xref: /linux/kernel/trace/ring_buffer.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 static void update_pages_handler(struct work_struct *work);
33 
34 /*
35  * The ring buffer header is special. We must manually up keep it.
36  */
37 int ring_buffer_print_entry_header(struct trace_seq *s)
38 {
39 	trace_seq_puts(s, "# compressed entry header\n");
40 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	trace_seq_putc(s, '\n');
44 	trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			 RINGBUF_TYPE_PADDING);
46 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			 RINGBUF_TYPE_TIME_EXTEND);
48 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
49 			 RINGBUF_TYPE_TIME_STAMP);
50 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
51 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52 
53 	return !trace_seq_has_overflowed(s);
54 }
55 
56 /*
57  * The ring buffer is made up of a list of pages. A separate list of pages is
58  * allocated for each CPU. A writer may only write to a buffer that is
59  * associated with the CPU it is currently executing on.  A reader may read
60  * from any per cpu buffer.
61  *
62  * The reader is special. For each per cpu buffer, the reader has its own
63  * reader page. When a reader has read the entire reader page, this reader
64  * page is swapped with another page in the ring buffer.
65  *
66  * Now, as long as the writer is off the reader page, the reader can do what
67  * ever it wants with that page. The writer will never write to that page
68  * again (as long as it is out of the ring buffer).
69  *
70  * Here's some silly ASCII art.
71  *
72  *   +------+
73  *   |reader|          RING BUFFER
74  *   |page  |
75  *   +------+        +---+   +---+   +---+
76  *                   |   |-->|   |-->|   |
77  *                   +---+   +---+   +---+
78  *                     ^               |
79  *                     |               |
80  *                     +---------------+
81  *
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |------------------v
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *      ^            |   |-->|   |-->|   |
99  *      |            +---+   +---+   +---+
100  *      |                              |
101  *      |                              |
102  *      +------------------------------+
103  *
104  *
105  *   +------+
106  *   |buffer|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |   |   |-->|   |
110  *      |   New      +---+   +---+   +---+
111  *      |  Reader------^               |
112  *      |   page                       |
113  *      +------------------------------+
114  *
115  *
116  * After we make this swap, the reader can hand this page off to the splice
117  * code and be done with it. It can even allocate a new page if it needs to
118  * and swap that into the ring buffer.
119  *
120  * We will be using cmpxchg soon to make all this lockless.
121  *
122  */
123 
124 /* Used for individual buffers (after the counter) */
125 #define RB_BUFFER_OFF		(1 << 20)
126 
127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128 
129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
130 #define RB_ALIGNMENT		4U
131 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
132 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
133 
134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
135 # define RB_FORCE_8BYTE_ALIGNMENT	0
136 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
137 #else
138 # define RB_FORCE_8BYTE_ALIGNMENT	1
139 # define RB_ARCH_ALIGNMENT		8U
140 #endif
141 
142 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
143 
144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146 
147 enum {
148 	RB_LEN_TIME_EXTEND = 8,
149 	RB_LEN_TIME_STAMP =  8,
150 };
151 
152 #define skip_time_extend(event) \
153 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
154 
155 #define extended_time(event) \
156 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
157 
158 static inline int rb_null_event(struct ring_buffer_event *event)
159 {
160 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
161 }
162 
163 static void rb_event_set_padding(struct ring_buffer_event *event)
164 {
165 	/* padding has a NULL time_delta */
166 	event->type_len = RINGBUF_TYPE_PADDING;
167 	event->time_delta = 0;
168 }
169 
170 static unsigned
171 rb_event_data_length(struct ring_buffer_event *event)
172 {
173 	unsigned length;
174 
175 	if (event->type_len)
176 		length = event->type_len * RB_ALIGNMENT;
177 	else
178 		length = event->array[0];
179 	return length + RB_EVNT_HDR_SIZE;
180 }
181 
182 /*
183  * Return the length of the given event. Will return
184  * the length of the time extend if the event is a
185  * time extend.
186  */
187 static inline unsigned
188 rb_event_length(struct ring_buffer_event *event)
189 {
190 	switch (event->type_len) {
191 	case RINGBUF_TYPE_PADDING:
192 		if (rb_null_event(event))
193 			/* undefined */
194 			return -1;
195 		return  event->array[0] + RB_EVNT_HDR_SIZE;
196 
197 	case RINGBUF_TYPE_TIME_EXTEND:
198 		return RB_LEN_TIME_EXTEND;
199 
200 	case RINGBUF_TYPE_TIME_STAMP:
201 		return RB_LEN_TIME_STAMP;
202 
203 	case RINGBUF_TYPE_DATA:
204 		return rb_event_data_length(event);
205 	default:
206 		WARN_ON_ONCE(1);
207 	}
208 	/* not hit */
209 	return 0;
210 }
211 
212 /*
213  * Return total length of time extend and data,
214  *   or just the event length for all other events.
215  */
216 static inline unsigned
217 rb_event_ts_length(struct ring_buffer_event *event)
218 {
219 	unsigned len = 0;
220 
221 	if (extended_time(event)) {
222 		/* time extends include the data event after it */
223 		len = RB_LEN_TIME_EXTEND;
224 		event = skip_time_extend(event);
225 	}
226 	return len + rb_event_length(event);
227 }
228 
229 /**
230  * ring_buffer_event_length - return the length of the event
231  * @event: the event to get the length of
232  *
233  * Returns the size of the data load of a data event.
234  * If the event is something other than a data event, it
235  * returns the size of the event itself. With the exception
236  * of a TIME EXTEND, where it still returns the size of the
237  * data load of the data event after it.
238  */
239 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
240 {
241 	unsigned length;
242 
243 	if (extended_time(event))
244 		event = skip_time_extend(event);
245 
246 	length = rb_event_length(event);
247 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
248 		return length;
249 	length -= RB_EVNT_HDR_SIZE;
250 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
251                 length -= sizeof(event->array[0]);
252 	return length;
253 }
254 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
255 
256 /* inline for ring buffer fast paths */
257 static __always_inline void *
258 rb_event_data(struct ring_buffer_event *event)
259 {
260 	if (extended_time(event))
261 		event = skip_time_extend(event);
262 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
263 	/* If length is in len field, then array[0] has the data */
264 	if (event->type_len)
265 		return (void *)&event->array[0];
266 	/* Otherwise length is in array[0] and array[1] has the data */
267 	return (void *)&event->array[1];
268 }
269 
270 /**
271  * ring_buffer_event_data - return the data of the event
272  * @event: the event to get the data from
273  */
274 void *ring_buffer_event_data(struct ring_buffer_event *event)
275 {
276 	return rb_event_data(event);
277 }
278 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
279 
280 #define for_each_buffer_cpu(buffer, cpu)		\
281 	for_each_cpu(cpu, buffer->cpumask)
282 
283 #define for_each_online_buffer_cpu(buffer, cpu)		\
284 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
285 
286 #define TS_SHIFT	27
287 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
288 #define TS_DELTA_TEST	(~TS_MASK)
289 
290 /**
291  * ring_buffer_event_time_stamp - return the event's extended timestamp
292  * @event: the event to get the timestamp of
293  *
294  * Returns the extended timestamp associated with a data event.
295  * An extended time_stamp is a 64-bit timestamp represented
296  * internally in a special way that makes the best use of space
297  * contained within a ring buffer event.  This function decodes
298  * it and maps it to a straight u64 value.
299  */
300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
301 {
302 	u64 ts;
303 
304 	ts = event->array[0];
305 	ts <<= TS_SHIFT;
306 	ts += event->time_delta;
307 
308 	return ts;
309 }
310 
311 /* Flag when events were overwritten */
312 #define RB_MISSED_EVENTS	(1 << 31)
313 /* Missed count stored at end */
314 #define RB_MISSED_STORED	(1 << 30)
315 
316 struct buffer_data_page {
317 	u64		 time_stamp;	/* page time stamp */
318 	local_t		 commit;	/* write committed index */
319 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
320 };
321 
322 /*
323  * Note, the buffer_page list must be first. The buffer pages
324  * are allocated in cache lines, which means that each buffer
325  * page will be at the beginning of a cache line, and thus
326  * the least significant bits will be zero. We use this to
327  * add flags in the list struct pointers, to make the ring buffer
328  * lockless.
329  */
330 struct buffer_page {
331 	struct list_head list;		/* list of buffer pages */
332 	local_t		 write;		/* index for next write */
333 	unsigned	 read;		/* index for next read */
334 	local_t		 entries;	/* entries on this page */
335 	unsigned long	 real_end;	/* real end of data */
336 	struct buffer_data_page *page;	/* Actual data page */
337 };
338 
339 /*
340  * The buffer page counters, write and entries, must be reset
341  * atomically when crossing page boundaries. To synchronize this
342  * update, two counters are inserted into the number. One is
343  * the actual counter for the write position or count on the page.
344  *
345  * The other is a counter of updaters. Before an update happens
346  * the update partition of the counter is incremented. This will
347  * allow the updater to update the counter atomically.
348  *
349  * The counter is 20 bits, and the state data is 12.
350  */
351 #define RB_WRITE_MASK		0xfffff
352 #define RB_WRITE_INTCNT		(1 << 20)
353 
354 static void rb_init_page(struct buffer_data_page *bpage)
355 {
356 	local_set(&bpage->commit, 0);
357 }
358 
359 /*
360  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
361  * this issue out.
362  */
363 static void free_buffer_page(struct buffer_page *bpage)
364 {
365 	free_page((unsigned long)bpage->page);
366 	kfree(bpage);
367 }
368 
369 /*
370  * We need to fit the time_stamp delta into 27 bits.
371  */
372 static inline int test_time_stamp(u64 delta)
373 {
374 	if (delta & TS_DELTA_TEST)
375 		return 1;
376 	return 0;
377 }
378 
379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
380 
381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
383 
384 int ring_buffer_print_page_header(struct trace_seq *s)
385 {
386 	struct buffer_data_page field;
387 
388 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
389 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
390 			 (unsigned int)sizeof(field.time_stamp),
391 			 (unsigned int)is_signed_type(u64));
392 
393 	trace_seq_printf(s, "\tfield: local_t commit;\t"
394 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 			 (unsigned int)offsetof(typeof(field), commit),
396 			 (unsigned int)sizeof(field.commit),
397 			 (unsigned int)is_signed_type(long));
398 
399 	trace_seq_printf(s, "\tfield: int overwrite;\t"
400 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)offsetof(typeof(field), commit),
402 			 1,
403 			 (unsigned int)is_signed_type(long));
404 
405 	trace_seq_printf(s, "\tfield: char data;\t"
406 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
407 			 (unsigned int)offsetof(typeof(field), data),
408 			 (unsigned int)BUF_PAGE_SIZE,
409 			 (unsigned int)is_signed_type(char));
410 
411 	return !trace_seq_has_overflowed(s);
412 }
413 
414 struct rb_irq_work {
415 	struct irq_work			work;
416 	wait_queue_head_t		waiters;
417 	wait_queue_head_t		full_waiters;
418 	bool				waiters_pending;
419 	bool				full_waiters_pending;
420 	bool				wakeup_full;
421 };
422 
423 /*
424  * Structure to hold event state and handle nested events.
425  */
426 struct rb_event_info {
427 	u64			ts;
428 	u64			delta;
429 	u64			before;
430 	u64			after;
431 	unsigned long		length;
432 	struct buffer_page	*tail_page;
433 	int			add_timestamp;
434 };
435 
436 /*
437  * Used for the add_timestamp
438  *  NONE
439  *  EXTEND - wants a time extend
440  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
441  *  FORCE - force a full time stamp.
442  */
443 enum {
444 	RB_ADD_STAMP_NONE		= 0,
445 	RB_ADD_STAMP_EXTEND		= BIT(1),
446 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
447 	RB_ADD_STAMP_FORCE		= BIT(3)
448 };
449 /*
450  * Used for which event context the event is in.
451  *  TRANSITION = 0
452  *  NMI     = 1
453  *  IRQ     = 2
454  *  SOFTIRQ = 3
455  *  NORMAL  = 4
456  *
457  * See trace_recursive_lock() comment below for more details.
458  */
459 enum {
460 	RB_CTX_TRANSITION,
461 	RB_CTX_NMI,
462 	RB_CTX_IRQ,
463 	RB_CTX_SOFTIRQ,
464 	RB_CTX_NORMAL,
465 	RB_CTX_MAX
466 };
467 
468 #if BITS_PER_LONG == 32
469 #define RB_TIME_32
470 #endif
471 
472 /* To test on 64 bit machines */
473 //#define RB_TIME_32
474 
475 #ifdef RB_TIME_32
476 
477 struct rb_time_struct {
478 	local_t		cnt;
479 	local_t		top;
480 	local_t		bottom;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 	local64_t	time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489 
490 /*
491  * head_page == tail_page && head == tail then buffer is empty.
492  */
493 struct ring_buffer_per_cpu {
494 	int				cpu;
495 	atomic_t			record_disabled;
496 	atomic_t			resize_disabled;
497 	struct trace_buffer	*buffer;
498 	raw_spinlock_t			reader_lock;	/* serialize readers */
499 	arch_spinlock_t			lock;
500 	struct lock_class_key		lock_key;
501 	struct buffer_data_page		*free_page;
502 	unsigned long			nr_pages;
503 	unsigned int			current_context;
504 	struct list_head		*pages;
505 	struct buffer_page		*head_page;	/* read from head */
506 	struct buffer_page		*tail_page;	/* write to tail */
507 	struct buffer_page		*commit_page;	/* committed pages */
508 	struct buffer_page		*reader_page;
509 	unsigned long			lost_events;
510 	unsigned long			last_overrun;
511 	unsigned long			nest;
512 	local_t				entries_bytes;
513 	local_t				entries;
514 	local_t				overrun;
515 	local_t				commit_overrun;
516 	local_t				dropped_events;
517 	local_t				committing;
518 	local_t				commits;
519 	local_t				pages_touched;
520 	local_t				pages_read;
521 	long				last_pages_touch;
522 	size_t				shortest_full;
523 	unsigned long			read;
524 	unsigned long			read_bytes;
525 	rb_time_t			write_stamp;
526 	rb_time_t			before_stamp;
527 	u64				read_stamp;
528 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
529 	long				nr_pages_to_update;
530 	struct list_head		new_pages; /* new pages to add */
531 	struct work_struct		update_pages_work;
532 	struct completion		update_done;
533 
534 	struct rb_irq_work		irq_work;
535 };
536 
537 struct trace_buffer {
538 	unsigned			flags;
539 	int				cpus;
540 	atomic_t			record_disabled;
541 	cpumask_var_t			cpumask;
542 
543 	struct lock_class_key		*reader_lock_key;
544 
545 	struct mutex			mutex;
546 
547 	struct ring_buffer_per_cpu	**buffers;
548 
549 	struct hlist_node		node;
550 	u64				(*clock)(void);
551 
552 	struct rb_irq_work		irq_work;
553 	bool				time_stamp_abs;
554 };
555 
556 struct ring_buffer_iter {
557 	struct ring_buffer_per_cpu	*cpu_buffer;
558 	unsigned long			head;
559 	unsigned long			next_event;
560 	struct buffer_page		*head_page;
561 	struct buffer_page		*cache_reader_page;
562 	unsigned long			cache_read;
563 	u64				read_stamp;
564 	u64				page_stamp;
565 	struct ring_buffer_event	*event;
566 	int				missed_events;
567 };
568 
569 #ifdef RB_TIME_32
570 
571 /*
572  * On 32 bit machines, local64_t is very expensive. As the ring
573  * buffer doesn't need all the features of a true 64 bit atomic,
574  * on 32 bit, it uses these functions (64 still uses local64_t).
575  *
576  * For the ring buffer, 64 bit required operations for the time is
577  * the following:
578  *
579  *  - Only need 59 bits (uses 60 to make it even).
580  *  - Reads may fail if it interrupted a modification of the time stamp.
581  *      It will succeed if it did not interrupt another write even if
582  *      the read itself is interrupted by a write.
583  *      It returns whether it was successful or not.
584  *
585  *  - Writes always succeed and will overwrite other writes and writes
586  *      that were done by events interrupting the current write.
587  *
588  *  - A write followed by a read of the same time stamp will always succeed,
589  *      but may not contain the same value.
590  *
591  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
592  *      Other than that, it acts like a normal cmpxchg.
593  *
594  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
595  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
596  *
597  * The two most significant bits of each half holds a 2 bit counter (0-3).
598  * Each update will increment this counter by one.
599  * When reading the top and bottom, if the two counter bits match then the
600  *  top and bottom together make a valid 60 bit number.
601  */
602 #define RB_TIME_SHIFT	30
603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
604 
605 static inline int rb_time_cnt(unsigned long val)
606 {
607 	return (val >> RB_TIME_SHIFT) & 3;
608 }
609 
610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
611 {
612 	u64 val;
613 
614 	val = top & RB_TIME_VAL_MASK;
615 	val <<= RB_TIME_SHIFT;
616 	val |= bottom & RB_TIME_VAL_MASK;
617 
618 	return val;
619 }
620 
621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
622 {
623 	unsigned long top, bottom;
624 	unsigned long c;
625 
626 	/*
627 	 * If the read is interrupted by a write, then the cnt will
628 	 * be different. Loop until both top and bottom have been read
629 	 * without interruption.
630 	 */
631 	do {
632 		c = local_read(&t->cnt);
633 		top = local_read(&t->top);
634 		bottom = local_read(&t->bottom);
635 	} while (c != local_read(&t->cnt));
636 
637 	*cnt = rb_time_cnt(top);
638 
639 	/* If top and bottom counts don't match, this interrupted a write */
640 	if (*cnt != rb_time_cnt(bottom))
641 		return false;
642 
643 	*ret = rb_time_val(top, bottom);
644 	return true;
645 }
646 
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649 	unsigned long cnt;
650 
651 	return __rb_time_read(t, ret, &cnt);
652 }
653 
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658 
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
660 {
661 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
662 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
663 }
664 
665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
666 {
667 	val = rb_time_val_cnt(val, cnt);
668 	local_set(t, val);
669 }
670 
671 static void rb_time_set(rb_time_t *t, u64 val)
672 {
673 	unsigned long cnt, top, bottom;
674 
675 	rb_time_split(val, &top, &bottom);
676 
677 	/* Writes always succeed with a valid number even if it gets interrupted. */
678 	do {
679 		cnt = local_inc_return(&t->cnt);
680 		rb_time_val_set(&t->top, top, cnt);
681 		rb_time_val_set(&t->bottom, bottom, cnt);
682 	} while (cnt != local_read(&t->cnt));
683 }
684 
685 static inline bool
686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
687 {
688 	unsigned long ret;
689 
690 	ret = local_cmpxchg(l, expect, set);
691 	return ret == expect;
692 }
693 
694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
695 {
696 	unsigned long cnt, top, bottom;
697 	unsigned long cnt2, top2, bottom2;
698 	u64 val;
699 
700 	/* The cmpxchg always fails if it interrupted an update */
701 	 if (!__rb_time_read(t, &val, &cnt2))
702 		 return false;
703 
704 	 if (val != expect)
705 		 return false;
706 
707 	 cnt = local_read(&t->cnt);
708 	 if ((cnt & 3) != cnt2)
709 		 return false;
710 
711 	 cnt2 = cnt + 1;
712 
713 	 rb_time_split(val, &top, &bottom);
714 	 top = rb_time_val_cnt(top, cnt);
715 	 bottom = rb_time_val_cnt(bottom, cnt);
716 
717 	 rb_time_split(set, &top2, &bottom2);
718 	 top2 = rb_time_val_cnt(top2, cnt2);
719 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
720 
721 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
722 		return false;
723 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
724 		return false;
725 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
726 		return false;
727 	return true;
728 }
729 
730 #else /* 64 bits */
731 
732 /* local64_t always succeeds */
733 
734 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
735 {
736 	*ret = local64_read(&t->time);
737 	return true;
738 }
739 static void rb_time_set(rb_time_t *t, u64 val)
740 {
741 	local64_set(&t->time, val);
742 }
743 
744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
745 {
746 	u64 val;
747 	val = local64_cmpxchg(&t->time, expect, set);
748 	return val == expect;
749 }
750 #endif
751 
752 /**
753  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
754  * @buffer: The ring_buffer to get the number of pages from
755  * @cpu: The cpu of the ring_buffer to get the number of pages from
756  *
757  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
758  */
759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
760 {
761 	return buffer->buffers[cpu]->nr_pages;
762 }
763 
764 /**
765  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
766  * @buffer: The ring_buffer to get the number of pages from
767  * @cpu: The cpu of the ring_buffer to get the number of pages from
768  *
769  * Returns the number of pages that have content in the ring buffer.
770  */
771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
772 {
773 	size_t read;
774 	size_t cnt;
775 
776 	read = local_read(&buffer->buffers[cpu]->pages_read);
777 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
778 	/* The reader can read an empty page, but not more than that */
779 	if (cnt < read) {
780 		WARN_ON_ONCE(read > cnt + 1);
781 		return 0;
782 	}
783 
784 	return cnt - read;
785 }
786 
787 /*
788  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
789  *
790  * Schedules a delayed work to wake up any task that is blocked on the
791  * ring buffer waiters queue.
792  */
793 static void rb_wake_up_waiters(struct irq_work *work)
794 {
795 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
796 
797 	wake_up_all(&rbwork->waiters);
798 	if (rbwork->wakeup_full) {
799 		rbwork->wakeup_full = false;
800 		wake_up_all(&rbwork->full_waiters);
801 	}
802 }
803 
804 /**
805  * ring_buffer_wait - wait for input to the ring buffer
806  * @buffer: buffer to wait on
807  * @cpu: the cpu buffer to wait on
808  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
809  *
810  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
811  * as data is added to any of the @buffer's cpu buffers. Otherwise
812  * it will wait for data to be added to a specific cpu buffer.
813  */
814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
815 {
816 	struct ring_buffer_per_cpu *cpu_buffer;
817 	DEFINE_WAIT(wait);
818 	struct rb_irq_work *work;
819 	int ret = 0;
820 
821 	/*
822 	 * Depending on what the caller is waiting for, either any
823 	 * data in any cpu buffer, or a specific buffer, put the
824 	 * caller on the appropriate wait queue.
