffer->pages_touched); 1328 /* 1329 * Just make sure we have seen our old_write and synchronize 1330 * with any interrupts that come in. 1331 */ 1332 barrier(); 1333 1334 /* 1335 * If the tail page is still the same as what we think 1336 * it is, then it is up to us to update the tail 1337 * pointer. 1338 */ 1339 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1340 /* Zero the write counter */ 1341 unsigned long val = old_write & ~RB_WRITE_MASK; 1342 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1343 1344 /* 1345 * This will only succeed if an interrupt did 1346 * not come in and change it. In which case, we 1347 * do not want to modify it. 1348 * 1349 * We add (void) to let the compiler know that we do not care 1350 * about the return value of these functions. We use the 1351 * cmpxchg to only update if an interrupt did not already 1352 * do it for us. If the cmpxchg fails, we don't care. 1353 */ 1354 (void)local_cmpxchg(&next_page->write, old_write, val); 1355 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1356 1357 /* 1358 * No need to worry about races with clearing out the commit. 1359 * it only can increment when a commit takes place. But that 1360 * only happens in the outer most nested commit. 1361 */ 1362 local_set(&next_page->page->commit, 0); 1363 1364 /* Again, either we update tail_page or an interrupt does */ 1365 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1366 } 1367 } 1368 1369 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1370 struct buffer_page *bpage) 1371 { 1372 unsigned long val = (unsigned long)bpage; 1373 1374 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1375 return 1; 1376 1377 return 0; 1378 } 1379 1380 /** 1381 * rb_check_list - make sure a pointer to a list has the last bits zero 1382 */ 1383 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1384 struct list_head *list) 1385 { 1386 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1387 return 1; 1388 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1389 return 1; 1390 return 0; 1391 } 1392 1393 /** 1394 * rb_check_pages - integrity check of buffer pages 1395 * @cpu_buffer: CPU buffer with pages to test 1396 * 1397 * As a safety measure we check to make sure the data pages have not 1398 * been corrupted. 1399 */ 1400 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1401 { 1402 struct list_head *head = cpu_buffer->pages; 1403 struct buffer_page *bpage, *tmp; 1404 1405 /* Reset the head page if it exists */ 1406 if (cpu_buffer->head_page) 1407 rb_set_head_page(cpu_buffer); 1408 1409 rb_head_page_deactivate(cpu_buffer); 1410 1411 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1412 return -1; 1413 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1414 return -1; 1415 1416 if (rb_check_list(cpu_buffer, head)) 1417 return -1; 1418 1419 list_for_each_entry_safe(bpage, tmp, head, list) { 1420 if (RB_WARN_ON(cpu_buffer, 1421 bpage->list.next->prev != &bpage->list)) 1422 return -1; 1423 if (RB_WARN_ON(cpu_buffer, 1424 bpage->list.prev->next != &bpage->list)) 1425 return -1; 1426 if (rb_check_list(cpu_buffer, &bpage->list)) 1427 return -1; 1428 } 1429 1430 rb_head_page_activate(cpu_buffer); 1431 1432 return 0; 1433 } 1434 1435 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1436 long nr_pages, struct list_head *pages) 1437 { 1438 struct buffer_page *bpage, *tmp; 1439 bool user_thread = current->mm != NULL; 1440 gfp_t mflags; 1441 long i; 1442 1443 /* 1444 * Check if the available memory is there first. 1445 * Note, si_mem_available() only gives us a rough estimate of available 1446 * memory. It may not be accurate. But we don't care, we just want 1447 * to prevent doing any allocation when it is obvious that it is 1448 * not going to succeed. 1449 */ 1450 i = si_mem_available(); 1451 if (i < nr_pages) 1452 return -ENOMEM; 1453 1454 /* 1455 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1456 * gracefully without invoking oom-killer and the system is not 1457 * destabilized. 1458 */ 1459 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1460 1461 /* 1462 * If a user thread allocates too much, and si_mem_available() 1463 * reports there's enough memory, even though there is not. 1464 * Make sure the OOM killer kills this thread. This can happen 1465 * even with RETRY_MAYFAIL because another task may be doing 1466 * an allocation after this task has taken all memory. 1467 * This is the task the OOM killer needs to take out during this 1468 * loop, even if it was triggered by an allocation somewhere else. 1469 */ 1470 if (user_thread) 1471 set_current_oom_origin(); 1472 for (i = 0; i < nr_pages; i++) { 1473 struct page *page; 1474 1475 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1476 mflags, cpu_to_node(cpu_buffer->cpu)); 1477 if (!bpage) 1478 goto free_pages; 1479 1480 rb_check_bpage(cpu_buffer, bpage); 1481 1482 list_add(&bpage->list, pages); 1483 1484 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1485 if (!page) 1486 goto free_pages; 1487 bpage->page = page_address(page); 1488 rb_init_page(bpage->page); 1489 1490 if (user_thread && fatal_signal_pending(current)) 1491 goto free_pages; 1492 } 1493 if (user_thread) 1494 clear_current_oom_origin(); 1495 1496 return 0; 1497 1498 free_pages: 1499 list_for_each_entry_safe(bpage, tmp, pages, list) { 1500 list_del_init(&bpage->list); 1501 free_buffer_page(bpage); 1502 } 1503 if (user_thread) 1504 clear_current_oom_origin(); 1505 1506 return -ENOMEM; 1507 } 1508 1509 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1510 unsigned long nr_pages) 1511 { 1512 LIST_HEAD(pages); 1513 1514 WARN_ON(!nr_pages); 1515 1516 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1517 return -ENOMEM; 1518 1519 /* 1520 * The ring buffer page list is a circular list that does not 1521 * start and end with a list head. All page list items point to 1522 * other pages. 1523 */ 1524 cpu_buffer->pages = pages.next; 1525 list_del(&pages); 1526 1527 cpu_buffer->nr_pages = nr_pages; 1528 1529 rb_check_pages(cpu_buffer); 1530 1531 return 0; 1532 } 1533 1534 static struct ring_buffer_per_cpu * 1535 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1536 { 1537 struct ring_buffer_per_cpu *cpu_buffer; 1538 struct buffer_page *bpage; 1539 struct page *page; 1540 int ret; 1541 1542 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1543 GFP_KERNEL, cpu_to_node(cpu)); 1544 if (!cpu_buffer) 1545 return NULL; 1546 1547 cpu_buffer->cpu = cpu; 1548 cpu_buffer->buffer = buffer; 1549 raw_spin_lock_init(&cpu_buffer->reader_lock); 1550 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1551 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1552 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1553 init_completion(&cpu_buffer->update_done); 1554 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1555 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1556 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1557 1558 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1559 GFP_KERNEL, cpu_to_node(cpu)); 1560 if (!bpage) 1561 goto fail_free_buffer; 1562 1563 rb_check_bpage(cpu_buffer, bpage); 1564 1565 cpu_buffer->reader_page = bpage; 1566 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1567 if (!page) 1568 goto fail_free_reader; 1569 bpage->page = page_address(page); 1570 rb_init_page(bpage->page); 1571 1572 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1573 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1574 1575 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1576 if (ret < 0) 1577 goto fail_free_reader; 1578 1579 cpu_buffer->head_page 1580 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1581 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1582 1583 rb_head_page_activate(cpu_buffer); 1584 1585 return cpu_buffer; 1586 1587 fail_free_reader: 1588 free_buffer_page(cpu_buffer->reader_page); 1589 1590 fail_free_buffer: 1591 kfree(cpu_buffer); 1592 return NULL; 1593 } 1594 1595 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1596 { 1597 struct list_head *head = cpu_buffer->pages; 1598 struct buffer_page *bpage, *tmp; 1599 1600 free_buffer_page(cpu_buffer->reader_page); 1601 1602 rb_head_page_deactivate(cpu_buffer); 1603 1604 if (head) { 1605 list_for_each_entry_safe(bpage, tmp, head, list) { 1606 list_del_init(&bpage->list); 1607 free_buffer_page(bpage); 1608 } 1609 bpage = list_entry(head, struct buffer_page, list); 1610 free_buffer_page(bpage); 1611 } 1612 1613 kfree(cpu_buffer); 1614 } 1615 1616 /** 1617 * __ring_buffer_alloc - allocate a new ring_buffer 1618 * @size: the size in bytes per cpu that is needed. 1619 * @flags: attributes to set for the ring buffer. 1620 * @key: ring buffer reader_lock_key. 1621 * 1622 * Currently the only flag that is available is the RB_FL_OVERWRITE 1623 * flag. This flag means that the buffer will overwrite old data 1624 * when the buffer wraps. If this flag is not set, the buffer will 1625 * drop data when the tail hits the head. 1626 */ 1627 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1628 struct lock_class_key *key) 1629 { 1630 struct trace_buffer *buffer; 1631 long nr_pages; 1632 int bsize; 1633 int cpu; 1634 int ret; 1635 1636 /* keep it in its own cache line */ 1637 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1638 GFP_KERNEL); 1639 if (!buffer) 1640 return NULL; 1641 1642 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1643 goto fail_free_buffer; 1644 1645 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1646 buffer->flags = flags; 1647 buffer->clock = trace_clock_local; 1648 buffer->reader_lock_key = key; 1649 1650 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1651 init_waitqueue_head(&buffer->irq_work.waiters); 1652 1653 /* need at least two pages */ 1654 if (nr_pages < 2) 1655 nr_pages = 2; 1656 1657 buffer->cpus = nr_cpu_ids; 1658 1659 bsize = sizeof(void *) * nr_cpu_ids; 1660 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1661 GFP_KERNEL); 1662 if (!buffer->buffers) 1663 goto fail_free_cpumask; 1664 1665 cpu = raw_smp_processor_id(); 1666 cpumask_set_cpu(cpu, buffer->cpumask); 1667 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1668 if (!buffer->buffers[cpu]) 1669 goto fail_free_buffers; 1670 1671 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1672 if (ret < 0) 1673 goto fail_free_buffers; 1674 1675 mutex_init(&buffer->mutex); 1676 1677 return buffer; 1678 1679 fail_free_buffers: 1680 for_each_buffer_cpu(buffer, cpu) { 1681 if (buffer->buffers[cpu]) 1682 rb_free_cpu_buffer(buffer->buffers[cpu]); 1683 } 1684 kfree(buffer->buffers); 1685 1686 fail_free_cpumask: 1687 free_cpumask_var(buffer->cpumask); 1688 1689 fail_free_buffer: 1690 kfree(buffer); 1691 return NULL; 1692 } 1693 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1694 1695 /** 1696 * ring_buffer_free - free a ring buffer. 1697 * @buffer: the buffer to free. 1698 */ 1699 void 1700 ring_buffer_free(struct trace_buffer *buffer) 1701 { 1702 int cpu; 1703 1704 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1705 1706 for_each_buffer_cpu(buffer, cpu) 1707 rb_free_cpu_buffer(buffer->buffers[cpu]); 1708 1709 kfree(buffer->buffers); 1710 free_cpumask_var(buffer->cpumask); 1711 1712 kfree(buffer); 1713 } 1714 EXPORT_SYMBOL_GPL(ring_buffer_free); 1715 1716 void ring_buffer_set_clock(struct trace_buffer *buffer, 1717 u64 (*clock)(void)) 1718 { 1719 buffer->clock = clock; 1720 } 1721 1722 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1723 { 1724 buffer->time_stamp_abs = abs; 1725 } 1726 1727 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1728 { 1729 return buffer->time_stamp_abs; 1730 } 1731 1732 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1733 1734 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1735 { 1736 return local_read(&bpage->entries) & RB_WRITE_MASK; 1737 } 1738 1739 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1740 { 1741 return local_read(&bpage->write) & RB_WRITE_MASK; 1742 } 1743 1744 static int 1745 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1746 { 1747 struct list_head *tail_page, *to_remove, *next_page; 1748 struct buffer_page *to_remove_page, *tmp_iter_page; 1749 struct buffer_page *last_page, *first_page; 1750 unsigned long nr_removed; 1751 unsigned long head_bit; 1752 int page_entries; 1753 1754 head_bit = 0; 1755 1756 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1757 atomic_inc(&cpu_buffer->record_disabled); 1758 /* 1759 * We don't race with the readers since we have acquired the reader 1760 * lock. We also don't race with writers after disabling recording. 1761 * This makes it easy to figure out the first and the last page to be 1762 * removed from the list. We unlink all the pages in between including 1763 * the first and last pages. This is done in a busy loop so that we 1764 * lose the least number of traces. 1765 * The pages are freed after we restart recording and unlock readers. 1766 */ 1767 tail_page = &cpu_buffer->tail_page->list; 1768 1769 /* 1770 * tail page might be on reader page, we remove the next page 1771 * from the ring buffer 1772 */ 1773 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1774 tail_page = rb_list_head(tail_page->next); 1775 to_remove = tail_page; 1776 1777 /* start of pages to remove */ 1778 first_page = list_entry(rb_list_head(to_remove->next), 1779 struct buffer_page, list); 1780 1781 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1782 to_remove = rb_list_head(to_remove)->next; 1783 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1784 } 1785 1786 next_page = rb_list_head(to_remove)->next; 1787 1788 /* 1789 * Now we remove all pages between tail_page and next_page. 1790 * Make sure that we have head_bit value preserved for the 1791 * next page 1792 */ 1793 tail_page->next = (struct list_head *)((unsigned long)next_page | 1794 head_bit); 1795 next_page = rb_list_head(next_page); 1796 next_page->prev = tail_page; 1797 1798 /* make sure pages points to a valid page in the ring buffer */ 1799 cpu_buffer->pages = next_page; 1800 1801 /* update head page */ 1802 if (head_bit) 1803 cpu_buffer->head_page = list_entry(next_page, 1804 struct buffer_page, list); 1805 1806 /* 1807 * change read pointer to make sure any read iterators reset 1808 * themselves 1809 */ 1810 cpu_buffer->read = 0; 1811 1812 /* pages are removed, resume tracing and then free the pages */ 1813 atomic_dec(&cpu_buffer->record_disabled); 1814 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1815 1816 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1817 1818 /* last buffer page to remove */ 1819 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1820 list); 1821 tmp_iter_page = first_page; 1822 1823 do { 1824 cond_resched(); 1825 1826 to_remove_page = tmp_iter_page; 1827 rb_inc_page(cpu_buffer, &tmp_iter_page); 1828 1829 /* update the counters */ 1830 page_entries = rb_page_entries(to_remove_page); 1831 if (page_entries) { 1832 /* 1833 * If something was added to this page, it was full 1834 * since it is not the tail page. So we deduct the 1835 * bytes consumed in ring buffer from here. 1836 * Increment overrun to account for the lost events. 1837 */ 1838 local_add(page_entries, &cpu_buffer->overrun); 1839 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1840 } 1841 1842 /* 1843 * We have already removed references to this list item, just 1844 * free up the buffer_page and its page 1845 */ 1846 free_buffer_page(to_remove_page); 1847 nr_removed--; 1848 1849 } while (to_remove_page != last_page); 1850 1851 RB_WARN_ON(cpu_buffer, nr_removed); 1852 1853 return nr_removed == 0; 1854 } 1855 1856 static int 1857 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1858 { 1859 struct list_head *pages = &cpu_buffer->new_pages; 1860 int retries, success; 1861 1862 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1863 /* 1864 * We are holding the reader lock, so the reader page won't be swapped 1865 * in the ring buffer. Now we are racing with the writer trying to 1866 * move head page and the tail page. 1867 * We are going to adapt the reader page update process where: 1868 * 1. We first splice the start and end of list of new pages between 1869 * the head page and its previous page. 1870 * 2. We cmpxchg the prev_page->next to point from head page to the 1871 * start of new pages list. 1872 * 3. Finally, we update the head->prev to the end of new list. 1873 * 1874 * We will try this process 10 times, to make sure that we don't keep 1875 * spinning. 