1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/uaccess.h> 15 #include <linux/hardirq.h> 16 #include <linux/kthread.h> /* for self test */ 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/oom.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 trace_seq_puts(s, "# compressed entry header\n"); 38 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 39 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 40 trace_seq_puts(s, "\tarray : 32 bits\n"); 41 trace_seq_putc(s, '\n'); 42 trace_seq_printf(s, "\tpadding : type == %d\n", 43 RINGBUF_TYPE_PADDING); 44 trace_seq_printf(s, "\ttime_extend : type == %d\n", 45 RINGBUF_TYPE_TIME_EXTEND); 46 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 47 RINGBUF_TYPE_TIME_STAMP); 48 trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return !trace_seq_has_overflowed(s); 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* Used for individual buffers (after the counter) */ 123 #define RB_BUFFER_OFF (1 << 20) 124 125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 126 127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 128 #define RB_ALIGNMENT 4U 129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 131 132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 133 # define RB_FORCE_8BYTE_ALIGNMENT 0 134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 135 #else 136 # define RB_FORCE_8BYTE_ALIGNMENT 1 137 # define RB_ARCH_ALIGNMENT 8U 138 #endif 139 140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 141 142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 144 145 enum { 146 RB_LEN_TIME_EXTEND = 8, 147 RB_LEN_TIME_STAMP = 8, 148 }; 149 150 #define skip_time_extend(event) \ 151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 152 153 #define extended_time(event) \ 154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 155 156 static inline int rb_null_event(struct ring_buffer_event *event) 157 { 158 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 159 } 160 161 static void rb_event_set_padding(struct ring_buffer_event *event) 162 { 163 /* padding has a NULL time_delta */ 164 event->type_len = RINGBUF_TYPE_PADDING; 165 event->time_delta = 0; 166 } 167 168 static unsigned 169 rb_event_data_length(struct ring_buffer_event *event) 170 { 171 unsigned length; 172 173 if (event->type_len) 174 length = event->type_len * RB_ALIGNMENT; 175 else 176 length = event->array[0]; 177 return length + RB_EVNT_HDR_SIZE; 178 } 179 180 /* 181 * Return the length of the given event. Will return 182 * the length of the time extend if the event is a 183 * time extend. 184 */ 185 static inline unsigned 186 rb_event_length(struct ring_buffer_event *event) 187 { 188 switch (event->type_len) { 189 case RINGBUF_TYPE_PADDING: 190 if (rb_null_event(event)) 191 /* undefined */ 192 return -1; 193 return event->array[0] + RB_EVNT_HDR_SIZE; 194 195 case RINGBUF_TYPE_TIME_EXTEND: 196 return RB_LEN_TIME_EXTEND; 197 198 case RINGBUF_TYPE_TIME_STAMP: 199 return RB_LEN_TIME_STAMP; 200 201 case RINGBUF_TYPE_DATA: 202 return rb_event_data_length(event); 203 default: 204 BUG(); 205 } 206 /* not hit */ 207 return 0; 208 } 209 210 /* 211 * Return total length of time extend and data, 212 * or just the event length for all other events. 213 */ 214 static inline unsigned 215 rb_event_ts_length(struct ring_buffer_event *event) 216 { 217 unsigned len = 0; 218 219 if (extended_time(event)) { 220 /* time extends include the data event after it */ 221 len = RB_LEN_TIME_EXTEND; 222 event = skip_time_extend(event); 223 } 224 return len + rb_event_length(event); 225 } 226 227 /** 228 * ring_buffer_event_length - return the length of the event 229 * @event: the event to get the length of 230 * 231 * Returns the size of the data load of a data event. 232 * If the event is something other than a data event, it 233 * returns the size of the event itself. With the exception 234 * of a TIME EXTEND, where it still returns the size of the 235 * data load of the data event after it. 236 */ 237 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 238 { 239 unsigned length; 240 241 if (extended_time(event)) 242 event = skip_time_extend(event); 243 244 length = rb_event_length(event); 245 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 246 return length; 247 length -= RB_EVNT_HDR_SIZE; 248 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 249 length -= sizeof(event->array[0]); 250 return length; 251 } 252 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 253 254 /* inline for ring buffer fast paths */ 255 static __always_inline void * 256 rb_event_data(struct ring_buffer_event *event) 257 { 258 if (extended_time(event)) 259 event = skip_time_extend(event); 260 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 261 /* If length is in len field, then array[0] has the data */ 262 if (event->type_len) 263 return (void *)&event->array[0]; 264 /* Otherwise length is in array[0] and array[1] has the data */ 265 return (void *)&event->array[1]; 266 } 267 268 /** 269 * ring_buffer_event_data - return the data of the event 270 * @event: the event to get the data from 271 */ 272 void *ring_buffer_event_data(struct ring_buffer_event *event) 273 { 274 return rb_event_data(event); 275 } 276 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 277 278 #define for_each_buffer_cpu(buffer, cpu) \ 279 for_each_cpu(cpu, buffer->cpumask) 280 281 #define TS_SHIFT 27 282 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 283 #define TS_DELTA_TEST (~TS_MASK) 284 285 /** 286 * ring_buffer_event_time_stamp - return the event's extended timestamp 287 * @event: the event to get the timestamp of 288 * 289 * Returns the extended timestamp associated with a data event. 290 * An extended time_stamp is a 64-bit timestamp represented 291 * internally in a special way that makes the best use of space 292 * contained within a ring buffer event. This function decodes 293 * it and maps it to a straight u64 value. 294 */ 295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 296 { 297 u64 ts; 298 299 ts = event->array[0]; 300 ts <<= TS_SHIFT; 301 ts += event->time_delta; 302 303 return ts; 304 } 305 306 /* Flag when events were overwritten */ 307 #define RB_MISSED_EVENTS (1 << 31) 308 /* Missed count stored at end */ 309 #define RB_MISSED_STORED (1 << 30) 310 311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED) 312 313 struct buffer_data_page { 314 u64 time_stamp; /* page time stamp */ 315 local_t commit; /* write committed index */ 316 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 317 }; 318 319 /* 320 * Note, the buffer_page list must be first. The buffer pages 321 * are allocated in cache lines, which means that each buffer 322 * page will be at the beginning of a cache line, and thus 323 * the least significant bits will be zero. We use this to 324 * add flags in the list struct pointers, to make the ring buffer 325 * lockless. 326 */ 327 struct buffer_page { 328 struct list_head list; /* list of buffer pages */ 329 local_t write; /* index for next write */ 330 unsigned read; /* index for next read */ 331 local_t entries; /* entries on this page */ 332 unsigned long real_end; /* real end of data */ 333 struct buffer_data_page *page; /* Actual data page */ 334 }; 335 336 /* 337 * The buffer page counters, write and entries, must be reset 338 * atomically when crossing page boundaries. To synchronize this 339 * update, two counters are inserted into the number. One is 340 * the actual counter for the write position or count on the page. 341 * 342 * The other is a counter of updaters. Before an update happens 343 * the update partition of the counter is incremented. This will 344 * allow the updater to update the counter atomically. 345 * 346 * The counter is 20 bits, and the state data is 12. 347 */ 348 #define RB_WRITE_MASK 0xfffff 349 #define RB_WRITE_INTCNT (1 << 20) 350 351 static void rb_init_page(struct buffer_data_page *bpage) 352 { 353 local_set(&bpage->commit, 0); 354 } 355 356 /** 357 * ring_buffer_page_len - the size of data on the page. 358 * @page: The page to read 359 * 360 * Returns the amount of data on the page, including buffer page header. 