825 	 */
826 	if (cpu == RING_BUFFER_ALL_CPUS) {
827 		work = &buffer->irq_work;
828 		/* Full only makes sense on per cpu reads */
829 		full = 0;
830 	} else {
831 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
832 			return -ENODEV;
833 		cpu_buffer = buffer->buffers[cpu];
834 		work = &cpu_buffer->irq_work;
835 	}
836 
837 
838 	while (true) {
839 		if (full)
840 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
841 		else
842 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
843 
844 		/*
845 		 * The events can happen in critical sections where
846 		 * checking a work queue can cause deadlocks.
847 		 * After adding a task to the queue, this flag is set
848 		 * only to notify events to try to wake up the queue
849 		 * using irq_work.
850 		 *
851 		 * We don't clear it even if the buffer is no longer
852 		 * empty. The flag only causes the next event to run
853 		 * irq_work to do the work queue wake up. The worse
854 		 * that can happen if we race with !trace_empty() is that
855 		 * an event will cause an irq_work to try to wake up
856 		 * an empty queue.
857 		 *
858 		 * There's no reason to protect this flag either, as
859 		 * the work queue and irq_work logic will do the necessary
860 		 * synchronization for the wake ups. The only thing
861 		 * that is necessary is that the wake up happens after
862 		 * a task has been queued. It's OK for spurious wake ups.
863 		 */
864 		if (full)
865 			work->full_waiters_pending = true;
866 		else
867 			work->waiters_pending = true;
868 
869 		if (signal_pending(current)) {
870 			ret = -EINTR;
871 			break;
872 		}
873 
874 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
875 			break;
876 
877 		if (cpu != RING_BUFFER_ALL_CPUS &&
878 		    !ring_buffer_empty_cpu(buffer, cpu)) {
879 			unsigned long flags;
880 			bool pagebusy;
881 			size_t nr_pages;
882 			size_t dirty;
883 
884 			if (!full)
885 				break;
886 
887 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
888 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
889 			nr_pages = cpu_buffer->nr_pages;
890 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
891 			if (!cpu_buffer->shortest_full ||
892 			    cpu_buffer->shortest_full < full)
893 				cpu_buffer->shortest_full = full;
894 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
895 			if (!pagebusy &&
896 			    (!nr_pages || (dirty * 100) > full * nr_pages))
897 				break;
898 		}
899 
900 		schedule();
901 	}
902 
903 	if (full)
904 		finish_wait(&work->full_waiters, &wait);
905 	else
906 		finish_wait(&work->waiters, &wait);
907 
908 	return ret;
909 }
910 
911 /**
912  * ring_buffer_poll_wait - poll on buffer input
913  * @buffer: buffer to wait on
914  * @cpu: the cpu buffer to wait on
915  * @filp: the file descriptor
916  * @poll_table: The poll descriptor
917  *
918  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
919  * as data is added to any of the @buffer's cpu buffers. Otherwise
920  * it will wait for data to be added to a specific cpu buffer.
921  *
922  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
923  * zero otherwise.
924  */
925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
926 			  struct file *filp, poll_table *poll_table)
927 {
928 	struct ring_buffer_per_cpu *cpu_buffer;
929 	struct rb_irq_work *work;
930 
931 	if (cpu == RING_BUFFER_ALL_CPUS)
932 		work = &buffer->irq_work;
933 	else {
934 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
935 			return -EINVAL;
936 
937 		cpu_buffer = buffer->buffers[cpu];
938 		work = &cpu_buffer->irq_work;
939 	}
940 
941 	poll_wait(filp, &work->waiters, poll_table);
942 	work->waiters_pending = true;
943 	/*
944 	 * There's a tight race between setting the waiters_pending and
945 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
946 	 * is set, the next event will wake the task up, but we can get stuck
947 	 * if there's only a single event in.
948 	 *
949 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
950 	 * but adding a memory barrier to all events will cause too much of a
951 	 * performance hit in the fast path.  We only need a memory barrier when
952 	 * the buffer goes from empty to having content.  But as this race is
953 	 * extremely small, and it's not a problem if another event comes in, we
954 	 * will fix it later.
955 	 */
956 	smp_mb();
957 
958 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
959 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
960 		return EPOLLIN | EPOLLRDNORM;
961 	return 0;
962 }
963 
964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
965 #define RB_WARN_ON(b, cond)						\
966 	({								\
967 		int _____ret = unlikely(cond);				\
968 		if (_____ret) {						\
969 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
970 				struct ring_buffer_per_cpu *__b =	\
971 					(void *)b;			\
972 				atomic_inc(&__b->buffer->record_disabled); \
973 			} else						\
974 				atomic_inc(&b->record_disabled);	\
975 			WARN_ON(1);					\
976 		}							\
977 		_____ret;						\
978 	})
979 
980 /* Up this if you want to test the TIME_EXTENTS and normalization */
981 #define DEBUG_SHIFT 0
982 
983 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
984 {
985 	u64 ts;
986 
987 	/* Skip retpolines :-( */
988 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
989 		ts = trace_clock_local();
990 	else
991 		ts = buffer->clock();
992 
993 	/* shift to debug/test normalization and TIME_EXTENTS */
994 	return ts << DEBUG_SHIFT;
995 }
996 
997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
998 {
999 	u64 time;
1000 
1001 	preempt_disable_notrace();
1002 	time = rb_time_stamp(buffer);
1003 	preempt_enable_notrace();
1004 
1005 	return time;
1006 }
1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1008 
1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1010 				      int cpu, u64 *ts)
1011 {
1012 	/* Just stupid testing the normalize function and deltas */
1013 	*ts >>= DEBUG_SHIFT;
1014 }
1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1016 
1017 /*
1018  * Making the ring buffer lockless makes things tricky.
1019  * Although writes only happen on the CPU that they are on,
1020  * and they only need to worry about interrupts. Reads can
1021  * happen on any CPU.
1022  *
1023  * The reader page is always off the ring buffer, but when the
1024  * reader finishes with a page, it needs to swap its page with
1025  * a new one from the buffer. The reader needs to take from
1026  * the head (writes go to the tail). But if a writer is in overwrite
1027  * mode and wraps, it must push the head page forward.
1028  *
1029  * Here lies the problem.
1030  *
1031  * The reader must be careful to replace only the head page, and
1032  * not another one. As described at the top of the file in the
1033  * ASCII art, the reader sets its old page to point to the next
1034  * page after head. It then sets the page after head to point to
1035  * the old reader page. But if the writer moves the head page
1036  * during this operation, the reader could end up with the tail.
1037  *
1038  * We use cmpxchg to help prevent this race. We also do something
1039  * special with the page before head. We set the LSB to 1.
1040  *
1041  * When the writer must push the page forward, it will clear the
1042  * bit that points to the head page, move the head, and then set
1043  * the bit that points to the new head page.
1044  *
1045  * We also don't want an interrupt coming in and moving the head
1046  * page on another writer. Thus we use the second LSB to catch
1047  * that too. Thus:
1048  *
1049  * head->list->prev->next        bit 1          bit 0
1050  *                              -------        -------
1051  * Normal page                     0              0
1052  * Points to head page             0              1
1053  * New head page                   1              0
1054  *
1055  * Note we can not trust the prev pointer of the head page, because:
1056  *
1057  * +----+       +-----+        +-----+
1058  * |    |------>|  T  |---X--->|  N  |
1059  * |    |<------|     |        |     |
1060  * +----+       +-----+        +-----+
1061  *   ^                           ^ |
1062  *   |          +-----+          | |
1063  *   +----------|  R  |----------+ |
1064  *              |     |<-----------+
1065  *              +-----+
1066  *
1067  * Key:  ---X-->  HEAD flag set in pointer
1068  *         T      Tail page
1069  *         R      Reader page
1070  *         N      Next page
1071  *
1072  * (see __rb_reserve_next() to see where this happens)
1073  *
1074  *  What the above shows is that the reader just swapped out
1075  *  the reader page with a page in the buffer, but before it
1076  *  could make the new header point back to the new page added
1077  *  it was preempted by a writer. The writer moved forward onto
1078  *  the new page added by the reader and is about to move forward
1079  *  again.
1080  *
1081  *  You can see, it is legitimate for the previous pointer of
1082  *  the head (or any page) not to point back to itself. But only
1083  *  temporarily.
1084  */
1085 
1086 #define RB_PAGE_NORMAL		0UL
1087 #define RB_PAGE_HEAD		1UL
1088 #define RB_PAGE_UPDATE		2UL
1089 
1090 
1091 #define RB_FLAG_MASK		3UL
1092 
1093 /* PAGE_MOVED is not part of the mask */
1094 #define RB_PAGE_MOVED		4UL
1095 
1096 /*
1097  * rb_list_head - remove any bit
1098  */
1099 static struct list_head *rb_list_head(struct list_head *list)
1100 {
1101 	unsigned long val = (unsigned long)list;
1102 
1103 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1104 }
1105 
1106 /*
1107  * rb_is_head_page - test if the given page is the head page
1108  *
1109  * Because the reader may move the head_page pointer, we can
1110  * not trust what the head page is (it may be pointing to
1111  * the reader page). But if the next page is a header page,
1112  * its flags will be non zero.
1113  */
1114 static inline int
1115 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1116 		struct buffer_page *page, struct list_head *list)
1117 {
1118 	unsigned long val;
1119 
1120 	val = (unsigned long)list->next;
1121 
1122 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1123 		return RB_PAGE_MOVED;
1124 
1125 	return val & RB_FLAG_MASK;
1126 }
1127 
1128 /*
1129  * rb_is_reader_page
1130  *
1131  * The unique thing about the reader page, is that, if the
1132  * writer is ever on it, the previous pointer never points
1133  * back to the reader page.
1134  */
1135 static bool rb_is_reader_page(struct buffer_page *page)
1136 {
1137 	struct list_head *list = page->list.prev;
1138 
1139 	return rb_list_head(list->next) != &page->list;
1140 }
1141 
1142 /*
1143  * rb_set_list_to_head - set a list_head to be pointing to head.
1144  */
1145 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1146 				struct list_head *list)
1147 {
1148 	unsigned long *ptr;
1149 
1150 	ptr = (unsigned long *)&list->next;
1151 	*ptr |= RB_PAGE_HEAD;
1152 	*ptr &= ~RB_PAGE_UPDATE;
1153 }
1154 
1155 /*
1156  * rb_head_page_activate - sets up head page
1157  */
1158 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1159 {
1160 	struct buffer_page *head;
1161 
1162 	head = cpu_buffer->head_page;
1163 	if (!head)
1164 		return;
1165 
1166 	/*
1167 	 * Set the previous list pointer to have the HEAD flag.
1168 	 */
1169 	rb_set_list_to_head(cpu_buffer, head->list.prev);
1170 }
1171 
1172 static void rb_list_head_clear(struct list_head *list)
1173 {
1174 	unsigned long *ptr = (unsigned long *)&list->next;
1175 
1176 	*ptr &= ~RB_FLAG_MASK;
1177 }
1178 
1179 /*
1180  * rb_head_page_deactivate - clears head page ptr (for free list)
1181  */
1182 static void
1183 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1184 {
1185 	struct list_head *hd;
1186 
1187 	/* Go through the whole list and clear any pointers found. */
1188 	rb_list_head_clear(cpu_buffer->pages);
1189 
1190 	list_for_each(hd, cpu_buffer->pages)
1191 		rb_list_head_clear(hd);
1192 }
1193 
1194 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1195 			    struct buffer_page *head,
1196 			    struct buffer_page *prev,
1197 			    int old_flag, int new_flag)
1198 {
1199 	struct list_head *list;
1200 	unsigned long val = (unsigned long)&head->list;
1201 	unsigned long ret;
1202 
1203 	list = &prev->list;
1204 
1205 	val &= ~RB_FLAG_MASK;
1206 
1207 	ret = cmpxchg((unsigned long *)&list->next,
1208 		      val | old_flag, val | new_flag);
1209 
1210 	/* check if the reader took the page */
1211 	if ((ret & ~RB_FLAG_MASK) != val)
1212 		return RB_PAGE_MOVED;
1213 
1214 	return ret & RB_FLAG_MASK;
1215 }
1216 
1217 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1218 				   struct buffer_page *head,
1219 				   struct buffer_page *prev,
1220 				   int old_flag)
1221 {
1222 	return rb_head_page_set(cpu_buffer, head, prev,
1223 				old_flag, RB_PAGE_UPDATE);
1224 }
1225 
1226 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1227 				 struct buffer_page *head,
1228 				 struct buffer_page *prev,
1229 				 int old_flag)
1230 {
1231 	return rb_head_page_set(cpu_buffer, head, prev,
1232 				old_flag, RB_PAGE_HEAD);
1233 }
1234 
1235 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1236 				   struct buffer_page *head,
1237 				   struct buffer_page *prev,
1238 				   int old_flag)
1239 {
1240 	return rb_head_page_set(cpu_buffer, head, prev,
1241 				old_flag, RB_PAGE_NORMAL);
1242 }
1243 
1244 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1245 			       struct buffer_page **bpage)
1246 {
1247 	struct list_head *p = rb_list_head((*bpage)->list.next);
1248 
1249 	*bpage = list_entry(p, struct buffer_page, list);
1250 }
1251 
1252 static struct buffer_page *
1253 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1254 {
1255 	struct buffer_page *head;
1256 	struct buffer_page *page;
1257 	struct list_head *list;
1258 	int i;
1259 
1260 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1261 		return NULL;
1262 
1263 	/* sanity check */
1264 	list = cpu_buffer->pages;
1265 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1266 		return NULL;
1267 
1268 	page = head = cpu_buffer->head_page;
1269 	/*
1270 	 * It is possible that the writer moves the header behind
1271 	 * where we started, and we miss in one loop.
1272 	 * A second loop should grab the header, but we'll do
1273 	 * three loops just because I'm paranoid.
1274 	 */
1275 	for (i = 0; i < 3; i++) {
1276 		do {
1277 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1278 				cpu_buffer->head_page = page;
1279 				return page;
1280 			}
1281 			rb_inc_page(cpu_buffer, &page);
1282 		} while (page != head);
1283 	}
1284 
1285 	RB_WARN_ON(cpu_buffer, 1);
1286 
1287 	return NULL;
1288 }
1289 
1290 static int rb_head_page_replace(struct buffer_page *old,
1291 				struct buffer_page *new)
1292 {
1293 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1294 	unsigned long val;
1295 	unsigned long ret;
1296 
1297 	val = *ptr & ~RB_FLAG_MASK;
1298 	val |= RB_PAGE_HEAD;
1299 
1300 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1301 
1302 	return ret == val;
1303 }
1304 
1305 /*
1306  * rb_tail_page_update - move the tail page forward
1307  */
1308 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1309 			       struct buffer_page *tail_page,
1310 			       struct buffer_page *next_page)
1311 {
1312 	unsigned long old_entries;
1313 	unsigned long old_write;
1314 
1315 	/*
1316 	 * The tail page now needs to be moved forward.
1317 	 *
1318 	 * We need to reset the tail page, but without messing
1319 	 * with possible erasing of data brought in by interrupts
1320 	 * that have moved the tail page and are currently on it.
1321 	 *
1322 	 * We add a counter to the write field to denote this.
1323 	 */
1324 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1325 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1326 
1327 	local_inc(&cpu_buffer->pages_touched);
1328 	/*
1329 	 * Just make sure we have seen our old_write and synchronize
1330 	 * with any interrupts that come in.
1331 	 */
1332 	barrier();
1333 
1334 	/*
1335 	 * If the tail page is still the same as what we think
1336 	 * it is, then it is up to us to update the tail
1337 	 * pointer.
1338 	 */
1339 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1340 		/* Zero the write counter */
1341 		unsigned long val = old_write & ~RB_WRITE_MASK;
1342 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1343 
1344 		/*
1345 		 * This will only succeed if an interrupt did
1346 		 * not come in and change it. In which case, we
1347 		 * do not want to modify it.
1348 		 *
1349 		 * We add (void) to let the compiler know that we do not care
1350 		 * about the return value of these functions. We use the
1351 		 * cmpxchg to only update if an interrupt did not already
1352 		 * do it for us. If the cmpxchg fails, we don't care.
1353 		 */
1354 		(void)local_cmpxchg(&next_page->write, old_write, val);
1355 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1356 
1357 		/*
1358 		 * No need to worry about races with clearing out the commit.
1359 		 * it only can increment when a commit takes place. But that
1360 		 * only happens in the outer most nested commit.
1361 		 */
1362 		local_set(&next_page->page->commit, 0);
1363 
1364 		/* Again, either we update tail_page or an interrupt does */
1365 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1366 	}
1367 }
1368 
1369 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1370 			  struct buffer_page *bpage)
1371 {
1372 	unsigned long val = (unsigned long)bpage;
1373 
1374 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1375 		return 1;
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * rb_check_list - make sure a pointer to a list has the last bits zero
1382  */
1383 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1384 			 struct list_head *list)
1385 {
1386 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1387 		return 1;
1388 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1389 		return 1;
1390 	return 0;
1391 }
1392 
1393 /**
1394  * rb_check_pages - integrity check of buffer pages
1395  * @cpu_buffer: CPU buffer with pages to test
1396  *
1397  * As a safety measure we check to make sure the data pages have not
1398  * been corrupted.
1399  */
1400 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1401 {
1402 	struct list_head *head = cpu_buffer->pages;
1403 	struct buffer_page *bpage, *tmp;
1404 
1405 	/* Reset the head page if it exists */
1406 	if (cpu_buffer->head_page)
1407 		rb_set_head_page(cpu_buffer);
1408 
1409 	rb_head_page_deactivate(cpu_buffer);
1410 
1411 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1412 		return -1;
1413 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1414 		return -1;
1415 
1416 	if (rb_check_list(cpu_buffer, head))
1417 		return -1;
1418 
1419 	list_for_each_entry_safe(bpage, tmp, head, list) {
1420 		if (RB_WARN_ON(cpu_buffer,
1421 			       bpage->list.next->prev != &bpage->list))
1422 			return -1;
1423 		if (RB_WARN_ON(cpu_buffer,
1424 			       bpage->list.prev->next != &bpage->list))
1425 			return -1;
1426 		if (rb_check_list(cpu_buffer, &bpage->list))
1427 			return -1;
1428 	}
1429 
1430 	rb_head_page_activate(cpu_buffer);
1431 
1432 	return 0;
1433 }
1434 
1435 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1436 		long nr_pages, struct list_head *pages)
1437 {
1438 	struct buffer_page *bpage, *tmp;
1439 	bool user_thread = current->mm != NULL;
1440 	gfp_t mflags;
1441 	long i;
1442 
1443 	/*
1444 	 * Check if the available memory is there first.
1445 	 * Note, si_mem_available() only gives us a rough estimate of available
1446 	 * memory. It may not be accurate. But we don't care, we just want
1447 	 * to prevent doing any allocation when it is obvious that it is
1448 	 * not going to succeed.
1449 	 */
1450 	i = si_mem_available();
1451 	if (i < nr_pages)
1452 		return -ENOMEM;
1453 
1454 	/*
1455 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1456 	 * gracefully without invoking oom-killer and the system is not
1457 	 * destabilized.
1458 	 */
1459 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1460 
1461 	/*
1462 	 * If a user thread allocates too much, and si_mem_available()
1463 	 * reports there's enough memory, even though there is not.
1464 	 * Make sure the OOM killer kills this thread. This can happen
1465 	 * even with RETRY_MAYFAIL because another task may be doing
1466 	 * an allocation after this task has taken all memory.
1467 	 * This is the task the OOM killer needs to take out during this
1468 	 * loop, even if it was triggered by an allocation somewhere else.
1469 	 */
1470 	if (user_thread)
1471 		set_current_oom_origin();
1472 	for (i = 0; i < nr_pages; i++) {
1473 		struct page *page;
1474 
1475 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1476 				    mflags, cpu_to_node(cpu_buffer->cpu));
1477 		if (!bpage)
1478 			goto free_pages;
1479 
1480 		rb_check_bpage(cpu_buffer, bpage);
1481 
1482 		list_add(&bpage->list, pages);
1483 
1484 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1485 		if (!page)
1486 			goto free_pages;
1487 		bpage->page = page_address(page);
1488 		rb_init_page(bpage->page);
1489 
1490 		if (user_thread && fatal_signal_pending(current))
1491 			goto free_pages;
1492 	}
1493 	if (user_thread)
1494 		clear_current_oom_origin();
1495 
1496 	return 0;
1497 
1498 free_pages:
1499 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1500 		list_del_init(&bpage->list);
1501 		free_buffer_page(bpage);
1502 	}
1503 	if (user_thread)
1504 		clear_current_oom_origin();
1505 
1506 	return -ENOMEM;
1507 }
1508 
1509 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1510 			     unsigned long nr_pages)
1511 {
1512 	LIST_HEAD(pages);
1513 
1514 	WARN_ON(!nr_pages);
1515 
1516 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1517 		return -ENOMEM;
1518 
1519 	/*
1520 	 * The ring buffer page list is a circular list that does not
1521 	 * start and end with a list head. All page list items point to
1522 	 * other pages.
1523 	 */
1524 	cpu_buffer->pages = pages.next;
1525 	list_del(&pages);
1526 
1527 	cpu_buffer->nr_pages = nr_pages;
1528 
1529 	rb_check_pages(cpu_buffer);
1530 
1531 	return 0;
1532 }
1533 
1534 static struct ring_buffer_per_cpu *
1535 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1536 {
1537 	struct ring_buffer_per_cpu *cpu_buffer;
1538 	struct buffer_page *bpage;
1539 	struct page *page;
1540 	int ret;
1541 
1542 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1543 				  GFP_KERNEL, cpu_to_node(cpu));
1544 	if (!cpu_buffer)
1545 		return NULL;
1546 
1547 	cpu_buffer->cpu = cpu;
1548 	cpu_buffer->buffer = buffer;
1549 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1550 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1551 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1552 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1553 	init_completion(&cpu_buffer->update_done);
1554 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1555 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1556 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1557 
1558 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1559 			    GFP_KERNEL, cpu_to_node(cpu));
1560 	if (!bpage)
1561 		goto fail_free_buffer;
1562 
1563 	rb_check_bpage(cpu_buffer, bpage);
1564 
1565 	cpu_buffer->reader_page = bpage;
1566 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1567 	if (!page)
1568 		goto fail_free_reader;
1569 	bpage->page = page_address(page);
1570 	rb_init_page(bpage->page);
1571 
1572 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1573 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1574 
1575 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1576 	if (ret < 0)
1577 		goto fail_free_reader;
1578 
1579 	cpu_buffer->head_page
1580 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1581 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1582 
1583 	rb_head_page_activate(cpu_buffer);
1584 
1585 	return cpu_buffer;
1586 
1587  fail_free_reader:
1588 	free_buffer_page(cpu_buffer->reader_page);
1589 
1590  fail_free_buffer:
1591 	kfree(cpu_buffer);
1592 	return NULL;
1593 }
1594 
1595 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1596 {
1597 	struct list_head *head = cpu_buffer->pages;
1598 	struct buffer_page *bpage, *tmp;
1599 
1600 	free_buffer_page(cpu_buffer->reader_page);
1601 
1602 	rb_head_page_deactivate(cpu_buffer);
1603 
1604 	if (head) {
1605 		list_for_each_entry_safe(bpage, tmp, head, list) {
1606 			list_del_init(&bpage->list);
1607 			free_buffer_page(bpage);
1608 		}
1609 		bpage = list_entry(head, struct buffer_page, list);
1610 		free_buffer_page(bpage);
1611 	}
1612 
1613 	kfree(cpu_buffer);
1614 }
1615 
1616 /**
1617  * __ring_buffer_alloc - allocate a new ring_buffer
1618  * @size: the size in bytes per cpu that is needed.