1876 */ 1877 retries = 10; 1878 success = 0; 1879 while (retries--) { 1880 struct list_head *head_page, *prev_page, *r; 1881 struct list_head *last_page, *first_page; 1882 struct list_head *head_page_with_bit; 1883 1884 head_page = &rb_set_head_page(cpu_buffer)->list; 1885 if (!head_page) 1886 break; 1887 prev_page = head_page->prev; 1888 1889 first_page = pages->next; 1890 last_page = pages->prev; 1891 1892 head_page_with_bit = (struct list_head *) 1893 ((unsigned long)head_page | RB_PAGE_HEAD); 1894 1895 last_page->next = head_page_with_bit; 1896 first_page->prev = prev_page; 1897 1898 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1899 1900 if (r == head_page_with_bit) { 1901 /* 1902 * yay, we replaced the page pointer to our new list, 1903 * now, we just have to update to head page's prev 1904 * pointer to point to end of list 1905 */ 1906 head_page->prev = last_page; 1907 success = 1; 1908 break; 1909 } 1910 } 1911 1912 if (success) 1913 INIT_LIST_HEAD(pages); 1914 /* 1915 * If we weren't successful in adding in new pages, warn and stop 1916 * tracing 1917 */ 1918 RB_WARN_ON(cpu_buffer, !success); 1919 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1920 1921 /* free pages if they weren't inserted */ 1922 if (!success) { 1923 struct buffer_page *bpage, *tmp; 1924 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1925 list) { 1926 list_del_init(&bpage->list); 1927 free_buffer_page(bpage); 1928 } 1929 } 1930 return success; 1931 } 1932 1933 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1934 { 1935 int success; 1936 1937 if (cpu_buffer->nr_pages_to_update > 0) 1938 success = rb_insert_pages(cpu_buffer); 1939 else 1940 success = rb_remove_pages(cpu_buffer, 1941 -cpu_buffer->nr_pages_to_update); 1942 1943 if (success) 1944 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1945 } 1946 1947 static void update_pages_handler(struct work_struct *work) 1948 { 1949 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1950 struct ring_buffer_per_cpu, update_pages_work); 1951 rb_update_pages(cpu_buffer); 1952 complete(&cpu_buffer->update_done); 1953 } 1954 1955 /** 1956 * ring_buffer_resize - resize the ring buffer 1957 * @buffer: the buffer to resize. 1958 * @size: the new size. 1959 * @cpu_id: the cpu buffer to resize 1960 * 1961 * Minimum size is 2 * BUF_PAGE_SIZE. 1962 * 1963 * Returns 0 on success and < 0 on failure. 1964 */ 1965 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1966 int cpu_id) 1967 { 1968 struct ring_buffer_per_cpu *cpu_buffer; 1969 unsigned long nr_pages; 1970 int cpu, err; 1971 1972 /* 1973 * Always succeed at resizing a non-existent buffer: 1974 */ 1975 if (!buffer) 1976 return 0; 1977 1978 /* Make sure the requested buffer exists */ 1979 if (cpu_id != RING_BUFFER_ALL_CPUS && 1980 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1981 return 0; 1982 1983 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1984 1985 /* we need a minimum of two pages */ 1986 if (nr_pages < 2) 1987 nr_pages = 2; 1988 1989 /* prevent another thread from changing buffer sizes */ 1990 mutex_lock(&buffer->mutex); 1991 1992 1993 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1994 /* 1995 * Don't succeed if resizing is disabled, as a reader might be 1996 * manipulating the ring buffer and is expecting a sane state while 1997 * this is true. 1998 */ 1999 for_each_buffer_cpu(buffer, cpu) { 2000 cpu_buffer = buffer->buffers[cpu]; 2001 if (atomic_read(&cpu_buffer->resize_disabled)) { 2002 err = -EBUSY; 2003 goto out_err_unlock; 2004 } 2005 } 2006 2007 /* calculate the pages to update */ 2008 for_each_buffer_cpu(buffer, cpu) { 2009 cpu_buffer = buffer->buffers[cpu]; 2010 2011 cpu_buffer->nr_pages_to_update = nr_pages - 2012 cpu_buffer->nr_pages; 2013 /* 2014 * nothing more to do for removing pages or no update 2015 */ 2016 if (cpu_buffer->nr_pages_to_update <= 0) 2017 continue; 2018 /* 2019 * to add pages, make sure all new pages can be 2020 * allocated without receiving ENOMEM 2021 */ 2022 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2023 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2024 &cpu_buffer->new_pages)) { 2025 /* not enough memory for new pages */ 2026 err = -ENOMEM; 2027 goto out_err; 2028 } 2029 } 2030 2031 get_online_cpus(); 2032 /* 2033 * Fire off all the required work handlers 2034 * We can't schedule on offline CPUs, but it's not necessary 2035 * since we can change their buffer sizes without any race. 2036 */ 2037 for_each_buffer_cpu(buffer, cpu) { 2038 cpu_buffer = buffer->buffers[cpu]; 2039 if (!cpu_buffer->nr_pages_to_update) 2040 continue; 2041 2042 /* Can't run something on an offline CPU. */ 2043 if (!cpu_online(cpu)) { 2044 rb_update_pages(cpu_buffer); 2045 cpu_buffer->nr_pages_to_update = 0; 2046 } else { 2047 schedule_work_on(cpu, 2048 &cpu_buffer->update_pages_work); 2049 } 2050 } 2051 2052 /* wait for all the updates to complete */ 2053 for_each_buffer_cpu(buffer, cpu) { 2054 cpu_buffer = buffer->buffers[cpu]; 2055 if (!cpu_buffer->nr_pages_to_update) 2056 continue; 2057 2058 if (cpu_online(cpu)) 2059 wait_for_completion(&cpu_buffer->update_done); 2060 cpu_buffer->nr_pages_to_update = 0; 2061 } 2062 2063 put_online_cpus(); 2064 } else { 2065 /* Make sure this CPU has been initialized */ 2066 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 2067 goto out; 2068 2069 cpu_buffer = buffer->buffers[cpu_id]; 2070 2071 if (nr_pages == cpu_buffer->nr_pages) 2072 goto out; 2073 2074 /* 2075 * Don't succeed if resizing is disabled, as a reader might be 2076 * manipulating the ring buffer and is expecting a sane state while 2077 * this is true. 2078 */ 2079 if (atomic_read(&cpu_buffer->resize_disabled)) { 2080 err = -EBUSY; 2081 goto out_err_unlock; 2082 } 2083 2084 cpu_buffer->nr_pages_to_update = nr_pages - 2085 cpu_buffer->nr_pages; 2086 2087 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2088 if (cpu_buffer->nr_pages_to_update > 0 && 2089 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2090 &cpu_buffer->new_pages)) { 2091 err = -ENOMEM; 2092 goto out_err; 2093 } 2094 2095 get_online_cpus(); 2096 2097 /* Can't run something on an offline CPU. */ 2098 if (!cpu_online(cpu_id)) 2099 rb_update_pages(cpu_buffer); 2100 else { 2101 schedule_work_on(cpu_id, 2102 &cpu_buffer->update_pages_work); 2103 wait_for_completion(&cpu_buffer->update_done); 2104 } 2105 2106 cpu_buffer->nr_pages_to_update = 0; 2107 put_online_cpus(); 2108 } 2109 2110 out: 2111 /* 2112 * The ring buffer resize can happen with the ring buffer 2113 * enabled, so that the update disturbs the tracing as little 2114 * as possible. But if the buffer is disabled, we do not need 2115 * to worry about that, and we can take the time to verify 2116 * that the buffer is not corrupt. 2117 */ 2118 if (atomic_read(&buffer->record_disabled)) { 2119 atomic_inc(&buffer->record_disabled); 2120 /* 2121 * Even though the buffer was disabled, we must make sure 2122 * that it is truly disabled before calling rb_check_pages. 2123 * There could have been a race between checking 2124 * record_disable and incrementing it. 2125 */ 2126 synchronize_rcu(); 2127 for_each_buffer_cpu(buffer, cpu) { 2128 cpu_buffer = buffer->buffers[cpu]; 2129 rb_check_pages(cpu_buffer); 2130 } 2131 atomic_dec(&buffer->record_disabled); 2132 } 2133 2134 mutex_unlock(&buffer->mutex); 2135 return 0; 2136 2137 out_err: 2138 for_each_buffer_cpu(buffer, cpu) { 2139 struct buffer_page *bpage, *tmp; 2140 2141 cpu_buffer = buffer->buffers[cpu]; 2142 cpu_buffer->nr_pages_to_update = 0; 2143 2144 if (list_empty(&cpu_buffer->new_pages)) 2145 continue; 2146 2147 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2148 list) { 2149 list_del_init(&bpage->list); 2150 free_buffer_page(bpage); 2151 } 2152 } 2153 out_err_unlock: 2154 mutex_unlock(&buffer->mutex); 2155 return err; 2156 } 2157 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2158 2159 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2160 { 2161 mutex_lock(&buffer->mutex); 2162 if (val) 2163 buffer->flags |= RB_FL_OVERWRITE; 2164 else 2165 buffer->flags &= ~RB_FL_OVERWRITE; 2166 mutex_unlock(&buffer->mutex); 2167 } 2168 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2169 2170 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2171 { 2172 return bpage->page->data + index; 2173 } 2174 2175 static __always_inline struct ring_buffer_event * 2176 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2177 { 2178 return __rb_page_index(cpu_buffer->reader_page, 2179 cpu_buffer->reader_page->read); 2180 } 2181 2182 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2183 { 2184 return local_read(&bpage->page->commit); 2185 } 2186 2187 static struct ring_buffer_event * 2188 rb_iter_head_event(struct ring_buffer_iter *iter) 2189 { 2190 struct ring_buffer_event *event; 2191 struct buffer_page *iter_head_page = iter->head_page; 2192 unsigned long commit; 2193 unsigned length; 2194 2195 if (iter->head != iter->next_event) 2196 return iter->event; 2197 2198 /* 2199 * When the writer goes across pages, it issues a cmpxchg which 2200 * is a mb(), which will synchronize with the rmb here. 2201 * (see rb_tail_page_update() and __rb_reserve_next()) 2202 */ 2203 commit = rb_page_commit(iter_head_page); 2204 smp_rmb(); 2205 event = __rb_page_index(iter_head_page, iter->head); 2206 length = rb_event_length(event); 2207 2208 /* 2209 * READ_ONCE() doesn't work on functions and we don't want the 2210 * compiler doing any crazy optimizations with length. 2211 */ 2212 barrier(); 2213 2214 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2215 /* Writer corrupted the read? */ 2216 goto reset; 2217 2218 memcpy(iter->event, event, length); 2219 /* 2220 * If the page stamp is still the same after this rmb() then the 2221 * event was safely copied without the writer entering the page. 2222 */ 2223 smp_rmb(); 2224 2225 /* Make sure the page didn't change since we read this */ 2226 if (iter->page_stamp != iter_head_page->page->time_stamp || 2227 commit > rb_page_commit(iter_head_page)) 2228 goto reset; 2229 2230 iter->next_event = iter->head + length; 2231 return iter->event; 2232 reset: 2233 /* Reset to the beginning */ 2234 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2235 iter->head = 0; 2236 iter->next_event = 0; 2237 iter->missed_events = 1; 2238 return NULL; 2239 } 2240 2241 /* Size is determined by what has been committed */ 2242 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2243 { 2244 return rb_page_commit(bpage); 2245 } 2246 2247 static __always_inline unsigned 2248 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2249 { 2250 return rb_page_commit(cpu_buffer->commit_page); 2251 } 2252 2253 static __always_inline unsigned 2254 rb_event_index(struct ring_buffer_event *event) 2255 { 2256 unsigned long addr = (unsigned long)event; 2257 2258 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2259 } 2260 2261 static void rb_inc_iter(struct ring_buffer_iter *iter) 2262 { 2263 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2264 2265 /* 2266 * The iterator could be on the reader page (it starts there). 2267 * But the head could have moved, since the reader was 2268 * found. Check for this case and assign the iterator 2269 * to the head page instead of next. 2270 */ 2271 if (iter->head_page == cpu_buffer->reader_page) 2272 iter->head_page = rb_set_head_page(cpu_buffer); 2273 else 2274 rb_inc_page(cpu_buffer, &iter->head_page); 2275 2276 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2277 iter->head = 0; 2278 iter->next_event = 0; 2279 } 2280 2281 /* 2282 * rb_handle_head_page - writer hit the head page 2283 * 2284 * Returns: +1 to retry page 2285 * 0 to continue 2286 * -1 on error 2287 */ 2288 static int 2289 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2290 struct buffer_page *tail_page, 2291 struct buffer_page *next_page) 2292 { 2293 struct buffer_page *new_head; 2294 int entries; 2295 int type; 2296 int ret; 2297 2298 entries = rb_page_entries(next_page); 2299 2300 /* 2301 * The hard part is here. We need to move the head 2302 * forward, and protect against both readers on 2303 * other CPUs and writers coming in via interrupts. 2304 */ 2305 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2306 RB_PAGE_HEAD); 2307 2308 /* 2309 * type can be one of four: 2310 * NORMAL - an interrupt already moved it for us 2311 * HEAD - we are the first to get here. 2312 * UPDATE - we are the interrupt interrupting 2313 * a current move. 2314 * MOVED - a reader on another CPU moved the next 2315 * pointer to its reader page. Give up 2316 * and try again. 2317 */ 2318 2319 switch (type) { 2320 case RB_PAGE_HEAD: 2321 /* 2322 * We changed the head to UPDATE, thus 2323 * it is our responsibility to update 2324 * the counters. 2325 */ 2326 local_add(entries, &cpu_buffer->overrun); 2327 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2328 2329 /* 2330 * The entries will be zeroed out when we move the 2331 * tail page. 2332 */ 2333 2334 /* still more to do */ 2335 break; 2336 2337 case RB_PAGE_UPDATE: 2338 /* 2339 * This is an interrupt that interrupt the 2340 * previous update. Still more to do. 2341 */ 2342 break; 2343 case RB_PAGE_NORMAL: 2344 /* 2345 * An interrupt came in before the update 2346 * and processed this for us. 2347 * Nothing left to do. 2348 */ 2349 return 1; 2350 case RB_PAGE_MOVED: 2351 /* 2352 * The reader is on another CPU and just did 2353 * a swap with our next_page. 2354 * Try again. 2355 */ 2356 return 1; 2357 default: 2358 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2359 return -1; 2360 } 2361 2362 /* 2363 * Now that we are here, the old head pointer is 2364 * set to UPDATE. This will keep the reader from 2365 * swapping the head page with the reader page. 2366 * The reader (on another CPU) will spin till 2367 * we are finished. 2368 * 2369 * We just need to protect against interrupts 2370 * doing the job. We will set the next pointer 2371 * to HEAD. After that, we set the old pointer 2372 * to NORMAL, but only if it was HEAD before. 2373 * otherwise we are an interrupt, and only 2374 * want the outer most commit to reset it. 2375 */ 2376 new_head = next_page; 2377 rb_inc_page(cpu_buffer, &new_head); 2378 2379 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2380 RB_PAGE_NORMAL); 2381 2382 /* 2383 * Valid returns are: 2384 * HEAD - an interrupt came in and already set it. 2385 * NORMAL - One of two things: 2386 * 1) We really set it. 2387 * 2) A bunch of interrupts came in and moved 2388 * the page forward again. 2389 */ 2390 switch (ret) { 2391 case RB_PAGE_HEAD: 2392 case RB_PAGE_NORMAL: 2393 /* OK */ 2394 break; 2395 default: 2396 RB_WARN_ON(cpu_buffer, 1); 2397 return -1; 2398 } 2399 2400 /* 2401 * It is possible that an interrupt came in, 2402 * set the head up, then more interrupts came in 2403 * and moved it again. When we get back here, 2404 * the page would have been set to NORMAL but we 2405 * just set it back to HEAD. 2406 * 2407 * How do you detect this? Well, if that happened 2408 * the tail page would have moved. 2409 */ 2410 if (ret == RB_PAGE_NORMAL) { 2411 struct buffer_page *buffer_tail_page; 2412 2413 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2414 /* 2415 * If the tail had moved passed next, then we need 2416 * to reset the pointer. 2417 */ 2418 if (buffer_tail_page != tail_page && 2419 buffer_tail_page != next_page) 2420 rb_head_page_set_normal(cpu_buffer, new_head, 2421 next_page, 2422 RB_PAGE_HEAD); 2423 } 2424 2425 /* 2426 * If this was the outer most commit (the one that 2427 * changed the original pointer from HEAD to UPDATE), 2428 * then it is up to us to reset it to NORMAL. 2429 */ 2430 if (type == RB_PAGE_HEAD) { 2431 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2432 tail_page, 2433 RB_PAGE_UPDATE); 2434 if (RB_WARN_ON(cpu_buffer, 2435 ret != RB_PAGE_UPDATE)) 2436 return -1; 2437 } 2438 2439 return 0; 2440 } 2441 2442 static inline void 2443 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2444 unsigned long tail, struct rb_event_info *info) 2445 { 2446 struct buffer_page *tail_page = info->tail_page; 2447 struct ring_buffer_event *event; 2448 unsigned long length = info->length; 2449 2450 /* 2451 * Only the event that crossed the page boundary 2452 * must fill the old tail_page with padding. 2453 */ 2454 if (tail >= BUF_PAGE_SIZE) { 2455 /* 2456 * If the page was filled, then we still need 2457 * to update the real_end. Reset it to zero 2458 * and the reader will ignore it. 2459 */ 2460 if (tail == BUF_PAGE_SIZE) 2461 tail_page->real_end = 0; 2462 2463 local_sub(length, &tail_page->write); 2464 return; 2465 } 2466 2467 event = __rb_page_index(tail_page, tail); 2468 2469 /* account for padding bytes */ 2470 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2471 2472 /* 2473 * Save the original length to the meta data. 2474 * This will be used by the reader to add lost event 2475 * counter. 2476 */ 2477 tail_page->real_end = tail; 2478 2479 /* 2480 * If this event is bigger than the minimum size, then 2481 * we need to be careful that we don't subtract the 2482 * write counter enough to allow another writer to slip 2483 * in on this page. 2484 * We put in a discarded commit instead, to make sure 2485 * that this space is not used again. 