xref: /linux/kernel/trace/ring_buffer.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>	/* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	trace_seq_puts(s, "# compressed entry header\n");
38 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40 	trace_seq_puts(s, "\tarray       :   32 bits\n");
41 	trace_seq_putc(s, '\n');
42 	trace_seq_printf(s, "\tpadding     : type == %d\n",
43 			 RINGBUF_TYPE_PADDING);
44 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 			 RINGBUF_TYPE_TIME_EXTEND);
46 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 			 RINGBUF_TYPE_TIME_STAMP);
48 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return !trace_seq_has_overflowed(s);
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF		(1 << 20)
124 
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126 
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT		4U
129 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
131 
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT	0
134 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT	1
137 # define RB_ARCH_ALIGNMENT		8U
138 #endif
139 
140 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
141 
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144 
145 enum {
146 	RB_LEN_TIME_EXTEND = 8,
147 	RB_LEN_TIME_STAMP =  8,
148 };
149 
150 #define skip_time_extend(event) \
151 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152 
153 #define extended_time(event) \
154 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155 
156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160 
161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163 	/* padding has a NULL time_delta */
164 	event->type_len = RINGBUF_TYPE_PADDING;
165 	event->time_delta = 0;
166 }
167 
168 static unsigned
169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171 	unsigned length;
172 
173 	if (event->type_len)
174 		length = event->type_len * RB_ALIGNMENT;
175 	else
176 		length = event->array[0];
177 	return length + RB_EVNT_HDR_SIZE;
178 }
179 
180 /*
181  * Return the length of the given event. Will return
182  * the length of the time extend if the event is a
183  * time extend.
184  */
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
187 {
188 	switch (event->type_len) {
189 	case RINGBUF_TYPE_PADDING:
190 		if (rb_null_event(event))
191 			/* undefined */
192 			return -1;
193 		return  event->array[0] + RB_EVNT_HDR_SIZE;
194 
195 	case RINGBUF_TYPE_TIME_EXTEND:
196 		return RB_LEN_TIME_EXTEND;
197 
198 	case RINGBUF_TYPE_TIME_STAMP:
199 		return RB_LEN_TIME_STAMP;
200 
201 	case RINGBUF_TYPE_DATA:
202 		return rb_event_data_length(event);
203 	default:
204 		BUG();
205 	}
206 	/* not hit */
207 	return 0;
208 }
209 
210 /*
211  * Return total length of time extend and data,
212  *   or just the event length for all other events.
213  */
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217 	unsigned len = 0;
218 
219 	if (extended_time(event)) {
220 		/* time extends include the data event after it */
221 		len = RB_LEN_TIME_EXTEND;
222 		event = skip_time_extend(event);
223 	}
224 	return len + rb_event_length(event);
225 }
226 
227 /**
228  * ring_buffer_event_length - return the length of the event
229  * @event: the event to get the length of
230  *
231  * Returns the size of the data load of a data event.
232  * If the event is something other than a data event, it
233  * returns the size of the event itself. With the exception
234  * of a TIME EXTEND, where it still returns the size of the
235  * data load of the data event after it.
236  */
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239 	unsigned length;
240 
241 	if (extended_time(event))
242 		event = skip_time_extend(event);
243 
244 	length = rb_event_length(event);
245 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246 		return length;
247 	length -= RB_EVNT_HDR_SIZE;
248 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249                 length -= sizeof(event->array[0]);
250 	return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253 
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
257 {
258 	if (extended_time(event))
259 		event = skip_time_extend(event);
260 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261 	/* If length is in len field, then array[0] has the data */
262 	if (event->type_len)
263 		return (void *)&event->array[0];
264 	/* Otherwise length is in array[0] and array[1] has the data */
265 	return (void *)&event->array[1];
266 }
267 
268 /**
269  * ring_buffer_event_data - return the data of the event
270  * @event: the event to get the data from
271  */
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274 	return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277 
278 #define for_each_buffer_cpu(buffer, cpu)		\
279 	for_each_cpu(cpu, buffer->cpumask)
280 
281 #define TS_SHIFT	27
282 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST	(~TS_MASK)
284 
285 /**
286  * ring_buffer_event_time_stamp - return the event's extended timestamp
287  * @event: the event to get the timestamp of
288  *
289  * Returns the extended timestamp associated with a data event.
290  * An extended time_stamp is a 64-bit timestamp represented
291  * internally in a special way that makes the best use of space
292  * contained within a ring buffer event.  This function decodes
293  * it and maps it to a straight u64 value.
294  */
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297 	u64 ts;
298 
299 	ts = event->array[0];
300 	ts <<= TS_SHIFT;
301 	ts += event->time_delta;
302 
303 	return ts;
304 }
305 
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS	(1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED	(1 << 30)
310 
311 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
312 
313 struct buffer_data_page {
314 	u64		 time_stamp;	/* page time stamp */
315 	local_t		 commit;	/* write committed index */
316 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
317 };
318 
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328 	struct list_head list;		/* list of buffer pages */
329 	local_t		 write;		/* index for next write */
330 	unsigned	 read;		/* index for next read */
331 	local_t		 entries;	/* entries on this page */
332 	unsigned long	 real_end;	/* real end of data */
333 	struct buffer_data_page *page;	/* Actual data page */
334 };
335 
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK		0xfffff
349 #define RB_WRITE_INTCNT		(1 << 20)
350 
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353 	local_set(&bpage->commit, 0);
354 }
355 
356 /**
357  * ring_buffer_page_len - the size of data on the page.
358  * @page: The page to read
359  *
360  * Returns the amount of data on the page, including buffer page header.
361  */
362 size_t ring_buffer_page_len(void *page)
363 {
364 	struct buffer_data_page *bpage = page;
365 
366 	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
367 		+ BUF_PAGE_HDR_SIZE;
368 }
369 
370 /*
371  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372  * this issue out.
373  */
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376 	free_page((unsigned long)bpage->page);
377 	kfree(bpage);
378 }
379 
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline int test_time_stamp(u64 delta)
384 {
385 	if (delta & TS_DELTA_TEST)
386 		return 1;
387 	return 0;
388 }
389 
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391 
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394 
395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397 	struct buffer_data_page field;
398 
399 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)sizeof(field.time_stamp),
402 			 (unsigned int)is_signed_type(u64));
403 
404 	trace_seq_printf(s, "\tfield: local_t commit;\t"
405 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 			 (unsigned int)offsetof(typeof(field), commit),
407 			 (unsigned int)sizeof(field.commit),
408 			 (unsigned int)is_signed_type(long));
409 
410 	trace_seq_printf(s, "\tfield: int overwrite;\t"
411 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 			 (unsigned int)offsetof(typeof(field), commit),
413 			 1,
414 			 (unsigned int)is_signed_type(long));
415 
416 	trace_seq_printf(s, "\tfield: char data;\t"
417 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
418 			 (unsigned int)offsetof(typeof(field), data),
419 			 (unsigned int)BUF_PAGE_SIZE,
420 			 (unsigned int)is_signed_type(char));
421 
422 	return !trace_seq_has_overflowed(s);
423 }
424 
425 struct rb_irq_work {
426 	struct irq_work			work;
427 	wait_queue_head_t		waiters;
428 	wait_queue_head_t		full_waiters;
429 	bool				waiters_pending;
430 	bool				full_waiters_pending;
431 	bool				wakeup_full;
432 };
433 
434 /*
435  * Structure to hold event state and handle nested events.
436  */
437 struct rb_event_info {
438 	u64			ts;
439 	u64			delta;
440 	unsigned long		length;
441 	struct buffer_page	*tail_page;
442 	int			add_timestamp;
443 };
444 
445 /*
446  * Used for which event context the event is in.
447  *  NMI     = 0
448  *  IRQ     = 1
449  *  SOFTIRQ = 2
450  *  NORMAL  = 3
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_NMI,
456 	RB_CTX_IRQ,
457 	RB_CTX_SOFTIRQ,
458 	RB_CTX_NORMAL,
459 	RB_CTX_MAX
460 };
461 
462 /*
463  * head_page == tail_page && head == tail then buffer is empty.
464  */
465 struct ring_buffer_per_cpu {
466 	int				cpu;
467 	atomic_t			record_disabled;
468 	struct ring_buffer		*buffer;
469 	raw_spinlock_t			reader_lock;	/* serialize readers */
470 	arch_spinlock_t			lock;
471 	struct lock_class_key		lock_key;
472 	struct buffer_data_page		*free_page;
473 	unsigned long			nr_pages;
474 	unsigned int			current_context;
475 	struct list_head		*pages;
476 	struct buffer_page		*head_page;	/* read from head */
477 	struct buffer_page		*tail_page;	/* write to tail */
478 	struct buffer_page		*commit_page;	/* committed pages */
479 	struct buffer_page		*reader_page;
480 	unsigned long			lost_events;
481 	unsigned long			last_overrun;
482 	unsigned long			nest;
483 	local_t				entries_bytes;
484 	local_t				entries;
485 	local_t				overrun;
486 	local_t				commit_overrun;
487 	local_t				dropped_events;
488 	local_t				committing;
489 	local_t				commits;
490 	unsigned long			read;
491 	unsigned long			read_bytes;
492 	u64				write_stamp;
493 	u64				read_stamp;
494 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
495 	long				nr_pages_to_update;
496 	struct list_head		new_pages; /* new pages to add */
497 	struct work_struct		update_pages_work;
498 	struct completion		update_done;
499 
500 	struct rb_irq_work		irq_work;
501 };
502 
503 struct ring_buffer {
504 	unsigned			flags;
505 	int				cpus;
506 	atomic_t			record_disabled;
507 	atomic_t			resize_disabled;
508 	cpumask_var_t			cpumask;
509 
510 	struct lock_class_key		*reader_lock_key;
511 
512 	struct mutex			mutex;
513 
514 	struct ring_buffer_per_cpu	**buffers;
515 
516 	struct hlist_node		node;
517 	u64				(*clock)(void);
518 
519 	struct rb_irq_work		irq_work;
520 	bool				time_stamp_abs;
521 };
522 
523 struct ring_buffer_iter {
524 	struct ring_buffer_per_cpu	*cpu_buffer;
525 	unsigned long			head;
526 	struct buffer_page		*head_page;
527 	struct buffer_page		*cache_reader_page;
528 	unsigned long			cache_read;
529 	u64				read_stamp;
530 };
531 
532 /*
533  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
534  *
535  * Schedules a delayed work to wake up any task that is blocked on the
536  * ring buffer waiters queue.
537  */
538 static void rb_wake_up_waiters(struct irq_work *work)
539 {
540 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
541 
542 	wake_up_all(&rbwork->waiters);
543 	if (rbwork->wakeup_full) {
544 		rbwork->wakeup_full = false;
545 		wake_up_all(&rbwork->full_waiters);
546 	}
547 }
548 
549 /**
550  * ring_buffer_wait - wait for input to the ring buffer
551  * @buffer: buffer to wait on
552  * @cpu: the cpu buffer to wait on
553  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
554  *
555  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
556  * as data is added to any of the @buffer's cpu buffers. Otherwise
557  * it will wait for data to be added to a specific cpu buffer.
558  */
559 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
560 {
561 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
562 	DEFINE_WAIT(wait);
563 	struct rb_irq_work *work;
564 	int ret = 0;
565 
566 	/*
567 	 * Depending on what the caller is waiting for, either any
568 	 * data in any cpu buffer, or a specific buffer, put the
569 	 * caller on the appropriate wait queue.
570 	 */
571 	if (cpu == RING_BUFFER_ALL_CPUS) {
572 		work = &buffer->irq_work;
573 		/* Full only makes sense on per cpu reads */
574 		full = false;
575 	} else {
576 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
577 			return -ENODEV;
578 		cpu_buffer = buffer->buffers[cpu];
579 		work = &cpu_buffer->irq_work;
580 	}
581 
582 
583 	while (true) {
584 		if (full)
585 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
586 		else
587 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
588 
589 		/*
590 		 * The events can happen in critical sections where
591 		 * checking a work queue can cause deadlocks.
592 		 * After adding a task to the queue, this flag is set
593 		 * only to notify events to try to wake up the queue
594 		 * using irq_work.
595 		 *
596 		 * We don't clear it even if the buffer is no longer
597 		 * empty. The flag only causes the next event to run
598 		 * irq_work to do the work queue wake up. The worse
599 		 * that can happen if we race with !trace_empty() is that
600 		 * an event will cause an irq_work to try to wake up
601 		 * an empty queue.
602 		 *
603 		 * There's no reason to protect this flag either, as
604 		 * the work queue and irq_work logic will do the necessary
605 		 * synchronization for the wake ups. The only thing
606 		 * that is necessary is that the wake up happens after
607 		 * a task has been queued. It's OK for spurious wake ups.
608 		 */
609 		if (full)
610 			work->full_waiters_pending = true;
611 		else
612 			work->waiters_pending = true;
613 
614 		if (signal_pending(current)) {
615 			ret = -EINTR;
616 			break;
617 		}
618 
619 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
620 			break;
621 
622 		if (cpu != RING_BUFFER_ALL_CPUS &&
623 		    !ring_buffer_empty_cpu(buffer, cpu)) {
624 			unsigned long flags;
625 			bool pagebusy;
626 
627 			if (!full)
628 				break;
629 
630 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
631 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
632 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
633 
634 			if (!pagebusy)
635 				break;
636 		}
637 
638 		schedule();
639 	}
640 
641 	if (full)
642 		finish_wait(&work->full_waiters, &wait);
643 	else
644 		finish_wait(&work->waiters, &wait);
645 
646 	return ret;
647 }
648 
649 /**
650  * ring_buffer_poll_wait - poll on buffer input
651  * @buffer: buffer to wait on
652  * @cpu: the cpu buffer to wait on
653  * @filp: the file descriptor
654  * @poll_table: The poll descriptor
655  *
656  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
657  * as data is added to any of the @buffer's cpu buffers. Otherwise
658  * it will wait for data to be added to a specific cpu buffer.
659  *
660  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
661  * zero otherwise.
662  */
663 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
664 			  struct file *filp, poll_table *poll_table)
665 {
666 	struct ring_buffer_per_cpu *cpu_buffer;
667 	struct rb_irq_work *work;
668 
669 	if (cpu == RING_BUFFER_ALL_CPUS)
670 		work = &buffer->irq_work;
671 	else {
672 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
673 			return -EINVAL;
674 
675 		cpu_buffer = buffer->buffers[cpu];
676 		work = &cpu_buffer->irq_work;
677 	}
678 
679 	poll_wait(filp, &work->waiters, poll_table);
680 	work->waiters_pending = true;
681 	/*
682 	 * There's a tight race between setting the waiters_pending and
683 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
684 	 * is set, the next event will wake the task up, but we can get stuck
685 	 * if there's only a single event in.
686 	 *
687 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
688 	 * but adding a memory barrier to all events will cause too much of a
689 	 * performance hit in the fast path.  We only need a memory barrier when
690 	 * the buffer goes from empty to having content.  But as this race is
691 	 * extremely small, and it's not a problem if another event comes in, we
692 	 * will fix it later.
693 	 */
694 	smp_mb();
695 
696 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
697 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
698 		return EPOLLIN | EPOLLRDNORM;
699 	return 0;
700 }
701 
702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
703 #define RB_WARN_ON(b, cond)						\
704 	({								\
705 		int _____ret = unlikely(cond);				\
706 		if (_____ret) {						\
707 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
708 				struct ring_buffer_per_cpu *__b =	\
709 					(void *)b;			\
710 				atomic_inc(&__b->buffer->record_disabled); \
711 			} else						\
712 				atomic_inc(&b->record_disabled);	\
713 			WARN_ON(1);					\
714 		}							\
715 		_____ret;						\
716 	})
717 
718 /* Up this if you want to test the TIME_EXTENTS and normalization */
719 #define DEBUG_SHIFT 0
720 
721 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
722 {
723 	/* shift to debug/test normalization and TIME_EXTENTS */
724 	return buffer->clock() << DEBUG_SHIFT;
725 }
726 
727 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
728 {
729 	u64 time;
730 
731 	preempt_disable_notrace();
732 	time = rb_time_stamp(buffer);
733 	preempt_enable_no_resched_notrace();
734 
735 	return time;
736 }
737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
738 
739 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
740 				      int cpu, u64 *ts)
741 {
742 	/* Just stupid testing the normalize function and deltas */
743 	*ts >>= DEBUG_SHIFT;
744 }
745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
746 
747 /*
748  * Making the ring buffer lockless makes things tricky.
749  * Although writes only happen on the CPU that they are on,
750  * and they only need to worry about interrupts. Reads can
751  * happen on any CPU.
752  *
753  * The reader page is always off the ring buffer, but when the
754  * reader finishes with a page, it needs to swap its page with
755  * a new one from the buffer. The reader needs to take from
756  * the head (writes go to the tail). But if a writer is in overwrite
757  * mode and wraps, it must push the head page forward.
758  *
759  * Here lies the problem.
760  *
761  * The reader must be careful to replace only the head page, and
762  * not another one. As described at the top of the file in the
763  * ASCII art, the reader sets its old page to point to the next
764  * page after head. It then sets the page after head to point to
765  * the old reader page. But if the writer moves the head page
766  * during this operation, the reader could end up with the tail.
767  *
768  * We use cmpxchg to help prevent this race. We also do something
769  * special with the page before head. We set the LSB to 1.
770  *
771  * When the writer must push the page forward, it will clear the
772  * bit that points to the head page, move the head, and then set
773  * the bit that points to the new head page.
774  *
775  * We also don't want an interrupt coming in and moving the head
776  * page on another writer. Thus we use the second LSB to catch
777  * that too. Thus:
778  *
779  * head->list->prev->next        bit 1          bit 0
780  *                              -------        -------
781  * Normal page                     0              0
782  * Points to head page             0              1
783  * New head page                   1              0
784  *
785  * Note we can not trust the prev pointer of the head page, because:
786  *
787  * +----+       +-----+        +-----+
788  * |    |------>|  T  |---X--->|  N  |
789  * |    |<------|     |        |     |
790  * +----+       +-----+        +-----+
791  *   ^                           ^ |
792  *   |          +-----+          | |
793  *   +----------|  R  |----------+ |
794  *              |     |<-----------+
795  *              +-----+
796  *
797  * Key:  ---X-->  HEAD flag set in pointer
798  *         T      Tail page
799  *         R      Reader page
800  *         N      Next page
801  *
802  * (see __rb_reserve_next() to see where this happens)
803  *
804  *  What the above shows is that the reader just swapped out
805  *  the reader page with a page in the buffer, but before it
806  *  could make the new header point back to the new page added
807  *  it was preempted by a writer. The writer moved forward onto
808  *  the new page added by the reader and is about to move forward
809  *  again.
810  *
811  *  You can see, it is legitimate for the previous pointer of
812  *  the head (or any page) not to point back to itself. But only
813  *  temporarily.