1619  * @flags: attributes to set for the ring buffer.
1620  * @key: ring buffer reader_lock_key.
1621  *
1622  * Currently the only flag that is available is the RB_FL_OVERWRITE
1623  * flag. This flag means that the buffer will overwrite old data
1624  * when the buffer wraps. If this flag is not set, the buffer will
1625  * drop data when the tail hits the head.
1626  */
1627 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1628 					struct lock_class_key *key)
1629 {
1630 	struct trace_buffer *buffer;
1631 	long nr_pages;
1632 	int bsize;
1633 	int cpu;
1634 	int ret;
1635 
1636 	/* keep it in its own cache line */
1637 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1638 			 GFP_KERNEL);
1639 	if (!buffer)
1640 		return NULL;
1641 
1642 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1643 		goto fail_free_buffer;
1644 
1645 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1646 	buffer->flags = flags;
1647 	buffer->clock = trace_clock_local;
1648 	buffer->reader_lock_key = key;
1649 
1650 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1651 	init_waitqueue_head(&buffer->irq_work.waiters);
1652 
1653 	/* need at least two pages */
1654 	if (nr_pages < 2)
1655 		nr_pages = 2;
1656 
1657 	buffer->cpus = nr_cpu_ids;
1658 
1659 	bsize = sizeof(void *) * nr_cpu_ids;
1660 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1661 				  GFP_KERNEL);
1662 	if (!buffer->buffers)
1663 		goto fail_free_cpumask;
1664 
1665 	cpu = raw_smp_processor_id();
1666 	cpumask_set_cpu(cpu, buffer->cpumask);
1667 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1668 	if (!buffer->buffers[cpu])
1669 		goto fail_free_buffers;
1670 
1671 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1672 	if (ret < 0)
1673 		goto fail_free_buffers;
1674 
1675 	mutex_init(&buffer->mutex);
1676 
1677 	return buffer;
1678 
1679  fail_free_buffers:
1680 	for_each_buffer_cpu(buffer, cpu) {
1681 		if (buffer->buffers[cpu])
1682 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1683 	}
1684 	kfree(buffer->buffers);
1685 
1686  fail_free_cpumask:
1687 	free_cpumask_var(buffer->cpumask);
1688 
1689  fail_free_buffer:
1690 	kfree(buffer);
1691 	return NULL;
1692 }
1693 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1694 
1695 /**
1696  * ring_buffer_free - free a ring buffer.
1697  * @buffer: the buffer to free.
1698  */
1699 void
1700 ring_buffer_free(struct trace_buffer *buffer)
1701 {
1702 	int cpu;
1703 
1704 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1705 
1706 	for_each_buffer_cpu(buffer, cpu)
1707 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1708 
1709 	kfree(buffer->buffers);
1710 	free_cpumask_var(buffer->cpumask);
1711 
1712 	kfree(buffer);
1713 }
1714 EXPORT_SYMBOL_GPL(ring_buffer_free);
1715 
1716 void ring_buffer_set_clock(struct trace_buffer *buffer,
1717 			   u64 (*clock)(void))
1718 {
1719 	buffer->clock = clock;
1720 }
1721 
1722 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1723 {
1724 	buffer->time_stamp_abs = abs;
1725 }
1726 
1727 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1728 {
1729 	return buffer->time_stamp_abs;
1730 }
1731 
1732 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1733 
1734 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1735 {
1736 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1737 }
1738 
1739 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1740 {
1741 	return local_read(&bpage->write) & RB_WRITE_MASK;
1742 }
1743 
1744 static int
1745 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1746 {
1747 	struct list_head *tail_page, *to_remove, *next_page;
1748 	struct buffer_page *to_remove_page, *tmp_iter_page;
1749 	struct buffer_page *last_page, *first_page;
1750 	unsigned long nr_removed;
1751 	unsigned long head_bit;
1752 	int page_entries;
1753 
1754 	head_bit = 0;
1755 
1756 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1757 	atomic_inc(&cpu_buffer->record_disabled);
1758 	/*
1759 	 * We don't race with the readers since we have acquired the reader
1760 	 * lock. We also don't race with writers after disabling recording.
1761 	 * This makes it easy to figure out the first and the last page to be
1762 	 * removed from the list. We unlink all the pages in between including
1763 	 * the first and last pages. This is done in a busy loop so that we
1764 	 * lose the least number of traces.
1765 	 * The pages are freed after we restart recording and unlock readers.
1766 	 */
1767 	tail_page = &cpu_buffer->tail_page->list;
1768 
1769 	/*
1770 	 * tail page might be on reader page, we remove the next page
1771 	 * from the ring buffer
1772 	 */
1773 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1774 		tail_page = rb_list_head(tail_page->next);
1775 	to_remove = tail_page;
1776 
1777 	/* start of pages to remove */
1778 	first_page = list_entry(rb_list_head(to_remove->next),
1779 				struct buffer_page, list);
1780 
1781 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1782 		to_remove = rb_list_head(to_remove)->next;
1783 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1784 	}
1785 
1786 	next_page = rb_list_head(to_remove)->next;
1787 
1788 	/*
1789 	 * Now we remove all pages between tail_page and next_page.
1790 	 * Make sure that we have head_bit value preserved for the
1791 	 * next page
1792 	 */
1793 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1794 						head_bit);
1795 	next_page = rb_list_head(next_page);
1796 	next_page->prev = tail_page;
1797 
1798 	/* make sure pages points to a valid page in the ring buffer */
1799 	cpu_buffer->pages = next_page;
1800 
1801 	/* update head page */
1802 	if (head_bit)
1803 		cpu_buffer->head_page = list_entry(next_page,
1804 						struct buffer_page, list);
1805 
1806 	/*
1807 	 * change read pointer to make sure any read iterators reset
1808 	 * themselves
1809 	 */
1810 	cpu_buffer->read = 0;
1811 
1812 	/* pages are removed, resume tracing and then free the pages */
1813 	atomic_dec(&cpu_buffer->record_disabled);
1814 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1815 
1816 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1817 
1818 	/* last buffer page to remove */
1819 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1820 				list);
1821 	tmp_iter_page = first_page;
1822 
1823 	do {
1824 		cond_resched();
1825 
1826 		to_remove_page = tmp_iter_page;
1827 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1828 
1829 		/* update the counters */
1830 		page_entries = rb_page_entries(to_remove_page);
1831 		if (page_entries) {
1832 			/*
1833 			 * If something was added to this page, it was full
1834 			 * since it is not the tail page. So we deduct the
1835 			 * bytes consumed in ring buffer from here.
1836 			 * Increment overrun to account for the lost events.
1837 			 */
1838 			local_add(page_entries, &cpu_buffer->overrun);
1839 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1840 		}
1841 
1842 		/*
1843 		 * We have already removed references to this list item, just
1844 		 * free up the buffer_page and its page
1845 		 */
1846 		free_buffer_page(to_remove_page);
1847 		nr_removed--;
1848 
1849 	} while (to_remove_page != last_page);
1850 
1851 	RB_WARN_ON(cpu_buffer, nr_removed);
1852 
1853 	return nr_removed == 0;
1854 }
1855 
1856 static int
1857 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859 	struct list_head *pages = &cpu_buffer->new_pages;
1860 	int retries, success;
1861 
1862 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1863 	/*
1864 	 * We are holding the reader lock, so the reader page won't be swapped
1865 	 * in the ring buffer. Now we are racing with the writer trying to
1866 	 * move head page and the tail page.
1867 	 * We are going to adapt the reader page update process where:
1868 	 * 1. We first splice the start and end of list of new pages between
1869 	 *    the head page and its previous page.
1870 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1871 	 *    start of new pages list.
1872 	 * 3. Finally, we update the head->prev to the end of new list.
1873 	 *
1874 	 * We will try this process 10 times, to make sure that we don't keep
1875 	 * spinning.
1876 	 */
1877 	retries = 10;
1878 	success = 0;
1879 	while (retries--) {
1880 		struct list_head *head_page, *prev_page, *r;
1881 		struct list_head *last_page, *first_page;
1882 		struct list_head *head_page_with_bit;
1883 
1884 		head_page = &rb_set_head_page(cpu_buffer)->list;
1885 		if (!head_page)
1886 			break;
1887 		prev_page = head_page->prev;
1888 
1889 		first_page = pages->next;
1890 		last_page  = pages->prev;
1891 
1892 		head_page_with_bit = (struct list_head *)
1893 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1894 
1895 		last_page->next = head_page_with_bit;
1896 		first_page->prev = prev_page;
1897 
1898 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1899 
1900 		if (r == head_page_with_bit) {
1901 			/*
1902 			 * yay, we replaced the page pointer to our new list,
1903 			 * now, we just have to update to head page's prev
1904 			 * pointer to point to end of list
1905 			 */
1906 			head_page->prev = last_page;
1907 			success = 1;
1908 			break;
1909 		}
1910 	}
1911 
1912 	if (success)
1913 		INIT_LIST_HEAD(pages);
1914 	/*
1915 	 * If we weren't successful in adding in new pages, warn and stop
1916 	 * tracing
1917 	 */
1918 	RB_WARN_ON(cpu_buffer, !success);
1919 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1920 
1921 	/* free pages if they weren't inserted */
1922 	if (!success) {
1923 		struct buffer_page *bpage, *tmp;
1924 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1925 					 list) {
1926 			list_del_init(&bpage->list);
1927 			free_buffer_page(bpage);
1928 		}
1929 	}
1930 	return success;
1931 }
1932 
1933 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1934 {
1935 	int success;
1936 
1937 	if (cpu_buffer->nr_pages_to_update > 0)
1938 		success = rb_insert_pages(cpu_buffer);
1939 	else
1940 		success = rb_remove_pages(cpu_buffer,
1941 					-cpu_buffer->nr_pages_to_update);
1942 
1943 	if (success)
1944 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1945 }
1946 
1947 static void update_pages_handler(struct work_struct *work)
1948 {
1949 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1950 			struct ring_buffer_per_cpu, update_pages_work);
1951 	rb_update_pages(cpu_buffer);
1952 	complete(&cpu_buffer->update_done);
1953 }
1954 
1955 /**
1956  * ring_buffer_resize - resize the ring buffer
1957  * @buffer: the buffer to resize.
1958  * @size: the new size.
1959  * @cpu_id: the cpu buffer to resize
1960  *
1961  * Minimum size is 2 * BUF_PAGE_SIZE.
1962  *
1963  * Returns 0 on success and < 0 on failure.
1964  */
1965 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1966 			int cpu_id)
1967 {
1968 	struct ring_buffer_per_cpu *cpu_buffer;
1969 	unsigned long nr_pages;
1970 	int cpu, err;
1971 
1972 	/*
1973 	 * Always succeed at resizing a non-existent buffer:
1974 	 */
1975 	if (!buffer)
1976 		return 0;
1977 
1978 	/* Make sure the requested buffer exists */
1979 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1980 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1981 		return 0;
1982 
1983 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1984 
1985 	/* we need a minimum of two pages */
1986 	if (nr_pages < 2)
1987 		nr_pages = 2;
1988 
1989 	/* prevent another thread from changing buffer sizes */
1990 	mutex_lock(&buffer->mutex);
1991 
1992 
1993 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1994 		/*
1995 		 * Don't succeed if resizing is disabled, as a reader might be
1996 		 * manipulating the ring buffer and is expecting a sane state while
1997 		 * this is true.
1998 		 */
1999 		for_each_buffer_cpu(buffer, cpu) {
2000 			cpu_buffer = buffer->buffers[cpu];
2001 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2002 				err = -EBUSY;
2003 				goto out_err_unlock;
2004 			}
2005 		}
2006 
2007 		/* calculate the pages to update */
2008 		for_each_buffer_cpu(buffer, cpu) {
2009 			cpu_buffer = buffer->buffers[cpu];
2010 
2011 			cpu_buffer->nr_pages_to_update = nr_pages -
2012 							cpu_buffer->nr_pages;
2013 			/*
2014 			 * nothing more to do for removing pages or no update
2015 			 */
2016 			if (cpu_buffer->nr_pages_to_update <= 0)
2017 				continue;
2018 			/*
2019 			 * to add pages, make sure all new pages can be
2020 			 * allocated without receiving ENOMEM
2021 			 */
2022 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2023 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2024 						&cpu_buffer->new_pages)) {
2025 				/* not enough memory for new pages */
2026 				err = -ENOMEM;
2027 				goto out_err;
2028 			}
2029 		}
2030 
2031 		get_online_cpus();
2032 		/*
2033 		 * Fire off all the required work handlers
2034 		 * We can't schedule on offline CPUs, but it's not necessary
2035 		 * since we can change their buffer sizes without any race.
2036 		 */
2037 		for_each_buffer_cpu(buffer, cpu) {
2038 			cpu_buffer = buffer->buffers[cpu];
2039 			if (!cpu_buffer->nr_pages_to_update)
2040 				continue;
2041 
2042 			/* Can't run something on an offline CPU. */
2043 			if (!cpu_online(cpu)) {
2044 				rb_update_pages(cpu_buffer);
2045 				cpu_buffer->nr_pages_to_update = 0;
2046 			} else {
2047 				schedule_work_on(cpu,
2048 						&cpu_buffer->update_pages_work);
2049 			}
2050 		}
2051 
2052 		/* wait for all the updates to complete */
2053 		for_each_buffer_cpu(buffer, cpu) {
2054 			cpu_buffer = buffer->buffers[cpu];
2055 			if (!cpu_buffer->nr_pages_to_update)
2056 				continue;
2057 
2058 			if (cpu_online(cpu))
2059 				wait_for_completion(&cpu_buffer->update_done);
2060 			cpu_buffer->nr_pages_to_update = 0;
2061 		}
2062 
2063 		put_online_cpus();
2064 	} else {
2065 		/* Make sure this CPU has been initialized */
2066 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2067 			goto out;
2068 
2069 		cpu_buffer = buffer->buffers[cpu_id];
2070 
2071 		if (nr_pages == cpu_buffer->nr_pages)
2072 			goto out;
2073 
2074 		/*
2075 		 * Don't succeed if resizing is disabled, as a reader might be
2076 		 * manipulating the ring buffer and is expecting a sane state while
2077 		 * this is true.
2078 		 */
2079 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2080 			err = -EBUSY;
2081 			goto out_err_unlock;
2082 		}
2083 
2084 		cpu_buffer->nr_pages_to_update = nr_pages -
2085 						cpu_buffer->nr_pages;
2086 
2087 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2088 		if (cpu_buffer->nr_pages_to_update > 0 &&
2089 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2090 					    &cpu_buffer->new_pages)) {
2091 			err = -ENOMEM;
2092 			goto out_err;
2093 		}
2094 
2095 		get_online_cpus();
2096 
2097 		/* Can't run something on an offline CPU. */
2098 		if (!cpu_online(cpu_id))
2099 			rb_update_pages(cpu_buffer);
2100 		else {
2101 			schedule_work_on(cpu_id,
2102 					 &cpu_buffer->update_pages_work);
2103 			wait_for_completion(&cpu_buffer->update_done);
2104 		}
2105 
2106 		cpu_buffer->nr_pages_to_update = 0;
2107 		put_online_cpus();
2108 	}
2109 
2110  out:
2111 	/*
2112 	 * The ring buffer resize can happen with the ring buffer
2113 	 * enabled, so that the update disturbs the tracing as little
2114 	 * as possible. But if the buffer is disabled, we do not need
2115 	 * to worry about that, and we can take the time to verify
2116 	 * that the buffer is not corrupt.
2117 	 */
2118 	if (atomic_read(&buffer->record_disabled)) {
2119 		atomic_inc(&buffer->record_disabled);
2120 		/*
2121 		 * Even though the buffer was disabled, we must make sure
2122 		 * that it is truly disabled before calling rb_check_pages.
2123 		 * There could have been a race between checking
2124 		 * record_disable and incrementing it.
2125 		 */
2126 		synchronize_rcu();
2127 		for_each_buffer_cpu(buffer, cpu) {
2128 			cpu_buffer = buffer->buffers[cpu];
2129 			rb_check_pages(cpu_buffer);
2130 		}
2131 		atomic_dec(&buffer->record_disabled);
2132 	}
2133 
2134 	mutex_unlock(&buffer->mutex);
2135 	return 0;
2136 
2137  out_err:
2138 	for_each_buffer_cpu(buffer, cpu) {
2139 		struct buffer_page *bpage, *tmp;
2140 
2141 		cpu_buffer = buffer->buffers[cpu];
2142 		cpu_buffer->nr_pages_to_update = 0;
2143 
2144 		if (list_empty(&cpu_buffer->new_pages))
2145 			continue;
2146 
2147 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2148 					list) {
2149 			list_del_init(&bpage->list);
2150 			free_buffer_page(bpage);
2151 		}
2152 	}
2153  out_err_unlock:
2154 	mutex_unlock(&buffer->mutex);
2155 	return err;
2156 }
2157 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2158 
2159 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2160 {
2161 	mutex_lock(&buffer->mutex);
2162 	if (val)
2163 		buffer->flags |= RB_FL_OVERWRITE;
2164 	else
2165 		buffer->flags &= ~RB_FL_OVERWRITE;
2166 	mutex_unlock(&buffer->mutex);
2167 }
2168 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2169 
2170 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2171 {
2172 	return bpage->page->data + index;
2173 }
2174 
2175 static __always_inline struct ring_buffer_event *
2176 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2177 {
2178 	return __rb_page_index(cpu_buffer->reader_page,
2179 			       cpu_buffer->reader_page->read);
2180 }
2181 
2182 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2183 {
2184 	return local_read(&bpage->page->commit);
2185 }
2186 
2187 static struct ring_buffer_event *
2188 rb_iter_head_event(struct ring_buffer_iter *iter)
2189 {
2190 	struct ring_buffer_event *event;
2191 	struct buffer_page *iter_head_page = iter->head_page;
2192 	unsigned long commit;
2193 	unsigned length;
2194 
2195 	if (iter->head != iter->next_event)
2196 		return iter->event;
2197 
2198 	/*
2199 	 * When the writer goes across pages, it issues a cmpxchg which
2200 	 * is a mb(), which will synchronize with the rmb here.
2201 	 * (see rb_tail_page_update() and __rb_reserve_next())
2202 	 */
2203 	commit = rb_page_commit(iter_head_page);
2204 	smp_rmb();
2205 	event = __rb_page_index(iter_head_page, iter->head);
2206 	length = rb_event_length(event);
2207 
2208 	/*
2209 	 * READ_ONCE() doesn't work on functions and we don't want the
2210 	 * compiler doing any crazy optimizations with length.
2211 	 */
2212 	barrier();
2213 
2214 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2215 		/* Writer corrupted the read? */
2216 		goto reset;
2217 
2218 	memcpy(iter->event, event, length);
2219 	/*
2220 	 * If the page stamp is still the same after this rmb() then the
2221 	 * event was safely copied without the writer entering the page.
2222 	 */
2223 	smp_rmb();
2224 
2225 	/* Make sure the page didn't change since we read this */
2226 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2227 	    commit > rb_page_commit(iter_head_page))
2228 		goto reset;
2229 
2230 	iter->next_event = iter->head + length;
2231 	return iter->event;
2232  reset:
2233 	/* Reset to the beginning */
2234 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2235 	iter->head = 0;
2236 	iter->next_event = 0;
2237 	iter->missed_events = 1;
2238 	return NULL;
2239 }
2240 
2241 /* Size is determined by what has been committed */
2242 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2243 {
2244 	return rb_page_commit(bpage);
2245 }
2246 
2247 static __always_inline unsigned
2248 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2249 {
2250 	return rb_page_commit(cpu_buffer->commit_page);
2251 }
2252 
2253 static __always_inline unsigned
2254 rb_event_index(struct ring_buffer_event *event)
2255 {
2256 	unsigned long addr = (unsigned long)event;
2257 
2258 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2259 }
2260 
2261 static void rb_inc_iter(struct ring_buffer_iter *iter)
2262 {
2263 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2264 
2265 	/*
2266 	 * The iterator could be on the reader page (it starts there).
2267 	 * But the head could have moved, since the reader was
2268 	 * found. Check for this case and assign the iterator
2269 	 * to the head page instead of next.
2270 	 */
2271 	if (iter->head_page == cpu_buffer->reader_page)
2272 		iter->head_page = rb_set_head_page(cpu_buffer);
2273 	else
2274 		rb_inc_page(cpu_buffer, &iter->head_page);
2275 
2276 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2277 	iter->head = 0;
2278 	iter->next_event = 0;
2279 }
2280 
2281 /*
2282  * rb_handle_head_page - writer hit the head page
2283  *
2284  * Returns: +1 to retry page
2285  *           0 to continue
2286  *          -1 on error
2287  */
2288 static int
2289 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2290 		    struct buffer_page *tail_page,
2291 		    struct buffer_page *next_page)
2292 {
2293 	struct buffer_page *new_head;
2294 	int entries;
2295 	int type;
2296 	int ret;
2297 
2298 	entries = rb_page_entries(next_page);
2299 
2300 	/*
2301 	 * The hard part is here. We need to move the head
2302 	 * forward, and protect against both readers on
2303 	 * other CPUs and writers coming in via interrupts.
2304 	 */
2305 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2306 				       RB_PAGE_HEAD);
2307 
2308 	/*
2309 	 * type can be one of four:
2310 	 *  NORMAL - an interrupt already moved it for us
2311 	 *  HEAD   - we are the first to get here.
2312 	 *  UPDATE - we are the interrupt interrupting
2313 	 *           a current move.