2486 * 2487 * If we are less than the minimum size, we don't need to 2488 * worry about it. 2489 */ 2490 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2491 /* No room for any events */ 2492 2493 /* Mark the rest of the page with padding */ 2494 rb_event_set_padding(event); 2495 2496 /* Set the write back to the previous setting */ 2497 local_sub(length, &tail_page->write); 2498 return; 2499 } 2500 2501 /* Put in a discarded event */ 2502 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2503 event->type_len = RINGBUF_TYPE_PADDING; 2504 /* time delta must be non zero */ 2505 event->time_delta = 1; 2506 2507 /* Set write to end of buffer */ 2508 length = (tail + length) - BUF_PAGE_SIZE; 2509 local_sub(length, &tail_page->write); 2510 } 2511 2512 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2513 2514 /* 2515 * This is the slow path, force gcc not to inline it. 2516 */ 2517 static noinline struct ring_buffer_event * 2518 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2519 unsigned long tail, struct rb_event_info *info) 2520 { 2521 struct buffer_page *tail_page = info->tail_page; 2522 struct buffer_page *commit_page = cpu_buffer->commit_page; 2523 struct trace_buffer *buffer = cpu_buffer->buffer; 2524 struct buffer_page *next_page; 2525 int ret; 2526 2527 next_page = tail_page; 2528 2529 rb_inc_page(cpu_buffer, &next_page); 2530 2531 /* 2532 * If for some reason, we had an interrupt storm that made 2533 * it all the way around the buffer, bail, and warn 2534 * about it. 2535 */ 2536 if (unlikely(next_page == commit_page)) { 2537 local_inc(&cpu_buffer->commit_overrun); 2538 goto out_reset; 2539 } 2540 2541 /* 2542 * This is where the fun begins! 2543 * 2544 * We are fighting against races between a reader that 2545 * could be on another CPU trying to swap its reader 2546 * page with the buffer head. 2547 * 2548 * We are also fighting against interrupts coming in and 2549 * moving the head or tail on us as well. 2550 * 2551 * If the next page is the head page then we have filled 2552 * the buffer, unless the commit page is still on the 2553 * reader page. 2554 */ 2555 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2556 2557 /* 2558 * If the commit is not on the reader page, then 2559 * move the header page. 2560 */ 2561 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2562 /* 2563 * If we are not in overwrite mode, 2564 * this is easy, just stop here. 2565 */ 2566 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2567 local_inc(&cpu_buffer->dropped_events); 2568 goto out_reset; 2569 } 2570 2571 ret = rb_handle_head_page(cpu_buffer, 2572 tail_page, 2573 next_page); 2574 if (ret < 0) 2575 goto out_reset; 2576 if (ret) 2577 goto out_again; 2578 } else { 2579 /* 2580 * We need to be careful here too. The 2581 * commit page could still be on the reader 2582 * page. We could have a small buffer, and 2583 * have filled up the buffer with events 2584 * from interrupts and such, and wrapped. 2585 * 2586 * Note, if the tail page is also the on the 2587 * reader_page, we let it move out. 2588 */ 2589 if (unlikely((cpu_buffer->commit_page != 2590 cpu_buffer->tail_page) && 2591 (cpu_buffer->commit_page == 2592 cpu_buffer->reader_page))) { 2593 local_inc(&cpu_buffer->commit_overrun); 2594 goto out_reset; 2595 } 2596 } 2597 } 2598 2599 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2600 2601 out_again: 2602 2603 rb_reset_tail(cpu_buffer, tail, info); 2604 2605 /* Commit what we have for now. */ 2606 rb_end_commit(cpu_buffer); 2607 /* rb_end_commit() decs committing */ 2608 local_inc(&cpu_buffer->committing); 2609 2610 /* fail and let the caller try again */ 2611 return ERR_PTR(-EAGAIN); 2612 2613 out_reset: 2614 /* reset write */ 2615 rb_reset_tail(cpu_buffer, tail, info); 2616 2617 return NULL; 2618 } 2619 2620 /* Slow path */ 2621 static struct ring_buffer_event * 2622 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2623 { 2624 if (abs) 2625 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2626 else 2627 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2628 2629 /* Not the first event on the page, or not delta? */ 2630 if (abs || rb_event_index(event)) { 2631 event->time_delta = delta & TS_MASK; 2632 event->array[0] = delta >> TS_SHIFT; 2633 } else { 2634 /* nope, just zero it */ 2635 event->time_delta = 0; 2636 event->array[0] = 0; 2637 } 2638 2639 return skip_time_extend(event); 2640 } 2641 2642 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2643 static inline bool sched_clock_stable(void) 2644 { 2645 return true; 2646 } 2647 #endif 2648 2649 static void 2650 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2651 struct rb_event_info *info) 2652 { 2653 u64 write_stamp; 2654 2655 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2656 (unsigned long long)info->delta, 2657 (unsigned long long)info->ts, 2658 (unsigned long long)info->before, 2659 (unsigned long long)info->after, 2660 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2661 sched_clock_stable() ? "" : 2662 "If you just came from a suspend/resume,\n" 2663 "please switch to the trace global clock:\n" 2664 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2665 "or add trace_clock=global to the kernel command line\n"); 2666 } 2667 2668 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2669 struct ring_buffer_event **event, 2670 struct rb_event_info *info, 2671 u64 *delta, 2672 unsigned int *length) 2673 { 2674 bool abs = info->add_timestamp & 2675 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2676 2677 if (unlikely(info->delta > (1ULL << 59))) { 2678 /* did the clock go backwards */ 2679 if (info->before == info->after && info->before > info->ts) { 2680 /* not interrupted */ 2681 static int once; 2682 2683 /* 2684 * This is possible with a recalibrating of the TSC. 2685 * Do not produce a call stack, but just report it. 2686 */ 2687 if (!once) { 2688 once++; 2689 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2690 info->before, info->ts); 2691 } 2692 } else 2693 rb_check_timestamp(cpu_buffer, info); 2694 if (!abs) 2695 info->delta = 0; 2696 } 2697 *event = rb_add_time_stamp(*event, info->delta, abs); 2698 *length -= RB_LEN_TIME_EXTEND; 2699 *delta = 0; 2700 } 2701 2702 /** 2703 * rb_update_event - update event type and data 2704 * @cpu_buffer: The per cpu buffer of the @event 2705 * @event: the event to update 2706 * @info: The info to update the @event with (contains length and delta) 2707 * 2708 * Update the type and data fields of the @event. The length 2709 * is the actual size that is written to the ring buffer, 2710 * and with this, we can determine what to place into the 2711 * data field. 2712 */ 2713 static void 2714 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2715 struct ring_buffer_event *event, 2716 struct rb_event_info *info) 2717 { 2718 unsigned length = info->length; 2719 u64 delta = info->delta; 2720 2721 /* 2722 * If we need to add a timestamp, then we 2723 * add it to the start of the reserved space. 2724 */ 2725 if (unlikely(info->add_timestamp)) 2726 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2727 2728 event->time_delta = delta; 2729 length -= RB_EVNT_HDR_SIZE; 2730 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2731 event->type_len = 0; 2732 event->array[0] = length; 2733 } else 2734 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2735 } 2736 2737 static unsigned rb_calculate_event_length(unsigned length) 2738 { 2739 struct ring_buffer_event event; /* Used only for sizeof array */ 2740 2741 /* zero length can cause confusions */ 2742 if (!length) 2743 length++; 2744 2745 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2746 length += sizeof(event.array[0]); 2747 2748 length += RB_EVNT_HDR_SIZE; 2749 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2750 2751 /* 2752 * In case the time delta is larger than the 27 bits for it 2753 * in the header, we need to add a timestamp. If another 2754 * event comes in when trying to discard this one to increase 2755 * the length, then the timestamp will be added in the allocated 2756 * space of this event. If length is bigger than the size needed 2757 * for the TIME_EXTEND, then padding has to be used. The events 2758 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2759 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2760 * As length is a multiple of 4, we only need to worry if it 2761 * is 12 (RB_LEN_TIME_EXTEND + 4). 2762 */ 2763 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2764 length += RB_ALIGNMENT; 2765 2766 return length; 2767 } 2768 2769 static u64 rb_time_delta(struct ring_buffer_event *event) 2770 { 2771 switch (event->type_len) { 2772 case RINGBUF_TYPE_PADDING: 2773 return 0; 2774 2775 case RINGBUF_TYPE_TIME_EXTEND: 2776 return ring_buffer_event_time_stamp(event); 2777 2778 case RINGBUF_TYPE_TIME_STAMP: 2779 return 0; 2780 2781 case RINGBUF_TYPE_DATA: 2782 return event->time_delta; 2783 default: 2784 return 0; 2785 } 2786 } 2787 2788 static inline int 2789 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2790 struct ring_buffer_event *event) 2791 { 2792 unsigned long new_index, old_index; 2793 struct buffer_page *bpage; 2794 unsigned long index; 2795 unsigned long addr; 2796 u64 write_stamp; 2797 u64 delta; 2798 2799 new_index = rb_event_index(event); 2800 old_index = new_index + rb_event_ts_length(event); 2801 addr = (unsigned long)event; 2802 addr &= PAGE_MASK; 2803 2804 bpage = READ_ONCE(cpu_buffer->tail_page); 2805 2806 delta = rb_time_delta(event); 2807 2808 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 2809 return 0; 2810 2811 /* Make sure the write stamp is read before testing the location */ 2812 barrier(); 2813 2814 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2815 unsigned long write_mask = 2816 local_read(&bpage->write) & ~RB_WRITE_MASK; 2817 unsigned long event_length = rb_event_length(event); 2818 2819 /* Something came in, can't discard */ 2820 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 2821 write_stamp, write_stamp - delta)) 2822 return 0; 2823 2824 /* 2825 * If an event were to come in now, it would see that the 2826 * write_stamp and the before_stamp are different, and assume 2827 * that this event just added itself before updating 2828 * the write stamp. The interrupting event will fix the 2829 * write stamp for us, and use the before stamp as its delta. 2830 */ 2831 2832 /* 2833 * This is on the tail page. It is possible that 2834 * a write could come in and move the tail page 2835 * and write to the next page. That is fine 2836 * because we just shorten what is on this page. 2837 */ 2838 old_index += write_mask; 2839 new_index += write_mask; 2840 index = local_cmpxchg(&bpage->write, old_index, new_index); 2841 if (index == old_index) { 2842 /* update counters */ 2843 local_sub(event_length, &cpu_buffer->entries_bytes); 2844 return 1; 2845 } 2846 } 2847 2848 /* could not discard */ 2849 return 0; 2850 } 2851 2852 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2853 { 2854 local_inc(&cpu_buffer->committing); 2855 local_inc(&cpu_buffer->commits); 2856 } 2857 2858 static __always_inline void 2859 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2860 { 2861 unsigned long max_count; 2862 2863 /* 2864 * We only race with interrupts and NMIs on this CPU. 2865 * If we own the commit event, then we can commit 2866 * all others that interrupted us, since the interruptions 2867 * are in stack format (they finish before they come 2868 * back to us). This allows us to do a simple loop to 2869 * assign the commit to the tail. 2870 */ 2871 again: 2872 max_count = cpu_buffer->nr_pages * 100; 2873 2874 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2875 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2876 return; 2877 if (RB_WARN_ON(cpu_buffer, 2878 rb_is_reader_page(cpu_buffer->tail_page))) 2879 return; 2880 local_set(&cpu_buffer->commit_page->page->commit, 2881 rb_page_write(cpu_buffer->commit_page)); 2882 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2883 /* add barrier to keep gcc from optimizing too much */ 2884 barrier(); 2885 } 2886 while (rb_commit_index(cpu_buffer) != 2887 rb_page_write(cpu_buffer->commit_page)) { 2888 2889 local_set(&cpu_buffer->commit_page->page->commit, 2890 rb_page_write(cpu_buffer->commit_page)); 2891 RB_WARN_ON(cpu_buffer, 2892 local_read(&cpu_buffer->commit_page->page->commit) & 2893 ~RB_WRITE_MASK); 2894 barrier(); 2895 } 2896 2897 /* again, keep gcc from optimizing */ 2898 barrier(); 2899 2900 /* 2901 * If an interrupt came in just after the first while loop 2902 * and pushed the tail page forward, we will be left with 2903 * a dangling commit that will never go forward. 2904 */ 2905 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2906 goto again; 2907 } 2908 2909 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2910 { 2911 unsigned long commits; 2912 2913 if (RB_WARN_ON(cpu_buffer, 2914 !local_read(&cpu_buffer->committing))) 2915 return; 2916 2917 again: 2918 commits = local_read(&cpu_buffer->commits); 2919 /* synchronize with interrupts */ 2920 barrier(); 2921 if (local_read(&cpu_buffer->committing) == 1) 2922 rb_set_commit_to_write(cpu_buffer); 2923 2924 local_dec(&cpu_buffer->committing); 2925 2926 /* synchronize with interrupts */ 2927 barrier(); 2928 2929 /* 2930 * Need to account for interrupts coming in between the 2931 * updating of the commit page and the clearing of the 2932 * committing counter. 2933 */ 2934 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2935 !local_read(&cpu_buffer->committing)) { 2936 local_inc(&cpu_buffer->committing); 2937 goto again; 2938 } 2939 } 2940 2941 static inline void rb_event_discard(struct ring_buffer_event *event) 2942 { 2943 if (extended_time(event)) 2944 event = skip_time_extend(event); 2945 2946 /* array[0] holds the actual length for the discarded event */ 2947 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2948 event->type_len = RINGBUF_TYPE_PADDING; 2949 /* time delta must be non zero */ 2950 if (!event->time_delta) 2951 event->time_delta = 1; 2952 } 2953 2954 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2955 struct ring_buffer_event *event) 2956 { 2957 local_inc(&cpu_buffer->entries); 2958 rb_end_commit(cpu_buffer); 2959 } 2960 2961 static __always_inline void 2962 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2963 { 2964 size_t nr_pages; 2965 size_t dirty; 2966 size_t full; 2967 2968 if (buffer->irq_work.waiters_pending) { 2969 buffer->irq_work.waiters_pending = false; 2970 /* irq_work_queue() supplies it's own memory barriers */ 2971 irq_work_queue(&buffer->irq_work.work); 2972 } 2973 2974 if (cpu_buffer->irq_work.waiters_pending) { 2975 cpu_buffer->irq_work.waiters_pending = false; 2976 /* irq_work_queue() supplies it's own memory barriers */ 2977 irq_work_queue(&cpu_buffer->irq_work.work); 2978 } 2979 2980 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2981 return; 2982 2983 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2984 return; 2985 2986 if (!cpu_buffer->irq_work.full_waiters_pending) 2987 return; 2988 2989 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2990 2991 full = cpu_buffer->shortest_full; 2992 nr_pages = cpu_buffer->nr_pages; 2993 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2994 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2995 return; 2996 2997 cpu_buffer->irq_work.wakeup_full = true; 2998 cpu_buffer->irq_work.full_waiters_pending = false; 2999 /* irq_work_queue() supplies it's own memory barriers */ 3000 irq_work_queue(&cpu_buffer->irq_work.work); 3001 } 3002 3003 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3004 # define do_ring_buffer_record_recursion() \ 3005 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3006 #else 3007 # define do_ring_buffer_record_recursion() do { } while (0) 3008 #endif 3009 3010 /* 3011 * The lock and unlock are done within a preempt disable section. 3012 * The current_context per_cpu variable can only be modified 3013 * by the current task between lock and unlock. But it can 3014 * be modified more than once via an interrupt. To pass this 3015 * information from the lock to the unlock without having to 3016 * access the 'in_interrupt()' functions again (which do show 3017 * a bit of overhead in something as critical as function tracing, 3018 * we use a bitmask trick. 3019 * 3020 * bit 1 = NMI context 3021 * bit 2 = IRQ context 3022 * bit 3 = SoftIRQ context 3023 * bit 4 = normal context. 3024 * 3025 * This works because this is the order of contexts that can 3026 * preempt other contexts. A SoftIRQ never preempts an IRQ 3027 * context. 3028 * 3029 * When the context is determined, the corresponding bit is 3030 * checked and set (if it was set, then a recursion of that context 3031 * happened). 3032 * 3033 * On unlock, we need to clear this bit. To do so, just subtract 3034 * 1 from the current_context and AND it to itself. 3035 * 3036 * (binary) 3037 * 101 - 1 = 100 3038 * 101 & 100 = 100 (clearing bit zero) 3039 * 3040 * 1010 - 1 = 1001 3041 * 1010 & 1001 = 1000 (clearing bit 1) 3042 * 3043 * The least significant bit can be cleared this way, and it 3044 * just so happens that it is the same bit corresponding to 3045 * the current context. 3046 * 3047 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3048 * is set when a recursion is detected at the current context, and if 3049 * the TRANSITION bit is already set, it will fail the recursion. 3050 * This is needed because there's a lag between the changing of 3051 * interrupt context and updating the preempt count. In this case, 3052 * a false positive will be found. To handle this, one extra recursion 3053 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3054 * bit is already set, then it is considered a recursion and the function 3055 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3056 * 3057 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3058 * to be cleared. Even if it wasn't the context that set it. That is, 3059 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3060 * is called before preempt_count() is updated, since the check will 3061 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3062 * NMI then comes in, it will set the NMI bit, but when the NMI code 3063 * does the trace_recursive_unlock() it will clear the TRANSTION bit 3064 * and leave the NMI bit set. But this is fine, because the interrupt 3065 * code that set the TRANSITION bit will then clear the NMI bit when it 3066 * calls trace_recursive_unlock(). If another NMI comes in, it will 3067 * set the TRANSITION bit and continue. 