1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local64.h> 31 #include <asm/local.h> 32 33 /* 34 * The "absolute" timestamp in the buffer is only 59 bits. 35 * If a clock has the 5 MSBs set, it needs to be saved and 36 * reinserted. 37 */ 38 #define TS_MSB (0xf8ULL << 56) 39 #define ABS_TS_MASK (~TS_MSB) 40 41 static void update_pages_handler(struct work_struct *work); 42 43 /* 44 * The ring buffer header is special. We must manually up keep it. 45 */ 46 int ring_buffer_print_entry_header(struct trace_seq *s) 47 { 48 trace_seq_puts(s, "# compressed entry header\n"); 49 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 50 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 51 trace_seq_puts(s, "\tarray : 32 bits\n"); 52 trace_seq_putc(s, '\n'); 53 trace_seq_printf(s, "\tpadding : type == %d\n", 54 RINGBUF_TYPE_PADDING); 55 trace_seq_printf(s, "\ttime_extend : type == %d\n", 56 RINGBUF_TYPE_TIME_EXTEND); 57 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 58 RINGBUF_TYPE_TIME_STAMP); 59 trace_seq_printf(s, "\tdata max type_len == %d\n", 60 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 61 62 return !trace_seq_has_overflowed(s); 63 } 64 65 /* 66 * The ring buffer is made up of a list of pages. A separate list of pages is 67 * allocated for each CPU. A writer may only write to a buffer that is 68 * associated with the CPU it is currently executing on. A reader may read 69 * from any per cpu buffer. 70 * 71 * The reader is special. For each per cpu buffer, the reader has its own 72 * reader page. When a reader has read the entire reader page, this reader 73 * page is swapped with another page in the ring buffer. 74 * 75 * Now, as long as the writer is off the reader page, the reader can do what 76 * ever it wants with that page. The writer will never write to that page 77 * again (as long as it is out of the ring buffer). 78 * 79 * Here's some silly ASCII art. 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page | 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * | |-->| |-->| | 97 * +---+ +---+ +---+ 98 * ^ | 99 * | | 100 * +---------------+ 101 * 102 * 103 * +------+ 104 * |reader| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | |-->| |-->| | 108 * | +---+ +---+ +---+ 109 * | | 110 * | | 111 * +------------------------------+ 112 * 113 * 114 * +------+ 115 * |buffer| RING BUFFER 116 * |page |------------------v 117 * +------+ +---+ +---+ +---+ 118 * ^ | | | |-->| | 119 * | New +---+ +---+ +---+ 120 * | Reader------^ | 121 * | page | 122 * +------------------------------+ 123 * 124 * 125 * After we make this swap, the reader can hand this page off to the splice 126 * code and be done with it. It can even allocate a new page if it needs to 127 * and swap that into the ring buffer. 128 * 129 * We will be using cmpxchg soon to make all this lockless. 130 * 131 */ 132 133 /* Used for individual buffers (after the counter) */ 134 #define RB_BUFFER_OFF (1 << 20) 135 136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 137 138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 139 #define RB_ALIGNMENT 4U 140 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 141 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 142 143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 144 # define RB_FORCE_8BYTE_ALIGNMENT 0 145 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 146 #else 147 # define RB_FORCE_8BYTE_ALIGNMENT 1 148 # define RB_ARCH_ALIGNMENT 8U 149 #endif 150 151 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 152 153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 155 156 enum { 157 RB_LEN_TIME_EXTEND = 8, 158 RB_LEN_TIME_STAMP = 8, 159 }; 160 161 #define skip_time_extend(event) \ 162 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 163 164 #define extended_time(event) \ 165 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 166 167 static inline bool rb_null_event(struct ring_buffer_event *event) 168 { 169 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 170 } 171 172 static void rb_event_set_padding(struct ring_buffer_event *event) 173 { 174 /* padding has a NULL time_delta */ 175 event->type_len = RINGBUF_TYPE_PADDING; 176 event->time_delta = 0; 177 } 178 179 static unsigned 180 rb_event_data_length(struct ring_buffer_event *event) 181 { 182 unsigned length; 183 184 if (event->type_len) 185 length = event->type_len * RB_ALIGNMENT; 186 else 187 length = event->array[0]; 188 return length + RB_EVNT_HDR_SIZE; 189 } 190 191 /* 192 * Return the length of the given event. Will return 193 * the length of the time extend if the event is a 194 * time extend. 195 */ 196 static inline unsigned 197 rb_event_length(struct ring_buffer_event *event) 198 { 199 switch (event->type_len) { 200 case RINGBUF_TYPE_PADDING: 201 if (rb_null_event(event)) 202 /* undefined */ 203 return -1; 204 return event->array[0] + RB_EVNT_HDR_SIZE; 205 206 case RINGBUF_TYPE_TIME_EXTEND: 207 return RB_LEN_TIME_EXTEND; 208 209 case RINGBUF_TYPE_TIME_STAMP: 210 return RB_LEN_TIME_STAMP; 211 212 case RINGBUF_TYPE_DATA: 213 return rb_event_data_length(event); 214 default: 215 WARN_ON_ONCE(1); 216 } 217 /* not hit */ 218 return 0; 219 } 220 221 /* 222 * Return total length of time extend and data, 223 * or just the event length for all other events. 224 */ 225 static inline unsigned 226 rb_event_ts_length(struct ring_buffer_event *event) 227 { 228 unsigned len = 0; 229 230 if (extended_time(event)) { 231 /* time extends include the data event after it */ 232 len = RB_LEN_TIME_EXTEND; 233 event = skip_time_extend(event); 234 } 235 return len + rb_event_length(event); 236 } 237 238 /** 239 * ring_buffer_event_length - return the length of the event 240 * @event: the event to get the length of 241 * 242 * Returns the size of the data load of a data event. 243 * If the event is something other than a data event, it 244 * returns the size of the event itself. With the exception 245 * of a TIME EXTEND, where it still returns the size of the 246 * data load of the data event after it. 247 */ 248 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 249 { 250 unsigned length; 251 252 if (extended_time(event)) 253 event = skip_time_extend(event); 254 255 length = rb_event_length(event); 256 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 257 return length; 258 length -= RB_EVNT_HDR_SIZE; 259 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 260 length -= sizeof(event->array[0]); 261 return length; 262 } 263 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 264 265 /* inline for ring buffer fast paths */ 266 static __always_inline void * 267 rb_event_data(struct ring_buffer_event *event) 268 { 269 if (extended_time(event)) 270 event = skip_time_extend(event); 271 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 272 /* If length is in len field, then array[0] has the data */ 273 if (event->type_len) 274 return (void *)&event->array[0]; 275 /* Otherwise length is in array[0] and array[1] has the data */ 276 return (void *)&event->array[1]; 277 } 278 279 /** 280 * ring_buffer_event_data - return the data of the event 281 * @event: the event to get the data from 282 */ 283 void *ring_buffer_event_data(struct ring_buffer_event *event) 284 { 285 return rb_event_data(event); 286 } 287 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 288 289 #define for_each_buffer_cpu(buffer, cpu) \ 290 for_each_cpu(cpu, buffer->cpumask) 291 292 #define for_each_online_buffer_cpu(buffer, cpu) \ 293 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 294 295 #define TS_SHIFT 27 296 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 297 #define TS_DELTA_TEST (~TS_MASK) 298 299 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 300 { 301 u64 ts; 302 303 ts = event->array[0]; 304 ts <<= TS_SHIFT; 305 ts += event->time_delta; 306 307 return ts; 308 } 309 310 /* Flag when events were overwritten */ 311 #define RB_MISSED_EVENTS (1 << 31) 312 /* Missed count stored at end */ 313 #define RB_MISSED_STORED (1 << 30) 314 315 struct buffer_data_page { 316 u64 time_stamp; /* page time stamp */ 317 local_t commit; /* write committed index */ 318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 319 }; 320 321 struct buffer_data_read_page { 322 unsigned order; /* order of the page */ 323 struct buffer_data_page *data; /* actual data, stored in this page */ 324 }; 325 326 /* 327 * Note, the buffer_page list must be first. The buffer pages 328 * are allocated in cache lines, which means that each buffer 329 * page will be at the beginning of a cache line, and thus 330 * the least significant bits will be zero. We use this to 331 * add flags in the list struct pointers, to make the ring buffer 332 * lockless. 333 */ 334 struct buffer_page { 335 struct list_head list; /* list of buffer pages */ 336 local_t write; /* index for next write */ 337 unsigned read; /* index for next read */ 338 local_t entries; /* entries on this page */ 339 unsigned long real_end; /* real end of data */ 340 unsigned order; /* order of the page */ 341 struct buffer_data_page *page; /* Actual data page */ 342 }; 343 344 /* 345 * The buffer page counters, write and entries, must be reset 346 * atomically when crossing page boundaries. To synchronize this 347 * update, two counters are inserted into the number. One is 348 * the actual counter for the write position or count on the page. 349 * 350 * The other is a counter of updaters. Before an update happens 351 * the update partition of the counter is incremented. This will 352 * allow the updater to update the counter atomically. 353 * 354 * The counter is 20 bits, and the state data is 12. 355 */ 356 #define RB_WRITE_MASK 0xfffff 357 #define RB_WRITE_INTCNT (1 << 20) 358 359 static void rb_init_page(struct buffer_data_page *bpage) 360 { 361 local_set(&bpage->commit, 0); 362 } 363 364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 365 { 366 return local_read(&bpage->page->commit); 367 } 368 369 static void free_buffer_page(struct buffer_page *bpage) 370 { 371 free_pages((unsigned long)bpage->page, bpage->order); 372 kfree(bpage); 373 } 374 375 /* 376 * We need to fit the time_stamp delta into 27 bits. 377 */ 378 static inline bool test_time_stamp(u64 delta) 379 { 380 return !!(delta & TS_DELTA_TEST); 381 } 382 383 struct rb_irq_work { 384 struct irq_work work; 385 wait_queue_head_t waiters; 386 wait_queue_head_t full_waiters; 387 bool waiters_pending; 388 bool full_waiters_pending; 389 bool wakeup_full; 390 }; 391 392 /* 393 * Structure to hold event state and handle nested events. 394 */ 395 struct rb_event_info { 396 u64 ts; 397 u64 delta; 398 u64 before; 399 u64 after; 400 unsigned long length; 401 struct buffer_page *tail_page; 402 int add_timestamp; 403 }; 404 405 /* 406 * Used for the add_timestamp 407 * NONE 408 * EXTEND - wants a time extend 409 * ABSOLUTE - the buffer requests all events to have absolute time stamps 410 * FORCE - force a full time stamp. 411 */ 412 enum { 413 RB_ADD_STAMP_NONE = 0, 414 RB_ADD_STAMP_EXTEND = BIT(1), 415 RB_ADD_STAMP_ABSOLUTE = BIT(2), 416 RB_ADD_STAMP_FORCE = BIT(3) 417 }; 418 /* 419 * Used for which event context the event is in. 420 * TRANSITION = 0 421 * NMI = 1 422 * IRQ = 2 423 * SOFTIRQ = 3 424 * NORMAL = 4 425 * 426 * See trace_recursive_lock() comment below for more details. 427 */ 428 enum { 429 RB_CTX_TRANSITION, 430 RB_CTX_NMI, 431 RB_CTX_IRQ, 432 RB_CTX_SOFTIRQ, 433 RB_CTX_NORMAL, 434 RB_CTX_MAX 435 }; 436 437 struct rb_time_struct { 438 local64_t time; 439 }; 440 typedef struct rb_time_struct rb_time_t; 441 442 #define MAX_NEST 5 443 444 /* 445 * head_page == tail_page && head == tail then buffer is empty. 446 */ 447 struct ring_buffer_per_cpu { 448 int cpu; 449 atomic_t record_disabled; 450 atomic_t resize_disabled; 451 struct trace_buffer *buffer; 452 raw_spinlock_t reader_lock; /* serialize readers */ 453 arch_spinlock_t lock; 454 struct lock_class_key lock_key; 455 struct buffer_data_page *free_page; 456 unsigned long nr_pages; 457 unsigned int current_context; 458 struct list_head *pages; 459 struct buffer_page *head_page; /* read from head */ 460 struct buffer_page *tail_page; /* write to tail */ 461 struct buffer_page *commit_page; /* committed pages */ 462 struct buffer_page *reader_page; 463 unsigned long lost_events; 464 unsigned long last_overrun; 465 unsigned long nest; 466 local_t entries_bytes; 467 local_t entries; 468 local_t overrun; 469 local_t commit_overrun; 470 local_t dropped_events; 471 local_t committing; 472 local_t commits; 473 local_t pages_touched; 474 local_t pages_lost; 475 local_t pages_read; 476 long last_pages_touch; 477 size_t shortest_full; 478 unsigned long read; 479 unsigned long read_bytes; 480 rb_time_t write_stamp; 481 rb_time_t before_stamp; 482 u64 event_stamp[MAX_NEST]; 483 u64 read_stamp; 484 /* pages removed since last reset */ 485 unsigned long pages_removed; 486 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 487 long nr_pages_to_update; 488 struct list_head new_pages; /* new pages to add */ 489 struct work_struct update_pages_work; 490 struct completion update_done; 491 492 struct rb_irq_work irq_work; 493 }; 494 495 struct trace_buffer { 496 unsigned flags; 497 int cpus; 498 atomic_t record_disabled; 499 atomic_t resizing; 500 cpumask_var_t cpumask; 501 502 struct lock_class_key *reader_lock_key; 503 504 struct mutex mutex; 505 506 struct ring_buffer_per_cpu **buffers; 507 508 struct hlist_node node; 509 u64 (*clock)(void); 510 511 struct rb_irq_work irq_work; 512 bool time_stamp_abs; 513 514 unsigned int subbuf_size; 515 unsigned int subbuf_order; 516 unsigned int max_data_size; 517 }; 518 519 struct ring_buffer_iter { 520 struct ring_buffer_per_cpu *cpu_buffer; 521 unsigned long head; 522 unsigned long next_event; 523 struct buffer_page *head_page; 524 struct buffer_page *cache_reader_page; 525 unsigned long cache_read; 526 unsigned long cache_pages_removed; 527 u64 read_stamp; 528 u64 page_stamp; 529 struct ring_buffer_event *event; 530 size_t event_size; 531 int missed_events; 532 }; 533 534 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 535 { 536 struct buffer_data_page field; 537 538 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 539 "offset:0;\tsize:%u;\tsigned:%u;\n", 540 (unsigned int)sizeof(field.time_stamp), 541 (unsigned int)is_signed_type(u64)); 542 543 trace_seq_printf(s, "\tfield: local_t commit;\t" 544 "offset:%u;\tsize:%u;\tsigned:%u;\n", 545 (unsigned int)offsetof(typeof(field), commit), 546 (unsigned int)sizeof(field.commit), 547 (unsigned int)is_signed_type(long)); 548 549 trace_seq_printf(s, "\tfield: int overwrite;\t" 550 "offset:%u;\tsize:%u;\tsigned:%u;\n", 551 (unsigned int)offsetof(typeof(field), commit), 552 1, 553 (unsigned int)is_signed_type(long)); 554 555 trace_seq_printf(s, "\tfield: char data;\t" 556 "offset:%u;\tsize:%u;\tsigned:%u;\n", 557 (unsigned int)offsetof(typeof(field), data), 558 (unsigned int)buffer->subbuf_size, 559 (unsigned int)is_signed_type(char)); 560 561 return !trace_seq_has_overflowed(s); 562 } 563 564 static inline void rb_time_read(rb_time_t *t, u64 *ret) 565 { 566 *ret = local64_read(&t->time); 567 } 568 static void rb_time_set(rb_time_t *t, u64 val) 569 { 570 local64_set(&t->time, val); 571 } 572 573 /* 574 * Enable this to make sure that the event passed to 575 * ring_buffer_event_time_stamp() is not committed and also 576 * is on the buffer that it passed in. 577 */ 578 //#define RB_VERIFY_EVENT 579 #ifdef RB_VERIFY_EVENT 580 static struct list_head *rb_list_head(struct list_head *list); 581 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 582 void *event) 583 { 584 struct buffer_page *page = cpu_buffer->commit_page; 585 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 586 struct list_head *next; 587 long commit, write; 588 unsigned long addr = (unsigned long)event; 589 bool done = false; 590 int stop = 0; 591 592 /* Make sure the event exists and is not committed yet */ 593 do { 594 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 595 done = true; 596 commit = local_read(&page->page->commit); 597 write = local_read(&page->write); 598 if (addr >= (unsigned long)&page->page->data[commit] && 599 addr < (unsigned long)&page->page->data[write]) 600 return; 601 602 next = rb_list_head(page->list.next); 603 page = list_entry(next, struct buffer_page, list); 604 } while (!done); 605 WARN_ON_ONCE(1); 606 } 607 #else 608 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 609 void *event) 610 { 611 } 612 #endif 613 614 /* 615 * The absolute time stamp drops the 5 MSBs and some clocks may 616 * require them. The rb_fix_abs_ts() will take a previous full 617 * time stamp, and add the 5 MSB of that time stamp on to the 618 * saved absolute time stamp. Then they are compared in case of 619 * the unlikely event that the latest time stamp incremented 620 * the 5 MSB. 621 */ 622 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 623 { 624 if (save_ts & TS_MSB) { 625 abs |= save_ts & TS_MSB; 626 /* Check for overflow */ 627 if (unlikely(abs < save_ts)) 628 abs += 1ULL << 59; 629 } 630 return abs; 631 } 632 633 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 634 635 /** 636 * ring_buffer_event_time_stamp - return the event's current time stamp 637 * @buffer: The buffer that the event is on 638 * @event: the event to get the time stamp of 639 * 640 * Note, this must be called after @event is reserved, and before it is 641 * committed to the ring buffer. And must be called from the same 642 * context where the event was reserved (normal, softirq, irq, etc). 643 * 644 * Returns the time stamp associated with the current event. 645 * If the event has an extended time stamp, then that is used as 646 * the time stamp to return. 647 * In the highly unlikely case that the event was nested more than 648 * the max nesting, then the write_stamp of the buffer is returned, 649 * otherwise current time is returned, but that really neither of 650 * the last two cases should ever happen. 651 */ 652 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 653 struct ring_buffer_event *event) 654 { 655 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 656 unsigned int nest; 657 u64 ts; 658 659 /* If the event includes an absolute time, then just use that */ 660 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 661 ts = rb_event_time_stamp(event); 662 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 663 } 664 665 nest = local_read(&cpu_buffer->committing); 666 verify_event(cpu_buffer, event); 667 if (WARN_ON_ONCE(!nest)) 668 goto fail; 669 670 /* Read the current saved nesting level time stamp */ 671 if (likely(--nest < MAX_NEST)) 672 return cpu_buffer->event_stamp[nest]; 673 674 /* Shouldn't happen, warn if it does */ 675 WARN_ONCE(1, "nest (%d) greater than max", nest); 676 677 fail: 678 rb_time_read(&cpu_buffer->write_stamp, &ts); 679 680 return ts; 681 } 682 683 /** 684 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 685 * @buffer: The ring_buffer to get the number of pages from 686 * @cpu: The cpu of the ring_buffer to get the number of pages from 687 * 688 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 689 */ 690 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 691 { 692 return buffer->buffers[cpu]->nr_pages; 693 } 694 695 /** 696 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 697 * @buffer: The ring_buffer to get the number of pages from 698 * @cpu: The cpu of the ring_buffer to get the number of pages from 699 * 700 * Returns the number of pages that have content in the ring buffer. 701 */ 702 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 703 { 704 size_t read; 705 size_t lost; 706 size_t cnt; 707 708 read = local_read(&buffer->buffers[cpu]->pages_read); 709 lost = local_read(&buffer->buffers[cpu]->pages_lost); 710 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 711 712 if (WARN_ON_ONCE(cnt < lost)) 713 return 0; 714 715 cnt -= lost; 716 717 /* The reader can read an empty page, but not more than that */ 718 if (cnt < read) { 719 WARN_ON_ONCE(read > cnt + 1); 720 return 0; 721 } 722 723 return cnt - read; 724 } 725 726 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 727 { 728 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 729 size_t nr_pages; 730 size_t dirty; 731 732 nr_pages = cpu_buffer->nr_pages; 733 if (!nr_pages || !full) 734 return true; 735 736 /* 737 * Add one as dirty will never equal nr_pages, as the sub-buffer 738 * that the writer is on is not counted as dirty. 739 * This is needed if "buffer_percent" is set to 100. 740 */ 741 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 742 743 return (dirty * 100) >= (full * nr_pages); 744 } 745 746 /* 747 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 748 * 749 * Schedules a delayed work to wake up any task that is blocked on the 750 * ring buffer waiters queue. 751 */ 752 static void rb_wake_up_waiters(struct irq_work *work) 753 { 754 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 755 756 wake_up_all(&rbwork->waiters); 757 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 758 /* Only cpu_buffer sets the above flags */ 759 struct ring_buffer_per_cpu *cpu_buffer = 760 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 761 762 /* Called from interrupt context */ 763 raw_spin_lock(&cpu_buffer->reader_lock); 764 rbwork->wakeup_full = false; 765 rbwork->full_waiters_pending = false; 766 767 /* Waking up all waiters, they will reset the shortest full */ 768 cpu_buffer->shortest_full = 0; 769 raw_spin_unlock(&cpu_buffer->reader_lock); 770 771 wake_up_all(&rbwork->full_waiters); 772 } 773 } 774 775 /** 776 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 777 * @buffer: The ring buffer to wake waiters on 778 * @cpu: The CPU buffer to wake waiters on 779 * 780 * In the case of a file that represents a ring buffer is closing, 781 * it is prudent to wake up any waiters that are on this. 782 */ 783 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 784 { 785 struct ring_buffer_per_cpu *cpu_buffer; 786 struct rb_irq_work *rbwork; 787 788 if (!buffer) 789 return; 790 791 if (cpu == RING_BUFFER_ALL_CPUS) { 792 793 /* Wake up individual ones too. One level recursion */ 794 for_each_buffer_cpu(buffer, cpu) 795 ring_buffer_wake_waiters(buffer, cpu); 796 797 rbwork = &buffer->irq_work; 798 } else { 799 if (WARN_ON_ONCE(!buffer->buffers)) 800 return; 801 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 802 return; 803 804 cpu_buffer = buffer->buffers[cpu]; 805 /* The CPU buffer may not have been initialized yet */ 806 if (!cpu_buffer) 807 return; 808 rbwork = &cpu_buffer->irq_work; 809 } 810 811 /* This can be called in any context */ 812 irq_work_queue(&rbwork->work); 813 } 814 815 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 816 { 817 struct ring_buffer_per_cpu *cpu_buffer; 818 bool ret = false; 819 820 /* Reads of all CPUs always waits for any data */ 821 if (cpu == RING_BUFFER_ALL_CPUS) 822 return !ring_buffer_empty(buffer); 823 824 cpu_buffer = buffer->buffers[cpu]; 825 826 if (!ring_buffer_empty_cpu(buffer, cpu)) { 827 unsigned long flags; 828 bool pagebusy; 829 830 if (!full) 831 return true; 832 833 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 834 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 835 ret = !pagebusy && full_hit(buffer, cpu, full); 836 837 if (!ret && (!cpu_buffer->shortest_full || 838 cpu_buffer->shortest_full > full)) { 839 cpu_buffer->shortest_full = full; 840 } 841 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 842 } 843 return ret; 844 } 845 846 static inline bool 847 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 848 int cpu, int full, ring_buffer_cond_fn cond, void *data) 849 { 850 if (rb_watermark_hit(buffer, cpu, full)) 851 return true; 852 853 if (cond(data)) 854 return true; 855 856 /* 857 * The events can happen in critical sections where 858 * checking a work queue can cause deadlocks. 