361 */ 362 size_t ring_buffer_page_len(void *page) 363 { 364 struct buffer_data_page *bpage = page; 365 366 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS) 367 + BUF_PAGE_HDR_SIZE; 368 } 369 370 /* 371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 372 * this issue out. 373 */ 374 static void free_buffer_page(struct buffer_page *bpage) 375 { 376 free_page((unsigned long)bpage->page); 377 kfree(bpage); 378 } 379 380 /* 381 * We need to fit the time_stamp delta into 27 bits. 382 */ 383 static inline int test_time_stamp(u64 delta) 384 { 385 if (delta & TS_DELTA_TEST) 386 return 1; 387 return 0; 388 } 389 390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 391 392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 394 395 int ring_buffer_print_page_header(struct trace_seq *s) 396 { 397 struct buffer_data_page field; 398 399 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 400 "offset:0;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)sizeof(field.time_stamp), 402 (unsigned int)is_signed_type(u64)); 403 404 trace_seq_printf(s, "\tfield: local_t commit;\t" 405 "offset:%u;\tsize:%u;\tsigned:%u;\n", 406 (unsigned int)offsetof(typeof(field), commit), 407 (unsigned int)sizeof(field.commit), 408 (unsigned int)is_signed_type(long)); 409 410 trace_seq_printf(s, "\tfield: int overwrite;\t" 411 "offset:%u;\tsize:%u;\tsigned:%u;\n", 412 (unsigned int)offsetof(typeof(field), commit), 413 1, 414 (unsigned int)is_signed_type(long)); 415 416 trace_seq_printf(s, "\tfield: char data;\t" 417 "offset:%u;\tsize:%u;\tsigned:%u;\n", 418 (unsigned int)offsetof(typeof(field), data), 419 (unsigned int)BUF_PAGE_SIZE, 420 (unsigned int)is_signed_type(char)); 421 422 return !trace_seq_has_overflowed(s); 423 } 424 425 struct rb_irq_work { 426 struct irq_work work; 427 wait_queue_head_t waiters; 428 wait_queue_head_t full_waiters; 429 bool waiters_pending; 430 bool full_waiters_pending; 431 bool wakeup_full; 432 }; 433 434 /* 435 * Structure to hold event state and handle nested events. 436 */ 437 struct rb_event_info { 438 u64 ts; 439 u64 delta; 440 unsigned long length; 441 struct buffer_page *tail_page; 442 int add_timestamp; 443 }; 444 445 /* 446 * Used for which event context the event is in. 447 * NMI = 0 448 * IRQ = 1 449 * SOFTIRQ = 2 450 * NORMAL = 3 451 * 452 * See trace_recursive_lock() comment below for more details. 453 */ 454 enum { 455 RB_CTX_NMI, 456 RB_CTX_IRQ, 457 RB_CTX_SOFTIRQ, 458 RB_CTX_NORMAL, 459 RB_CTX_MAX 460 }; 461 462 /* 463 * head_page == tail_page && head == tail then buffer is empty. 464 */ 465 struct ring_buffer_per_cpu { 466 int cpu; 467 atomic_t record_disabled; 468 struct ring_buffer *buffer; 469 raw_spinlock_t reader_lock; /* serialize readers */ 470 arch_spinlock_t lock; 471 struct lock_class_key lock_key; 472 struct buffer_data_page *free_page; 473 unsigned long nr_pages; 474 unsigned int current_context; 475 struct list_head *pages; 476 struct buffer_page *head_page; /* read from head */ 477 struct buffer_page *tail_page; /* write to tail */ 478 struct buffer_page *commit_page; /* committed pages */ 479 struct buffer_page *reader_page; 480 unsigned long lost_events; 481 unsigned long last_overrun; 482 unsigned long nest; 483 local_t entries_bytes; 484 local_t entries; 485 local_t overrun; 486 local_t commit_overrun; 487 local_t dropped_events; 488 local_t committing; 489 local_t commits; 490 unsigned long read; 491 unsigned long read_bytes; 492 u64 write_stamp; 493 u64 read_stamp; 494 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 495 long nr_pages_to_update; 496 struct list_head new_pages; /* new pages to add */ 497 struct work_struct update_pages_work; 498 struct completion update_done; 499 500 struct rb_irq_work irq_work; 501 }; 502 503 struct ring_buffer { 504 unsigned flags; 505 int cpus; 506 atomic_t record_disabled; 507 atomic_t resize_disabled; 508 cpumask_var_t cpumask; 509 510 struct lock_class_key *reader_lock_key; 511 512 struct mutex mutex; 513 514 struct ring_buffer_per_cpu **buffers; 515 516 struct hlist_node node; 517 u64 (*clock)(void); 518 519 struct rb_irq_work irq_work; 520 bool time_stamp_abs; 521 }; 522 523 struct ring_buffer_iter { 524 struct ring_buffer_per_cpu *cpu_buffer; 525 unsigned long head; 526 struct buffer_page *head_page; 527 struct buffer_page *cache_reader_page; 528 unsigned long cache_read; 529 u64 read_stamp; 530 }; 531 532 /* 533 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 534 * 535 * Schedules a delayed work to wake up any task that is blocked on the 536 * ring buffer waiters queue. 537 */ 538 static void rb_wake_up_waiters(struct irq_work *work) 539 { 540 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 541 542 wake_up_all(&rbwork->waiters); 543 if (rbwork->wakeup_full) { 544 rbwork->wakeup_full = false; 545 wake_up_all(&rbwork->full_waiters); 546 } 547 } 548 549 /** 550 * ring_buffer_wait - wait for input to the ring buffer 551 * @buffer: buffer to wait on 552 * @cpu: the cpu buffer to wait on 553 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 554 * 555 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 556 * as data is added to any of the @buffer's cpu buffers. Otherwise 557 * it will wait for data to be added to a specific cpu buffer. 558 */ 559 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 560 { 561 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 562 DEFINE_WAIT(wait); 563 struct rb_irq_work *work; 564 int ret = 0; 565 566 /* 567 * Depending on what the caller is waiting for, either any 568 * data in any cpu buffer, or a specific buffer, put the 569 * caller on the appropriate wait queue. 570 */ 571 if (cpu == RING_BUFFER_ALL_CPUS) { 572 work = &buffer->irq_work; 573 /* Full only makes sense on per cpu reads */ 574 full = false; 575 } else { 576 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 577 return -ENODEV; 578 cpu_buffer = buffer->buffers[cpu]; 579 work = &cpu_buffer->irq_work; 580 } 581 582 583 while (true) { 584 if (full) 585 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 586 else 587 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 588 589 /* 590 * The events can happen in critical sections where 591 * checking a work queue can cause deadlocks. 592 * After adding a task to the queue, this flag is set 593 * only to notify events to try to wake up the queue 594 * using irq_work. 595 * 596 * We don't clear it even if the buffer is no longer 597 * empty. The flag only causes the next event to run 598 * irq_work to do the work queue wake up. The worse 599 * that can happen if we race with !trace_empty() is that 600 * an event will cause an irq_work to try to wake up 601 * an empty queue. 602 * 603 * There's no reason to protect this flag either, as 604 * the work queue and irq_work logic will do the necessary 605 * synchronization for the wake ups. The only thing 606 * that is necessary is that the wake up happens after 607 * a task has been queued. It's OK for spurious wake ups. 608 */ 609 if (full) 610 work->full_waiters_pending = true; 611 else 612 work->waiters_pending = true; 613 614 if (signal_pending(current)) { 615 ret = -EINTR; 616 break; 617 } 618 619 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 620 break; 621 622 if (cpu != RING_BUFFER_ALL_CPUS && 623 !ring_buffer_empty_cpu(buffer, cpu)) { 624 unsigned long flags; 625 bool pagebusy; 626 627 if (!full) 628 break; 629 630 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 631 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 632 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 633 634 if (!pagebusy) 635 break; 636 } 637 638 schedule(); 639 } 640 641 if (full) 642 finish_wait(&work->full_waiters, &wait); 643 else 644 finish_wait(&work->waiters, &wait); 645 646 return ret; 647 } 648 649 /** 650 * ring_buffer_poll_wait - poll on buffer input 651 * @buffer: buffer to wait on 652 * @cpu: the cpu buffer to wait on 653 * @filp: the file descriptor 654 * @poll_table: The poll descriptor 655 * 656 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 657 * as data is added to any of the @buffer's cpu buffers. Otherwise 658 * it will wait for data to be added to a specific cpu buffer. 659 * 660 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 661 * zero otherwise. 