814  */
815 
816 #define RB_PAGE_NORMAL		0UL
817 #define RB_PAGE_HEAD		1UL
818 #define RB_PAGE_UPDATE		2UL
819 
820 
821 #define RB_FLAG_MASK		3UL
822 
823 /* PAGE_MOVED is not part of the mask */
824 #define RB_PAGE_MOVED		4UL
825 
826 /*
827  * rb_list_head - remove any bit
828  */
829 static struct list_head *rb_list_head(struct list_head *list)
830 {
831 	unsigned long val = (unsigned long)list;
832 
833 	return (struct list_head *)(val & ~RB_FLAG_MASK);
834 }
835 
836 /*
837  * rb_is_head_page - test if the given page is the head page
838  *
839  * Because the reader may move the head_page pointer, we can
840  * not trust what the head page is (it may be pointing to
841  * the reader page). But if the next page is a header page,
842  * its flags will be non zero.
843  */
844 static inline int
845 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
846 		struct buffer_page *page, struct list_head *list)
847 {
848 	unsigned long val;
849 
850 	val = (unsigned long)list->next;
851 
852 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
853 		return RB_PAGE_MOVED;
854 
855 	return val & RB_FLAG_MASK;
856 }
857 
858 /*
859  * rb_is_reader_page
860  *
861  * The unique thing about the reader page, is that, if the
862  * writer is ever on it, the previous pointer never points
863  * back to the reader page.
864  */
865 static bool rb_is_reader_page(struct buffer_page *page)
866 {
867 	struct list_head *list = page->list.prev;
868 
869 	return rb_list_head(list->next) != &page->list;
870 }
871 
872 /*
873  * rb_set_list_to_head - set a list_head to be pointing to head.
874  */
875 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
876 				struct list_head *list)
877 {
878 	unsigned long *ptr;
879 
880 	ptr = (unsigned long *)&list->next;
881 	*ptr |= RB_PAGE_HEAD;
882 	*ptr &= ~RB_PAGE_UPDATE;
883 }
884 
885 /*
886  * rb_head_page_activate - sets up head page
887  */
888 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
889 {
890 	struct buffer_page *head;
891 
892 	head = cpu_buffer->head_page;
893 	if (!head)
894 		return;
895 
896 	/*
897 	 * Set the previous list pointer to have the HEAD flag.
898 	 */
899 	rb_set_list_to_head(cpu_buffer, head->list.prev);
900 }
901 
902 static void rb_list_head_clear(struct list_head *list)
903 {
904 	unsigned long *ptr = (unsigned long *)&list->next;
905 
906 	*ptr &= ~RB_FLAG_MASK;
907 }
908 
909 /*
910  * rb_head_page_deactivate - clears head page ptr (for free list)
911  */
912 static void
913 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
914 {
915 	struct list_head *hd;
916 
917 	/* Go through the whole list and clear any pointers found. */
918 	rb_list_head_clear(cpu_buffer->pages);
919 
920 	list_for_each(hd, cpu_buffer->pages)
921 		rb_list_head_clear(hd);
922 }
923 
924 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
925 			    struct buffer_page *head,
926 			    struct buffer_page *prev,
927 			    int old_flag, int new_flag)
928 {
929 	struct list_head *list;
930 	unsigned long val = (unsigned long)&head->list;
931 	unsigned long ret;
932 
933 	list = &prev->list;
934 
935 	val &= ~RB_FLAG_MASK;
936 
937 	ret = cmpxchg((unsigned long *)&list->next,
938 		      val | old_flag, val | new_flag);
939 
940 	/* check if the reader took the page */
941 	if ((ret & ~RB_FLAG_MASK) != val)
942 		return RB_PAGE_MOVED;
943 
944 	return ret & RB_FLAG_MASK;
945 }
946 
947 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
948 				   struct buffer_page *head,
949 				   struct buffer_page *prev,
950 				   int old_flag)
951 {
952 	return rb_head_page_set(cpu_buffer, head, prev,
953 				old_flag, RB_PAGE_UPDATE);
954 }
955 
956 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
957 				 struct buffer_page *head,
958 				 struct buffer_page *prev,
959 				 int old_flag)
960 {
961 	return rb_head_page_set(cpu_buffer, head, prev,
962 				old_flag, RB_PAGE_HEAD);
963 }
964 
965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
966 				   struct buffer_page *head,
967 				   struct buffer_page *prev,
968 				   int old_flag)
969 {
970 	return rb_head_page_set(cpu_buffer, head, prev,
971 				old_flag, RB_PAGE_NORMAL);
972 }
973 
974 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
975 			       struct buffer_page **bpage)
976 {
977 	struct list_head *p = rb_list_head((*bpage)->list.next);
978 
979 	*bpage = list_entry(p, struct buffer_page, list);
980 }
981 
982 static struct buffer_page *
983 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
984 {
985 	struct buffer_page *head;
986 	struct buffer_page *page;
987 	struct list_head *list;
988 	int i;
989 
990 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
991 		return NULL;
992 
993 	/* sanity check */
994 	list = cpu_buffer->pages;
995 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
996 		return NULL;
997 
998 	page = head = cpu_buffer->head_page;
999 	/*
1000 	 * It is possible that the writer moves the header behind
1001 	 * where we started, and we miss in one loop.
1002 	 * A second loop should grab the header, but we'll do
1003 	 * three loops just because I'm paranoid.
1004 	 */
1005 	for (i = 0; i < 3; i++) {
1006 		do {
1007 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1008 				cpu_buffer->head_page = page;
1009 				return page;
1010 			}
1011 			rb_inc_page(cpu_buffer, &page);
1012 		} while (page != head);
1013 	}
1014 
1015 	RB_WARN_ON(cpu_buffer, 1);
1016 
1017 	return NULL;
1018 }
1019 
1020 static int rb_head_page_replace(struct buffer_page *old,
1021 				struct buffer_page *new)
1022 {
1023 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1024 	unsigned long val;
1025 	unsigned long ret;
1026 
1027 	val = *ptr & ~RB_FLAG_MASK;
1028 	val |= RB_PAGE_HEAD;
1029 
1030 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1031 
1032 	return ret == val;
1033 }
1034 
1035 /*
1036  * rb_tail_page_update - move the tail page forward
1037  */
1038 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1039 			       struct buffer_page *tail_page,
1040 			       struct buffer_page *next_page)
1041 {
1042 	unsigned long old_entries;
1043 	unsigned long old_write;
1044 
1045 	/*
1046 	 * The tail page now needs to be moved forward.
1047 	 *
1048 	 * We need to reset the tail page, but without messing
1049 	 * with possible erasing of data brought in by interrupts
1050 	 * that have moved the tail page and are currently on it.
1051 	 *
1052 	 * We add a counter to the write field to denote this.
1053 	 */
1054 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1055 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1056 
1057 	/*
1058 	 * Just make sure we have seen our old_write and synchronize
1059 	 * with any interrupts that come in.
1060 	 */
1061 	barrier();
1062 
1063 	/*
1064 	 * If the tail page is still the same as what we think
1065 	 * it is, then it is up to us to update the tail
1066 	 * pointer.
1067 	 */
1068 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1069 		/* Zero the write counter */
1070 		unsigned long val = old_write & ~RB_WRITE_MASK;
1071 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1072 
1073 		/*
1074 		 * This will only succeed if an interrupt did
1075 		 * not come in and change it. In which case, we
1076 		 * do not want to modify it.
1077 		 *
1078 		 * We add (void) to let the compiler know that we do not care
1079 		 * about the return value of these functions. We use the
1080 		 * cmpxchg to only update if an interrupt did not already
1081 		 * do it for us. If the cmpxchg fails, we don't care.
1082 		 */
1083 		(void)local_cmpxchg(&next_page->write, old_write, val);
1084 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1085 
1086 		/*
1087 		 * No need to worry about races with clearing out the commit.
1088 		 * it only can increment when a commit takes place. But that
1089 		 * only happens in the outer most nested commit.
1090 		 */
1091 		local_set(&next_page->page->commit, 0);
1092 
1093 		/* Again, either we update tail_page or an interrupt does */
1094 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1095 	}
1096 }
1097 
1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099 			  struct buffer_page *bpage)
1100 {
1101 	unsigned long val = (unsigned long)bpage;
1102 
1103 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104 		return 1;
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  * rb_check_list - make sure a pointer to a list has the last bits zero
1111  */
1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113 			 struct list_head *list)
1114 {
1115 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116 		return 1;
1117 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118 		return 1;
1119 	return 0;
1120 }
1121 
1122 /**
1123  * rb_check_pages - integrity check of buffer pages
1124  * @cpu_buffer: CPU buffer with pages to test
1125  *
1126  * As a safety measure we check to make sure the data pages have not
1127  * been corrupted.
1128  */
1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131 	struct list_head *head = cpu_buffer->pages;
1132 	struct buffer_page *bpage, *tmp;
1133 
1134 	/* Reset the head page if it exists */
1135 	if (cpu_buffer->head_page)
1136 		rb_set_head_page(cpu_buffer);
1137 
1138 	rb_head_page_deactivate(cpu_buffer);
1139 
1140 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141 		return -1;
1142 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143 		return -1;
1144 
1145 	if (rb_check_list(cpu_buffer, head))
1146 		return -1;
1147 
1148 	list_for_each_entry_safe(bpage, tmp, head, list) {
1149 		if (RB_WARN_ON(cpu_buffer,
1150 			       bpage->list.next->prev != &bpage->list))
1151 			return -1;
1152 		if (RB_WARN_ON(cpu_buffer,
1153 			       bpage->list.prev->next != &bpage->list))
1154 			return -1;
1155 		if (rb_check_list(cpu_buffer, &bpage->list))
1156 			return -1;
1157 	}
1158 
1159 	rb_head_page_activate(cpu_buffer);
1160 
1161 	return 0;
1162 }
1163 
1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165 {
1166 	struct buffer_page *bpage, *tmp;
1167 	bool user_thread = current->mm != NULL;
1168 	gfp_t mflags;
1169 	long i;
1170 
1171 	/*
1172 	 * Check if the available memory is there first.
1173 	 * Note, si_mem_available() only gives us a rough estimate of available
1174 	 * memory. It may not be accurate. But we don't care, we just want
1175 	 * to prevent doing any allocation when it is obvious that it is
1176 	 * not going to succeed.
1177 	 */
1178 	i = si_mem_available();
1179 	if (i < nr_pages)
1180 		return -ENOMEM;
1181 
1182 	/*
1183 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184 	 * gracefully without invoking oom-killer and the system is not
1185 	 * destabilized.
1186 	 */
1187 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1188 
1189 	/*
1190 	 * If a user thread allocates too much, and si_mem_available()
1191 	 * reports there's enough memory, even though there is not.
1192 	 * Make sure the OOM killer kills this thread. This can happen
1193 	 * even with RETRY_MAYFAIL because another task may be doing
1194 	 * an allocation after this task has taken all memory.
1195 	 * This is the task the OOM killer needs to take out during this
1196 	 * loop, even if it was triggered by an allocation somewhere else.
1197 	 */
1198 	if (user_thread)
1199 		set_current_oom_origin();
1200 	for (i = 0; i < nr_pages; i++) {
1201 		struct page *page;
1202 
1203 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1204 				    mflags, cpu_to_node(cpu));
1205 		if (!bpage)
1206 			goto free_pages;
1207 
1208 		list_add(&bpage->list, pages);
1209 
1210 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1211 		if (!page)
1212 			goto free_pages;
1213 		bpage->page = page_address(page);
1214 		rb_init_page(bpage->page);
1215 
1216 		if (user_thread && fatal_signal_pending(current))
1217 			goto free_pages;
1218 	}
1219 	if (user_thread)
1220 		clear_current_oom_origin();
1221 
1222 	return 0;
1223 
1224 free_pages:
1225 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1226 		list_del_init(&bpage->list);
1227 		free_buffer_page(bpage);
1228 	}
1229 	if (user_thread)
1230 		clear_current_oom_origin();
1231 
1232 	return -ENOMEM;
1233 }
1234 
1235 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1236 			     unsigned long nr_pages)
1237 {
1238 	LIST_HEAD(pages);
1239 
1240 	WARN_ON(!nr_pages);
1241 
1242 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1243 		return -ENOMEM;
1244 
1245 	/*
1246 	 * The ring buffer page list is a circular list that does not
1247 	 * start and end with a list head. All page list items point to
1248 	 * other pages.
1249 	 */
1250 	cpu_buffer->pages = pages.next;
1251 	list_del(&pages);
1252 
1253 	cpu_buffer->nr_pages = nr_pages;
1254 
1255 	rb_check_pages(cpu_buffer);
1256 
1257 	return 0;
1258 }
1259 
1260 static struct ring_buffer_per_cpu *
1261 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1262 {
1263 	struct ring_buffer_per_cpu *cpu_buffer;
1264 	struct buffer_page *bpage;
1265 	struct page *page;
1266 	int ret;
1267 
1268 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1269 				  GFP_KERNEL, cpu_to_node(cpu));
1270 	if (!cpu_buffer)
1271 		return NULL;
1272 
1273 	cpu_buffer->cpu = cpu;
1274 	cpu_buffer->buffer = buffer;
1275 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1276 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1277 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1278 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1279 	init_completion(&cpu_buffer->update_done);
1280 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1281 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1282 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1283 
1284 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1285 			    GFP_KERNEL, cpu_to_node(cpu));
1286 	if (!bpage)
1287 		goto fail_free_buffer;
1288 
1289 	rb_check_bpage(cpu_buffer, bpage);
1290 
1291 	cpu_buffer->reader_page = bpage;
1292 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1293 	if (!page)
1294 		goto fail_free_reader;
1295 	bpage->page = page_address(page);
1296 	rb_init_page(bpage->page);
1297 
1298 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1299 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1300 
1301 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1302 	if (ret < 0)
1303 		goto fail_free_reader;
1304 
1305 	cpu_buffer->head_page
1306 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1307 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1308 
1309 	rb_head_page_activate(cpu_buffer);
1310 
1311 	return cpu_buffer;
1312 
1313  fail_free_reader:
1314 	free_buffer_page(cpu_buffer->reader_page);
1315 
1316  fail_free_buffer:
1317 	kfree(cpu_buffer);
1318 	return NULL;
1319 }
1320 
1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1322 {
1323 	struct list_head *head = cpu_buffer->pages;
1324 	struct buffer_page *bpage, *tmp;
1325 
1326 	free_buffer_page(cpu_buffer->reader_page);
1327 
1328 	rb_head_page_deactivate(cpu_buffer);
1329 
1330 	if (head) {
1331 		list_for_each_entry_safe(bpage, tmp, head, list) {
1332 			list_del_init(&bpage->list);
1333 			free_buffer_page(bpage);
1334 		}
1335 		bpage = list_entry(head, struct buffer_page, list);
1336 		free_buffer_page(bpage);
1337 	}
1338 
1339 	kfree(cpu_buffer);
1340 }
1341 
1342 /**
1343  * __ring_buffer_alloc - allocate a new ring_buffer
1344  * @size: the size in bytes per cpu that is needed.
1345  * @flags: attributes to set for the ring buffer.
1346  *
1347  * Currently the only flag that is available is the RB_FL_OVERWRITE
1348  * flag. This flag means that the buffer will overwrite old data
1349  * when the buffer wraps. If this flag is not set, the buffer will
1350  * drop data when the tail hits the head.
1351  */
1352 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1353 					struct lock_class_key *key)
1354 {
1355 	struct ring_buffer *buffer;
1356 	long nr_pages;
1357 	int bsize;
1358 	int cpu;
1359 	int ret;
1360 
1361 	/* keep it in its own cache line */
1362 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1363 			 GFP_KERNEL);
1364 	if (!buffer)
1365 		return NULL;
1366 
1367 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1368 		goto fail_free_buffer;
1369 
1370 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1371 	buffer->flags = flags;
1372 	buffer->clock = trace_clock_local;
1373 	buffer->reader_lock_key = key;
1374 
1375 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1376 	init_waitqueue_head(&buffer->irq_work.waiters);
1377 
1378 	/* need at least two pages */
1379 	if (nr_pages < 2)
1380 		nr_pages = 2;
1381 
1382 	buffer->cpus = nr_cpu_ids;
1383 
1384 	bsize = sizeof(void *) * nr_cpu_ids;
1385 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1386 				  GFP_KERNEL);
1387 	if (!buffer->buffers)
1388 		goto fail_free_cpumask;
1389 
1390 	cpu = raw_smp_processor_id();
1391 	cpumask_set_cpu(cpu, buffer->cpumask);
1392 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1393 	if (!buffer->buffers[cpu])
1394 		goto fail_free_buffers;
1395 
1396 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1397 	if (ret < 0)
1398 		goto fail_free_buffers;
1399 
1400 	mutex_init(&buffer->mutex);
1401 
1402 	return buffer;
1403 
1404  fail_free_buffers:
1405 	for_each_buffer_cpu(buffer, cpu) {
1406 		if (buffer->buffers[cpu])
1407 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1408 	}
1409 	kfree(buffer->buffers);
1410 
1411  fail_free_cpumask:
1412 	free_cpumask_var(buffer->cpumask);
1413 
1414  fail_free_buffer:
1415 	kfree(buffer);
1416 	return NULL;
1417 }
1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1419 
1420 /**
1421  * ring_buffer_free - free a ring buffer.
1422  * @buffer: the buffer to free.
1423  */
1424 void
1425 ring_buffer_free(struct ring_buffer *buffer)
1426 {
1427 	int cpu;
1428 
1429 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1430 
1431 	for_each_buffer_cpu(buffer, cpu)
1432 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1433 
1434 	kfree(buffer->buffers);
1435 	free_cpumask_var(buffer->cpumask);
1436 
1437 	kfree(buffer);
1438 }
1439 EXPORT_SYMBOL_GPL(ring_buffer_free);
1440 
1441 void ring_buffer_set_clock(struct ring_buffer *buffer,
1442 			   u64 (*clock)(void))
1443 {
1444 	buffer->clock = clock;
1445 }
1446 
1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1448 {
1449 	buffer->time_stamp_abs = abs;
1450 }
1451 
1452 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1453 {
1454 	return buffer->time_stamp_abs;
1455 }
1456 
1457 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1458 
1459 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1460 {
1461 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1462 }
1463 
1464 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1465 {
1466 	return local_read(&bpage->write) & RB_WRITE_MASK;
1467 }
1468 
1469 static int
1470 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1471 {
1472 	struct list_head *tail_page, *to_remove, *next_page;
1473 	struct buffer_page *to_remove_page, *tmp_iter_page;
1474 	struct buffer_page *last_page, *first_page;
1475 	unsigned long nr_removed;
1476 	unsigned long head_bit;
1477 	int page_entries;
1478 
1479 	head_bit = 0;
1480 
1481 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1482 	atomic_inc(&cpu_buffer->record_disabled);
1483 	/*
1484 	 * We don't race with the readers since we have acquired the reader
1485 	 * lock. We also don't race with writers after disabling recording.
1486 	 * This makes it easy to figure out the first and the last page to be
1487 	 * removed from the list. We unlink all the pages in between including
1488 	 * the first and last pages. This is done in a busy loop so that we
1489 	 * lose the least number of traces.
1490 	 * The pages are freed after we restart recording and unlock readers.