2314 	 *  MOVED  - a reader on another CPU moved the next
2315 	 *           pointer to its reader page. Give up
2316 	 *           and try again.
2317 	 */
2318 
2319 	switch (type) {
2320 	case RB_PAGE_HEAD:
2321 		/*
2322 		 * We changed the head to UPDATE, thus
2323 		 * it is our responsibility to update
2324 		 * the counters.
2325 		 */
2326 		local_add(entries, &cpu_buffer->overrun);
2327 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2328 
2329 		/*
2330 		 * The entries will be zeroed out when we move the
2331 		 * tail page.
2332 		 */
2333 
2334 		/* still more to do */
2335 		break;
2336 
2337 	case RB_PAGE_UPDATE:
2338 		/*
2339 		 * This is an interrupt that interrupt the
2340 		 * previous update. Still more to do.
2341 		 */
2342 		break;
2343 	case RB_PAGE_NORMAL:
2344 		/*
2345 		 * An interrupt came in before the update
2346 		 * and processed this for us.
2347 		 * Nothing left to do.
2348 		 */
2349 		return 1;
2350 	case RB_PAGE_MOVED:
2351 		/*
2352 		 * The reader is on another CPU and just did
2353 		 * a swap with our next_page.
2354 		 * Try again.
2355 		 */
2356 		return 1;
2357 	default:
2358 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2359 		return -1;
2360 	}
2361 
2362 	/*
2363 	 * Now that we are here, the old head pointer is
2364 	 * set to UPDATE. This will keep the reader from
2365 	 * swapping the head page with the reader page.
2366 	 * The reader (on another CPU) will spin till
2367 	 * we are finished.
2368 	 *
2369 	 * We just need to protect against interrupts
2370 	 * doing the job. We will set the next pointer
2371 	 * to HEAD. After that, we set the old pointer
2372 	 * to NORMAL, but only if it was HEAD before.
2373 	 * otherwise we are an interrupt, and only
2374 	 * want the outer most commit to reset it.
2375 	 */
2376 	new_head = next_page;
2377 	rb_inc_page(cpu_buffer, &new_head);
2378 
2379 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2380 				    RB_PAGE_NORMAL);
2381 
2382 	/*
2383 	 * Valid returns are:
2384 	 *  HEAD   - an interrupt came in and already set it.
2385 	 *  NORMAL - One of two things:
2386 	 *            1) We really set it.
2387 	 *            2) A bunch of interrupts came in and moved
2388 	 *               the page forward again.
2389 	 */
2390 	switch (ret) {
2391 	case RB_PAGE_HEAD:
2392 	case RB_PAGE_NORMAL:
2393 		/* OK */
2394 		break;
2395 	default:
2396 		RB_WARN_ON(cpu_buffer, 1);
2397 		return -1;
2398 	}
2399 
2400 	/*
2401 	 * It is possible that an interrupt came in,
2402 	 * set the head up, then more interrupts came in
2403 	 * and moved it again. When we get back here,
2404 	 * the page would have been set to NORMAL but we
2405 	 * just set it back to HEAD.
2406 	 *
2407 	 * How do you detect this? Well, if that happened
2408 	 * the tail page would have moved.
2409 	 */
2410 	if (ret == RB_PAGE_NORMAL) {
2411 		struct buffer_page *buffer_tail_page;
2412 
2413 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2414 		/*
2415 		 * If the tail had moved passed next, then we need
2416 		 * to reset the pointer.
2417 		 */
2418 		if (buffer_tail_page != tail_page &&
2419 		    buffer_tail_page != next_page)
2420 			rb_head_page_set_normal(cpu_buffer, new_head,
2421 						next_page,
2422 						RB_PAGE_HEAD);
2423 	}
2424 
2425 	/*
2426 	 * If this was the outer most commit (the one that
2427 	 * changed the original pointer from HEAD to UPDATE),
2428 	 * then it is up to us to reset it to NORMAL.
2429 	 */
2430 	if (type == RB_PAGE_HEAD) {
2431 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2432 					      tail_page,
2433 					      RB_PAGE_UPDATE);
2434 		if (RB_WARN_ON(cpu_buffer,
2435 			       ret != RB_PAGE_UPDATE))
2436 			return -1;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static inline void
2443 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2444 	      unsigned long tail, struct rb_event_info *info)
2445 {
2446 	struct buffer_page *tail_page = info->tail_page;
2447 	struct ring_buffer_event *event;
2448 	unsigned long length = info->length;
2449 
2450 	/*
2451 	 * Only the event that crossed the page boundary
2452 	 * must fill the old tail_page with padding.
2453 	 */
2454 	if (tail >= BUF_PAGE_SIZE) {
2455 		/*
2456 		 * If the page was filled, then we still need
2457 		 * to update the real_end. Reset it to zero
2458 		 * and the reader will ignore it.
2459 		 */
2460 		if (tail == BUF_PAGE_SIZE)
2461 			tail_page->real_end = 0;
2462 
2463 		local_sub(length, &tail_page->write);
2464 		return;
2465 	}
2466 
2467 	event = __rb_page_index(tail_page, tail);
2468 
2469 	/* account for padding bytes */
2470 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2471 
2472 	/*
2473 	 * Save the original length to the meta data.
2474 	 * This will be used by the reader to add lost event
2475 	 * counter.
2476 	 */
2477 	tail_page->real_end = tail;
2478 
2479 	/*
2480 	 * If this event is bigger than the minimum size, then
2481 	 * we need to be careful that we don't subtract the
2482 	 * write counter enough to allow another writer to slip
2483 	 * in on this page.
2484 	 * We put in a discarded commit instead, to make sure
2485 	 * that this space is not used again.
2486 	 *
2487 	 * If we are less than the minimum size, we don't need to
2488 	 * worry about it.
2489 	 */
2490 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2491 		/* No room for any events */
2492 
2493 		/* Mark the rest of the page with padding */
2494 		rb_event_set_padding(event);
2495 
2496 		/* Set the write back to the previous setting */
2497 		local_sub(length, &tail_page->write);
2498 		return;
2499 	}
2500 
2501 	/* Put in a discarded event */
2502 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2503 	event->type_len = RINGBUF_TYPE_PADDING;
2504 	/* time delta must be non zero */
2505 	event->time_delta = 1;
2506 
2507 	/* Set write to end of buffer */
2508 	length = (tail + length) - BUF_PAGE_SIZE;
2509 	local_sub(length, &tail_page->write);
2510 }
2511 
2512 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2513 
2514 /*
2515  * This is the slow path, force gcc not to inline it.
2516  */
2517 static noinline struct ring_buffer_event *
2518 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2519 	     unsigned long tail, struct rb_event_info *info)
2520 {
2521 	struct buffer_page *tail_page = info->tail_page;
2522 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2523 	struct trace_buffer *buffer = cpu_buffer->buffer;
2524 	struct buffer_page *next_page;
2525 	int ret;
2526 
2527 	next_page = tail_page;
2528 
2529 	rb_inc_page(cpu_buffer, &next_page);
2530 
2531 	/*
2532 	 * If for some reason, we had an interrupt storm that made
2533 	 * it all the way around the buffer, bail, and warn
2534 	 * about it.
2535 	 */
2536 	if (unlikely(next_page == commit_page)) {
2537 		local_inc(&cpu_buffer->commit_overrun);
2538 		goto out_reset;
2539 	}
2540 
2541 	/*
2542 	 * This is where the fun begins!
2543 	 *
2544 	 * We are fighting against races between a reader that
2545 	 * could be on another CPU trying to swap its reader
2546 	 * page with the buffer head.
2547 	 *
2548 	 * We are also fighting against interrupts coming in and
2549 	 * moving the head or tail on us as well.
2550 	 *
2551 	 * If the next page is the head page then we have filled
2552 	 * the buffer, unless the commit page is still on the
2553 	 * reader page.
2554 	 */
2555 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2556 
2557 		/*
2558 		 * If the commit is not on the reader page, then
2559 		 * move the header page.
2560 		 */
2561 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2562 			/*
2563 			 * If we are not in overwrite mode,
2564 			 * this is easy, just stop here.
2565 			 */
2566 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2567 				local_inc(&cpu_buffer->dropped_events);
2568 				goto out_reset;
2569 			}
2570 
2571 			ret = rb_handle_head_page(cpu_buffer,
2572 						  tail_page,
2573 						  next_page);
2574 			if (ret < 0)
2575 				goto out_reset;
2576 			if (ret)
2577 				goto out_again;
2578 		} else {
2579 			/*
2580 			 * We need to be careful here too. The
2581 			 * commit page could still be on the reader
2582 			 * page. We could have a small buffer, and
2583 			 * have filled up the buffer with events
2584 			 * from interrupts and such, and wrapped.
2585 			 *
2586 			 * Note, if the tail page is also the on the
2587 			 * reader_page, we let it move out.
2588 			 */
2589 			if (unlikely((cpu_buffer->commit_page !=
2590 				      cpu_buffer->tail_page) &&
2591 				     (cpu_buffer->commit_page ==
2592 				      cpu_buffer->reader_page))) {
2593 				local_inc(&cpu_buffer->commit_overrun);
2594 				goto out_reset;
2595 			}
2596 		}
2597 	}
2598 
2599 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2600 
2601  out_again:
2602 
2603 	rb_reset_tail(cpu_buffer, tail, info);
2604 
2605 	/* Commit what we have for now. */
2606 	rb_end_commit(cpu_buffer);
2607 	/* rb_end_commit() decs committing */
2608 	local_inc(&cpu_buffer->committing);
2609 
2610 	/* fail and let the caller try again */
2611 	return ERR_PTR(-EAGAIN);
2612 
2613  out_reset:
2614 	/* reset write */
2615 	rb_reset_tail(cpu_buffer, tail, info);
2616 
2617 	return NULL;
2618 }
2619 
2620 /* Slow path */
2621 static struct ring_buffer_event *
2622 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2623 {
2624 	if (abs)
2625 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2626 	else
2627 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2628 
2629 	/* Not the first event on the page, or not delta? */
2630 	if (abs || rb_event_index(event)) {
2631 		event->time_delta = delta & TS_MASK;
2632 		event->array[0] = delta >> TS_SHIFT;
2633 	} else {
2634 		/* nope, just zero it */
2635 		event->time_delta = 0;
2636 		event->array[0] = 0;
2637 	}
2638 
2639 	return skip_time_extend(event);
2640 }
2641 
2642 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2643 static inline bool sched_clock_stable(void)
2644 {
2645 	return true;
2646 }
2647 #endif
2648 
2649 static void
2650 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2651 		   struct rb_event_info *info)
2652 {
2653 	u64 write_stamp;
2654 
2655 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2656 		  (unsigned long long)info->delta,
2657 		  (unsigned long long)info->ts,
2658 		  (unsigned long long)info->before,
2659 		  (unsigned long long)info->after,
2660 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2661 		  sched_clock_stable() ? "" :
2662 		  "If you just came from a suspend/resume,\n"
2663 		  "please switch to the trace global clock:\n"
2664 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2665 		  "or add trace_clock=global to the kernel command line\n");
2666 }
2667 
2668 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2669 				      struct ring_buffer_event **event,
2670 				      struct rb_event_info *info,
2671 				      u64 *delta,
2672 				      unsigned int *length)
2673 {
2674 	bool abs = info->add_timestamp &
2675 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2676 
2677 	if (unlikely(info->delta > (1ULL << 59))) {
2678 		/* did the clock go backwards */
2679 		if (info->before == info->after && info->before > info->ts) {
2680 			/* not interrupted */
2681 			static int once;
2682 
2683 			/*
2684 			 * This is possible with a recalibrating of the TSC.
2685 			 * Do not produce a call stack, but just report it.
2686 			 */
2687 			if (!once) {
2688 				once++;
2689 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2690 					info->before, info->ts);
2691 			}
2692 		} else
2693 			rb_check_timestamp(cpu_buffer, info);
2694 		if (!abs)
2695 			info->delta = 0;
2696 	}
2697 	*event = rb_add_time_stamp(*event, info->delta, abs);
2698 	*length -= RB_LEN_TIME_EXTEND;
2699 	*delta = 0;
2700 }
2701 
2702 /**
2703  * rb_update_event - update event type and data
2704  * @cpu_buffer: The per cpu buffer of the @event
2705  * @event: the event to update
2706  * @info: The info to update the @event with (contains length and delta)
2707  *
2708  * Update the type and data fields of the @event. The length
2709  * is the actual size that is written to the ring buffer,
2710  * and with this, we can determine what to place into the
2711  * data field.
2712  */
2713 static void
2714 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2715 		struct ring_buffer_event *event,
2716 		struct rb_event_info *info)
2717 {
2718 	unsigned length = info->length;
2719 	u64 delta = info->delta;
2720 
2721 	/*
2722 	 * If we need to add a timestamp, then we
2723 	 * add it to the start of the reserved space.
2724 	 */
2725 	if (unlikely(info->add_timestamp))
2726 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2727 
2728 	event->time_delta = delta;
2729 	length -= RB_EVNT_HDR_SIZE;
2730 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2731 		event->type_len = 0;
2732 		event->array[0] = length;
2733 	} else
2734 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2735 }
2736 
2737 static unsigned rb_calculate_event_length(unsigned length)
2738 {
2739 	struct ring_buffer_event event; /* Used only for sizeof array */
2740 
2741 	/* zero length can cause confusions */
2742 	if (!length)
2743 		length++;
2744 
2745 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2746 		length += sizeof(event.array[0]);
2747 
2748 	length += RB_EVNT_HDR_SIZE;
2749 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2750 
2751 	/*
2752 	 * In case the time delta is larger than the 27 bits for it
2753 	 * in the header, we need to add a timestamp. If another
2754 	 * event comes in when trying to discard this one to increase
2755 	 * the length, then the timestamp will be added in the allocated
2756 	 * space of this event. If length is bigger than the size needed
2757 	 * for the TIME_EXTEND, then padding has to be used. The events
2758 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2759 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2760 	 * As length is a multiple of 4, we only need to worry if it
2761 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2762 	 */
2763 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2764 		length += RB_ALIGNMENT;
2765 
2766 	return length;
2767 }
2768 
2769 static u64 rb_time_delta(struct ring_buffer_event *event)
2770 {
2771 	switch (event->type_len) {
2772 	case RINGBUF_TYPE_PADDING:
2773 		return 0;
2774 
2775 	case RINGBUF_TYPE_TIME_EXTEND:
2776 		return ring_buffer_event_time_stamp(event);
2777 
2778 	case RINGBUF_TYPE_TIME_STAMP:
2779 		return 0;
2780 
2781 	case RINGBUF_TYPE_DATA:
2782 		return event->time_delta;
2783 	default:
2784 		return 0;
2785 	}
2786 }
2787 
2788 static inline int
2789 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2790 		  struct ring_buffer_event *event)
2791 {
2792 	unsigned long new_index, old_index;
2793 	struct buffer_page *bpage;
2794 	unsigned long index;
2795 	unsigned long addr;
2796 	u64 write_stamp;
2797 	u64 delta;
2798 
2799 	new_index = rb_event_index(event);
2800 	old_index = new_index + rb_event_ts_length(event);
2801 	addr = (unsigned long)event;
2802 	addr &= PAGE_MASK;
2803 
2804 	bpage = READ_ONCE(cpu_buffer->tail_page);
2805 
2806 	delta = rb_time_delta(event);
2807 
2808 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2809 		return 0;
2810 
2811 	/* Make sure the write stamp is read before testing the location */
2812 	barrier();
2813 
2814 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2815 		unsigned long write_mask =
2816 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2817 		unsigned long event_length = rb_event_length(event);
2818 
2819 		/* Something came in, can't discard */
2820 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2821 				       write_stamp, write_stamp - delta))
2822 			return 0;
2823 
2824 		/*
2825 		 * If an event were to come in now, it would see that the
2826 		 * write_stamp and the before_stamp are different, and assume
2827 		 * that this event just added itself before updating
2828 		 * the write stamp. The interrupting event will fix the
2829 		 * write stamp for us, and use the before stamp as its delta.
2830 		 */
2831 
2832 		/*
2833 		 * This is on the tail page. It is possible that
2834 		 * a write could come in and move the tail page
2835 		 * and write to the next page. That is fine
2836 		 * because we just shorten what is on this page.
2837 		 */
2838 		old_index += write_mask;
2839 		new_index += write_mask;
2840 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2841 		if (index == old_index) {
2842 			/* update counters */
2843 			local_sub(event_length, &cpu_buffer->entries_bytes);
2844 			return 1;
2845 		}
2846 	}
2847 
2848 	/* could not discard */
2849 	return 0;
2850 }
2851 
2852 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2853 {
2854 	local_inc(&cpu_buffer->committing);
2855 	local_inc(&cpu_buffer->commits);
2856 }
2857 
2858 static __always_inline void
2859 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2860 {
2861 	unsigned long max_count;
2862 
2863 	/*
2864 	 * We only race with interrupts and NMIs on this CPU.
2865 	 * If we own the commit event, then we can commit
2866 	 * all others that interrupted us, since the interruptions
2867 	 * are in stack format (they finish before they come
2868 	 * back to us). This allows us to do a simple loop to
2869 	 * assign the commit to the tail.
2870 	 */
2871  again:
2872 	max_count = cpu_buffer->nr_pages * 100;
2873 
2874 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2875 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2876 			return;
2877 		if (RB_WARN_ON(cpu_buffer,
2878 			       rb_is_reader_page(cpu_buffer->tail_page)))
2879 			return;
2880 		local_set(&cpu_buffer->commit_page->page->commit,
2881 			  rb_page_write(cpu_buffer->commit_page));
2882 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2883 		/* add barrier to keep gcc from optimizing too much */
2884 		barrier();
2885 	}
2886 	while (rb_commit_index(cpu_buffer) !=
2887 	       rb_page_write(cpu_buffer->commit_page)) {
2888 
2889 		local_set(&cpu_buffer->commit_page->page->commit,
2890 			  rb_page_write(cpu_buffer->commit_page));
2891 		RB_WARN_ON(cpu_buffer,
2892 			   local_read(&cpu_buffer->commit_page->page->commit) &
2893 			   ~RB_WRITE_MASK);
2894 		barrier();
2895 	}
2896 
2897 	/* again, keep gcc from optimizing */
2898 	barrier();
2899 
2900 	/*
2901 	 * If an interrupt came in just after the first while loop
2902 	 * and pushed the tail page forward, we will be left with
2903 	 * a dangling commit that will never go forward.
2904 	 */
2905 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2906 		goto again;
2907 }
2908 
2909 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2910 {
2911 	unsigned long commits;
2912 
2913 	if (RB_WARN_ON(cpu_buffer,
2914 		       !local_read(&cpu_buffer->committing)))
2915 		return;
2916 
2917  again:
2918 	commits = local_read(&cpu_buffer->commits);
2919 	/* synchronize with interrupts */
2920 	barrier();
2921 	if (local_read(&cpu_buffer->committing) == 1)
2922 		rb_set_commit_to_write(cpu_buffer);
2923 
2924 	local_dec(&cpu_buffer->committing);
2925 
2926 	/* synchronize with interrupts */
2927 	barrier();
2928 
2929 	/*
2930 	 * Need to account for interrupts coming in between the
2931 	 * updating of the commit page and the clearing of the
2932 	 * committing counter.
2933 	 */
2934 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2935 	    !local_read(&cpu_buffer->committing)) {
2936 		local_inc(&cpu_buffer->committing);
2937 		goto again;
2938 	}
2939 }
2940 
2941 static inline void rb_event_discard(struct ring_buffer_event *event)
2942 {
2943 	if (extended_time(event))
2944 		event = skip_time_extend(event);
2945 
2946 	/* array[0] holds the actual length for the discarded event */
2947 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2948 	event->type_len = RINGBUF_TYPE_PADDING;
2949 	/* time delta must be non zero */
2950 	if (!event->time_delta)
2951 		event->time_delta = 1;
2952 }
2953 
2954 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2955 		      struct ring_buffer_event *event)
2956 {
2957 	local_inc(&cpu_buffer->entries);
2958 	rb_end_commit(cpu_buffer);
2959 }
2960 
2961 static __always_inline void
2962 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2963 {
2964 	size_t nr_pages;
2965 	size_t dirty;
2966 	size_t full;
2967 
2968 	if (buffer->irq_work.waiters_pending) {
2969 		buffer->irq_work.waiters_pending = false;
2970 		/* irq_work_queue() supplies it's own memory barriers */
2971 		irq_work_queue(&buffer->irq_work.work);
2972 	}
2973 
2974 	if (cpu_buffer->irq_work.waiters_pending) {
2975 		cpu_buffer->irq_work.waiters_pending = false;
2976 		/* irq_work_queue() supplies it's own memory barriers */
2977 		irq_work_queue(&cpu_buffer->irq_work.work);
2978 	}
2979 
2980 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2981 		return;
2982 
2983 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2984 		return;
2985 
2986 	if (!cpu_buffer->irq_work.full_waiters_pending)
2987 		return;
2988 
2989 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2990 
2991 	full = cpu_buffer->shortest_full;
2992 	nr_pages = cpu_buffer->nr_pages;
2993 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2994 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2995 		return;
2996 
2997 	cpu_buffer->irq_work.wakeup_full = true;
2998 	cpu_buffer->irq_work.full_waiters_pending = false;
2999 	/* irq_work_queue() supplies it's own memory barriers */
3000 	irq_work_queue(&cpu_buffer->irq_work.work);
3001 }
3002 
3003 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3004 # define do_ring_buffer_record_recursion()	\
3005 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3006 #else
3007 # define do_ring_buffer_record_recursion() do { } while (0)
3008 #endif
3009 
3010 /*
3011  * The lock and unlock are done within a preempt disable section.
3012  * The current_context per_cpu variable can only be modified
3013  * by the current task between lock and unlock. But it can
3014  * be modified more than once via an interrupt. To pass this
3015  * information from the lock to the unlock without having to
3016  * access the 'in_interrupt()' functions again (which do show
3017  * a bit of overhead in something as critical as function tracing,
3018  * we use a bitmask trick.
3019  *
3020  *  bit 1 =  NMI context
3021  *  bit 2 =  IRQ context
3022  *  bit 3 =  SoftIRQ context
3023  *  bit 4 =  normal context.
3024  *
3025  * This works because this is the order of contexts that can
3026  * preempt other contexts. A SoftIRQ never preempts an IRQ
3027  * context.
3028  *
3029  * When the context is determined, the corresponding bit is
3030  * checked and set (if it was set, then a recursion of that context
3031  * happened).