3068 * 3069 * Note: The TRANSITION bit only handles a single transition between context. 3070 */ 3071 3072 static __always_inline int 3073 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3074 { 3075 unsigned int val = cpu_buffer->current_context; 3076 unsigned long pc = preempt_count(); 3077 int bit; 3078 3079 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 3080 bit = RB_CTX_NORMAL; 3081 else 3082 bit = pc & NMI_MASK ? RB_CTX_NMI : 3083 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 3084 3085 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3086 /* 3087 * It is possible that this was called by transitioning 3088 * between interrupt context, and preempt_count() has not 3089 * been updated yet. In this case, use the TRANSITION bit. 3090 */ 3091 bit = RB_CTX_TRANSITION; 3092 if (val & (1 << (bit + cpu_buffer->nest))) { 3093 do_ring_buffer_record_recursion(); 3094 return 1; 3095 } 3096 } 3097 3098 val |= (1 << (bit + cpu_buffer->nest)); 3099 cpu_buffer->current_context = val; 3100 3101 return 0; 3102 } 3103 3104 static __always_inline void 3105 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3106 { 3107 cpu_buffer->current_context &= 3108 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3109 } 3110 3111 /* The recursive locking above uses 5 bits */ 3112 #define NESTED_BITS 5 3113 3114 /** 3115 * ring_buffer_nest_start - Allow to trace while nested 3116 * @buffer: The ring buffer to modify 3117 * 3118 * The ring buffer has a safety mechanism to prevent recursion. 3119 * But there may be a case where a trace needs to be done while 3120 * tracing something else. In this case, calling this function 3121 * will allow this function to nest within a currently active 3122 * ring_buffer_lock_reserve(). 3123 * 3124 * Call this function before calling another ring_buffer_lock_reserve() and 3125 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3126 */ 3127 void ring_buffer_nest_start(struct trace_buffer *buffer) 3128 { 3129 struct ring_buffer_per_cpu *cpu_buffer; 3130 int cpu; 3131 3132 /* Enabled by ring_buffer_nest_end() */ 3133 preempt_disable_notrace(); 3134 cpu = raw_smp_processor_id(); 3135 cpu_buffer = buffer->buffers[cpu]; 3136 /* This is the shift value for the above recursive locking */ 3137 cpu_buffer->nest += NESTED_BITS; 3138 } 3139 3140 /** 3141 * ring_buffer_nest_end - Allow to trace while nested 3142 * @buffer: The ring buffer to modify 3143 * 3144 * Must be called after ring_buffer_nest_start() and after the 3145 * ring_buffer_unlock_commit(). 3146 */ 3147 void ring_buffer_nest_end(struct trace_buffer *buffer) 3148 { 3149 struct ring_buffer_per_cpu *cpu_buffer; 3150 int cpu; 3151 3152 /* disabled by ring_buffer_nest_start() */ 3153 cpu = raw_smp_processor_id(); 3154 cpu_buffer = buffer->buffers[cpu]; 3155 /* This is the shift value for the above recursive locking */ 3156 cpu_buffer->nest -= NESTED_BITS; 3157 preempt_enable_notrace(); 3158 } 3159 3160 /** 3161 * ring_buffer_unlock_commit - commit a reserved 3162 * @buffer: The buffer to commit to 3163 * @event: The event pointer to commit. 3164 * 3165 * This commits the data to the ring buffer, and releases any locks held. 3166 * 3167 * Must be paired with ring_buffer_lock_reserve. 3168 */ 3169 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3170 struct ring_buffer_event *event) 3171 { 3172 struct ring_buffer_per_cpu *cpu_buffer; 3173 int cpu = raw_smp_processor_id(); 3174 3175 cpu_buffer = buffer->buffers[cpu]; 3176 3177 rb_commit(cpu_buffer, event); 3178 3179 rb_wakeups(buffer, cpu_buffer); 3180 3181 trace_recursive_unlock(cpu_buffer); 3182 3183 preempt_enable_notrace(); 3184 3185 return 0; 3186 } 3187 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3188 3189 /* Special value to validate all deltas on a page. */ 3190 #define CHECK_FULL_PAGE 1L 3191 3192 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3193 static void dump_buffer_page(struct buffer_data_page *bpage, 3194 struct rb_event_info *info, 3195 unsigned long tail) 3196 { 3197 struct ring_buffer_event *event; 3198 u64 ts, delta; 3199 int e; 3200 3201 ts = bpage->time_stamp; 3202 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3203 3204 for (e = 0; e < tail; e += rb_event_length(event)) { 3205 3206 event = (struct ring_buffer_event *)(bpage->data + e); 3207 3208 switch (event->type_len) { 3209 3210 case RINGBUF_TYPE_TIME_EXTEND: 3211 delta = ring_buffer_event_time_stamp(event); 3212 ts += delta; 3213 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3214 break; 3215 3216 case RINGBUF_TYPE_TIME_STAMP: 3217 delta = ring_buffer_event_time_stamp(event); 3218 ts = delta; 3219 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3220 break; 3221 3222 case RINGBUF_TYPE_PADDING: 3223 ts += event->time_delta; 3224 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3225 break; 3226 3227 case RINGBUF_TYPE_DATA: 3228 ts += event->time_delta; 3229 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3230 break; 3231 3232 default: 3233 break; 3234 } 3235 } 3236 } 3237 3238 static DEFINE_PER_CPU(atomic_t, checking); 3239 static atomic_t ts_dump; 3240 3241 /* 3242 * Check if the current event time stamp matches the deltas on 3243 * the buffer page. 3244 */ 3245 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3246 struct rb_event_info *info, 3247 unsigned long tail) 3248 { 3249 struct ring_buffer_event *event; 3250 struct buffer_data_page *bpage; 3251 u64 ts, delta; 3252 bool full = false; 3253 int e; 3254 3255 bpage = info->tail_page->page; 3256 3257 if (tail == CHECK_FULL_PAGE) { 3258 full = true; 3259 tail = local_read(&bpage->commit); 3260 } else if (info->add_timestamp & 3261 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3262 /* Ignore events with absolute time stamps */ 3263 return; 3264 } 3265 3266 /* 3267 * Do not check the first event (skip possible extends too). 3268 * Also do not check if previous events have not been committed. 3269 */ 3270 if (tail <= 8 || tail > local_read(&bpage->commit)) 3271 return; 3272 3273 /* 3274 * If this interrupted another event, 3275 */ 3276 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3277 goto out; 3278 3279 ts = bpage->time_stamp; 3280 3281 for (e = 0; e < tail; e += rb_event_length(event)) { 3282 3283 event = (struct ring_buffer_event *)(bpage->data + e); 3284 3285 switch (event->type_len) { 3286 3287 case RINGBUF_TYPE_TIME_EXTEND: 3288 delta = ring_buffer_event_time_stamp(event); 3289 ts += delta; 3290 break; 3291 3292 case RINGBUF_TYPE_TIME_STAMP: 3293 delta = ring_buffer_event_time_stamp(event); 3294 ts = delta; 3295 break; 3296 3297 case RINGBUF_TYPE_PADDING: 3298 if (event->time_delta == 1) 3299 break; 3300 /* fall through */ 3301 case RINGBUF_TYPE_DATA: 3302 ts += event->time_delta; 3303 break; 3304 3305 default: 3306 RB_WARN_ON(cpu_buffer, 1); 3307 } 3308 } 3309 if ((full && ts > info->ts) || 3310 (!full && ts + info->delta != info->ts)) { 3311 /* If another report is happening, ignore this one */ 3312 if (atomic_inc_return(&ts_dump) != 1) { 3313 atomic_dec(&ts_dump); 3314 goto out; 3315 } 3316 atomic_inc(&cpu_buffer->record_disabled); 3317 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld after:%lld\n", 3318 cpu_buffer->cpu, 3319 ts + info->delta, info->ts, info->delta, info->after); 3320 dump_buffer_page(bpage, info, tail); 3321 atomic_dec(&ts_dump); 3322 /* Do not re-enable checking */ 3323 return; 3324 } 3325 out: 3326 atomic_dec(this_cpu_ptr(&checking)); 3327 } 3328 #else 3329 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3330 struct rb_event_info *info, 3331 unsigned long tail) 3332 { 3333 } 3334 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3335 3336 static struct ring_buffer_event * 3337 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3338 struct rb_event_info *info) 3339 { 3340 struct ring_buffer_event *event; 3341 struct buffer_page *tail_page; 3342 unsigned long tail, write, w; 3343 bool a_ok; 3344 bool b_ok; 3345 3346 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3347 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3348 3349 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3350 barrier(); 3351 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3352 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3353 barrier(); 3354 info->ts = rb_time_stamp(cpu_buffer->buffer); 3355 3356 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3357 info->delta = info->ts; 3358 } else { 3359 /* 3360 * If interrupting an event time update, we may need an 3361 * absolute timestamp. 3362 * Don't bother if this is the start of a new page (w == 0). 3363 */ 3364 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3365 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3366 info->length += RB_LEN_TIME_EXTEND; 3367 } else { 3368 info->delta = info->ts - info->after; 3369 if (unlikely(test_time_stamp(info->delta))) { 3370 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3371 info->length += RB_LEN_TIME_EXTEND; 3372 } 3373 } 3374 } 3375 3376 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3377 3378 /*C*/ write = local_add_return(info->length, &tail_page->write); 3379 3380 /* set write to only the index of the write */ 3381 write &= RB_WRITE_MASK; 3382 3383 tail = write - info->length; 3384 3385 /* See if we shot pass the end of this buffer page */ 3386 if (unlikely(write > BUF_PAGE_SIZE)) { 3387 /* before and after may now different, fix it up*/ 3388 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3389 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3390 if (a_ok && b_ok && info->before != info->after) 3391 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3392 info->before, info->after); 3393 if (a_ok && b_ok) 3394 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3395 return rb_move_tail(cpu_buffer, tail, info); 3396 } 3397 3398 if (likely(tail == w)) { 3399 u64 save_before; 3400 bool s_ok; 3401 3402 /* Nothing interrupted us between A and C */ 3403 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3404 barrier(); 3405 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3406 RB_WARN_ON(cpu_buffer, !s_ok); 3407 if (likely(!(info->add_timestamp & 3408 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3409 /* This did not interrupt any time update */ 3410 info->delta = info->ts - info->after; 3411 else 3412 /* Just use full timestamp for interrupting event */ 3413 info->delta = info->ts; 3414 barrier(); 3415 check_buffer(cpu_buffer, info, tail); 3416 if (unlikely(info->ts != save_before)) { 3417 /* SLOW PATH - Interrupted between C and E */ 3418 3419 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3420 RB_WARN_ON(cpu_buffer, !a_ok); 3421 3422 /* Write stamp must only go forward */ 3423 if (save_before > info->after) { 3424 /* 3425 * We do not care about the result, only that 3426 * it gets updated atomically. 3427 */ 3428 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3429 info->after, save_before); 3430 } 3431 } 3432 } else { 3433 u64 ts; 3434 /* SLOW PATH - Interrupted between A and C */ 3435 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3436 /* Was interrupted before here, write_stamp must be valid */ 3437 RB_WARN_ON(cpu_buffer, !a_ok); 3438 ts = rb_time_stamp(cpu_buffer->buffer); 3439 barrier(); 3440 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3441 info->after < ts && 3442 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3443 info->after, ts)) { 3444 /* Nothing came after this event between C and E */ 3445 info->delta = ts - info->after; 3446 info->ts = ts; 3447 } else { 3448 /* 3449 * Interrupted between C and E: 3450 * Lost the previous events time stamp. Just set the 3451 * delta to zero, and this will be the same time as 3452 * the event this event interrupted. And the events that 3453 * came after this will still be correct (as they would 3454 * have built their delta on the previous event. 3455 */ 3456 info->delta = 0; 3457 } 3458 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3459 } 3460 3461 /* 3462 * If this is the first commit on the page, then it has the same 3463 * timestamp as the page itself. 3464 */ 3465 if (unlikely(!tail && !(info->add_timestamp & 3466 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3467 info->delta = 0; 3468 3469 /* We reserved something on the buffer */ 3470 3471 event = __rb_page_index(tail_page, tail); 3472 rb_update_event(cpu_buffer, event, info); 3473 3474 local_inc(&tail_page->entries); 3475 3476 /* 3477 * If this is the first commit on the page, then update 3478 * its timestamp. 3479 */ 3480 if (unlikely(!tail)) 3481 tail_page->page->time_stamp = info->ts; 3482 3483 /* account for these added bytes */ 3484 local_add(info->length, &cpu_buffer->entries_bytes); 3485 3486 return event; 3487 } 3488 3489 static __always_inline struct ring_buffer_event * 3490 rb_reserve_next_event(struct trace_buffer *buffer, 3491 struct ring_buffer_per_cpu *cpu_buffer, 3492 unsigned long length) 3493 { 3494 struct ring_buffer_event *event; 3495 struct rb_event_info info; 3496 int nr_loops = 0; 3497 int add_ts_default; 3498 3499 rb_start_commit(cpu_buffer); 3500 /* The commit page can not change after this */ 3501 3502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3503 /* 3504 * Due to the ability to swap a cpu buffer from a buffer 3505 * it is possible it was swapped before we committed. 3506 * (committing stops a swap). We check for it here and 3507 * if it happened, we have to fail the write. 3508 */ 3509 barrier(); 3510 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3511 local_dec(&cpu_buffer->committing); 3512 local_dec(&cpu_buffer->commits); 3513 return NULL; 3514 } 3515 #endif 3516 3517 info.length = rb_calculate_event_length(length); 3518 3519 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3520 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3521 info.length += RB_LEN_TIME_EXTEND; 3522 } else { 3523 add_ts_default = RB_ADD_STAMP_NONE; 3524 } 3525 3526 again: 3527 info.add_timestamp = add_ts_default; 3528 info.delta = 0; 3529 3530 /* 3531 * We allow for interrupts to reenter here and do a trace. 3532 * If one does, it will cause this original code to loop 3533 * back here. Even with heavy interrupts happening, this 3534 * should only happen a few times in a row. If this happens 3535 * 1000 times in a row, there must be either an interrupt 3536 * storm or we have something buggy. 3537 * Bail! 3538 */ 3539 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3540 goto out_fail; 3541 3542 event = __rb_reserve_next(cpu_buffer, &info); 3543 3544 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3545 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3546 info.length -= RB_LEN_TIME_EXTEND; 3547 goto again; 3548 } 3549 3550 if (likely(event)) 3551 return event; 3552 out_fail: 3553 rb_end_commit(cpu_buffer); 3554 return NULL; 3555 } 3556 3557 /** 3558 * ring_buffer_lock_reserve - reserve a part of the buffer 3559 * @buffer: the ring buffer to reserve from 3560 * @length: the length of the data to reserve (excluding event header) 3561 * 3562 * Returns a reserved event on the ring buffer to copy directly to. 3563 * The user of this interface will need to get the body to write into 3564 * and can use the ring_buffer_event_data() interface. 3565 * 3566 * The length is the length of the data needed, not the event length 3567 * which also includes the event header. 3568 * 3569 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3570 * If NULL is returned, then nothing has been allocated or locked. 3571 */ 3572 struct ring_buffer_event * 3573 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3574 { 3575 struct ring_buffer_per_cpu *cpu_buffer; 3576 struct ring_buffer_event *event; 3577 int cpu; 3578 3579 /* If we are tracing schedule, we don't want to recurse */ 3580 preempt_disable_notrace(); 3581 3582 if (unlikely(atomic_read(&buffer->record_disabled))) 3583 goto out; 3584 3585 cpu = raw_smp_processor_id(); 3586 3587 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3588 goto out; 3589 3590 cpu_buffer = buffer->buffers[cpu]; 3591 3592 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3593 goto out; 3594 3595 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3596 goto out; 3597 3598 if (unlikely(trace_recursive_lock(cpu_buffer))) 3599 goto out; 3600 3601 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3602 if (!event) 3603 goto out_unlock; 3604 3605 return event; 3606 3607 out_unlock: 3608 trace_recursive_unlock(cpu_buffer); 3609 out: 3610 preempt_enable_notrace(); 3611 return NULL; 3612 } 3613 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3614 3615 /* 3616 * Decrement the entries to the page that an event is on. 3617 * The event does not even need to exist, only the pointer 3618 * to the page it is on. This may only be called before the commit 3619 * takes place. 