662 */ 663 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 664 struct file *filp, poll_table *poll_table) 665 { 666 struct ring_buffer_per_cpu *cpu_buffer; 667 struct rb_irq_work *work; 668 669 if (cpu == RING_BUFFER_ALL_CPUS) 670 work = &buffer->irq_work; 671 else { 672 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 673 return -EINVAL; 674 675 cpu_buffer = buffer->buffers[cpu]; 676 work = &cpu_buffer->irq_work; 677 } 678 679 poll_wait(filp, &work->waiters, poll_table); 680 work->waiters_pending = true; 681 /* 682 * There's a tight race between setting the waiters_pending and 683 * checking if the ring buffer is empty. Once the waiters_pending bit 684 * is set, the next event will wake the task up, but we can get stuck 685 * if there's only a single event in. 686 * 687 * FIXME: Ideally, we need a memory barrier on the writer side as well, 688 * but adding a memory barrier to all events will cause too much of a 689 * performance hit in the fast path. We only need a memory barrier when 690 * the buffer goes from empty to having content. But as this race is 691 * extremely small, and it's not a problem if another event comes in, we 692 * will fix it later. 693 */ 694 smp_mb(); 695 696 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 697 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 698 return EPOLLIN | EPOLLRDNORM; 699 return 0; 700 } 701 702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 703 #define RB_WARN_ON(b, cond) \ 704 ({ \ 705 int _____ret = unlikely(cond); \ 706 if (_____ret) { \ 707 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 708 struct ring_buffer_per_cpu *__b = \ 709 (void *)b; \ 710 atomic_inc(&__b->buffer->record_disabled); \ 711 } else \ 712 atomic_inc(&b->record_disabled); \ 713 WARN_ON(1); \ 714 } \ 715 _____ret; \ 716 }) 717 718 /* Up this if you want to test the TIME_EXTENTS and normalization */ 719 #define DEBUG_SHIFT 0 720 721 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 722 { 723 /* shift to debug/test normalization and TIME_EXTENTS */ 724 return buffer->clock() << DEBUG_SHIFT; 725 } 726 727 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 728 { 729 u64 time; 730 731 preempt_disable_notrace(); 732 time = rb_time_stamp(buffer); 733 preempt_enable_no_resched_notrace(); 734 735 return time; 736 } 737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 738 739 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 740 int cpu, u64 *ts) 741 { 742 /* Just stupid testing the normalize function and deltas */ 743 *ts >>= DEBUG_SHIFT; 744 } 745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 746 747 /* 748 * Making the ring buffer lockless makes things tricky. 749 * Although writes only happen on the CPU that they are on, 750 * and they only need to worry about interrupts. Reads can 751 * happen on any CPU. 752 * 753 * The reader page is always off the ring buffer, but when the 754 * reader finishes with a page, it needs to swap its page with 755 * a new one from the buffer. The reader needs to take from 756 * the head (writes go to the tail). But if a writer is in overwrite 757 * mode and wraps, it must push the head page forward. 758 * 759 * Here lies the problem. 760 * 761 * The reader must be careful to replace only the head page, and 762 * not another one. As described at the top of the file in the 763 * ASCII art, the reader sets its old page to point to the next 764 * page after head. It then sets the page after head to point to 765 * the old reader page. But if the writer moves the head page 766 * during this operation, the reader could end up with the tail. 767 * 768 * We use cmpxchg to help prevent this race. We also do something 769 * special with the page before head. We set the LSB to 1. 770 * 771 * When the writer must push the page forward, it will clear the 772 * bit that points to the head page, move the head, and then set 773 * the bit that points to the new head page. 774 * 775 * We also don't want an interrupt coming in and moving the head 776 * page on another writer. Thus we use the second LSB to catch 777 * that too. Thus: 778 * 779 * head->list->prev->next bit 1 bit 0 780 * ------- ------- 781 * Normal page 0 0 782 * Points to head page 0 1 783 * New head page 1 0 784 * 785 * Note we can not trust the prev pointer of the head page, because: 786 * 787 * +----+ +-----+ +-----+ 788 * | |------>| T |---X--->| N | 789 * | |<------| | | | 790 * +----+ +-----+ +-----+ 791 * ^ ^ | 792 * | +-----+ | | 793 * +----------| R |----------+ | 794 * | |<-----------+ 795 * +-----+ 796 * 797 * Key: ---X--> HEAD flag set in pointer 798 * T Tail page 799 * R Reader page 800 * N Next page 801 * 802 * (see __rb_reserve_next() to see where this happens) 803 * 804 * What the above shows is that the reader just swapped out 805 * the reader page with a page in the buffer, but before it 806 * could make the new header point back to the new page added 807 * it was preempted by a writer. The writer moved forward onto 808 * the new page added by the reader and is about to move forward 809 * again. 810 * 811 * You can see, it is legitimate for the previous pointer of 812 * the head (or any page) not to point back to itself. But only 813 * temporarily. 814 */ 815 816 #define RB_PAGE_NORMAL 0UL 817 #define RB_PAGE_HEAD 1UL 818 #define RB_PAGE_UPDATE 2UL 819 820 821 #define RB_FLAG_MASK 3UL 822 823 /* PAGE_MOVED is not part of the mask */ 824 #define RB_PAGE_MOVED 4UL 825 826 /* 827 * rb_list_head - remove any bit 828 */ 829 static struct list_head *rb_list_head(struct list_head *list) 830 { 831 unsigned long val = (unsigned long)list; 832 833 return (struct list_head *)(val & ~RB_FLAG_MASK); 834 } 835 836 /* 837 * rb_is_head_page - test if the given page is the head page 838 * 839 * Because the reader may move the head_page pointer, we can 840 * not trust what the head page is (it may be pointing to 841 * the reader page). But if the next page is a header page, 842 * its flags will be non zero. 843 */ 844 static inline int 845 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 846 struct buffer_page *page, struct list_head *list) 847 { 848 unsigned long val; 849 850 val = (unsigned long)list->next; 851 852 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 853 return RB_PAGE_MOVED; 854 855 return val & RB_FLAG_MASK; 856 } 857 858 /* 859 * rb_is_reader_page 860 * 861 * The unique thing about the reader page, is that, if the 862 * writer is ever on it, the previous pointer never points 863 * back to the reader page. 864 */ 865 static bool rb_is_reader_page(struct buffer_page *page) 866 { 867 struct list_head *list = page->list.prev; 868 869 return rb_list_head(list->next) != &page->list; 870 } 871 872 /* 873 * rb_set_list_to_head - set a list_head to be pointing to head. 874 */ 875 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 876 struct list_head *list) 877 { 878 unsigned long *ptr; 879 880 ptr = (unsigned long *)&list->next; 881 *ptr |= RB_PAGE_HEAD; 882 *ptr &= ~RB_PAGE_UPDATE; 883 } 884 885 /* 886 * rb_head_page_activate - sets up head page 887 */ 888 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 889 { 890 struct buffer_page *head; 891 892 head = cpu_buffer->head_page; 893 if (!head) 894 return; 895 896 /* 897 * Set the previous list pointer to have the HEAD flag. 898 */ 899 rb_set_list_to_head(cpu_buffer, head->list.prev); 900 } 901 902 static void rb_list_head_clear(struct list_head *list) 903 { 904 unsigned long *ptr = (unsigned long *)&list->next; 905 906 *ptr &= ~RB_FLAG_MASK; 907 } 908 909 /* 910 * rb_head_page_deactivate - clears head page ptr (for free list) 911 */ 912 static void 913 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 914 { 915 struct list_head *hd; 916 917 /* Go through the whole list and clear any pointers found. */ 918 rb_list_head_clear(cpu_buffer->pages); 919 920 list_for_each(hd, cpu_buffer->pages) 921 rb_list_head_clear(hd); 922 } 923 924 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 925 struct buffer_page *head, 926 struct buffer_page *prev, 927 int old_flag, int new_flag) 928 { 929 struct list_head *list; 930 unsigned long val = (unsigned long)&head->list; 931 unsigned long ret; 932 933 list = &prev->list; 934 935 val &= ~RB_FLAG_MASK; 936 937 ret = cmpxchg((unsigned long *)&list->next, 938 val | old_flag, val | new_flag); 939 940 /* check if the reader took the page */ 941 if ((ret & ~RB_FLAG_MASK) != val) 942 return RB_PAGE_MOVED; 943 944 return ret & RB_FLAG_MASK; 945 } 946 947 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 948 struct buffer_page *head, 949 struct buffer_page *prev, 950 int old_flag) 951 { 952 return rb_head_page_set(cpu_buffer, head, prev, 953 old_flag, RB_PAGE_UPDATE); 954 } 955 956 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 957 struct buffer_page *head, 958 struct buffer_page *prev, 959 int old_flag) 960 { 961 return rb_head_page_set(cpu_buffer, head, prev, 962 old_flag, RB_PAGE_HEAD); 963 } 964 965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 966 struct buffer_page *head, 967 struct buffer_page *prev, 968 int old_flag) 969 { 970 return rb_head_page_set(cpu_buffer, head, prev, 971 old_flag, RB_PAGE_NORMAL); 972 } 973 974 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 975 struct buffer_page **bpage) 976 { 977 struct list_head *p = rb_list_head((*bpage)->list.next); 978 979 *bpage = list_entry(p, struct buffer_page, list); 980 } 981 982 static struct buffer_page * 983 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 984 { 985 struct buffer_page *head; 986 struct buffer_page *page; 987 struct list_head *list; 988 int i; 989 990 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 991 return NULL; 992 993 /* sanity check */ 994 list = cpu_buffer->pages; 995 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 996 return NULL; 997 998 page = head = cpu_buffer->head_page; 999 /* 1000 * It is possible that the writer moves the header behind 1001 * where we started, and we miss in one loop. 1002 * A second loop should grab the header, but we'll do 1003 * three loops just because I'm paranoid. 