859 * After adding a task to the queue, this flag is set 860 * only to notify events to try to wake up the queue 861 * using irq_work. 862 * 863 * We don't clear it even if the buffer is no longer 864 * empty. The flag only causes the next event to run 865 * irq_work to do the work queue wake up. The worse 866 * that can happen if we race with !trace_empty() is that 867 * an event will cause an irq_work to try to wake up 868 * an empty queue. 869 * 870 * There's no reason to protect this flag either, as 871 * the work queue and irq_work logic will do the necessary 872 * synchronization for the wake ups. The only thing 873 * that is necessary is that the wake up happens after 874 * a task has been queued. It's OK for spurious wake ups. 875 */ 876 if (full) 877 rbwork->full_waiters_pending = true; 878 else 879 rbwork->waiters_pending = true; 880 881 return false; 882 } 883 884 /* 885 * The default wait condition for ring_buffer_wait() is to just to exit the 886 * wait loop the first time it is woken up. 887 */ 888 static bool rb_wait_once(void *data) 889 { 890 long *once = data; 891 892 /* wait_event() actually calls this twice before scheduling*/ 893 if (*once > 1) 894 return true; 895 896 (*once)++; 897 return false; 898 } 899 900 /** 901 * ring_buffer_wait - wait for input to the ring buffer 902 * @buffer: buffer to wait on 903 * @cpu: the cpu buffer to wait on 904 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 905 * @cond: condition function to break out of wait (NULL to run once) 906 * @data: the data to pass to @cond. 907 * 908 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 909 * as data is added to any of the @buffer's cpu buffers. Otherwise 910 * it will wait for data to be added to a specific cpu buffer. 911 */ 912 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 913 ring_buffer_cond_fn cond, void *data) 914 { 915 struct ring_buffer_per_cpu *cpu_buffer; 916 struct wait_queue_head *waitq; 917 struct rb_irq_work *rbwork; 918 long once = 0; 919 int ret = 0; 920 921 if (!cond) { 922 cond = rb_wait_once; 923 data = &once; 924 } 925 926 /* 927 * Depending on what the caller is waiting for, either any 928 * data in any cpu buffer, or a specific buffer, put the 929 * caller on the appropriate wait queue. 930 */ 931 if (cpu == RING_BUFFER_ALL_CPUS) { 932 rbwork = &buffer->irq_work; 933 /* Full only makes sense on per cpu reads */ 934 full = 0; 935 } else { 936 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 937 return -ENODEV; 938 cpu_buffer = buffer->buffers[cpu]; 939 rbwork = &cpu_buffer->irq_work; 940 } 941 942 if (full) 943 waitq = &rbwork->full_waiters; 944 else 945 waitq = &rbwork->waiters; 946 947 ret = wait_event_interruptible((*waitq), 948 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 949 950 return ret; 951 } 952 953 /** 954 * ring_buffer_poll_wait - poll on buffer input 955 * @buffer: buffer to wait on 956 * @cpu: the cpu buffer to wait on 957 * @filp: the file descriptor 958 * @poll_table: The poll descriptor 959 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 960 * 961 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 962 * as data is added to any of the @buffer's cpu buffers. Otherwise 963 * it will wait for data to be added to a specific cpu buffer. 964 * 965 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 966 * zero otherwise. 967 */ 968 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 969 struct file *filp, poll_table *poll_table, int full) 970 { 971 struct ring_buffer_per_cpu *cpu_buffer; 972 struct rb_irq_work *rbwork; 973 974 if (cpu == RING_BUFFER_ALL_CPUS) { 975 rbwork = &buffer->irq_work; 976 full = 0; 977 } else { 978 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 979 return EPOLLERR; 980 981 cpu_buffer = buffer->buffers[cpu]; 982 rbwork = &cpu_buffer->irq_work; 983 } 984 985 if (full) { 986 poll_wait(filp, &rbwork->full_waiters, poll_table); 987 988 if (rb_watermark_hit(buffer, cpu, full)) 989 return EPOLLIN | EPOLLRDNORM; 990 /* 991 * Only allow full_waiters_pending update to be seen after 992 * the shortest_full is set (in rb_watermark_hit). If the 993 * writer sees the full_waiters_pending flag set, it will 994 * compare the amount in the ring buffer to shortest_full. 995 * If the amount in the ring buffer is greater than the 996 * shortest_full percent, it will call the irq_work handler 997 * to wake up this list. The irq_handler will reset shortest_full 998 * back to zero. That's done under the reader_lock, but 999 * the below smp_mb() makes sure that the update to 1000 * full_waiters_pending doesn't leak up into the above. 1001 */ 1002 smp_mb(); 1003 rbwork->full_waiters_pending = true; 1004 return 0; 1005 } 1006 1007 poll_wait(filp, &rbwork->waiters, poll_table); 1008 rbwork->waiters_pending = true; 1009 1010 /* 1011 * There's a tight race between setting the waiters_pending and 1012 * checking if the ring buffer is empty. Once the waiters_pending bit 1013 * is set, the next event will wake the task up, but we can get stuck 1014 * if there's only a single event in. 1015 * 1016 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1017 * but adding a memory barrier to all events will cause too much of a 1018 * performance hit in the fast path. We only need a memory barrier when 1019 * the buffer goes from empty to having content. But as this race is 1020 * extremely small, and it's not a problem if another event comes in, we 1021 * will fix it later. 1022 */ 1023 smp_mb(); 1024 1025 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1026 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1027 return EPOLLIN | EPOLLRDNORM; 1028 return 0; 1029 } 1030 1031 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1032 #define RB_WARN_ON(b, cond) \ 1033 ({ \ 1034 int _____ret = unlikely(cond); \ 1035 if (_____ret) { \ 1036 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1037 struct ring_buffer_per_cpu *__b = \ 1038 (void *)b; \ 1039 atomic_inc(&__b->buffer->record_disabled); \ 1040 } else \ 1041 atomic_inc(&b->record_disabled); \ 1042 WARN_ON(1); \ 1043 } \ 1044 _____ret; \ 1045 }) 1046 1047 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1048 #define DEBUG_SHIFT 0 1049 1050 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1051 { 1052 u64 ts; 1053 1054 /* Skip retpolines :-( */ 1055 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1056 ts = trace_clock_local(); 1057 else 1058 ts = buffer->clock(); 1059 1060 /* shift to debug/test normalization and TIME_EXTENTS */ 1061 return ts << DEBUG_SHIFT; 1062 } 1063 1064 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1065 { 1066 u64 time; 1067 1068 preempt_disable_notrace(); 1069 time = rb_time_stamp(buffer); 1070 preempt_enable_notrace(); 1071 1072 return time; 1073 } 1074 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1075 1076 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1077 int cpu, u64 *ts) 1078 { 1079 /* Just stupid testing the normalize function and deltas */ 1080 *ts >>= DEBUG_SHIFT; 1081 } 1082 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1083 1084 /* 1085 * Making the ring buffer lockless makes things tricky. 1086 * Although writes only happen on the CPU that they are on, 1087 * and they only need to worry about interrupts. Reads can 1088 * happen on any CPU. 1089 * 1090 * The reader page is always off the ring buffer, but when the 1091 * reader finishes with a page, it needs to swap its page with 1092 * a new one from the buffer. The reader needs to take from 1093 * the head (writes go to the tail). But if a writer is in overwrite 1094 * mode and wraps, it must push the head page forward. 1095 * 1096 * Here lies the problem. 1097 * 1098 * The reader must be careful to replace only the head page, and 1099 * not another one. As described at the top of the file in the 1100 * ASCII art, the reader sets its old page to point to the next 1101 * page after head. It then sets the page after head to point to 1102 * the old reader page. But if the writer moves the head page 1103 * during this operation, the reader could end up with the tail. 1104 * 1105 * We use cmpxchg to help prevent this race. We also do something 1106 * special with the page before head. We set the LSB to 1. 1107 * 1108 * When the writer must push the page forward, it will clear the 1109 * bit that points to the head page, move the head, and then set 1110 * the bit that points to the new head page. 1111 * 1112 * We also don't want an interrupt coming in and moving the head 1113 * page on another writer. Thus we use the second LSB to catch 1114 * that too. Thus: 1115 * 1116 * head->list->prev->next bit 1 bit 0 1117 * ------- ------- 1118 * Normal page 0 0 1119 * Points to head page 0 1 1120 * New head page 1 0 1121 * 1122 * Note we can not trust the prev pointer of the head page, because: 1123 * 1124 * +----+ +-----+ +-----+ 1125 * | |------>| T |---X--->| N | 1126 * | |<------| | | | 1127 * +----+ +-----+ +-----+ 1128 * ^ ^ | 1129 * | +-----+ | | 1130 * +----------| R |----------+ | 1131 * | |<-----------+ 1132 * +-----+ 1133 * 1134 * Key: ---X--> HEAD flag set in pointer 1135 * T Tail page 1136 * R Reader page 1137 * N Next page 1138 * 1139 * (see __rb_reserve_next() to see where this happens) 1140 * 1141 * What the above shows is that the reader just swapped out 1142 * the reader page with a page in the buffer, but before it 1143 * could make the new header point back to the new page added 1144 * it was preempted by a writer. The writer moved forward onto 1145 * the new page added by the reader and is about to move forward 1146 * again. 1147 * 1148 * You can see, it is legitimate for the previous pointer of 1149 * the head (or any page) not to point back to itself. But only 1150 * temporarily. 1151 */ 1152 1153 #define RB_PAGE_NORMAL 0UL 1154 #define RB_PAGE_HEAD 1UL 1155 #define RB_PAGE_UPDATE 2UL 1156 1157 1158 #define RB_FLAG_MASK 3UL 1159 1160 /* PAGE_MOVED is not part of the mask */ 1161 #define RB_PAGE_MOVED 4UL 1162 1163 /* 1164 * rb_list_head - remove any bit 1165 */ 1166 static struct list_head *rb_list_head(struct list_head *list) 1167 { 1168 unsigned long val = (unsigned long)list; 1169 1170 return (struct list_head *)(val & ~RB_FLAG_MASK); 1171 } 1172 1173 /* 1174 * rb_is_head_page - test if the given page is the head page 1175 * 1176 * Because the reader may move the head_page pointer, we can 1177 * not trust what the head page is (it may be pointing to 1178 * the reader page). But if the next page is a header page, 1179 * its flags will be non zero. 1180 */ 1181 static inline int 1182 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1183 { 1184 unsigned long val; 1185 1186 val = (unsigned long)list->next; 1187 1188 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1189 return RB_PAGE_MOVED; 1190 1191 return val & RB_FLAG_MASK; 1192 } 1193 1194 /* 1195 * rb_is_reader_page 1196 * 1197 * The unique thing about the reader page, is that, if the 1198 * writer is ever on it, the previous pointer never points 1199 * back to the reader page. 1200 */ 1201 static bool rb_is_reader_page(struct buffer_page *page) 1202 { 1203 struct list_head *list = page->list.prev; 1204 1205 return rb_list_head(list->next) != &page->list; 1206 } 1207 1208 /* 1209 * rb_set_list_to_head - set a list_head to be pointing to head. 1210 */ 1211 static void rb_set_list_to_head(struct list_head *list) 1212 { 1213 unsigned long *ptr; 1214 1215 ptr = (unsigned long *)&list->next; 1216 *ptr |= RB_PAGE_HEAD; 1217 *ptr &= ~RB_PAGE_UPDATE; 1218 } 1219 1220 /* 1221 * rb_head_page_activate - sets up head page 1222 */ 1223 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1224 { 1225 struct buffer_page *head; 1226 1227 head = cpu_buffer->head_page; 1228 if (!head) 1229 return; 1230 1231 /* 1232 * Set the previous list pointer to have the HEAD flag. 1233 */ 1234 rb_set_list_to_head(head->list.prev); 1235 } 1236 1237 static void rb_list_head_clear(struct list_head *list) 1238 { 1239 unsigned long *ptr = (unsigned long *)&list->next; 1240 1241 *ptr &= ~RB_FLAG_MASK; 1242 } 1243 1244 /* 1245 * rb_head_page_deactivate - clears head page ptr (for free list) 1246 */ 1247 static void 1248 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1249 { 1250 struct list_head *hd; 1251 1252 /* Go through the whole list and clear any pointers found. */ 1253 rb_list_head_clear(cpu_buffer->pages); 1254 1255 list_for_each(hd, cpu_buffer->pages) 1256 rb_list_head_clear(hd); 1257 } 1258 1259 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1260 struct buffer_page *head, 1261 struct buffer_page *prev, 1262 int old_flag, int new_flag) 1263 { 1264 struct list_head *list; 1265 unsigned long val = (unsigned long)&head->list; 1266 unsigned long ret; 1267 1268 list = &prev->list; 1269 1270 val &= ~RB_FLAG_MASK; 1271 1272 ret = cmpxchg((unsigned long *)&list->next, 1273 val | old_flag, val | new_flag); 1274 1275 /* check if the reader took the page */ 1276 if ((ret & ~RB_FLAG_MASK) != val) 1277 return RB_PAGE_MOVED; 1278 1279 return ret & RB_FLAG_MASK; 1280 } 1281 1282 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1283 struct buffer_page *head, 1284 struct buffer_page *prev, 1285 int old_flag) 1286 { 1287 return rb_head_page_set(cpu_buffer, head, prev, 1288 old_flag, RB_PAGE_UPDATE); 1289 } 1290 1291 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1292 struct buffer_page *head, 1293 struct buffer_page *prev, 1294 int old_flag) 1295 { 1296 return rb_head_page_set(cpu_buffer, head, prev, 1297 old_flag, RB_PAGE_HEAD); 1298 } 1299 1300 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1301 struct buffer_page *head, 1302 struct buffer_page *prev, 1303 int old_flag) 1304 { 1305 return rb_head_page_set(cpu_buffer, head, prev, 1306 old_flag, RB_PAGE_NORMAL); 1307 } 1308 1309 static inline void rb_inc_page(struct buffer_page **bpage) 1310 { 1311 struct list_head *p = rb_list_head((*bpage)->list.next); 1312 1313 *bpage = list_entry(p, struct buffer_page, list); 1314 } 1315 1316 static struct buffer_page * 1317 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1318 { 1319 struct buffer_page *head; 1320 struct buffer_page *page; 1321 struct list_head *list; 1322 int i; 1323 1324 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1325 return NULL; 1326 1327 /* sanity check */ 1328 list = cpu_buffer->pages; 1329 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1330 return NULL; 1331 1332 page = head = cpu_buffer->head_page; 1333 /* 1334 * It is possible that the writer moves the header behind 1335 * where we started, and we miss in one loop. 1336 * A second loop should grab the header, but we'll do 1337 * three loops just because I'm paranoid. 1338 */ 1339 for (i = 0; i < 3; i++) { 1340 do { 1341 if (rb_is_head_page(page, page->list.prev)) { 1342 cpu_buffer->head_page = page; 1343 return page; 1344 } 1345 rb_inc_page(&page); 1346 } while (page != head); 1347 } 1348 1349 RB_WARN_ON(cpu_buffer, 1); 1350 1351 return NULL; 1352 } 1353 1354 static bool rb_head_page_replace(struct buffer_page *old, 1355 struct buffer_page *new) 1356 { 1357 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1358 unsigned long val; 1359 1360 val = *ptr & ~RB_FLAG_MASK; 1361 val |= RB_PAGE_HEAD; 1362 1363 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1364 } 1365 1366 /* 1367 * rb_tail_page_update - move the tail page forward 1368 */ 1369 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1370 struct buffer_page *tail_page, 1371 struct buffer_page *next_page) 1372 { 1373 unsigned long old_entries; 1374 unsigned long old_write; 1375 1376 /* 1377 * The tail page now needs to be moved forward. 1378 * 1379 * We need to reset the tail page, but without messing 1380 * with possible erasing of data brought in by interrupts 1381 * that have moved the tail page and are currently on it. 1382 * 1383 * We add a counter to the write field to denote this. 1384 */ 1385 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1386 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1387 1388 local_inc(&cpu_buffer->pages_touched); 1389 /* 1390 * Just make sure we have seen our old_write and synchronize 1391 * with any interrupts that come in. 1392 */ 1393 barrier(); 1394 1395 /* 1396 * If the tail page is still the same as what we think 1397 * it is, then it is up to us to update the tail 1398 * pointer. 1399 */ 1400 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1401 /* Zero the write counter */ 1402 unsigned long val = old_write & ~RB_WRITE_MASK; 1403 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1404 1405 /* 1406 * This will only succeed if an interrupt did 1407 * not come in and change it. In which case, we 1408 * do not want to modify it. 1409 * 1410 * We add (void) to let the compiler know that we do not care 1411 * about the return value of these functions. We use the 1412 * cmpxchg to only update if an interrupt did not already 1413 * do it for us. If the cmpxchg fails, we don't care. 1414 */ 1415 (void)local_cmpxchg(&next_page->write, old_write, val); 1416 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1417 1418 /* 1419 * No need to worry about races with clearing out the commit. 1420 * it only can increment when a commit takes place. But that 1421 * only happens in the outer most nested commit. 1422 */ 1423 local_set(&next_page->page->commit, 0); 1424 1425 /* Again, either we update tail_page or an interrupt does */ 1426 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1427 } 1428 } 1429 1430 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1431 struct buffer_page *bpage) 1432 { 1433 unsigned long val = (unsigned long)bpage; 1434 1435 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1436 } 1437 1438 /** 1439 * rb_check_pages - integrity check of buffer pages 1440 * @cpu_buffer: CPU buffer with pages to test 1441 * 1442 * As a safety measure we check to make sure the data pages have not 1443 * been corrupted. 1444 */ 1445 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1446 { 1447 struct list_head *head = rb_list_head(cpu_buffer->pages); 1448 struct list_head *tmp; 1449 1450 if (RB_WARN_ON(cpu_buffer, 1451 rb_list_head(rb_list_head(head->next)->prev) != head)) 1452 return; 1453 1454 if (RB_WARN_ON(cpu_buffer, 1455 rb_list_head(rb_list_head(head->prev)->next) != head)) 1456 return; 1457 1458 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1459 if (RB_WARN_ON(cpu_buffer, 1460 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1461 return; 1462 1463 if (RB_WARN_ON(cpu_buffer, 1464 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1465 return; 1466 } 1467 } 1468 1469 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1470 long nr_pages, struct list_head *pages) 1471 { 1472 struct buffer_page *bpage, *tmp; 1473 bool user_thread = current->mm != NULL; 1474 gfp_t mflags; 1475 long i; 1476 1477 /* 1478 * Check if the available memory is there first. 1479 * Note, si_mem_available() only gives us a rough estimate of available 1480 * memory. It may not be accurate. But we don't care, we just want 1481 * to prevent doing any allocation when it is obvious that it is 1482 * not going to succeed. 1483 */ 1484 i = si_mem_available(); 1485 if (i < nr_pages) 1486 return -ENOMEM; 1487 1488 /* 1489 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1490 * gracefully without invoking oom-killer and the system is not 1491 * destabilized. 1492 */ 1493 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1494 1495 /* 1496 * If a user thread allocates too much, and si_mem_available() 1497 * reports there's enough memory, even though there is not. 1498 * Make sure the OOM killer kills this thread. This can happen 1499 * even with RETRY_MAYFAIL because another task may be doing 1500 * an allocation after this task has taken all memory. 1501 * This is the task the OOM killer needs to take out during this 1502 * loop, even if it was triggered by an allocation somewhere else. 1503 */ 1504 if (user_thread) 1505 set_current_oom_origin(); 1506 for (i = 0; i < nr_pages; i++) { 1507 struct page *page; 1508 1509 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1510 mflags, cpu_to_node(cpu_buffer->cpu)); 1511 if (!bpage) 1512 goto free_pages; 1513 1514 rb_check_bpage(cpu_buffer, bpage); 1515 1516 list_add(&bpage->list, pages); 1517 1518 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 1519 cpu_buffer->buffer->subbuf_order); 1520 if (!page) 1521 goto free_pages; 1522 bpage->page = page_address(page); 1523 bpage->order = cpu_buffer->buffer->subbuf_order; 1524 rb_init_page(bpage->page); 1525 1526 if (user_thread && fatal_signal_pending(current)) 1527 goto free_pages; 1528 } 1529 if (user_thread) 1530 clear_current_oom_origin(); 1531 1532 return 0; 1533 1534 free_pages: 1535 list_for_each_entry_safe(bpage, tmp, pages, list) { 1536 list_del_init(&bpage->list); 1537 free_buffer_page(bpage); 1538 } 1539 if (user_thread) 1540 clear_current_oom_origin(); 1541 1542 return -ENOMEM; 1543 } 1544 1545 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1546 unsigned long nr_pages) 1547 { 1548 LIST_HEAD(pages); 1549 1550 WARN_ON(!nr_pages); 1551 1552 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1553 return -ENOMEM; 1554 1555 /* 1556 * The ring buffer page list is a circular list that does not 1557 * start and end with a list head. All page list items point to 1558 * other pages. 1559 */ 1560 cpu_buffer->pages = pages.next; 1561 list_del(&pages); 1562 1563 cpu_buffer->nr_pages = nr_pages; 1564 1565 rb_check_pages(cpu_buffer); 1566 1567 return 0; 1568 } 1569 1570 static struct ring_buffer_per_cpu * 1571 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1572 { 1573 struct ring_buffer_per_cpu *cpu_buffer; 1574 struct buffer_page *bpage; 1575 struct page *page; 1576 int ret; 1577 1578 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1579 GFP_KERNEL, cpu_to_node(cpu)); 1580 if (!cpu_buffer) 1581 return NULL; 1582 1583 cpu_buffer->cpu = cpu; 1584 cpu_buffer->buffer = buffer; 1585 raw_spin_lock_init(&cpu_buffer->reader_lock); 1586 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1587 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1588 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1589 init_completion(&cpu_buffer->update_done); 1590 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1591 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1592 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1593 1594 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1595 GFP_KERNEL, cpu_to_node(cpu)); 1596 if (!bpage) 1597 goto fail_free_buffer; 1598 1599 rb_check_bpage(cpu_buffer, bpage); 1600 1601 cpu_buffer->reader_page = bpage; 1602 1603 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order); 1604 if (!page) 1605 goto fail_free_reader; 1606 bpage->page = page_address(page); 1607 rb_init_page(bpage->page); 1608 1609 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1610 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1611 1612 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1613 if (ret < 0) 1614 goto fail_free_reader; 1615 1616 cpu_buffer->head_page 1617 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1618 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1619 1620 rb_head_page_activate(cpu_buffer); 1621 1622 return cpu_buffer; 1623 1624 fail_free_reader: 1625 free_buffer_page(cpu_buffer->reader_page); 1626 1627 fail_free_buffer: 1628 kfree(cpu_buffer); 1629 return NULL; 1630 } 1631 1632 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1633 { 1634 struct list_head *head = cpu_buffer->pages; 1635 struct buffer_page *bpage, *tmp; 1636 1637 irq_work_sync(&cpu_buffer->irq_work.work); 1638 1639 free_buffer_page(cpu_buffer->reader_page); 1640 1641 if (head) { 1642 rb_head_page_deactivate(cpu_buffer); 1643 1644 list_for_each_entry_safe(bpage, tmp, head, list) { 1645 list_del_init(&bpage->list); 1646 free_buffer_page(bpage); 1647 } 1648 bpage = list_entry(head, struct buffer_page, list); 1649 free_buffer_page(bpage); 1650 } 1651 1652 free_page((unsigned long)cpu_buffer->free_page); 1653 1654 kfree(cpu_buffer); 1655 } 1656 1657 /** 1658 * __ring_buffer_alloc - allocate a new ring_buffer 1659 * @size: the size in bytes per cpu that is needed. 