3620 */ 3621 static inline void 3622 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3623 struct ring_buffer_event *event) 3624 { 3625 unsigned long addr = (unsigned long)event; 3626 struct buffer_page *bpage = cpu_buffer->commit_page; 3627 struct buffer_page *start; 3628 3629 addr &= PAGE_MASK; 3630 3631 /* Do the likely case first */ 3632 if (likely(bpage->page == (void *)addr)) { 3633 local_dec(&bpage->entries); 3634 return; 3635 } 3636 3637 /* 3638 * Because the commit page may be on the reader page we 3639 * start with the next page and check the end loop there. 3640 */ 3641 rb_inc_page(cpu_buffer, &bpage); 3642 start = bpage; 3643 do { 3644 if (bpage->page == (void *)addr) { 3645 local_dec(&bpage->entries); 3646 return; 3647 } 3648 rb_inc_page(cpu_buffer, &bpage); 3649 } while (bpage != start); 3650 3651 /* commit not part of this buffer?? */ 3652 RB_WARN_ON(cpu_buffer, 1); 3653 } 3654 3655 /** 3656 * ring_buffer_discard_commit - discard an event that has not been committed 3657 * @buffer: the ring buffer 3658 * @event: non committed event to discard 3659 * 3660 * Sometimes an event that is in the ring buffer needs to be ignored. 3661 * This function lets the user discard an event in the ring buffer 3662 * and then that event will not be read later. 3663 * 3664 * This function only works if it is called before the item has been 3665 * committed. It will try to free the event from the ring buffer 3666 * if another event has not been added behind it. 3667 * 3668 * If another event has been added behind it, it will set the event 3669 * up as discarded, and perform the commit. 3670 * 3671 * If this function is called, do not call ring_buffer_unlock_commit on 3672 * the event. 3673 */ 3674 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3675 struct ring_buffer_event *event) 3676 { 3677 struct ring_buffer_per_cpu *cpu_buffer; 3678 int cpu; 3679 3680 /* The event is discarded regardless */ 3681 rb_event_discard(event); 3682 3683 cpu = smp_processor_id(); 3684 cpu_buffer = buffer->buffers[cpu]; 3685 3686 /* 3687 * This must only be called if the event has not been 3688 * committed yet. Thus we can assume that preemption 3689 * is still disabled. 3690 */ 3691 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3692 3693 rb_decrement_entry(cpu_buffer, event); 3694 if (rb_try_to_discard(cpu_buffer, event)) 3695 goto out; 3696 3697 out: 3698 rb_end_commit(cpu_buffer); 3699 3700 trace_recursive_unlock(cpu_buffer); 3701 3702 preempt_enable_notrace(); 3703 3704 } 3705 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3706 3707 /** 3708 * ring_buffer_write - write data to the buffer without reserving 3709 * @buffer: The ring buffer to write to. 3710 * @length: The length of the data being written (excluding the event header) 3711 * @data: The data to write to the buffer. 3712 * 3713 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3714 * one function. If you already have the data to write to the buffer, it 3715 * may be easier to simply call this function. 3716 * 3717 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3718 * and not the length of the event which would hold the header. 3719 */ 3720 int ring_buffer_write(struct trace_buffer *buffer, 3721 unsigned long length, 3722 void *data) 3723 { 3724 struct ring_buffer_per_cpu *cpu_buffer; 3725 struct ring_buffer_event *event; 3726 void *body; 3727 int ret = -EBUSY; 3728 int cpu; 3729 3730 preempt_disable_notrace(); 3731 3732 if (atomic_read(&buffer->record_disabled)) 3733 goto out; 3734 3735 cpu = raw_smp_processor_id(); 3736 3737 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3738 goto out; 3739 3740 cpu_buffer = buffer->buffers[cpu]; 3741 3742 if (atomic_read(&cpu_buffer->record_disabled)) 3743 goto out; 3744 3745 if (length > BUF_MAX_DATA_SIZE) 3746 goto out; 3747 3748 if (unlikely(trace_recursive_lock(cpu_buffer))) 3749 goto out; 3750 3751 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3752 if (!event) 3753 goto out_unlock; 3754 3755 body = rb_event_data(event); 3756 3757 memcpy(body, data, length); 3758 3759 rb_commit(cpu_buffer, event); 3760 3761 rb_wakeups(buffer, cpu_buffer); 3762 3763 ret = 0; 3764 3765 out_unlock: 3766 trace_recursive_unlock(cpu_buffer); 3767 3768 out: 3769 preempt_enable_notrace(); 3770 3771 return ret; 3772 } 3773 EXPORT_SYMBOL_GPL(ring_buffer_write); 3774 3775 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3776 { 3777 struct buffer_page *reader = cpu_buffer->reader_page; 3778 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3779 struct buffer_page *commit = cpu_buffer->commit_page; 3780 3781 /* In case of error, head will be NULL */ 3782 if (unlikely(!head)) 3783 return true; 3784 3785 return reader->read == rb_page_commit(reader) && 3786 (commit == reader || 3787 (commit == head && 3788 head->read == rb_page_commit(commit))); 3789 } 3790 3791 /** 3792 * ring_buffer_record_disable - stop all writes into the buffer 3793 * @buffer: The ring buffer to stop writes to. 3794 * 3795 * This prevents all writes to the buffer. Any attempt to write 3796 * to the buffer after this will fail and return NULL. 3797 * 3798 * The caller should call synchronize_rcu() after this. 3799 */ 3800 void ring_buffer_record_disable(struct trace_buffer *buffer) 3801 { 3802 atomic_inc(&buffer->record_disabled); 3803 } 3804 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3805 3806 /** 3807 * ring_buffer_record_enable - enable writes to the buffer 3808 * @buffer: The ring buffer to enable writes 3809 * 3810 * Note, multiple disables will need the same number of enables 3811 * to truly enable the writing (much like preempt_disable). 3812 */ 3813 void ring_buffer_record_enable(struct trace_buffer *buffer) 3814 { 3815 atomic_dec(&buffer->record_disabled); 3816 } 3817 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3818 3819 /** 3820 * ring_buffer_record_off - stop all writes into the buffer 3821 * @buffer: The ring buffer to stop writes to. 3822 * 3823 * This prevents all writes to the buffer. Any attempt to write 3824 * to the buffer after this will fail and return NULL. 3825 * 3826 * This is different than ring_buffer_record_disable() as 3827 * it works like an on/off switch, where as the disable() version 3828 * must be paired with a enable(). 3829 */ 3830 void ring_buffer_record_off(struct trace_buffer *buffer) 3831 { 3832 unsigned int rd; 3833 unsigned int new_rd; 3834 3835 do { 3836 rd = atomic_read(&buffer->record_disabled); 3837 new_rd = rd | RB_BUFFER_OFF; 3838 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3839 } 3840 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3841 3842 /** 3843 * ring_buffer_record_on - restart writes into the buffer 3844 * @buffer: The ring buffer to start writes to. 3845 * 3846 * This enables all writes to the buffer that was disabled by 3847 * ring_buffer_record_off(). 3848 * 3849 * This is different than ring_buffer_record_enable() as 3850 * it works like an on/off switch, where as the enable() version 3851 * must be paired with a disable(). 3852 */ 3853 void ring_buffer_record_on(struct trace_buffer *buffer) 3854 { 3855 unsigned int rd; 3856 unsigned int new_rd; 3857 3858 do { 3859 rd = atomic_read(&buffer->record_disabled); 3860 new_rd = rd & ~RB_BUFFER_OFF; 3861 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3862 } 3863 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3864 3865 /** 3866 * ring_buffer_record_is_on - return true if the ring buffer can write 3867 * @buffer: The ring buffer to see if write is enabled 3868 * 3869 * Returns true if the ring buffer is in a state that it accepts writes. 3870 */ 3871 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 3872 { 3873 return !atomic_read(&buffer->record_disabled); 3874 } 3875 3876 /** 3877 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3878 * @buffer: The ring buffer to see if write is set enabled 3879 * 3880 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3881 * Note that this does NOT mean it is in a writable state. 3882 * 3883 * It may return true when the ring buffer has been disabled by 3884 * ring_buffer_record_disable(), as that is a temporary disabling of 3885 * the ring buffer. 3886 */ 3887 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 3888 { 3889 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3890 } 3891 3892 /** 3893 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3894 * @buffer: The ring buffer to stop writes to. 3895 * @cpu: The CPU buffer to stop 3896 * 3897 * This prevents all writes to the buffer. Any attempt to write 3898 * to the buffer after this will fail and return NULL. 3899 * 3900 * The caller should call synchronize_rcu() after this. 3901 */ 3902 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 3903 { 3904 struct ring_buffer_per_cpu *cpu_buffer; 3905 3906 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3907 return; 3908 3909 cpu_buffer = buffer->buffers[cpu]; 3910 atomic_inc(&cpu_buffer->record_disabled); 3911 } 3912 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3913 3914 /** 3915 * ring_buffer_record_enable_cpu - enable writes to the buffer 3916 * @buffer: The ring buffer to enable writes 3917 * @cpu: The CPU to enable. 3918 * 3919 * Note, multiple disables will need the same number of enables 3920 * to truly enable the writing (much like preempt_disable). 3921 */ 3922 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 3923 { 3924 struct ring_buffer_per_cpu *cpu_buffer; 3925 3926 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3927 return; 3928 3929 cpu_buffer = buffer->buffers[cpu]; 3930 atomic_dec(&cpu_buffer->record_disabled); 3931 } 3932 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3933 3934 /* 3935 * The total entries in the ring buffer is the running counter 3936 * of entries entered into the ring buffer, minus the sum of 3937 * the entries read from the ring buffer and the number of 3938 * entries that were overwritten. 3939 */ 3940 static inline unsigned long 3941 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3942 { 3943 return local_read(&cpu_buffer->entries) - 3944 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3945 } 3946 3947 /** 3948 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3949 * @buffer: The ring buffer 3950 * @cpu: The per CPU buffer to read from. 3951 */ 3952 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 3953 { 3954 unsigned long flags; 3955 struct ring_buffer_per_cpu *cpu_buffer; 3956 struct buffer_page *bpage; 3957 u64 ret = 0; 3958 3959 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3960 return 0; 3961 3962 cpu_buffer = buffer->buffers[cpu]; 3963 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3964 /* 3965 * if the tail is on reader_page, oldest time stamp is on the reader 3966 * page 3967 */ 3968 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3969 bpage = cpu_buffer->reader_page; 3970 else 3971 bpage = rb_set_head_page(cpu_buffer); 3972 if (bpage) 3973 ret = bpage->page->time_stamp; 3974 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3975 3976 return ret; 3977 } 3978 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3979 3980 /** 3981 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3982 * @buffer: The ring buffer 3983 * @cpu: The per CPU buffer to read from. 3984 */ 3985 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 3986 { 3987 struct ring_buffer_per_cpu *cpu_buffer; 3988 unsigned long ret; 3989 3990 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3991 return 0; 3992 3993 cpu_buffer = buffer->buffers[cpu]; 3994 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3995 3996 return ret; 3997 } 3998 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3999 4000 /** 4001 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4002 * @buffer: The ring buffer 4003 * @cpu: The per CPU buffer to get the entries from. 4004 */ 4005 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4006 { 4007 struct ring_buffer_per_cpu *cpu_buffer; 4008 4009 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4010 return 0; 4011 4012 cpu_buffer = buffer->buffers[cpu]; 4013 4014 return rb_num_of_entries(cpu_buffer); 4015 } 4016 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4017 4018 /** 4019 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4020 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4021 * @buffer: The ring buffer 4022 * @cpu: The per CPU buffer to get the number of overruns from 4023 */ 4024 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4025 { 4026 struct ring_buffer_per_cpu *cpu_buffer; 4027 unsigned long ret; 4028 4029 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4030 return 0; 4031 4032 cpu_buffer = buffer->buffers[cpu]; 4033 ret = local_read(&cpu_buffer->overrun); 4034 4035 return ret; 4036 } 4037 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4038 4039 /** 4040 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4041 * commits failing due to the buffer wrapping around while there are uncommitted 4042 * events, such as during an interrupt storm. 4043 * @buffer: The ring buffer 4044 * @cpu: The per CPU buffer to get the number of overruns from 4045 */ 4046 unsigned long 4047 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4048 { 4049 struct ring_buffer_per_cpu *cpu_buffer; 4050 unsigned long ret; 4051 4052 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4053 return 0; 4054 4055 cpu_buffer = buffer->buffers[cpu]; 4056 ret = local_read(&cpu_buffer->commit_overrun); 4057 4058 return ret; 4059 } 4060 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4061 4062 /** 4063 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4064 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4065 * @buffer: The ring buffer 4066 * @cpu: The per CPU buffer to get the number of overruns from 4067 */ 4068 unsigned long 4069 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4070 { 4071 struct ring_buffer_per_cpu *cpu_buffer; 4072 unsigned long ret; 4073 4074 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4075 return 0; 4076 4077 cpu_buffer = buffer->buffers[cpu]; 4078 ret = local_read(&cpu_buffer->dropped_events); 4079 4080 return ret; 4081 } 4082 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4083 4084 /** 4085 * ring_buffer_read_events_cpu - get the number of events successfully read 4086 * @buffer: The ring buffer 4087 * @cpu: The per CPU buffer to get the number of events read 4088 */ 4089 unsigned long 4090 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4091 { 4092 struct ring_buffer_per_cpu *cpu_buffer; 4093 4094 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4095 return 0; 4096 4097 cpu_buffer = buffer->buffers[cpu]; 4098 return cpu_buffer->read; 4099 } 4100 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4101 4102 /** 4103 * ring_buffer_entries - get the number of entries in a buffer 4104 * @buffer: The ring buffer 4105 * 4106 * Returns the total number of entries in the ring buffer 4107 * (all CPU entries) 4108 */ 4109 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4110 { 4111 struct ring_buffer_per_cpu *cpu_buffer; 4112 unsigned long entries = 0; 4113 int cpu; 4114 4115 /* if you care about this being correct, lock the buffer */ 4116 for_each_buffer_cpu(buffer, cpu) { 4117 cpu_buffer = buffer->buffers[cpu]; 4118 entries += rb_num_of_entries(cpu_buffer); 4119 } 4120 4121 return entries; 4122 } 4123 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4124 4125 /** 4126 * ring_buffer_overruns - get the number of overruns in buffer 4127 * @buffer: The ring buffer 4128 * 4129 * Returns the total number of overruns in the ring buffer 4130 * (all CPU entries) 4131 */ 4132 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4133 { 4134 struct ring_buffer_per_cpu *cpu_buffer; 4135 unsigned long overruns = 0; 4136 int cpu; 4137 4138 /* if you care about this being correct, lock the buffer */ 4139 for_each_buffer_cpu(buffer, cpu) { 4140 cpu_buffer = buffer->buffers[cpu]; 4141 overruns += local_read(&cpu_buffer->overrun); 4142 } 4143 4144 return overruns; 4145 } 4146 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4147 4148 static void rb_iter_reset(struct ring_buffer_iter *iter) 4149 { 4150 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4151 4152 /* Iterator usage is expected to have record disabled */ 4153 iter->head_page = cpu_buffer->reader_page; 4154 iter->head = cpu_buffer->reader_page->read; 4155 iter->next_event = iter->head; 4156 4157 iter->cache_reader_page = iter->head_page; 4158 iter->cache_read = cpu_buffer->read; 4159 4160 if (iter->head) { 4161 iter->read_stamp = cpu_buffer->read_stamp; 4162 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4163 } else { 4164 iter->read_stamp = iter->head_page->page->time_stamp; 4165 iter->page_stamp = iter->read_stamp; 4166 } 4167 } 4168 4169 /** 4170 * ring_buffer_iter_reset - reset an iterator 4171 * @iter: The iterator to reset 4172 * 4173 * Resets the iterator, so that it will start from the beginning 4174 * again. 