1004 */ 1005 for (i = 0; i < 3; i++) { 1006 do { 1007 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1008 cpu_buffer->head_page = page; 1009 return page; 1010 } 1011 rb_inc_page(cpu_buffer, &page); 1012 } while (page != head); 1013 } 1014 1015 RB_WARN_ON(cpu_buffer, 1); 1016 1017 return NULL; 1018 } 1019 1020 static int rb_head_page_replace(struct buffer_page *old, 1021 struct buffer_page *new) 1022 { 1023 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1024 unsigned long val; 1025 unsigned long ret; 1026 1027 val = *ptr & ~RB_FLAG_MASK; 1028 val |= RB_PAGE_HEAD; 1029 1030 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1031 1032 return ret == val; 1033 } 1034 1035 /* 1036 * rb_tail_page_update - move the tail page forward 1037 */ 1038 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1039 struct buffer_page *tail_page, 1040 struct buffer_page *next_page) 1041 { 1042 unsigned long old_entries; 1043 unsigned long old_write; 1044 1045 /* 1046 * The tail page now needs to be moved forward. 1047 * 1048 * We need to reset the tail page, but without messing 1049 * with possible erasing of data brought in by interrupts 1050 * that have moved the tail page and are currently on it. 1051 * 1052 * We add a counter to the write field to denote this. 1053 */ 1054 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1055 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1056 1057 /* 1058 * Just make sure we have seen our old_write and synchronize 1059 * with any interrupts that come in. 1060 */ 1061 barrier(); 1062 1063 /* 1064 * If the tail page is still the same as what we think 1065 * it is, then it is up to us to update the tail 1066 * pointer. 1067 */ 1068 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1069 /* Zero the write counter */ 1070 unsigned long val = old_write & ~RB_WRITE_MASK; 1071 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1072 1073 /* 1074 * This will only succeed if an interrupt did 1075 * not come in and change it. In which case, we 1076 * do not want to modify it. 1077 * 1078 * We add (void) to let the compiler know that we do not care 1079 * about the return value of these functions. We use the 1080 * cmpxchg to only update if an interrupt did not already 1081 * do it for us. If the cmpxchg fails, we don't care. 1082 */ 1083 (void)local_cmpxchg(&next_page->write, old_write, val); 1084 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1085 1086 /* 1087 * No need to worry about races with clearing out the commit. 1088 * it only can increment when a commit takes place. But that 1089 * only happens in the outer most nested commit. 1090 */ 1091 local_set(&next_page->page->commit, 0); 1092 1093 /* Again, either we update tail_page or an interrupt does */ 1094 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1095 } 1096 } 1097 1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1099 struct buffer_page *bpage) 1100 { 1101 unsigned long val = (unsigned long)bpage; 1102 1103 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1104 return 1; 1105 1106 return 0; 1107 } 1108 1109 /** 1110 * rb_check_list - make sure a pointer to a list has the last bits zero 1111 */ 1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1113 struct list_head *list) 1114 { 1115 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1116 return 1; 1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1118 return 1; 1119 return 0; 1120 } 1121 1122 /** 1123 * rb_check_pages - integrity check of buffer pages 1124 * @cpu_buffer: CPU buffer with pages to test 1125 * 1126 * As a safety measure we check to make sure the data pages have not 1127 * been corrupted. 1128 */ 1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1130 { 1131 struct list_head *head = cpu_buffer->pages; 1132 struct buffer_page *bpage, *tmp; 1133 1134 /* Reset the head page if it exists */ 1135 if (cpu_buffer->head_page) 1136 rb_set_head_page(cpu_buffer); 1137 1138 rb_head_page_deactivate(cpu_buffer); 1139 1140 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1141 return -1; 1142 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1143 return -1; 1144 1145 if (rb_check_list(cpu_buffer, head)) 1146 return -1; 1147 1148 list_for_each_entry_safe(bpage, tmp, head, list) { 1149 if (RB_WARN_ON(cpu_buffer, 1150 bpage->list.next->prev != &bpage->list)) 1151 return -1; 1152 if (RB_WARN_ON(cpu_buffer, 1153 bpage->list.prev->next != &bpage->list)) 1154 return -1; 1155 if (rb_check_list(cpu_buffer, &bpage->list)) 1156 return -1; 1157 } 1158 1159 rb_head_page_activate(cpu_buffer); 1160 1161 return 0; 1162 } 1163 1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1165 { 1166 struct buffer_page *bpage, *tmp; 1167 bool user_thread = current->mm != NULL; 1168 gfp_t mflags; 1169 long i; 1170 1171 /* 1172 * Check if the available memory is there first. 1173 * Note, si_mem_available() only gives us a rough estimate of available 1174 * memory. It may not be accurate. But we don't care, we just want 1175 * to prevent doing any allocation when it is obvious that it is 1176 * not going to succeed. 1177 */ 1178 i = si_mem_available(); 1179 if (i < nr_pages) 1180 return -ENOMEM; 1181 1182 /* 1183 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1184 * gracefully without invoking oom-killer and the system is not 1185 * destabilized. 1186 */ 1187 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1188 1189 /* 1190 * If a user thread allocates too much, and si_mem_available() 1191 * reports there's enough memory, even though there is not. 1192 * Make sure the OOM killer kills this thread. This can happen 1193 * even with RETRY_MAYFAIL because another task may be doing 1194 * an allocation after this task has taken all memory. 1195 * This is the task the OOM killer needs to take out during this 1196 * loop, even if it was triggered by an allocation somewhere else. 1197 */ 1198 if (user_thread) 1199 set_current_oom_origin(); 1200 for (i = 0; i < nr_pages; i++) { 1201 struct page *page; 1202 1203 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1204 mflags, cpu_to_node(cpu)); 1205 if (!bpage) 1206 goto free_pages; 1207 1208 list_add(&bpage->list, pages); 1209 1210 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1211 if (!page) 1212 goto free_pages; 1213 bpage->page = page_address(page); 1214 rb_init_page(bpage->page); 1215 1216 if (user_thread && fatal_signal_pending(current)) 1217 goto free_pages; 1218 } 1219 if (user_thread) 1220 clear_current_oom_origin(); 1221 1222 return 0; 1223 1224 free_pages: 1225 list_for_each_entry_safe(bpage, tmp, pages, list) { 1226 list_del_init(&bpage->list); 1227 free_buffer_page(bpage); 1228 } 1229 if (user_thread) 1230 clear_current_oom_origin(); 1231 1232 return -ENOMEM; 1233 } 1234 1235 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1236 unsigned long nr_pages) 1237 { 1238 LIST_HEAD(pages); 1239 1240 WARN_ON(!nr_pages); 1241 1242 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1243 return -ENOMEM; 1244 1245 /* 1246 * The ring buffer page list is a circular list that does not 1247 * start and end with a list head. All page list items point to 1248 * other pages. 