1491 	 */
1492 	tail_page = &cpu_buffer->tail_page->list;
1493 
1494 	/*
1495 	 * tail page might be on reader page, we remove the next page
1496 	 * from the ring buffer
1497 	 */
1498 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1499 		tail_page = rb_list_head(tail_page->next);
1500 	to_remove = tail_page;
1501 
1502 	/* start of pages to remove */
1503 	first_page = list_entry(rb_list_head(to_remove->next),
1504 				struct buffer_page, list);
1505 
1506 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1507 		to_remove = rb_list_head(to_remove)->next;
1508 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1509 	}
1510 
1511 	next_page = rb_list_head(to_remove)->next;
1512 
1513 	/*
1514 	 * Now we remove all pages between tail_page and next_page.
1515 	 * Make sure that we have head_bit value preserved for the
1516 	 * next page
1517 	 */
1518 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1519 						head_bit);
1520 	next_page = rb_list_head(next_page);
1521 	next_page->prev = tail_page;
1522 
1523 	/* make sure pages points to a valid page in the ring buffer */
1524 	cpu_buffer->pages = next_page;
1525 
1526 	/* update head page */
1527 	if (head_bit)
1528 		cpu_buffer->head_page = list_entry(next_page,
1529 						struct buffer_page, list);
1530 
1531 	/*
1532 	 * change read pointer to make sure any read iterators reset
1533 	 * themselves
1534 	 */
1535 	cpu_buffer->read = 0;
1536 
1537 	/* pages are removed, resume tracing and then free the pages */
1538 	atomic_dec(&cpu_buffer->record_disabled);
1539 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1540 
1541 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1542 
1543 	/* last buffer page to remove */
1544 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1545 				list);
1546 	tmp_iter_page = first_page;
1547 
1548 	do {
1549 		to_remove_page = tmp_iter_page;
1550 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1551 
1552 		/* update the counters */
1553 		page_entries = rb_page_entries(to_remove_page);
1554 		if (page_entries) {
1555 			/*
1556 			 * If something was added to this page, it was full
1557 			 * since it is not the tail page. So we deduct the
1558 			 * bytes consumed in ring buffer from here.
1559 			 * Increment overrun to account for the lost events.
1560 			 */
1561 			local_add(page_entries, &cpu_buffer->overrun);
1562 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1563 		}
1564 
1565 		/*
1566 		 * We have already removed references to this list item, just
1567 		 * free up the buffer_page and its page
1568 		 */
1569 		free_buffer_page(to_remove_page);
1570 		nr_removed--;
1571 
1572 	} while (to_remove_page != last_page);
1573 
1574 	RB_WARN_ON(cpu_buffer, nr_removed);
1575 
1576 	return nr_removed == 0;
1577 }
1578 
1579 static int
1580 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1581 {
1582 	struct list_head *pages = &cpu_buffer->new_pages;
1583 	int retries, success;
1584 
1585 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1586 	/*
1587 	 * We are holding the reader lock, so the reader page won't be swapped
1588 	 * in the ring buffer. Now we are racing with the writer trying to
1589 	 * move head page and the tail page.
1590 	 * We are going to adapt the reader page update process where:
1591 	 * 1. We first splice the start and end of list of new pages between
1592 	 *    the head page and its previous page.
1593 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1594 	 *    start of new pages list.
1595 	 * 3. Finally, we update the head->prev to the end of new list.
1596 	 *
1597 	 * We will try this process 10 times, to make sure that we don't keep
1598 	 * spinning.
1599 	 */
1600 	retries = 10;
1601 	success = 0;
1602 	while (retries--) {
1603 		struct list_head *head_page, *prev_page, *r;
1604 		struct list_head *last_page, *first_page;
1605 		struct list_head *head_page_with_bit;
1606 
1607 		head_page = &rb_set_head_page(cpu_buffer)->list;
1608 		if (!head_page)
1609 			break;
1610 		prev_page = head_page->prev;
1611 
1612 		first_page = pages->next;
1613 		last_page  = pages->prev;
1614 
1615 		head_page_with_bit = (struct list_head *)
1616 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1617 
1618 		last_page->next = head_page_with_bit;
1619 		first_page->prev = prev_page;
1620 
1621 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1622 
1623 		if (r == head_page_with_bit) {
1624 			/*
1625 			 * yay, we replaced the page pointer to our new list,
1626 			 * now, we just have to update to head page's prev
1627 			 * pointer to point to end of list
1628 			 */
1629 			head_page->prev = last_page;
1630 			success = 1;
1631 			break;
1632 		}
1633 	}
1634 
1635 	if (success)
1636 		INIT_LIST_HEAD(pages);
1637 	/*
1638 	 * If we weren't successful in adding in new pages, warn and stop
1639 	 * tracing
1640 	 */
1641 	RB_WARN_ON(cpu_buffer, !success);
1642 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1643 
1644 	/* free pages if they weren't inserted */
1645 	if (!success) {
1646 		struct buffer_page *bpage, *tmp;
1647 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1648 					 list) {
1649 			list_del_init(&bpage->list);
1650 			free_buffer_page(bpage);
1651 		}
1652 	}
1653 	return success;
1654 }
1655 
1656 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1657 {
1658 	int success;
1659 
1660 	if (cpu_buffer->nr_pages_to_update > 0)
1661 		success = rb_insert_pages(cpu_buffer);
1662 	else
1663 		success = rb_remove_pages(cpu_buffer,
1664 					-cpu_buffer->nr_pages_to_update);
1665 
1666 	if (success)
1667 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1668 }
1669 
1670 static void update_pages_handler(struct work_struct *work)
1671 {
1672 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1673 			struct ring_buffer_per_cpu, update_pages_work);
1674 	rb_update_pages(cpu_buffer);
1675 	complete(&cpu_buffer->update_done);
1676 }
1677 
1678 /**
1679  * ring_buffer_resize - resize the ring buffer
1680  * @buffer: the buffer to resize.
1681  * @size: the new size.
1682  * @cpu_id: the cpu buffer to resize
1683  *
1684  * Minimum size is 2 * BUF_PAGE_SIZE.
1685  *
1686  * Returns 0 on success and < 0 on failure.
1687  */
1688 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1689 			int cpu_id)
1690 {
1691 	struct ring_buffer_per_cpu *cpu_buffer;
1692 	unsigned long nr_pages;
1693 	int cpu, err = 0;
1694 
1695 	/*
1696 	 * Always succeed at resizing a non-existent buffer:
1697 	 */
1698 	if (!buffer)
1699 		return size;
1700 
1701 	/* Make sure the requested buffer exists */
1702 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1703 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1704 		return size;
1705 
1706 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1707 
1708 	/* we need a minimum of two pages */
1709 	if (nr_pages < 2)
1710 		nr_pages = 2;
1711 
1712 	size = nr_pages * BUF_PAGE_SIZE;
1713 
1714 	/*
1715 	 * Don't succeed if resizing is disabled, as a reader might be
1716 	 * manipulating the ring buffer and is expecting a sane state while
1717 	 * this is true.
1718 	 */
1719 	if (atomic_read(&buffer->resize_disabled))
1720 		return -EBUSY;
1721 
1722 	/* prevent another thread from changing buffer sizes */
1723 	mutex_lock(&buffer->mutex);
1724 
1725 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1726 		/* calculate the pages to update */
1727 		for_each_buffer_cpu(buffer, cpu) {
1728 			cpu_buffer = buffer->buffers[cpu];
1729 
1730 			cpu_buffer->nr_pages_to_update = nr_pages -
1731 							cpu_buffer->nr_pages;
1732 			/*
1733 			 * nothing more to do for removing pages or no update
1734 			 */
1735 			if (cpu_buffer->nr_pages_to_update <= 0)
1736 				continue;
1737 			/*
1738 			 * to add pages, make sure all new pages can be
1739 			 * allocated without receiving ENOMEM
1740 			 */
1741 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1742 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1743 						&cpu_buffer->new_pages, cpu)) {
1744 				/* not enough memory for new pages */
1745 				err = -ENOMEM;
1746 				goto out_err;
1747 			}
1748 		}
1749 
1750 		get_online_cpus();
1751 		/*
1752 		 * Fire off all the required work handlers
1753 		 * We can't schedule on offline CPUs, but it's not necessary
1754 		 * since we can change their buffer sizes without any race.
1755 		 */
1756 		for_each_buffer_cpu(buffer, cpu) {
1757 			cpu_buffer = buffer->buffers[cpu];
1758 			if (!cpu_buffer->nr_pages_to_update)
1759 				continue;
1760 
1761 			/* Can't run something on an offline CPU. */
1762 			if (!cpu_online(cpu)) {
1763 				rb_update_pages(cpu_buffer);
1764 				cpu_buffer->nr_pages_to_update = 0;
1765 			} else {
1766 				schedule_work_on(cpu,
1767 						&cpu_buffer->update_pages_work);
1768 			}
1769 		}
1770 
1771 		/* wait for all the updates to complete */
1772 		for_each_buffer_cpu(buffer, cpu) {
1773 			cpu_buffer = buffer->buffers[cpu];
1774 			if (!cpu_buffer->nr_pages_to_update)
1775 				continue;
1776 
1777 			if (cpu_online(cpu))
1778 				wait_for_completion(&cpu_buffer->update_done);
1779 			cpu_buffer->nr_pages_to_update = 0;
1780 		}
1781 
1782 		put_online_cpus();
1783 	} else {
1784 		/* Make sure this CPU has been initialized */
1785 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1786 			goto out;
1787 
1788 		cpu_buffer = buffer->buffers[cpu_id];
1789 
1790 		if (nr_pages == cpu_buffer->nr_pages)
1791 			goto out;
1792 
1793 		cpu_buffer->nr_pages_to_update = nr_pages -
1794 						cpu_buffer->nr_pages;
1795 
1796 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1797 		if (cpu_buffer->nr_pages_to_update > 0 &&
1798 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1799 					    &cpu_buffer->new_pages, cpu_id)) {
1800 			err = -ENOMEM;
1801 			goto out_err;
1802 		}
1803 
1804 		get_online_cpus();
1805 
1806 		/* Can't run something on an offline CPU. */
1807 		if (!cpu_online(cpu_id))
1808 			rb_update_pages(cpu_buffer);
1809 		else {
1810 			schedule_work_on(cpu_id,
1811 					 &cpu_buffer->update_pages_work);
1812 			wait_for_completion(&cpu_buffer->update_done);
1813 		}
1814 
1815 		cpu_buffer->nr_pages_to_update = 0;
1816 		put_online_cpus();
1817 	}
1818 
1819  out:
1820 	/*
1821 	 * The ring buffer resize can happen with the ring buffer
1822 	 * enabled, so that the update disturbs the tracing as little
1823 	 * as possible. But if the buffer is disabled, we do not need
1824 	 * to worry about that, and we can take the time to verify
1825 	 * that the buffer is not corrupt.
1826 	 */
1827 	if (atomic_read(&buffer->record_disabled)) {
1828 		atomic_inc(&buffer->record_disabled);
1829 		/*
1830 		 * Even though the buffer was disabled, we must make sure
1831 		 * that it is truly disabled before calling rb_check_pages.
1832 		 * There could have been a race between checking
1833 		 * record_disable and incrementing it.
1834 		 */
1835 		synchronize_sched();
1836 		for_each_buffer_cpu(buffer, cpu) {
1837 			cpu_buffer = buffer->buffers[cpu];
1838 			rb_check_pages(cpu_buffer);
1839 		}
1840 		atomic_dec(&buffer->record_disabled);
1841 	}
1842 
1843 	mutex_unlock(&buffer->mutex);
1844 	return size;
1845 
1846  out_err:
1847 	for_each_buffer_cpu(buffer, cpu) {
1848 		struct buffer_page *bpage, *tmp;
1849 
1850 		cpu_buffer = buffer->buffers[cpu];
1851 		cpu_buffer->nr_pages_to_update = 0;
1852 
1853 		if (list_empty(&cpu_buffer->new_pages))
1854 			continue;
1855 
1856 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1857 					list) {
1858 			list_del_init(&bpage->list);
1859 			free_buffer_page(bpage);
1860 		}
1861 	}
1862 	mutex_unlock(&buffer->mutex);
1863 	return err;
1864 }
1865 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1866 
1867 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1868 {
1869 	mutex_lock(&buffer->mutex);
1870 	if (val)
1871 		buffer->flags |= RB_FL_OVERWRITE;
1872 	else
1873 		buffer->flags &= ~RB_FL_OVERWRITE;
1874 	mutex_unlock(&buffer->mutex);
1875 }
1876 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1877 
1878 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1879 {
1880 	return bpage->page->data + index;
1881 }
1882 
1883 static __always_inline struct ring_buffer_event *
1884 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1885 {
1886 	return __rb_page_index(cpu_buffer->reader_page,
1887 			       cpu_buffer->reader_page->read);
1888 }
1889 
1890 static __always_inline struct ring_buffer_event *
1891 rb_iter_head_event(struct ring_buffer_iter *iter)
1892 {
1893 	return __rb_page_index(iter->head_page, iter->head);
1894 }
1895 
1896 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1897 {
1898 	return local_read(&bpage->page->commit);
1899 }
1900 
1901 /* Size is determined by what has been committed */
1902 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1903 {
1904 	return rb_page_commit(bpage);
1905 }
1906 
1907 static __always_inline unsigned
1908 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1909 {
1910 	return rb_page_commit(cpu_buffer->commit_page);
1911 }
1912 
1913 static __always_inline unsigned
1914 rb_event_index(struct ring_buffer_event *event)
1915 {
1916 	unsigned long addr = (unsigned long)event;
1917 
1918 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1919 }
1920 
1921 static void rb_inc_iter(struct ring_buffer_iter *iter)
1922 {
1923 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1924 
1925 	/*
1926 	 * The iterator could be on the reader page (it starts there).
1927 	 * But the head could have moved, since the reader was
1928 	 * found. Check for this case and assign the iterator
1929 	 * to the head page instead of next.
1930 	 */
1931 	if (iter->head_page == cpu_buffer->reader_page)
1932 		iter->head_page = rb_set_head_page(cpu_buffer);
1933 	else
1934 		rb_inc_page(cpu_buffer, &iter->head_page);
1935 
1936 	iter->read_stamp = iter->head_page->page->time_stamp;
1937 	iter->head = 0;
1938 }
1939 
1940 /*
1941  * rb_handle_head_page - writer hit the head page
1942  *
1943  * Returns: +1 to retry page
1944  *           0 to continue
1945  *          -1 on error
1946  */
1947 static int
1948 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1949 		    struct buffer_page *tail_page,
1950 		    struct buffer_page *next_page)
1951 {
1952 	struct buffer_page *new_head;
1953 	int entries;
1954 	int type;
1955 	int ret;
1956 
1957 	entries = rb_page_entries(next_page);
1958 
1959 	/*
1960 	 * The hard part is here. We need to move the head
1961 	 * forward, and protect against both readers on
1962 	 * other CPUs and writers coming in via interrupts.
1963 	 */
1964 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1965 				       RB_PAGE_HEAD);
1966 
1967 	/*
1968 	 * type can be one of four:
1969 	 *  NORMAL - an interrupt already moved it for us
1970 	 *  HEAD   - we are the first to get here.
1971 	 *  UPDATE - we are the interrupt interrupting
1972 	 *           a current move.
1973 	 *  MOVED  - a reader on another CPU moved the next
1974 	 *           pointer to its reader page. Give up
1975 	 *           and try again.
1976 	 */
1977 
1978 	switch (type) {
1979 	case RB_PAGE_HEAD:
1980 		/*
1981 		 * We changed the head to UPDATE, thus
1982 		 * it is our responsibility to update
1983 		 * the counters.
1984 		 */
1985 		local_add(entries, &cpu_buffer->overrun);
1986 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1987 
1988 		/*
1989 		 * The entries will be zeroed out when we move the
1990 		 * tail page.
1991 		 */
1992 
1993 		/* still more to do */
1994 		break;
1995 
1996 	case RB_PAGE_UPDATE:
1997 		/*
1998 		 * This is an interrupt that interrupt the
1999 		 * previous update. Still more to do.
2000 		 */
2001 		break;
2002 	case RB_PAGE_NORMAL:
2003 		/*
2004 		 * An interrupt came in before the update
2005 		 * and processed this for us.
2006 		 * Nothing left to do.
2007 		 */
2008 		return 1;
2009 	case RB_PAGE_MOVED:
2010 		/*
2011 		 * The reader is on another CPU and just did
2012 		 * a swap with our next_page.
2013 		 * Try again.
2014 		 */
2015 		return 1;
2016 	default:
2017 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2018 		return -1;
2019 	}
2020 
2021 	/*
2022 	 * Now that we are here, the old head pointer is
2023 	 * set to UPDATE. This will keep the reader from
2024 	 * swapping the head page with the reader page.
2025 	 * The reader (on another CPU) will spin till
2026 	 * we are finished.
2027 	 *
2028 	 * We just need to protect against interrupts
2029 	 * doing the job. We will set the next pointer
2030 	 * to HEAD. After that, we set the old pointer
2031 	 * to NORMAL, but only if it was HEAD before.
2032 	 * otherwise we are an interrupt, and only
2033 	 * want the outer most commit to reset it.
2034 	 */
2035 	new_head = next_page;
2036 	rb_inc_page(cpu_buffer, &new_head);
2037 
2038 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2039 				    RB_PAGE_NORMAL);
2040 
2041 	/*
2042 	 * Valid returns are:
2043 	 *  HEAD   - an interrupt came in and already set it.
2044 	 *  NORMAL - One of two things:
2045 	 *            1) We really set it.
2046 	 *            2) A bunch of interrupts came in and moved
2047 	 *               the page forward again.
2048 	 */
2049 	switch (ret) {
2050 	case RB_PAGE_HEAD:
2051 	case RB_PAGE_NORMAL:
2052 		/* OK */
2053 		break;
2054 	default:
2055 		RB_WARN_ON(cpu_buffer, 1);
2056 		return -1;
2057 	}
2058 
2059 	/*
2060 	 * It is possible that an interrupt came in,
2061 	 * set the head up, then more interrupts came in
2062 	 * and moved it again. When we get back here,
2063 	 * the page would have been set to NORMAL but we
2064 	 * just set it back to HEAD.
2065 	 *
2066 	 * How do you detect this? Well, if that happened
2067 	 * the tail page would have moved.
2068 	 */
2069 	if (ret == RB_PAGE_NORMAL) {
2070 		struct buffer_page *buffer_tail_page;
2071 
2072 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2073 		/*
2074 		 * If the tail had moved passed next, then we need
2075 		 * to reset the pointer.
2076 		 */
2077 		if (buffer_tail_page != tail_page &&
2078 		    buffer_tail_page != next_page)
2079 			rb_head_page_set_normal(cpu_buffer, new_head,
2080 						next_page,
2081 						RB_PAGE_HEAD);
2082 	}
2083 
2084 	/*
2085 	 * If this was the outer most commit (the one that
2086 	 * changed the original pointer from HEAD to UPDATE),
2087 	 * then it is up to us to reset it to NORMAL.