4175 */ 4176 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4177 { 4178 struct ring_buffer_per_cpu *cpu_buffer; 4179 unsigned long flags; 4180 4181 if (!iter) 4182 return; 4183 4184 cpu_buffer = iter->cpu_buffer; 4185 4186 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4187 rb_iter_reset(iter); 4188 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4189 } 4190 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4191 4192 /** 4193 * ring_buffer_iter_empty - check if an iterator has no more to read 4194 * @iter: The iterator to check 4195 */ 4196 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4197 { 4198 struct ring_buffer_per_cpu *cpu_buffer; 4199 struct buffer_page *reader; 4200 struct buffer_page *head_page; 4201 struct buffer_page *commit_page; 4202 struct buffer_page *curr_commit_page; 4203 unsigned commit; 4204 u64 curr_commit_ts; 4205 u64 commit_ts; 4206 4207 cpu_buffer = iter->cpu_buffer; 4208 reader = cpu_buffer->reader_page; 4209 head_page = cpu_buffer->head_page; 4210 commit_page = cpu_buffer->commit_page; 4211 commit_ts = commit_page->page->time_stamp; 4212 4213 /* 4214 * When the writer goes across pages, it issues a cmpxchg which 4215 * is a mb(), which will synchronize with the rmb here. 4216 * (see rb_tail_page_update()) 4217 */ 4218 smp_rmb(); 4219 commit = rb_page_commit(commit_page); 4220 /* We want to make sure that the commit page doesn't change */ 4221 smp_rmb(); 4222 4223 /* Make sure commit page didn't change */ 4224 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4225 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4226 4227 /* If the commit page changed, then there's more data */ 4228 if (curr_commit_page != commit_page || 4229 curr_commit_ts != commit_ts) 4230 return 0; 4231 4232 /* Still racy, as it may return a false positive, but that's OK */ 4233 return ((iter->head_page == commit_page && iter->head >= commit) || 4234 (iter->head_page == reader && commit_page == head_page && 4235 head_page->read == commit && 4236 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4237 } 4238 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4239 4240 static void 4241 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4242 struct ring_buffer_event *event) 4243 { 4244 u64 delta; 4245 4246 switch (event->type_len) { 4247 case RINGBUF_TYPE_PADDING: 4248 return; 4249 4250 case RINGBUF_TYPE_TIME_EXTEND: 4251 delta = ring_buffer_event_time_stamp(event); 4252 cpu_buffer->read_stamp += delta; 4253 return; 4254 4255 case RINGBUF_TYPE_TIME_STAMP: 4256 delta = ring_buffer_event_time_stamp(event); 4257 cpu_buffer->read_stamp = delta; 4258 return; 4259 4260 case RINGBUF_TYPE_DATA: 4261 cpu_buffer->read_stamp += event->time_delta; 4262 return; 4263 4264 default: 4265 RB_WARN_ON(cpu_buffer, 1); 4266 } 4267 return; 4268 } 4269 4270 static void 4271 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4272 struct ring_buffer_event *event) 4273 { 4274 u64 delta; 4275 4276 switch (event->type_len) { 4277 case RINGBUF_TYPE_PADDING: 4278 return; 4279 4280 case RINGBUF_TYPE_TIME_EXTEND: 4281 delta = ring_buffer_event_time_stamp(event); 4282 iter->read_stamp += delta; 4283 return; 4284 4285 case RINGBUF_TYPE_TIME_STAMP: 4286 delta = ring_buffer_event_time_stamp(event); 4287 iter->read_stamp = delta; 4288 return; 4289 4290 case RINGBUF_TYPE_DATA: 4291 iter->read_stamp += event->time_delta; 4292 return; 4293 4294 default: 4295 RB_WARN_ON(iter->cpu_buffer, 1); 4296 } 4297 return; 4298 } 4299 4300 static struct buffer_page * 4301 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4302 { 4303 struct buffer_page *reader = NULL; 4304 unsigned long overwrite; 4305 unsigned long flags; 4306 int nr_loops = 0; 4307 int ret; 4308 4309 local_irq_save(flags); 4310 arch_spin_lock(&cpu_buffer->lock); 4311 4312 again: 4313 /* 4314 * This should normally only loop twice. But because the 4315 * start of the reader inserts an empty page, it causes 4316 * a case where we will loop three times. There should be no 4317 * reason to loop four times (that I know of). 4318 */ 4319 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4320 reader = NULL; 4321 goto out; 4322 } 4323 4324 reader = cpu_buffer->reader_page; 4325 4326 /* If there's more to read, return this page */ 4327 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4328 goto out; 4329 4330 /* Never should we have an index greater than the size */ 4331 if (RB_WARN_ON(cpu_buffer, 4332 cpu_buffer->reader_page->read > rb_page_size(reader))) 4333 goto out; 4334 4335 /* check if we caught up to the tail */ 4336 reader = NULL; 4337 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4338 goto out; 4339 4340 /* Don't bother swapping if the ring buffer is empty */ 4341 if (rb_num_of_entries(cpu_buffer) == 0) 4342 goto out; 4343 4344 /* 4345 * Reset the reader page to size zero. 4346 */ 4347 local_set(&cpu_buffer->reader_page->write, 0); 4348 local_set(&cpu_buffer->reader_page->entries, 0); 4349 local_set(&cpu_buffer->reader_page->page->commit, 0); 4350 cpu_buffer->reader_page->real_end = 0; 4351 4352 spin: 4353 /* 4354 * Splice the empty reader page into the list around the head. 4355 */ 4356 reader = rb_set_head_page(cpu_buffer); 4357 if (!reader) 4358 goto out; 4359 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4360 cpu_buffer->reader_page->list.prev = reader->list.prev; 4361 4362 /* 4363 * cpu_buffer->pages just needs to point to the buffer, it 4364 * has no specific buffer page to point to. Lets move it out 4365 * of our way so we don't accidentally swap it. 4366 */ 4367 cpu_buffer->pages = reader->list.prev; 4368 4369 /* The reader page will be pointing to the new head */ 4370 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 4371 4372 /* 4373 * We want to make sure we read the overruns after we set up our 4374 * pointers to the next object. The writer side does a 4375 * cmpxchg to cross pages which acts as the mb on the writer 4376 * side. Note, the reader will constantly fail the swap 4377 * while the writer is updating the pointers, so this 4378 * guarantees that the overwrite recorded here is the one we 4379 * want to compare with the last_overrun. 4380 */ 4381 smp_mb(); 4382 overwrite = local_read(&(cpu_buffer->overrun)); 4383 4384 /* 4385 * Here's the tricky part. 4386 * 4387 * We need to move the pointer past the header page. 4388 * But we can only do that if a writer is not currently 4389 * moving it. The page before the header page has the 4390 * flag bit '1' set if it is pointing to the page we want. 4391 * but if the writer is in the process of moving it 4392 * than it will be '2' or already moved '0'. 4393 */ 4394 4395 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4396 4397 /* 4398 * If we did not convert it, then we must try again. 4399 */ 4400 if (!ret) 4401 goto spin; 4402 4403 /* 4404 * Yay! We succeeded in replacing the page. 4405 * 4406 * Now make the new head point back to the reader page. 4407 */ 4408 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4409 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 4410 4411 local_inc(&cpu_buffer->pages_read); 4412 4413 /* Finally update the reader page to the new head */ 4414 cpu_buffer->reader_page = reader; 4415 cpu_buffer->reader_page->read = 0; 4416 4417 if (overwrite != cpu_buffer->last_overrun) { 4418 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4419 cpu_buffer->last_overrun = overwrite; 4420 } 4421 4422 goto again; 4423 4424 out: 4425 /* Update the read_stamp on the first event */ 4426 if (reader && reader->read == 0) 4427 cpu_buffer->read_stamp = reader->page->time_stamp; 4428 4429 arch_spin_unlock(&cpu_buffer->lock); 4430 local_irq_restore(flags); 4431 4432 return reader; 4433 } 4434 4435 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4436 { 4437 struct ring_buffer_event *event; 4438 struct buffer_page *reader; 4439 unsigned length; 4440 4441 reader = rb_get_reader_page(cpu_buffer); 4442 4443 /* This function should not be called when buffer is empty */ 4444 if (RB_WARN_ON(cpu_buffer, !reader)) 4445 return; 4446 4447 event = rb_reader_event(cpu_buffer); 4448 4449 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4450 cpu_buffer->read++; 4451 4452 rb_update_read_stamp(cpu_buffer, event); 4453 4454 length = rb_event_length(event); 4455 cpu_buffer->reader_page->read += length; 4456 } 4457 4458 static void rb_advance_iter(struct ring_buffer_iter *iter) 4459 { 4460 struct ring_buffer_per_cpu *cpu_buffer; 4461 4462 cpu_buffer = iter->cpu_buffer; 4463 4464 /* If head == next_event then we need to jump to the next event */ 4465 if (iter->head == iter->next_event) { 4466 /* If the event gets overwritten again, there's nothing to do */ 4467 if (rb_iter_head_event(iter) == NULL) 4468 return; 4469 } 4470 4471 iter->head = iter->next_event; 4472 4473 /* 4474 * Check if we are at the end of the buffer. 4475 */ 4476 if (iter->next_event >= rb_page_size(iter->head_page)) { 4477 /* discarded commits can make the page empty */ 4478 if (iter->head_page == cpu_buffer->commit_page) 4479 return; 4480 rb_inc_iter(iter); 4481 return; 4482 } 4483 4484 rb_update_iter_read_stamp(iter, iter->event); 4485 } 4486 4487 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4488 { 4489 return cpu_buffer->lost_events; 4490 } 4491 4492 static struct ring_buffer_event * 4493 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4494 unsigned long *lost_events) 4495 { 4496 struct ring_buffer_event *event; 4497 struct buffer_page *reader; 4498 int nr_loops = 0; 4499 4500 if (ts) 4501 *ts = 0; 4502 again: 4503 /* 4504 * We repeat when a time extend is encountered. 4505 * Since the time extend is always attached to a data event, 4506 * we should never loop more than once. 4507 * (We never hit the following condition more than twice). 4508 */ 4509 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4510 return NULL; 4511 4512 reader = rb_get_reader_page(cpu_buffer); 4513 if (!reader) 4514 return NULL; 4515 4516 event = rb_reader_event(cpu_buffer); 4517 4518 switch (event->type_len) { 4519 case RINGBUF_TYPE_PADDING: 4520 if (rb_null_event(event)) 4521 RB_WARN_ON(cpu_buffer, 1); 4522 /* 4523 * Because the writer could be discarding every 4524 * event it creates (which would probably be bad) 4525 * if we were to go back to "again" then we may never 4526 * catch up, and will trigger the warn on, or lock 4527 * the box. Return the padding, and we will release 4528 * the current locks, and try again. 4529 */ 4530 return event; 4531 4532 case RINGBUF_TYPE_TIME_EXTEND: 4533 /* Internal data, OK to advance */ 4534 rb_advance_reader(cpu_buffer); 4535 goto again; 4536 4537 case RINGBUF_TYPE_TIME_STAMP: 4538 if (ts) { 4539 *ts = ring_buffer_event_time_stamp(event); 4540 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4541 cpu_buffer->cpu, ts); 4542 } 4543 /* Internal data, OK to advance */ 4544 rb_advance_reader(cpu_buffer); 4545 goto again; 4546 4547 case RINGBUF_TYPE_DATA: 4548 if (ts && !(*ts)) { 4549 *ts = cpu_buffer->read_stamp + event->time_delta; 4550 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4551 cpu_buffer->cpu, ts); 4552 } 4553 if (lost_events) 4554 *lost_events = rb_lost_events(cpu_buffer); 4555 return event; 4556 4557 default: 4558 RB_WARN_ON(cpu_buffer, 1); 4559 } 4560 4561 return NULL; 4562 } 4563 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4564 4565 static struct ring_buffer_event * 4566 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4567 { 4568 struct trace_buffer *buffer; 4569 struct ring_buffer_per_cpu *cpu_buffer; 4570 struct ring_buffer_event *event; 4571 int nr_loops = 0; 4572 4573 if (ts) 4574 *ts = 0; 4575 4576 cpu_buffer = iter->cpu_buffer; 4577 buffer = cpu_buffer->buffer; 4578 4579 /* 4580 * Check if someone performed a consuming read to 4581 * the buffer. A consuming read invalidates the iterator 4582 * and we need to reset the iterator in this case. 4583 */ 4584 if (unlikely(iter->cache_read != cpu_buffer->read || 4585 iter->cache_reader_page != cpu_buffer->reader_page)) 4586 rb_iter_reset(iter); 4587 4588 again: 4589 if (ring_buffer_iter_empty(iter)) 4590 return NULL; 4591 4592 /* 4593 * As the writer can mess with what the iterator is trying 4594 * to read, just give up if we fail to get an event after 4595 * three tries. The iterator is not as reliable when reading 4596 * the ring buffer with an active write as the consumer is. 4597 * Do not warn if the three failures is reached. 4598 */ 4599 if (++nr_loops > 3) 4600 return NULL; 4601 4602 if (rb_per_cpu_empty(cpu_buffer)) 4603 return NULL; 4604 4605 if (iter->head >= rb_page_size(iter->head_page)) { 4606 rb_inc_iter(iter); 4607 goto again; 4608 } 4609 4610 event = rb_iter_head_event(iter); 4611 if (!event) 4612 goto again; 4613 4614 switch (event->type_len) { 4615 case RINGBUF_TYPE_PADDING: 4616 if (rb_null_event(event)) { 4617 rb_inc_iter(iter); 4618 goto again; 4619 } 4620 rb_advance_iter(iter); 4621 return event; 4622 4623 case RINGBUF_TYPE_TIME_EXTEND: 4624 /* Internal data, OK to advance */ 4625 rb_advance_iter(iter); 4626 goto again; 4627 4628 case RINGBUF_TYPE_TIME_STAMP: 4629 if (ts) { 4630 *ts = ring_buffer_event_time_stamp(event); 4631 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4632 cpu_buffer->cpu, ts); 4633 } 4634 /* Internal data, OK to advance */ 4635 rb_advance_iter(iter); 4636 goto again; 4637 4638 case RINGBUF_TYPE_DATA: 4639 if (ts && !(*ts)) { 4640 *ts = iter->read_stamp + event->time_delta; 4641 ring_buffer_normalize_time_stamp(buffer, 4642 cpu_buffer->cpu, ts); 4643 } 4644 return event; 4645 4646 default: 4647 RB_WARN_ON(cpu_buffer, 1); 4648 } 4649 4650 return NULL; 4651 } 4652 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4653 4654 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4655 { 4656 if (likely(!in_nmi())) { 4657 raw_spin_lock(&cpu_buffer->reader_lock); 4658 return true; 4659 } 4660 4661 /* 4662 * If an NMI die dumps out the content of the ring buffer 4663 * trylock must be used to prevent a deadlock if the NMI 4664 * preempted a task that holds the ring buffer locks. If 4665 * we get the lock then all is fine, if not, then continue 4666 * to do the read, but this can corrupt the ring buffer, 4667 * so it must be permanently disabled from future writes. 4668 * Reading from NMI is a oneshot deal. 4669 */ 4670 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4671 return true; 4672 4673 /* Continue without locking, but disable the ring buffer */ 4674 atomic_inc(&cpu_buffer->record_disabled); 4675 return false; 4676 } 4677 4678 static inline void 4679 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4680 { 4681 if (likely(locked)) 4682 raw_spin_unlock(&cpu_buffer->reader_lock); 4683 return; 4684 } 4685 4686 /** 4687 * ring_buffer_peek - peek at the next event to be read 4688 * @buffer: The ring buffer to read 4689 * @cpu: The cpu to peak at 4690 * @ts: The timestamp counter of this event. 4691 * @lost_events: a variable to store if events were lost (may be NULL) 4692 * 4693 * This will return the event that will be read next, but does 4694 * not consume the data. 4695 */ 4696 struct ring_buffer_event * 4697 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4698 unsigned long *lost_events) 4699 { 4700 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4701 struct ring_buffer_event *event; 4702 unsigned long flags; 4703 bool dolock; 4704 4705 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4706 return NULL; 4707 4708 again: 4709 local_irq_save(flags); 4710 dolock = rb_reader_lock(cpu_buffer); 4711 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4712 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4713 rb_advance_reader(cpu_buffer); 4714 rb_reader_unlock(cpu_buffer, dolock); 4715 local_irq_restore(flags); 4716 4717 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4718 goto again; 4719 4720 return event; 4721 } 4722 4723 /** ring_buffer_iter_dropped - report if there are dropped events 4724 * @iter: The ring buffer iterator 4725 * 4726 * Returns true if there was dropped events since the last peek. 4727 */ 4728 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4729 { 4730 bool ret = iter->missed_events != 0; 4731 4732 iter->missed_events = 0; 4733 return ret; 4734 } 4735 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4736 4737 /** 4738 * ring_buffer_iter_peek - peek at the next event to be read 4739 * @iter: The ring buffer iterator 4740 * @ts: The timestamp counter of this event. 4741 * 4742 * This will return the event that will be read next, but does 4743 * not increment the iterator. 4744 */ 4745 struct ring_buffer_event * 4746 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4747 { 4748 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4749 struct ring_buffer_event *event; 4750 unsigned long flags; 4751 4752 again: 4753 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4754 event = rb_iter_peek(iter, ts); 4755 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4756 4757 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4758 goto again; 4759 4760 return event; 4761 } 4762 4763 /** 4764 * ring_buffer_consume - return an event and consume it 4765 * @buffer: The ring buffer to get the next event from 4766 * @cpu: the cpu to read the buffer from 4767 * @ts: a variable to store the timestamp (may be NULL) 4768 * @lost_events: a variable to store if events were lost (may be NULL) 4769 * 4770 * Returns the next event in the ring buffer, and that event is consumed. 