1249 */ 1250 cpu_buffer->pages = pages.next; 1251 list_del(&pages); 1252 1253 cpu_buffer->nr_pages = nr_pages; 1254 1255 rb_check_pages(cpu_buffer); 1256 1257 return 0; 1258 } 1259 1260 static struct ring_buffer_per_cpu * 1261 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1262 { 1263 struct ring_buffer_per_cpu *cpu_buffer; 1264 struct buffer_page *bpage; 1265 struct page *page; 1266 int ret; 1267 1268 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1269 GFP_KERNEL, cpu_to_node(cpu)); 1270 if (!cpu_buffer) 1271 return NULL; 1272 1273 cpu_buffer->cpu = cpu; 1274 cpu_buffer->buffer = buffer; 1275 raw_spin_lock_init(&cpu_buffer->reader_lock); 1276 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1277 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1278 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1279 init_completion(&cpu_buffer->update_done); 1280 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1281 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1282 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1283 1284 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1285 GFP_KERNEL, cpu_to_node(cpu)); 1286 if (!bpage) 1287 goto fail_free_buffer; 1288 1289 rb_check_bpage(cpu_buffer, bpage); 1290 1291 cpu_buffer->reader_page = bpage; 1292 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1293 if (!page) 1294 goto fail_free_reader; 1295 bpage->page = page_address(page); 1296 rb_init_page(bpage->page); 1297 1298 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1299 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1300 1301 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1302 if (ret < 0) 1303 goto fail_free_reader; 1304 1305 cpu_buffer->head_page 1306 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1307 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1308 1309 rb_head_page_activate(cpu_buffer); 1310 1311 return cpu_buffer; 1312 1313 fail_free_reader: 1314 free_buffer_page(cpu_buffer->reader_page); 1315 1316 fail_free_buffer: 1317 kfree(cpu_buffer); 1318 return NULL; 1319 } 1320 1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1322 { 1323 struct list_head *head = cpu_buffer->pages; 1324 struct buffer_page *bpage, *tmp; 1325 1326 free_buffer_page(cpu_buffer->reader_page); 1327 1328 rb_head_page_deactivate(cpu_buffer); 1329 1330 if (head) { 1331 list_for_each_entry_safe(bpage, tmp, head, list) { 1332 list_del_init(&bpage->list); 1333 free_buffer_page(bpage); 1334 } 1335 bpage = list_entry(head, struct buffer_page, list); 1336 free_buffer_page(bpage); 1337 } 1338 1339 kfree(cpu_buffer); 1340 } 1341 1342 /** 1343 * __ring_buffer_alloc - allocate a new ring_buffer 1344 * @size: the size in bytes per cpu that is needed. 1345 * @flags: attributes to set for the ring buffer. 1346 * 1347 * Currently the only flag that is available is the RB_FL_OVERWRITE 1348 * flag. This flag means that the buffer will overwrite old data 1349 * when the buffer wraps. If this flag is not set, the buffer will 1350 * drop data when the tail hits the head. 1351 */ 1352 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1353 struct lock_class_key *key) 1354 { 1355 struct ring_buffer *buffer; 1356 long nr_pages; 1357 int bsize; 1358 int cpu; 1359 int ret; 1360 1361 /* keep it in its own cache line */ 1362 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1363 GFP_KERNEL); 1364 if (!buffer) 1365 return NULL; 1366 1367 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1368 goto fail_free_buffer; 1369 1370 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1371 buffer->flags = flags; 1372 buffer->clock = trace_clock_local; 1373 buffer->reader_lock_key = key; 1374 1375 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1376 init_waitqueue_head(&buffer->irq_work.waiters); 1377 1378 /* need at least two pages */ 1379 if (nr_pages < 2) 1380 nr_pages = 2; 1381 1382 buffer->cpus = nr_cpu_ids; 1383 1384 bsize = sizeof(void *) * nr_cpu_ids; 1385 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1386 GFP_KERNEL); 1387 if (!buffer->buffers) 1388 goto fail_free_cpumask; 1389 1390 cpu = raw_smp_processor_id(); 1391 cpumask_set_cpu(cpu, buffer->cpumask); 1392 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1393 if (!buffer->buffers[cpu]) 1394 goto fail_free_buffers; 1395 1396 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1397 if (ret < 0) 1398 goto fail_free_buffers; 1399 1400 mutex_init(&buffer->mutex); 1401 1402 return buffer; 1403 1404 fail_free_buffers: 1405 for_each_buffer_cpu(buffer, cpu) { 1406 if (buffer->buffers[cpu]) 1407 rb_free_cpu_buffer(buffer->buffers[cpu]); 1408 } 1409 kfree(buffer->buffers); 1410 1411 fail_free_cpumask: 1412 free_cpumask_var(buffer->cpumask); 1413 1414 fail_free_buffer: 1415 kfree(buffer); 1416 return NULL; 1417 } 1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1419 1420 /** 1421 * ring_buffer_free - free a ring buffer. 1422 * @buffer: the buffer to free. 1423 */ 1424 void 1425 ring_buffer_free(struct ring_buffer *buffer) 1426 { 1427 int cpu; 1428 1429 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1430 1431 for_each_buffer_cpu(buffer, cpu) 1432 rb_free_cpu_buffer(buffer->buffers[cpu]); 1433 1434 kfree(buffer->buffers); 1435 free_cpumask_var(buffer->cpumask); 1436 1437 kfree(buffer); 1438 } 1439 EXPORT_SYMBOL_GPL(ring_buffer_free); 1440 1441 void ring_buffer_set_clock(struct ring_buffer *buffer, 1442 u64 (*clock)(void)) 1443 { 1444 buffer->clock = clock; 1445 } 1446 1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs) 1448 { 1449 buffer->time_stamp_abs = abs; 1450 } 1451 1452 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer) 1453 { 1454 return buffer->time_stamp_abs; 1455 } 1456 1457 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1458 1459 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1460 { 1461 return local_read(&bpage->entries) & RB_WRITE_MASK; 1462 } 1463 1464 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1465 { 1466 return local_read(&bpage->write) & RB_WRITE_MASK; 1467 } 1468 1469 static int 1470 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1471 { 1472 struct list_head *tail_page, *to_remove, *next_page; 1473 struct buffer_page *to_remove_page, *tmp_iter_page; 1474 struct buffer_page *last_page, *first_page; 1475 unsigned long nr_removed; 1476 unsigned long head_bit; 1477 int page_entries; 1478 1479 head_bit = 0; 1480 1481 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1482 atomic_inc(&cpu_buffer->record_disabled); 1483 /* 1484 * We don't race with the readers since we have acquired the reader 1485 * lock. We also don't race with writers after disabling recording. 1486 * This makes it easy to figure out the first and the last page to be 1487 * removed from the list. We unlink all the pages in between including 1488 * the first and last pages. This is done in a busy loop so that we 1489 * lose the least number of traces. 1490 * The pages are freed after we restart recording and unlock readers. 1491 */ 1492 tail_page = &cpu_buffer->tail_page->list; 1493 1494 /* 1495 * tail page might be on reader page, we remove the next page 1496 * from the ring buffer 1497 */ 1498 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1499 tail_page = rb_list_head(tail_page->next); 1500 to_remove = tail_page; 1501 1502 /* start of pages to remove */ 1503 first_page = list_entry(rb_list_head(to_remove->next), 1504 struct buffer_page, list); 1505 1506 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1507 to_remove = rb_list_head(to_remove)->next; 1508 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1509 } 1510 1511 next_page = rb_list_head(to_remove)->next; 1512 1513 /* 1514 * Now we remove all pages between tail_page and next_page. 1515 * Make sure that we have head_bit value preserved for the 1516 * next page 1517 */ 1518 tail_page->next = (struct list_head *)((unsigned long)next_page | 1519 head_bit); 1520 next_page = rb_list_head(next_page); 1521 next_page->prev = tail_page; 1522 1523 /* make sure pages points to a valid page in the ring buffer */ 1524 cpu_buffer->pages = next_page; 1525 1526 /* update head page */ 1527 if (head_bit) 1528 cpu_buffer->head_page = list_entry(next_page, 1529 struct buffer_page, list); 1530 1531 /* 1532 * change read pointer to make sure any read iterators reset 1533 * themselves 1534 */ 1535 cpu_buffer->read = 0; 1536 1537 /* pages are removed, resume tracing and then free the pages */ 1538 atomic_dec(&cpu_buffer->record_disabled); 1539 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1540 1541 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1542 1543 /* last buffer page to remove */ 1544 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1545 list); 1546 tmp_iter_page = first_page; 1547 1548 do { 1549 to_remove_page = tmp_iter_page; 1550 rb_inc_page(cpu_buffer, &tmp_iter_page); 1551 1552 /* update the counters */ 1553 page_entries = rb_page_entries(to_remove_page); 1554 if (page_entries) { 1555 /* 1556 * If something was added to this page, it was full 1557 * since it is not the tail page. So we deduct the 1558 * bytes consumed in ring buffer from here. 1559 * Increment overrun to account for the lost events. 