1660 * @flags: attributes to set for the ring buffer. 1661 * @key: ring buffer reader_lock_key. 1662 * 1663 * Currently the only flag that is available is the RB_FL_OVERWRITE 1664 * flag. This flag means that the buffer will overwrite old data 1665 * when the buffer wraps. If this flag is not set, the buffer will 1666 * drop data when the tail hits the head. 1667 */ 1668 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1669 struct lock_class_key *key) 1670 { 1671 struct trace_buffer *buffer; 1672 long nr_pages; 1673 int bsize; 1674 int cpu; 1675 int ret; 1676 1677 /* keep it in its own cache line */ 1678 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1679 GFP_KERNEL); 1680 if (!buffer) 1681 return NULL; 1682 1683 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1684 goto fail_free_buffer; 1685 1686 /* Default buffer page size - one system page */ 1687 buffer->subbuf_order = 0; 1688 buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE; 1689 1690 /* Max payload is buffer page size - header (8bytes) */ 1691 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 1692 1693 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 1694 buffer->flags = flags; 1695 buffer->clock = trace_clock_local; 1696 buffer->reader_lock_key = key; 1697 1698 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1699 init_waitqueue_head(&buffer->irq_work.waiters); 1700 1701 /* need at least two pages */ 1702 if (nr_pages < 2) 1703 nr_pages = 2; 1704 1705 buffer->cpus = nr_cpu_ids; 1706 1707 bsize = sizeof(void *) * nr_cpu_ids; 1708 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1709 GFP_KERNEL); 1710 if (!buffer->buffers) 1711 goto fail_free_cpumask; 1712 1713 cpu = raw_smp_processor_id(); 1714 cpumask_set_cpu(cpu, buffer->cpumask); 1715 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1716 if (!buffer->buffers[cpu]) 1717 goto fail_free_buffers; 1718 1719 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1720 if (ret < 0) 1721 goto fail_free_buffers; 1722 1723 mutex_init(&buffer->mutex); 1724 1725 return buffer; 1726 1727 fail_free_buffers: 1728 for_each_buffer_cpu(buffer, cpu) { 1729 if (buffer->buffers[cpu]) 1730 rb_free_cpu_buffer(buffer->buffers[cpu]); 1731 } 1732 kfree(buffer->buffers); 1733 1734 fail_free_cpumask: 1735 free_cpumask_var(buffer->cpumask); 1736 1737 fail_free_buffer: 1738 kfree(buffer); 1739 return NULL; 1740 } 1741 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1742 1743 /** 1744 * ring_buffer_free - free a ring buffer. 1745 * @buffer: the buffer to free. 1746 */ 1747 void 1748 ring_buffer_free(struct trace_buffer *buffer) 1749 { 1750 int cpu; 1751 1752 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1753 1754 irq_work_sync(&buffer->irq_work.work); 1755 1756 for_each_buffer_cpu(buffer, cpu) 1757 rb_free_cpu_buffer(buffer->buffers[cpu]); 1758 1759 kfree(buffer->buffers); 1760 free_cpumask_var(buffer->cpumask); 1761 1762 kfree(buffer); 1763 } 1764 EXPORT_SYMBOL_GPL(ring_buffer_free); 1765 1766 void ring_buffer_set_clock(struct trace_buffer *buffer, 1767 u64 (*clock)(void)) 1768 { 1769 buffer->clock = clock; 1770 } 1771 1772 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1773 { 1774 buffer->time_stamp_abs = abs; 1775 } 1776 1777 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1778 { 1779 return buffer->time_stamp_abs; 1780 } 1781 1782 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1783 1784 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1785 { 1786 return local_read(&bpage->entries) & RB_WRITE_MASK; 1787 } 1788 1789 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1790 { 1791 return local_read(&bpage->write) & RB_WRITE_MASK; 1792 } 1793 1794 static bool 1795 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1796 { 1797 struct list_head *tail_page, *to_remove, *next_page; 1798 struct buffer_page *to_remove_page, *tmp_iter_page; 1799 struct buffer_page *last_page, *first_page; 1800 unsigned long nr_removed; 1801 unsigned long head_bit; 1802 int page_entries; 1803 1804 head_bit = 0; 1805 1806 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1807 atomic_inc(&cpu_buffer->record_disabled); 1808 /* 1809 * We don't race with the readers since we have acquired the reader 1810 * lock. We also don't race with writers after disabling recording. 1811 * This makes it easy to figure out the first and the last page to be 1812 * removed from the list. We unlink all the pages in between including 1813 * the first and last pages. This is done in a busy loop so that we 1814 * lose the least number of traces. 1815 * The pages are freed after we restart recording and unlock readers. 1816 */ 1817 tail_page = &cpu_buffer->tail_page->list; 1818 1819 /* 1820 * tail page might be on reader page, we remove the next page 1821 * from the ring buffer 1822 */ 1823 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1824 tail_page = rb_list_head(tail_page->next); 1825 to_remove = tail_page; 1826 1827 /* start of pages to remove */ 1828 first_page = list_entry(rb_list_head(to_remove->next), 1829 struct buffer_page, list); 1830 1831 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1832 to_remove = rb_list_head(to_remove)->next; 1833 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1834 } 1835 /* Read iterators need to reset themselves when some pages removed */ 1836 cpu_buffer->pages_removed += nr_removed; 1837 1838 next_page = rb_list_head(to_remove)->next; 1839 1840 /* 1841 * Now we remove all pages between tail_page and next_page. 1842 * Make sure that we have head_bit value preserved for the 1843 * next page 1844 */ 1845 tail_page->next = (struct list_head *)((unsigned long)next_page | 1846 head_bit); 1847 next_page = rb_list_head(next_page); 1848 next_page->prev = tail_page; 1849 1850 /* make sure pages points to a valid page in the ring buffer */ 1851 cpu_buffer->pages = next_page; 1852 1853 /* update head page */ 1854 if (head_bit) 1855 cpu_buffer->head_page = list_entry(next_page, 1856 struct buffer_page, list); 1857 1858 /* pages are removed, resume tracing and then free the pages */ 1859 atomic_dec(&cpu_buffer->record_disabled); 1860 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1861 1862 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1863 1864 /* last buffer page to remove */ 1865 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1866 list); 1867 tmp_iter_page = first_page; 1868 1869 do { 1870 cond_resched(); 1871 1872 to_remove_page = tmp_iter_page; 1873 rb_inc_page(&tmp_iter_page); 1874 1875 /* update the counters */ 1876 page_entries = rb_page_entries(to_remove_page); 1877 if (page_entries) { 1878 /* 1879 * If something was added to this page, it was full 1880 * since it is not the tail page. So we deduct the 1881 * bytes consumed in ring buffer from here. 1882 * Increment overrun to account for the lost events. 1883 */ 1884 local_add(page_entries, &cpu_buffer->overrun); 1885 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 1886 local_inc(&cpu_buffer->pages_lost); 1887 } 1888 1889 /* 1890 * We have already removed references to this list item, just 1891 * free up the buffer_page and its page 1892 */ 1893 free_buffer_page(to_remove_page); 1894 nr_removed--; 1895 1896 } while (to_remove_page != last_page); 1897 1898 RB_WARN_ON(cpu_buffer, nr_removed); 1899 1900 return nr_removed == 0; 1901 } 1902 1903 static bool 1904 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1905 { 1906 struct list_head *pages = &cpu_buffer->new_pages; 1907 unsigned long flags; 1908 bool success; 1909 int retries; 1910 1911 /* Can be called at early boot up, where interrupts must not been enabled */ 1912 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1913 /* 1914 * We are holding the reader lock, so the reader page won't be swapped 1915 * in the ring buffer. Now we are racing with the writer trying to 1916 * move head page and the tail page. 1917 * We are going to adapt the reader page update process where: 1918 * 1. We first splice the start and end of list of new pages between 1919 * the head page and its previous page. 1920 * 2. We cmpxchg the prev_page->next to point from head page to the 1921 * start of new pages list. 1922 * 3. Finally, we update the head->prev to the end of new list. 1923 * 1924 * We will try this process 10 times, to make sure that we don't keep 1925 * spinning. 1926 */ 1927 retries = 10; 1928 success = false; 1929 while (retries--) { 1930 struct list_head *head_page, *prev_page; 1931 struct list_head *last_page, *first_page; 1932 struct list_head *head_page_with_bit; 1933 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 1934 1935 if (!hpage) 1936 break; 1937 head_page = &hpage->list; 1938 prev_page = head_page->prev; 1939 1940 first_page = pages->next; 1941 last_page = pages->prev; 1942 1943 head_page_with_bit = (struct list_head *) 1944 ((unsigned long)head_page | RB_PAGE_HEAD); 1945 1946 last_page->next = head_page_with_bit; 1947 first_page->prev = prev_page; 1948 1949 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 1950 if (try_cmpxchg(&prev_page->next, 1951 &head_page_with_bit, first_page)) { 1952 /* 1953 * yay, we replaced the page pointer to our new list, 1954 * now, we just have to update to head page's prev 1955 * pointer to point to end of list 1956 */ 1957 head_page->prev = last_page; 1958 success = true; 1959 break; 1960 } 1961 } 1962 1963 if (success) 1964 INIT_LIST_HEAD(pages); 1965 /* 1966 * If we weren't successful in adding in new pages, warn and stop 1967 * tracing 1968 */ 1969 RB_WARN_ON(cpu_buffer, !success); 1970 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1971 1972 /* free pages if they weren't inserted */ 1973 if (!success) { 1974 struct buffer_page *bpage, *tmp; 1975 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1976 list) { 1977 list_del_init(&bpage->list); 1978 free_buffer_page(bpage); 1979 } 1980 } 1981 return success; 1982 } 1983 1984 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1985 { 1986 bool success; 1987 1988 if (cpu_buffer->nr_pages_to_update > 0) 1989 success = rb_insert_pages(cpu_buffer); 1990 else 1991 success = rb_remove_pages(cpu_buffer, 1992 -cpu_buffer->nr_pages_to_update); 1993 1994 if (success) 1995 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1996 } 1997 1998 static void update_pages_handler(struct work_struct *work) 1999 { 2000 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2001 struct ring_buffer_per_cpu, update_pages_work); 2002 rb_update_pages(cpu_buffer); 2003 complete(&cpu_buffer->update_done); 2004 } 2005 2006 /** 2007 * ring_buffer_resize - resize the ring buffer 2008 * @buffer: the buffer to resize. 2009 * @size: the new size. 2010 * @cpu_id: the cpu buffer to resize 2011 * 2012 * Minimum size is 2 * buffer->subbuf_size. 2013 * 2014 * Returns 0 on success and < 0 on failure. 2015 */ 2016 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2017 int cpu_id) 2018 { 2019 struct ring_buffer_per_cpu *cpu_buffer; 2020 unsigned long nr_pages; 2021 int cpu, err; 2022 2023 /* 2024 * Always succeed at resizing a non-existent buffer: 2025 */ 2026 if (!buffer) 2027 return 0; 2028 2029 /* Make sure the requested buffer exists */ 2030 if (cpu_id != RING_BUFFER_ALL_CPUS && 2031 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2032 return 0; 2033 2034 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2035 2036 /* we need a minimum of two pages */ 2037 if (nr_pages < 2) 2038 nr_pages = 2; 2039 2040 /* prevent another thread from changing buffer sizes */ 2041 mutex_lock(&buffer->mutex); 2042 atomic_inc(&buffer->resizing); 2043 2044 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2045 /* 2046 * Don't succeed if resizing is disabled, as a reader might be 2047 * manipulating the ring buffer and is expecting a sane state while 2048 * this is true. 2049 */ 2050 for_each_buffer_cpu(buffer, cpu) { 2051 cpu_buffer = buffer->buffers[cpu]; 2052 if (atomic_read(&cpu_buffer->resize_disabled)) { 2053 err = -EBUSY; 2054 goto out_err_unlock; 2055 } 2056 } 2057 2058 /* calculate the pages to update */ 2059 for_each_buffer_cpu(buffer, cpu) { 2060 cpu_buffer = buffer->buffers[cpu]; 2061 2062 cpu_buffer->nr_pages_to_update = nr_pages - 2063 cpu_buffer->nr_pages; 2064 /* 2065 * nothing more to do for removing pages or no update 2066 */ 2067 if (cpu_buffer->nr_pages_to_update <= 0) 2068 continue; 2069 /* 2070 * to add pages, make sure all new pages can be 2071 * allocated without receiving ENOMEM 2072 */ 2073 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2074 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2075 &cpu_buffer->new_pages)) { 2076 /* not enough memory for new pages */ 2077 err = -ENOMEM; 2078 goto out_err; 2079 } 2080 2081 cond_resched(); 2082 } 2083 2084 cpus_read_lock(); 2085 /* 2086 * Fire off all the required work handlers 2087 * We can't schedule on offline CPUs, but it's not necessary 2088 * since we can change their buffer sizes without any race. 2089 */ 2090 for_each_buffer_cpu(buffer, cpu) { 2091 cpu_buffer = buffer->buffers[cpu]; 2092 if (!cpu_buffer->nr_pages_to_update) 2093 continue; 2094 2095 /* Can't run something on an offline CPU. */ 2096 if (!cpu_online(cpu)) { 2097 rb_update_pages(cpu_buffer); 2098 cpu_buffer->nr_pages_to_update = 0; 2099 } else { 2100 /* Run directly if possible. */ 2101 migrate_disable(); 2102 if (cpu != smp_processor_id()) { 2103 migrate_enable(); 2104 schedule_work_on(cpu, 2105 &cpu_buffer->update_pages_work); 2106 } else { 2107 update_pages_handler(&cpu_buffer->update_pages_work); 2108 migrate_enable(); 2109 } 2110 } 2111 } 2112 2113 /* wait for all the updates to complete */ 2114 for_each_buffer_cpu(buffer, cpu) { 2115 cpu_buffer = buffer->buffers[cpu]; 2116 if (!cpu_buffer->nr_pages_to_update) 2117 continue; 2118 2119 if (cpu_online(cpu)) 2120 wait_for_completion(&cpu_buffer->update_done); 2121 cpu_buffer->nr_pages_to_update = 0; 2122 } 2123 2124 cpus_read_unlock(); 2125 } else { 2126 cpu_buffer = buffer->buffers[cpu_id]; 2127 2128 if (nr_pages == cpu_buffer->nr_pages) 2129 goto out; 2130 2131 /* 2132 * Don't succeed if resizing is disabled, as a reader might be 2133 * manipulating the ring buffer and is expecting a sane state while 2134 * this is true. 2135 */ 2136 if (atomic_read(&cpu_buffer->resize_disabled)) { 2137 err = -EBUSY; 2138 goto out_err_unlock; 2139 } 2140 2141 cpu_buffer->nr_pages_to_update = nr_pages - 2142 cpu_buffer->nr_pages; 2143 2144 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2145 if (cpu_buffer->nr_pages_to_update > 0 && 2146 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2147 &cpu_buffer->new_pages)) { 2148 err = -ENOMEM; 2149 goto out_err; 2150 } 2151 2152 cpus_read_lock(); 2153 2154 /* Can't run something on an offline CPU. */ 2155 if (!cpu_online(cpu_id)) 2156 rb_update_pages(cpu_buffer); 2157 else { 2158 /* Run directly if possible. */ 2159 migrate_disable(); 2160 if (cpu_id == smp_processor_id()) { 2161 rb_update_pages(cpu_buffer); 2162 migrate_enable(); 2163 } else { 2164 migrate_enable(); 2165 schedule_work_on(cpu_id, 2166 &cpu_buffer->update_pages_work); 2167 wait_for_completion(&cpu_buffer->update_done); 2168 } 2169 } 2170 2171 cpu_buffer->nr_pages_to_update = 0; 2172 cpus_read_unlock(); 2173 } 2174 2175 out: 2176 /* 2177 * The ring buffer resize can happen with the ring buffer 2178 * enabled, so that the update disturbs the tracing as little 2179 * as possible. But if the buffer is disabled, we do not need 2180 * to worry about that, and we can take the time to verify 2181 * that the buffer is not corrupt. 2182 */ 2183 if (atomic_read(&buffer->record_disabled)) { 2184 atomic_inc(&buffer->record_disabled); 2185 /* 2186 * Even though the buffer was disabled, we must make sure 2187 * that it is truly disabled before calling rb_check_pages. 2188 * There could have been a race between checking 2189 * record_disable and incrementing it. 2190 */ 2191 synchronize_rcu(); 2192 for_each_buffer_cpu(buffer, cpu) { 2193 cpu_buffer = buffer->buffers[cpu]; 2194 rb_check_pages(cpu_buffer); 2195 } 2196 atomic_dec(&buffer->record_disabled); 2197 } 2198 2199 atomic_dec(&buffer->resizing); 2200 mutex_unlock(&buffer->mutex); 2201 return 0; 2202 2203 out_err: 2204 for_each_buffer_cpu(buffer, cpu) { 2205 struct buffer_page *bpage, *tmp; 2206 2207 cpu_buffer = buffer->buffers[cpu]; 2208 cpu_buffer->nr_pages_to_update = 0; 2209 2210 if (list_empty(&cpu_buffer->new_pages)) 2211 continue; 2212 2213 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2214 list) { 2215 list_del_init(&bpage->list); 2216 free_buffer_page(bpage); 2217 } 2218 } 2219 out_err_unlock: 2220 atomic_dec(&buffer->resizing); 2221 mutex_unlock(&buffer->mutex); 2222 return err; 2223 } 2224 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2225 2226 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2227 { 2228 mutex_lock(&buffer->mutex); 2229 if (val) 2230 buffer->flags |= RB_FL_OVERWRITE; 2231 else 2232 buffer->flags &= ~RB_FL_OVERWRITE; 2233 mutex_unlock(&buffer->mutex); 2234 } 2235 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2236 2237 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2238 { 2239 return bpage->page->data + index; 2240 } 2241 2242 static __always_inline struct ring_buffer_event * 2243 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2244 { 2245 return __rb_page_index(cpu_buffer->reader_page, 2246 cpu_buffer->reader_page->read); 2247 } 2248 2249 static struct ring_buffer_event * 2250 rb_iter_head_event(struct ring_buffer_iter *iter) 2251 { 2252 struct ring_buffer_event *event; 2253 struct buffer_page *iter_head_page = iter->head_page; 2254 unsigned long commit; 2255 unsigned length; 2256 2257 if (iter->head != iter->next_event) 2258 return iter->event; 2259 2260 /* 2261 * When the writer goes across pages, it issues a cmpxchg which 2262 * is a mb(), which will synchronize with the rmb here. 2263 * (see rb_tail_page_update() and __rb_reserve_next()) 2264 */ 2265 commit = rb_page_commit(iter_head_page); 2266 smp_rmb(); 2267 2268 /* An event needs to be at least 8 bytes in size */ 2269 if (iter->head > commit - 8) 2270 goto reset; 2271 2272 event = __rb_page_index(iter_head_page, iter->head); 2273 length = rb_event_length(event); 2274 2275 /* 2276 * READ_ONCE() doesn't work on functions and we don't want the 2277 * compiler doing any crazy optimizations with length. 2278 */ 2279 barrier(); 2280 2281 if ((iter->head + length) > commit || length > iter->event_size) 2282 /* Writer corrupted the read? */ 2283 goto reset; 2284 2285 memcpy(iter->event, event, length); 2286 /* 2287 * If the page stamp is still the same after this rmb() then the 2288 * event was safely copied without the writer entering the page. 2289 */ 2290 smp_rmb(); 2291 2292 /* Make sure the page didn't change since we read this */ 2293 if (iter->page_stamp != iter_head_page->page->time_stamp || 2294 commit > rb_page_commit(iter_head_page)) 2295 goto reset; 2296 2297 iter->next_event = iter->head + length; 2298 return iter->event; 2299 reset: 2300 /* Reset to the beginning */ 2301 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2302 iter->head = 0; 2303 iter->next_event = 0; 2304 iter->missed_events = 1; 2305 return NULL; 2306 } 2307 2308 /* Size is determined by what has been committed */ 2309 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2310 { 2311 return rb_page_commit(bpage); 2312 } 2313 2314 static __always_inline unsigned 2315 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2316 { 2317 return rb_page_commit(cpu_buffer->commit_page); 2318 } 2319 2320 static __always_inline unsigned 2321 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 2322 { 2323 unsigned long addr = (unsigned long)event; 2324 2325 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 2326 2327 return addr - BUF_PAGE_HDR_SIZE; 2328 } 2329 2330 static void rb_inc_iter(struct ring_buffer_iter *iter) 2331 { 2332 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2333 2334 /* 2335 * The iterator could be on the reader page (it starts there). 2336 * But the head could have moved, since the reader was 2337 * found. Check for this case and assign the iterator 2338 * to the head page instead of next. 2339 */ 2340 if (iter->head_page == cpu_buffer->reader_page) 2341 iter->head_page = rb_set_head_page(cpu_buffer); 2342 else 2343 rb_inc_page(&iter->head_page); 2344 2345 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2346 iter->head = 0; 2347 iter->next_event = 0; 2348 } 2349 2350 /* 2351 * rb_handle_head_page - writer hit the head page 2352 * 2353 * Returns: +1 to retry page 2354 * 0 to continue 2355 * -1 on error 2356 */ 2357 static int 2358 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2359 struct buffer_page *tail_page, 2360 struct buffer_page *next_page) 2361 { 2362 struct buffer_page *new_head; 2363 int entries; 2364 int type; 2365 int ret; 2366 2367 entries = rb_page_entries(next_page); 2368 2369 /* 2370 * The hard part is here. We need to move the head 2371 * forward, and protect against both readers on 2372 * other CPUs and writers coming in via interrupts. 2373 */ 2374 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2375 RB_PAGE_HEAD); 2376 2377 /* 2378 * type can be one of four: 2379 * NORMAL - an interrupt already moved it for us 2380 * HEAD - we are the first to get here. 2381 * UPDATE - we are the interrupt interrupting 2382 * a current move. 2383 * MOVED - a reader on another CPU moved the next 2384 * pointer to its reader page. Give up 2385 * and try again. 2386 */ 2387 2388 switch (type) { 2389 case RB_PAGE_HEAD: 2390 /* 2391 * We changed the head to UPDATE, thus 2392 * it is our responsibility to update 2393 * the counters. 2394 */ 2395 local_add(entries, &cpu_buffer->overrun); 2396 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2397 local_inc(&cpu_buffer->pages_lost); 2398 2399 /* 2400 * The entries will be zeroed out when we move the 2401 * tail page. 2402 */ 2403 2404 /* still more to do */ 2405 break; 2406 2407 case RB_PAGE_UPDATE: 2408 /* 2409 * This is an interrupt that interrupt the 2410 * previous update. Still more to do. 2411 */ 2412 break; 2413 case RB_PAGE_NORMAL: 2414 /* 2415 * An interrupt came in before the update 2416 * and processed this for us. 2417 * Nothing left to do. 2418 */ 2419 return 1; 2420 case RB_PAGE_MOVED: 2421 /* 2422 * The reader is on another CPU and just did 2423 * a swap with our next_page. 2424 * Try again. 2425 */ 2426 return 1; 2427 default: 2428 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2429 return -1; 2430 } 2431 2432 /* 2433 * Now that we are here, the old head pointer is 2434 * set to UPDATE. This will keep the reader from 2435 * swapping the head page with the reader page. 2436 * The reader (on another CPU) will spin till 2437 * we are finished. 2438 * 2439 * We just need to protect against interrupts 2440 * doing the job. We will set the next pointer 2441 * to HEAD. After that, we set the old pointer 2442 * to NORMAL, but only if it was HEAD before. 2443 * otherwise we are an interrupt, and only 2444 * want the outer most commit to reset it. 2445 */ 2446 new_head = next_page; 2447 rb_inc_page(&new_head); 2448 2449 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2450 RB_PAGE_NORMAL); 2451 2452 /* 2453 * Valid returns are: 2454 * HEAD - an interrupt came in and already set it. 2455 * NORMAL - One of two things: 2456 * 1) We really set it. 2457 * 2) A bunch of interrupts came in and moved 2458 * the page forward again. 2459 */ 2460 switch (ret) { 2461 case RB_PAGE_HEAD: 2462 case RB_PAGE_NORMAL: 2463 /* OK */ 2464 break; 2465 default: 2466 RB_WARN_ON(cpu_buffer, 1); 2467 return -1; 2468 } 2469 2470 /* 2471 * It is possible that an interrupt came in, 2472 * set the head up, then more interrupts came in 2473 * and moved it again. When we get back here, 2474 * the page would have been set to NORMAL but we 2475 * just set it back to HEAD. 2476 * 2477 * How do you detect this? Well, if that happened 2478 * the tail page would have moved. 