3032  *
3033  * On unlock, we need to clear this bit. To do so, just subtract
3034  * 1 from the current_context and AND it to itself.
3035  *
3036  * (binary)
3037  *  101 - 1 = 100
3038  *  101 & 100 = 100 (clearing bit zero)
3039  *
3040  *  1010 - 1 = 1001
3041  *  1010 & 1001 = 1000 (clearing bit 1)
3042  *
3043  * The least significant bit can be cleared this way, and it
3044  * just so happens that it is the same bit corresponding to
3045  * the current context.
3046  *
3047  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3048  * is set when a recursion is detected at the current context, and if
3049  * the TRANSITION bit is already set, it will fail the recursion.
3050  * This is needed because there's a lag between the changing of
3051  * interrupt context and updating the preempt count. In this case,
3052  * a false positive will be found. To handle this, one extra recursion
3053  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3054  * bit is already set, then it is considered a recursion and the function
3055  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3056  *
3057  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3058  * to be cleared. Even if it wasn't the context that set it. That is,
3059  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3060  * is called before preempt_count() is updated, since the check will
3061  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3062  * NMI then comes in, it will set the NMI bit, but when the NMI code
3063  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3064  * and leave the NMI bit set. But this is fine, because the interrupt
3065  * code that set the TRANSITION bit will then clear the NMI bit when it
3066  * calls trace_recursive_unlock(). If another NMI comes in, it will
3067  * set the TRANSITION bit and continue.
3068  *
3069  * Note: The TRANSITION bit only handles a single transition between context.
3070  */
3071 
3072 static __always_inline int
3073 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3074 {
3075 	unsigned int val = cpu_buffer->current_context;
3076 	unsigned long pc = preempt_count();
3077 	int bit;
3078 
3079 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3080 		bit = RB_CTX_NORMAL;
3081 	else
3082 		bit = pc & NMI_MASK ? RB_CTX_NMI :
3083 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3084 
3085 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3086 		/*
3087 		 * It is possible that this was called by transitioning
3088 		 * between interrupt context, and preempt_count() has not
3089 		 * been updated yet. In this case, use the TRANSITION bit.
3090 		 */
3091 		bit = RB_CTX_TRANSITION;
3092 		if (val & (1 << (bit + cpu_buffer->nest))) {
3093 			do_ring_buffer_record_recursion();
3094 			return 1;
3095 		}
3096 	}
3097 
3098 	val |= (1 << (bit + cpu_buffer->nest));
3099 	cpu_buffer->current_context = val;
3100 
3101 	return 0;
3102 }
3103 
3104 static __always_inline void
3105 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3106 {
3107 	cpu_buffer->current_context &=
3108 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3109 }
3110 
3111 /* The recursive locking above uses 5 bits */
3112 #define NESTED_BITS 5
3113 
3114 /**
3115  * ring_buffer_nest_start - Allow to trace while nested
3116  * @buffer: The ring buffer to modify
3117  *
3118  * The ring buffer has a safety mechanism to prevent recursion.
3119  * But there may be a case where a trace needs to be done while
3120  * tracing something else. In this case, calling this function
3121  * will allow this function to nest within a currently active
3122  * ring_buffer_lock_reserve().
3123  *
3124  * Call this function before calling another ring_buffer_lock_reserve() and
3125  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3126  */
3127 void ring_buffer_nest_start(struct trace_buffer *buffer)
3128 {
3129 	struct ring_buffer_per_cpu *cpu_buffer;
3130 	int cpu;
3131 
3132 	/* Enabled by ring_buffer_nest_end() */
3133 	preempt_disable_notrace();
3134 	cpu = raw_smp_processor_id();
3135 	cpu_buffer = buffer->buffers[cpu];
3136 	/* This is the shift value for the above recursive locking */
3137 	cpu_buffer->nest += NESTED_BITS;
3138 }
3139 
3140 /**
3141  * ring_buffer_nest_end - Allow to trace while nested
3142  * @buffer: The ring buffer to modify
3143  *
3144  * Must be called after ring_buffer_nest_start() and after the
3145  * ring_buffer_unlock_commit().
3146  */
3147 void ring_buffer_nest_end(struct trace_buffer *buffer)
3148 {
3149 	struct ring_buffer_per_cpu *cpu_buffer;
3150 	int cpu;
3151 
3152 	/* disabled by ring_buffer_nest_start() */
3153 	cpu = raw_smp_processor_id();
3154 	cpu_buffer = buffer->buffers[cpu];
3155 	/* This is the shift value for the above recursive locking */
3156 	cpu_buffer->nest -= NESTED_BITS;
3157 	preempt_enable_notrace();
3158 }
3159 
3160 /**
3161  * ring_buffer_unlock_commit - commit a reserved
3162  * @buffer: The buffer to commit to
3163  * @event: The event pointer to commit.
3164  *
3165  * This commits the data to the ring buffer, and releases any locks held.
3166  *
3167  * Must be paired with ring_buffer_lock_reserve.
3168  */
3169 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3170 			      struct ring_buffer_event *event)
3171 {
3172 	struct ring_buffer_per_cpu *cpu_buffer;
3173 	int cpu = raw_smp_processor_id();
3174 
3175 	cpu_buffer = buffer->buffers[cpu];
3176 
3177 	rb_commit(cpu_buffer, event);
3178 
3179 	rb_wakeups(buffer, cpu_buffer);
3180 
3181 	trace_recursive_unlock(cpu_buffer);
3182 
3183 	preempt_enable_notrace();
3184 
3185 	return 0;
3186 }
3187 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3188 
3189 /* Special value to validate all deltas on a page. */
3190 #define CHECK_FULL_PAGE		1L
3191 
3192 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3193 static void dump_buffer_page(struct buffer_data_page *bpage,
3194 			     struct rb_event_info *info,
3195 			     unsigned long tail)
3196 {
3197 	struct ring_buffer_event *event;
3198 	u64 ts, delta;
3199 	int e;
3200 
3201 	ts = bpage->time_stamp;
3202 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3203 
3204 	for (e = 0; e < tail; e += rb_event_length(event)) {
3205 
3206 		event = (struct ring_buffer_event *)(bpage->data + e);
3207 
3208 		switch (event->type_len) {
3209 
3210 		case RINGBUF_TYPE_TIME_EXTEND:
3211 			delta = ring_buffer_event_time_stamp(event);
3212 			ts += delta;
3213 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3214 			break;
3215 
3216 		case RINGBUF_TYPE_TIME_STAMP:
3217 			delta = ring_buffer_event_time_stamp(event);
3218 			ts = delta;
3219 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3220 			break;
3221 
3222 		case RINGBUF_TYPE_PADDING:
3223 			ts += event->time_delta;
3224 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3225 			break;
3226 
3227 		case RINGBUF_TYPE_DATA:
3228 			ts += event->time_delta;
3229 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3230 			break;
3231 
3232 		default:
3233 			break;
3234 		}
3235 	}
3236 }
3237 
3238 static DEFINE_PER_CPU(atomic_t, checking);
3239 static atomic_t ts_dump;
3240 
3241 /*
3242  * Check if the current event time stamp matches the deltas on
3243  * the buffer page.
3244  */
3245 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3246 			 struct rb_event_info *info,
3247 			 unsigned long tail)
3248 {
3249 	struct ring_buffer_event *event;
3250 	struct buffer_data_page *bpage;
3251 	u64 ts, delta;
3252 	bool full = false;
3253 	int e;
3254 
3255 	bpage = info->tail_page->page;
3256 
3257 	if (tail == CHECK_FULL_PAGE) {
3258 		full = true;
3259 		tail = local_read(&bpage->commit);
3260 	} else if (info->add_timestamp &
3261 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3262 		/* Ignore events with absolute time stamps */
3263 		return;
3264 	}
3265 
3266 	/*
3267 	 * Do not check the first event (skip possible extends too).
3268 	 * Also do not check if previous events have not been committed.
3269 	 */
3270 	if (tail <= 8 || tail > local_read(&bpage->commit))
3271 		return;
3272 
3273 	/*
3274 	 * If this interrupted another event,
3275 	 */
3276 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3277 		goto out;
3278 
3279 	ts = bpage->time_stamp;
3280 
3281 	for (e = 0; e < tail; e += rb_event_length(event)) {
3282 
3283 		event = (struct ring_buffer_event *)(bpage->data + e);
3284 
3285 		switch (event->type_len) {
3286 
3287 		case RINGBUF_TYPE_TIME_EXTEND:
3288 			delta = ring_buffer_event_time_stamp(event);
3289 			ts += delta;
3290 			break;
3291 
3292 		case RINGBUF_TYPE_TIME_STAMP:
3293 			delta = ring_buffer_event_time_stamp(event);
3294 			ts = delta;
3295 			break;
3296 
3297 		case RINGBUF_TYPE_PADDING:
3298 			if (event->time_delta == 1)
3299 				break;
3300 			/* fall through */
3301 		case RINGBUF_TYPE_DATA:
3302 			ts += event->time_delta;
3303 			break;
3304 
3305 		default:
3306 			RB_WARN_ON(cpu_buffer, 1);
3307 		}
3308 	}
3309 	if ((full && ts > info->ts) ||
3310 	    (!full && ts + info->delta != info->ts)) {
3311 		/* If another report is happening, ignore this one */
3312 		if (atomic_inc_return(&ts_dump) != 1) {
3313 			atomic_dec(&ts_dump);
3314 			goto out;
3315 		}
3316 		atomic_inc(&cpu_buffer->record_disabled);
3317 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld after:%lld\n",
3318 		       cpu_buffer->cpu,
3319 		       ts + info->delta, info->ts, info->delta, info->after);
3320 		dump_buffer_page(bpage, info, tail);
3321 		atomic_dec(&ts_dump);
3322 		/* Do not re-enable checking */
3323 		return;
3324 	}
3325 out:
3326 	atomic_dec(this_cpu_ptr(&checking));
3327 }
3328 #else
3329 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3330 			 struct rb_event_info *info,
3331 			 unsigned long tail)
3332 {
3333 }
3334 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3335 
3336 static struct ring_buffer_event *
3337 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3338 		  struct rb_event_info *info)
3339 {
3340 	struct ring_buffer_event *event;
3341 	struct buffer_page *tail_page;
3342 	unsigned long tail, write, w;
3343 	bool a_ok;
3344 	bool b_ok;
3345 
3346 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3347 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3348 
3349  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3350 	barrier();
3351 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3352 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3353 	barrier();
3354 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3355 
3356 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3357 		info->delta = info->ts;
3358 	} else {
3359 		/*
3360 		 * If interrupting an event time update, we may need an
3361 		 * absolute timestamp.
3362 		 * Don't bother if this is the start of a new page (w == 0).
3363 		 */
3364 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3365 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3366 			info->length += RB_LEN_TIME_EXTEND;
3367 		} else {
3368 			info->delta = info->ts - info->after;
3369 			if (unlikely(test_time_stamp(info->delta))) {
3370 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3371 				info->length += RB_LEN_TIME_EXTEND;
3372 			}
3373 		}
3374 	}
3375 
3376  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3377 
3378  /*C*/	write = local_add_return(info->length, &tail_page->write);
3379 
3380 	/* set write to only the index of the write */
3381 	write &= RB_WRITE_MASK;
3382 
3383 	tail = write - info->length;
3384 
3385 	/* See if we shot pass the end of this buffer page */
3386 	if (unlikely(write > BUF_PAGE_SIZE)) {
3387 		/* before and after may now different, fix it up*/
3388 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3389 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3390 		if (a_ok && b_ok && info->before != info->after)
3391 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3392 					      info->before, info->after);
3393 		if (a_ok && b_ok)
3394 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3395 		return rb_move_tail(cpu_buffer, tail, info);
3396 	}
3397 
3398 	if (likely(tail == w)) {
3399 		u64 save_before;
3400 		bool s_ok;
3401 
3402 		/* Nothing interrupted us between A and C */
3403  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3404 		barrier();
3405  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3406 		RB_WARN_ON(cpu_buffer, !s_ok);
3407 		if (likely(!(info->add_timestamp &
3408 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3409 			/* This did not interrupt any time update */
3410 			info->delta = info->ts - info->after;
3411 		else
3412 			/* Just use full timestamp for interrupting event */
3413 			info->delta = info->ts;
3414 		barrier();
3415 		check_buffer(cpu_buffer, info, tail);
3416 		if (unlikely(info->ts != save_before)) {
3417 			/* SLOW PATH - Interrupted between C and E */
3418 
3419 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3420 			RB_WARN_ON(cpu_buffer, !a_ok);
3421 
3422 			/* Write stamp must only go forward */
3423 			if (save_before > info->after) {
3424 				/*
3425 				 * We do not care about the result, only that
3426 				 * it gets updated atomically.
3427 				 */
3428 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3429 						      info->after, save_before);
3430 			}
3431 		}
3432 	} else {
3433 		u64 ts;
3434 		/* SLOW PATH - Interrupted between A and C */
3435 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3436 		/* Was interrupted before here, write_stamp must be valid */
3437 		RB_WARN_ON(cpu_buffer, !a_ok);
3438 		ts = rb_time_stamp(cpu_buffer->buffer);
3439 		barrier();
3440  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3441 		    info->after < ts &&
3442 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3443 				    info->after, ts)) {
3444 			/* Nothing came after this event between C and E */
3445 			info->delta = ts - info->after;
3446 			info->ts = ts;
3447 		} else {
3448 			/*
3449 			 * Interrupted between C and E:
3450 			 * Lost the previous events time stamp. Just set the
3451 			 * delta to zero, and this will be the same time as
3452 			 * the event this event interrupted. And the events that
3453 			 * came after this will still be correct (as they would
3454 			 * have built their delta on the previous event.
3455 			 */
3456 			info->delta = 0;
3457 		}
3458 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3459 	}
3460 
3461 	/*
3462 	 * If this is the first commit on the page, then it has the same
3463 	 * timestamp as the page itself.
3464 	 */
3465 	if (unlikely(!tail && !(info->add_timestamp &
3466 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3467 		info->delta = 0;
3468 
3469 	/* We reserved something on the buffer */
3470 
3471 	event = __rb_page_index(tail_page, tail);
3472 	rb_update_event(cpu_buffer, event, info);
3473 
3474 	local_inc(&tail_page->entries);
3475 
3476 	/*
3477 	 * If this is the first commit on the page, then update
3478 	 * its timestamp.
3479 	 */
3480 	if (unlikely(!tail))
3481 		tail_page->page->time_stamp = info->ts;
3482 
3483 	/* account for these added bytes */
3484 	local_add(info->length, &cpu_buffer->entries_bytes);
3485 
3486 	return event;
3487 }
3488 
3489 static __always_inline struct ring_buffer_event *
3490 rb_reserve_next_event(struct trace_buffer *buffer,
3491 		      struct ring_buffer_per_cpu *cpu_buffer,
3492 		      unsigned long length)
3493 {
3494 	struct ring_buffer_event *event;
3495 	struct rb_event_info info;
3496 	int nr_loops = 0;
3497 	int add_ts_default;
3498 
3499 	rb_start_commit(cpu_buffer);
3500 	/* The commit page can not change after this */
3501 
3502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3503 	/*
3504 	 * Due to the ability to swap a cpu buffer from a buffer
3505 	 * it is possible it was swapped before we committed.
3506 	 * (committing stops a swap). We check for it here and
3507 	 * if it happened, we have to fail the write.
3508 	 */
3509 	barrier();
3510 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3511 		local_dec(&cpu_buffer->committing);
3512 		local_dec(&cpu_buffer->commits);
3513 		return NULL;
3514 	}
3515 #endif
3516 
3517 	info.length = rb_calculate_event_length(length);
3518 
3519 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3520 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3521 		info.length += RB_LEN_TIME_EXTEND;
3522 	} else {
3523 		add_ts_default = RB_ADD_STAMP_NONE;
3524 	}
3525 
3526  again:
3527 	info.add_timestamp = add_ts_default;
3528 	info.delta = 0;
3529 
3530 	/*
3531 	 * We allow for interrupts to reenter here and do a trace.
3532 	 * If one does, it will cause this original code to loop
3533 	 * back here. Even with heavy interrupts happening, this
3534 	 * should only happen a few times in a row. If this happens
3535 	 * 1000 times in a row, there must be either an interrupt
3536 	 * storm or we have something buggy.
3537 	 * Bail!
3538 	 */
3539 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3540 		goto out_fail;
3541 
3542 	event = __rb_reserve_next(cpu_buffer, &info);
3543 
3544 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3545 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3546 			info.length -= RB_LEN_TIME_EXTEND;
3547 		goto again;
3548 	}
3549 
3550 	if (likely(event))
3551 		return event;
3552  out_fail:
3553 	rb_end_commit(cpu_buffer);
3554 	return NULL;
3555 }
3556 
3557 /**
3558  * ring_buffer_lock_reserve - reserve a part of the buffer
3559  * @buffer: the ring buffer to reserve from
3560  * @length: the length of the data to reserve (excluding event header)
3561  *
3562  * Returns a reserved event on the ring buffer to copy directly to.
3563  * The user of this interface will need to get the body to write into
3564  * and can use the ring_buffer_event_data() interface.
3565  *
3566  * The length is the length of the data needed, not the event length
3567  * which also includes the event header.
3568  *
3569  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3570  * If NULL is returned, then nothing has been allocated or locked.
3571  */
3572 struct ring_buffer_event *
3573 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3574 {
3575 	struct ring_buffer_per_cpu *cpu_buffer;
3576 	struct ring_buffer_event *event;
3577 	int cpu;
3578 
3579 	/* If we are tracing schedule, we don't want to recurse */
3580 	preempt_disable_notrace();
3581 
3582 	if (unlikely(atomic_read(&buffer->record_disabled)))
3583 		goto out;
3584 
3585 	cpu = raw_smp_processor_id();
3586 
3587 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3588 		goto out;
3589 
3590 	cpu_buffer = buffer->buffers[cpu];
3591 
3592 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3593 		goto out;
3594 
3595 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3596 		goto out;
3597 
3598 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3599 		goto out;
3600 
3601 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3602 	if (!event)
3603 		goto out_unlock;
3604 
3605 	return event;
3606 
3607  out_unlock:
3608 	trace_recursive_unlock(cpu_buffer);
3609  out:
3610 	preempt_enable_notrace();
3611 	return NULL;
3612 }
3613 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3614 
3615 /*
3616  * Decrement the entries to the page that an event is on.
3617  * The event does not even need to exist, only the pointer
3618  * to the page it is on. This may only be called before the commit
3619  * takes place.
3620  */
3621 static inline void
3622 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3623 		   struct ring_buffer_event *event)
3624 {
3625 	unsigned long addr = (unsigned long)event;
3626 	struct buffer_page *bpage = cpu_buffer->commit_page;
3627 	struct buffer_page *start;
3628 
3629 	addr &= PAGE_MASK;
3630 
3631 	/* Do the likely case first */
3632 	if (likely(bpage->page == (void *)addr)) {
3633 		local_dec(&bpage->entries);
3634 		return;
3635 	}
3636 
3637 	/*
3638 	 * Because the commit page may be on the reader page we
3639 	 * start with the next page and check the end loop there.
3640 	 */
3641 	rb_inc_page(cpu_buffer, &bpage);
3642 	start = bpage;
3643 	do {
3644 		if (bpage->page == (void *)addr) {
3645 			local_dec(&bpage->entries);
3646 			return;
3647 		}
3648 		rb_inc_page(cpu_buffer, &bpage);
3649 	} while (bpage != start);
3650 
3651 	/* commit not part of this buffer?? */
3652 	RB_WARN_ON(cpu_buffer, 1);
3653 }
3654 
3655 /**
3656  * ring_buffer_discard_commit - discard an event that has not been committed
3657  * @buffer: the ring buffer
3658  * @event: non committed event to discard
3659  *
3660  * Sometimes an event that is in the ring buffer needs to be ignored.
3661  * This function lets the user discard an event in the ring buffer
3662  * and then that event will not be read later.
3663  *
3664  * This function only works if it is called before the item has been
3665  * committed. It will try to free the event from the ring buffer
3666  * if another event has not been added behind it.
3667  *
3668  * If another event has been added behind it, it will set the event
3669  * up as discarded, and perform the commit.
3670  *
3671  * If this function is called, do not call ring_buffer_unlock_commit on
3672  * the event.
3673  */
3674 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3675 				struct ring_buffer_event *event)
3676 {
3677 	struct ring_buffer_per_cpu *cpu_buffer;
3678 	int cpu;
3679 
3680 	/* The event is discarded regardless */
3681 	rb_event_discard(event);
3682 
3683 	cpu = smp_processor_id();
3684 	cpu_buffer = buffer->buffers[cpu];
3685 
3686 	/*
3687 	 * This must only be called if the event has not been
3688 	 * committed yet. Thus we can assume that preemption
3689 	 * is still disabled.
3690 	 */
3691 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3692 
3693 	rb_decrement_entry(cpu_buffer, event);
3694 	if (rb_try_to_discard(cpu_buffer, event))
3695 		goto out;
3696 
3697  out:
3698 	rb_end_commit(cpu_buffer);
3699 
3700 	trace_recursive_unlock(cpu_buffer);
3701 
3702 	preempt_enable_notrace();
3703 
3704 }
3705 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3706 
3707 /**
3708  * ring_buffer_write - write data to the buffer without reserving
3709  * @buffer: The ring buffer to write to.
3710  * @length: The length of the data being written (excluding the event header)
3711  * @data: The data to write to the buffer.
3712  *
3713  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3714  * one function. If you already have the data to write to the buffer, it
3715  * may be easier to simply call this function.
3716  *
3717  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3718  * and not the length of the event which would hold the header.