1560 */ 1561 local_add(page_entries, &cpu_buffer->overrun); 1562 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1563 } 1564 1565 /* 1566 * We have already removed references to this list item, just 1567 * free up the buffer_page and its page 1568 */ 1569 free_buffer_page(to_remove_page); 1570 nr_removed--; 1571 1572 } while (to_remove_page != last_page); 1573 1574 RB_WARN_ON(cpu_buffer, nr_removed); 1575 1576 return nr_removed == 0; 1577 } 1578 1579 static int 1580 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1581 { 1582 struct list_head *pages = &cpu_buffer->new_pages; 1583 int retries, success; 1584 1585 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1586 /* 1587 * We are holding the reader lock, so the reader page won't be swapped 1588 * in the ring buffer. Now we are racing with the writer trying to 1589 * move head page and the tail page. 1590 * We are going to adapt the reader page update process where: 1591 * 1. We first splice the start and end of list of new pages between 1592 * the head page and its previous page. 1593 * 2. We cmpxchg the prev_page->next to point from head page to the 1594 * start of new pages list. 1595 * 3. Finally, we update the head->prev to the end of new list. 1596 * 1597 * We will try this process 10 times, to make sure that we don't keep 1598 * spinning. 1599 */ 1600 retries = 10; 1601 success = 0; 1602 while (retries--) { 1603 struct list_head *head_page, *prev_page, *r; 1604 struct list_head *last_page, *first_page; 1605 struct list_head *head_page_with_bit; 1606 1607 head_page = &rb_set_head_page(cpu_buffer)->list; 1608 if (!head_page) 1609 break; 1610 prev_page = head_page->prev; 1611 1612 first_page = pages->next; 1613 last_page = pages->prev; 1614 1615 head_page_with_bit = (struct list_head *) 1616 ((unsigned long)head_page | RB_PAGE_HEAD); 1617 1618 last_page->next = head_page_with_bit; 1619 first_page->prev = prev_page; 1620 1621 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1622 1623 if (r == head_page_with_bit) { 1624 /* 1625 * yay, we replaced the page pointer to our new list, 1626 * now, we just have to update to head page's prev 1627 * pointer to point to end of list 1628 */ 1629 head_page->prev = last_page; 1630 success = 1; 1631 break; 1632 } 1633 } 1634 1635 if (success) 1636 INIT_LIST_HEAD(pages); 1637 /* 1638 * If we weren't successful in adding in new pages, warn and stop 1639 * tracing 1640 */ 1641 RB_WARN_ON(cpu_buffer, !success); 1642 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1643 1644 /* free pages if they weren't inserted */ 1645 if (!success) { 1646 struct buffer_page *bpage, *tmp; 1647 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1648 list) { 1649 list_del_init(&bpage->list); 1650 free_buffer_page(bpage); 1651 } 1652 } 1653 return success; 1654 } 1655 1656 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1657 { 1658 int success; 1659 1660 if (cpu_buffer->nr_pages_to_update > 0) 1661 success = rb_insert_pages(cpu_buffer); 1662 else 1663 success = rb_remove_pages(cpu_buffer, 1664 -cpu_buffer->nr_pages_to_update); 1665 1666 if (success) 1667 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1668 } 1669 1670 static void update_pages_handler(struct work_struct *work) 1671 { 1672 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1673 struct ring_buffer_per_cpu, update_pages_work); 1674 rb_update_pages(cpu_buffer); 1675 complete(&cpu_buffer->update_done); 1676 } 1677 1678 /** 1679 * ring_buffer_resize - resize the ring buffer 1680 * @buffer: the buffer to resize. 1681 * @size: the new size. 1682 * @cpu_id: the cpu buffer to resize 1683 * 1684 * Minimum size is 2 * BUF_PAGE_SIZE. 1685 * 1686 * Returns 0 on success and < 0 on failure. 1687 */ 1688 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1689 int cpu_id) 1690 { 1691 struct ring_buffer_per_cpu *cpu_buffer; 1692 unsigned long nr_pages; 1693 int cpu, err = 0; 1694 1695 /* 1696 * Always succeed at resizing a non-existent buffer: 1697 */ 1698 if (!buffer) 1699 return size; 1700 1701 /* Make sure the requested buffer exists */ 1702 if (cpu_id != RING_BUFFER_ALL_CPUS && 1703 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1704 return size; 1705 1706 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1707 1708 /* we need a minimum of two pages */ 1709 if (nr_pages < 2) 1710 nr_pages = 2; 1711 1712 size = nr_pages * BUF_PAGE_SIZE; 1713 1714 /* 1715 * Don't succeed if resizing is disabled, as a reader might be 1716 * manipulating the ring buffer and is expecting a sane state while 1717 * this is true. 1718 */ 1719 if (atomic_read(&buffer->resize_disabled)) 1720 return -EBUSY; 1721 1722 /* prevent another thread from changing buffer sizes */ 1723 mutex_lock(&buffer->mutex); 1724 1725 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1726 /* calculate the pages to update */ 1727 for_each_buffer_cpu(buffer, cpu) { 1728 cpu_buffer = buffer->buffers[cpu]; 1729 1730 cpu_buffer->nr_pages_to_update = nr_pages - 1731 cpu_buffer->nr_pages; 1732 /* 1733 * nothing more to do for removing pages or no update 1734 */ 1735 if (cpu_buffer->nr_pages_to_update <= 0) 1736 continue; 1737 /* 1738 * to add pages, make sure all new pages can be 1739 * allocated without receiving ENOMEM 1740 */ 1741 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1742 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1743 &cpu_buffer->new_pages, cpu)) { 1744 /* not enough memory for new pages */ 1745 err = -ENOMEM; 1746 goto out_err; 1747 } 1748 } 1749 1750 get_online_cpus(); 1751 /* 1752 * Fire off all the required work handlers 1753 * We can't schedule on offline CPUs, but it's not necessary 1754 * since we can change their buffer sizes without any race. 1755 */ 1756 for_each_buffer_cpu(buffer, cpu) { 1757 cpu_buffer = buffer->buffers[cpu]; 1758 if (!cpu_buffer->nr_pages_to_update) 1759 continue; 1760 1761 /* Can't run something on an offline CPU. */ 1762 if (!cpu_online(cpu)) { 1763 rb_update_pages(cpu_buffer); 1764 cpu_buffer->nr_pages_to_update = 0; 1765 } else { 1766 schedule_work_on(cpu, 1767 &cpu_buffer->update_pages_work); 1768 } 1769 } 1770 1771 /* wait for all the updates to complete */ 1772 for_each_buffer_cpu(buffer, cpu) { 1773 cpu_buffer = buffer->buffers[cpu]; 1774 if (!cpu_buffer->nr_pages_to_update) 1775 continue; 1776 1777 if (cpu_online(cpu)) 1778 wait_for_completion(&cpu_buffer->update_done); 1779 cpu_buffer->nr_pages_to_update = 0; 1780 } 1781 1782 put_online_cpus(); 1783 } else { 1784 /* Make sure this CPU has been initialized */ 1785 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1786 goto out; 1787 1788 cpu_buffer = buffer->buffers[cpu_id]; 1789 1790 if (nr_pages == cpu_buffer->nr_pages) 1791 goto out; 1792 1793 cpu_buffer->nr_pages_to_update = nr_pages - 1794 cpu_buffer->nr_pages; 1795 1796 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1797 if (cpu_buffer->nr_pages_to_update > 0 && 1798 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1799 &cpu_buffer->new_pages, cpu_id)) { 1800 err = -ENOMEM; 1801 goto out_err; 1802 } 1803 1804 get_online_cpus(); 1805 1806 /* Can't run something on an offline CPU. */ 1807 if (!cpu_online(cpu_id)) 1808 rb_update_pages(cpu_buffer); 1809 else { 1810 schedule_work_on(cpu_id, 1811 &cpu_buffer->update_pages_work); 1812 wait_for_completion(&cpu_buffer->update_done); 1813 } 1814 1815 cpu_buffer->nr_pages_to_update = 0; 1816 put_online_cpus(); 1817 } 1818 1819 out: 1820 /* 1821 * The ring buffer resize can happen with the ring buffer 1822 * enabled, so that the update disturbs the tracing as little 1823 * as possible. But if the buffer is disabled, we do not need 1824 * to worry about that, and we can take the time to verify 1825 * that the buffer is not corrupt. 