2479 */ 2480 if (ret == RB_PAGE_NORMAL) { 2481 struct buffer_page *buffer_tail_page; 2482 2483 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2484 /* 2485 * If the tail had moved passed next, then we need 2486 * to reset the pointer. 2487 */ 2488 if (buffer_tail_page != tail_page && 2489 buffer_tail_page != next_page) 2490 rb_head_page_set_normal(cpu_buffer, new_head, 2491 next_page, 2492 RB_PAGE_HEAD); 2493 } 2494 2495 /* 2496 * If this was the outer most commit (the one that 2497 * changed the original pointer from HEAD to UPDATE), 2498 * then it is up to us to reset it to NORMAL. 2499 */ 2500 if (type == RB_PAGE_HEAD) { 2501 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2502 tail_page, 2503 RB_PAGE_UPDATE); 2504 if (RB_WARN_ON(cpu_buffer, 2505 ret != RB_PAGE_UPDATE)) 2506 return -1; 2507 } 2508 2509 return 0; 2510 } 2511 2512 static inline void 2513 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2514 unsigned long tail, struct rb_event_info *info) 2515 { 2516 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 2517 struct buffer_page *tail_page = info->tail_page; 2518 struct ring_buffer_event *event; 2519 unsigned long length = info->length; 2520 2521 /* 2522 * Only the event that crossed the page boundary 2523 * must fill the old tail_page with padding. 2524 */ 2525 if (tail >= bsize) { 2526 /* 2527 * If the page was filled, then we still need 2528 * to update the real_end. Reset it to zero 2529 * and the reader will ignore it. 2530 */ 2531 if (tail == bsize) 2532 tail_page->real_end = 0; 2533 2534 local_sub(length, &tail_page->write); 2535 return; 2536 } 2537 2538 event = __rb_page_index(tail_page, tail); 2539 2540 /* 2541 * Save the original length to the meta data. 2542 * This will be used by the reader to add lost event 2543 * counter. 2544 */ 2545 tail_page->real_end = tail; 2546 2547 /* 2548 * If this event is bigger than the minimum size, then 2549 * we need to be careful that we don't subtract the 2550 * write counter enough to allow another writer to slip 2551 * in on this page. 2552 * We put in a discarded commit instead, to make sure 2553 * that this space is not used again, and this space will 2554 * not be accounted into 'entries_bytes'. 2555 * 2556 * If we are less than the minimum size, we don't need to 2557 * worry about it. 2558 */ 2559 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 2560 /* No room for any events */ 2561 2562 /* Mark the rest of the page with padding */ 2563 rb_event_set_padding(event); 2564 2565 /* Make sure the padding is visible before the write update */ 2566 smp_wmb(); 2567 2568 /* Set the write back to the previous setting */ 2569 local_sub(length, &tail_page->write); 2570 return; 2571 } 2572 2573 /* Put in a discarded event */ 2574 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 2575 event->type_len = RINGBUF_TYPE_PADDING; 2576 /* time delta must be non zero */ 2577 event->time_delta = 1; 2578 2579 /* account for padding bytes */ 2580 local_add(bsize - tail, &cpu_buffer->entries_bytes); 2581 2582 /* Make sure the padding is visible before the tail_page->write update */ 2583 smp_wmb(); 2584 2585 /* Set write to end of buffer */ 2586 length = (tail + length) - bsize; 2587 local_sub(length, &tail_page->write); 2588 } 2589 2590 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2591 2592 /* 2593 * This is the slow path, force gcc not to inline it. 2594 */ 2595 static noinline struct ring_buffer_event * 2596 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2597 unsigned long tail, struct rb_event_info *info) 2598 { 2599 struct buffer_page *tail_page = info->tail_page; 2600 struct buffer_page *commit_page = cpu_buffer->commit_page; 2601 struct trace_buffer *buffer = cpu_buffer->buffer; 2602 struct buffer_page *next_page; 2603 int ret; 2604 2605 next_page = tail_page; 2606 2607 rb_inc_page(&next_page); 2608 2609 /* 2610 * If for some reason, we had an interrupt storm that made 2611 * it all the way around the buffer, bail, and warn 2612 * about it. 2613 */ 2614 if (unlikely(next_page == commit_page)) { 2615 local_inc(&cpu_buffer->commit_overrun); 2616 goto out_reset; 2617 } 2618 2619 /* 2620 * This is where the fun begins! 2621 * 2622 * We are fighting against races between a reader that 2623 * could be on another CPU trying to swap its reader 2624 * page with the buffer head. 2625 * 2626 * We are also fighting against interrupts coming in and 2627 * moving the head or tail on us as well. 2628 * 2629 * If the next page is the head page then we have filled 2630 * the buffer, unless the commit page is still on the 2631 * reader page. 2632 */ 2633 if (rb_is_head_page(next_page, &tail_page->list)) { 2634 2635 /* 2636 * If the commit is not on the reader page, then 2637 * move the header page. 2638 */ 2639 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2640 /* 2641 * If we are not in overwrite mode, 2642 * this is easy, just stop here. 2643 */ 2644 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2645 local_inc(&cpu_buffer->dropped_events); 2646 goto out_reset; 2647 } 2648 2649 ret = rb_handle_head_page(cpu_buffer, 2650 tail_page, 2651 next_page); 2652 if (ret < 0) 2653 goto out_reset; 2654 if (ret) 2655 goto out_again; 2656 } else { 2657 /* 2658 * We need to be careful here too. The 2659 * commit page could still be on the reader 2660 * page. We could have a small buffer, and 2661 * have filled up the buffer with events 2662 * from interrupts and such, and wrapped. 2663 * 2664 * Note, if the tail page is also on the 2665 * reader_page, we let it move out. 2666 */ 2667 if (unlikely((cpu_buffer->commit_page != 2668 cpu_buffer->tail_page) && 2669 (cpu_buffer->commit_page == 2670 cpu_buffer->reader_page))) { 2671 local_inc(&cpu_buffer->commit_overrun); 2672 goto out_reset; 2673 } 2674 } 2675 } 2676 2677 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2678 2679 out_again: 2680 2681 rb_reset_tail(cpu_buffer, tail, info); 2682 2683 /* Commit what we have for now. */ 2684 rb_end_commit(cpu_buffer); 2685 /* rb_end_commit() decs committing */ 2686 local_inc(&cpu_buffer->committing); 2687 2688 /* fail and let the caller try again */ 2689 return ERR_PTR(-EAGAIN); 2690 2691 out_reset: 2692 /* reset write */ 2693 rb_reset_tail(cpu_buffer, tail, info); 2694 2695 return NULL; 2696 } 2697 2698 /* Slow path */ 2699 static struct ring_buffer_event * 2700 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2701 struct ring_buffer_event *event, u64 delta, bool abs) 2702 { 2703 if (abs) 2704 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2705 else 2706 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2707 2708 /* Not the first event on the page, or not delta? */ 2709 if (abs || rb_event_index(cpu_buffer, event)) { 2710 event->time_delta = delta & TS_MASK; 2711 event->array[0] = delta >> TS_SHIFT; 2712 } else { 2713 /* nope, just zero it */ 2714 event->time_delta = 0; 2715 event->array[0] = 0; 2716 } 2717 2718 return skip_time_extend(event); 2719 } 2720 2721 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2722 static inline bool sched_clock_stable(void) 2723 { 2724 return true; 2725 } 2726 #endif 2727 2728 static void 2729 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2730 struct rb_event_info *info) 2731 { 2732 u64 write_stamp; 2733 2734 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2735 (unsigned long long)info->delta, 2736 (unsigned long long)info->ts, 2737 (unsigned long long)info->before, 2738 (unsigned long long)info->after, 2739 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 2740 sched_clock_stable() ? "" : 2741 "If you just came from a suspend/resume,\n" 2742 "please switch to the trace global clock:\n" 2743 " echo global > /sys/kernel/tracing/trace_clock\n" 2744 "or add trace_clock=global to the kernel command line\n"); 2745 } 2746 2747 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2748 struct ring_buffer_event **event, 2749 struct rb_event_info *info, 2750 u64 *delta, 2751 unsigned int *length) 2752 { 2753 bool abs = info->add_timestamp & 2754 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2755 2756 if (unlikely(info->delta > (1ULL << 59))) { 2757 /* 2758 * Some timers can use more than 59 bits, and when a timestamp 2759 * is added to the buffer, it will lose those bits. 2760 */ 2761 if (abs && (info->ts & TS_MSB)) { 2762 info->delta &= ABS_TS_MASK; 2763 2764 /* did the clock go backwards */ 2765 } else if (info->before == info->after && info->before > info->ts) { 2766 /* not interrupted */ 2767 static int once; 2768 2769 /* 2770 * This is possible with a recalibrating of the TSC. 2771 * Do not produce a call stack, but just report it. 2772 */ 2773 if (!once) { 2774 once++; 2775 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2776 info->before, info->ts); 2777 } 2778 } else 2779 rb_check_timestamp(cpu_buffer, info); 2780 if (!abs) 2781 info->delta = 0; 2782 } 2783 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 2784 *length -= RB_LEN_TIME_EXTEND; 2785 *delta = 0; 2786 } 2787 2788 /** 2789 * rb_update_event - update event type and data 2790 * @cpu_buffer: The per cpu buffer of the @event 2791 * @event: the event to update 2792 * @info: The info to update the @event with (contains length and delta) 2793 * 2794 * Update the type and data fields of the @event. The length 2795 * is the actual size that is written to the ring buffer, 2796 * and with this, we can determine what to place into the 2797 * data field. 2798 */ 2799 static void 2800 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2801 struct ring_buffer_event *event, 2802 struct rb_event_info *info) 2803 { 2804 unsigned length = info->length; 2805 u64 delta = info->delta; 2806 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2807 2808 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2809 cpu_buffer->event_stamp[nest] = info->ts; 2810 2811 /* 2812 * If we need to add a timestamp, then we 2813 * add it to the start of the reserved space. 2814 */ 2815 if (unlikely(info->add_timestamp)) 2816 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2817 2818 event->time_delta = delta; 2819 length -= RB_EVNT_HDR_SIZE; 2820 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2821 event->type_len = 0; 2822 event->array[0] = length; 2823 } else 2824 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2825 } 2826 2827 static unsigned rb_calculate_event_length(unsigned length) 2828 { 2829 struct ring_buffer_event event; /* Used only for sizeof array */ 2830 2831 /* zero length can cause confusions */ 2832 if (!length) 2833 length++; 2834 2835 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2836 length += sizeof(event.array[0]); 2837 2838 length += RB_EVNT_HDR_SIZE; 2839 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2840 2841 /* 2842 * In case the time delta is larger than the 27 bits for it 2843 * in the header, we need to add a timestamp. If another 2844 * event comes in when trying to discard this one to increase 2845 * the length, then the timestamp will be added in the allocated 2846 * space of this event. If length is bigger than the size needed 2847 * for the TIME_EXTEND, then padding has to be used. The events 2848 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2849 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2850 * As length is a multiple of 4, we only need to worry if it 2851 * is 12 (RB_LEN_TIME_EXTEND + 4). 2852 */ 2853 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2854 length += RB_ALIGNMENT; 2855 2856 return length; 2857 } 2858 2859 static inline bool 2860 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2861 struct ring_buffer_event *event) 2862 { 2863 unsigned long new_index, old_index; 2864 struct buffer_page *bpage; 2865 unsigned long addr; 2866 2867 new_index = rb_event_index(cpu_buffer, event); 2868 old_index = new_index + rb_event_ts_length(event); 2869 addr = (unsigned long)event; 2870 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 2871 2872 bpage = READ_ONCE(cpu_buffer->tail_page); 2873 2874 /* 2875 * Make sure the tail_page is still the same and 2876 * the next write location is the end of this event 2877 */ 2878 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2879 unsigned long write_mask = 2880 local_read(&bpage->write) & ~RB_WRITE_MASK; 2881 unsigned long event_length = rb_event_length(event); 2882 2883 /* 2884 * For the before_stamp to be different than the write_stamp 2885 * to make sure that the next event adds an absolute 2886 * value and does not rely on the saved write stamp, which 2887 * is now going to be bogus. 2888 * 2889 * By setting the before_stamp to zero, the next event 2890 * is not going to use the write_stamp and will instead 2891 * create an absolute timestamp. This means there's no 2892 * reason to update the wirte_stamp! 2893 */ 2894 rb_time_set(&cpu_buffer->before_stamp, 0); 2895 2896 /* 2897 * If an event were to come in now, it would see that the 2898 * write_stamp and the before_stamp are different, and assume 2899 * that this event just added itself before updating 2900 * the write stamp. The interrupting event will fix the 2901 * write stamp for us, and use an absolute timestamp. 2902 */ 2903 2904 /* 2905 * This is on the tail page. It is possible that 2906 * a write could come in and move the tail page 2907 * and write to the next page. That is fine 2908 * because we just shorten what is on this page. 2909 */ 2910 old_index += write_mask; 2911 new_index += write_mask; 2912 2913 /* caution: old_index gets updated on cmpxchg failure */ 2914 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 2915 /* update counters */ 2916 local_sub(event_length, &cpu_buffer->entries_bytes); 2917 return true; 2918 } 2919 } 2920 2921 /* could not discard */ 2922 return false; 2923 } 2924 2925 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2926 { 2927 local_inc(&cpu_buffer->committing); 2928 local_inc(&cpu_buffer->commits); 2929 } 2930 2931 static __always_inline void 2932 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2933 { 2934 unsigned long max_count; 2935 2936 /* 2937 * We only race with interrupts and NMIs on this CPU. 2938 * If we own the commit event, then we can commit 2939 * all others that interrupted us, since the interruptions 2940 * are in stack format (they finish before they come 2941 * back to us). This allows us to do a simple loop to 2942 * assign the commit to the tail. 2943 */ 2944 again: 2945 max_count = cpu_buffer->nr_pages * 100; 2946 2947 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2948 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2949 return; 2950 if (RB_WARN_ON(cpu_buffer, 2951 rb_is_reader_page(cpu_buffer->tail_page))) 2952 return; 2953 /* 2954 * No need for a memory barrier here, as the update 2955 * of the tail_page did it for this page. 2956 */ 2957 local_set(&cpu_buffer->commit_page->page->commit, 2958 rb_page_write(cpu_buffer->commit_page)); 2959 rb_inc_page(&cpu_buffer->commit_page); 2960 /* add barrier to keep gcc from optimizing too much */ 2961 barrier(); 2962 } 2963 while (rb_commit_index(cpu_buffer) != 2964 rb_page_write(cpu_buffer->commit_page)) { 2965 2966 /* Make sure the readers see the content of what is committed. */ 2967 smp_wmb(); 2968 local_set(&cpu_buffer->commit_page->page->commit, 2969 rb_page_write(cpu_buffer->commit_page)); 2970 RB_WARN_ON(cpu_buffer, 2971 local_read(&cpu_buffer->commit_page->page->commit) & 2972 ~RB_WRITE_MASK); 2973 barrier(); 2974 } 2975 2976 /* again, keep gcc from optimizing */ 2977 barrier(); 2978 2979 /* 2980 * If an interrupt came in just after the first while loop 2981 * and pushed the tail page forward, we will be left with 2982 * a dangling commit that will never go forward. 2983 */ 2984 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2985 goto again; 2986 } 2987 2988 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2989 { 2990 unsigned long commits; 2991 2992 if (RB_WARN_ON(cpu_buffer, 2993 !local_read(&cpu_buffer->committing))) 2994 return; 2995 2996 again: 2997 commits = local_read(&cpu_buffer->commits); 2998 /* synchronize with interrupts */ 2999 barrier(); 3000 if (local_read(&cpu_buffer->committing) == 1) 3001 rb_set_commit_to_write(cpu_buffer); 3002 3003 local_dec(&cpu_buffer->committing); 3004 3005 /* synchronize with interrupts */ 3006 barrier(); 3007 3008 /* 3009 * Need to account for interrupts coming in between the 3010 * updating of the commit page and the clearing of the 3011 * committing counter. 3012 */ 3013 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3014 !local_read(&cpu_buffer->committing)) { 3015 local_inc(&cpu_buffer->committing); 3016 goto again; 3017 } 3018 } 3019 3020 static inline void rb_event_discard(struct ring_buffer_event *event) 3021 { 3022 if (extended_time(event)) 3023 event = skip_time_extend(event); 3024 3025 /* array[0] holds the actual length for the discarded event */ 3026 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3027 event->type_len = RINGBUF_TYPE_PADDING; 3028 /* time delta must be non zero */ 3029 if (!event->time_delta) 3030 event->time_delta = 1; 3031 } 3032 3033 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3034 { 3035 local_inc(&cpu_buffer->entries); 3036 rb_end_commit(cpu_buffer); 3037 } 3038 3039 static __always_inline void 3040 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3041 { 3042 if (buffer->irq_work.waiters_pending) { 3043 buffer->irq_work.waiters_pending = false; 3044 /* irq_work_queue() supplies it's own memory barriers */ 3045 irq_work_queue(&buffer->irq_work.work); 3046 } 3047 3048 if (cpu_buffer->irq_work.waiters_pending) { 3049 cpu_buffer->irq_work.waiters_pending = false; 3050 /* irq_work_queue() supplies it's own memory barriers */ 3051 irq_work_queue(&cpu_buffer->irq_work.work); 3052 } 3053 3054 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3055 return; 3056 3057 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3058 return; 3059 3060 if (!cpu_buffer->irq_work.full_waiters_pending) 3061 return; 3062 3063 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3064 3065 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3066 return; 3067 3068 cpu_buffer->irq_work.wakeup_full = true; 3069 cpu_buffer->irq_work.full_waiters_pending = false; 3070 /* irq_work_queue() supplies it's own memory barriers */ 3071 irq_work_queue(&cpu_buffer->irq_work.work); 3072 } 3073 3074 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3075 # define do_ring_buffer_record_recursion() \ 3076 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3077 #else 3078 # define do_ring_buffer_record_recursion() do { } while (0) 3079 #endif 3080 3081 /* 3082 * The lock and unlock are done within a preempt disable section. 3083 * The current_context per_cpu variable can only be modified 3084 * by the current task between lock and unlock. But it can 3085 * be modified more than once via an interrupt. To pass this 3086 * information from the lock to the unlock without having to 3087 * access the 'in_interrupt()' functions again (which do show 3088 * a bit of overhead in something as critical as function tracing, 3089 * we use a bitmask trick. 3090 * 3091 * bit 1 = NMI context 3092 * bit 2 = IRQ context 3093 * bit 3 = SoftIRQ context 3094 * bit 4 = normal context. 3095 * 3096 * This works because this is the order of contexts that can 3097 * preempt other contexts. A SoftIRQ never preempts an IRQ 3098 * context. 3099 * 3100 * When the context is determined, the corresponding bit is 3101 * checked and set (if it was set, then a recursion of that context 3102 * happened). 3103 * 3104 * On unlock, we need to clear this bit. To do so, just subtract 3105 * 1 from the current_context and AND it to itself. 3106 * 3107 * (binary) 3108 * 101 - 1 = 100 3109 * 101 & 100 = 100 (clearing bit zero) 3110 * 3111 * 1010 - 1 = 1001 3112 * 1010 & 1001 = 1000 (clearing bit 1) 3113 * 3114 * The least significant bit can be cleared this way, and it 3115 * just so happens that it is the same bit corresponding to 3116 * the current context. 3117 * 3118 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3119 * is set when a recursion is detected at the current context, and if 3120 * the TRANSITION bit is already set, it will fail the recursion. 3121 * This is needed because there's a lag between the changing of 3122 * interrupt context and updating the preempt count. In this case, 3123 * a false positive will be found. To handle this, one extra recursion 3124 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3125 * bit is already set, then it is considered a recursion and the function 3126 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3127 * 3128 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3129 * to be cleared. Even if it wasn't the context that set it. That is, 3130 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3131 * is called before preempt_count() is updated, since the check will 3132 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3133 * NMI then comes in, it will set the NMI bit, but when the NMI code 3134 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3135 * and leave the NMI bit set. But this is fine, because the interrupt 3136 * code that set the TRANSITION bit will then clear the NMI bit when it 3137 * calls trace_recursive_unlock(). If another NMI comes in, it will 3138 * set the TRANSITION bit and continue. 3139 * 3140 * Note: The TRANSITION bit only handles a single transition between context. 3141 */ 3142 3143 static __always_inline bool 3144 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3145 { 3146 unsigned int val = cpu_buffer->current_context; 3147 int bit = interrupt_context_level(); 3148 3149 bit = RB_CTX_NORMAL - bit; 3150 3151 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3152 /* 3153 * It is possible that this was called by transitioning 3154 * between interrupt context, and preempt_count() has not 3155 * been updated yet. In this case, use the TRANSITION bit. 3156 */ 3157 bit = RB_CTX_TRANSITION; 3158 if (val & (1 << (bit + cpu_buffer->nest))) { 3159 do_ring_buffer_record_recursion(); 3160 return true; 3161 } 3162 } 3163 3164 val |= (1 << (bit + cpu_buffer->nest)); 3165 cpu_buffer->current_context = val; 3166 3167 return false; 3168 } 3169 3170 static __always_inline void 3171 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3172 { 3173 cpu_buffer->current_context &= 3174 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3175 } 3176 3177 /* The recursive locking above uses 5 bits */ 3178 #define NESTED_BITS 5 3179 3180 /** 3181 * ring_buffer_nest_start - Allow to trace while nested 3182 * @buffer: The ring buffer to modify 3183 * 3184 * The ring buffer has a safety mechanism to prevent recursion. 3185 * But there may be a case where a trace needs to be done while 3186 * tracing something else. In this case, calling this function 3187 * will allow this function to nest within a currently active 3188 * ring_buffer_lock_reserve(). 3189 * 3190 * Call this function before calling another ring_buffer_lock_reserve() and 3191 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3192 */ 3193 void ring_buffer_nest_start(struct trace_buffer *buffer) 3194 { 3195 struct ring_buffer_per_cpu *cpu_buffer; 3196 int cpu; 3197 3198 /* Enabled by ring_buffer_nest_end() */ 3199 preempt_disable_notrace(); 3200 cpu = raw_smp_processor_id(); 3201 cpu_buffer = buffer->buffers[cpu]; 3202 /* This is the shift value for the above recursive locking */ 3203 cpu_buffer->nest += NESTED_BITS; 3204 } 3205 3206 /** 3207 * ring_buffer_nest_end - Allow to trace while nested 3208 * @buffer: The ring buffer to modify 3209 * 3210 * Must be called after ring_buffer_nest_start() and after the 3211 * ring_buffer_unlock_commit(). 