4771 * Meaning, that sequential reads will keep returning a different event, 4772 * and eventually empty the ring buffer if the producer is slower. 4773 */ 4774 struct ring_buffer_event * 4775 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4776 unsigned long *lost_events) 4777 { 4778 struct ring_buffer_per_cpu *cpu_buffer; 4779 struct ring_buffer_event *event = NULL; 4780 unsigned long flags; 4781 bool dolock; 4782 4783 again: 4784 /* might be called in atomic */ 4785 preempt_disable(); 4786 4787 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4788 goto out; 4789 4790 cpu_buffer = buffer->buffers[cpu]; 4791 local_irq_save(flags); 4792 dolock = rb_reader_lock(cpu_buffer); 4793 4794 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4795 if (event) { 4796 cpu_buffer->lost_events = 0; 4797 rb_advance_reader(cpu_buffer); 4798 } 4799 4800 rb_reader_unlock(cpu_buffer, dolock); 4801 local_irq_restore(flags); 4802 4803 out: 4804 preempt_enable(); 4805 4806 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4807 goto again; 4808 4809 return event; 4810 } 4811 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4812 4813 /** 4814 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4815 * @buffer: The ring buffer to read from 4816 * @cpu: The cpu buffer to iterate over 4817 * @flags: gfp flags to use for memory allocation 4818 * 4819 * This performs the initial preparations necessary to iterate 4820 * through the buffer. Memory is allocated, buffer recording 4821 * is disabled, and the iterator pointer is returned to the caller. 4822 * 4823 * Disabling buffer recording prevents the reading from being 4824 * corrupted. This is not a consuming read, so a producer is not 4825 * expected. 4826 * 4827 * After a sequence of ring_buffer_read_prepare calls, the user is 4828 * expected to make at least one call to ring_buffer_read_prepare_sync. 4829 * Afterwards, ring_buffer_read_start is invoked to get things going 4830 * for real. 4831 * 4832 * This overall must be paired with ring_buffer_read_finish. 4833 */ 4834 struct ring_buffer_iter * 4835 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4836 { 4837 struct ring_buffer_per_cpu *cpu_buffer; 4838 struct ring_buffer_iter *iter; 4839 4840 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4841 return NULL; 4842 4843 iter = kzalloc(sizeof(*iter), flags); 4844 if (!iter) 4845 return NULL; 4846 4847 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 4848 if (!iter->event) { 4849 kfree(iter); 4850 return NULL; 4851 } 4852 4853 cpu_buffer = buffer->buffers[cpu]; 4854 4855 iter->cpu_buffer = cpu_buffer; 4856 4857 atomic_inc(&cpu_buffer->resize_disabled); 4858 4859 return iter; 4860 } 4861 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4862 4863 /** 4864 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4865 * 4866 * All previously invoked ring_buffer_read_prepare calls to prepare 4867 * iterators will be synchronized. Afterwards, read_buffer_read_start 4868 * calls on those iterators are allowed. 4869 */ 4870 void 4871 ring_buffer_read_prepare_sync(void) 4872 { 4873 synchronize_rcu(); 4874 } 4875 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4876 4877 /** 4878 * ring_buffer_read_start - start a non consuming read of the buffer 4879 * @iter: The iterator returned by ring_buffer_read_prepare 4880 * 4881 * This finalizes the startup of an iteration through the buffer. 4882 * The iterator comes from a call to ring_buffer_read_prepare and 4883 * an intervening ring_buffer_read_prepare_sync must have been 4884 * performed. 4885 * 4886 * Must be paired with ring_buffer_read_finish. 4887 */ 4888 void 4889 ring_buffer_read_start(struct ring_buffer_iter *iter) 4890 { 4891 struct ring_buffer_per_cpu *cpu_buffer; 4892 unsigned long flags; 4893 4894 if (!iter) 4895 return; 4896 4897 cpu_buffer = iter->cpu_buffer; 4898 4899 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4900 arch_spin_lock(&cpu_buffer->lock); 4901 rb_iter_reset(iter); 4902 arch_spin_unlock(&cpu_buffer->lock); 4903 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4904 } 4905 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4906 4907 /** 4908 * ring_buffer_read_finish - finish reading the iterator of the buffer 4909 * @iter: The iterator retrieved by ring_buffer_start 4910 * 4911 * This re-enables the recording to the buffer, and frees the 4912 * iterator. 4913 */ 4914 void 4915 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4916 { 4917 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4918 unsigned long flags; 4919 4920 /* 4921 * Ring buffer is disabled from recording, here's a good place 4922 * to check the integrity of the ring buffer. 4923 * Must prevent readers from trying to read, as the check 4924 * clears the HEAD page and readers require it. 4925 */ 4926 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4927 rb_check_pages(cpu_buffer); 4928 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4929 4930 atomic_dec(&cpu_buffer->resize_disabled); 4931 kfree(iter->event); 4932 kfree(iter); 4933 } 4934 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4935 4936 /** 4937 * ring_buffer_iter_advance - advance the iterator to the next location 4938 * @iter: The ring buffer iterator 4939 * 4940 * Move the location of the iterator such that the next read will 4941 * be the next location of the iterator. 4942 */ 4943 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 4944 { 4945 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4946 unsigned long flags; 4947 4948 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4949 4950 rb_advance_iter(iter); 4951 4952 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4953 } 4954 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 4955 4956 /** 4957 * ring_buffer_size - return the size of the ring buffer (in bytes) 4958 * @buffer: The ring buffer. 4959 * @cpu: The CPU to get ring buffer size from. 4960 */ 4961 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 4962 { 4963 /* 4964 * Earlier, this method returned 4965 * BUF_PAGE_SIZE * buffer->nr_pages 4966 * Since the nr_pages field is now removed, we have converted this to 4967 * return the per cpu buffer value. 4968 */ 4969 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4970 return 0; 4971 4972 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4973 } 4974 EXPORT_SYMBOL_GPL(ring_buffer_size); 4975 4976 static void 4977 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4978 { 4979 rb_head_page_deactivate(cpu_buffer); 4980 4981 cpu_buffer->head_page 4982 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4983 local_set(&cpu_buffer->head_page->write, 0); 4984 local_set(&cpu_buffer->head_page->entries, 0); 4985 local_set(&cpu_buffer->head_page->page->commit, 0); 4986 4987 cpu_buffer->head_page->read = 0; 4988 4989 cpu_buffer->tail_page = cpu_buffer->head_page; 4990 cpu_buffer->commit_page = cpu_buffer->head_page; 4991 4992 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4993 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4994 local_set(&cpu_buffer->reader_page->write, 0); 4995 local_set(&cpu_buffer->reader_page->entries, 0); 4996 local_set(&cpu_buffer->reader_page->page->commit, 0); 4997 cpu_buffer->reader_page->read = 0; 4998 4999 local_set(&cpu_buffer->entries_bytes, 0); 5000 local_set(&cpu_buffer->overrun, 0); 5001 local_set(&cpu_buffer->commit_overrun, 0); 5002 local_set(&cpu_buffer->dropped_events, 0); 5003 local_set(&cpu_buffer->entries, 0); 5004 local_set(&cpu_buffer->committing, 0); 5005 local_set(&cpu_buffer->commits, 0); 5006 local_set(&cpu_buffer->pages_touched, 0); 5007 local_set(&cpu_buffer->pages_read, 0); 5008 cpu_buffer->last_pages_touch = 0; 5009 cpu_buffer->shortest_full = 0; 5010 cpu_buffer->read = 0; 5011 cpu_buffer->read_bytes = 0; 5012 5013 rb_time_set(&cpu_buffer->write_stamp, 0); 5014 rb_time_set(&cpu_buffer->before_stamp, 0); 5015 5016 cpu_buffer->lost_events = 0; 5017 cpu_buffer->last_overrun = 0; 5018 5019 rb_head_page_activate(cpu_buffer); 5020 } 5021 5022 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5023 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5024 { 5025 unsigned long flags; 5026 5027 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5028 5029 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5030 goto out; 5031 5032 arch_spin_lock(&cpu_buffer->lock); 5033 5034 rb_reset_cpu(cpu_buffer); 5035 5036 arch_spin_unlock(&cpu_buffer->lock); 5037 5038 out: 5039 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5040 } 5041 5042 /** 5043 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5044 * @buffer: The ring buffer to reset a per cpu buffer of 5045 * @cpu: The CPU buffer to be reset 5046 */ 5047 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5048 { 5049 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5050 5051 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5052 return; 5053 5054 /* prevent another thread from changing buffer sizes */ 5055 mutex_lock(&buffer->mutex); 5056 5057 atomic_inc(&cpu_buffer->resize_disabled); 5058 atomic_inc(&cpu_buffer->record_disabled); 5059 5060 /* Make sure all commits have finished */ 5061 synchronize_rcu(); 5062 5063 reset_disabled_cpu_buffer(cpu_buffer); 5064 5065 atomic_dec(&cpu_buffer->record_disabled); 5066 atomic_dec(&cpu_buffer->resize_disabled); 5067 5068 mutex_unlock(&buffer->mutex); 5069 } 5070 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5071 5072 /** 5073 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5074 * @buffer: The ring buffer to reset a per cpu buffer of 5075 * @cpu: The CPU buffer to be reset 5076 */ 5077 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5078 { 5079 struct ring_buffer_per_cpu *cpu_buffer; 5080 int cpu; 5081 5082 /* prevent another thread from changing buffer sizes */ 5083 mutex_lock(&buffer->mutex); 5084 5085 for_each_online_buffer_cpu(buffer, cpu) { 5086 cpu_buffer = buffer->buffers[cpu]; 5087 5088 atomic_inc(&cpu_buffer->resize_disabled); 5089 atomic_inc(&cpu_buffer->record_disabled); 5090 } 5091 5092 /* Make sure all commits have finished */ 5093 synchronize_rcu(); 5094 5095 for_each_online_buffer_cpu(buffer, cpu) { 5096 cpu_buffer = buffer->buffers[cpu]; 5097 5098 reset_disabled_cpu_buffer(cpu_buffer); 5099 5100 atomic_dec(&cpu_buffer->record_disabled); 5101 atomic_dec(&cpu_buffer->resize_disabled); 5102 } 5103 5104 mutex_unlock(&buffer->mutex); 5105 } 5106 5107 /** 5108 * ring_buffer_reset - reset a ring buffer 5109 * @buffer: The ring buffer to reset all cpu buffers 5110 */ 5111 void ring_buffer_reset(struct trace_buffer *buffer) 5112 { 5113 struct ring_buffer_per_cpu *cpu_buffer; 5114 int cpu; 5115 5116 for_each_buffer_cpu(buffer, cpu) { 5117 cpu_buffer = buffer->buffers[cpu]; 5118 5119 atomic_inc(&cpu_buffer->resize_disabled); 5120 atomic_inc(&cpu_buffer->record_disabled); 5121 } 5122 5123 /* Make sure all commits have finished */ 5124 synchronize_rcu(); 5125 5126 for_each_buffer_cpu(buffer, cpu) { 5127 cpu_buffer = buffer->buffers[cpu]; 5128 5129 reset_disabled_cpu_buffer(cpu_buffer); 5130 5131 atomic_dec(&cpu_buffer->record_disabled); 5132 atomic_dec(&cpu_buffer->resize_disabled); 5133 } 5134 } 5135 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5136 5137 /** 5138 * rind_buffer_empty - is the ring buffer empty? 5139 * @buffer: The ring buffer to test 5140 */ 5141 bool ring_buffer_empty(struct trace_buffer *buffer) 5142 { 5143 struct ring_buffer_per_cpu *cpu_buffer; 5144 unsigned long flags; 5145 bool dolock; 5146 int cpu; 5147 int ret; 5148 5149 /* yes this is racy, but if you don't like the race, lock the buffer */ 5150 for_each_buffer_cpu(buffer, cpu) { 5151 cpu_buffer = buffer->buffers[cpu]; 5152 local_irq_save(flags); 5153 dolock = rb_reader_lock(cpu_buffer); 5154 ret = rb_per_cpu_empty(cpu_buffer); 5155 rb_reader_unlock(cpu_buffer, dolock); 5156 local_irq_restore(flags); 5157 5158 if (!ret) 5159 return false; 5160 } 5161 5162 return true; 5163 } 5164 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5165 5166 /** 5167 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5168 * @buffer: The ring buffer 5169 * @cpu: The CPU buffer to test 5170 */ 5171 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5172 { 5173 struct ring_buffer_per_cpu *cpu_buffer; 5174 unsigned long flags; 5175 bool dolock; 5176 int ret; 5177 5178 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5179 return true; 5180 5181 cpu_buffer = buffer->buffers[cpu]; 5182 local_irq_save(flags); 5183 dolock = rb_reader_lock(cpu_buffer); 5184 ret = rb_per_cpu_empty(cpu_buffer); 5185 rb_reader_unlock(cpu_buffer, dolock); 5186 local_irq_restore(flags); 5187 5188 return ret; 5189 } 5190 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5191 5192 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5193 /** 5194 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5195 * @buffer_a: One buffer to swap with 5196 * @buffer_b: The other buffer to swap with 5197 * @cpu: the CPU of the buffers to swap 5198 * 5199 * This function is useful for tracers that want to take a "snapshot" 5200 * of a CPU buffer and has another back up buffer lying around. 5201 * it is expected that the tracer handles the cpu buffer not being 5202 * used at the moment. 5203 */ 5204 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5205 struct trace_buffer *buffer_b, int cpu) 5206 { 5207 struct ring_buffer_per_cpu *cpu_buffer_a; 5208 struct ring_buffer_per_cpu *cpu_buffer_b; 5209 int ret = -EINVAL; 5210 5211 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5212 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5213 goto out; 5214 5215 cpu_buffer_a = buffer_a->buffers[cpu]; 5216 cpu_buffer_b = buffer_b->buffers[cpu]; 5217 5218 /* At least make sure the two buffers are somewhat the same */ 5219 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5220 goto out; 5221 5222 ret = -EAGAIN; 5223 5224 if (atomic_read(&buffer_a->record_disabled)) 5225 goto out; 5226 5227 if (atomic_read(&buffer_b->record_disabled)) 5228 goto out; 5229 5230 if (atomic_read(&cpu_buffer_a->record_disabled)) 5231 goto out; 5232 5233 if (atomic_read(&cpu_buffer_b->record_disabled)) 5234 goto out; 5235 5236 /* 5237 * We can't do a synchronize_rcu here because this 5238 * function can be called in atomic context. 5239 * Normally this will be called from the same CPU as cpu. 5240 * If not it's up to the caller to protect this. 5241 */ 5242 atomic_inc(&cpu_buffer_a->record_disabled); 5243 atomic_inc(&cpu_buffer_b->record_disabled); 5244 5245 ret = -EBUSY; 5246 if (local_read(&cpu_buffer_a->committing)) 5247 goto out_dec; 5248 if (local_read(&cpu_buffer_b->committing)) 5249 goto out_dec; 5250 5251 buffer_a->buffers[cpu] = cpu_buffer_b; 5252 buffer_b->buffers[cpu] = cpu_buffer_a; 5253 5254 cpu_buffer_b->buffer = buffer_a; 5255 cpu_buffer_a->buffer = buffer_b; 5256 5257 ret = 0; 5258 5259 out_dec: 5260 atomic_dec(&cpu_buffer_a->record_disabled); 5261 atomic_dec(&cpu_buffer_b->record_disabled); 5262 out: 5263 return ret; 5264 } 5265 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5266 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5267 5268 /** 5269 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5270 * @buffer: the buffer to allocate for. 5271 * @cpu: the cpu buffer to allocate. 5272 * 5273 * This function is used in conjunction with ring_buffer_read_page. 5274 * When reading a full page from the ring buffer, these functions 5275 * can be used to speed up the process. The calling function should 5276 * allocate a few pages first with this function. Then when it 5277 * needs to get pages from the ring buffer, it passes the result 5278 * of this function into ring_buffer_read_page, which will swap 5279 * the page that was allocated, with the read page of the buffer. 5280 * 5281 * Returns: 5282 * The page allocated, or ERR_PTR 5283 */ 5284 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5285 { 5286 struct ring_buffer_per_cpu *cpu_buffer; 5287 struct buffer_data_page *bpage = NULL; 5288 unsigned long flags; 5289 struct page *page; 5290 5291 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5292 return ERR_PTR(-ENODEV); 5293 5294 cpu_buffer = buffer->buffers[cpu]; 5295 local_irq_save(flags); 5296 arch_spin_lock(&cpu_buffer->lock); 5297 5298 if (cpu_buffer->free_page) { 5299 bpage = cpu_buffer->free_page; 5300 cpu_buffer->free_page = NULL; 5301 } 5302 5303 arch_spin_unlock(&cpu_buffer->lock); 5304 local_irq_restore(flags); 5305 5306 if (bpage) 5307 goto out; 5308 5309 page = alloc_pages_node(cpu_to_node(cpu), 5310 GFP_KERNEL | __GFP_NORETRY, 0); 5311 if (!page) 5312 return ERR_PTR(-ENOMEM); 5313 5314 bpage = page_address(page); 5315 5316 out: 5317 rb_init_page(bpage); 5318 5319 return bpage; 5320 } 5321 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5322 5323 /** 5324 * ring_buffer_free_read_page - free an allocated read page 5325 * @buffer: the buffer the page was allocate for 5326 * @cpu: the cpu buffer the page came from 5327 * @data: the page to free 5328 * 5329 * Free a page allocated from ring_buffer_alloc_read_page. 5330 */ 5331 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5332 { 5333 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5334 struct buffer_data_page *bpage = data; 5335 struct page *page = virt_to_page(bpage); 5336 unsigned long flags; 5337 5338 /* If the page is still in use someplace else, we can't reuse it */ 5339 if (page_ref_count(page) > 1) 5340 goto out; 5341 5342 local_irq_save(flags); 5343 arch_spin_lock(&cpu_buffer->lock); 5344 5345 if (!cpu_buffer->free_page) { 5346 cpu_buffer->free_page = bpage; 5347 bpage = NULL; 5348 } 5349 5350 arch_spin_unlock(&cpu_buffer->lock); 5351 local_irq_restore(flags); 5352 5353 out: 5354 free_page((unsigned long)bpage); 5355 } 5356 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5357 5358 /** 5359 * ring_buffer_read_page - extract a page from the ring buffer 5360 * @buffer: buffer to extract from 5361 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5362 * @len: amount to extract 5363 * @cpu: the cpu of the buffer to extract 5364 * @full: should the extraction only happen when the page is full. 5365 * 5366 * This function will pull out a page from the ring buffer and consume it. 5367 * @data_page must be the address of the variable that was returned 5368 * from ring_buffer_alloc_read_page. This is because the page might be used 5369 * to swap with a page in the ring buffer. 