2088 	 */
2089 	if (type == RB_PAGE_HEAD) {
2090 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2091 					      tail_page,
2092 					      RB_PAGE_UPDATE);
2093 		if (RB_WARN_ON(cpu_buffer,
2094 			       ret != RB_PAGE_UPDATE))
2095 			return -1;
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static inline void
2102 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2103 	      unsigned long tail, struct rb_event_info *info)
2104 {
2105 	struct buffer_page *tail_page = info->tail_page;
2106 	struct ring_buffer_event *event;
2107 	unsigned long length = info->length;
2108 
2109 	/*
2110 	 * Only the event that crossed the page boundary
2111 	 * must fill the old tail_page with padding.
2112 	 */
2113 	if (tail >= BUF_PAGE_SIZE) {
2114 		/*
2115 		 * If the page was filled, then we still need
2116 		 * to update the real_end. Reset it to zero
2117 		 * and the reader will ignore it.
2118 		 */
2119 		if (tail == BUF_PAGE_SIZE)
2120 			tail_page->real_end = 0;
2121 
2122 		local_sub(length, &tail_page->write);
2123 		return;
2124 	}
2125 
2126 	event = __rb_page_index(tail_page, tail);
2127 
2128 	/* account for padding bytes */
2129 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2130 
2131 	/*
2132 	 * Save the original length to the meta data.
2133 	 * This will be used by the reader to add lost event
2134 	 * counter.
2135 	 */
2136 	tail_page->real_end = tail;
2137 
2138 	/*
2139 	 * If this event is bigger than the minimum size, then
2140 	 * we need to be careful that we don't subtract the
2141 	 * write counter enough to allow another writer to slip
2142 	 * in on this page.
2143 	 * We put in a discarded commit instead, to make sure
2144 	 * that this space is not used again.
2145 	 *
2146 	 * If we are less than the minimum size, we don't need to
2147 	 * worry about it.
2148 	 */
2149 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2150 		/* No room for any events */
2151 
2152 		/* Mark the rest of the page with padding */
2153 		rb_event_set_padding(event);
2154 
2155 		/* Set the write back to the previous setting */
2156 		local_sub(length, &tail_page->write);
2157 		return;
2158 	}
2159 
2160 	/* Put in a discarded event */
2161 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2162 	event->type_len = RINGBUF_TYPE_PADDING;
2163 	/* time delta must be non zero */
2164 	event->time_delta = 1;
2165 
2166 	/* Set write to end of buffer */
2167 	length = (tail + length) - BUF_PAGE_SIZE;
2168 	local_sub(length, &tail_page->write);
2169 }
2170 
2171 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2172 
2173 /*
2174  * This is the slow path, force gcc not to inline it.
2175  */
2176 static noinline struct ring_buffer_event *
2177 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2178 	     unsigned long tail, struct rb_event_info *info)
2179 {
2180 	struct buffer_page *tail_page = info->tail_page;
2181 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2182 	struct ring_buffer *buffer = cpu_buffer->buffer;
2183 	struct buffer_page *next_page;
2184 	int ret;
2185 
2186 	next_page = tail_page;
2187 
2188 	rb_inc_page(cpu_buffer, &next_page);
2189 
2190 	/*
2191 	 * If for some reason, we had an interrupt storm that made
2192 	 * it all the way around the buffer, bail, and warn
2193 	 * about it.
2194 	 */
2195 	if (unlikely(next_page == commit_page)) {
2196 		local_inc(&cpu_buffer->commit_overrun);
2197 		goto out_reset;
2198 	}
2199 
2200 	/*
2201 	 * This is where the fun begins!
2202 	 *
2203 	 * We are fighting against races between a reader that
2204 	 * could be on another CPU trying to swap its reader
2205 	 * page with the buffer head.
2206 	 *
2207 	 * We are also fighting against interrupts coming in and
2208 	 * moving the head or tail on us as well.
2209 	 *
2210 	 * If the next page is the head page then we have filled
2211 	 * the buffer, unless the commit page is still on the
2212 	 * reader page.
2213 	 */
2214 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2215 
2216 		/*
2217 		 * If the commit is not on the reader page, then
2218 		 * move the header page.
2219 		 */
2220 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2221 			/*
2222 			 * If we are not in overwrite mode,
2223 			 * this is easy, just stop here.
2224 			 */
2225 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2226 				local_inc(&cpu_buffer->dropped_events);
2227 				goto out_reset;
2228 			}
2229 
2230 			ret = rb_handle_head_page(cpu_buffer,
2231 						  tail_page,
2232 						  next_page);
2233 			if (ret < 0)
2234 				goto out_reset;
2235 			if (ret)
2236 				goto out_again;
2237 		} else {
2238 			/*
2239 			 * We need to be careful here too. The
2240 			 * commit page could still be on the reader
2241 			 * page. We could have a small buffer, and
2242 			 * have filled up the buffer with events
2243 			 * from interrupts and such, and wrapped.
2244 			 *
2245 			 * Note, if the tail page is also the on the
2246 			 * reader_page, we let it move out.
2247 			 */
2248 			if (unlikely((cpu_buffer->commit_page !=
2249 				      cpu_buffer->tail_page) &&
2250 				     (cpu_buffer->commit_page ==
2251 				      cpu_buffer->reader_page))) {
2252 				local_inc(&cpu_buffer->commit_overrun);
2253 				goto out_reset;
2254 			}
2255 		}
2256 	}
2257 
2258 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2259 
2260  out_again:
2261 
2262 	rb_reset_tail(cpu_buffer, tail, info);
2263 
2264 	/* Commit what we have for now. */
2265 	rb_end_commit(cpu_buffer);
2266 	/* rb_end_commit() decs committing */
2267 	local_inc(&cpu_buffer->committing);
2268 
2269 	/* fail and let the caller try again */
2270 	return ERR_PTR(-EAGAIN);
2271 
2272  out_reset:
2273 	/* reset write */
2274 	rb_reset_tail(cpu_buffer, tail, info);
2275 
2276 	return NULL;
2277 }
2278 
2279 /* Slow path, do not inline */
2280 static noinline struct ring_buffer_event *
2281 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2282 {
2283 	if (abs)
2284 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2285 	else
2286 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2287 
2288 	/* Not the first event on the page, or not delta? */
2289 	if (abs || rb_event_index(event)) {
2290 		event->time_delta = delta & TS_MASK;
2291 		event->array[0] = delta >> TS_SHIFT;
2292 	} else {
2293 		/* nope, just zero it */
2294 		event->time_delta = 0;
2295 		event->array[0] = 0;
2296 	}
2297 
2298 	return skip_time_extend(event);
2299 }
2300 
2301 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2302 				     struct ring_buffer_event *event);
2303 
2304 /**
2305  * rb_update_event - update event type and data
2306  * @event: the event to update
2307  * @type: the type of event
2308  * @length: the size of the event field in the ring buffer
2309  *
2310  * Update the type and data fields of the event. The length
2311  * is the actual size that is written to the ring buffer,
2312  * and with this, we can determine what to place into the
2313  * data field.
2314  */
2315 static void
2316 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2317 		struct ring_buffer_event *event,
2318 		struct rb_event_info *info)
2319 {
2320 	unsigned length = info->length;
2321 	u64 delta = info->delta;
2322 
2323 	/* Only a commit updates the timestamp */
2324 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2325 		delta = 0;
2326 
2327 	/*
2328 	 * If we need to add a timestamp, then we
2329 	 * add it to the start of the reserved space.
2330 	 */
2331 	if (unlikely(info->add_timestamp)) {
2332 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2333 
2334 		event = rb_add_time_stamp(event, info->delta, abs);
2335 		length -= RB_LEN_TIME_EXTEND;
2336 		delta = 0;
2337 	}
2338 
2339 	event->time_delta = delta;
2340 	length -= RB_EVNT_HDR_SIZE;
2341 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2342 		event->type_len = 0;
2343 		event->array[0] = length;
2344 	} else
2345 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2346 }
2347 
2348 static unsigned rb_calculate_event_length(unsigned length)
2349 {
2350 	struct ring_buffer_event event; /* Used only for sizeof array */
2351 
2352 	/* zero length can cause confusions */
2353 	if (!length)
2354 		length++;
2355 
2356 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2357 		length += sizeof(event.array[0]);
2358 
2359 	length += RB_EVNT_HDR_SIZE;
2360 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2361 
2362 	/*
2363 	 * In case the time delta is larger than the 27 bits for it
2364 	 * in the header, we need to add a timestamp. If another
2365 	 * event comes in when trying to discard this one to increase
2366 	 * the length, then the timestamp will be added in the allocated
2367 	 * space of this event. If length is bigger than the size needed
2368 	 * for the TIME_EXTEND, then padding has to be used. The events
2369 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2370 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2371 	 * As length is a multiple of 4, we only need to worry if it
2372 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2373 	 */
2374 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2375 		length += RB_ALIGNMENT;
2376 
2377 	return length;
2378 }
2379 
2380 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2381 static inline bool sched_clock_stable(void)
2382 {
2383 	return true;
2384 }
2385 #endif
2386 
2387 static inline int
2388 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2389 		  struct ring_buffer_event *event)
2390 {
2391 	unsigned long new_index, old_index;
2392 	struct buffer_page *bpage;
2393 	unsigned long index;
2394 	unsigned long addr;
2395 
2396 	new_index = rb_event_index(event);
2397 	old_index = new_index + rb_event_ts_length(event);
2398 	addr = (unsigned long)event;
2399 	addr &= PAGE_MASK;
2400 
2401 	bpage = READ_ONCE(cpu_buffer->tail_page);
2402 
2403 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2404 		unsigned long write_mask =
2405 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2406 		unsigned long event_length = rb_event_length(event);
2407 		/*
2408 		 * This is on the tail page. It is possible that
2409 		 * a write could come in and move the tail page
2410 		 * and write to the next page. That is fine
2411 		 * because we just shorten what is on this page.
2412 		 */
2413 		old_index += write_mask;
2414 		new_index += write_mask;
2415 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2416 		if (index == old_index) {
2417 			/* update counters */
2418 			local_sub(event_length, &cpu_buffer->entries_bytes);
2419 			return 1;
2420 		}
2421 	}
2422 
2423 	/* could not discard */
2424 	return 0;
2425 }
2426 
2427 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2428 {
2429 	local_inc(&cpu_buffer->committing);
2430 	local_inc(&cpu_buffer->commits);
2431 }
2432 
2433 static __always_inline void
2434 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2435 {
2436 	unsigned long max_count;
2437 
2438 	/*
2439 	 * We only race with interrupts and NMIs on this CPU.
2440 	 * If we own the commit event, then we can commit
2441 	 * all others that interrupted us, since the interruptions
2442 	 * are in stack format (they finish before they come
2443 	 * back to us). This allows us to do a simple loop to
2444 	 * assign the commit to the tail.
2445 	 */
2446  again:
2447 	max_count = cpu_buffer->nr_pages * 100;
2448 
2449 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2450 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2451 			return;
2452 		if (RB_WARN_ON(cpu_buffer,
2453 			       rb_is_reader_page(cpu_buffer->tail_page)))
2454 			return;
2455 		local_set(&cpu_buffer->commit_page->page->commit,
2456 			  rb_page_write(cpu_buffer->commit_page));
2457 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2458 		/* Only update the write stamp if the page has an event */
2459 		if (rb_page_write(cpu_buffer->commit_page))
2460 			cpu_buffer->write_stamp =
2461 				cpu_buffer->commit_page->page->time_stamp;
2462 		/* add barrier to keep gcc from optimizing too much */
2463 		barrier();
2464 	}
2465 	while (rb_commit_index(cpu_buffer) !=
2466 	       rb_page_write(cpu_buffer->commit_page)) {
2467 
2468 		local_set(&cpu_buffer->commit_page->page->commit,
2469 			  rb_page_write(cpu_buffer->commit_page));
2470 		RB_WARN_ON(cpu_buffer,
2471 			   local_read(&cpu_buffer->commit_page->page->commit) &
2472 			   ~RB_WRITE_MASK);
2473 		barrier();
2474 	}
2475 
2476 	/* again, keep gcc from optimizing */
2477 	barrier();
2478 
2479 	/*
2480 	 * If an interrupt came in just after the first while loop
2481 	 * and pushed the tail page forward, we will be left with
2482 	 * a dangling commit that will never go forward.
2483 	 */
2484 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2485 		goto again;
2486 }
2487 
2488 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2489 {
2490 	unsigned long commits;
2491 
2492 	if (RB_WARN_ON(cpu_buffer,
2493 		       !local_read(&cpu_buffer->committing)))
2494 		return;
2495 
2496  again:
2497 	commits = local_read(&cpu_buffer->commits);
2498 	/* synchronize with interrupts */
2499 	barrier();
2500 	if (local_read(&cpu_buffer->committing) == 1)
2501 		rb_set_commit_to_write(cpu_buffer);
2502 
2503 	local_dec(&cpu_buffer->committing);
2504 
2505 	/* synchronize with interrupts */
2506 	barrier();
2507 
2508 	/*
2509 	 * Need to account for interrupts coming in between the
2510 	 * updating of the commit page and the clearing of the
2511 	 * committing counter.
2512 	 */
2513 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2514 	    !local_read(&cpu_buffer->committing)) {
2515 		local_inc(&cpu_buffer->committing);
2516 		goto again;
2517 	}
2518 }
2519 
2520 static inline void rb_event_discard(struct ring_buffer_event *event)
2521 {
2522 	if (extended_time(event))
2523 		event = skip_time_extend(event);
2524 
2525 	/* array[0] holds the actual length for the discarded event */
2526 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2527 	event->type_len = RINGBUF_TYPE_PADDING;
2528 	/* time delta must be non zero */
2529 	if (!event->time_delta)
2530 		event->time_delta = 1;
2531 }
2532 
2533 static __always_inline bool
2534 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2535 		   struct ring_buffer_event *event)
2536 {
2537 	unsigned long addr = (unsigned long)event;
2538 	unsigned long index;
2539 
2540 	index = rb_event_index(event);
2541 	addr &= PAGE_MASK;
2542 
2543 	return cpu_buffer->commit_page->page == (void *)addr &&
2544 		rb_commit_index(cpu_buffer) == index;
2545 }
2546 
2547 static __always_inline void
2548 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2549 		      struct ring_buffer_event *event)
2550 {
2551 	u64 delta;
2552 
2553 	/*
2554 	 * The event first in the commit queue updates the
2555 	 * time stamp.
2556 	 */
2557 	if (rb_event_is_commit(cpu_buffer, event)) {
2558 		/*
2559 		 * A commit event that is first on a page
2560 		 * updates the write timestamp with the page stamp
2561 		 */
2562 		if (!rb_event_index(event))
2563 			cpu_buffer->write_stamp =
2564 				cpu_buffer->commit_page->page->time_stamp;
2565 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2566 			delta = ring_buffer_event_time_stamp(event);
2567 			cpu_buffer->write_stamp += delta;
2568 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2569 			delta = ring_buffer_event_time_stamp(event);
2570 			cpu_buffer->write_stamp = delta;
2571 		} else
2572 			cpu_buffer->write_stamp += event->time_delta;
2573 	}
2574 }
2575 
2576 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2577 		      struct ring_buffer_event *event)
2578 {
2579 	local_inc(&cpu_buffer->entries);
2580 	rb_update_write_stamp(cpu_buffer, event);
2581 	rb_end_commit(cpu_buffer);
2582 }
2583 
2584 static __always_inline void
2585 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2586 {
2587 	bool pagebusy;
2588 
2589 	if (buffer->irq_work.waiters_pending) {
2590 		buffer->irq_work.waiters_pending = false;
2591 		/* irq_work_queue() supplies it's own memory barriers */
2592 		irq_work_queue(&buffer->irq_work.work);
2593 	}
2594 
2595 	if (cpu_buffer->irq_work.waiters_pending) {
2596 		cpu_buffer->irq_work.waiters_pending = false;
2597 		/* irq_work_queue() supplies it's own memory barriers */
2598 		irq_work_queue(&cpu_buffer->irq_work.work);
2599 	}
2600 
2601 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2602 
2603 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2604 		cpu_buffer->irq_work.wakeup_full = true;
2605 		cpu_buffer->irq_work.full_waiters_pending = false;
2606 		/* irq_work_queue() supplies it's own memory barriers */
2607 		irq_work_queue(&cpu_buffer->irq_work.work);
2608 	}
2609 }
2610 
2611 /*
2612  * The lock and unlock are done within a preempt disable section.
2613  * The current_context per_cpu variable can only be modified
2614  * by the current task between lock and unlock. But it can
2615  * be modified more than once via an interrupt. To pass this
2616  * information from the lock to the unlock without having to
2617  * access the 'in_interrupt()' functions again (which do show
2618  * a bit of overhead in something as critical as function tracing,
2619  * we use a bitmask trick.
2620  *
2621  *  bit 0 =  NMI context
2622  *  bit 1 =  IRQ context
2623  *  bit 2 =  SoftIRQ context
2624  *  bit 3 =  normal context.
2625  *
2626  * This works because this is the order of contexts that can
2627  * preempt other contexts. A SoftIRQ never preempts an IRQ
2628  * context.
2629  *
2630  * When the context is determined, the corresponding bit is
2631  * checked and set (if it was set, then a recursion of that context
2632  * happened).
2633  *
2634  * On unlock, we need to clear this bit. To do so, just subtract
2635  * 1 from the current_context and AND it to itself.
2636  *
2637  * (binary)
2638  *  101 - 1 = 100
2639  *  101 & 100 = 100 (clearing bit zero)
2640  *
2641  *  1010 - 1 = 1001
2642  *  1010 & 1001 = 1000 (clearing bit 1)
2643  *
2644  * The least significant bit can be cleared this way, and it
2645  * just so happens that it is the same bit corresponding to
2646  * the current context.
2647  */
2648 
2649 static __always_inline int
2650 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2651 {
2652 	unsigned int val = cpu_buffer->current_context;
2653 	unsigned long pc = preempt_count();
2654 	int bit;
2655 
2656 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2657 		bit = RB_CTX_NORMAL;
2658 	else
2659 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2660 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2661 
2662 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2663 		return 1;
2664 
2665 	val |= (1 << (bit + cpu_buffer->nest));
2666 	cpu_buffer->current_context = val;
2667 
2668 	return 0;
2669 }
2670 
2671 static __always_inline void
2672 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2673 {
2674 	cpu_buffer->current_context &=
2675 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2676 }
2677 
2678 /* The recursive locking above uses 4 bits */
2679 #define NESTED_BITS 4
2680 
2681 /**
2682  * ring_buffer_nest_start - Allow to trace while nested
2683  * @buffer: The ring buffer to modify
2684  *
2685  * The ring buffer has a safety mechanism to prevent recursion.
2686  * But there may be a case where a trace needs to be done while
2687  * tracing something else. In this case, calling this function
2688  * will allow this function to nest within a currently active
2689  * ring_buffer_lock_reserve().