1826 */ 1827 if (atomic_read(&buffer->record_disabled)) { 1828 atomic_inc(&buffer->record_disabled); 1829 /* 1830 * Even though the buffer was disabled, we must make sure 1831 * that it is truly disabled before calling rb_check_pages. 1832 * There could have been a race between checking 1833 * record_disable and incrementing it. 1834 */ 1835 synchronize_sched(); 1836 for_each_buffer_cpu(buffer, cpu) { 1837 cpu_buffer = buffer->buffers[cpu]; 1838 rb_check_pages(cpu_buffer); 1839 } 1840 atomic_dec(&buffer->record_disabled); 1841 } 1842 1843 mutex_unlock(&buffer->mutex); 1844 return size; 1845 1846 out_err: 1847 for_each_buffer_cpu(buffer, cpu) { 1848 struct buffer_page *bpage, *tmp; 1849 1850 cpu_buffer = buffer->buffers[cpu]; 1851 cpu_buffer->nr_pages_to_update = 0; 1852 1853 if (list_empty(&cpu_buffer->new_pages)) 1854 continue; 1855 1856 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1857 list) { 1858 list_del_init(&bpage->list); 1859 free_buffer_page(bpage); 1860 } 1861 } 1862 mutex_unlock(&buffer->mutex); 1863 return err; 1864 } 1865 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1866 1867 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1868 { 1869 mutex_lock(&buffer->mutex); 1870 if (val) 1871 buffer->flags |= RB_FL_OVERWRITE; 1872 else 1873 buffer->flags &= ~RB_FL_OVERWRITE; 1874 mutex_unlock(&buffer->mutex); 1875 } 1876 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1877 1878 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1879 { 1880 return bpage->page->data + index; 1881 } 1882 1883 static __always_inline struct ring_buffer_event * 1884 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1885 { 1886 return __rb_page_index(cpu_buffer->reader_page, 1887 cpu_buffer->reader_page->read); 1888 } 1889 1890 static __always_inline struct ring_buffer_event * 1891 rb_iter_head_event(struct ring_buffer_iter *iter) 1892 { 1893 return __rb_page_index(iter->head_page, iter->head); 1894 } 1895 1896 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1897 { 1898 return local_read(&bpage->page->commit); 1899 } 1900 1901 /* Size is determined by what has been committed */ 1902 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1903 { 1904 return rb_page_commit(bpage); 1905 } 1906 1907 static __always_inline unsigned 1908 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1909 { 1910 return rb_page_commit(cpu_buffer->commit_page); 1911 } 1912 1913 static __always_inline unsigned 1914 rb_event_index(struct ring_buffer_event *event) 1915 { 1916 unsigned long addr = (unsigned long)event; 1917 1918 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1919 } 1920 1921 static void rb_inc_iter(struct ring_buffer_iter *iter) 1922 { 1923 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1924 1925 /* 1926 * The iterator could be on the reader page (it starts there). 1927 * But the head could have moved, since the reader was 1928 * found. Check for this case and assign the iterator 1929 * to the head page instead of next. 1930 */ 1931 if (iter->head_page == cpu_buffer->reader_page) 1932 iter->head_page = rb_set_head_page(cpu_buffer); 1933 else 1934 rb_inc_page(cpu_buffer, &iter->head_page); 1935 1936 iter->read_stamp = iter->head_page->page->time_stamp; 1937 iter->head = 0; 1938 } 1939 1940 /* 1941 * rb_handle_head_page - writer hit the head page 1942 * 1943 * Returns: +1 to retry page 1944 * 0 to continue 1945 * -1 on error 1946 */ 1947 static int 1948 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1949 struct buffer_page *tail_page, 1950 struct buffer_page *next_page) 1951 { 1952 struct buffer_page *new_head; 1953 int entries; 1954 int type; 1955 int ret; 1956 1957 entries = rb_page_entries(next_page); 1958 1959 /* 1960 * The hard part is here. We need to move the head 1961 * forward, and protect against both readers on 1962 * other CPUs and writers coming in via interrupts. 1963 */ 1964 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1965 RB_PAGE_HEAD); 1966 1967 /* 1968 * type can be one of four: 1969 * NORMAL - an interrupt already moved it for us 1970 * HEAD - we are the first to get here. 1971 * UPDATE - we are the interrupt interrupting 1972 * a current move. 1973 * MOVED - a reader on another CPU moved the next 1974 * pointer to its reader page. Give up 1975 * and try again. 1976 */ 1977 1978 switch (type) { 1979 case RB_PAGE_HEAD: 1980 /* 1981 * We changed the head to UPDATE, thus 1982 * it is our responsibility to update 1983 * the counters. 1984 */ 1985 local_add(entries, &cpu_buffer->overrun); 1986 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1987 1988 /* 1989 * The entries will be zeroed out when we move the 1990 * tail page. 1991 */ 1992 1993 /* still more to do */ 1994 break; 1995 1996 case RB_PAGE_UPDATE: 1997 /* 1998 * This is an interrupt that interrupt the 1999 * previous update. Still more to do. 2000 */ 2001 break; 2002 case RB_PAGE_NORMAL: 2003 /* 2004 * An interrupt came in before the update 2005 * and processed this for us. 2006 * Nothing left to do. 2007 */ 2008 return 1; 2009 case RB_PAGE_MOVED: 2010 /* 2011 * The reader is on another CPU and just did 2012 * a swap with our next_page. 2013 * Try again. 2014 */ 2015 return 1; 2016 default: 2017 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2018 return -1; 2019 } 2020 2021 /* 2022 * Now that we are here, the old head pointer is 2023 * set to UPDATE. This will keep the reader from 2024 * swapping the head page with the reader page. 2025 * The reader (on another CPU) will spin till 2026 * we are finished. 2027 * 2028 * We just need to protect against interrupts 2029 * doing the job. We will set the next pointer 2030 * to HEAD. After that, we set the old pointer 2031 * to NORMAL, but only if it was HEAD before. 2032 * otherwise we are an interrupt, and only 2033 * want the outer most commit to reset it. 2034 */ 2035 new_head = next_page; 2036 rb_inc_page(cpu_buffer, &new_head); 2037 2038 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2039 RB_PAGE_NORMAL); 2040 2041 /* 2042 * Valid returns are: 2043 * HEAD - an interrupt came in and already set it. 2044 * NORMAL - One of two things: 2045 * 1) We really set it. 2046 * 2) A bunch of interrupts came in and moved 2047 * the page forward again. 2048 */ 2049 switch (ret) { 2050 case RB_PAGE_HEAD: 2051 case RB_PAGE_NORMAL: 2052 /* OK */ 2053 break; 2054 default: 2055 RB_WARN_ON(cpu_buffer, 1); 2056 return -1; 2057 } 2058 2059 /* 2060 * It is possible that an interrupt came in, 2061 * set the head up, then more interrupts came in 2062 * and moved it again. When we get back here, 2063 * the page would have been set to NORMAL but we 2064 * just set it back to HEAD. 2065 * 2066 * How do you detect this? Well, if that happened 2067 * the tail page would have moved. 2068 */ 2069 if (ret == RB_PAGE_NORMAL) { 2070 struct buffer_page *buffer_tail_page; 2071 2072 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2073 /* 2074 * If the tail had moved passed next, then we need 2075 * to reset the pointer. 2076 */ 2077 if (buffer_tail_page != tail_page && 2078 buffer_tail_page != next_page) 2079 rb_head_page_set_normal(cpu_buffer, new_head, 2080 next_page, 2081 RB_PAGE_HEAD); 2082 } 2083 2084 /* 2085 * If this was the outer most commit (the one that 2086 * changed the original pointer from HEAD to UPDATE), 2087 * then it is up to us to reset it to NORMAL. 2088 */ 2089 if (type == RB_PAGE_HEAD) { 2090 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2091 tail_page, 2092 RB_PAGE_UPDATE); 2093 if (RB_WARN_ON(cpu_buffer, 2094 ret != RB_PAGE_UPDATE)) 2095 return -1; 2096 } 2097 2098 return 0; 2099 } 2100 2101 static inline void 2102 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2103 unsigned long tail, struct rb_event_info *info) 2104 { 2105 struct buffer_page *tail_page = info->tail_page; 2106 struct ring_buffer_event *event; 2107 unsigned long length = info->length; 2108 2109 /* 2110 * Only the event that crossed the page boundary 2111 * must fill the old tail_page with padding. 2112 */ 2113 if (tail >= BUF_PAGE_SIZE) { 2114 /* 2115 * If the page was filled, then we still need 2116 * to update the real_end. Reset it to zero 2117 * and the reader will ignore it. 2118 */ 2119 if (tail == BUF_PAGE_SIZE) 2120 tail_page->real_end = 0; 2121 2122 local_sub(length, &tail_page->write); 2123 return; 2124 } 2125 2126 event = __rb_page_index(tail_page, tail); 2127 2128 /* account for padding bytes */ 2129 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2130 2131 /* 2132 * Save the original length to the meta data. 2133 * This will be used by the reader to add lost event 2134 * counter. 