5370 * 5371 * for example: 5372 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5373 * if (IS_ERR(rpage)) 5374 * return PTR_ERR(rpage); 5375 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5376 * if (ret >= 0) 5377 * process_page(rpage, ret); 5378 * 5379 * When @full is set, the function will not return true unless 5380 * the writer is off the reader page. 5381 * 5382 * Note: it is up to the calling functions to handle sleeps and wakeups. 5383 * The ring buffer can be used anywhere in the kernel and can not 5384 * blindly call wake_up. The layer that uses the ring buffer must be 5385 * responsible for that. 5386 * 5387 * Returns: 5388 * >=0 if data has been transferred, returns the offset of consumed data. 5389 * <0 if no data has been transferred. 5390 */ 5391 int ring_buffer_read_page(struct trace_buffer *buffer, 5392 void **data_page, size_t len, int cpu, int full) 5393 { 5394 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5395 struct ring_buffer_event *event; 5396 struct buffer_data_page *bpage; 5397 struct buffer_page *reader; 5398 unsigned long missed_events; 5399 unsigned long flags; 5400 unsigned int commit; 5401 unsigned int read; 5402 u64 save_timestamp; 5403 int ret = -1; 5404 5405 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5406 goto out; 5407 5408 /* 5409 * If len is not big enough to hold the page header, then 5410 * we can not copy anything. 5411 */ 5412 if (len <= BUF_PAGE_HDR_SIZE) 5413 goto out; 5414 5415 len -= BUF_PAGE_HDR_SIZE; 5416 5417 if (!data_page) 5418 goto out; 5419 5420 bpage = *data_page; 5421 if (!bpage) 5422 goto out; 5423 5424 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5425 5426 reader = rb_get_reader_page(cpu_buffer); 5427 if (!reader) 5428 goto out_unlock; 5429 5430 event = rb_reader_event(cpu_buffer); 5431 5432 read = reader->read; 5433 commit = rb_page_commit(reader); 5434 5435 /* Check if any events were dropped */ 5436 missed_events = cpu_buffer->lost_events; 5437 5438 /* 5439 * If this page has been partially read or 5440 * if len is not big enough to read the rest of the page or 5441 * a writer is still on the page, then 5442 * we must copy the data from the page to the buffer. 5443 * Otherwise, we can simply swap the page with the one passed in. 5444 */ 5445 if (read || (len < (commit - read)) || 5446 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5447 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5448 unsigned int rpos = read; 5449 unsigned int pos = 0; 5450 unsigned int size; 5451 5452 if (full) 5453 goto out_unlock; 5454 5455 if (len > (commit - read)) 5456 len = (commit - read); 5457 5458 /* Always keep the time extend and data together */ 5459 size = rb_event_ts_length(event); 5460 5461 if (len < size) 5462 goto out_unlock; 5463 5464 /* save the current timestamp, since the user will need it */ 5465 save_timestamp = cpu_buffer->read_stamp; 5466 5467 /* Need to copy one event at a time */ 5468 do { 5469 /* We need the size of one event, because 5470 * rb_advance_reader only advances by one event, 5471 * whereas rb_event_ts_length may include the size of 5472 * one or two events. 5473 * We have already ensured there's enough space if this 5474 * is a time extend. */ 5475 size = rb_event_length(event); 5476 memcpy(bpage->data + pos, rpage->data + rpos, size); 5477 5478 len -= size; 5479 5480 rb_advance_reader(cpu_buffer); 5481 rpos = reader->read; 5482 pos += size; 5483 5484 if (rpos >= commit) 5485 break; 5486 5487 event = rb_reader_event(cpu_buffer); 5488 /* Always keep the time extend and data together */ 5489 size = rb_event_ts_length(event); 5490 } while (len >= size); 5491 5492 /* update bpage */ 5493 local_set(&bpage->commit, pos); 5494 bpage->time_stamp = save_timestamp; 5495 5496 /* we copied everything to the beginning */ 5497 read = 0; 5498 } else { 5499 /* update the entry counter */ 5500 cpu_buffer->read += rb_page_entries(reader); 5501 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5502 5503 /* swap the pages */ 5504 rb_init_page(bpage); 5505 bpage = reader->page; 5506 reader->page = *data_page; 5507 local_set(&reader->write, 0); 5508 local_set(&reader->entries, 0); 5509 reader->read = 0; 5510 *data_page = bpage; 5511 5512 /* 5513 * Use the real_end for the data size, 5514 * This gives us a chance to store the lost events 5515 * on the page. 5516 */ 5517 if (reader->real_end) 5518 local_set(&bpage->commit, reader->real_end); 5519 } 5520 ret = read; 5521 5522 cpu_buffer->lost_events = 0; 5523 5524 commit = local_read(&bpage->commit); 5525 /* 5526 * Set a flag in the commit field if we lost events 5527 */ 5528 if (missed_events) { 5529 /* If there is room at the end of the page to save the 5530 * missed events, then record it there. 5531 */ 5532 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5533 memcpy(&bpage->data[commit], &missed_events, 5534 sizeof(missed_events)); 5535 local_add(RB_MISSED_STORED, &bpage->commit); 5536 commit += sizeof(missed_events); 5537 } 5538 local_add(RB_MISSED_EVENTS, &bpage->commit); 5539 } 5540 5541 /* 5542 * This page may be off to user land. Zero it out here. 5543 */ 5544 if (commit < BUF_PAGE_SIZE) 5545 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5546 5547 out_unlock: 5548 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5549 5550 out: 5551 return ret; 5552 } 5553 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5554 5555 /* 5556 * We only allocate new buffers, never free them if the CPU goes down. 5557 * If we were to free the buffer, then the user would lose any trace that was in 5558 * the buffer. 5559 */ 5560 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5561 { 5562 struct trace_buffer *buffer; 5563 long nr_pages_same; 5564 int cpu_i; 5565 unsigned long nr_pages; 5566 5567 buffer = container_of(node, struct trace_buffer, node); 5568 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5569 return 0; 5570 5571 nr_pages = 0; 5572 nr_pages_same = 1; 5573 /* check if all cpu sizes are same */ 5574 for_each_buffer_cpu(buffer, cpu_i) { 5575 /* fill in the size from first enabled cpu */ 5576 if (nr_pages == 0) 5577 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5578 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5579 nr_pages_same = 0; 5580 break; 5581 } 5582 } 5583 /* allocate minimum pages, user can later expand it */ 5584 if (!nr_pages_same) 5585 nr_pages = 2; 5586 buffer->buffers[cpu] = 5587 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5588 if (!buffer->buffers[cpu]) { 5589 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5590 cpu); 5591 return -ENOMEM; 5592 } 5593 smp_wmb(); 5594 cpumask_set_cpu(cpu, buffer->cpumask); 5595 return 0; 5596 } 5597 5598 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5599 /* 5600 * This is a basic integrity check of the ring buffer. 5601 * Late in the boot cycle this test will run when configured in. 5602 * It will kick off a thread per CPU that will go into a loop 5603 * writing to the per cpu ring buffer various sizes of data. 5604 * Some of the data will be large items, some small. 5605 * 5606 * Another thread is created that goes into a spin, sending out 5607 * IPIs to the other CPUs to also write into the ring buffer. 5608 * this is to test the nesting ability of the buffer. 5609 * 5610 * Basic stats are recorded and reported. If something in the 5611 * ring buffer should happen that's not expected, a big warning 5612 * is displayed and all ring buffers are disabled. 5613 */ 5614 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5615 5616 struct rb_test_data { 5617 struct trace_buffer *buffer; 5618 unsigned long events; 5619 unsigned long bytes_written; 5620 unsigned long bytes_alloc; 5621 unsigned long bytes_dropped; 5622 unsigned long events_nested; 5623 unsigned long bytes_written_nested; 5624 unsigned long bytes_alloc_nested; 5625 unsigned long bytes_dropped_nested; 5626 int min_size_nested; 5627 int max_size_nested; 5628 int max_size; 5629 int min_size; 5630 int cpu; 5631 int cnt; 5632 }; 5633 5634 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5635 5636 /* 1 meg per cpu */ 5637 #define RB_TEST_BUFFER_SIZE 1048576 5638 5639 static char rb_string[] __initdata = 5640 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5641 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5642 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5643 5644 static bool rb_test_started __initdata; 5645 5646 struct rb_item { 5647 int size; 5648 char str[]; 5649 }; 5650 5651 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5652 { 5653 struct ring_buffer_event *event; 5654 struct rb_item *item; 5655 bool started; 5656 int event_len; 5657 int size; 5658 int len; 5659 int cnt; 5660 5661 /* Have nested writes different that what is written */ 5662 cnt = data->cnt + (nested ? 27 : 0); 5663 5664 /* Multiply cnt by ~e, to make some unique increment */ 5665 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5666 5667 len = size + sizeof(struct rb_item); 5668 5669 started = rb_test_started; 5670 /* read rb_test_started before checking buffer enabled */ 5671 smp_rmb(); 5672 5673 event = ring_buffer_lock_reserve(data->buffer, len); 5674 if (!event) { 5675 /* Ignore dropped events before test starts. */ 5676 if (started) { 5677 if (nested) 5678 data->bytes_dropped += len; 5679 else 5680 data->bytes_dropped_nested += len; 5681 } 5682 return len; 5683 } 5684 5685 event_len = ring_buffer_event_length(event); 5686 5687 if (RB_WARN_ON(data->buffer, event_len < len)) 5688 goto out; 5689 5690 item = ring_buffer_event_data(event); 5691 item->size = size; 5692 memcpy(item->str, rb_string, size); 5693 5694 if (nested) { 5695 data->bytes_alloc_nested += event_len; 5696 data->bytes_written_nested += len; 5697 data->events_nested++; 5698 if (!data->min_size_nested || len < data->min_size_nested) 5699 data->min_size_nested = len; 5700 if (len > data->max_size_nested) 5701 data->max_size_nested = len; 5702 } else { 5703 data->bytes_alloc += event_len; 5704 data->bytes_written += len; 5705 data->events++; 5706 if (!data->min_size || len < data->min_size) 5707 data->max_size = len; 5708 if (len > data->max_size) 5709 data->max_size = len; 5710 } 5711 5712 out: 5713 ring_buffer_unlock_commit(data->buffer, event); 5714 5715 return 0; 5716 } 5717 5718 static __init int rb_test(void *arg) 5719 { 5720 struct rb_test_data *data = arg; 5721 5722 while (!kthread_should_stop()) { 5723 rb_write_something(data, false); 5724 data->cnt++; 5725 5726 set_current_state(TASK_INTERRUPTIBLE); 5727 /* Now sleep between a min of 100-300us and a max of 1ms */ 5728 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5729 } 5730 5731 return 0; 5732 } 5733 5734 static __init void rb_ipi(void *ignore) 5735 { 5736 struct rb_test_data *data; 5737 int cpu = smp_processor_id(); 5738 5739 data = &rb_data[cpu]; 5740 rb_write_something(data, true); 5741 } 5742 5743 static __init int rb_hammer_test(void *arg) 5744 { 5745 while (!kthread_should_stop()) { 5746 5747 /* Send an IPI to all cpus to write data! */ 5748 smp_call_function(rb_ipi, NULL, 1); 5749 /* No sleep, but for non preempt, let others run */ 5750 schedule(); 5751 } 5752 5753 return 0; 5754 } 5755 5756 static __init int test_ringbuffer(void) 5757 { 5758 struct task_struct *rb_hammer; 5759 struct trace_buffer *buffer; 5760 int cpu; 5761 int ret = 0; 5762 5763 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5764 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5765 return 0; 5766 } 5767 5768 pr_info("Running ring buffer tests...\n"); 5769 5770 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5771 if (WARN_ON(!buffer)) 5772 return 0; 5773 5774 /* Disable buffer so that threads can't write to it yet */ 5775 ring_buffer_record_off(buffer); 5776 5777 for_each_online_cpu(cpu) { 5778 rb_data[cpu].buffer = buffer; 5779 rb_data[cpu].cpu = cpu; 5780 rb_data[cpu].cnt = cpu; 5781 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5782 "rbtester/%d", cpu); 5783 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5784 pr_cont("FAILED\n"); 5785 ret = PTR_ERR(rb_threads[cpu]); 5786 goto out_free; 5787 } 5788 5789 kthread_bind(rb_threads[cpu], cpu); 5790 wake_up_process(rb_threads[cpu]); 5791 } 5792 5793 /* Now create the rb hammer! */ 5794 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5795 if (WARN_ON(IS_ERR(rb_hammer))) { 5796 pr_cont("FAILED\n"); 5797 ret = PTR_ERR(rb_hammer); 5798 goto out_free; 5799 } 5800 5801 ring_buffer_record_on(buffer); 5802 /* 5803 * Show buffer is enabled before setting rb_test_started. 5804 * Yes there's a small race window where events could be 5805 * dropped and the thread wont catch it. But when a ring 5806 * buffer gets enabled, there will always be some kind of 5807 * delay before other CPUs see it. Thus, we don't care about 5808 * those dropped events. We care about events dropped after 5809 * the threads see that the buffer is active. 5810 */ 5811 smp_wmb(); 5812 rb_test_started = true; 5813 5814 set_current_state(TASK_INTERRUPTIBLE); 5815 /* Just run for 10 seconds */; 5816 schedule_timeout(10 * HZ); 5817 5818 kthread_stop(rb_hammer); 5819 5820 out_free: 5821 for_each_online_cpu(cpu) { 5822 if (!rb_threads[cpu]) 5823 break; 5824 kthread_stop(rb_threads[cpu]); 5825 } 5826 if (ret) { 5827 ring_buffer_free(buffer); 5828 return ret; 5829 } 5830 5831 /* Report! */ 5832 pr_info("finished\n"); 5833 for_each_online_cpu(cpu) { 5834 struct ring_buffer_event *event; 5835 struct rb_test_data *data = &rb_data[cpu]; 5836 struct rb_item *item; 5837 unsigned long total_events; 5838 unsigned long total_dropped; 5839 unsigned long total_written; 5840 unsigned long total_alloc; 5841 unsigned long total_read = 0; 5842 unsigned long total_size = 0; 5843 unsigned long total_len = 0; 5844 unsigned long total_lost = 0; 5845 unsigned long lost; 5846 int big_event_size; 5847 int small_event_size; 5848 5849 ret = -1; 5850 5851 total_events = data->events + data->events_nested; 5852 total_written = data->bytes_written + data->bytes_written_nested; 5853 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5854 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5855 5856 big_event_size = data->max_size + data->max_size_nested; 5857 small_event_size = data->min_size + data->min_size_nested; 5858 5859 pr_info("CPU %d:\n", cpu); 5860 pr_info(" events: %ld\n", total_events); 5861 pr_info(" dropped bytes: %ld\n", total_dropped); 5862 pr_info(" alloced bytes: %ld\n", total_alloc); 5863 pr_info(" written bytes: %ld\n", total_written); 5864 pr_info(" biggest event: %d\n", big_event_size); 5865 pr_info(" smallest event: %d\n", small_event_size); 5866 5867 if (RB_WARN_ON(buffer, total_dropped)) 5868 break; 5869 5870 ret = 0; 5871 5872 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5873 total_lost += lost; 5874 item = ring_buffer_event_data(event); 5875 total_len += ring_buffer_event_length(event); 5876 total_size += item->size + sizeof(struct rb_item); 5877 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5878 pr_info("FAILED!\n"); 5879 pr_info("buffer had: %.*s\n", item->size, item->str); 5880 pr_info("expected: %.*s\n", item->size, rb_string); 5881 RB_WARN_ON(buffer, 1); 5882 ret = -1; 5883 break; 5884 } 5885 total_read++; 5886 } 5887 if (ret) 5888 break; 5889 5890 ret = -1; 5891 5892 pr_info(" read events: %ld\n", total_read); 5893 pr_info(" lost events: %ld\n", total_lost); 5894 pr_info(" total events: %ld\n", total_lost + total_read); 5895 pr_info(" recorded len bytes: %ld\n", total_len); 5896 pr_info(" recorded size bytes: %ld\n", total_size); 5897 if (total_lost) 5898 pr_info(" With dropped events, record len and size may not match\n" 5899 " alloced and written from above\n"); 5900 if (!total_lost) { 5901 if (RB_WARN_ON(buffer, total_len != total_alloc || 5902 total_size != total_written)) 5903 break; 5904 } 5905 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5906 break; 5907 5908 ret = 0; 5909 } 5910 if (!ret) 5911 pr_info("Ring buffer PASSED!\n"); 5912 5913 ring_buffer_free(buffer); 5914 return 0; 5915 } 5916 5917 late_initcall(test_ringbuffer); 5918 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5919