2690  *
2691  * Call this function before calling another ring_buffer_lock_reserve() and
2692  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2693  */
2694 void ring_buffer_nest_start(struct ring_buffer *buffer)
2695 {
2696 	struct ring_buffer_per_cpu *cpu_buffer;
2697 	int cpu;
2698 
2699 	/* Enabled by ring_buffer_nest_end() */
2700 	preempt_disable_notrace();
2701 	cpu = raw_smp_processor_id();
2702 	cpu_buffer = buffer->buffers[cpu];
2703 	/* This is the shift value for the above recursive locking */
2704 	cpu_buffer->nest += NESTED_BITS;
2705 }
2706 
2707 /**
2708  * ring_buffer_nest_end - Allow to trace while nested
2709  * @buffer: The ring buffer to modify
2710  *
2711  * Must be called after ring_buffer_nest_start() and after the
2712  * ring_buffer_unlock_commit().
2713  */
2714 void ring_buffer_nest_end(struct ring_buffer *buffer)
2715 {
2716 	struct ring_buffer_per_cpu *cpu_buffer;
2717 	int cpu;
2718 
2719 	/* disabled by ring_buffer_nest_start() */
2720 	cpu = raw_smp_processor_id();
2721 	cpu_buffer = buffer->buffers[cpu];
2722 	/* This is the shift value for the above recursive locking */
2723 	cpu_buffer->nest -= NESTED_BITS;
2724 	preempt_enable_notrace();
2725 }
2726 
2727 /**
2728  * ring_buffer_unlock_commit - commit a reserved
2729  * @buffer: The buffer to commit to
2730  * @event: The event pointer to commit.
2731  *
2732  * This commits the data to the ring buffer, and releases any locks held.
2733  *
2734  * Must be paired with ring_buffer_lock_reserve.
2735  */
2736 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2737 			      struct ring_buffer_event *event)
2738 {
2739 	struct ring_buffer_per_cpu *cpu_buffer;
2740 	int cpu = raw_smp_processor_id();
2741 
2742 	cpu_buffer = buffer->buffers[cpu];
2743 
2744 	rb_commit(cpu_buffer, event);
2745 
2746 	rb_wakeups(buffer, cpu_buffer);
2747 
2748 	trace_recursive_unlock(cpu_buffer);
2749 
2750 	preempt_enable_notrace();
2751 
2752 	return 0;
2753 }
2754 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2755 
2756 static noinline void
2757 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2758 		    struct rb_event_info *info)
2759 {
2760 	WARN_ONCE(info->delta > (1ULL << 59),
2761 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2762 		  (unsigned long long)info->delta,
2763 		  (unsigned long long)info->ts,
2764 		  (unsigned long long)cpu_buffer->write_stamp,
2765 		  sched_clock_stable() ? "" :
2766 		  "If you just came from a suspend/resume,\n"
2767 		  "please switch to the trace global clock:\n"
2768 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2769 		  "or add trace_clock=global to the kernel command line\n");
2770 	info->add_timestamp = 1;
2771 }
2772 
2773 static struct ring_buffer_event *
2774 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2775 		  struct rb_event_info *info)
2776 {
2777 	struct ring_buffer_event *event;
2778 	struct buffer_page *tail_page;
2779 	unsigned long tail, write;
2780 
2781 	/*
2782 	 * If the time delta since the last event is too big to
2783 	 * hold in the time field of the event, then we append a
2784 	 * TIME EXTEND event ahead of the data event.
2785 	 */
2786 	if (unlikely(info->add_timestamp))
2787 		info->length += RB_LEN_TIME_EXTEND;
2788 
2789 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2790 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2791 	write = local_add_return(info->length, &tail_page->write);
2792 
2793 	/* set write to only the index of the write */
2794 	write &= RB_WRITE_MASK;
2795 	tail = write - info->length;
2796 
2797 	/*
2798 	 * If this is the first commit on the page, then it has the same
2799 	 * timestamp as the page itself.
2800 	 */
2801 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2802 		info->delta = 0;
2803 
2804 	/* See if we shot pass the end of this buffer page */
2805 	if (unlikely(write > BUF_PAGE_SIZE))
2806 		return rb_move_tail(cpu_buffer, tail, info);
2807 
2808 	/* We reserved something on the buffer */
2809 
2810 	event = __rb_page_index(tail_page, tail);
2811 	rb_update_event(cpu_buffer, event, info);
2812 
2813 	local_inc(&tail_page->entries);
2814 
2815 	/*
2816 	 * If this is the first commit on the page, then update
2817 	 * its timestamp.
2818 	 */
2819 	if (!tail)
2820 		tail_page->page->time_stamp = info->ts;
2821 
2822 	/* account for these added bytes */
2823 	local_add(info->length, &cpu_buffer->entries_bytes);
2824 
2825 	return event;
2826 }
2827 
2828 static __always_inline struct ring_buffer_event *
2829 rb_reserve_next_event(struct ring_buffer *buffer,
2830 		      struct ring_buffer_per_cpu *cpu_buffer,
2831 		      unsigned long length)
2832 {
2833 	struct ring_buffer_event *event;
2834 	struct rb_event_info info;
2835 	int nr_loops = 0;
2836 	u64 diff;
2837 
2838 	rb_start_commit(cpu_buffer);
2839 
2840 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2841 	/*
2842 	 * Due to the ability to swap a cpu buffer from a buffer
2843 	 * it is possible it was swapped before we committed.
2844 	 * (committing stops a swap). We check for it here and
2845 	 * if it happened, we have to fail the write.
2846 	 */
2847 	barrier();
2848 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2849 		local_dec(&cpu_buffer->committing);
2850 		local_dec(&cpu_buffer->commits);
2851 		return NULL;
2852 	}
2853 #endif
2854 
2855 	info.length = rb_calculate_event_length(length);
2856  again:
2857 	info.add_timestamp = 0;
2858 	info.delta = 0;
2859 
2860 	/*
2861 	 * We allow for interrupts to reenter here and do a trace.
2862 	 * If one does, it will cause this original code to loop
2863 	 * back here. Even with heavy interrupts happening, this
2864 	 * should only happen a few times in a row. If this happens
2865 	 * 1000 times in a row, there must be either an interrupt
2866 	 * storm or we have something buggy.
2867 	 * Bail!
2868 	 */
2869 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2870 		goto out_fail;
2871 
2872 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2873 	diff = info.ts - cpu_buffer->write_stamp;
2874 
2875 	/* make sure this diff is calculated here */
2876 	barrier();
2877 
2878 	if (ring_buffer_time_stamp_abs(buffer)) {
2879 		info.delta = info.ts;
2880 		rb_handle_timestamp(cpu_buffer, &info);
2881 	} else /* Did the write stamp get updated already? */
2882 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2883 		info.delta = diff;
2884 		if (unlikely(test_time_stamp(info.delta)))
2885 			rb_handle_timestamp(cpu_buffer, &info);
2886 	}
2887 
2888 	event = __rb_reserve_next(cpu_buffer, &info);
2889 
2890 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2891 		if (info.add_timestamp)
2892 			info.length -= RB_LEN_TIME_EXTEND;
2893 		goto again;
2894 	}
2895 
2896 	if (!event)
2897 		goto out_fail;
2898 
2899 	return event;
2900 
2901  out_fail:
2902 	rb_end_commit(cpu_buffer);
2903 	return NULL;
2904 }
2905 
2906 /**
2907  * ring_buffer_lock_reserve - reserve a part of the buffer
2908  * @buffer: the ring buffer to reserve from
2909  * @length: the length of the data to reserve (excluding event header)
2910  *
2911  * Returns a reserved event on the ring buffer to copy directly to.
2912  * The user of this interface will need to get the body to write into
2913  * and can use the ring_buffer_event_data() interface.
2914  *
2915  * The length is the length of the data needed, not the event length
2916  * which also includes the event header.
2917  *
2918  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2919  * If NULL is returned, then nothing has been allocated or locked.
2920  */
2921 struct ring_buffer_event *
2922 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2923 {
2924 	struct ring_buffer_per_cpu *cpu_buffer;
2925 	struct ring_buffer_event *event;
2926 	int cpu;
2927 
2928 	/* If we are tracing schedule, we don't want to recurse */
2929 	preempt_disable_notrace();
2930 
2931 	if (unlikely(atomic_read(&buffer->record_disabled)))
2932 		goto out;
2933 
2934 	cpu = raw_smp_processor_id();
2935 
2936 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2937 		goto out;
2938 
2939 	cpu_buffer = buffer->buffers[cpu];
2940 
2941 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2942 		goto out;
2943 
2944 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2945 		goto out;
2946 
2947 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2948 		goto out;
2949 
2950 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2951 	if (!event)
2952 		goto out_unlock;
2953 
2954 	return event;
2955 
2956  out_unlock:
2957 	trace_recursive_unlock(cpu_buffer);
2958  out:
2959 	preempt_enable_notrace();
2960 	return NULL;
2961 }
2962 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2963 
2964 /*
2965  * Decrement the entries to the page that an event is on.
2966  * The event does not even need to exist, only the pointer
2967  * to the page it is on. This may only be called before the commit
2968  * takes place.
2969  */
2970 static inline void
2971 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2972 		   struct ring_buffer_event *event)
2973 {
2974 	unsigned long addr = (unsigned long)event;
2975 	struct buffer_page *bpage = cpu_buffer->commit_page;
2976 	struct buffer_page *start;
2977 
2978 	addr &= PAGE_MASK;
2979 
2980 	/* Do the likely case first */
2981 	if (likely(bpage->page == (void *)addr)) {
2982 		local_dec(&bpage->entries);
2983 		return;
2984 	}
2985 
2986 	/*
2987 	 * Because the commit page may be on the reader page we
2988 	 * start with the next page and check the end loop there.
2989 	 */
2990 	rb_inc_page(cpu_buffer, &bpage);
2991 	start = bpage;
2992 	do {
2993 		if (bpage->page == (void *)addr) {
2994 			local_dec(&bpage->entries);
2995 			return;
2996 		}
2997 		rb_inc_page(cpu_buffer, &bpage);
2998 	} while (bpage != start);
2999 
3000 	/* commit not part of this buffer?? */
3001 	RB_WARN_ON(cpu_buffer, 1);
3002 }
3003 
3004 /**
3005  * ring_buffer_commit_discard - discard an event that has not been committed
3006  * @buffer: the ring buffer
3007  * @event: non committed event to discard
3008  *
3009  * Sometimes an event that is in the ring buffer needs to be ignored.
3010  * This function lets the user discard an event in the ring buffer
3011  * and then that event will not be read later.
3012  *
3013  * This function only works if it is called before the item has been
3014  * committed. It will try to free the event from the ring buffer
3015  * if another event has not been added behind it.
3016  *
3017  * If another event has been added behind it, it will set the event
3018  * up as discarded, and perform the commit.
3019  *
3020  * If this function is called, do not call ring_buffer_unlock_commit on
3021  * the event.
3022  */
3023 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3024 				struct ring_buffer_event *event)
3025 {
3026 	struct ring_buffer_per_cpu *cpu_buffer;
3027 	int cpu;
3028 
3029 	/* The event is discarded regardless */
3030 	rb_event_discard(event);
3031 
3032 	cpu = smp_processor_id();
3033 	cpu_buffer = buffer->buffers[cpu];
3034 
3035 	/*
3036 	 * This must only be called if the event has not been
3037 	 * committed yet. Thus we can assume that preemption
3038 	 * is still disabled.
3039 	 */
3040 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3041 
3042 	rb_decrement_entry(cpu_buffer, event);
3043 	if (rb_try_to_discard(cpu_buffer, event))
3044 		goto out;
3045 
3046 	/*
3047 	 * The commit is still visible by the reader, so we
3048 	 * must still update the timestamp.
3049 	 */
3050 	rb_update_write_stamp(cpu_buffer, event);
3051  out:
3052 	rb_end_commit(cpu_buffer);
3053 
3054 	trace_recursive_unlock(cpu_buffer);
3055 
3056 	preempt_enable_notrace();
3057 
3058 }
3059 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3060 
3061 /**
3062  * ring_buffer_write - write data to the buffer without reserving
3063  * @buffer: The ring buffer to write to.
3064  * @length: The length of the data being written (excluding the event header)
3065  * @data: The data to write to the buffer.
3066  *
3067  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3068  * one function. If you already have the data to write to the buffer, it
3069  * may be easier to simply call this function.
3070  *
3071  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3072  * and not the length of the event which would hold the header.
3073  */
3074 int ring_buffer_write(struct ring_buffer *buffer,
3075 		      unsigned long length,
3076 		      void *data)
3077 {
3078 	struct ring_buffer_per_cpu *cpu_buffer;
3079 	struct ring_buffer_event *event;
3080 	void *body;
3081 	int ret = -EBUSY;
3082 	int cpu;
3083 
3084 	preempt_disable_notrace();
3085 
3086 	if (atomic_read(&buffer->record_disabled))
3087 		goto out;
3088 
3089 	cpu = raw_smp_processor_id();
3090 
3091 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3092 		goto out;
3093 
3094 	cpu_buffer = buffer->buffers[cpu];
3095 
3096 	if (atomic_read(&cpu_buffer->record_disabled))
3097 		goto out;
3098 
3099 	if (length > BUF_MAX_DATA_SIZE)
3100 		goto out;
3101 
3102 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3103 		goto out;
3104 
3105 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3106 	if (!event)
3107 		goto out_unlock;
3108 
3109 	body = rb_event_data(event);
3110 
3111 	memcpy(body, data, length);
3112 
3113 	rb_commit(cpu_buffer, event);
3114 
3115 	rb_wakeups(buffer, cpu_buffer);
3116 
3117 	ret = 0;
3118 
3119  out_unlock:
3120 	trace_recursive_unlock(cpu_buffer);
3121 
3122  out:
3123 	preempt_enable_notrace();
3124 
3125 	return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(ring_buffer_write);
3128 
3129 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3130 {
3131 	struct buffer_page *reader = cpu_buffer->reader_page;
3132 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3133 	struct buffer_page *commit = cpu_buffer->commit_page;
3134 
3135 	/* In case of error, head will be NULL */
3136 	if (unlikely(!head))
3137 		return true;
3138 
3139 	return reader->read == rb_page_commit(reader) &&
3140 		(commit == reader ||
3141 		 (commit == head &&
3142 		  head->read == rb_page_commit(commit)));
3143 }
3144 
3145 /**
3146  * ring_buffer_record_disable - stop all writes into the buffer
3147  * @buffer: The ring buffer to stop writes to.
3148  *
3149  * This prevents all writes to the buffer. Any attempt to write
3150  * to the buffer after this will fail and return NULL.
3151  *
3152  * The caller should call synchronize_sched() after this.
3153  */
3154 void ring_buffer_record_disable(struct ring_buffer *buffer)
3155 {
3156 	atomic_inc(&buffer->record_disabled);
3157 }
3158 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3159 
3160 /**
3161  * ring_buffer_record_enable - enable writes to the buffer
3162  * @buffer: The ring buffer to enable writes
3163  *
3164  * Note, multiple disables will need the same number of enables
3165  * to truly enable the writing (much like preempt_disable).
3166  */
3167 void ring_buffer_record_enable(struct ring_buffer *buffer)
3168 {
3169 	atomic_dec(&buffer->record_disabled);
3170 }
3171 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3172 
3173 /**
3174  * ring_buffer_record_off - stop all writes into the buffer
3175  * @buffer: The ring buffer to stop writes to.
3176  *
3177  * This prevents all writes to the buffer. Any attempt to write
3178  * to the buffer after this will fail and return NULL.
3179  *
3180  * This is different than ring_buffer_record_disable() as
3181  * it works like an on/off switch, where as the disable() version
3182  * must be paired with a enable().
3183  */
3184 void ring_buffer_record_off(struct ring_buffer *buffer)
3185 {
3186 	unsigned int rd;
3187 	unsigned int new_rd;
3188 
3189 	do {
3190 		rd = atomic_read(&buffer->record_disabled);
3191 		new_rd = rd | RB_BUFFER_OFF;
3192 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3193 }
3194 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3195 
3196 /**
3197  * ring_buffer_record_on - restart writes into the buffer
3198  * @buffer: The ring buffer to start writes to.
3199  *
3200  * This enables all writes to the buffer that was disabled by
3201  * ring_buffer_record_off().
3202  *
3203  * This is different than ring_buffer_record_enable() as
3204  * it works like an on/off switch, where as the enable() version
3205  * must be paired with a disable().
3206  */
3207 void ring_buffer_record_on(struct ring_buffer *buffer)
3208 {
3209 	unsigned int rd;
3210 	unsigned int new_rd;
3211 
3212 	do {
3213 		rd = atomic_read(&buffer->record_disabled);
3214 		new_rd = rd & ~RB_BUFFER_OFF;
3215 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3216 }
3217 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3218 
3219 /**
3220  * ring_buffer_record_is_on - return true if the ring buffer can write
3221  * @buffer: The ring buffer to see if write is enabled
3222  *
3223  * Returns true if the ring buffer is in a state that it accepts writes.
3224  */
3225 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3226 {
3227 	return !atomic_read(&buffer->record_disabled);
3228 }
3229 
3230 /**
3231  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3232  * @buffer: The ring buffer to see if write is set enabled
3233  *
3234  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3235  * Note that this does NOT mean it is in a writable state.
3236  *
3237  * It may return true when the ring buffer has been disabled by
3238  * ring_buffer_record_disable(), as that is a temporary disabling of
3239  * the ring buffer.
3240  */
3241 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3242 {
3243 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3244 }
3245 
3246 /**
3247  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3248  * @buffer: The ring buffer to stop writes to.
3249  * @cpu: The CPU buffer to stop
3250  *
3251  * This prevents all writes to the buffer. Any attempt to write
3252  * to the buffer after this will fail and return NULL.
3253  *
3254  * The caller should call synchronize_sched() after this.
3255  */
3256 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258 	struct ring_buffer_per_cpu *cpu_buffer;
3259 
3260 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261 		return;
3262 
3263 	cpu_buffer = buffer->buffers[cpu];
3264 	atomic_inc(&cpu_buffer->record_disabled);
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3267 
3268 /**
3269  * ring_buffer_record_enable_cpu - enable writes to the buffer
3270  * @buffer: The ring buffer to enable writes
3271  * @cpu: The CPU to enable.
3272  *
3273  * Note, multiple disables will need the same number of enables
3274  * to truly enable the writing (much like preempt_disable).
3275  */
3276 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278 	struct ring_buffer_per_cpu *cpu_buffer;
3279 
3280 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281 		return;
3282 
3283 	cpu_buffer = buffer->buffers[cpu];
3284 	atomic_dec(&cpu_buffer->record_disabled);
3285 }
3286 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3287 
3288 /*
3289  * The total entries in the ring buffer is the running counter
3290  * of entries entered into the ring buffer, minus the sum of
3291  * the entries read from the ring buffer and the number of
3292  * entries that were overwritten.
3293  */
3294 static inline unsigned long
3295 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3296 {
3297 	return local_read(&cpu_buffer->entries) -
3298 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3299 }
3300 
3301 /**
3302  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3303  * @buffer: The ring buffer
3304  * @cpu: The per CPU buffer to read from.