3212 */ 3213 void ring_buffer_nest_end(struct trace_buffer *buffer) 3214 { 3215 struct ring_buffer_per_cpu *cpu_buffer; 3216 int cpu; 3217 3218 /* disabled by ring_buffer_nest_start() */ 3219 cpu = raw_smp_processor_id(); 3220 cpu_buffer = buffer->buffers[cpu]; 3221 /* This is the shift value for the above recursive locking */ 3222 cpu_buffer->nest -= NESTED_BITS; 3223 preempt_enable_notrace(); 3224 } 3225 3226 /** 3227 * ring_buffer_unlock_commit - commit a reserved 3228 * @buffer: The buffer to commit to 3229 * 3230 * This commits the data to the ring buffer, and releases any locks held. 3231 * 3232 * Must be paired with ring_buffer_lock_reserve. 3233 */ 3234 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3235 { 3236 struct ring_buffer_per_cpu *cpu_buffer; 3237 int cpu = raw_smp_processor_id(); 3238 3239 cpu_buffer = buffer->buffers[cpu]; 3240 3241 rb_commit(cpu_buffer); 3242 3243 rb_wakeups(buffer, cpu_buffer); 3244 3245 trace_recursive_unlock(cpu_buffer); 3246 3247 preempt_enable_notrace(); 3248 3249 return 0; 3250 } 3251 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3252 3253 /* Special value to validate all deltas on a page. */ 3254 #define CHECK_FULL_PAGE 1L 3255 3256 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3257 3258 static const char *show_irq_str(int bits) 3259 { 3260 const char *type[] = { 3261 ".", // 0 3262 "s", // 1 3263 "h", // 2 3264 "Hs", // 3 3265 "n", // 4 3266 "Ns", // 5 3267 "Nh", // 6 3268 "NHs", // 7 3269 }; 3270 3271 return type[bits]; 3272 } 3273 3274 /* Assume this is an trace event */ 3275 static const char *show_flags(struct ring_buffer_event *event) 3276 { 3277 struct trace_entry *entry; 3278 int bits = 0; 3279 3280 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3281 return "X"; 3282 3283 entry = ring_buffer_event_data(event); 3284 3285 if (entry->flags & TRACE_FLAG_SOFTIRQ) 3286 bits |= 1; 3287 3288 if (entry->flags & TRACE_FLAG_HARDIRQ) 3289 bits |= 2; 3290 3291 if (entry->flags & TRACE_FLAG_NMI) 3292 bits |= 4; 3293 3294 return show_irq_str(bits); 3295 } 3296 3297 static const char *show_irq(struct ring_buffer_event *event) 3298 { 3299 struct trace_entry *entry; 3300 3301 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3302 return ""; 3303 3304 entry = ring_buffer_event_data(event); 3305 if (entry->flags & TRACE_FLAG_IRQS_OFF) 3306 return "d"; 3307 return ""; 3308 } 3309 3310 static const char *show_interrupt_level(void) 3311 { 3312 unsigned long pc = preempt_count(); 3313 unsigned char level = 0; 3314 3315 if (pc & SOFTIRQ_OFFSET) 3316 level |= 1; 3317 3318 if (pc & HARDIRQ_MASK) 3319 level |= 2; 3320 3321 if (pc & NMI_MASK) 3322 level |= 4; 3323 3324 return show_irq_str(level); 3325 } 3326 3327 static void dump_buffer_page(struct buffer_data_page *bpage, 3328 struct rb_event_info *info, 3329 unsigned long tail) 3330 { 3331 struct ring_buffer_event *event; 3332 u64 ts, delta; 3333 int e; 3334 3335 ts = bpage->time_stamp; 3336 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3337 3338 for (e = 0; e < tail; e += rb_event_length(event)) { 3339 3340 event = (struct ring_buffer_event *)(bpage->data + e); 3341 3342 switch (event->type_len) { 3343 3344 case RINGBUF_TYPE_TIME_EXTEND: 3345 delta = rb_event_time_stamp(event); 3346 ts += delta; 3347 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 3348 e, ts, delta); 3349 break; 3350 3351 case RINGBUF_TYPE_TIME_STAMP: 3352 delta = rb_event_time_stamp(event); 3353 ts = rb_fix_abs_ts(delta, ts); 3354 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 3355 e, ts, delta); 3356 break; 3357 3358 case RINGBUF_TYPE_PADDING: 3359 ts += event->time_delta; 3360 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 3361 e, ts, event->time_delta); 3362 break; 3363 3364 case RINGBUF_TYPE_DATA: 3365 ts += event->time_delta; 3366 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 3367 e, ts, event->time_delta, 3368 show_flags(event), show_irq(event)); 3369 break; 3370 3371 default: 3372 break; 3373 } 3374 } 3375 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 3376 } 3377 3378 static DEFINE_PER_CPU(atomic_t, checking); 3379 static atomic_t ts_dump; 3380 3381 #define buffer_warn_return(fmt, ...) \ 3382 do { \ 3383 /* If another report is happening, ignore this one */ \ 3384 if (atomic_inc_return(&ts_dump) != 1) { \ 3385 atomic_dec(&ts_dump); \ 3386 goto out; \ 3387 } \ 3388 atomic_inc(&cpu_buffer->record_disabled); \ 3389 pr_warn(fmt, ##__VA_ARGS__); \ 3390 dump_buffer_page(bpage, info, tail); \ 3391 atomic_dec(&ts_dump); \ 3392 /* There's some cases in boot up that this can happen */ \ 3393 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 3394 /* Do not re-enable checking */ \ 3395 return; \ 3396 } while (0) 3397 3398 /* 3399 * Check if the current event time stamp matches the deltas on 3400 * the buffer page. 3401 */ 3402 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3403 struct rb_event_info *info, 3404 unsigned long tail) 3405 { 3406 struct ring_buffer_event *event; 3407 struct buffer_data_page *bpage; 3408 u64 ts, delta; 3409 bool full = false; 3410 int e; 3411 3412 bpage = info->tail_page->page; 3413 3414 if (tail == CHECK_FULL_PAGE) { 3415 full = true; 3416 tail = local_read(&bpage->commit); 3417 } else if (info->add_timestamp & 3418 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3419 /* Ignore events with absolute time stamps */ 3420 return; 3421 } 3422 3423 /* 3424 * Do not check the first event (skip possible extends too). 3425 * Also do not check if previous events have not been committed. 3426 */ 3427 if (tail <= 8 || tail > local_read(&bpage->commit)) 3428 return; 3429 3430 /* 3431 * If this interrupted another event, 3432 */ 3433 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3434 goto out; 3435 3436 ts = bpage->time_stamp; 3437 3438 for (e = 0; e < tail; e += rb_event_length(event)) { 3439 3440 event = (struct ring_buffer_event *)(bpage->data + e); 3441 3442 switch (event->type_len) { 3443 3444 case RINGBUF_TYPE_TIME_EXTEND: 3445 delta = rb_event_time_stamp(event); 3446 ts += delta; 3447 break; 3448 3449 case RINGBUF_TYPE_TIME_STAMP: 3450 delta = rb_event_time_stamp(event); 3451 delta = rb_fix_abs_ts(delta, ts); 3452 if (delta < ts) { 3453 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 3454 cpu_buffer->cpu, ts, delta); 3455 } 3456 ts = delta; 3457 break; 3458 3459 case RINGBUF_TYPE_PADDING: 3460 if (event->time_delta == 1) 3461 break; 3462 fallthrough; 3463 case RINGBUF_TYPE_DATA: 3464 ts += event->time_delta; 3465 break; 3466 3467 default: 3468 RB_WARN_ON(cpu_buffer, 1); 3469 } 3470 } 3471 if ((full && ts > info->ts) || 3472 (!full && ts + info->delta != info->ts)) { 3473 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 3474 cpu_buffer->cpu, 3475 ts + info->delta, info->ts, info->delta, 3476 info->before, info->after, 3477 full ? " (full)" : "", show_interrupt_level()); 3478 } 3479 out: 3480 atomic_dec(this_cpu_ptr(&checking)); 3481 } 3482 #else 3483 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3484 struct rb_event_info *info, 3485 unsigned long tail) 3486 { 3487 } 3488 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3489 3490 static struct ring_buffer_event * 3491 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3492 struct rb_event_info *info) 3493 { 3494 struct ring_buffer_event *event; 3495 struct buffer_page *tail_page; 3496 unsigned long tail, write, w; 3497 3498 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3499 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3500 3501 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3502 barrier(); 3503 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3504 rb_time_read(&cpu_buffer->write_stamp, &info->after); 3505 barrier(); 3506 info->ts = rb_time_stamp(cpu_buffer->buffer); 3507 3508 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3509 info->delta = info->ts; 3510 } else { 3511 /* 3512 * If interrupting an event time update, we may need an 3513 * absolute timestamp. 3514 * Don't bother if this is the start of a new page (w == 0). 3515 */ 3516 if (!w) { 3517 /* Use the sub-buffer timestamp */ 3518 info->delta = 0; 3519 } else if (unlikely(info->before != info->after)) { 3520 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3521 info->length += RB_LEN_TIME_EXTEND; 3522 } else { 3523 info->delta = info->ts - info->after; 3524 if (unlikely(test_time_stamp(info->delta))) { 3525 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3526 info->length += RB_LEN_TIME_EXTEND; 3527 } 3528 } 3529 } 3530 3531 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3532 3533 /*C*/ write = local_add_return(info->length, &tail_page->write); 3534 3535 /* set write to only the index of the write */ 3536 write &= RB_WRITE_MASK; 3537 3538 tail = write - info->length; 3539 3540 /* See if we shot pass the end of this buffer page */ 3541 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 3542 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3543 return rb_move_tail(cpu_buffer, tail, info); 3544 } 3545 3546 if (likely(tail == w)) { 3547 /* Nothing interrupted us between A and C */ 3548 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3549 /* 3550 * If something came in between C and D, the write stamp 3551 * may now not be in sync. But that's fine as the before_stamp 3552 * will be different and then next event will just be forced 3553 * to use an absolute timestamp. 3554 */ 3555 if (likely(!(info->add_timestamp & 3556 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3557 /* This did not interrupt any time update */ 3558 info->delta = info->ts - info->after; 3559 else 3560 /* Just use full timestamp for interrupting event */ 3561 info->delta = info->ts; 3562 check_buffer(cpu_buffer, info, tail); 3563 } else { 3564 u64 ts; 3565 /* SLOW PATH - Interrupted between A and C */ 3566 3567 /* Save the old before_stamp */ 3568 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3569 3570 /* 3571 * Read a new timestamp and update the before_stamp to make 3572 * the next event after this one force using an absolute 3573 * timestamp. This is in case an interrupt were to come in 3574 * between E and F. 3575 */ 3576 ts = rb_time_stamp(cpu_buffer->buffer); 3577 rb_time_set(&cpu_buffer->before_stamp, ts); 3578 3579 barrier(); 3580 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 3581 barrier(); 3582 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3583 info->after == info->before && info->after < ts) { 3584 /* 3585 * Nothing came after this event between C and F, it is 3586 * safe to use info->after for the delta as it 3587 * matched info->before and is still valid. 3588 */ 3589 info->delta = ts - info->after; 3590 } else { 3591 /* 3592 * Interrupted between C and F: 3593 * Lost the previous events time stamp. Just set the 3594 * delta to zero, and this will be the same time as 3595 * the event this event interrupted. And the events that 3596 * came after this will still be correct (as they would 3597 * have built their delta on the previous event. 3598 */ 3599 info->delta = 0; 3600 } 3601 info->ts = ts; 3602 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3603 } 3604 3605 /* 3606 * If this is the first commit on the page, then it has the same 3607 * timestamp as the page itself. 3608 */ 3609 if (unlikely(!tail && !(info->add_timestamp & 3610 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3611 info->delta = 0; 3612 3613 /* We reserved something on the buffer */ 3614 3615 event = __rb_page_index(tail_page, tail); 3616 rb_update_event(cpu_buffer, event, info); 3617 3618 local_inc(&tail_page->entries); 3619 3620 /* 3621 * If this is the first commit on the page, then update 3622 * its timestamp. 3623 */ 3624 if (unlikely(!tail)) 3625 tail_page->page->time_stamp = info->ts; 3626 3627 /* account for these added bytes */ 3628 local_add(info->length, &cpu_buffer->entries_bytes); 3629 3630 return event; 3631 } 3632 3633 static __always_inline struct ring_buffer_event * 3634 rb_reserve_next_event(struct trace_buffer *buffer, 3635 struct ring_buffer_per_cpu *cpu_buffer, 3636 unsigned long length) 3637 { 3638 struct ring_buffer_event *event; 3639 struct rb_event_info info; 3640 int nr_loops = 0; 3641 int add_ts_default; 3642 3643 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 3644 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 3645 (unlikely(in_nmi()))) { 3646 return NULL; 3647 } 3648 3649 rb_start_commit(cpu_buffer); 3650 /* The commit page can not change after this */ 3651 3652 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3653 /* 3654 * Due to the ability to swap a cpu buffer from a buffer 3655 * it is possible it was swapped before we committed. 3656 * (committing stops a swap). We check for it here and 3657 * if it happened, we have to fail the write. 3658 */ 3659 barrier(); 3660 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3661 local_dec(&cpu_buffer->committing); 3662 local_dec(&cpu_buffer->commits); 3663 return NULL; 3664 } 3665 #endif 3666 3667 info.length = rb_calculate_event_length(length); 3668 3669 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3670 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3671 info.length += RB_LEN_TIME_EXTEND; 3672 if (info.length > cpu_buffer->buffer->max_data_size) 3673 goto out_fail; 3674 } else { 3675 add_ts_default = RB_ADD_STAMP_NONE; 3676 } 3677 3678 again: 3679 info.add_timestamp = add_ts_default; 3680 info.delta = 0; 3681 3682 /* 3683 * We allow for interrupts to reenter here and do a trace. 3684 * If one does, it will cause this original code to loop 3685 * back here. Even with heavy interrupts happening, this 3686 * should only happen a few times in a row. If this happens 3687 * 1000 times in a row, there must be either an interrupt 3688 * storm or we have something buggy. 3689 * Bail! 3690 */ 3691 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3692 goto out_fail; 3693 3694 event = __rb_reserve_next(cpu_buffer, &info); 3695 3696 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3697 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3698 info.length -= RB_LEN_TIME_EXTEND; 3699 goto again; 3700 } 3701 3702 if (likely(event)) 3703 return event; 3704 out_fail: 3705 rb_end_commit(cpu_buffer); 3706 return NULL; 3707 } 3708 3709 /** 3710 * ring_buffer_lock_reserve - reserve a part of the buffer 3711 * @buffer: the ring buffer to reserve from 3712 * @length: the length of the data to reserve (excluding event header) 3713 * 3714 * Returns a reserved event on the ring buffer to copy directly to. 3715 * The user of this interface will need to get the body to write into 3716 * and can use the ring_buffer_event_data() interface. 3717 * 3718 * The length is the length of the data needed, not the event length 3719 * which also includes the event header. 3720 * 3721 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3722 * If NULL is returned, then nothing has been allocated or locked. 3723 */ 3724 struct ring_buffer_event * 3725 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3726 { 3727 struct ring_buffer_per_cpu *cpu_buffer; 3728 struct ring_buffer_event *event; 3729 int cpu; 3730 3731 /* If we are tracing schedule, we don't want to recurse */ 3732 preempt_disable_notrace(); 3733 3734 if (unlikely(atomic_read(&buffer->record_disabled))) 3735 goto out; 3736 3737 cpu = raw_smp_processor_id(); 3738 3739 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3740 goto out; 3741 3742 cpu_buffer = buffer->buffers[cpu]; 3743 3744 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3745 goto out; 3746 3747 if (unlikely(length > buffer->max_data_size)) 3748 goto out; 3749 3750 if (unlikely(trace_recursive_lock(cpu_buffer))) 3751 goto out; 3752 3753 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3754 if (!event) 3755 goto out_unlock; 3756 3757 return event; 3758 3759 out_unlock: 3760 trace_recursive_unlock(cpu_buffer); 3761 out: 3762 preempt_enable_notrace(); 3763 return NULL; 3764 } 3765 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3766 3767 /* 3768 * Decrement the entries to the page that an event is on. 3769 * The event does not even need to exist, only the pointer 3770 * to the page it is on. This may only be called before the commit 3771 * takes place. 3772 */ 3773 static inline void 3774 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3775 struct ring_buffer_event *event) 3776 { 3777 unsigned long addr = (unsigned long)event; 3778 struct buffer_page *bpage = cpu_buffer->commit_page; 3779 struct buffer_page *start; 3780 3781 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3782 3783 /* Do the likely case first */ 3784 if (likely(bpage->page == (void *)addr)) { 3785 local_dec(&bpage->entries); 3786 return; 3787 } 3788 3789 /* 3790 * Because the commit page may be on the reader page we 3791 * start with the next page and check the end loop there. 3792 */ 3793 rb_inc_page(&bpage); 3794 start = bpage; 3795 do { 3796 if (bpage->page == (void *)addr) { 3797 local_dec(&bpage->entries); 3798 return; 3799 } 3800 rb_inc_page(&bpage); 3801 } while (bpage != start); 3802 3803 /* commit not part of this buffer?? */ 3804 RB_WARN_ON(cpu_buffer, 1); 3805 } 3806 3807 /** 3808 * ring_buffer_discard_commit - discard an event that has not been committed 3809 * @buffer: the ring buffer 3810 * @event: non committed event to discard 3811 * 3812 * Sometimes an event that is in the ring buffer needs to be ignored. 3813 * This function lets the user discard an event in the ring buffer 3814 * and then that event will not be read later. 3815 * 3816 * This function only works if it is called before the item has been 3817 * committed. It will try to free the event from the ring buffer 3818 * if another event has not been added behind it. 3819 * 3820 * If another event has been added behind it, it will set the event 3821 * up as discarded, and perform the commit. 3822 * 3823 * If this function is called, do not call ring_buffer_unlock_commit on 3824 * the event. 3825 */ 3826 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3827 struct ring_buffer_event *event) 3828 { 3829 struct ring_buffer_per_cpu *cpu_buffer; 3830 int cpu; 3831 3832 /* The event is discarded regardless */ 3833 rb_event_discard(event); 3834 3835 cpu = smp_processor_id(); 3836 cpu_buffer = buffer->buffers[cpu]; 3837 3838 /* 3839 * This must only be called if the event has not been 3840 * committed yet. Thus we can assume that preemption 3841 * is still disabled. 3842 */ 3843 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3844 3845 rb_decrement_entry(cpu_buffer, event); 3846 if (rb_try_to_discard(cpu_buffer, event)) 3847 goto out; 3848 3849 out: 3850 rb_end_commit(cpu_buffer); 3851 3852 trace_recursive_unlock(cpu_buffer); 3853 3854 preempt_enable_notrace(); 3855 3856 } 3857 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3858 3859 /** 3860 * ring_buffer_write - write data to the buffer without reserving 3861 * @buffer: The ring buffer to write to. 3862 * @length: The length of the data being written (excluding the event header) 3863 * @data: The data to write to the buffer. 3864 * 3865 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3866 * one function. If you already have the data to write to the buffer, it 3867 * may be easier to simply call this function. 3868 * 3869 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3870 * and not the length of the event which would hold the header. 3871 */ 3872 int ring_buffer_write(struct trace_buffer *buffer, 3873 unsigned long length, 3874 void *data) 3875 { 3876 struct ring_buffer_per_cpu *cpu_buffer; 3877 struct ring_buffer_event *event; 3878 void *body; 3879 int ret = -EBUSY; 3880 int cpu; 3881 3882 preempt_disable_notrace(); 3883 3884 if (atomic_read(&buffer->record_disabled)) 3885 goto out; 3886 3887 cpu = raw_smp_processor_id(); 3888 3889 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3890 goto out; 3891 3892 cpu_buffer = buffer->buffers[cpu]; 3893 3894 if (atomic_read(&cpu_buffer->record_disabled)) 3895 goto out; 3896 3897 if (length > buffer->max_data_size) 3898 goto out; 3899 3900 if (unlikely(trace_recursive_lock(cpu_buffer))) 3901 goto out; 3902 3903 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3904 if (!event) 3905 goto out_unlock; 3906 3907 body = rb_event_data(event); 3908 3909 memcpy(body, data, length); 3910 3911 rb_commit(cpu_buffer); 3912 3913 rb_wakeups(buffer, cpu_buffer); 3914 3915 ret = 0; 3916 3917 out_unlock: 3918 trace_recursive_unlock(cpu_buffer); 3919 3920 out: 3921 preempt_enable_notrace(); 3922 3923 return ret; 3924 } 3925 EXPORT_SYMBOL_GPL(ring_buffer_write); 3926 3927 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3928 { 3929 struct buffer_page *reader = cpu_buffer->reader_page; 3930 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3931 struct buffer_page *commit = cpu_buffer->commit_page; 3932 3933 /* In case of error, head will be NULL */ 3934 if (unlikely(!head)) 3935 return true; 3936 3937 /* Reader should exhaust content in reader page */ 3938 if (reader->read != rb_page_commit(reader)) 3939 return false; 3940 3941 /* 3942 * If writers are committing on the reader page, knowing all 3943 * committed content has been read, the ring buffer is empty. 3944 */ 3945 if (commit == reader) 3946 return true; 3947 3948 /* 3949 * If writers are committing on a page other than reader page 3950 * and head page, there should always be content to read. 3951 */ 3952 if (commit != head) 3953 return false; 3954 3955 /* 3956 * Writers are committing on the head page, we just need 3957 * to care about there're committed data, and the reader will 3958 * swap reader page with head page when it is to read data. 3959 */ 3960 return rb_page_commit(commit) == 0; 3961 } 3962 3963 /** 3964 * ring_buffer_record_disable - stop all writes into the buffer 3965 * @buffer: The ring buffer to stop writes to. 3966 * 3967 * This prevents all writes to the buffer. Any attempt to write 3968 * to the buffer after this will fail and return NULL. 3969 * 3970 * The caller should call synchronize_rcu() after this. 3971 */ 3972 void ring_buffer_record_disable(struct trace_buffer *buffer) 3973 { 3974 atomic_inc(&buffer->record_disabled); 3975 } 3976 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3977 3978 /** 3979 * ring_buffer_record_enable - enable writes to the buffer 3980 * @buffer: The ring buffer to enable writes 3981 * 3982 * Note, multiple disables will need the same number of enables 3983 * to truly enable the writing (much like preempt_disable). 3984 */ 3985 void ring_buffer_record_enable(struct trace_buffer *buffer) 3986 { 3987 atomic_dec(&buffer->record_disabled); 3988 } 3989 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3990 3991 /** 3992 * ring_buffer_record_off - stop all writes into the buffer 3993 * @buffer: The ring buffer to stop writes to. 3994 * 3995 * This prevents all writes to the buffer. Any attempt to write 3996 * to the buffer after this will fail and return NULL. 3997 * 3998 * This is different than ring_buffer_record_disable() as 3999 * it works like an on/off switch, where as the disable() version 4000 * must be paired with a enable(). 4001 */ 4002 void ring_buffer_record_off(struct trace_buffer *buffer) 4003 { 4004 unsigned int rd; 4005 unsigned int new_rd; 4006 4007 rd = atomic_read(&buffer->record_disabled); 4008 do { 4009 new_rd = rd | RB_BUFFER_OFF; 4010 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4011 } 4012 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4013 4014 /** 4015 * ring_buffer_record_on - restart writes into the buffer 4016 * @buffer: The ring buffer to start writes to. 4017 * 4018 * This enables all writes to the buffer that was disabled by 4019 * ring_buffer_record_off(). 4020 * 4021 * This is different than ring_buffer_record_enable() as 4022 * it works like an on/off switch, where as the enable() version 4023 * must be paired with a disable(). 