3719  */
3720 int ring_buffer_write(struct trace_buffer *buffer,
3721 		      unsigned long length,
3722 		      void *data)
3723 {
3724 	struct ring_buffer_per_cpu *cpu_buffer;
3725 	struct ring_buffer_event *event;
3726 	void *body;
3727 	int ret = -EBUSY;
3728 	int cpu;
3729 
3730 	preempt_disable_notrace();
3731 
3732 	if (atomic_read(&buffer->record_disabled))
3733 		goto out;
3734 
3735 	cpu = raw_smp_processor_id();
3736 
3737 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3738 		goto out;
3739 
3740 	cpu_buffer = buffer->buffers[cpu];
3741 
3742 	if (atomic_read(&cpu_buffer->record_disabled))
3743 		goto out;
3744 
3745 	if (length > BUF_MAX_DATA_SIZE)
3746 		goto out;
3747 
3748 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3749 		goto out;
3750 
3751 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3752 	if (!event)
3753 		goto out_unlock;
3754 
3755 	body = rb_event_data(event);
3756 
3757 	memcpy(body, data, length);
3758 
3759 	rb_commit(cpu_buffer, event);
3760 
3761 	rb_wakeups(buffer, cpu_buffer);
3762 
3763 	ret = 0;
3764 
3765  out_unlock:
3766 	trace_recursive_unlock(cpu_buffer);
3767 
3768  out:
3769 	preempt_enable_notrace();
3770 
3771 	return ret;
3772 }
3773 EXPORT_SYMBOL_GPL(ring_buffer_write);
3774 
3775 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3776 {
3777 	struct buffer_page *reader = cpu_buffer->reader_page;
3778 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3779 	struct buffer_page *commit = cpu_buffer->commit_page;
3780 
3781 	/* In case of error, head will be NULL */
3782 	if (unlikely(!head))
3783 		return true;
3784 
3785 	return reader->read == rb_page_commit(reader) &&
3786 		(commit == reader ||
3787 		 (commit == head &&
3788 		  head->read == rb_page_commit(commit)));
3789 }
3790 
3791 /**
3792  * ring_buffer_record_disable - stop all writes into the buffer
3793  * @buffer: The ring buffer to stop writes to.
3794  *
3795  * This prevents all writes to the buffer. Any attempt to write
3796  * to the buffer after this will fail and return NULL.
3797  *
3798  * The caller should call synchronize_rcu() after this.
3799  */
3800 void ring_buffer_record_disable(struct trace_buffer *buffer)
3801 {
3802 	atomic_inc(&buffer->record_disabled);
3803 }
3804 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3805 
3806 /**
3807  * ring_buffer_record_enable - enable writes to the buffer
3808  * @buffer: The ring buffer to enable writes
3809  *
3810  * Note, multiple disables will need the same number of enables
3811  * to truly enable the writing (much like preempt_disable).
3812  */
3813 void ring_buffer_record_enable(struct trace_buffer *buffer)
3814 {
3815 	atomic_dec(&buffer->record_disabled);
3816 }
3817 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3818 
3819 /**
3820  * ring_buffer_record_off - stop all writes into the buffer
3821  * @buffer: The ring buffer to stop writes to.
3822  *
3823  * This prevents all writes to the buffer. Any attempt to write
3824  * to the buffer after this will fail and return NULL.
3825  *
3826  * This is different than ring_buffer_record_disable() as
3827  * it works like an on/off switch, where as the disable() version
3828  * must be paired with a enable().
3829  */
3830 void ring_buffer_record_off(struct trace_buffer *buffer)
3831 {
3832 	unsigned int rd;
3833 	unsigned int new_rd;
3834 
3835 	do {
3836 		rd = atomic_read(&buffer->record_disabled);
3837 		new_rd = rd | RB_BUFFER_OFF;
3838 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3839 }
3840 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3841 
3842 /**
3843  * ring_buffer_record_on - restart writes into the buffer
3844  * @buffer: The ring buffer to start writes to.
3845  *
3846  * This enables all writes to the buffer that was disabled by
3847  * ring_buffer_record_off().
3848  *
3849  * This is different than ring_buffer_record_enable() as
3850  * it works like an on/off switch, where as the enable() version
3851  * must be paired with a disable().
3852  */
3853 void ring_buffer_record_on(struct trace_buffer *buffer)
3854 {
3855 	unsigned int rd;
3856 	unsigned int new_rd;
3857 
3858 	do {
3859 		rd = atomic_read(&buffer->record_disabled);
3860 		new_rd = rd & ~RB_BUFFER_OFF;
3861 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3862 }
3863 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3864 
3865 /**
3866  * ring_buffer_record_is_on - return true if the ring buffer can write
3867  * @buffer: The ring buffer to see if write is enabled
3868  *
3869  * Returns true if the ring buffer is in a state that it accepts writes.
3870  */
3871 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3872 {
3873 	return !atomic_read(&buffer->record_disabled);
3874 }
3875 
3876 /**
3877  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3878  * @buffer: The ring buffer to see if write is set enabled
3879  *
3880  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3881  * Note that this does NOT mean it is in a writable state.
3882  *
3883  * It may return true when the ring buffer has been disabled by
3884  * ring_buffer_record_disable(), as that is a temporary disabling of
3885  * the ring buffer.
3886  */
3887 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3888 {
3889 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3890 }
3891 
3892 /**
3893  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3894  * @buffer: The ring buffer to stop writes to.
3895  * @cpu: The CPU buffer to stop
3896  *
3897  * This prevents all writes to the buffer. Any attempt to write
3898  * to the buffer after this will fail and return NULL.
3899  *
3900  * The caller should call synchronize_rcu() after this.
3901  */
3902 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3903 {
3904 	struct ring_buffer_per_cpu *cpu_buffer;
3905 
3906 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3907 		return;
3908 
3909 	cpu_buffer = buffer->buffers[cpu];
3910 	atomic_inc(&cpu_buffer->record_disabled);
3911 }
3912 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3913 
3914 /**
3915  * ring_buffer_record_enable_cpu - enable writes to the buffer
3916  * @buffer: The ring buffer to enable writes
3917  * @cpu: The CPU to enable.
3918  *
3919  * Note, multiple disables will need the same number of enables
3920  * to truly enable the writing (much like preempt_disable).
3921  */
3922 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3923 {
3924 	struct ring_buffer_per_cpu *cpu_buffer;
3925 
3926 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3927 		return;
3928 
3929 	cpu_buffer = buffer->buffers[cpu];
3930 	atomic_dec(&cpu_buffer->record_disabled);
3931 }
3932 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3933 
3934 /*
3935  * The total entries in the ring buffer is the running counter
3936  * of entries entered into the ring buffer, minus the sum of
3937  * the entries read from the ring buffer and the number of
3938  * entries that were overwritten.
3939  */
3940 static inline unsigned long
3941 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3942 {
3943 	return local_read(&cpu_buffer->entries) -
3944 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3945 }
3946 
3947 /**
3948  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3949  * @buffer: The ring buffer
3950  * @cpu: The per CPU buffer to read from.
3951  */
3952 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3953 {
3954 	unsigned long flags;
3955 	struct ring_buffer_per_cpu *cpu_buffer;
3956 	struct buffer_page *bpage;
3957 	u64 ret = 0;
3958 
3959 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3960 		return 0;
3961 
3962 	cpu_buffer = buffer->buffers[cpu];
3963 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3964 	/*
3965 	 * if the tail is on reader_page, oldest time stamp is on the reader
3966 	 * page
3967 	 */
3968 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3969 		bpage = cpu_buffer->reader_page;
3970 	else
3971 		bpage = rb_set_head_page(cpu_buffer);
3972 	if (bpage)
3973 		ret = bpage->page->time_stamp;
3974 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3975 
3976 	return ret;
3977 }
3978 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3979 
3980 /**
3981  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3982  * @buffer: The ring buffer
3983  * @cpu: The per CPU buffer to read from.
3984  */
3985 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3986 {
3987 	struct ring_buffer_per_cpu *cpu_buffer;
3988 	unsigned long ret;
3989 
3990 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3991 		return 0;
3992 
3993 	cpu_buffer = buffer->buffers[cpu];
3994 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3995 
3996 	return ret;
3997 }
3998 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3999 
4000 /**
4001  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4002  * @buffer: The ring buffer
4003  * @cpu: The per CPU buffer to get the entries from.
4004  */
4005 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4006 {
4007 	struct ring_buffer_per_cpu *cpu_buffer;
4008 
4009 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4010 		return 0;
4011 
4012 	cpu_buffer = buffer->buffers[cpu];
4013 
4014 	return rb_num_of_entries(cpu_buffer);
4015 }
4016 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4017 
4018 /**
4019  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4020  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4021  * @buffer: The ring buffer
4022  * @cpu: The per CPU buffer to get the number of overruns from
4023  */
4024 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4025 {
4026 	struct ring_buffer_per_cpu *cpu_buffer;
4027 	unsigned long ret;
4028 
4029 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4030 		return 0;
4031 
4032 	cpu_buffer = buffer->buffers[cpu];
4033 	ret = local_read(&cpu_buffer->overrun);
4034 
4035 	return ret;
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4038 
4039 /**
4040  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4041  * commits failing due to the buffer wrapping around while there are uncommitted
4042  * events, such as during an interrupt storm.
4043  * @buffer: The ring buffer
4044  * @cpu: The per CPU buffer to get the number of overruns from
4045  */
4046 unsigned long
4047 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4048 {
4049 	struct ring_buffer_per_cpu *cpu_buffer;
4050 	unsigned long ret;
4051 
4052 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4053 		return 0;
4054 
4055 	cpu_buffer = buffer->buffers[cpu];
4056 	ret = local_read(&cpu_buffer->commit_overrun);
4057 
4058 	return ret;
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4061 
4062 /**
4063  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4064  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4065  * @buffer: The ring buffer
4066  * @cpu: The per CPU buffer to get the number of overruns from
4067  */
4068 unsigned long
4069 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4070 {
4071 	struct ring_buffer_per_cpu *cpu_buffer;
4072 	unsigned long ret;
4073 
4074 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4075 		return 0;
4076 
4077 	cpu_buffer = buffer->buffers[cpu];
4078 	ret = local_read(&cpu_buffer->dropped_events);
4079 
4080 	return ret;
4081 }
4082 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4083 
4084 /**
4085  * ring_buffer_read_events_cpu - get the number of events successfully read
4086  * @buffer: The ring buffer
4087  * @cpu: The per CPU buffer to get the number of events read
4088  */
4089 unsigned long
4090 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4091 {
4092 	struct ring_buffer_per_cpu *cpu_buffer;
4093 
4094 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4095 		return 0;
4096 
4097 	cpu_buffer = buffer->buffers[cpu];
4098 	return cpu_buffer->read;
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4101 
4102 /**
4103  * ring_buffer_entries - get the number of entries in a buffer
4104  * @buffer: The ring buffer
4105  *
4106  * Returns the total number of entries in the ring buffer
4107  * (all CPU entries)
4108  */
4109 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4110 {
4111 	struct ring_buffer_per_cpu *cpu_buffer;
4112 	unsigned long entries = 0;
4113 	int cpu;
4114 
4115 	/* if you care about this being correct, lock the buffer */
4116 	for_each_buffer_cpu(buffer, cpu) {
4117 		cpu_buffer = buffer->buffers[cpu];
4118 		entries += rb_num_of_entries(cpu_buffer);
4119 	}
4120 
4121 	return entries;
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4124 
4125 /**
4126  * ring_buffer_overruns - get the number of overruns in buffer
4127  * @buffer: The ring buffer
4128  *
4129  * Returns the total number of overruns in the ring buffer
4130  * (all CPU entries)
4131  */
4132 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4133 {
4134 	struct ring_buffer_per_cpu *cpu_buffer;
4135 	unsigned long overruns = 0;
4136 	int cpu;
4137 
4138 	/* if you care about this being correct, lock the buffer */
4139 	for_each_buffer_cpu(buffer, cpu) {
4140 		cpu_buffer = buffer->buffers[cpu];
4141 		overruns += local_read(&cpu_buffer->overrun);
4142 	}
4143 
4144 	return overruns;
4145 }
4146 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4147 
4148 static void rb_iter_reset(struct ring_buffer_iter *iter)
4149 {
4150 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4151 
4152 	/* Iterator usage is expected to have record disabled */
4153 	iter->head_page = cpu_buffer->reader_page;
4154 	iter->head = cpu_buffer->reader_page->read;
4155 	iter->next_event = iter->head;
4156 
4157 	iter->cache_reader_page = iter->head_page;
4158 	iter->cache_read = cpu_buffer->read;
4159 
4160 	if (iter->head) {
4161 		iter->read_stamp = cpu_buffer->read_stamp;
4162 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4163 	} else {
4164 		iter->read_stamp = iter->head_page->page->time_stamp;
4165 		iter->page_stamp = iter->read_stamp;
4166 	}
4167 }
4168 
4169 /**
4170  * ring_buffer_iter_reset - reset an iterator
4171  * @iter: The iterator to reset
4172  *
4173  * Resets the iterator, so that it will start from the beginning
4174  * again.
4175  */
4176 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4177 {
4178 	struct ring_buffer_per_cpu *cpu_buffer;
4179 	unsigned long flags;
4180 
4181 	if (!iter)
4182 		return;
4183 
4184 	cpu_buffer = iter->cpu_buffer;
4185 
4186 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4187 	rb_iter_reset(iter);
4188 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4189 }
4190 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4191 
4192 /**
4193  * ring_buffer_iter_empty - check if an iterator has no more to read
4194  * @iter: The iterator to check
4195  */
4196 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4197 {
4198 	struct ring_buffer_per_cpu *cpu_buffer;
4199 	struct buffer_page *reader;
4200 	struct buffer_page *head_page;
4201 	struct buffer_page *commit_page;
4202 	struct buffer_page *curr_commit_page;
4203 	unsigned commit;
4204 	u64 curr_commit_ts;
4205 	u64 commit_ts;
4206 
4207 	cpu_buffer = iter->cpu_buffer;
4208 	reader = cpu_buffer->reader_page;
4209 	head_page = cpu_buffer->head_page;
4210 	commit_page = cpu_buffer->commit_page;
4211 	commit_ts = commit_page->page->time_stamp;
4212 
4213 	/*
4214 	 * When the writer goes across pages, it issues a cmpxchg which
4215 	 * is a mb(), which will synchronize with the rmb here.
4216 	 * (see rb_tail_page_update())
4217 	 */
4218 	smp_rmb();
4219 	commit = rb_page_commit(commit_page);
4220 	/* We want to make sure that the commit page doesn't change */
4221 	smp_rmb();
4222 
4223 	/* Make sure commit page didn't change */
4224 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4225 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4226 
4227 	/* If the commit page changed, then there's more data */
4228 	if (curr_commit_page != commit_page ||
4229 	    curr_commit_ts != commit_ts)
4230 		return 0;
4231 
4232 	/* Still racy, as it may return a false positive, but that's OK */
4233 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4234 		(iter->head_page == reader && commit_page == head_page &&
4235 		 head_page->read == commit &&
4236 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4237 }
4238 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4239 
4240 static void
4241 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4242 		     struct ring_buffer_event *event)
4243 {
4244 	u64 delta;
4245 
4246 	switch (event->type_len) {
4247 	case RINGBUF_TYPE_PADDING:
4248 		return;
4249 
4250 	case RINGBUF_TYPE_TIME_EXTEND:
4251 		delta = ring_buffer_event_time_stamp(event);
4252 		cpu_buffer->read_stamp += delta;
4253 		return;
4254 
4255 	case RINGBUF_TYPE_TIME_STAMP:
4256 		delta = ring_buffer_event_time_stamp(event);
4257 		cpu_buffer->read_stamp = delta;
4258 		return;
4259 
4260 	case RINGBUF_TYPE_DATA:
4261 		cpu_buffer->read_stamp += event->time_delta;
4262 		return;
4263 
4264 	default:
4265 		RB_WARN_ON(cpu_buffer, 1);
4266 	}
4267 	return;
4268 }
4269 
4270 static void
4271 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4272 			  struct ring_buffer_event *event)
4273 {
4274 	u64 delta;
4275 
4276 	switch (event->type_len) {
4277 	case RINGBUF_TYPE_PADDING:
4278 		return;
4279 
4280 	case RINGBUF_TYPE_TIME_EXTEND:
4281 		delta = ring_buffer_event_time_stamp(event);
4282 		iter->read_stamp += delta;
4283 		return;
4284 
4285 	case RINGBUF_TYPE_TIME_STAMP:
4286 		delta = ring_buffer_event_time_stamp(event);
4287 		iter->read_stamp = delta;
4288 		return;
4289 
4290 	case RINGBUF_TYPE_DATA:
4291 		iter->read_stamp += event->time_delta;
4292 		return;
4293 
4294 	default:
4295 		RB_WARN_ON(iter->cpu_buffer, 1);
4296 	}
4297 	return;
4298 }
4299 
4300 static struct buffer_page *
4301 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4302 {
4303 	struct buffer_page *reader = NULL;
4304 	unsigned long overwrite;
4305 	unsigned long flags;
4306 	int nr_loops = 0;
4307 	int ret;
4308 
4309 	local_irq_save(flags);
4310 	arch_spin_lock(&cpu_buffer->lock);
4311 
4312  again:
4313 	/*
4314 	 * This should normally only loop twice. But because the
4315 	 * start of the reader inserts an empty page, it causes
4316 	 * a case where we will loop three times. There should be no
4317 	 * reason to loop four times (that I know of).
4318 	 */
4319 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4320 		reader = NULL;
4321 		goto out;
4322 	}
4323 
4324 	reader = cpu_buffer->reader_page;
4325 
4326 	/* If there's more to read, return this page */
4327 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4328 		goto out;
4329 
4330 	/* Never should we have an index greater than the size */
4331 	if (RB_WARN_ON(cpu_buffer,
4332 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4333 		goto out;
4334 
4335 	/* check if we caught up to the tail */
4336 	reader = NULL;
4337 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4338 		goto out;
4339 
4340 	/* Don't bother swapping if the ring buffer is empty */
4341 	if (rb_num_of_entries(cpu_buffer) == 0)
4342 		goto out;
4343 
4344 	/*
4345 	 * Reset the reader page to size zero.
4346 	 */
4347 	local_set(&cpu_buffer->reader_page->write, 0);
4348 	local_set(&cpu_buffer->reader_page->entries, 0);
4349 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4350 	cpu_buffer->reader_page->real_end = 0;
4351 
4352  spin:
4353 	/*
4354 	 * Splice the empty reader page into the list around the head.
4355 	 */
4356 	reader = rb_set_head_page(cpu_buffer);
4357 	if (!reader)
4358 		goto out;
4359 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4360 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4361 
4362 	/*
4363 	 * cpu_buffer->pages just needs to point to the buffer, it
4364 	 *  has no specific buffer page to point to. Lets move it out
4365 	 *  of our way so we don't accidentally swap it.
4366 	 */
4367 	cpu_buffer->pages = reader->list.prev;
4368 
4369 	/* The reader page will be pointing to the new head */
4370 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4371 
4372 	/*
4373 	 * We want to make sure we read the overruns after we set up our
4374 	 * pointers to the next object. The writer side does a
4375 	 * cmpxchg to cross pages which acts as the mb on the writer
4376 	 * side. Note, the reader will constantly fail the swap
4377 	 * while the writer is updating the pointers, so this
4378 	 * guarantees that the overwrite recorded here is the one we
4379 	 * want to compare with the last_overrun.
4380 	 */
4381 	smp_mb();
4382 	overwrite = local_read(&(cpu_buffer->overrun));
4383 
4384 	/*
4385 	 * Here's the tricky part.
4386 	 *
4387 	 * We need to move the pointer past the header page.
4388 	 * But we can only do that if a writer is not currently
4389 	 * moving it. The page before the header page has the
4390 	 * flag bit '1' set if it is pointing to the page we want.
4391 	 * but if the writer is in the process of moving it
4392 	 * than it will be '2' or already moved '0'.
4393 	 */
4394 
4395 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4396 
4397 	/*
4398 	 * If we did not convert it, then we must try again.
4399 	 */
4400 	if (!ret)
4401 		goto spin;
4402 
4403 	/*
4404 	 * Yay! We succeeded in replacing the page.
4405 	 *
4406 	 * Now make the new head point back to the reader page.
4407 	 */
4408 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4409 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4410 
4411 	local_inc(&cpu_buffer->pages_read);
4412 
4413 	/* Finally update the reader page to the new head */
4414 	cpu_buffer->reader_page = reader;
4415 	cpu_buffer->reader_page->read = 0;
4416 
4417 	if (overwrite != cpu_buffer->last_overrun) {
4418 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4419 		cpu_buffer->last_overrun = overwrite;
4420 	}
4421 
4422 	goto again;
4423 
4424  out:
4425 	/* Update the read_stamp on the first event */
4426 	if (reader && reader->read == 0)
4427 		cpu_buffer->read_stamp = reader->page->time_stamp;
4428 
4429 	arch_spin_unlock(&cpu_buffer->lock);
4430 	local_irq_restore(flags);
4431 
4432 	return reader;
4433 }
4434 
4435 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4436 {
4437 	struct ring_buffer_event *event;
4438 	struct buffer_page *reader;
4439 	unsigned length;
4440 
4441 	reader = rb_get_reader_page(cpu_buffer);
4442 
4443 	/* This function should not be called when buffer is empty */
4444 	if (RB_WARN_ON(cpu_buffer, !reader))
4445 		return;
4446 
4447 	event = rb_reader_event(cpu_buffer);
4448 
4449 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4450 		cpu_buffer->read++;
4451 
4452 	rb_update_read_stamp(cpu_buffer, event);
4453 
4454 	length = rb_event_length(event);
4455 	cpu_buffer->reader_page->read += length;
4456 }
4457 
4458 static void rb_advance_iter(struct ring_buffer_iter *iter)
4459 {
4460 	struct ring_buffer_per_cpu *cpu_buffer;
4461 
4462 	cpu_buffer = iter->cpu_buffer;
4463 
4464 	/* If head == next_event then we need to jump to the next event */
4465 	if (iter->head == iter->next_event) {
4466 		/* If the event gets overwritten again, there's nothing to do */
4467 		if (rb_iter_head_event(iter) == NULL)
4468 			return;
4469 	}
4470 
4471 	iter->head = iter->next_event;
4472 
4473 	/*
4474 	 * Check if we are at the end of the buffer.
4475 	 */
4476 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4477 		/* discarded commits can make the page empty */
4478 		if (iter->head_page == cpu_buffer->commit_page)
4479 			return;
4480 		rb_inc_iter(iter);
4481 		return;
4482 	}
4483 
4484 	rb_update_iter_read_stamp(iter, iter->event);
4485 }
4486 
4487 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4488 {
4489 	return cpu_buffer->lost_events;
4490 }
4491 
4492 static struct ring_buffer_event *
4493 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4494 	       unsigned long *lost_events)
4495 {
4496 	struct ring_buffer_event *event;
4497 	struct buffer_page *reader;
4498 	int nr_loops = 0;
4499 
4500 	if (ts)
4501 		*ts = 0;
4502  again:
4503 	/*
4504 	 * We repeat when a time extend is encountered.
4505 	 * Since the time extend is always attached to a data event,
4506 	 * we should never loop more than once.