3305  */
3306 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3307 {
3308 	unsigned long flags;
3309 	struct ring_buffer_per_cpu *cpu_buffer;
3310 	struct buffer_page *bpage;
3311 	u64 ret = 0;
3312 
3313 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3314 		return 0;
3315 
3316 	cpu_buffer = buffer->buffers[cpu];
3317 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3318 	/*
3319 	 * if the tail is on reader_page, oldest time stamp is on the reader
3320 	 * page
3321 	 */
3322 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3323 		bpage = cpu_buffer->reader_page;
3324 	else
3325 		bpage = rb_set_head_page(cpu_buffer);
3326 	if (bpage)
3327 		ret = bpage->page->time_stamp;
3328 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3329 
3330 	return ret;
3331 }
3332 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3333 
3334 /**
3335  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3336  * @buffer: The ring buffer
3337  * @cpu: The per CPU buffer to read from.
3338  */
3339 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3340 {
3341 	struct ring_buffer_per_cpu *cpu_buffer;
3342 	unsigned long ret;
3343 
3344 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3345 		return 0;
3346 
3347 	cpu_buffer = buffer->buffers[cpu];
3348 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3349 
3350 	return ret;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3353 
3354 /**
3355  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3356  * @buffer: The ring buffer
3357  * @cpu: The per CPU buffer to get the entries from.
3358  */
3359 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3360 {
3361 	struct ring_buffer_per_cpu *cpu_buffer;
3362 
3363 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3364 		return 0;
3365 
3366 	cpu_buffer = buffer->buffers[cpu];
3367 
3368 	return rb_num_of_entries(cpu_buffer);
3369 }
3370 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3371 
3372 /**
3373  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3374  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3375  * @buffer: The ring buffer
3376  * @cpu: The per CPU buffer to get the number of overruns from
3377  */
3378 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3379 {
3380 	struct ring_buffer_per_cpu *cpu_buffer;
3381 	unsigned long ret;
3382 
3383 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3384 		return 0;
3385 
3386 	cpu_buffer = buffer->buffers[cpu];
3387 	ret = local_read(&cpu_buffer->overrun);
3388 
3389 	return ret;
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3392 
3393 /**
3394  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3395  * commits failing due to the buffer wrapping around while there are uncommitted
3396  * events, such as during an interrupt storm.
3397  * @buffer: The ring buffer
3398  * @cpu: The per CPU buffer to get the number of overruns from
3399  */
3400 unsigned long
3401 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3402 {
3403 	struct ring_buffer_per_cpu *cpu_buffer;
3404 	unsigned long ret;
3405 
3406 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3407 		return 0;
3408 
3409 	cpu_buffer = buffer->buffers[cpu];
3410 	ret = local_read(&cpu_buffer->commit_overrun);
3411 
3412 	return ret;
3413 }
3414 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3415 
3416 /**
3417  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3418  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3419  * @buffer: The ring buffer
3420  * @cpu: The per CPU buffer to get the number of overruns from
3421  */
3422 unsigned long
3423 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3424 {
3425 	struct ring_buffer_per_cpu *cpu_buffer;
3426 	unsigned long ret;
3427 
3428 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3429 		return 0;
3430 
3431 	cpu_buffer = buffer->buffers[cpu];
3432 	ret = local_read(&cpu_buffer->dropped_events);
3433 
3434 	return ret;
3435 }
3436 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3437 
3438 /**
3439  * ring_buffer_read_events_cpu - get the number of events successfully read
3440  * @buffer: The ring buffer
3441  * @cpu: The per CPU buffer to get the number of events read
3442  */
3443 unsigned long
3444 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3445 {
3446 	struct ring_buffer_per_cpu *cpu_buffer;
3447 
3448 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3449 		return 0;
3450 
3451 	cpu_buffer = buffer->buffers[cpu];
3452 	return cpu_buffer->read;
3453 }
3454 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3455 
3456 /**
3457  * ring_buffer_entries - get the number of entries in a buffer
3458  * @buffer: The ring buffer
3459  *
3460  * Returns the total number of entries in the ring buffer
3461  * (all CPU entries)
3462  */
3463 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3464 {
3465 	struct ring_buffer_per_cpu *cpu_buffer;
3466 	unsigned long entries = 0;
3467 	int cpu;
3468 
3469 	/* if you care about this being correct, lock the buffer */
3470 	for_each_buffer_cpu(buffer, cpu) {
3471 		cpu_buffer = buffer->buffers[cpu];
3472 		entries += rb_num_of_entries(cpu_buffer);
3473 	}
3474 
3475 	return entries;
3476 }
3477 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3478 
3479 /**
3480  * ring_buffer_overruns - get the number of overruns in buffer
3481  * @buffer: The ring buffer
3482  *
3483  * Returns the total number of overruns in the ring buffer
3484  * (all CPU entries)
3485  */
3486 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3487 {
3488 	struct ring_buffer_per_cpu *cpu_buffer;
3489 	unsigned long overruns = 0;
3490 	int cpu;
3491 
3492 	/* if you care about this being correct, lock the buffer */
3493 	for_each_buffer_cpu(buffer, cpu) {
3494 		cpu_buffer = buffer->buffers[cpu];
3495 		overruns += local_read(&cpu_buffer->overrun);
3496 	}
3497 
3498 	return overruns;
3499 }
3500 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3501 
3502 static void rb_iter_reset(struct ring_buffer_iter *iter)
3503 {
3504 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3505 
3506 	/* Iterator usage is expected to have record disabled */
3507 	iter->head_page = cpu_buffer->reader_page;
3508 	iter->head = cpu_buffer->reader_page->read;
3509 
3510 	iter->cache_reader_page = iter->head_page;
3511 	iter->cache_read = cpu_buffer->read;
3512 
3513 	if (iter->head)
3514 		iter->read_stamp = cpu_buffer->read_stamp;
3515 	else
3516 		iter->read_stamp = iter->head_page->page->time_stamp;
3517 }
3518 
3519 /**
3520  * ring_buffer_iter_reset - reset an iterator
3521  * @iter: The iterator to reset
3522  *
3523  * Resets the iterator, so that it will start from the beginning
3524  * again.
3525  */
3526 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3527 {
3528 	struct ring_buffer_per_cpu *cpu_buffer;
3529 	unsigned long flags;
3530 
3531 	if (!iter)
3532 		return;
3533 
3534 	cpu_buffer = iter->cpu_buffer;
3535 
3536 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3537 	rb_iter_reset(iter);
3538 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3539 }
3540 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3541 
3542 /**
3543  * ring_buffer_iter_empty - check if an iterator has no more to read
3544  * @iter: The iterator to check
3545  */
3546 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3547 {
3548 	struct ring_buffer_per_cpu *cpu_buffer;
3549 	struct buffer_page *reader;
3550 	struct buffer_page *head_page;
3551 	struct buffer_page *commit_page;
3552 	unsigned commit;
3553 
3554 	cpu_buffer = iter->cpu_buffer;
3555 
3556 	/* Remember, trace recording is off when iterator is in use */
3557 	reader = cpu_buffer->reader_page;
3558 	head_page = cpu_buffer->head_page;
3559 	commit_page = cpu_buffer->commit_page;
3560 	commit = rb_page_commit(commit_page);
3561 
3562 	return ((iter->head_page == commit_page && iter->head == commit) ||
3563 		(iter->head_page == reader && commit_page == head_page &&
3564 		 head_page->read == commit &&
3565 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3566 }
3567 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3568 
3569 static void
3570 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3571 		     struct ring_buffer_event *event)
3572 {
3573 	u64 delta;
3574 
3575 	switch (event->type_len) {
3576 	case RINGBUF_TYPE_PADDING:
3577 		return;
3578 
3579 	case RINGBUF_TYPE_TIME_EXTEND:
3580 		delta = ring_buffer_event_time_stamp(event);
3581 		cpu_buffer->read_stamp += delta;
3582 		return;
3583 
3584 	case RINGBUF_TYPE_TIME_STAMP:
3585 		delta = ring_buffer_event_time_stamp(event);
3586 		cpu_buffer->read_stamp = delta;
3587 		return;
3588 
3589 	case RINGBUF_TYPE_DATA:
3590 		cpu_buffer->read_stamp += event->time_delta;
3591 		return;
3592 
3593 	default:
3594 		BUG();
3595 	}
3596 	return;
3597 }
3598 
3599 static void
3600 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3601 			  struct ring_buffer_event *event)
3602 {
3603 	u64 delta;
3604 
3605 	switch (event->type_len) {
3606 	case RINGBUF_TYPE_PADDING:
3607 		return;
3608 
3609 	case RINGBUF_TYPE_TIME_EXTEND:
3610 		delta = ring_buffer_event_time_stamp(event);
3611 		iter->read_stamp += delta;
3612 		return;
3613 
3614 	case RINGBUF_TYPE_TIME_STAMP:
3615 		delta = ring_buffer_event_time_stamp(event);
3616 		iter->read_stamp = delta;
3617 		return;
3618 
3619 	case RINGBUF_TYPE_DATA:
3620 		iter->read_stamp += event->time_delta;
3621 		return;
3622 
3623 	default:
3624 		BUG();
3625 	}
3626 	return;
3627 }
3628 
3629 static struct buffer_page *
3630 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3631 {
3632 	struct buffer_page *reader = NULL;
3633 	unsigned long overwrite;
3634 	unsigned long flags;
3635 	int nr_loops = 0;
3636 	int ret;
3637 
3638 	local_irq_save(flags);
3639 	arch_spin_lock(&cpu_buffer->lock);
3640 
3641  again:
3642 	/*
3643 	 * This should normally only loop twice. But because the
3644 	 * start of the reader inserts an empty page, it causes
3645 	 * a case where we will loop three times. There should be no
3646 	 * reason to loop four times (that I know of).
3647 	 */
3648 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3649 		reader = NULL;
3650 		goto out;
3651 	}
3652 
3653 	reader = cpu_buffer->reader_page;
3654 
3655 	/* If there's more to read, return this page */
3656 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3657 		goto out;
3658 
3659 	/* Never should we have an index greater than the size */
3660 	if (RB_WARN_ON(cpu_buffer,
3661 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3662 		goto out;
3663 
3664 	/* check if we caught up to the tail */
3665 	reader = NULL;
3666 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3667 		goto out;
3668 
3669 	/* Don't bother swapping if the ring buffer is empty */
3670 	if (rb_num_of_entries(cpu_buffer) == 0)
3671 		goto out;
3672 
3673 	/*
3674 	 * Reset the reader page to size zero.
3675 	 */
3676 	local_set(&cpu_buffer->reader_page->write, 0);
3677 	local_set(&cpu_buffer->reader_page->entries, 0);
3678 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3679 	cpu_buffer->reader_page->real_end = 0;
3680 
3681  spin:
3682 	/*
3683 	 * Splice the empty reader page into the list around the head.
3684 	 */
3685 	reader = rb_set_head_page(cpu_buffer);
3686 	if (!reader)
3687 		goto out;
3688 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3689 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3690 
3691 	/*
3692 	 * cpu_buffer->pages just needs to point to the buffer, it
3693 	 *  has no specific buffer page to point to. Lets move it out
3694 	 *  of our way so we don't accidentally swap it.
3695 	 */
3696 	cpu_buffer->pages = reader->list.prev;
3697 
3698 	/* The reader page will be pointing to the new head */
3699 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3700 
3701 	/*
3702 	 * We want to make sure we read the overruns after we set up our
3703 	 * pointers to the next object. The writer side does a
3704 	 * cmpxchg to cross pages which acts as the mb on the writer
3705 	 * side. Note, the reader will constantly fail the swap
3706 	 * while the writer is updating the pointers, so this
3707 	 * guarantees that the overwrite recorded here is the one we
3708 	 * want to compare with the last_overrun.
3709 	 */
3710 	smp_mb();
3711 	overwrite = local_read(&(cpu_buffer->overrun));
3712 
3713 	/*
3714 	 * Here's the tricky part.
3715 	 *
3716 	 * We need to move the pointer past the header page.
3717 	 * But we can only do that if a writer is not currently
3718 	 * moving it. The page before the header page has the
3719 	 * flag bit '1' set if it is pointing to the page we want.
3720 	 * but if the writer is in the process of moving it
3721 	 * than it will be '2' or already moved '0'.
3722 	 */
3723 
3724 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3725 
3726 	/*
3727 	 * If we did not convert it, then we must try again.
3728 	 */
3729 	if (!ret)
3730 		goto spin;
3731 
3732 	/*
3733 	 * Yeah! We succeeded in replacing the page.
3734 	 *
3735 	 * Now make the new head point back to the reader page.
3736 	 */
3737 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3738 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3739 
3740 	/* Finally update the reader page to the new head */
3741 	cpu_buffer->reader_page = reader;
3742 	cpu_buffer->reader_page->read = 0;
3743 
3744 	if (overwrite != cpu_buffer->last_overrun) {
3745 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3746 		cpu_buffer->last_overrun = overwrite;
3747 	}
3748 
3749 	goto again;
3750 
3751  out:
3752 	/* Update the read_stamp on the first event */
3753 	if (reader && reader->read == 0)
3754 		cpu_buffer->read_stamp = reader->page->time_stamp;
3755 
3756 	arch_spin_unlock(&cpu_buffer->lock);
3757 	local_irq_restore(flags);
3758 
3759 	return reader;
3760 }
3761 
3762 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3763 {
3764 	struct ring_buffer_event *event;
3765 	struct buffer_page *reader;
3766 	unsigned length;
3767 
3768 	reader = rb_get_reader_page(cpu_buffer);
3769 
3770 	/* This function should not be called when buffer is empty */
3771 	if (RB_WARN_ON(cpu_buffer, !reader))
3772 		return;
3773 
3774 	event = rb_reader_event(cpu_buffer);
3775 
3776 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3777 		cpu_buffer->read++;
3778 
3779 	rb_update_read_stamp(cpu_buffer, event);
3780 
3781 	length = rb_event_length(event);
3782 	cpu_buffer->reader_page->read += length;
3783 }
3784 
3785 static void rb_advance_iter(struct ring_buffer_iter *iter)
3786 {
3787 	struct ring_buffer_per_cpu *cpu_buffer;
3788 	struct ring_buffer_event *event;
3789 	unsigned length;
3790 
3791 	cpu_buffer = iter->cpu_buffer;
3792 
3793 	/*
3794 	 * Check if we are at the end of the buffer.
3795 	 */
3796 	if (iter->head >= rb_page_size(iter->head_page)) {
3797 		/* discarded commits can make the page empty */
3798 		if (iter->head_page == cpu_buffer->commit_page)
3799 			return;
3800 		rb_inc_iter(iter);
3801 		return;
3802 	}
3803 
3804 	event = rb_iter_head_event(iter);
3805 
3806 	length = rb_event_length(event);
3807 
3808 	/*
3809 	 * This should not be called to advance the header if we are
3810 	 * at the tail of the buffer.
3811 	 */
3812 	if (RB_WARN_ON(cpu_buffer,
3813 		       (iter->head_page == cpu_buffer->commit_page) &&
3814 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3815 		return;
3816 
3817 	rb_update_iter_read_stamp(iter, event);
3818 
3819 	iter->head += length;
3820 
3821 	/* check for end of page padding */
3822 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3823 	    (iter->head_page != cpu_buffer->commit_page))
3824 		rb_inc_iter(iter);
3825 }
3826 
3827 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3828 {
3829 	return cpu_buffer->lost_events;
3830 }
3831 
3832 static struct ring_buffer_event *
3833 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3834 	       unsigned long *lost_events)
3835 {
3836 	struct ring_buffer_event *event;
3837 	struct buffer_page *reader;
3838 	int nr_loops = 0;
3839 
3840 	if (ts)
3841 		*ts = 0;
3842  again:
3843 	/*
3844 	 * We repeat when a time extend is encountered.
3845 	 * Since the time extend is always attached to a data event,
3846 	 * we should never loop more than once.
3847 	 * (We never hit the following condition more than twice).
3848 	 */
3849 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3850 		return NULL;
3851 
3852 	reader = rb_get_reader_page(cpu_buffer);
3853 	if (!reader)
3854 		return NULL;
3855 
3856 	event = rb_reader_event(cpu_buffer);
3857 
3858 	switch (event->type_len) {
3859 	case RINGBUF_TYPE_PADDING:
3860 		if (rb_null_event(event))
3861 			RB_WARN_ON(cpu_buffer, 1);
3862 		/*
3863 		 * Because the writer could be discarding every
3864 		 * event it creates (which would probably be bad)
3865 		 * if we were to go back to "again" then we may never
3866 		 * catch up, and will trigger the warn on, or lock
3867 		 * the box. Return the padding, and we will release
3868 		 * the current locks, and try again.
3869 		 */
3870 		return event;
3871 
3872 	case RINGBUF_TYPE_TIME_EXTEND:
3873 		/* Internal data, OK to advance */
3874 		rb_advance_reader(cpu_buffer);
3875 		goto again;
3876 
3877 	case RINGBUF_TYPE_TIME_STAMP:
3878 		if (ts) {
3879 			*ts = ring_buffer_event_time_stamp(event);
3880 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3881 							 cpu_buffer->cpu, ts);
3882 		}
3883 		/* Internal data, OK to advance */
3884 		rb_advance_reader(cpu_buffer);
3885 		goto again;
3886 
3887 	case RINGBUF_TYPE_DATA:
3888 		if (ts && !(*ts)) {
3889 			*ts = cpu_buffer->read_stamp + event->time_delta;
3890 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3891 							 cpu_buffer->cpu, ts);
3892 		}
3893 		if (lost_events)
3894 			*lost_events = rb_lost_events(cpu_buffer);
3895 		return event;
3896 
3897 	default:
3898 		BUG();
3899 	}
3900 
3901 	return NULL;
3902 }
3903 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3904 
3905 static struct ring_buffer_event *
3906 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3907 {
3908 	struct ring_buffer *buffer;
3909 	struct ring_buffer_per_cpu *cpu_buffer;
3910 	struct ring_buffer_event *event;
3911 	int nr_loops = 0;
3912 
3913 	if (ts)
3914 		*ts = 0;
3915 
3916 	cpu_buffer = iter->cpu_buffer;
3917 	buffer = cpu_buffer->buffer;
3918 
3919 	/*
3920 	 * Check if someone performed a consuming read to
3921 	 * the buffer. A consuming read invalidates the iterator
3922 	 * and we need to reset the iterator in this case.
3923 	 */
3924 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3925 		     iter->cache_reader_page != cpu_buffer->reader_page))
3926 		rb_iter_reset(iter);
3927 
3928  again:
3929 	if (ring_buffer_iter_empty(iter))
3930 		return NULL;
3931 
3932 	/*
3933 	 * We repeat when a time extend is encountered or we hit
3934 	 * the end of the page. Since the time extend is always attached
3935 	 * to a data event, we should never loop more than three times.
3936 	 * Once for going to next page, once on time extend, and
3937 	 * finally once to get the event.
3938 	 * (We never hit the following condition more than thrice).