4024 */ 4025 void ring_buffer_record_on(struct trace_buffer *buffer) 4026 { 4027 unsigned int rd; 4028 unsigned int new_rd; 4029 4030 rd = atomic_read(&buffer->record_disabled); 4031 do { 4032 new_rd = rd & ~RB_BUFFER_OFF; 4033 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4034 } 4035 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4036 4037 /** 4038 * ring_buffer_record_is_on - return true if the ring buffer can write 4039 * @buffer: The ring buffer to see if write is enabled 4040 * 4041 * Returns true if the ring buffer is in a state that it accepts writes. 4042 */ 4043 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4044 { 4045 return !atomic_read(&buffer->record_disabled); 4046 } 4047 4048 /** 4049 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4050 * @buffer: The ring buffer to see if write is set enabled 4051 * 4052 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4053 * Note that this does NOT mean it is in a writable state. 4054 * 4055 * It may return true when the ring buffer has been disabled by 4056 * ring_buffer_record_disable(), as that is a temporary disabling of 4057 * the ring buffer. 4058 */ 4059 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4060 { 4061 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4062 } 4063 4064 /** 4065 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4066 * @buffer: The ring buffer to stop writes to. 4067 * @cpu: The CPU buffer to stop 4068 * 4069 * This prevents all writes to the buffer. Any attempt to write 4070 * to the buffer after this will fail and return NULL. 4071 * 4072 * The caller should call synchronize_rcu() after this. 4073 */ 4074 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4075 { 4076 struct ring_buffer_per_cpu *cpu_buffer; 4077 4078 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4079 return; 4080 4081 cpu_buffer = buffer->buffers[cpu]; 4082 atomic_inc(&cpu_buffer->record_disabled); 4083 } 4084 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4085 4086 /** 4087 * ring_buffer_record_enable_cpu - enable writes to the buffer 4088 * @buffer: The ring buffer to enable writes 4089 * @cpu: The CPU to enable. 4090 * 4091 * Note, multiple disables will need the same number of enables 4092 * to truly enable the writing (much like preempt_disable). 4093 */ 4094 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4095 { 4096 struct ring_buffer_per_cpu *cpu_buffer; 4097 4098 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4099 return; 4100 4101 cpu_buffer = buffer->buffers[cpu]; 4102 atomic_dec(&cpu_buffer->record_disabled); 4103 } 4104 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4105 4106 /* 4107 * The total entries in the ring buffer is the running counter 4108 * of entries entered into the ring buffer, minus the sum of 4109 * the entries read from the ring buffer and the number of 4110 * entries that were overwritten. 4111 */ 4112 static inline unsigned long 4113 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4114 { 4115 return local_read(&cpu_buffer->entries) - 4116 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4117 } 4118 4119 /** 4120 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4121 * @buffer: The ring buffer 4122 * @cpu: The per CPU buffer to read from. 4123 */ 4124 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4125 { 4126 unsigned long flags; 4127 struct ring_buffer_per_cpu *cpu_buffer; 4128 struct buffer_page *bpage; 4129 u64 ret = 0; 4130 4131 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4132 return 0; 4133 4134 cpu_buffer = buffer->buffers[cpu]; 4135 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4136 /* 4137 * if the tail is on reader_page, oldest time stamp is on the reader 4138 * page 4139 */ 4140 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4141 bpage = cpu_buffer->reader_page; 4142 else 4143 bpage = rb_set_head_page(cpu_buffer); 4144 if (bpage) 4145 ret = bpage->page->time_stamp; 4146 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4147 4148 return ret; 4149 } 4150 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4151 4152 /** 4153 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4154 * @buffer: The ring buffer 4155 * @cpu: The per CPU buffer to read from. 4156 */ 4157 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4158 { 4159 struct ring_buffer_per_cpu *cpu_buffer; 4160 unsigned long ret; 4161 4162 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4163 return 0; 4164 4165 cpu_buffer = buffer->buffers[cpu]; 4166 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4167 4168 return ret; 4169 } 4170 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4171 4172 /** 4173 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4174 * @buffer: The ring buffer 4175 * @cpu: The per CPU buffer to get the entries from. 4176 */ 4177 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4178 { 4179 struct ring_buffer_per_cpu *cpu_buffer; 4180 4181 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4182 return 0; 4183 4184 cpu_buffer = buffer->buffers[cpu]; 4185 4186 return rb_num_of_entries(cpu_buffer); 4187 } 4188 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4189 4190 /** 4191 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4192 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4193 * @buffer: The ring buffer 4194 * @cpu: The per CPU buffer to get the number of overruns from 4195 */ 4196 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4197 { 4198 struct ring_buffer_per_cpu *cpu_buffer; 4199 unsigned long ret; 4200 4201 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4202 return 0; 4203 4204 cpu_buffer = buffer->buffers[cpu]; 4205 ret = local_read(&cpu_buffer->overrun); 4206 4207 return ret; 4208 } 4209 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4210 4211 /** 4212 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4213 * commits failing due to the buffer wrapping around while there are uncommitted 4214 * events, such as during an interrupt storm. 4215 * @buffer: The ring buffer 4216 * @cpu: The per CPU buffer to get the number of overruns from 4217 */ 4218 unsigned long 4219 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4220 { 4221 struct ring_buffer_per_cpu *cpu_buffer; 4222 unsigned long ret; 4223 4224 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4225 return 0; 4226 4227 cpu_buffer = buffer->buffers[cpu]; 4228 ret = local_read(&cpu_buffer->commit_overrun); 4229 4230 return ret; 4231 } 4232 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4233 4234 /** 4235 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4236 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4237 * @buffer: The ring buffer 4238 * @cpu: The per CPU buffer to get the number of overruns from 4239 */ 4240 unsigned long 4241 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4242 { 4243 struct ring_buffer_per_cpu *cpu_buffer; 4244 unsigned long ret; 4245 4246 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4247 return 0; 4248 4249 cpu_buffer = buffer->buffers[cpu]; 4250 ret = local_read(&cpu_buffer->dropped_events); 4251 4252 return ret; 4253 } 4254 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4255 4256 /** 4257 * ring_buffer_read_events_cpu - get the number of events successfully read 4258 * @buffer: The ring buffer 4259 * @cpu: The per CPU buffer to get the number of events read 4260 */ 4261 unsigned long 4262 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4263 { 4264 struct ring_buffer_per_cpu *cpu_buffer; 4265 4266 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4267 return 0; 4268 4269 cpu_buffer = buffer->buffers[cpu]; 4270 return cpu_buffer->read; 4271 } 4272 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4273 4274 /** 4275 * ring_buffer_entries - get the number of entries in a buffer 4276 * @buffer: The ring buffer 4277 * 4278 * Returns the total number of entries in the ring buffer 4279 * (all CPU entries) 4280 */ 4281 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4282 { 4283 struct ring_buffer_per_cpu *cpu_buffer; 4284 unsigned long entries = 0; 4285 int cpu; 4286 4287 /* if you care about this being correct, lock the buffer */ 4288 for_each_buffer_cpu(buffer, cpu) { 4289 cpu_buffer = buffer->buffers[cpu]; 4290 entries += rb_num_of_entries(cpu_buffer); 4291 } 4292 4293 return entries; 4294 } 4295 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4296 4297 /** 4298 * ring_buffer_overruns - get the number of overruns in buffer 4299 * @buffer: The ring buffer 4300 * 4301 * Returns the total number of overruns in the ring buffer 4302 * (all CPU entries) 4303 */ 4304 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4305 { 4306 struct ring_buffer_per_cpu *cpu_buffer; 4307 unsigned long overruns = 0; 4308 int cpu; 4309 4310 /* if you care about this being correct, lock the buffer */ 4311 for_each_buffer_cpu(buffer, cpu) { 4312 cpu_buffer = buffer->buffers[cpu]; 4313 overruns += local_read(&cpu_buffer->overrun); 4314 } 4315 4316 return overruns; 4317 } 4318 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4319 4320 static void rb_iter_reset(struct ring_buffer_iter *iter) 4321 { 4322 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4323 4324 /* Iterator usage is expected to have record disabled */ 4325 iter->head_page = cpu_buffer->reader_page; 4326 iter->head = cpu_buffer->reader_page->read; 4327 iter->next_event = iter->head; 4328 4329 iter->cache_reader_page = iter->head_page; 4330 iter->cache_read = cpu_buffer->read; 4331 iter->cache_pages_removed = cpu_buffer->pages_removed; 4332 4333 if (iter->head) { 4334 iter->read_stamp = cpu_buffer->read_stamp; 4335 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4336 } else { 4337 iter->read_stamp = iter->head_page->page->time_stamp; 4338 iter->page_stamp = iter->read_stamp; 4339 } 4340 } 4341 4342 /** 4343 * ring_buffer_iter_reset - reset an iterator 4344 * @iter: The iterator to reset 4345 * 4346 * Resets the iterator, so that it will start from the beginning 4347 * again. 4348 */ 4349 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4350 { 4351 struct ring_buffer_per_cpu *cpu_buffer; 4352 unsigned long flags; 4353 4354 if (!iter) 4355 return; 4356 4357 cpu_buffer = iter->cpu_buffer; 4358 4359 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4360 rb_iter_reset(iter); 4361 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4362 } 4363 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4364 4365 /** 4366 * ring_buffer_iter_empty - check if an iterator has no more to read 4367 * @iter: The iterator to check 4368 */ 4369 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4370 { 4371 struct ring_buffer_per_cpu *cpu_buffer; 4372 struct buffer_page *reader; 4373 struct buffer_page *head_page; 4374 struct buffer_page *commit_page; 4375 struct buffer_page *curr_commit_page; 4376 unsigned commit; 4377 u64 curr_commit_ts; 4378 u64 commit_ts; 4379 4380 cpu_buffer = iter->cpu_buffer; 4381 reader = cpu_buffer->reader_page; 4382 head_page = cpu_buffer->head_page; 4383 commit_page = cpu_buffer->commit_page; 4384 commit_ts = commit_page->page->time_stamp; 4385 4386 /* 4387 * When the writer goes across pages, it issues a cmpxchg which 4388 * is a mb(), which will synchronize with the rmb here. 4389 * (see rb_tail_page_update()) 4390 */ 4391 smp_rmb(); 4392 commit = rb_page_commit(commit_page); 4393 /* We want to make sure that the commit page doesn't change */ 4394 smp_rmb(); 4395 4396 /* Make sure commit page didn't change */ 4397 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4398 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4399 4400 /* If the commit page changed, then there's more data */ 4401 if (curr_commit_page != commit_page || 4402 curr_commit_ts != commit_ts) 4403 return 0; 4404 4405 /* Still racy, as it may return a false positive, but that's OK */ 4406 return ((iter->head_page == commit_page && iter->head >= commit) || 4407 (iter->head_page == reader && commit_page == head_page && 4408 head_page->read == commit && 4409 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4410 } 4411 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4412 4413 static void 4414 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4415 struct ring_buffer_event *event) 4416 { 4417 u64 delta; 4418 4419 switch (event->type_len) { 4420 case RINGBUF_TYPE_PADDING: 4421 return; 4422 4423 case RINGBUF_TYPE_TIME_EXTEND: 4424 delta = rb_event_time_stamp(event); 4425 cpu_buffer->read_stamp += delta; 4426 return; 4427 4428 case RINGBUF_TYPE_TIME_STAMP: 4429 delta = rb_event_time_stamp(event); 4430 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4431 cpu_buffer->read_stamp = delta; 4432 return; 4433 4434 case RINGBUF_TYPE_DATA: 4435 cpu_buffer->read_stamp += event->time_delta; 4436 return; 4437 4438 default: 4439 RB_WARN_ON(cpu_buffer, 1); 4440 } 4441 } 4442 4443 static void 4444 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4445 struct ring_buffer_event *event) 4446 { 4447 u64 delta; 4448 4449 switch (event->type_len) { 4450 case RINGBUF_TYPE_PADDING: 4451 return; 4452 4453 case RINGBUF_TYPE_TIME_EXTEND: 4454 delta = rb_event_time_stamp(event); 4455 iter->read_stamp += delta; 4456 return; 4457 4458 case RINGBUF_TYPE_TIME_STAMP: 4459 delta = rb_event_time_stamp(event); 4460 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4461 iter->read_stamp = delta; 4462 return; 4463 4464 case RINGBUF_TYPE_DATA: 4465 iter->read_stamp += event->time_delta; 4466 return; 4467 4468 default: 4469 RB_WARN_ON(iter->cpu_buffer, 1); 4470 } 4471 } 4472 4473 static struct buffer_page * 4474 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4475 { 4476 struct buffer_page *reader = NULL; 4477 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 4478 unsigned long overwrite; 4479 unsigned long flags; 4480 int nr_loops = 0; 4481 bool ret; 4482 4483 local_irq_save(flags); 4484 arch_spin_lock(&cpu_buffer->lock); 4485 4486 again: 4487 /* 4488 * This should normally only loop twice. But because the 4489 * start of the reader inserts an empty page, it causes 4490 * a case where we will loop three times. There should be no 4491 * reason to loop four times (that I know of). 4492 */ 4493 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4494 reader = NULL; 4495 goto out; 4496 } 4497 4498 reader = cpu_buffer->reader_page; 4499 4500 /* If there's more to read, return this page */ 4501 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4502 goto out; 4503 4504 /* Never should we have an index greater than the size */ 4505 if (RB_WARN_ON(cpu_buffer, 4506 cpu_buffer->reader_page->read > rb_page_size(reader))) 4507 goto out; 4508 4509 /* check if we caught up to the tail */ 4510 reader = NULL; 4511 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4512 goto out; 4513 4514 /* Don't bother swapping if the ring buffer is empty */ 4515 if (rb_num_of_entries(cpu_buffer) == 0) 4516 goto out; 4517 4518 /* 4519 * Reset the reader page to size zero. 4520 */ 4521 local_set(&cpu_buffer->reader_page->write, 0); 4522 local_set(&cpu_buffer->reader_page->entries, 0); 4523 local_set(&cpu_buffer->reader_page->page->commit, 0); 4524 cpu_buffer->reader_page->real_end = 0; 4525 4526 spin: 4527 /* 4528 * Splice the empty reader page into the list around the head. 4529 */ 4530 reader = rb_set_head_page(cpu_buffer); 4531 if (!reader) 4532 goto out; 4533 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4534 cpu_buffer->reader_page->list.prev = reader->list.prev; 4535 4536 /* 4537 * cpu_buffer->pages just needs to point to the buffer, it 4538 * has no specific buffer page to point to. Lets move it out 4539 * of our way so we don't accidentally swap it. 4540 */ 4541 cpu_buffer->pages = reader->list.prev; 4542 4543 /* The reader page will be pointing to the new head */ 4544 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4545 4546 /* 4547 * We want to make sure we read the overruns after we set up our 4548 * pointers to the next object. The writer side does a 4549 * cmpxchg to cross pages which acts as the mb on the writer 4550 * side. Note, the reader will constantly fail the swap 4551 * while the writer is updating the pointers, so this 4552 * guarantees that the overwrite recorded here is the one we 4553 * want to compare with the last_overrun. 4554 */ 4555 smp_mb(); 4556 overwrite = local_read(&(cpu_buffer->overrun)); 4557 4558 /* 4559 * Here's the tricky part. 4560 * 4561 * We need to move the pointer past the header page. 4562 * But we can only do that if a writer is not currently 4563 * moving it. The page before the header page has the 4564 * flag bit '1' set if it is pointing to the page we want. 4565 * but if the writer is in the process of moving it 4566 * than it will be '2' or already moved '0'. 4567 */ 4568 4569 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4570 4571 /* 4572 * If we did not convert it, then we must try again. 4573 */ 4574 if (!ret) 4575 goto spin; 4576 4577 /* 4578 * Yay! We succeeded in replacing the page. 4579 * 4580 * Now make the new head point back to the reader page. 4581 */ 4582 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4583 rb_inc_page(&cpu_buffer->head_page); 4584 4585 local_inc(&cpu_buffer->pages_read); 4586 4587 /* Finally update the reader page to the new head */ 4588 cpu_buffer->reader_page = reader; 4589 cpu_buffer->reader_page->read = 0; 4590 4591 if (overwrite != cpu_buffer->last_overrun) { 4592 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4593 cpu_buffer->last_overrun = overwrite; 4594 } 4595 4596 goto again; 4597 4598 out: 4599 /* Update the read_stamp on the first event */ 4600 if (reader && reader->read == 0) 4601 cpu_buffer->read_stamp = reader->page->time_stamp; 4602 4603 arch_spin_unlock(&cpu_buffer->lock); 4604 local_irq_restore(flags); 4605 4606 /* 4607 * The writer has preempt disable, wait for it. But not forever 4608 * Although, 1 second is pretty much "forever" 4609 */ 4610 #define USECS_WAIT 1000000 4611 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4612 /* If the write is past the end of page, a writer is still updating it */ 4613 if (likely(!reader || rb_page_write(reader) <= bsize)) 4614 break; 4615 4616 udelay(1); 4617 4618 /* Get the latest version of the reader write value */ 4619 smp_rmb(); 4620 } 4621 4622 /* The writer is not moving forward? Something is wrong */ 4623 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4624 reader = NULL; 4625 4626 /* 4627 * Make sure we see any padding after the write update 4628 * (see rb_reset_tail()). 4629 * 4630 * In addition, a writer may be writing on the reader page 4631 * if the page has not been fully filled, so the read barrier 4632 * is also needed to make sure we see the content of what is 4633 * committed by the writer (see rb_set_commit_to_write()). 4634 */ 4635 smp_rmb(); 4636 4637 4638 return reader; 4639 } 4640 4641 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4642 { 4643 struct ring_buffer_event *event; 4644 struct buffer_page *reader; 4645 unsigned length; 4646 4647 reader = rb_get_reader_page(cpu_buffer); 4648 4649 /* This function should not be called when buffer is empty */ 4650 if (RB_WARN_ON(cpu_buffer, !reader)) 4651 return; 4652 4653 event = rb_reader_event(cpu_buffer); 4654 4655 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4656 cpu_buffer->read++; 4657 4658 rb_update_read_stamp(cpu_buffer, event); 4659 4660 length = rb_event_length(event); 4661 cpu_buffer->reader_page->read += length; 4662 cpu_buffer->read_bytes += length; 4663 } 4664 4665 static void rb_advance_iter(struct ring_buffer_iter *iter) 4666 { 4667 struct ring_buffer_per_cpu *cpu_buffer; 4668 4669 cpu_buffer = iter->cpu_buffer; 4670 4671 /* If head == next_event then we need to jump to the next event */ 4672 if (iter->head == iter->next_event) { 4673 /* If the event gets overwritten again, there's nothing to do */ 4674 if (rb_iter_head_event(iter) == NULL) 4675 return; 4676 } 4677 4678 iter->head = iter->next_event; 4679 4680 /* 4681 * Check if we are at the end of the buffer. 4682 */ 4683 if (iter->next_event >= rb_page_size(iter->head_page)) { 4684 /* discarded commits can make the page empty */ 4685 if (iter->head_page == cpu_buffer->commit_page) 4686 return; 4687 rb_inc_iter(iter); 4688 return; 4689 } 4690 4691 rb_update_iter_read_stamp(iter, iter->event); 4692 } 4693 4694 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4695 { 4696 return cpu_buffer->lost_events; 4697 } 4698 4699 static struct ring_buffer_event * 4700 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4701 unsigned long *lost_events) 4702 { 4703 struct ring_buffer_event *event; 4704 struct buffer_page *reader; 4705 int nr_loops = 0; 4706 4707 if (ts) 4708 *ts = 0; 4709 again: 4710 /* 4711 * We repeat when a time extend is encountered. 4712 * Since the time extend is always attached to a data event, 4713 * we should never loop more than once. 4714 * (We never hit the following condition more than twice). 4715 */ 4716 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4717 return NULL; 4718 4719 reader = rb_get_reader_page(cpu_buffer); 4720 if (!reader) 4721 return NULL; 4722 4723 event = rb_reader_event(cpu_buffer); 4724 4725 switch (event->type_len) { 4726 case RINGBUF_TYPE_PADDING: 4727 if (rb_null_event(event)) 4728 RB_WARN_ON(cpu_buffer, 1); 4729 /* 4730 * Because the writer could be discarding every 4731 * event it creates (which would probably be bad) 4732 * if we were to go back to "again" then we may never 4733 * catch up, and will trigger the warn on, or lock 4734 * the box. Return the padding, and we will release 4735 * the current locks, and try again. 4736 */ 4737 return event; 4738 4739 case RINGBUF_TYPE_TIME_EXTEND: 4740 /* Internal data, OK to advance */ 4741 rb_advance_reader(cpu_buffer); 4742 goto again; 4743 4744 case RINGBUF_TYPE_TIME_STAMP: 4745 if (ts) { 4746 *ts = rb_event_time_stamp(event); 4747 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4748 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4749 cpu_buffer->cpu, ts); 4750 } 4751 /* Internal data, OK to advance */ 4752 rb_advance_reader(cpu_buffer); 4753 goto again; 4754 4755 case RINGBUF_TYPE_DATA: 4756 if (ts && !(*ts)) { 4757 *ts = cpu_buffer->read_stamp + event->time_delta; 4758 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4759 cpu_buffer->cpu, ts); 4760 } 4761 if (lost_events) 4762 *lost_events = rb_lost_events(cpu_buffer); 4763 return event; 4764 4765 default: 4766 RB_WARN_ON(cpu_buffer, 1); 4767 } 4768 4769 return NULL; 4770 } 4771 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4772 4773 static struct ring_buffer_event * 4774 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4775 { 4776 struct trace_buffer *buffer; 4777 struct ring_buffer_per_cpu *cpu_buffer; 4778 struct ring_buffer_event *event; 4779 int nr_loops = 0; 4780 4781 if (ts) 4782 *ts = 0; 4783 4784 cpu_buffer = iter->cpu_buffer; 4785 buffer = cpu_buffer->buffer; 4786 4787 /* 4788 * Check if someone performed a consuming read to the buffer 4789 * or removed some pages from the buffer. In these cases, 4790 * iterator was invalidated and we need to reset it. 4791 */ 4792 if (unlikely(iter->cache_read != cpu_buffer->read || 4793 iter->cache_reader_page != cpu_buffer->reader_page || 4794 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4795 rb_iter_reset(iter); 4796 4797 again: 4798 if (ring_buffer_iter_empty(iter)) 4799 return NULL; 4800 4801 /* 4802 * As the writer can mess with what the iterator is trying 4803 * to read, just give up if we fail to get an event after 4804 * three tries. The iterator is not as reliable when reading 4805 * the ring buffer with an active write as the consumer is. 4806 * Do not warn if the three failures is reached. 4807 */ 4808 if (++nr_loops > 3) 4809 return NULL; 4810 4811 if (rb_per_cpu_empty(cpu_buffer)) 4812 return NULL; 4813 4814 if (iter->head >= rb_page_size(iter->head_page)) { 4815 rb_inc_iter(iter); 4816 goto again; 4817 } 4818 4819 event = rb_iter_head_event(iter); 4820 if (!event) 4821 goto again; 4822 4823 switch (event->type_len) { 4824 case RINGBUF_TYPE_PADDING: 4825 if (rb_null_event(event)) { 4826 rb_inc_iter(iter); 4827 goto again; 4828 } 4829 rb_advance_iter(iter); 4830 return event; 4831 4832 case RINGBUF_TYPE_TIME_EXTEND: 4833 /* Internal data, OK to advance */ 4834 rb_advance_iter(iter); 4835 goto again; 4836 4837 case RINGBUF_TYPE_TIME_STAMP: 4838 if (ts) { 4839 *ts = rb_event_time_stamp(event); 4840 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4841 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4842 cpu_buffer->cpu, ts); 4843 } 4844 /* Internal data, OK to advance */ 4845 rb_advance_iter(iter); 4846 goto again; 4847 4848 case RINGBUF_TYPE_DATA: 4849 if (ts && !