4507 	 * (We never hit the following condition more than twice).
4508 	 */
4509 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4510 		return NULL;
4511 
4512 	reader = rb_get_reader_page(cpu_buffer);
4513 	if (!reader)
4514 		return NULL;
4515 
4516 	event = rb_reader_event(cpu_buffer);
4517 
4518 	switch (event->type_len) {
4519 	case RINGBUF_TYPE_PADDING:
4520 		if (rb_null_event(event))
4521 			RB_WARN_ON(cpu_buffer, 1);
4522 		/*
4523 		 * Because the writer could be discarding every
4524 		 * event it creates (which would probably be bad)
4525 		 * if we were to go back to "again" then we may never
4526 		 * catch up, and will trigger the warn on, or lock
4527 		 * the box. Return the padding, and we will release
4528 		 * the current locks, and try again.
4529 		 */
4530 		return event;
4531 
4532 	case RINGBUF_TYPE_TIME_EXTEND:
4533 		/* Internal data, OK to advance */
4534 		rb_advance_reader(cpu_buffer);
4535 		goto again;
4536 
4537 	case RINGBUF_TYPE_TIME_STAMP:
4538 		if (ts) {
4539 			*ts = ring_buffer_event_time_stamp(event);
4540 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4541 							 cpu_buffer->cpu, ts);
4542 		}
4543 		/* Internal data, OK to advance */
4544 		rb_advance_reader(cpu_buffer);
4545 		goto again;
4546 
4547 	case RINGBUF_TYPE_DATA:
4548 		if (ts && !(*ts)) {
4549 			*ts = cpu_buffer->read_stamp + event->time_delta;
4550 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4551 							 cpu_buffer->cpu, ts);
4552 		}
4553 		if (lost_events)
4554 			*lost_events = rb_lost_events(cpu_buffer);
4555 		return event;
4556 
4557 	default:
4558 		RB_WARN_ON(cpu_buffer, 1);
4559 	}
4560 
4561 	return NULL;
4562 }
4563 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4564 
4565 static struct ring_buffer_event *
4566 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4567 {
4568 	struct trace_buffer *buffer;
4569 	struct ring_buffer_per_cpu *cpu_buffer;
4570 	struct ring_buffer_event *event;
4571 	int nr_loops = 0;
4572 
4573 	if (ts)
4574 		*ts = 0;
4575 
4576 	cpu_buffer = iter->cpu_buffer;
4577 	buffer = cpu_buffer->buffer;
4578 
4579 	/*
4580 	 * Check if someone performed a consuming read to
4581 	 * the buffer. A consuming read invalidates the iterator
4582 	 * and we need to reset the iterator in this case.
4583 	 */
4584 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4585 		     iter->cache_reader_page != cpu_buffer->reader_page))
4586 		rb_iter_reset(iter);
4587 
4588  again:
4589 	if (ring_buffer_iter_empty(iter))
4590 		return NULL;
4591 
4592 	/*
4593 	 * As the writer can mess with what the iterator is trying
4594 	 * to read, just give up if we fail to get an event after
4595 	 * three tries. The iterator is not as reliable when reading
4596 	 * the ring buffer with an active write as the consumer is.
4597 	 * Do not warn if the three failures is reached.
4598 	 */
4599 	if (++nr_loops > 3)
4600 		return NULL;
4601 
4602 	if (rb_per_cpu_empty(cpu_buffer))
4603 		return NULL;
4604 
4605 	if (iter->head >= rb_page_size(iter->head_page)) {
4606 		rb_inc_iter(iter);
4607 		goto again;
4608 	}
4609 
4610 	event = rb_iter_head_event(iter);
4611 	if (!event)
4612 		goto again;
4613 
4614 	switch (event->type_len) {
4615 	case RINGBUF_TYPE_PADDING:
4616 		if (rb_null_event(event)) {
4617 			rb_inc_iter(iter);
4618 			goto again;
4619 		}
4620 		rb_advance_iter(iter);
4621 		return event;
4622 
4623 	case RINGBUF_TYPE_TIME_EXTEND:
4624 		/* Internal data, OK to advance */
4625 		rb_advance_iter(iter);
4626 		goto again;
4627 
4628 	case RINGBUF_TYPE_TIME_STAMP:
4629 		if (ts) {
4630 			*ts = ring_buffer_event_time_stamp(event);
4631 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4632 							 cpu_buffer->cpu, ts);
4633 		}
4634 		/* Internal data, OK to advance */
4635 		rb_advance_iter(iter);
4636 		goto again;
4637 
4638 	case RINGBUF_TYPE_DATA:
4639 		if (ts && !(*ts)) {
4640 			*ts = iter->read_stamp + event->time_delta;
4641 			ring_buffer_normalize_time_stamp(buffer,
4642 							 cpu_buffer->cpu, ts);
4643 		}
4644 		return event;
4645 
4646 	default:
4647 		RB_WARN_ON(cpu_buffer, 1);
4648 	}
4649 
4650 	return NULL;
4651 }
4652 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4653 
4654 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4655 {
4656 	if (likely(!in_nmi())) {
4657 		raw_spin_lock(&cpu_buffer->reader_lock);
4658 		return true;
4659 	}
4660 
4661 	/*
4662 	 * If an NMI die dumps out the content of the ring buffer
4663 	 * trylock must be used to prevent a deadlock if the NMI
4664 	 * preempted a task that holds the ring buffer locks. If
4665 	 * we get the lock then all is fine, if not, then continue
4666 	 * to do the read, but this can corrupt the ring buffer,
4667 	 * so it must be permanently disabled from future writes.
4668 	 * Reading from NMI is a oneshot deal.
4669 	 */
4670 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4671 		return true;
4672 
4673 	/* Continue without locking, but disable the ring buffer */
4674 	atomic_inc(&cpu_buffer->record_disabled);
4675 	return false;
4676 }
4677 
4678 static inline void
4679 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4680 {
4681 	if (likely(locked))
4682 		raw_spin_unlock(&cpu_buffer->reader_lock);
4683 	return;
4684 }
4685 
4686 /**
4687  * ring_buffer_peek - peek at the next event to be read
4688  * @buffer: The ring buffer to read
4689  * @cpu: The cpu to peak at
4690  * @ts: The timestamp counter of this event.
4691  * @lost_events: a variable to store if events were lost (may be NULL)
4692  *
4693  * This will return the event that will be read next, but does
4694  * not consume the data.
4695  */
4696 struct ring_buffer_event *
4697 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4698 		 unsigned long *lost_events)
4699 {
4700 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4701 	struct ring_buffer_event *event;
4702 	unsigned long flags;
4703 	bool dolock;
4704 
4705 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4706 		return NULL;
4707 
4708  again:
4709 	local_irq_save(flags);
4710 	dolock = rb_reader_lock(cpu_buffer);
4711 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4712 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4713 		rb_advance_reader(cpu_buffer);
4714 	rb_reader_unlock(cpu_buffer, dolock);
4715 	local_irq_restore(flags);
4716 
4717 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4718 		goto again;
4719 
4720 	return event;
4721 }
4722 
4723 /** ring_buffer_iter_dropped - report if there are dropped events
4724  * @iter: The ring buffer iterator
4725  *
4726  * Returns true if there was dropped events since the last peek.
4727  */
4728 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4729 {
4730 	bool ret = iter->missed_events != 0;
4731 
4732 	iter->missed_events = 0;
4733 	return ret;
4734 }
4735 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4736 
4737 /**
4738  * ring_buffer_iter_peek - peek at the next event to be read
4739  * @iter: The ring buffer iterator
4740  * @ts: The timestamp counter of this event.
4741  *
4742  * This will return the event that will be read next, but does
4743  * not increment the iterator.
4744  */
4745 struct ring_buffer_event *
4746 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4747 {
4748 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4749 	struct ring_buffer_event *event;
4750 	unsigned long flags;
4751 
4752  again:
4753 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4754 	event = rb_iter_peek(iter, ts);
4755 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4756 
4757 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4758 		goto again;
4759 
4760 	return event;
4761 }
4762 
4763 /**
4764  * ring_buffer_consume - return an event and consume it
4765  * @buffer: The ring buffer to get the next event from
4766  * @cpu: the cpu to read the buffer from
4767  * @ts: a variable to store the timestamp (may be NULL)
4768  * @lost_events: a variable to store if events were lost (may be NULL)
4769  *
4770  * Returns the next event in the ring buffer, and that event is consumed.
4771  * Meaning, that sequential reads will keep returning a different event,
4772  * and eventually empty the ring buffer if the producer is slower.
4773  */
4774 struct ring_buffer_event *
4775 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4776 		    unsigned long *lost_events)
4777 {
4778 	struct ring_buffer_per_cpu *cpu_buffer;
4779 	struct ring_buffer_event *event = NULL;
4780 	unsigned long flags;
4781 	bool dolock;
4782 
4783  again:
4784 	/* might be called in atomic */
4785 	preempt_disable();
4786 
4787 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4788 		goto out;
4789 
4790 	cpu_buffer = buffer->buffers[cpu];
4791 	local_irq_save(flags);
4792 	dolock = rb_reader_lock(cpu_buffer);
4793 
4794 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4795 	if (event) {
4796 		cpu_buffer->lost_events = 0;
4797 		rb_advance_reader(cpu_buffer);
4798 	}
4799 
4800 	rb_reader_unlock(cpu_buffer, dolock);
4801 	local_irq_restore(flags);
4802 
4803  out:
4804 	preempt_enable();
4805 
4806 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4807 		goto again;
4808 
4809 	return event;
4810 }
4811 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4812 
4813 /**
4814  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4815  * @buffer: The ring buffer to read from
4816  * @cpu: The cpu buffer to iterate over
4817  * @flags: gfp flags to use for memory allocation
4818  *
4819  * This performs the initial preparations necessary to iterate
4820  * through the buffer.  Memory is allocated, buffer recording
4821  * is disabled, and the iterator pointer is returned to the caller.
4822  *
4823  * Disabling buffer recording prevents the reading from being
4824  * corrupted. This is not a consuming read, so a producer is not
4825  * expected.
4826  *
4827  * After a sequence of ring_buffer_read_prepare calls, the user is
4828  * expected to make at least one call to ring_buffer_read_prepare_sync.
4829  * Afterwards, ring_buffer_read_start is invoked to get things going
4830  * for real.
4831  *
4832  * This overall must be paired with ring_buffer_read_finish.
4833  */
4834 struct ring_buffer_iter *
4835 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4836 {
4837 	struct ring_buffer_per_cpu *cpu_buffer;
4838 	struct ring_buffer_iter *iter;
4839 
4840 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4841 		return NULL;
4842 
4843 	iter = kzalloc(sizeof(*iter), flags);
4844 	if (!iter)
4845 		return NULL;
4846 
4847 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4848 	if (!iter->event) {
4849 		kfree(iter);
4850 		return NULL;
4851 	}
4852 
4853 	cpu_buffer = buffer->buffers[cpu];
4854 
4855 	iter->cpu_buffer = cpu_buffer;
4856 
4857 	atomic_inc(&cpu_buffer->resize_disabled);
4858 
4859 	return iter;
4860 }
4861 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4862 
4863 /**
4864  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4865  *
4866  * All previously invoked ring_buffer_read_prepare calls to prepare
4867  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4868  * calls on those iterators are allowed.
4869  */
4870 void
4871 ring_buffer_read_prepare_sync(void)
4872 {
4873 	synchronize_rcu();
4874 }
4875 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4876 
4877 /**
4878  * ring_buffer_read_start - start a non consuming read of the buffer
4879  * @iter: The iterator returned by ring_buffer_read_prepare
4880  *
4881  * This finalizes the startup of an iteration through the buffer.
4882  * The iterator comes from a call to ring_buffer_read_prepare and
4883  * an intervening ring_buffer_read_prepare_sync must have been
4884  * performed.
4885  *
4886  * Must be paired with ring_buffer_read_finish.
4887  */
4888 void
4889 ring_buffer_read_start(struct ring_buffer_iter *iter)
4890 {
4891 	struct ring_buffer_per_cpu *cpu_buffer;
4892 	unsigned long flags;
4893 
4894 	if (!iter)
4895 		return;
4896 
4897 	cpu_buffer = iter->cpu_buffer;
4898 
4899 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4900 	arch_spin_lock(&cpu_buffer->lock);
4901 	rb_iter_reset(iter);
4902 	arch_spin_unlock(&cpu_buffer->lock);
4903 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4904 }
4905 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4906 
4907 /**
4908  * ring_buffer_read_finish - finish reading the iterator of the buffer
4909  * @iter: The iterator retrieved by ring_buffer_start
4910  *
4911  * This re-enables the recording to the buffer, and frees the
4912  * iterator.
4913  */
4914 void
4915 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4916 {
4917 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4918 	unsigned long flags;
4919 
4920 	/*
4921 	 * Ring buffer is disabled from recording, here's a good place
4922 	 * to check the integrity of the ring buffer.
4923 	 * Must prevent readers from trying to read, as the check
4924 	 * clears the HEAD page and readers require it.
4925 	 */
4926 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4927 	rb_check_pages(cpu_buffer);
4928 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4929 
4930 	atomic_dec(&cpu_buffer->resize_disabled);
4931 	kfree(iter->event);
4932 	kfree(iter);
4933 }
4934 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4935 
4936 /**
4937  * ring_buffer_iter_advance - advance the iterator to the next location
4938  * @iter: The ring buffer iterator
4939  *
4940  * Move the location of the iterator such that the next read will
4941  * be the next location of the iterator.
4942  */
4943 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4944 {
4945 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4946 	unsigned long flags;
4947 
4948 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4949 
4950 	rb_advance_iter(iter);
4951 
4952 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4953 }
4954 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4955 
4956 /**
4957  * ring_buffer_size - return the size of the ring buffer (in bytes)
4958  * @buffer: The ring buffer.
4959  * @cpu: The CPU to get ring buffer size from.
4960  */
4961 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4962 {
4963 	/*
4964 	 * Earlier, this method returned
4965 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4966 	 * Since the nr_pages field is now removed, we have converted this to
4967 	 * return the per cpu buffer value.
4968 	 */
4969 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4970 		return 0;
4971 
4972 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4973 }
4974 EXPORT_SYMBOL_GPL(ring_buffer_size);
4975 
4976 static void
4977 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4978 {
4979 	rb_head_page_deactivate(cpu_buffer);
4980 
4981 	cpu_buffer->head_page
4982 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4983 	local_set(&cpu_buffer->head_page->write, 0);
4984 	local_set(&cpu_buffer->head_page->entries, 0);
4985 	local_set(&cpu_buffer->head_page->page->commit, 0);
4986 
4987 	cpu_buffer->head_page->read = 0;
4988 
4989 	cpu_buffer->tail_page = cpu_buffer->head_page;
4990 	cpu_buffer->commit_page = cpu_buffer->head_page;
4991 
4992 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4993 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4994 	local_set(&cpu_buffer->reader_page->write, 0);
4995 	local_set(&cpu_buffer->reader_page->entries, 0);
4996 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4997 	cpu_buffer->reader_page->read = 0;
4998 
4999 	local_set(&cpu_buffer->entries_bytes, 0);
5000 	local_set(&cpu_buffer->overrun, 0);
5001 	local_set(&cpu_buffer->commit_overrun, 0);
5002 	local_set(&cpu_buffer->dropped_events, 0);
5003 	local_set(&cpu_buffer->entries, 0);
5004 	local_set(&cpu_buffer->committing, 0);
5005 	local_set(&cpu_buffer->commits, 0);
5006 	local_set(&cpu_buffer->pages_touched, 0);
5007 	local_set(&cpu_buffer->pages_read, 0);
5008 	cpu_buffer->last_pages_touch = 0;
5009 	cpu_buffer->shortest_full = 0;
5010 	cpu_buffer->read = 0;
5011 	cpu_buffer->read_bytes = 0;
5012 
5013 	rb_time_set(&cpu_buffer->write_stamp, 0);
5014 	rb_time_set(&cpu_buffer->before_stamp, 0);
5015 
5016 	cpu_buffer->lost_events = 0;
5017 	cpu_buffer->last_overrun = 0;
5018 
5019 	rb_head_page_activate(cpu_buffer);
5020 }
5021 
5022 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5023 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5024 {
5025 	unsigned long flags;
5026 
5027 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5028 
5029 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5030 		goto out;
5031 
5032 	arch_spin_lock(&cpu_buffer->lock);
5033 
5034 	rb_reset_cpu(cpu_buffer);
5035 
5036 	arch_spin_unlock(&cpu_buffer->lock);
5037 
5038  out:
5039 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5040 }
5041 
5042 /**
5043  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5044  * @buffer: The ring buffer to reset a per cpu buffer of
5045  * @cpu: The CPU buffer to be reset
5046  */
5047 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5048 {
5049 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5050 
5051 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5052 		return;
5053 
5054 	/* prevent another thread from changing buffer sizes */
5055 	mutex_lock(&buffer->mutex);
5056 
5057 	atomic_inc(&cpu_buffer->resize_disabled);
5058 	atomic_inc(&cpu_buffer->record_disabled);
5059 
5060 	/* Make sure all commits have finished */
5061 	synchronize_rcu();
5062 
5063 	reset_disabled_cpu_buffer(cpu_buffer);
5064 
5065 	atomic_dec(&cpu_buffer->record_disabled);
5066 	atomic_dec(&cpu_buffer->resize_disabled);
5067 
5068 	mutex_unlock(&buffer->mutex);
5069 }
5070 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5071 
5072 /**
5073  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5074  * @buffer: The ring buffer to reset a per cpu buffer of
5075  * @cpu: The CPU buffer to be reset
5076  */
5077 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5078 {
5079 	struct ring_buffer_per_cpu *cpu_buffer;
5080 	int cpu;
5081 
5082 	/* prevent another thread from changing buffer sizes */
5083 	mutex_lock(&buffer->mutex);
5084 
5085 	for_each_online_buffer_cpu(buffer, cpu) {
5086 		cpu_buffer = buffer->buffers[cpu];
5087 
5088 		atomic_inc(&cpu_buffer->resize_disabled);
5089 		atomic_inc(&cpu_buffer->record_disabled);
5090 	}
5091 
5092 	/* Make sure all commits have finished */
5093 	synchronize_rcu();
5094 
5095 	for_each_online_buffer_cpu(buffer, cpu) {
5096 		cpu_buffer = buffer->buffers[cpu];
5097 
5098 		reset_disabled_cpu_buffer(cpu_buffer);
5099 
5100 		atomic_dec(&cpu_buffer->record_disabled);
5101 		atomic_dec(&cpu_buffer->resize_disabled);
5102 	}
5103 
5104 	mutex_unlock(&buffer->mutex);
5105 }
5106 
5107 /**
5108  * ring_buffer_reset - reset a ring buffer
5109  * @buffer: The ring buffer to reset all cpu buffers
5110  */
5111 void ring_buffer_reset(struct trace_buffer *buffer)
5112 {
5113 	struct ring_buffer_per_cpu *cpu_buffer;
5114 	int cpu;
5115 
5116 	for_each_buffer_cpu(buffer, cpu) {
5117 		cpu_buffer = buffer->buffers[cpu];
5118 
5119 		atomic_inc(&cpu_buffer->resize_disabled);
5120 		atomic_inc(&cpu_buffer->record_disabled);
5121 	}
5122 
5123 	/* Make sure all commits have finished */
5124 	synchronize_rcu();
5125 
5126 	for_each_buffer_cpu(buffer, cpu) {
5127 		cpu_buffer = buffer->buffers[cpu];
5128 
5129 		reset_disabled_cpu_buffer(cpu_buffer);
5130 
5131 		atomic_dec(&cpu_buffer->record_disabled);
5132 		atomic_dec(&cpu_buffer->resize_disabled);
5133 	}
5134 }
5135 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5136 
5137 /**
5138  * rind_buffer_empty - is the ring buffer empty?
5139  * @buffer: The ring buffer to test
5140  */
5141 bool ring_buffer_empty(struct trace_buffer *buffer)
5142 {
5143 	struct ring_buffer_per_cpu *cpu_buffer;
5144 	unsigned long flags;
5145 	bool dolock;
5146 	int cpu;
5147 	int ret;
5148 
5149 	/* yes this is racy, but if you don't like the race, lock the buffer */
5150 	for_each_buffer_cpu(buffer, cpu) {
5151 		cpu_buffer = buffer->buffers[cpu];
5152 		local_irq_save(flags);
5153 		dolock = rb_reader_lock(cpu_buffer);
5154 		ret = rb_per_cpu_empty(cpu_buffer);
5155 		rb_reader_unlock(cpu_buffer, dolock);
5156 		local_irq_restore(flags);
5157 
5158 		if (!ret)
5159 			return false;
5160 	}
5161 
5162 	return true;
5163 }
5164 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5165 
5166 /**
5167  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5168  * @buffer: The ring buffer
5169  * @cpu: The CPU buffer to test
5170  */
5171 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5172 {
5173 	struct ring_buffer_per_cpu *cpu_buffer;
5174 	unsigned long flags;
5175 	bool dolock;
5176 	int ret;
5177 
5178 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5179 		return true;
5180 
5181 	cpu_buffer = buffer->buffers[cpu];
5182 	local_irq_save(flags);
5183 	dolock = rb_reader_lock(cpu_buffer);
5184 	ret = rb_per_cpu_empty(cpu_buffer);
5185 	rb_reader_unlock(cpu_buffer, dolock);
5186 	local_irq_restore(flags);
5187 
5188 	return ret;
5189 }
5190 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5191 
5192 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5193 /**
5194  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5195  * @buffer_a: One buffer to swap with
5196  * @buffer_b: The other buffer to swap with
5197  * @cpu: the CPU of the buffers to swap
5198  *
5199  * This function is useful for tracers that want to take a "snapshot"
5200  * of a CPU buffer and has another back up buffer lying around.
5201  * it is expected that the tracer handles the cpu buffer not being
5202  * used at the moment.