3939 	 */
3940 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3941 		return NULL;
3942 
3943 	if (rb_per_cpu_empty(cpu_buffer))
3944 		return NULL;
3945 
3946 	if (iter->head >= rb_page_size(iter->head_page)) {
3947 		rb_inc_iter(iter);
3948 		goto again;
3949 	}
3950 
3951 	event = rb_iter_head_event(iter);
3952 
3953 	switch (event->type_len) {
3954 	case RINGBUF_TYPE_PADDING:
3955 		if (rb_null_event(event)) {
3956 			rb_inc_iter(iter);
3957 			goto again;
3958 		}
3959 		rb_advance_iter(iter);
3960 		return event;
3961 
3962 	case RINGBUF_TYPE_TIME_EXTEND:
3963 		/* Internal data, OK to advance */
3964 		rb_advance_iter(iter);
3965 		goto again;
3966 
3967 	case RINGBUF_TYPE_TIME_STAMP:
3968 		if (ts) {
3969 			*ts = ring_buffer_event_time_stamp(event);
3970 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3971 							 cpu_buffer->cpu, ts);
3972 		}
3973 		/* Internal data, OK to advance */
3974 		rb_advance_iter(iter);
3975 		goto again;
3976 
3977 	case RINGBUF_TYPE_DATA:
3978 		if (ts && !(*ts)) {
3979 			*ts = iter->read_stamp + event->time_delta;
3980 			ring_buffer_normalize_time_stamp(buffer,
3981 							 cpu_buffer->cpu, ts);
3982 		}
3983 		return event;
3984 
3985 	default:
3986 		BUG();
3987 	}
3988 
3989 	return NULL;
3990 }
3991 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3992 
3993 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3994 {
3995 	if (likely(!in_nmi())) {
3996 		raw_spin_lock(&cpu_buffer->reader_lock);
3997 		return true;
3998 	}
3999 
4000 	/*
4001 	 * If an NMI die dumps out the content of the ring buffer
4002 	 * trylock must be used to prevent a deadlock if the NMI
4003 	 * preempted a task that holds the ring buffer locks. If
4004 	 * we get the lock then all is fine, if not, then continue
4005 	 * to do the read, but this can corrupt the ring buffer,
4006 	 * so it must be permanently disabled from future writes.
4007 	 * Reading from NMI is a oneshot deal.
4008 	 */
4009 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4010 		return true;
4011 
4012 	/* Continue without locking, but disable the ring buffer */
4013 	atomic_inc(&cpu_buffer->record_disabled);
4014 	return false;
4015 }
4016 
4017 static inline void
4018 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4019 {
4020 	if (likely(locked))
4021 		raw_spin_unlock(&cpu_buffer->reader_lock);
4022 	return;
4023 }
4024 
4025 /**
4026  * ring_buffer_peek - peek at the next event to be read
4027  * @buffer: The ring buffer to read
4028  * @cpu: The cpu to peak at
4029  * @ts: The timestamp counter of this event.
4030  * @lost_events: a variable to store if events were lost (may be NULL)
4031  *
4032  * This will return the event that will be read next, but does
4033  * not consume the data.
4034  */
4035 struct ring_buffer_event *
4036 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4037 		 unsigned long *lost_events)
4038 {
4039 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4040 	struct ring_buffer_event *event;
4041 	unsigned long flags;
4042 	bool dolock;
4043 
4044 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4045 		return NULL;
4046 
4047  again:
4048 	local_irq_save(flags);
4049 	dolock = rb_reader_lock(cpu_buffer);
4050 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4051 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4052 		rb_advance_reader(cpu_buffer);
4053 	rb_reader_unlock(cpu_buffer, dolock);
4054 	local_irq_restore(flags);
4055 
4056 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4057 		goto again;
4058 
4059 	return event;
4060 }
4061 
4062 /**
4063  * ring_buffer_iter_peek - peek at the next event to be read
4064  * @iter: The ring buffer iterator
4065  * @ts: The timestamp counter of this event.
4066  *
4067  * This will return the event that will be read next, but does
4068  * not increment the iterator.
4069  */
4070 struct ring_buffer_event *
4071 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4072 {
4073 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4074 	struct ring_buffer_event *event;
4075 	unsigned long flags;
4076 
4077  again:
4078 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079 	event = rb_iter_peek(iter, ts);
4080 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4081 
4082 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4083 		goto again;
4084 
4085 	return event;
4086 }
4087 
4088 /**
4089  * ring_buffer_consume - return an event and consume it
4090  * @buffer: The ring buffer to get the next event from
4091  * @cpu: the cpu to read the buffer from
4092  * @ts: a variable to store the timestamp (may be NULL)
4093  * @lost_events: a variable to store if events were lost (may be NULL)
4094  *
4095  * Returns the next event in the ring buffer, and that event is consumed.
4096  * Meaning, that sequential reads will keep returning a different event,
4097  * and eventually empty the ring buffer if the producer is slower.
4098  */
4099 struct ring_buffer_event *
4100 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4101 		    unsigned long *lost_events)
4102 {
4103 	struct ring_buffer_per_cpu *cpu_buffer;
4104 	struct ring_buffer_event *event = NULL;
4105 	unsigned long flags;
4106 	bool dolock;
4107 
4108  again:
4109 	/* might be called in atomic */
4110 	preempt_disable();
4111 
4112 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4113 		goto out;
4114 
4115 	cpu_buffer = buffer->buffers[cpu];
4116 	local_irq_save(flags);
4117 	dolock = rb_reader_lock(cpu_buffer);
4118 
4119 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4120 	if (event) {
4121 		cpu_buffer->lost_events = 0;
4122 		rb_advance_reader(cpu_buffer);
4123 	}
4124 
4125 	rb_reader_unlock(cpu_buffer, dolock);
4126 	local_irq_restore(flags);
4127 
4128  out:
4129 	preempt_enable();
4130 
4131 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4132 		goto again;
4133 
4134 	return event;
4135 }
4136 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4137 
4138 /**
4139  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4140  * @buffer: The ring buffer to read from
4141  * @cpu: The cpu buffer to iterate over
4142  *
4143  * This performs the initial preparations necessary to iterate
4144  * through the buffer.  Memory is allocated, buffer recording
4145  * is disabled, and the iterator pointer is returned to the caller.
4146  *
4147  * Disabling buffer recording prevents the reading from being
4148  * corrupted. This is not a consuming read, so a producer is not
4149  * expected.
4150  *
4151  * After a sequence of ring_buffer_read_prepare calls, the user is
4152  * expected to make at least one call to ring_buffer_read_prepare_sync.
4153  * Afterwards, ring_buffer_read_start is invoked to get things going
4154  * for real.
4155  *
4156  * This overall must be paired with ring_buffer_read_finish.
4157  */
4158 struct ring_buffer_iter *
4159 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4160 {
4161 	struct ring_buffer_per_cpu *cpu_buffer;
4162 	struct ring_buffer_iter *iter;
4163 
4164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165 		return NULL;
4166 
4167 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4168 	if (!iter)
4169 		return NULL;
4170 
4171 	cpu_buffer = buffer->buffers[cpu];
4172 
4173 	iter->cpu_buffer = cpu_buffer;
4174 
4175 	atomic_inc(&buffer->resize_disabled);
4176 	atomic_inc(&cpu_buffer->record_disabled);
4177 
4178 	return iter;
4179 }
4180 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4181 
4182 /**
4183  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4184  *
4185  * All previously invoked ring_buffer_read_prepare calls to prepare
4186  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4187  * calls on those iterators are allowed.
4188  */
4189 void
4190 ring_buffer_read_prepare_sync(void)
4191 {
4192 	synchronize_sched();
4193 }
4194 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4195 
4196 /**
4197  * ring_buffer_read_start - start a non consuming read of the buffer
4198  * @iter: The iterator returned by ring_buffer_read_prepare
4199  *
4200  * This finalizes the startup of an iteration through the buffer.
4201  * The iterator comes from a call to ring_buffer_read_prepare and
4202  * an intervening ring_buffer_read_prepare_sync must have been
4203  * performed.
4204  *
4205  * Must be paired with ring_buffer_read_finish.
4206  */
4207 void
4208 ring_buffer_read_start(struct ring_buffer_iter *iter)
4209 {
4210 	struct ring_buffer_per_cpu *cpu_buffer;
4211 	unsigned long flags;
4212 
4213 	if (!iter)
4214 		return;
4215 
4216 	cpu_buffer = iter->cpu_buffer;
4217 
4218 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4219 	arch_spin_lock(&cpu_buffer->lock);
4220 	rb_iter_reset(iter);
4221 	arch_spin_unlock(&cpu_buffer->lock);
4222 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4225 
4226 /**
4227  * ring_buffer_read_finish - finish reading the iterator of the buffer
4228  * @iter: The iterator retrieved by ring_buffer_start
4229  *
4230  * This re-enables the recording to the buffer, and frees the
4231  * iterator.
4232  */
4233 void
4234 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4235 {
4236 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4237 	unsigned long flags;
4238 
4239 	/*
4240 	 * Ring buffer is disabled from recording, here's a good place
4241 	 * to check the integrity of the ring buffer.
4242 	 * Must prevent readers from trying to read, as the check
4243 	 * clears the HEAD page and readers require it.
4244 	 */
4245 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4246 	rb_check_pages(cpu_buffer);
4247 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4248 
4249 	atomic_dec(&cpu_buffer->record_disabled);
4250 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4251 	kfree(iter);
4252 }
4253 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4254 
4255 /**
4256  * ring_buffer_read - read the next item in the ring buffer by the iterator
4257  * @iter: The ring buffer iterator
4258  * @ts: The time stamp of the event read.
4259  *
4260  * This reads the next event in the ring buffer and increments the iterator.
4261  */
4262 struct ring_buffer_event *
4263 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4264 {
4265 	struct ring_buffer_event *event;
4266 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4267 	unsigned long flags;
4268 
4269 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4270  again:
4271 	event = rb_iter_peek(iter, ts);
4272 	if (!event)
4273 		goto out;
4274 
4275 	if (event->type_len == RINGBUF_TYPE_PADDING)
4276 		goto again;
4277 
4278 	rb_advance_iter(iter);
4279  out:
4280 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4281 
4282 	return event;
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_read);
4285 
4286 /**
4287  * ring_buffer_size - return the size of the ring buffer (in bytes)
4288  * @buffer: The ring buffer.
4289  */
4290 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4291 {
4292 	/*
4293 	 * Earlier, this method returned
4294 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4295 	 * Since the nr_pages field is now removed, we have converted this to
4296 	 * return the per cpu buffer value.
4297 	 */
4298 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4299 		return 0;
4300 
4301 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4302 }
4303 EXPORT_SYMBOL_GPL(ring_buffer_size);
4304 
4305 static void
4306 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4307 {
4308 	rb_head_page_deactivate(cpu_buffer);
4309 
4310 	cpu_buffer->head_page
4311 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4312 	local_set(&cpu_buffer->head_page->write, 0);
4313 	local_set(&cpu_buffer->head_page->entries, 0);
4314 	local_set(&cpu_buffer->head_page->page->commit, 0);
4315 
4316 	cpu_buffer->head_page->read = 0;
4317 
4318 	cpu_buffer->tail_page = cpu_buffer->head_page;
4319 	cpu_buffer->commit_page = cpu_buffer->head_page;
4320 
4321 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4322 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4323 	local_set(&cpu_buffer->reader_page->write, 0);
4324 	local_set(&cpu_buffer->reader_page->entries, 0);
4325 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4326 	cpu_buffer->reader_page->read = 0;
4327 
4328 	local_set(&cpu_buffer->entries_bytes, 0);
4329 	local_set(&cpu_buffer->overrun, 0);
4330 	local_set(&cpu_buffer->commit_overrun, 0);
4331 	local_set(&cpu_buffer->dropped_events, 0);
4332 	local_set(&cpu_buffer->entries, 0);
4333 	local_set(&cpu_buffer->committing, 0);
4334 	local_set(&cpu_buffer->commits, 0);
4335 	cpu_buffer->read = 0;
4336 	cpu_buffer->read_bytes = 0;
4337 
4338 	cpu_buffer->write_stamp = 0;
4339 	cpu_buffer->read_stamp = 0;
4340 
4341 	cpu_buffer->lost_events = 0;
4342 	cpu_buffer->last_overrun = 0;
4343 
4344 	rb_head_page_activate(cpu_buffer);
4345 }
4346 
4347 /**
4348  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4349  * @buffer: The ring buffer to reset a per cpu buffer of
4350  * @cpu: The CPU buffer to be reset
4351  */
4352 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4353 {
4354 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4355 	unsigned long flags;
4356 
4357 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4358 		return;
4359 
4360 	atomic_inc(&buffer->resize_disabled);
4361 	atomic_inc(&cpu_buffer->record_disabled);
4362 
4363 	/* Make sure all commits have finished */
4364 	synchronize_sched();
4365 
4366 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4367 
4368 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4369 		goto out;
4370 
4371 	arch_spin_lock(&cpu_buffer->lock);
4372 
4373 	rb_reset_cpu(cpu_buffer);
4374 
4375 	arch_spin_unlock(&cpu_buffer->lock);
4376 
4377  out:
4378 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4379 
4380 	atomic_dec(&cpu_buffer->record_disabled);
4381 	atomic_dec(&buffer->resize_disabled);
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4384 
4385 /**
4386  * ring_buffer_reset - reset a ring buffer
4387  * @buffer: The ring buffer to reset all cpu buffers
4388  */
4389 void ring_buffer_reset(struct ring_buffer *buffer)
4390 {
4391 	int cpu;
4392 
4393 	for_each_buffer_cpu(buffer, cpu)
4394 		ring_buffer_reset_cpu(buffer, cpu);
4395 }
4396 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4397 
4398 /**
4399  * rind_buffer_empty - is the ring buffer empty?
4400  * @buffer: The ring buffer to test
4401  */
4402 bool ring_buffer_empty(struct ring_buffer *buffer)
4403 {
4404 	struct ring_buffer_per_cpu *cpu_buffer;
4405 	unsigned long flags;
4406 	bool dolock;
4407 	int cpu;
4408 	int ret;
4409 
4410 	/* yes this is racy, but if you don't like the race, lock the buffer */
4411 	for_each_buffer_cpu(buffer, cpu) {
4412 		cpu_buffer = buffer->buffers[cpu];
4413 		local_irq_save(flags);
4414 		dolock = rb_reader_lock(cpu_buffer);
4415 		ret = rb_per_cpu_empty(cpu_buffer);
4416 		rb_reader_unlock(cpu_buffer, dolock);
4417 		local_irq_restore(flags);
4418 
4419 		if (!ret)
4420 			return false;
4421 	}
4422 
4423 	return true;
4424 }
4425 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4426 
4427 /**
4428  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4429  * @buffer: The ring buffer
4430  * @cpu: The CPU buffer to test
4431  */
4432 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4433 {
4434 	struct ring_buffer_per_cpu *cpu_buffer;
4435 	unsigned long flags;
4436 	bool dolock;
4437 	int ret;
4438 
4439 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4440 		return true;
4441 
4442 	cpu_buffer = buffer->buffers[cpu];
4443 	local_irq_save(flags);
4444 	dolock = rb_reader_lock(cpu_buffer);
4445 	ret = rb_per_cpu_empty(cpu_buffer);
4446 	rb_reader_unlock(cpu_buffer, dolock);
4447 	local_irq_restore(flags);
4448 
4449 	return ret;
4450 }
4451 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4452 
4453 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4454 /**
4455  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4456  * @buffer_a: One buffer to swap with
4457  * @buffer_b: The other buffer to swap with
4458  *
4459  * This function is useful for tracers that want to take a "snapshot"
4460  * of a CPU buffer and has another back up buffer lying around.
4461  * it is expected that the tracer handles the cpu buffer not being
4462  * used at the moment.
4463  */
4464 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4465 			 struct ring_buffer *buffer_b, int cpu)
4466 {
4467 	struct ring_buffer_per_cpu *cpu_buffer_a;
4468 	struct ring_buffer_per_cpu *cpu_buffer_b;
4469 	int ret = -EINVAL;
4470 
4471 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4472 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4473 		goto out;
4474 
4475 	cpu_buffer_a = buffer_a->buffers[cpu];
4476 	cpu_buffer_b = buffer_b->buffers[cpu];
4477 
4478 	/* At least make sure the two buffers are somewhat the same */
4479 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4480 		goto out;
4481 
4482 	ret = -EAGAIN;
4483 
4484 	if (atomic_read(&buffer_a->record_disabled))
4485 		goto out;
4486 
4487 	if (atomic_read(&buffer_b->record_disabled))
4488 		goto out;
4489 
4490 	if (atomic_read(&cpu_buffer_a->record_disabled))
4491 		goto out;
4492 
4493 	if (atomic_read(&cpu_buffer_b->record_disabled))
4494 		goto out;
4495 
4496 	/*
4497 	 * We can't do a synchronize_sched here because this
4498 	 * function can be called in atomic context.
4499 	 * Normally this will be called from the same CPU as cpu.
4500 	 * If not it's up to the caller to protect this.
4501 	 */
4502 	atomic_inc(&cpu_buffer_a->record_disabled);
4503 	atomic_inc(&cpu_buffer_b->record_disabled);
4504 
4505 	ret = -EBUSY;
4506 	if (local_read(&cpu_buffer_a->committing))
4507 		goto out_dec;
4508 	if (local_read(&cpu_buffer_b->committing))
4509 		goto out_dec;
4510 
4511 	buffer_a->buffers[cpu] = cpu_buffer_b;
4512 	buffer_b->buffers[cpu] = cpu_buffer_a;
4513 
4514 	cpu_buffer_b->buffer = buffer_a;
4515 	cpu_buffer_a->buffer = buffer_b;
4516 
4517 	ret = 0;
4518 
4519 out_dec:
4520 	atomic_dec(&cpu_buffer_a->record_disabled);
4521 	atomic_dec(&cpu_buffer_b->record_disabled);
4522 out:
4523 	return ret;
4524 }
4525 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4526 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4527 
4528 /**
4529  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4530  * @buffer: the buffer to allocate for.
4531  * @cpu: the cpu buffer to allocate.
4532  *
4533  * This function is used in conjunction with ring_buffer_read_page.
4534  * When reading a full page from the ring buffer, these functions
4535  * can be used to speed up the process. The calling function should
4536  * allocate a few pages first with this function. Then when it
4537  * needs to get pages from the ring buffer, it passes the result
4538  * of this function into ring_buffer_read_page, which will swap
4539  * the page that was allocated, with the read page of the buffer.
4540  *
4541  * Returns:
4542  *  The page allocated, or ERR_PTR
4543  */
4544 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4545 {
4546 	struct ring_buffer_per_cpu *cpu_buffer;
4547 	struct buffer_data_page *bpage = NULL;
4548 	unsigned long flags;
4549 	struct page *page;
4550 
4551 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4552 		return ERR_PTR(-ENODEV);
4553 
4554 	cpu_buffer = buffer->buffers[cpu];
4555 	local_irq_save(flags);
4556 	arch_spin_lock(&cpu_buffer->lock);
4557 
4558 	if (cpu_buffer->free_page) {
4559 		bpage = cpu_buffer->free_page;
4560 		cpu_buffer->free_page = NULL;
4561 	}
4562 
4563 	arch_spin_unlock(&cpu_buffer->lock);
4564 	local_irq_restore(flags);
4565 
4566 	if (bpage)
4567 		goto out;
4568 
4569 	page = alloc_pages_node(cpu_to_node(cpu),
4570 				GFP_KERNEL | __GFP_NORETRY, 0);
4571 	if (!page)
4572 		return ERR_PTR(-ENOMEM);
4573 
4574 	bpage = page_address(page);
4575 
4576  out:
4577 	rb_init_page(bpage);
4578 
4579 	return bpage;
4580 }
4581 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4582 
4583 /**
4584  * ring_buffer_free_read_page - free an allocated read page
4585  * @buffer: the buffer the page was allocate for
4586  * @cpu: the cpu buffer the page came from
4587  * @data: the page to free
4588  *
4589  * Free a page allocated from ring_buffer_alloc_read_page.