(*ts)) { 4850 *ts = iter->read_stamp + event->time_delta; 4851 ring_buffer_normalize_time_stamp(buffer, 4852 cpu_buffer->cpu, ts); 4853 } 4854 return event; 4855 4856 default: 4857 RB_WARN_ON(cpu_buffer, 1); 4858 } 4859 4860 return NULL; 4861 } 4862 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4863 4864 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4865 { 4866 if (likely(!in_nmi())) { 4867 raw_spin_lock(&cpu_buffer->reader_lock); 4868 return true; 4869 } 4870 4871 /* 4872 * If an NMI die dumps out the content of the ring buffer 4873 * trylock must be used to prevent a deadlock if the NMI 4874 * preempted a task that holds the ring buffer locks. If 4875 * we get the lock then all is fine, if not, then continue 4876 * to do the read, but this can corrupt the ring buffer, 4877 * so it must be permanently disabled from future writes. 4878 * Reading from NMI is a oneshot deal. 4879 */ 4880 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4881 return true; 4882 4883 /* Continue without locking, but disable the ring buffer */ 4884 atomic_inc(&cpu_buffer->record_disabled); 4885 return false; 4886 } 4887 4888 static inline void 4889 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4890 { 4891 if (likely(locked)) 4892 raw_spin_unlock(&cpu_buffer->reader_lock); 4893 } 4894 4895 /** 4896 * ring_buffer_peek - peek at the next event to be read 4897 * @buffer: The ring buffer to read 4898 * @cpu: The cpu to peak at 4899 * @ts: The timestamp counter of this event. 4900 * @lost_events: a variable to store if events were lost (may be NULL) 4901 * 4902 * This will return the event that will be read next, but does 4903 * not consume the data. 4904 */ 4905 struct ring_buffer_event * 4906 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4907 unsigned long *lost_events) 4908 { 4909 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4910 struct ring_buffer_event *event; 4911 unsigned long flags; 4912 bool dolock; 4913 4914 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4915 return NULL; 4916 4917 again: 4918 local_irq_save(flags); 4919 dolock = rb_reader_lock(cpu_buffer); 4920 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4921 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4922 rb_advance_reader(cpu_buffer); 4923 rb_reader_unlock(cpu_buffer, dolock); 4924 local_irq_restore(flags); 4925 4926 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4927 goto again; 4928 4929 return event; 4930 } 4931 4932 /** ring_buffer_iter_dropped - report if there are dropped events 4933 * @iter: The ring buffer iterator 4934 * 4935 * Returns true if there was dropped events since the last peek. 4936 */ 4937 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4938 { 4939 bool ret = iter->missed_events != 0; 4940 4941 iter->missed_events = 0; 4942 return ret; 4943 } 4944 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4945 4946 /** 4947 * ring_buffer_iter_peek - peek at the next event to be read 4948 * @iter: The ring buffer iterator 4949 * @ts: The timestamp counter of this event. 4950 * 4951 * This will return the event that will be read next, but does 4952 * not increment the iterator. 4953 */ 4954 struct ring_buffer_event * 4955 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4956 { 4957 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4958 struct ring_buffer_event *event; 4959 unsigned long flags; 4960 4961 again: 4962 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4963 event = rb_iter_peek(iter, ts); 4964 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4965 4966 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4967 goto again; 4968 4969 return event; 4970 } 4971 4972 /** 4973 * ring_buffer_consume - return an event and consume it 4974 * @buffer: The ring buffer to get the next event from 4975 * @cpu: the cpu to read the buffer from 4976 * @ts: a variable to store the timestamp (may be NULL) 4977 * @lost_events: a variable to store if events were lost (may be NULL) 4978 * 4979 * Returns the next event in the ring buffer, and that event is consumed. 4980 * Meaning, that sequential reads will keep returning a different event, 4981 * and eventually empty the ring buffer if the producer is slower. 4982 */ 4983 struct ring_buffer_event * 4984 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4985 unsigned long *lost_events) 4986 { 4987 struct ring_buffer_per_cpu *cpu_buffer; 4988 struct ring_buffer_event *event = NULL; 4989 unsigned long flags; 4990 bool dolock; 4991 4992 again: 4993 /* might be called in atomic */ 4994 preempt_disable(); 4995 4996 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4997 goto out; 4998 4999 cpu_buffer = buffer->buffers[cpu]; 5000 local_irq_save(flags); 5001 dolock = rb_reader_lock(cpu_buffer); 5002 5003 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5004 if (event) { 5005 cpu_buffer->lost_events = 0; 5006 rb_advance_reader(cpu_buffer); 5007 } 5008 5009 rb_reader_unlock(cpu_buffer, dolock); 5010 local_irq_restore(flags); 5011 5012 out: 5013 preempt_enable(); 5014 5015 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5016 goto again; 5017 5018 return event; 5019 } 5020 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5021 5022 /** 5023 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5024 * @buffer: The ring buffer to read from 5025 * @cpu: The cpu buffer to iterate over 5026 * @flags: gfp flags to use for memory allocation 5027 * 5028 * This performs the initial preparations necessary to iterate 5029 * through the buffer. Memory is allocated, buffer recording 5030 * is disabled, and the iterator pointer is returned to the caller. 5031 * 5032 * Disabling buffer recording prevents the reading from being 5033 * corrupted. This is not a consuming read, so a producer is not 5034 * expected. 5035 * 5036 * After a sequence of ring_buffer_read_prepare calls, the user is 5037 * expected to make at least one call to ring_buffer_read_prepare_sync. 5038 * Afterwards, ring_buffer_read_start is invoked to get things going 5039 * for real. 5040 * 5041 * This overall must be paired with ring_buffer_read_finish. 5042 */ 5043 struct ring_buffer_iter * 5044 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5045 { 5046 struct ring_buffer_per_cpu *cpu_buffer; 5047 struct ring_buffer_iter *iter; 5048 5049 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5050 return NULL; 5051 5052 iter = kzalloc(sizeof(*iter), flags); 5053 if (!iter) 5054 return NULL; 5055 5056 /* Holds the entire event: data and meta data */ 5057 iter->event_size = buffer->subbuf_size; 5058 iter->event = kmalloc(iter->event_size, flags); 5059 if (!iter->event) { 5060 kfree(iter); 5061 return NULL; 5062 } 5063 5064 cpu_buffer = buffer->buffers[cpu]; 5065 5066 iter->cpu_buffer = cpu_buffer; 5067 5068 atomic_inc(&cpu_buffer->resize_disabled); 5069 5070 return iter; 5071 } 5072 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5073 5074 /** 5075 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5076 * 5077 * All previously invoked ring_buffer_read_prepare calls to prepare 5078 * iterators will be synchronized. Afterwards, read_buffer_read_start 5079 * calls on those iterators are allowed. 5080 */ 5081 void 5082 ring_buffer_read_prepare_sync(void) 5083 { 5084 synchronize_rcu(); 5085 } 5086 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5087 5088 /** 5089 * ring_buffer_read_start - start a non consuming read of the buffer 5090 * @iter: The iterator returned by ring_buffer_read_prepare 5091 * 5092 * This finalizes the startup of an iteration through the buffer. 5093 * The iterator comes from a call to ring_buffer_read_prepare and 5094 * an intervening ring_buffer_read_prepare_sync must have been 5095 * performed. 5096 * 5097 * Must be paired with ring_buffer_read_finish. 5098 */ 5099 void 5100 ring_buffer_read_start(struct ring_buffer_iter *iter) 5101 { 5102 struct ring_buffer_per_cpu *cpu_buffer; 5103 unsigned long flags; 5104 5105 if (!iter) 5106 return; 5107 5108 cpu_buffer = iter->cpu_buffer; 5109 5110 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5111 arch_spin_lock(&cpu_buffer->lock); 5112 rb_iter_reset(iter); 5113 arch_spin_unlock(&cpu_buffer->lock); 5114 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5115 } 5116 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5117 5118 /** 5119 * ring_buffer_read_finish - finish reading the iterator of the buffer 5120 * @iter: The iterator retrieved by ring_buffer_start 5121 * 5122 * This re-enables the recording to the buffer, and frees the 5123 * iterator. 5124 */ 5125 void 5126 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5127 { 5128 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5129 unsigned long flags; 5130 5131 /* 5132 * Ring buffer is disabled from recording, here's a good place 5133 * to check the integrity of the ring buffer. 5134 * Must prevent readers from trying to read, as the check 5135 * clears the HEAD page and readers require it. 5136 */ 5137 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5138 rb_check_pages(cpu_buffer); 5139 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5140 5141 atomic_dec(&cpu_buffer->resize_disabled); 5142 kfree(iter->event); 5143 kfree(iter); 5144 } 5145 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5146 5147 /** 5148 * ring_buffer_iter_advance - advance the iterator to the next location 5149 * @iter: The ring buffer iterator 5150 * 5151 * Move the location of the iterator such that the next read will 5152 * be the next location of the iterator. 5153 */ 5154 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5155 { 5156 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5157 unsigned long flags; 5158 5159 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5160 5161 rb_advance_iter(iter); 5162 5163 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5164 } 5165 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5166 5167 /** 5168 * ring_buffer_size - return the size of the ring buffer (in bytes) 5169 * @buffer: The ring buffer. 5170 * @cpu: The CPU to get ring buffer size from. 5171 */ 5172 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5173 { 5174 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5175 return 0; 5176 5177 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5178 } 5179 EXPORT_SYMBOL_GPL(ring_buffer_size); 5180 5181 /** 5182 * ring_buffer_max_event_size - return the max data size of an event 5183 * @buffer: The ring buffer. 5184 * 5185 * Returns the maximum size an event can be. 5186 */ 5187 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5188 { 5189 /* If abs timestamp is requested, events have a timestamp too */ 5190 if (ring_buffer_time_stamp_abs(buffer)) 5191 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5192 return buffer->max_data_size; 5193 } 5194 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5195 5196 static void rb_clear_buffer_page(struct buffer_page *page) 5197 { 5198 local_set(&page->write, 0); 5199 local_set(&page->entries, 0); 5200 rb_init_page(page->page); 5201 page->read = 0; 5202 } 5203 5204 static void 5205 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5206 { 5207 struct buffer_page *page; 5208 5209 rb_head_page_deactivate(cpu_buffer); 5210 5211 cpu_buffer->head_page 5212 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5213 rb_clear_buffer_page(cpu_buffer->head_page); 5214 list_for_each_entry(page, cpu_buffer->pages, list) { 5215 rb_clear_buffer_page(page); 5216 } 5217 5218 cpu_buffer->tail_page = cpu_buffer->head_page; 5219 cpu_buffer->commit_page = cpu_buffer->head_page; 5220 5221 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5222 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5223 rb_clear_buffer_page(cpu_buffer->reader_page); 5224 5225 local_set(&cpu_buffer->entries_bytes, 0); 5226 local_set(&cpu_buffer->overrun, 0); 5227 local_set(&cpu_buffer->commit_overrun, 0); 5228 local_set(&cpu_buffer->dropped_events, 0); 5229 local_set(&cpu_buffer->entries, 0); 5230 local_set(&cpu_buffer->committing, 0); 5231 local_set(&cpu_buffer->commits, 0); 5232 local_set(&cpu_buffer->pages_touched, 0); 5233 local_set(&cpu_buffer->pages_lost, 0); 5234 local_set(&cpu_buffer->pages_read, 0); 5235 cpu_buffer->last_pages_touch = 0; 5236 cpu_buffer->shortest_full = 0; 5237 cpu_buffer->read = 0; 5238 cpu_buffer->read_bytes = 0; 5239 5240 rb_time_set(&cpu_buffer->write_stamp, 0); 5241 rb_time_set(&cpu_buffer->before_stamp, 0); 5242 5243 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5244 5245 cpu_buffer->lost_events = 0; 5246 cpu_buffer->last_overrun = 0; 5247 5248 rb_head_page_activate(cpu_buffer); 5249 cpu_buffer->pages_removed = 0; 5250 } 5251 5252 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5253 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5254 { 5255 unsigned long flags; 5256 5257 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5258 5259 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5260 goto out; 5261 5262 arch_spin_lock(&cpu_buffer->lock); 5263 5264 rb_reset_cpu(cpu_buffer); 5265 5266 arch_spin_unlock(&cpu_buffer->lock); 5267 5268 out: 5269 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5270 } 5271 5272 /** 5273 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5274 * @buffer: The ring buffer to reset a per cpu buffer of 5275 * @cpu: The CPU buffer to be reset 5276 */ 5277 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5278 { 5279 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5280 5281 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5282 return; 5283 5284 /* prevent another thread from changing buffer sizes */ 5285 mutex_lock(&buffer->mutex); 5286 5287 atomic_inc(&cpu_buffer->resize_disabled); 5288 atomic_inc(&cpu_buffer->record_disabled); 5289 5290 /* Make sure all commits have finished */ 5291 synchronize_rcu(); 5292 5293 reset_disabled_cpu_buffer(cpu_buffer); 5294 5295 atomic_dec(&cpu_buffer->record_disabled); 5296 atomic_dec(&cpu_buffer->resize_disabled); 5297 5298 mutex_unlock(&buffer->mutex); 5299 } 5300 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5301 5302 /* Flag to ensure proper resetting of atomic variables */ 5303 #define RESET_BIT (1 << 30) 5304 5305 /** 5306 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5307 * @buffer: The ring buffer to reset a per cpu buffer of 5308 */ 5309 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5310 { 5311 struct ring_buffer_per_cpu *cpu_buffer; 5312 int cpu; 5313 5314 /* prevent another thread from changing buffer sizes */ 5315 mutex_lock(&buffer->mutex); 5316 5317 for_each_online_buffer_cpu(buffer, cpu) { 5318 cpu_buffer = buffer->buffers[cpu]; 5319 5320 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5321 atomic_inc(&cpu_buffer->record_disabled); 5322 } 5323 5324 /* Make sure all commits have finished */ 5325 synchronize_rcu(); 5326 5327 for_each_buffer_cpu(buffer, cpu) { 5328 cpu_buffer = buffer->buffers[cpu]; 5329 5330 /* 5331 * If a CPU came online during the synchronize_rcu(), then 5332 * ignore it. 5333 */ 5334 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5335 continue; 5336 5337 reset_disabled_cpu_buffer(cpu_buffer); 5338 5339 atomic_dec(&cpu_buffer->record_disabled); 5340 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5341 } 5342 5343 mutex_unlock(&buffer->mutex); 5344 } 5345 5346 /** 5347 * ring_buffer_reset - reset a ring buffer 5348 * @buffer: The ring buffer to reset all cpu buffers 5349 */ 5350 void ring_buffer_reset(struct trace_buffer *buffer) 5351 { 5352 struct ring_buffer_per_cpu *cpu_buffer; 5353 int cpu; 5354 5355 /* prevent another thread from changing buffer sizes */ 5356 mutex_lock(&buffer->mutex); 5357 5358 for_each_buffer_cpu(buffer, cpu) { 5359 cpu_buffer = buffer->buffers[cpu]; 5360 5361 atomic_inc(&cpu_buffer->resize_disabled); 5362 atomic_inc(&cpu_buffer->record_disabled); 5363 } 5364 5365 /* Make sure all commits have finished */ 5366 synchronize_rcu(); 5367 5368 for_each_buffer_cpu(buffer, cpu) { 5369 cpu_buffer = buffer->buffers[cpu]; 5370 5371 reset_disabled_cpu_buffer(cpu_buffer); 5372 5373 atomic_dec(&cpu_buffer->record_disabled); 5374 atomic_dec(&cpu_buffer->resize_disabled); 5375 } 5376 5377 mutex_unlock(&buffer->mutex); 5378 } 5379 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5380 5381 /** 5382 * ring_buffer_empty - is the ring buffer empty? 5383 * @buffer: The ring buffer to test 5384 */ 5385 bool ring_buffer_empty(struct trace_buffer *buffer) 5386 { 5387 struct ring_buffer_per_cpu *cpu_buffer; 5388 unsigned long flags; 5389 bool dolock; 5390 bool ret; 5391 int cpu; 5392 5393 /* yes this is racy, but if you don't like the race, lock the buffer */ 5394 for_each_buffer_cpu(buffer, cpu) { 5395 cpu_buffer = buffer->buffers[cpu]; 5396 local_irq_save(flags); 5397 dolock = rb_reader_lock(cpu_buffer); 5398 ret = rb_per_cpu_empty(cpu_buffer); 5399 rb_reader_unlock(cpu_buffer, dolock); 5400 local_irq_restore(flags); 5401 5402 if (!ret) 5403 return false; 5404 } 5405 5406 return true; 5407 } 5408 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5409 5410 /** 5411 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5412 * @buffer: The ring buffer 5413 * @cpu: The CPU buffer to test 5414 */ 5415 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5416 { 5417 struct ring_buffer_per_cpu *cpu_buffer; 5418 unsigned long flags; 5419 bool dolock; 5420 bool ret; 5421 5422 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5423 return true; 5424 5425 cpu_buffer = buffer->buffers[cpu]; 5426 local_irq_save(flags); 5427 dolock = rb_reader_lock(cpu_buffer); 5428 ret = rb_per_cpu_empty(cpu_buffer); 5429 rb_reader_unlock(cpu_buffer, dolock); 5430 local_irq_restore(flags); 5431 5432 return ret; 5433 } 5434 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5435 5436 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5437 /** 5438 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5439 * @buffer_a: One buffer to swap with 5440 * @buffer_b: The other buffer to swap with 5441 * @cpu: the CPU of the buffers to swap 5442 * 5443 * This function is useful for tracers that want to take a "snapshot" 5444 * of a CPU buffer and has another back up buffer lying around. 5445 * it is expected that the tracer handles the cpu buffer not being 5446 * used at the moment. 5447 */ 5448 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5449 struct trace_buffer *buffer_b, int cpu) 5450 { 5451 struct ring_buffer_per_cpu *cpu_buffer_a; 5452 struct ring_buffer_per_cpu *cpu_buffer_b; 5453 int ret = -EINVAL; 5454 5455 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5456 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5457 goto out; 5458 5459 cpu_buffer_a = buffer_a->buffers[cpu]; 5460 cpu_buffer_b = buffer_b->buffers[cpu]; 5461 5462 /* At least make sure the two buffers are somewhat the same */ 5463 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5464 goto out; 5465 5466 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 5467 goto out; 5468 5469 ret = -EAGAIN; 5470 5471 if (atomic_read(&buffer_a->record_disabled)) 5472 goto out; 5473 5474 if (atomic_read(&buffer_b->record_disabled)) 5475 goto out; 5476 5477 if (atomic_read(&cpu_buffer_a->record_disabled)) 5478 goto out; 5479 5480 if (atomic_read(&cpu_buffer_b->record_disabled)) 5481 goto out; 5482 5483 /* 5484 * We can't do a synchronize_rcu here because this 5485 * function can be called in atomic context. 5486 * Normally this will be called from the same CPU as cpu. 5487 * If not it's up to the caller to protect this. 5488 */ 5489 atomic_inc(&cpu_buffer_a->record_disabled); 5490 atomic_inc(&cpu_buffer_b->record_disabled); 5491 5492 ret = -EBUSY; 5493 if (local_read(&cpu_buffer_a->committing)) 5494 goto out_dec; 5495 if (local_read(&cpu_buffer_b->committing)) 5496 goto out_dec; 5497 5498 /* 5499 * When resize is in progress, we cannot swap it because 5500 * it will mess the state of the cpu buffer. 5501 */ 5502 if (atomic_read(&buffer_a->resizing)) 5503 goto out_dec; 5504 if (atomic_read(&buffer_b->resizing)) 5505 goto out_dec; 5506 5507 buffer_a->buffers[cpu] = cpu_buffer_b; 5508 buffer_b->buffers[cpu] = cpu_buffer_a; 5509 5510 cpu_buffer_b->buffer = buffer_a; 5511 cpu_buffer_a->buffer = buffer_b; 5512 5513 ret = 0; 5514 5515 out_dec: 5516 atomic_dec(&cpu_buffer_a->record_disabled); 5517 atomic_dec(&cpu_buffer_b->record_disabled); 5518 out: 5519 return ret; 5520 } 5521 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5522 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5523 5524 /** 5525 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5526 * @buffer: the buffer to allocate for. 5527 * @cpu: the cpu buffer to allocate. 5528 * 5529 * This function is used in conjunction with ring_buffer_read_page. 5530 * When reading a full page from the ring buffer, these functions 5531 * can be used to speed up the process. The calling function should 5532 * allocate a few pages first with this function. Then when it 5533 * needs to get pages from the ring buffer, it passes the result 5534 * of this function into ring_buffer_read_page, which will swap 5535 * the page that was allocated, with the read page of the buffer. 5536 * 5537 * Returns: 5538 * The page allocated, or ERR_PTR 5539 */ 5540 struct buffer_data_read_page * 5541 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5542 { 5543 struct ring_buffer_per_cpu *cpu_buffer; 5544 struct buffer_data_read_page *bpage = NULL; 5545 unsigned long flags; 5546 struct page *page; 5547 5548 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5549 return ERR_PTR(-ENODEV); 5550 5551 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 5552 if (!bpage) 5553 return ERR_PTR(-ENOMEM); 5554 5555 bpage->order = buffer->subbuf_order; 5556 cpu_buffer = buffer->buffers[cpu]; 5557 local_irq_save(flags); 5558 arch_spin_lock(&cpu_buffer->lock); 5559 5560 if (cpu_buffer->free_page) { 5561 bpage->data = cpu_buffer->free_page; 5562 cpu_buffer->free_page = NULL; 5563 } 5564 5565 arch_spin_unlock(&cpu_buffer->lock); 5566 local_irq_restore(flags); 5567 5568 if (bpage->data) 5569 goto out; 5570 5571 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY, 5572 cpu_buffer->buffer->subbuf_order); 5573 if (!page) { 5574 kfree(bpage); 5575 return ERR_PTR(-ENOMEM); 5576 } 5577 5578 bpage->data = page_address(page); 5579 5580 out: 5581 rb_init_page(bpage->data); 5582 5583 return bpage; 5584 } 5585 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5586 5587 /** 5588 * ring_buffer_free_read_page - free an allocated read page 5589 * @buffer: the buffer the page was allocate for 5590 * @cpu: the cpu buffer the page came from 5591 * @data_page: the page to free 5592 * 5593 * Free a page allocated from ring_buffer_alloc_read_page. 5594 */ 5595 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 5596 struct buffer_data_read_page *data_page) 5597 { 5598 struct ring_buffer_per_cpu *cpu_buffer; 5599 struct buffer_data_page *bpage = data_page->data; 5600 struct page *page = virt_to_page(bpage); 5601 unsigned long flags; 5602 5603 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5604 return; 5605 5606 cpu_buffer = buffer->buffers[cpu]; 5607 5608 /* 5609 * If the page is still in use someplace else, or order of the page 5610 * is different from the subbuffer order of the buffer - 5611 * we can't reuse it 5612 */ 5613 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 5614 goto out; 5615 5616 local_irq_save(flags); 5617 arch_spin_lock(&cpu_buffer->lock); 5618 5619 if (!cpu_buffer->free_page) { 5620 cpu_buffer->free_page = bpage; 5621 bpage = NULL; 5622 } 5623 5624 arch_spin_unlock(&cpu_buffer->lock); 5625 local_irq_restore(flags); 5626 5627 out: 5628 free_pages((unsigned long)bpage, data_page->order); 5629 kfree(data_page); 5630 } 5631 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5632 5633 /** 5634 * ring_buffer_read_page - extract a page from the ring buffer 5635 * @buffer: buffer to extract from 5636 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5637 * @len: amount to extract 5638 * @cpu: the cpu of the buffer to extract 5639 * @full: should the extraction only happen when the page is full. 5640 * 5641 * This function will pull out a page from the ring buffer and consume it. 5642 * @data_page must be the address of the variable that was returned 5643 * from ring_buffer_alloc_read_page. This is because the page might be used 5644 * to swap with a page in the ring buffer. 