5203  */
5204 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5205 			 struct trace_buffer *buffer_b, int cpu)
5206 {
5207 	struct ring_buffer_per_cpu *cpu_buffer_a;
5208 	struct ring_buffer_per_cpu *cpu_buffer_b;
5209 	int ret = -EINVAL;
5210 
5211 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5212 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5213 		goto out;
5214 
5215 	cpu_buffer_a = buffer_a->buffers[cpu];
5216 	cpu_buffer_b = buffer_b->buffers[cpu];
5217 
5218 	/* At least make sure the two buffers are somewhat the same */
5219 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5220 		goto out;
5221 
5222 	ret = -EAGAIN;
5223 
5224 	if (atomic_read(&buffer_a->record_disabled))
5225 		goto out;
5226 
5227 	if (atomic_read(&buffer_b->record_disabled))
5228 		goto out;
5229 
5230 	if (atomic_read(&cpu_buffer_a->record_disabled))
5231 		goto out;
5232 
5233 	if (atomic_read(&cpu_buffer_b->record_disabled))
5234 		goto out;
5235 
5236 	/*
5237 	 * We can't do a synchronize_rcu here because this
5238 	 * function can be called in atomic context.
5239 	 * Normally this will be called from the same CPU as cpu.
5240 	 * If not it's up to the caller to protect this.
5241 	 */
5242 	atomic_inc(&cpu_buffer_a->record_disabled);
5243 	atomic_inc(&cpu_buffer_b->record_disabled);
5244 
5245 	ret = -EBUSY;
5246 	if (local_read(&cpu_buffer_a->committing))
5247 		goto out_dec;
5248 	if (local_read(&cpu_buffer_b->committing))
5249 		goto out_dec;
5250 
5251 	buffer_a->buffers[cpu] = cpu_buffer_b;
5252 	buffer_b->buffers[cpu] = cpu_buffer_a;
5253 
5254 	cpu_buffer_b->buffer = buffer_a;
5255 	cpu_buffer_a->buffer = buffer_b;
5256 
5257 	ret = 0;
5258 
5259 out_dec:
5260 	atomic_dec(&cpu_buffer_a->record_disabled);
5261 	atomic_dec(&cpu_buffer_b->record_disabled);
5262 out:
5263 	return ret;
5264 }
5265 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5266 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5267 
5268 /**
5269  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5270  * @buffer: the buffer to allocate for.
5271  * @cpu: the cpu buffer to allocate.
5272  *
5273  * This function is used in conjunction with ring_buffer_read_page.
5274  * When reading a full page from the ring buffer, these functions
5275  * can be used to speed up the process. The calling function should
5276  * allocate a few pages first with this function. Then when it
5277  * needs to get pages from the ring buffer, it passes the result
5278  * of this function into ring_buffer_read_page, which will swap
5279  * the page that was allocated, with the read page of the buffer.
5280  *
5281  * Returns:
5282  *  The page allocated, or ERR_PTR
5283  */
5284 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5285 {
5286 	struct ring_buffer_per_cpu *cpu_buffer;
5287 	struct buffer_data_page *bpage = NULL;
5288 	unsigned long flags;
5289 	struct page *page;
5290 
5291 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5292 		return ERR_PTR(-ENODEV);
5293 
5294 	cpu_buffer = buffer->buffers[cpu];
5295 	local_irq_save(flags);
5296 	arch_spin_lock(&cpu_buffer->lock);
5297 
5298 	if (cpu_buffer->free_page) {
5299 		bpage = cpu_buffer->free_page;
5300 		cpu_buffer->free_page = NULL;
5301 	}
5302 
5303 	arch_spin_unlock(&cpu_buffer->lock);
5304 	local_irq_restore(flags);
5305 
5306 	if (bpage)
5307 		goto out;
5308 
5309 	page = alloc_pages_node(cpu_to_node(cpu),
5310 				GFP_KERNEL | __GFP_NORETRY, 0);
5311 	if (!page)
5312 		return ERR_PTR(-ENOMEM);
5313 
5314 	bpage = page_address(page);
5315 
5316  out:
5317 	rb_init_page(bpage);
5318 
5319 	return bpage;
5320 }
5321 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5322 
5323 /**
5324  * ring_buffer_free_read_page - free an allocated read page
5325  * @buffer: the buffer the page was allocate for
5326  * @cpu: the cpu buffer the page came from
5327  * @data: the page to free
5328  *
5329  * Free a page allocated from ring_buffer_alloc_read_page.
5330  */
5331 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5332 {
5333 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5334 	struct buffer_data_page *bpage = data;
5335 	struct page *page = virt_to_page(bpage);
5336 	unsigned long flags;
5337 
5338 	/* If the page is still in use someplace else, we can't reuse it */
5339 	if (page_ref_count(page) > 1)
5340 		goto out;
5341 
5342 	local_irq_save(flags);
5343 	arch_spin_lock(&cpu_buffer->lock);
5344 
5345 	if (!cpu_buffer->free_page) {
5346 		cpu_buffer->free_page = bpage;
5347 		bpage = NULL;
5348 	}
5349 
5350 	arch_spin_unlock(&cpu_buffer->lock);
5351 	local_irq_restore(flags);
5352 
5353  out:
5354 	free_page((unsigned long)bpage);
5355 }
5356 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5357 
5358 /**
5359  * ring_buffer_read_page - extract a page from the ring buffer
5360  * @buffer: buffer to extract from
5361  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5362  * @len: amount to extract
5363  * @cpu: the cpu of the buffer to extract
5364  * @full: should the extraction only happen when the page is full.
5365  *
5366  * This function will pull out a page from the ring buffer and consume it.
5367  * @data_page must be the address of the variable that was returned
5368  * from ring_buffer_alloc_read_page. This is because the page might be used
5369  * to swap with a page in the ring buffer.
5370  *
5371  * for example:
5372  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5373  *	if (IS_ERR(rpage))
5374  *		return PTR_ERR(rpage);
5375  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5376  *	if (ret >= 0)
5377  *		process_page(rpage, ret);
5378  *
5379  * When @full is set, the function will not return true unless
5380  * the writer is off the reader page.
5381  *
5382  * Note: it is up to the calling functions to handle sleeps and wakeups.
5383  *  The ring buffer can be used anywhere in the kernel and can not
5384  *  blindly call wake_up. The layer that uses the ring buffer must be
5385  *  responsible for that.
5386  *
5387  * Returns:
5388  *  >=0 if data has been transferred, returns the offset of consumed data.
5389  *  <0 if no data has been transferred.
5390  */
5391 int ring_buffer_read_page(struct trace_buffer *buffer,
5392 			  void **data_page, size_t len, int cpu, int full)
5393 {
5394 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5395 	struct ring_buffer_event *event;
5396 	struct buffer_data_page *bpage;
5397 	struct buffer_page *reader;
5398 	unsigned long missed_events;
5399 	unsigned long flags;
5400 	unsigned int commit;
5401 	unsigned int read;
5402 	u64 save_timestamp;
5403 	int ret = -1;
5404 
5405 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5406 		goto out;
5407 
5408 	/*
5409 	 * If len is not big enough to hold the page header, then
5410 	 * we can not copy anything.
5411 	 */
5412 	if (len <= BUF_PAGE_HDR_SIZE)
5413 		goto out;
5414 
5415 	len -= BUF_PAGE_HDR_SIZE;
5416 
5417 	if (!data_page)
5418 		goto out;
5419 
5420 	bpage = *data_page;
5421 	if (!bpage)
5422 		goto out;
5423 
5424 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5425 
5426 	reader = rb_get_reader_page(cpu_buffer);
5427 	if (!reader)
5428 		goto out_unlock;
5429 
5430 	event = rb_reader_event(cpu_buffer);
5431 
5432 	read = reader->read;
5433 	commit = rb_page_commit(reader);
5434 
5435 	/* Check if any events were dropped */
5436 	missed_events = cpu_buffer->lost_events;
5437 
5438 	/*
5439 	 * If this page has been partially read or
5440 	 * if len is not big enough to read the rest of the page or
5441 	 * a writer is still on the page, then
5442 	 * we must copy the data from the page to the buffer.
5443 	 * Otherwise, we can simply swap the page with the one passed in.
5444 	 */
5445 	if (read || (len < (commit - read)) ||
5446 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5447 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5448 		unsigned int rpos = read;
5449 		unsigned int pos = 0;
5450 		unsigned int size;
5451 
5452 		if (full)
5453 			goto out_unlock;
5454 
5455 		if (len > (commit - read))
5456 			len = (commit - read);
5457 
5458 		/* Always keep the time extend and data together */
5459 		size = rb_event_ts_length(event);
5460 
5461 		if (len < size)
5462 			goto out_unlock;
5463 
5464 		/* save the current timestamp, since the user will need it */
5465 		save_timestamp = cpu_buffer->read_stamp;
5466 
5467 		/* Need to copy one event at a time */
5468 		do {
5469 			/* We need the size of one event, because
5470 			 * rb_advance_reader only advances by one event,
5471 			 * whereas rb_event_ts_length may include the size of
5472 			 * one or two events.
5473 			 * We have already ensured there's enough space if this
5474 			 * is a time extend. */
5475 			size = rb_event_length(event);
5476 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5477 
5478 			len -= size;
5479 
5480 			rb_advance_reader(cpu_buffer);
5481 			rpos = reader->read;
5482 			pos += size;
5483 
5484 			if (rpos >= commit)
5485 				break;
5486 
5487 			event = rb_reader_event(cpu_buffer);
5488 			/* Always keep the time extend and data together */
5489 			size = rb_event_ts_length(event);
5490 		} while (len >= size);
5491 
5492 		/* update bpage */
5493 		local_set(&bpage->commit, pos);
5494 		bpage->time_stamp = save_timestamp;
5495 
5496 		/* we copied everything to the beginning */
5497 		read = 0;
5498 	} else {
5499 		/* update the entry counter */
5500 		cpu_buffer->read += rb_page_entries(reader);
5501 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5502 
5503 		/* swap the pages */
5504 		rb_init_page(bpage);
5505 		bpage = reader->page;
5506 		reader->page = *data_page;
5507 		local_set(&reader->write, 0);
5508 		local_set(&reader->entries, 0);
5509 		reader->read = 0;
5510 		*data_page = bpage;
5511 
5512 		/*
5513 		 * Use the real_end for the data size,
5514 		 * This gives us a chance to store the lost events
5515 		 * on the page.
5516 		 */
5517 		if (reader->real_end)
5518 			local_set(&bpage->commit, reader->real_end);
5519 	}
5520 	ret = read;
5521 
5522 	cpu_buffer->lost_events = 0;
5523 
5524 	commit = local_read(&bpage->commit);
5525 	/*
5526 	 * Set a flag in the commit field if we lost events
5527 	 */
5528 	if (missed_events) {
5529 		/* If there is room at the end of the page to save the
5530 		 * missed events, then record it there.
5531 		 */
5532 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5533 			memcpy(&bpage->data[commit], &missed_events,
5534 			       sizeof(missed_events));
5535 			local_add(RB_MISSED_STORED, &bpage->commit);
5536 			commit += sizeof(missed_events);
5537 		}
5538 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5539 	}
5540 
5541 	/*
5542 	 * This page may be off to user land. Zero it out here.
5543 	 */
5544 	if (commit < BUF_PAGE_SIZE)
5545 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5546 
5547  out_unlock:
5548 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5549 
5550  out:
5551 	return ret;
5552 }
5553 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5554 
5555 /*
5556  * We only allocate new buffers, never free them if the CPU goes down.
5557  * If we were to free the buffer, then the user would lose any trace that was in
5558  * the buffer.
5559  */
5560 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5561 {
5562 	struct trace_buffer *buffer;
5563 	long nr_pages_same;
5564 	int cpu_i;
5565 	unsigned long nr_pages;
5566 
5567 	buffer = container_of(node, struct trace_buffer, node);
5568 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5569 		return 0;
5570 
5571 	nr_pages = 0;
5572 	nr_pages_same = 1;
5573 	/* check if all cpu sizes are same */
5574 	for_each_buffer_cpu(buffer, cpu_i) {
5575 		/* fill in the size from first enabled cpu */
5576 		if (nr_pages == 0)
5577 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5578 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5579 			nr_pages_same = 0;
5580 			break;
5581 		}
5582 	}
5583 	/* allocate minimum pages, user can later expand it */
5584 	if (!nr_pages_same)
5585 		nr_pages = 2;
5586 	buffer->buffers[cpu] =
5587 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5588 	if (!buffer->buffers[cpu]) {
5589 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5590 		     cpu);
5591 		return -ENOMEM;
5592 	}
5593 	smp_wmb();
5594 	cpumask_set_cpu(cpu, buffer->cpumask);
5595 	return 0;
5596 }
5597 
5598 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5599 /*
5600  * This is a basic integrity check of the ring buffer.
5601  * Late in the boot cycle this test will run when configured in.
5602  * It will kick off a thread per CPU that will go into a loop
5603  * writing to the per cpu ring buffer various sizes of data.
5604  * Some of the data will be large items, some small.
5605  *
5606  * Another thread is created that goes into a spin, sending out
5607  * IPIs to the other CPUs to also write into the ring buffer.
5608  * this is to test the nesting ability of the buffer.
5609  *
5610  * Basic stats are recorded and reported. If something in the
5611  * ring buffer should happen that's not expected, a big warning
5612  * is displayed and all ring buffers are disabled.
5613  */
5614 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5615 
5616 struct rb_test_data {
5617 	struct trace_buffer *buffer;
5618 	unsigned long		events;
5619 	unsigned long		bytes_written;
5620 	unsigned long		bytes_alloc;
5621 	unsigned long		bytes_dropped;
5622 	unsigned long		events_nested;
5623 	unsigned long		bytes_written_nested;
5624 	unsigned long		bytes_alloc_nested;
5625 	unsigned long		bytes_dropped_nested;
5626 	int			min_size_nested;
5627 	int			max_size_nested;
5628 	int			max_size;
5629 	int			min_size;
5630 	int			cpu;
5631 	int			cnt;
5632 };
5633 
5634 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5635 
5636 /* 1 meg per cpu */
5637 #define RB_TEST_BUFFER_SIZE	1048576
5638 
5639 static char rb_string[] __initdata =
5640 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5641 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5642 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5643 
5644 static bool rb_test_started __initdata;
5645 
5646 struct rb_item {
5647 	int size;
5648 	char str[];
5649 };
5650 
5651 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5652 {
5653 	struct ring_buffer_event *event;
5654 	struct rb_item *item;
5655 	bool started;
5656 	int event_len;
5657 	int size;
5658 	int len;
5659 	int cnt;
5660 
5661 	/* Have nested writes different that what is written */
5662 	cnt = data->cnt + (nested ? 27 : 0);
5663 
5664 	/* Multiply cnt by ~e, to make some unique increment */
5665 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5666 
5667 	len = size + sizeof(struct rb_item);
5668 
5669 	started = rb_test_started;
5670 	/* read rb_test_started before checking buffer enabled */
5671 	smp_rmb();
5672 
5673 	event = ring_buffer_lock_reserve(data->buffer, len);
5674 	if (!event) {
5675 		/* Ignore dropped events before test starts. */
5676 		if (started) {
5677 			if (nested)
5678 				data->bytes_dropped += len;
5679 			else
5680 				data->bytes_dropped_nested += len;
5681 		}
5682 		return len;
5683 	}
5684 
5685 	event_len = ring_buffer_event_length(event);
5686 
5687 	if (RB_WARN_ON(data->buffer, event_len < len))
5688 		goto out;
5689 
5690 	item = ring_buffer_event_data(event);
5691 	item->size = size;
5692 	memcpy(item->str, rb_string, size);
5693 
5694 	if (nested) {
5695 		data->bytes_alloc_nested += event_len;
5696 		data->bytes_written_nested += len;
5697 		data->events_nested++;
5698 		if (!data->min_size_nested || len < data->min_size_nested)
5699 			data->min_size_nested = len;
5700 		if (len > data->max_size_nested)
5701 			data->max_size_nested = len;
5702 	} else {
5703 		data->bytes_alloc += event_len;
5704 		data->bytes_written += len;
5705 		data->events++;
5706 		if (!data->min_size || len < data->min_size)
5707 			data->max_size = len;
5708 		if (len > data->max_size)
5709 			data->max_size = len;
5710 	}
5711 
5712  out:
5713 	ring_buffer_unlock_commit(data->buffer, event);
5714 
5715 	return 0;
5716 }
5717 
5718 static __init int rb_test(void *arg)
5719 {
5720 	struct rb_test_data *data = arg;
5721 
5722 	while (!kthread_should_stop()) {
5723 		rb_write_something(data, false);
5724 		data->cnt++;
5725 
5726 		set_current_state(TASK_INTERRUPTIBLE);
5727 		/* Now sleep between a min of 100-300us and a max of 1ms */
5728 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5729 	}
5730 
5731 	return 0;
5732 }
5733 
5734 static __init void rb_ipi(void *ignore)
5735 {
5736 	struct rb_test_data *data;
5737 	int cpu = smp_processor_id();
5738 
5739 	data = &rb_data[cpu];
5740 	rb_write_something(data, true);
5741 }
5742 
5743 static __init int rb_hammer_test(void *arg)
5744 {
5745 	while (!kthread_should_stop()) {
5746 
5747 		/* Send an IPI to all cpus to write data! */
5748 		smp_call_function(rb_ipi, NULL, 1);
5749 		/* No sleep, but for non preempt, let others run */
5750 		schedule();
5751 	}
5752 
5753 	return 0;
5754 }
5755 
5756 static __init int test_ringbuffer(void)
5757 {
5758 	struct task_struct *rb_hammer;
5759 	struct trace_buffer *buffer;
5760 	int cpu;
5761 	int ret = 0;
5762 
5763 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5764 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5765 		return 0;
5766 	}
5767 
5768 	pr_info("Running ring buffer tests...\n");
5769 
5770 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5771 	if (WARN_ON(!buffer))
5772 		return 0;
5773 
5774 	/* Disable buffer so that threads can't write to it yet */
5775 	ring_buffer_record_off(buffer);
5776 
5777 	for_each_online_cpu(cpu) {
5778 		rb_data[cpu].buffer = buffer;
5779 		rb_data[cpu].cpu = cpu;
5780 		rb_data[cpu].cnt = cpu;
5781 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5782 						 "rbtester/%d", cpu);
5783 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5784 			pr_cont("FAILED\n");
5785 			ret = PTR_ERR(rb_threads[cpu]);
5786 			goto out_free;
5787 		}
5788 
5789 		kthread_bind(rb_threads[cpu], cpu);
5790  		wake_up_process(rb_threads[cpu]);
5791 	}
5792 
5793 	/* Now create the rb hammer! */
5794 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5795 	if (WARN_ON(IS_ERR(rb_hammer))) {
5796 		pr_cont("FAILED\n");
5797 		ret = PTR_ERR(rb_hammer);
5798 		goto out_free;
5799 	}
5800 
5801 	ring_buffer_record_on(buffer);
5802 	/*
5803 	 * Show buffer is enabled before setting rb_test_started.
5804 	 * Yes there's a small race window where events could be
5805 	 * dropped and the thread wont catch it. But when a ring
5806 	 * buffer gets enabled, there will always be some kind of
5807 	 * delay before other CPUs see it. Thus, we don't care about
5808 	 * those dropped events. We care about events dropped after
5809 	 * the threads see that the buffer is active.
5810 	 */
5811 	smp_wmb();
5812 	rb_test_started = true;
5813 
5814 	set_current_state(TASK_INTERRUPTIBLE);
5815 	/* Just run for 10 seconds */;
5816 	schedule_timeout(10 * HZ);
5817 
5818 	kthread_stop(rb_hammer);
5819 
5820  out_free:
5821 	for_each_online_cpu(cpu) {
5822 		if (!rb_threads[cpu])
5823 			break;
5824 		kthread_stop(rb_threads[cpu]);
5825 	}
5826 	if (ret) {
5827 		ring_buffer_free(buffer);
5828 		return ret;
5829 	}
5830 
5831 	/* Report! */
5832 	pr_info("finished\n");
5833 	for_each_online_cpu(cpu) {
5834 		struct ring_buffer_event *event;
5835 		struct rb_test_data *data = &rb_data[cpu];
5836 		struct rb_item *item;
5837 		unsigned long total_events;
5838 		unsigned long total_dropped;
5839 		unsigned long total_written;
5840 		unsigned long total_alloc;
5841 		unsigned long total_read = 0;
5842 		unsigned long total_size = 0;
5843 		unsigned long total_len = 0;
5844 		unsigned long total_lost = 0;
5845 		unsigned long lost;
5846 		int big_event_size;
5847 		int small_event_size;
5848 
5849 		ret = -1;
5850 
5851 		total_events = data->events + data->events_nested;
5852 		total_written = data->bytes_written + data->bytes_written_nested;
5853 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5854 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5855 
5856 		big_event_size = data->max_size + data->max_size_nested;
5857 		small_event_size = data->min_size + data->min_size_nested;
5858 
5859 		pr_info("CPU %d:\n", cpu);
5860 		pr_info("              events:    %ld\n", total_events);
5861 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5862 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5863 		pr_info("       written bytes:    %ld\n", total_written);
5864 		pr_info("       biggest event:    %d\n", big_event_size);
5865 		pr_info("      smallest event:    %d\n", small_event_size);
5866 
5867 		if (RB_WARN_ON(buffer, total_dropped))
5868 			break;
5869 
5870 		ret = 0;
5871 
5872 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5873 			total_lost += lost;
5874 			item = ring_buffer_event_data(event);
5875 			total_len += ring_buffer_event_length(event);
5876 			total_size += item->size + sizeof(struct rb_item);
5877 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5878 				pr_info("FAILED!\n");
5879 				pr_info("buffer had: %.*s\n", item->size, item->str);
5880 				pr_info("expected:   %.*s\n", item->size, rb_string);
5881 				RB_WARN_ON(buffer, 1);
5882 				ret = -1;
5883 				break;
5884 			}
5885 			total_read++;
5886 		}
5887 		if (ret)
5888 			break;
5889 
5890 		ret = -1;
5891 
5892 		pr_info("         read events:   %ld\n", total_read);
5893 		pr_info("         lost events:   %ld\n", total_lost);
5894 		pr_info("        total events:   %ld\n", total_lost + total_read);
5895 		pr_info("  recorded len bytes:   %ld\n", total_len);
5896 		pr_info(" recorded size bytes:   %ld\n", total_size);
5897 		if (total_lost)
5898 			pr_info(" With dropped events, record len and size may not match\n"
5899 				" alloced and written from above\n");
5900 		if (!total_lost) {
5901 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5902 				       total_size != total_written))
5903 				break;
5904 		}
5905 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5906 			break;
5907 
5908 		ret = 0;
5909 	}
5910 	if (!ret)
5911 		pr_info("Ring buffer PASSED!\n");
5912 
5913 	ring_buffer_free(buffer);
5914 	return 0;
5915 }
5916 
5917 late_initcall(test_ringbuffer);
5918 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5919