4590  */
4591 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4592 {
4593 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4594 	struct buffer_data_page *bpage = data;
4595 	struct page *page = virt_to_page(bpage);
4596 	unsigned long flags;
4597 
4598 	/* If the page is still in use someplace else, we can't reuse it */
4599 	if (page_ref_count(page) > 1)
4600 		goto out;
4601 
4602 	local_irq_save(flags);
4603 	arch_spin_lock(&cpu_buffer->lock);
4604 
4605 	if (!cpu_buffer->free_page) {
4606 		cpu_buffer->free_page = bpage;
4607 		bpage = NULL;
4608 	}
4609 
4610 	arch_spin_unlock(&cpu_buffer->lock);
4611 	local_irq_restore(flags);
4612 
4613  out:
4614 	free_page((unsigned long)bpage);
4615 }
4616 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4617 
4618 /**
4619  * ring_buffer_read_page - extract a page from the ring buffer
4620  * @buffer: buffer to extract from
4621  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4622  * @len: amount to extract
4623  * @cpu: the cpu of the buffer to extract
4624  * @full: should the extraction only happen when the page is full.
4625  *
4626  * This function will pull out a page from the ring buffer and consume it.
4627  * @data_page must be the address of the variable that was returned
4628  * from ring_buffer_alloc_read_page. This is because the page might be used
4629  * to swap with a page in the ring buffer.
4630  *
4631  * for example:
4632  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4633  *	if (IS_ERR(rpage))
4634  *		return PTR_ERR(rpage);
4635  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4636  *	if (ret >= 0)
4637  *		process_page(rpage, ret);
4638  *
4639  * When @full is set, the function will not return true unless
4640  * the writer is off the reader page.
4641  *
4642  * Note: it is up to the calling functions to handle sleeps and wakeups.
4643  *  The ring buffer can be used anywhere in the kernel and can not
4644  *  blindly call wake_up. The layer that uses the ring buffer must be
4645  *  responsible for that.
4646  *
4647  * Returns:
4648  *  >=0 if data has been transferred, returns the offset of consumed data.
4649  *  <0 if no data has been transferred.
4650  */
4651 int ring_buffer_read_page(struct ring_buffer *buffer,
4652 			  void **data_page, size_t len, int cpu, int full)
4653 {
4654 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4655 	struct ring_buffer_event *event;
4656 	struct buffer_data_page *bpage;
4657 	struct buffer_page *reader;
4658 	unsigned long missed_events;
4659 	unsigned long flags;
4660 	unsigned int commit;
4661 	unsigned int read;
4662 	u64 save_timestamp;
4663 	int ret = -1;
4664 
4665 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4666 		goto out;
4667 
4668 	/*
4669 	 * If len is not big enough to hold the page header, then
4670 	 * we can not copy anything.
4671 	 */
4672 	if (len <= BUF_PAGE_HDR_SIZE)
4673 		goto out;
4674 
4675 	len -= BUF_PAGE_HDR_SIZE;
4676 
4677 	if (!data_page)
4678 		goto out;
4679 
4680 	bpage = *data_page;
4681 	if (!bpage)
4682 		goto out;
4683 
4684 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4685 
4686 	reader = rb_get_reader_page(cpu_buffer);
4687 	if (!reader)
4688 		goto out_unlock;
4689 
4690 	event = rb_reader_event(cpu_buffer);
4691 
4692 	read = reader->read;
4693 	commit = rb_page_commit(reader);
4694 
4695 	/* Check if any events were dropped */
4696 	missed_events = cpu_buffer->lost_events;
4697 
4698 	/*
4699 	 * If this page has been partially read or
4700 	 * if len is not big enough to read the rest of the page or
4701 	 * a writer is still on the page, then
4702 	 * we must copy the data from the page to the buffer.
4703 	 * Otherwise, we can simply swap the page with the one passed in.
4704 	 */
4705 	if (read || (len < (commit - read)) ||
4706 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4707 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4708 		unsigned int rpos = read;
4709 		unsigned int pos = 0;
4710 		unsigned int size;
4711 
4712 		if (full)
4713 			goto out_unlock;
4714 
4715 		if (len > (commit - read))
4716 			len = (commit - read);
4717 
4718 		/* Always keep the time extend and data together */
4719 		size = rb_event_ts_length(event);
4720 
4721 		if (len < size)
4722 			goto out_unlock;
4723 
4724 		/* save the current timestamp, since the user will need it */
4725 		save_timestamp = cpu_buffer->read_stamp;
4726 
4727 		/* Need to copy one event at a time */
4728 		do {
4729 			/* We need the size of one event, because
4730 			 * rb_advance_reader only advances by one event,
4731 			 * whereas rb_event_ts_length may include the size of
4732 			 * one or two events.
4733 			 * We have already ensured there's enough space if this
4734 			 * is a time extend. */
4735 			size = rb_event_length(event);
4736 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4737 
4738 			len -= size;
4739 
4740 			rb_advance_reader(cpu_buffer);
4741 			rpos = reader->read;
4742 			pos += size;
4743 
4744 			if (rpos >= commit)
4745 				break;
4746 
4747 			event = rb_reader_event(cpu_buffer);
4748 			/* Always keep the time extend and data together */
4749 			size = rb_event_ts_length(event);
4750 		} while (len >= size);
4751 
4752 		/* update bpage */
4753 		local_set(&bpage->commit, pos);
4754 		bpage->time_stamp = save_timestamp;
4755 
4756 		/* we copied everything to the beginning */
4757 		read = 0;
4758 	} else {
4759 		/* update the entry counter */
4760 		cpu_buffer->read += rb_page_entries(reader);
4761 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4762 
4763 		/* swap the pages */
4764 		rb_init_page(bpage);
4765 		bpage = reader->page;
4766 		reader->page = *data_page;
4767 		local_set(&reader->write, 0);
4768 		local_set(&reader->entries, 0);
4769 		reader->read = 0;
4770 		*data_page = bpage;
4771 
4772 		/*
4773 		 * Use the real_end for the data size,
4774 		 * This gives us a chance to store the lost events
4775 		 * on the page.
4776 		 */
4777 		if (reader->real_end)
4778 			local_set(&bpage->commit, reader->real_end);
4779 	}
4780 	ret = read;
4781 
4782 	cpu_buffer->lost_events = 0;
4783 
4784 	commit = local_read(&bpage->commit);
4785 	/*
4786 	 * Set a flag in the commit field if we lost events
4787 	 */
4788 	if (missed_events) {
4789 		/* If there is room at the end of the page to save the
4790 		 * missed events, then record it there.
4791 		 */
4792 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4793 			memcpy(&bpage->data[commit], &missed_events,
4794 			       sizeof(missed_events));
4795 			local_add(RB_MISSED_STORED, &bpage->commit);
4796 			commit += sizeof(missed_events);
4797 		}
4798 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4799 	}
4800 
4801 	/*
4802 	 * This page may be off to user land. Zero it out here.
4803 	 */
4804 	if (commit < BUF_PAGE_SIZE)
4805 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4806 
4807  out_unlock:
4808 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4809 
4810  out:
4811 	return ret;
4812 }
4813 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4814 
4815 /*
4816  * We only allocate new buffers, never free them if the CPU goes down.
4817  * If we were to free the buffer, then the user would lose any trace that was in
4818  * the buffer.
4819  */
4820 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4821 {
4822 	struct ring_buffer *buffer;
4823 	long nr_pages_same;
4824 	int cpu_i;
4825 	unsigned long nr_pages;
4826 
4827 	buffer = container_of(node, struct ring_buffer, node);
4828 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4829 		return 0;
4830 
4831 	nr_pages = 0;
4832 	nr_pages_same = 1;
4833 	/* check if all cpu sizes are same */
4834 	for_each_buffer_cpu(buffer, cpu_i) {
4835 		/* fill in the size from first enabled cpu */
4836 		if (nr_pages == 0)
4837 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4838 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4839 			nr_pages_same = 0;
4840 			break;
4841 		}
4842 	}
4843 	/* allocate minimum pages, user can later expand it */
4844 	if (!nr_pages_same)
4845 		nr_pages = 2;
4846 	buffer->buffers[cpu] =
4847 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4848 	if (!buffer->buffers[cpu]) {
4849 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4850 		     cpu);
4851 		return -ENOMEM;
4852 	}
4853 	smp_wmb();
4854 	cpumask_set_cpu(cpu, buffer->cpumask);
4855 	return 0;
4856 }
4857 
4858 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4859 /*
4860  * This is a basic integrity check of the ring buffer.
4861  * Late in the boot cycle this test will run when configured in.
4862  * It will kick off a thread per CPU that will go into a loop
4863  * writing to the per cpu ring buffer various sizes of data.
4864  * Some of the data will be large items, some small.
4865  *
4866  * Another thread is created that goes into a spin, sending out
4867  * IPIs to the other CPUs to also write into the ring buffer.
4868  * this is to test the nesting ability of the buffer.
4869  *
4870  * Basic stats are recorded and reported. If something in the
4871  * ring buffer should happen that's not expected, a big warning
4872  * is displayed and all ring buffers are disabled.
4873  */
4874 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4875 
4876 struct rb_test_data {
4877 	struct ring_buffer	*buffer;
4878 	unsigned long		events;
4879 	unsigned long		bytes_written;
4880 	unsigned long		bytes_alloc;
4881 	unsigned long		bytes_dropped;
4882 	unsigned long		events_nested;
4883 	unsigned long		bytes_written_nested;
4884 	unsigned long		bytes_alloc_nested;
4885 	unsigned long		bytes_dropped_nested;
4886 	int			min_size_nested;
4887 	int			max_size_nested;
4888 	int			max_size;
4889 	int			min_size;
4890 	int			cpu;
4891 	int			cnt;
4892 };
4893 
4894 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4895 
4896 /* 1 meg per cpu */
4897 #define RB_TEST_BUFFER_SIZE	1048576
4898 
4899 static char rb_string[] __initdata =
4900 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4901 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4902 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4903 
4904 static bool rb_test_started __initdata;
4905 
4906 struct rb_item {
4907 	int size;
4908 	char str[];
4909 };
4910 
4911 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4912 {
4913 	struct ring_buffer_event *event;
4914 	struct rb_item *item;
4915 	bool started;
4916 	int event_len;
4917 	int size;
4918 	int len;
4919 	int cnt;
4920 
4921 	/* Have nested writes different that what is written */
4922 	cnt = data->cnt + (nested ? 27 : 0);
4923 
4924 	/* Multiply cnt by ~e, to make some unique increment */
4925 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4926 
4927 	len = size + sizeof(struct rb_item);
4928 
4929 	started = rb_test_started;
4930 	/* read rb_test_started before checking buffer enabled */
4931 	smp_rmb();
4932 
4933 	event = ring_buffer_lock_reserve(data->buffer, len);
4934 	if (!event) {
4935 		/* Ignore dropped events before test starts. */
4936 		if (started) {
4937 			if (nested)
4938 				data->bytes_dropped += len;
4939 			else
4940 				data->bytes_dropped_nested += len;
4941 		}
4942 		return len;
4943 	}
4944 
4945 	event_len = ring_buffer_event_length(event);
4946 
4947 	if (RB_WARN_ON(data->buffer, event_len < len))
4948 		goto out;
4949 
4950 	item = ring_buffer_event_data(event);
4951 	item->size = size;
4952 	memcpy(item->str, rb_string, size);
4953 
4954 	if (nested) {
4955 		data->bytes_alloc_nested += event_len;
4956 		data->bytes_written_nested += len;
4957 		data->events_nested++;
4958 		if (!data->min_size_nested || len < data->min_size_nested)
4959 			data->min_size_nested = len;
4960 		if (len > data->max_size_nested)
4961 			data->max_size_nested = len;
4962 	} else {
4963 		data->bytes_alloc += event_len;
4964 		data->bytes_written += len;
4965 		data->events++;
4966 		if (!data->min_size || len < data->min_size)
4967 			data->max_size = len;
4968 		if (len > data->max_size)
4969 			data->max_size = len;
4970 	}
4971 
4972  out:
4973 	ring_buffer_unlock_commit(data->buffer, event);
4974 
4975 	return 0;
4976 }
4977 
4978 static __init int rb_test(void *arg)
4979 {
4980 	struct rb_test_data *data = arg;
4981 
4982 	while (!kthread_should_stop()) {
4983 		rb_write_something(data, false);
4984 		data->cnt++;
4985 
4986 		set_current_state(TASK_INTERRUPTIBLE);
4987 		/* Now sleep between a min of 100-300us and a max of 1ms */
4988 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4989 	}
4990 
4991 	return 0;
4992 }
4993 
4994 static __init void rb_ipi(void *ignore)
4995 {
4996 	struct rb_test_data *data;
4997 	int cpu = smp_processor_id();
4998 
4999 	data = &rb_data[cpu];
5000 	rb_write_something(data, true);
5001 }
5002 
5003 static __init int rb_hammer_test(void *arg)
5004 {
5005 	while (!kthread_should_stop()) {
5006 
5007 		/* Send an IPI to all cpus to write data! */
5008 		smp_call_function(rb_ipi, NULL, 1);
5009 		/* No sleep, but for non preempt, let others run */
5010 		schedule();
5011 	}
5012 
5013 	return 0;
5014 }
5015 
5016 static __init int test_ringbuffer(void)
5017 {
5018 	struct task_struct *rb_hammer;
5019 	struct ring_buffer *buffer;
5020 	int cpu;
5021 	int ret = 0;
5022 
5023 	pr_info("Running ring buffer tests...\n");
5024 
5025 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5026 	if (WARN_ON(!buffer))
5027 		return 0;
5028 
5029 	/* Disable buffer so that threads can't write to it yet */
5030 	ring_buffer_record_off(buffer);
5031 
5032 	for_each_online_cpu(cpu) {
5033 		rb_data[cpu].buffer = buffer;
5034 		rb_data[cpu].cpu = cpu;
5035 		rb_data[cpu].cnt = cpu;
5036 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5037 						 "rbtester/%d", cpu);
5038 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5039 			pr_cont("FAILED\n");
5040 			ret = PTR_ERR(rb_threads[cpu]);
5041 			goto out_free;
5042 		}
5043 
5044 		kthread_bind(rb_threads[cpu], cpu);
5045  		wake_up_process(rb_threads[cpu]);
5046 	}
5047 
5048 	/* Now create the rb hammer! */
5049 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5050 	if (WARN_ON(IS_ERR(rb_hammer))) {
5051 		pr_cont("FAILED\n");
5052 		ret = PTR_ERR(rb_hammer);
5053 		goto out_free;
5054 	}
5055 
5056 	ring_buffer_record_on(buffer);
5057 	/*
5058 	 * Show buffer is enabled before setting rb_test_started.
5059 	 * Yes there's a small race window where events could be
5060 	 * dropped and the thread wont catch it. But when a ring
5061 	 * buffer gets enabled, there will always be some kind of
5062 	 * delay before other CPUs see it. Thus, we don't care about
5063 	 * those dropped events. We care about events dropped after
5064 	 * the threads see that the buffer is active.
5065 	 */
5066 	smp_wmb();
5067 	rb_test_started = true;
5068 
5069 	set_current_state(TASK_INTERRUPTIBLE);
5070 	/* Just run for 10 seconds */;
5071 	schedule_timeout(10 * HZ);
5072 
5073 	kthread_stop(rb_hammer);
5074 
5075  out_free:
5076 	for_each_online_cpu(cpu) {
5077 		if (!rb_threads[cpu])
5078 			break;
5079 		kthread_stop(rb_threads[cpu]);
5080 	}
5081 	if (ret) {
5082 		ring_buffer_free(buffer);
5083 		return ret;
5084 	}
5085 
5086 	/* Report! */
5087 	pr_info("finished\n");
5088 	for_each_online_cpu(cpu) {
5089 		struct ring_buffer_event *event;
5090 		struct rb_test_data *data = &rb_data[cpu];
5091 		struct rb_item *item;
5092 		unsigned long total_events;
5093 		unsigned long total_dropped;
5094 		unsigned long total_written;
5095 		unsigned long total_alloc;
5096 		unsigned long total_read = 0;
5097 		unsigned long total_size = 0;
5098 		unsigned long total_len = 0;
5099 		unsigned long total_lost = 0;
5100 		unsigned long lost;
5101 		int big_event_size;
5102 		int small_event_size;
5103 
5104 		ret = -1;
5105 
5106 		total_events = data->events + data->events_nested;
5107 		total_written = data->bytes_written + data->bytes_written_nested;
5108 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5109 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5110 
5111 		big_event_size = data->max_size + data->max_size_nested;
5112 		small_event_size = data->min_size + data->min_size_nested;
5113 
5114 		pr_info("CPU %d:\n", cpu);
5115 		pr_info("              events:    %ld\n", total_events);
5116 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5117 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5118 		pr_info("       written bytes:    %ld\n", total_written);
5119 		pr_info("       biggest event:    %d\n", big_event_size);
5120 		pr_info("      smallest event:    %d\n", small_event_size);
5121 
5122 		if (RB_WARN_ON(buffer, total_dropped))
5123 			break;
5124 
5125 		ret = 0;
5126 
5127 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5128 			total_lost += lost;
5129 			item = ring_buffer_event_data(event);
5130 			total_len += ring_buffer_event_length(event);
5131 			total_size += item->size + sizeof(struct rb_item);
5132 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5133 				pr_info("FAILED!\n");
5134 				pr_info("buffer had: %.*s\n", item->size, item->str);
5135 				pr_info("expected:   %.*s\n", item->size, rb_string);
5136 				RB_WARN_ON(buffer, 1);
5137 				ret = -1;
5138 				break;
5139 			}
5140 			total_read++;
5141 		}
5142 		if (ret)
5143 			break;
5144 
5145 		ret = -1;
5146 
5147 		pr_info("         read events:   %ld\n", total_read);
5148 		pr_info("         lost events:   %ld\n", total_lost);
5149 		pr_info("        total events:   %ld\n", total_lost + total_read);
5150 		pr_info("  recorded len bytes:   %ld\n", total_len);
5151 		pr_info(" recorded size bytes:   %ld\n", total_size);
5152 		if (total_lost)
5153 			pr_info(" With dropped events, record len and size may not match\n"
5154 				" alloced and written from above\n");
5155 		if (!total_lost) {
5156 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5157 				       total_size != total_written))
5158 				break;
5159 		}
5160 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5161 			break;
5162 
5163 		ret = 0;
5164 	}
5165 	if (!ret)
5166 		pr_info("Ring buffer PASSED!\n");
5167 
5168 	ring_buffer_free(buffer);
5169 	return 0;
5170 }
5171 
5172 late_initcall(test_ringbuffer);
5173 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5174