5645 * 5646 * for example: 5647 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5648 * if (IS_ERR(rpage)) 5649 * return PTR_ERR(rpage); 5650 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 5651 * if (ret >= 0) 5652 * process_page(ring_buffer_read_page_data(rpage), ret); 5653 * ring_buffer_free_read_page(buffer, cpu, rpage); 5654 * 5655 * When @full is set, the function will not return true unless 5656 * the writer is off the reader page. 5657 * 5658 * Note: it is up to the calling functions to handle sleeps and wakeups. 5659 * The ring buffer can be used anywhere in the kernel and can not 5660 * blindly call wake_up. The layer that uses the ring buffer must be 5661 * responsible for that. 5662 * 5663 * Returns: 5664 * >=0 if data has been transferred, returns the offset of consumed data. 5665 * <0 if no data has been transferred. 5666 */ 5667 int ring_buffer_read_page(struct trace_buffer *buffer, 5668 struct buffer_data_read_page *data_page, 5669 size_t len, int cpu, int full) 5670 { 5671 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5672 struct ring_buffer_event *event; 5673 struct buffer_data_page *bpage; 5674 struct buffer_page *reader; 5675 unsigned long missed_events; 5676 unsigned long flags; 5677 unsigned int commit; 5678 unsigned int read; 5679 u64 save_timestamp; 5680 int ret = -1; 5681 5682 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5683 goto out; 5684 5685 /* 5686 * If len is not big enough to hold the page header, then 5687 * we can not copy anything. 5688 */ 5689 if (len <= BUF_PAGE_HDR_SIZE) 5690 goto out; 5691 5692 len -= BUF_PAGE_HDR_SIZE; 5693 5694 if (!data_page || !data_page->data) 5695 goto out; 5696 if (data_page->order != buffer->subbuf_order) 5697 goto out; 5698 5699 bpage = data_page->data; 5700 if (!bpage) 5701 goto out; 5702 5703 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5704 5705 reader = rb_get_reader_page(cpu_buffer); 5706 if (!reader) 5707 goto out_unlock; 5708 5709 event = rb_reader_event(cpu_buffer); 5710 5711 read = reader->read; 5712 commit = rb_page_commit(reader); 5713 5714 /* Check if any events were dropped */ 5715 missed_events = cpu_buffer->lost_events; 5716 5717 /* 5718 * If this page has been partially read or 5719 * if len is not big enough to read the rest of the page or 5720 * a writer is still on the page, then 5721 * we must copy the data from the page to the buffer. 5722 * Otherwise, we can simply swap the page with the one passed in. 5723 */ 5724 if (read || (len < (commit - read)) || 5725 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5726 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5727 unsigned int rpos = read; 5728 unsigned int pos = 0; 5729 unsigned int size; 5730 5731 /* 5732 * If a full page is expected, this can still be returned 5733 * if there's been a previous partial read and the 5734 * rest of the page can be read and the commit page is off 5735 * the reader page. 5736 */ 5737 if (full && 5738 (!read || (len < (commit - read)) || 5739 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5740 goto out_unlock; 5741 5742 if (len > (commit - read)) 5743 len = (commit - read); 5744 5745 /* Always keep the time extend and data together */ 5746 size = rb_event_ts_length(event); 5747 5748 if (len < size) 5749 goto out_unlock; 5750 5751 /* save the current timestamp, since the user will need it */ 5752 save_timestamp = cpu_buffer->read_stamp; 5753 5754 /* Need to copy one event at a time */ 5755 do { 5756 /* We need the size of one event, because 5757 * rb_advance_reader only advances by one event, 5758 * whereas rb_event_ts_length may include the size of 5759 * one or two events. 5760 * We have already ensured there's enough space if this 5761 * is a time extend. */ 5762 size = rb_event_length(event); 5763 memcpy(bpage->data + pos, rpage->data + rpos, size); 5764 5765 len -= size; 5766 5767 rb_advance_reader(cpu_buffer); 5768 rpos = reader->read; 5769 pos += size; 5770 5771 if (rpos >= commit) 5772 break; 5773 5774 event = rb_reader_event(cpu_buffer); 5775 /* Always keep the time extend and data together */ 5776 size = rb_event_ts_length(event); 5777 } while (len >= size); 5778 5779 /* update bpage */ 5780 local_set(&bpage->commit, pos); 5781 bpage->time_stamp = save_timestamp; 5782 5783 /* we copied everything to the beginning */ 5784 read = 0; 5785 } else { 5786 /* update the entry counter */ 5787 cpu_buffer->read += rb_page_entries(reader); 5788 cpu_buffer->read_bytes += rb_page_commit(reader); 5789 5790 /* swap the pages */ 5791 rb_init_page(bpage); 5792 bpage = reader->page; 5793 reader->page = data_page->data; 5794 local_set(&reader->write, 0); 5795 local_set(&reader->entries, 0); 5796 reader->read = 0; 5797 data_page->data = bpage; 5798 5799 /* 5800 * Use the real_end for the data size, 5801 * This gives us a chance to store the lost events 5802 * on the page. 5803 */ 5804 if (reader->real_end) 5805 local_set(&bpage->commit, reader->real_end); 5806 } 5807 ret = read; 5808 5809 cpu_buffer->lost_events = 0; 5810 5811 commit = local_read(&bpage->commit); 5812 /* 5813 * Set a flag in the commit field if we lost events 5814 */ 5815 if (missed_events) { 5816 /* If there is room at the end of the page to save the 5817 * missed events, then record it there. 5818 */ 5819 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 5820 memcpy(&bpage->data[commit], &missed_events, 5821 sizeof(missed_events)); 5822 local_add(RB_MISSED_STORED, &bpage->commit); 5823 commit += sizeof(missed_events); 5824 } 5825 local_add(RB_MISSED_EVENTS, &bpage->commit); 5826 } 5827 5828 /* 5829 * This page may be off to user land. Zero it out here. 5830 */ 5831 if (commit < buffer->subbuf_size) 5832 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 5833 5834 out_unlock: 5835 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5836 5837 out: 5838 return ret; 5839 } 5840 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5841 5842 /** 5843 * ring_buffer_read_page_data - get pointer to the data in the page. 5844 * @page: the page to get the data from 5845 * 5846 * Returns pointer to the actual data in this page. 5847 */ 5848 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 5849 { 5850 return page->data; 5851 } 5852 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 5853 5854 /** 5855 * ring_buffer_subbuf_size_get - get size of the sub buffer. 5856 * @buffer: the buffer to get the sub buffer size from 5857 * 5858 * Returns size of the sub buffer, in bytes. 5859 */ 5860 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 5861 { 5862 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 5863 } 5864 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 5865 5866 /** 5867 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 5868 * @buffer: The ring_buffer to get the system sub page order from 5869 * 5870 * By default, one ring buffer sub page equals to one system page. This parameter 5871 * is configurable, per ring buffer. The size of the ring buffer sub page can be 5872 * extended, but must be an order of system page size. 5873 * 5874 * Returns the order of buffer sub page size, in system pages: 5875 * 0 means the sub buffer size is 1 system page and so forth. 5876 * In case of an error < 0 is returned. 5877 */ 5878 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 5879 { 5880 if (!buffer) 5881 return -EINVAL; 5882 5883 return buffer->subbuf_order; 5884 } 5885 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 5886 5887 /** 5888 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 5889 * @buffer: The ring_buffer to set the new page size. 5890 * @order: Order of the system pages in one sub buffer page 5891 * 5892 * By default, one ring buffer pages equals to one system page. This API can be 5893 * used to set new size of the ring buffer page. The size must be order of 5894 * system page size, that's why the input parameter @order is the order of 5895 * system pages that are allocated for one ring buffer page: 5896 * 0 - 1 system page 5897 * 1 - 2 system pages 5898 * 3 - 4 system pages 5899 * ... 5900 * 5901 * Returns 0 on success or < 0 in case of an error. 5902 */ 5903 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 5904 { 5905 struct ring_buffer_per_cpu *cpu_buffer; 5906 struct buffer_page *bpage, *tmp; 5907 int old_order, old_size; 5908 int nr_pages; 5909 int psize; 5910 int err; 5911 int cpu; 5912 5913 if (!buffer || order < 0) 5914 return -EINVAL; 5915 5916 if (buffer->subbuf_order == order) 5917 return 0; 5918 5919 psize = (1 << order) * PAGE_SIZE; 5920 if (psize <= BUF_PAGE_HDR_SIZE) 5921 return -EINVAL; 5922 5923 /* Size of a subbuf cannot be greater than the write counter */ 5924 if (psize > RB_WRITE_MASK + 1) 5925 return -EINVAL; 5926 5927 old_order = buffer->subbuf_order; 5928 old_size = buffer->subbuf_size; 5929 5930 /* prevent another thread from changing buffer sizes */ 5931 mutex_lock(&buffer->mutex); 5932 atomic_inc(&buffer->record_disabled); 5933 5934 /* Make sure all commits have finished */ 5935 synchronize_rcu(); 5936 5937 buffer->subbuf_order = order; 5938 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 5939 5940 /* Make sure all new buffers are allocated, before deleting the old ones */ 5941 for_each_buffer_cpu(buffer, cpu) { 5942 5943 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5944 continue; 5945 5946 cpu_buffer = buffer->buffers[cpu]; 5947 5948 /* Update the number of pages to match the new size */ 5949 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 5950 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 5951 5952 /* we need a minimum of two pages */ 5953 if (nr_pages < 2) 5954 nr_pages = 2; 5955 5956 cpu_buffer->nr_pages_to_update = nr_pages; 5957 5958 /* Include the reader page */ 5959 nr_pages++; 5960 5961 /* Allocate the new size buffer */ 5962 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5963 if (__rb_allocate_pages(cpu_buffer, nr_pages, 5964 &cpu_buffer->new_pages)) { 5965 /* not enough memory for new pages */ 5966 err = -ENOMEM; 5967 goto error; 5968 } 5969 } 5970 5971 for_each_buffer_cpu(buffer, cpu) { 5972 5973 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5974 continue; 5975 5976 cpu_buffer = buffer->buffers[cpu]; 5977 5978 /* Clear the head bit to make the link list normal to read */ 5979 rb_head_page_deactivate(cpu_buffer); 5980 5981 /* Now walk the list and free all the old sub buffers */ 5982 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) { 5983 list_del_init(&bpage->list); 5984 free_buffer_page(bpage); 5985 } 5986 /* The above loop stopped an the last page needing to be freed */ 5987 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list); 5988 free_buffer_page(bpage); 5989 5990 /* Free the current reader page */ 5991 free_buffer_page(cpu_buffer->reader_page); 5992 5993 /* One page was allocated for the reader page */ 5994 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 5995 struct buffer_page, list); 5996 list_del_init(&cpu_buffer->reader_page->list); 5997 5998 /* The cpu_buffer pages are a link list with no head */ 5999 cpu_buffer->pages = cpu_buffer->new_pages.next; 6000 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev; 6001 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next; 6002 6003 /* Clear the new_pages list */ 6004 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6005 6006 cpu_buffer->head_page 6007 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6008 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6009 6010 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6011 cpu_buffer->nr_pages_to_update = 0; 6012 6013 free_pages((unsigned long)cpu_buffer->free_page, old_order); 6014 cpu_buffer->free_page = NULL; 6015 6016 rb_head_page_activate(cpu_buffer); 6017 6018 rb_check_pages(cpu_buffer); 6019 } 6020 6021 atomic_dec(&buffer->record_disabled); 6022 mutex_unlock(&buffer->mutex); 6023 6024 return 0; 6025 6026 error: 6027 buffer->subbuf_order = old_order; 6028 buffer->subbuf_size = old_size; 6029 6030 atomic_dec(&buffer->record_disabled); 6031 mutex_unlock(&buffer->mutex); 6032 6033 for_each_buffer_cpu(buffer, cpu) { 6034 cpu_buffer = buffer->buffers[cpu]; 6035 6036 if (!cpu_buffer->nr_pages_to_update) 6037 continue; 6038 6039 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6040 list_del_init(&bpage->list); 6041 free_buffer_page(bpage); 6042 } 6043 } 6044 6045 return err; 6046 } 6047 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6048 6049 /* 6050 * We only allocate new buffers, never free them if the CPU goes down. 6051 * If we were to free the buffer, then the user would lose any trace that was in 6052 * the buffer. 6053 */ 6054 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 6055 { 6056 struct trace_buffer *buffer; 6057 long nr_pages_same; 6058 int cpu_i; 6059 unsigned long nr_pages; 6060 6061 buffer = container_of(node, struct trace_buffer, node); 6062 if (cpumask_test_cpu(cpu, buffer->cpumask)) 6063 return 0; 6064 6065 nr_pages = 0; 6066 nr_pages_same = 1; 6067 /* check if all cpu sizes are same */ 6068 for_each_buffer_cpu(buffer, cpu_i) { 6069 /* fill in the size from first enabled cpu */ 6070 if (nr_pages == 0) 6071 nr_pages = buffer->buffers[cpu_i]->nr_pages; 6072 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 6073 nr_pages_same = 0; 6074 break; 6075 } 6076 } 6077 /* allocate minimum pages, user can later expand it */ 6078 if (!nr_pages_same) 6079 nr_pages = 2; 6080 buffer->buffers[cpu] = 6081 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 6082 if (!buffer->buffers[cpu]) { 6083 WARN(1, "failed to allocate ring buffer on CPU %u\n", 6084 cpu); 6085 return -ENOMEM; 6086 } 6087 smp_wmb(); 6088 cpumask_set_cpu(cpu, buffer->cpumask); 6089 return 0; 6090 } 6091 6092 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 6093 /* 6094 * This is a basic integrity check of the ring buffer. 6095 * Late in the boot cycle this test will run when configured in. 6096 * It will kick off a thread per CPU that will go into a loop 6097 * writing to the per cpu ring buffer various sizes of data. 6098 * Some of the data will be large items, some small. 6099 * 6100 * Another thread is created that goes into a spin, sending out 6101 * IPIs to the other CPUs to also write into the ring buffer. 6102 * this is to test the nesting ability of the buffer. 6103 * 6104 * Basic stats are recorded and reported. If something in the 6105 * ring buffer should happen that's not expected, a big warning 6106 * is displayed and all ring buffers are disabled. 6107 */ 6108 static struct task_struct *rb_threads[NR_CPUS] __initdata; 6109 6110 struct rb_test_data { 6111 struct trace_buffer *buffer; 6112 unsigned long events; 6113 unsigned long bytes_written; 6114 unsigned long bytes_alloc; 6115 unsigned long bytes_dropped; 6116 unsigned long events_nested; 6117 unsigned long bytes_written_nested; 6118 unsigned long bytes_alloc_nested; 6119 unsigned long bytes_dropped_nested; 6120 int min_size_nested; 6121 int max_size_nested; 6122 int max_size; 6123 int min_size; 6124 int cpu; 6125 int cnt; 6126 }; 6127 6128 static struct rb_test_data rb_data[NR_CPUS] __initdata; 6129 6130 /* 1 meg per cpu */ 6131 #define RB_TEST_BUFFER_SIZE 1048576 6132 6133 static char rb_string[] __initdata = 6134 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 6135 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 6136 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 6137 6138 static bool rb_test_started __initdata; 6139 6140 struct rb_item { 6141 int size; 6142 char str[]; 6143 }; 6144 6145 static __init int rb_write_something(struct rb_test_data *data, bool nested) 6146 { 6147 struct ring_buffer_event *event; 6148 struct rb_item *item; 6149 bool started; 6150 int event_len; 6151 int size; 6152 int len; 6153 int cnt; 6154 6155 /* Have nested writes different that what is written */ 6156 cnt = data->cnt + (nested ? 27 : 0); 6157 6158 /* Multiply cnt by ~e, to make some unique increment */ 6159 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 6160 6161 len = size + sizeof(struct rb_item); 6162 6163 started = rb_test_started; 6164 /* read rb_test_started before checking buffer enabled */ 6165 smp_rmb(); 6166 6167 event = ring_buffer_lock_reserve(data->buffer, len); 6168 if (!event) { 6169 /* Ignore dropped events before test starts. */ 6170 if (started) { 6171 if (nested) 6172 data->bytes_dropped += len; 6173 else 6174 data->bytes_dropped_nested += len; 6175 } 6176 return len; 6177 } 6178 6179 event_len = ring_buffer_event_length(event); 6180 6181 if (RB_WARN_ON(data->buffer, event_len < len)) 6182 goto out; 6183 6184 item = ring_buffer_event_data(event); 6185 item->size = size; 6186 memcpy(item->str, rb_string, size); 6187 6188 if (nested) { 6189 data->bytes_alloc_nested += event_len; 6190 data->bytes_written_nested += len; 6191 data->events_nested++; 6192 if (!data->min_size_nested || len < data->min_size_nested) 6193 data->min_size_nested = len; 6194 if (len > data->max_size_nested) 6195 data->max_size_nested = len; 6196 } else { 6197 data->bytes_alloc += event_len; 6198 data->bytes_written += len; 6199 data->events++; 6200 if (!data->min_size || len < data->min_size) 6201 data->max_size = len; 6202 if (len > data->max_size) 6203 data->max_size = len; 6204 } 6205 6206 out: 6207 ring_buffer_unlock_commit(data->buffer); 6208 6209 return 0; 6210 } 6211 6212 static __init int rb_test(void *arg) 6213 { 6214 struct rb_test_data *data = arg; 6215 6216 while (!kthread_should_stop()) { 6217 rb_write_something(data, false); 6218 data->cnt++; 6219 6220 set_current_state(TASK_INTERRUPTIBLE); 6221 /* Now sleep between a min of 100-300us and a max of 1ms */ 6222 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6223 } 6224 6225 return 0; 6226 } 6227 6228 static __init void rb_ipi(void *ignore) 6229 { 6230 struct rb_test_data *data; 6231 int cpu = smp_processor_id(); 6232 6233 data = &rb_data[cpu]; 6234 rb_write_something(data, true); 6235 } 6236 6237 static __init int rb_hammer_test(void *arg) 6238 { 6239 while (!kthread_should_stop()) { 6240 6241 /* Send an IPI to all cpus to write data! */ 6242 smp_call_function(rb_ipi, NULL, 1); 6243 /* No sleep, but for non preempt, let others run */ 6244 schedule(); 6245 } 6246 6247 return 0; 6248 } 6249 6250 static __init int test_ringbuffer(void) 6251 { 6252 struct task_struct *rb_hammer; 6253 struct trace_buffer *buffer; 6254 int cpu; 6255 int ret = 0; 6256 6257 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6258 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6259 return 0; 6260 } 6261 6262 pr_info("Running ring buffer tests...\n"); 6263 6264 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6265 if (WARN_ON(!buffer)) 6266 return 0; 6267 6268 /* Disable buffer so that threads can't write to it yet */ 6269 ring_buffer_record_off(buffer); 6270 6271 for_each_online_cpu(cpu) { 6272 rb_data[cpu].buffer = buffer; 6273 rb_data[cpu].cpu = cpu; 6274 rb_data[cpu].cnt = cpu; 6275 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6276 cpu, "rbtester/%u"); 6277 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6278 pr_cont("FAILED\n"); 6279 ret = PTR_ERR(rb_threads[cpu]); 6280 goto out_free; 6281 } 6282 } 6283 6284 /* Now create the rb hammer! */ 6285 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6286 if (WARN_ON(IS_ERR(rb_hammer))) { 6287 pr_cont("FAILED\n"); 6288 ret = PTR_ERR(rb_hammer); 6289 goto out_free; 6290 } 6291 6292 ring_buffer_record_on(buffer); 6293 /* 6294 * Show buffer is enabled before setting rb_test_started. 6295 * Yes there's a small race window where events could be 6296 * dropped and the thread wont catch it. But when a ring 6297 * buffer gets enabled, there will always be some kind of 6298 * delay before other CPUs see it. Thus, we don't care about 6299 * those dropped events. We care about events dropped after 6300 * the threads see that the buffer is active. 6301 */ 6302 smp_wmb(); 6303 rb_test_started = true; 6304 6305 set_current_state(TASK_INTERRUPTIBLE); 6306 /* Just run for 10 seconds */; 6307 schedule_timeout(10 * HZ); 6308 6309 kthread_stop(rb_hammer); 6310 6311 out_free: 6312 for_each_online_cpu(cpu) { 6313 if (!rb_threads[cpu]) 6314 break; 6315 kthread_stop(rb_threads[cpu]); 6316 } 6317 if (ret) { 6318 ring_buffer_free(buffer); 6319 return ret; 6320 } 6321 6322 /* Report! */ 6323 pr_info("finished\n"); 6324 for_each_online_cpu(cpu) { 6325 struct ring_buffer_event *event; 6326 struct rb_test_data *data = &rb_data[cpu]; 6327 struct rb_item *item; 6328 unsigned long total_events; 6329 unsigned long total_dropped; 6330 unsigned long total_written; 6331 unsigned long total_alloc; 6332 unsigned long total_read = 0; 6333 unsigned long total_size = 0; 6334 unsigned long total_len = 0; 6335 unsigned long total_lost = 0; 6336 unsigned long lost; 6337 int big_event_size; 6338 int small_event_size; 6339 6340 ret = -1; 6341 6342 total_events = data->events + data->events_nested; 6343 total_written = data->bytes_written + data->bytes_written_nested; 6344 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6345 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6346 6347 big_event_size = data->max_size + data->max_size_nested; 6348 small_event_size = data->min_size + data->min_size_nested; 6349 6350 pr_info("CPU %d:\n", cpu); 6351 pr_info(" events: %ld\n", total_events); 6352 pr_info(" dropped bytes: %ld\n", total_dropped); 6353 pr_info(" alloced bytes: %ld\n", total_alloc); 6354 pr_info(" written bytes: %ld\n", total_written); 6355 pr_info(" biggest event: %d\n", big_event_size); 6356 pr_info(" smallest event: %d\n", small_event_size); 6357 6358 if (RB_WARN_ON(buffer, total_dropped)) 6359 break; 6360 6361 ret = 0; 6362 6363 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6364 total_lost += lost; 6365 item = ring_buffer_event_data(event); 6366 total_len += ring_buffer_event_length(event); 6367 total_size += item->size + sizeof(struct rb_item); 6368 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6369 pr_info("FAILED!\n"); 6370 pr_info("buffer had: %.*s\n", item->size, item->str); 6371 pr_info("expected: %.*s\n", item->size, rb_string); 6372 RB_WARN_ON(buffer, 1); 6373 ret = -1; 6374 break; 6375 } 6376 total_read++; 6377 } 6378 if (ret) 6379 break; 6380 6381 ret = -1; 6382 6383 pr_info(" read events: %ld\n", total_read); 6384 pr_info(" lost events: %ld\n", total_lost); 6385 pr_info(" total events: %ld\n", total_lost + total_read); 6386 pr_info(" recorded len bytes: %ld\n", total_len); 6387 pr_info(" recorded size bytes: %ld\n", total_size); 6388 if (total_lost) { 6389 pr_info(" With dropped events, record len and size may not match\n" 6390 " alloced and written from above\n"); 6391 } else { 6392 if (RB_WARN_ON(buffer, total_len != total_alloc || 6393 total_size != total_written)) 6394 break; 6395 } 6396 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6397 break; 6398 6399 ret = 0; 6400 } 6401 if (!ret) 6402 pr_info("Ring buffer PASSED!\n"); 6403 6404 ring_buffer_free(buffer); 6405 return 0; 6406 } 6407 6408 late_initcall(test_ringbuffer); 6409 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6410