2135 */ 2136 tail_page->real_end = tail; 2137 2138 /* 2139 * If this event is bigger than the minimum size, then 2140 * we need to be careful that we don't subtract the 2141 * write counter enough to allow another writer to slip 2142 * in on this page. 2143 * We put in a discarded commit instead, to make sure 2144 * that this space is not used again. 2145 * 2146 * If we are less than the minimum size, we don't need to 2147 * worry about it. 2148 */ 2149 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2150 /* No room for any events */ 2151 2152 /* Mark the rest of the page with padding */ 2153 rb_event_set_padding(event); 2154 2155 /* Set the write back to the previous setting */ 2156 local_sub(length, &tail_page->write); 2157 return; 2158 } 2159 2160 /* Put in a discarded event */ 2161 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2162 event->type_len = RINGBUF_TYPE_PADDING; 2163 /* time delta must be non zero */ 2164 event->time_delta = 1; 2165 2166 /* Set write to end of buffer */ 2167 length = (tail + length) - BUF_PAGE_SIZE; 2168 local_sub(length, &tail_page->write); 2169 } 2170 2171 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2172 2173 /* 2174 * This is the slow path, force gcc not to inline it. 2175 */ 2176 static noinline struct ring_buffer_event * 2177 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2178 unsigned long tail, struct rb_event_info *info) 2179 { 2180 struct buffer_page *tail_page = info->tail_page; 2181 struct buffer_page *commit_page = cpu_buffer->commit_page; 2182 struct ring_buffer *buffer = cpu_buffer->buffer; 2183 struct buffer_page *next_page; 2184 int ret; 2185 2186 next_page = tail_page; 2187 2188 rb_inc_page(cpu_buffer, &next_page); 2189 2190 /* 2191 * If for some reason, we had an interrupt storm that made 2192 * it all the way around the buffer, bail, and warn 2193 * about it. 2194 */ 2195 if (unlikely(next_page == commit_page)) { 2196 local_inc(&cpu_buffer->commit_overrun); 2197 goto out_reset; 2198 } 2199 2200 /* 2201 * This is where the fun begins! 2202 * 2203 * We are fighting against races between a reader that 2204 * could be on another CPU trying to swap its reader 2205 * page with the buffer head. 2206 * 2207 * We are also fighting against interrupts coming in and 2208 * moving the head or tail on us as well. 2209 * 2210 * If the next page is the head page then we have filled 2211 * the buffer, unless the commit page is still on the 2212 * reader page. 2213 */ 2214 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2215 2216 /* 2217 * If the commit is not on the reader page, then 2218 * move the header page. 2219 */ 2220 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2221 /* 2222 * If we are not in overwrite mode, 2223 * this is easy, just stop here. 2224 */ 2225 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2226 local_inc(&cpu_buffer->dropped_events); 2227 goto out_reset; 2228 } 2229 2230 ret = rb_handle_head_page(cpu_buffer, 2231 tail_page, 2232 next_page); 2233 if (ret < 0) 2234 goto out_reset; 2235 if (ret) 2236 goto out_again; 2237 } else { 2238 /* 2239 * We need to be careful here too. The 2240 * commit page could still be on the reader 2241 * page. We could have a small buffer, and 2242 * have filled up the buffer with events 2243 * from interrupts and such, and wrapped. 2244 * 2245 * Note, if the tail page is also the on the 2246 * reader_page, we let it move out. 2247 */ 2248 if (unlikely((cpu_buffer->commit_page != 2249 cpu_buffer->tail_page) && 2250 (cpu_buffer->commit_page == 2251 cpu_buffer->reader_page))) { 2252 local_inc(&cpu_buffer->commit_overrun); 2253 goto out_reset; 2254 } 2255 } 2256 } 2257 2258 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2259 2260 out_again: 2261 2262 rb_reset_tail(cpu_buffer, tail, info); 2263 2264 /* Commit what we have for now. */ 2265 rb_end_commit(cpu_buffer); 2266 /* rb_end_commit() decs committing */ 2267 local_inc(&cpu_buffer->committing); 2268 2269 /* fail and let the caller try again */ 2270 return ERR_PTR(-EAGAIN); 2271 2272 out_reset: 2273 /* reset write */ 2274 rb_reset_tail(cpu_buffer, tail, info); 2275 2276 return NULL; 2277 } 2278 2279 /* Slow path, do not inline */ 2280 static noinline struct ring_buffer_event * 2281 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2282 { 2283 if (abs) 2284 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2285 else 2286 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2287 2288 /* Not the first event on the page, or not delta? */ 2289 if (abs || rb_event_index(event)) { 2290 event->time_delta = delta & TS_MASK; 2291 event->array[0] = delta >> TS_SHIFT; 2292 } else { 2293 /* nope, just zero it */ 2294 event->time_delta = 0; 2295 event->array[0] = 0; 2296 } 2297 2298 return skip_time_extend(event); 2299 } 2300 2301 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2302 struct ring_buffer_event *event); 2303 2304 /** 2305 * rb_update_event - update event type and data 2306 * @event: the event to update 2307 * @type: the type of event 2308 * @length: the size of the event field in the ring buffer 2309 * 2310 * Update the type and data fields of the event. The length 2311 * is the actual size that is written to the ring buffer, 2312 * and with this, we can determine what to place into the 2313 * data field. 2314 */ 2315 static void 2316 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2317 struct ring_buffer_event *event, 2318 struct rb_event_info *info) 2319 { 2320 unsigned length = info->length; 2321 u64 delta = info->delta; 2322 2323 /* Only a commit updates the timestamp */ 2324 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2325 delta = 0; 2326 2327 /* 2328 * If we need to add a timestamp, then we 2329 * add it to the start of the reserved space. 2330 */ 2331 if (unlikely(info->add_timestamp)) { 2332 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2333 2334 event = rb_add_time_stamp(event, info->delta, abs); 2335 length -= RB_LEN_TIME_EXTEND; 2336 delta = 0; 2337 } 2338 2339 event->time_delta = delta; 2340 length -= RB_EVNT_HDR_SIZE; 2341 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2342 event->type_len = 0; 2343 event->array[0] = length; 2344 } else 2345 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2346 } 2347 2348 static unsigned rb_calculate_event_length(unsigned length) 2349 { 2350 struct ring_buffer_event event; /* Used only for sizeof array */ 2351 2352 /* zero length can cause confusions */ 2353 if (!length) 2354 length++; 2355 2356 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2357 length += sizeof(event.array[0]); 2358 2359 length += RB_EVNT_HDR_SIZE; 2360 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2361 2362 /* 2363 * In case the time delta is larger than the 27 bits for it 2364 * in the header, we need to add a timestamp. If another 2365 * event comes in when trying to discard this one to increase 2366 * the length, then the timestamp will be added in the allocated 2367 * space of this event. If length is bigger than the size needed 2368 * for the TIME_EXTEND, then padding has to be used. The events 2369 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2370 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2371 * As length is a multiple of 4, we only need to worry if it 2372 * is 12 (RB_LEN_TIME_EXTEND + 4). 2373 */ 2374 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2375 length += RB_ALIGNMENT; 2376 2377 return length; 2378 } 2379 2380 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2381 static inline bool sched_clock_stable(void) 2382 { 2383 return true; 2384 } 2385 #endif 2386 2387 static inline int 2388 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2389 struct ring_buffer_event *event) 2390 { 2391 unsigned long new_index, old_index; 2392 struct buffer_page *bpage; 2393 unsigned long index; 2394 unsigned long addr; 2395 2396 new_index = rb_event_index(event); 2397 old_index = new_index + rb_event_ts_length(event); 2398 addr = (unsigned long)event; 2399 addr &= PAGE_MASK; 2400 2401 bpage = READ_ONCE(cpu_buffer->tail_page); 2402 2403 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2404 unsigned long write_mask = 2405 local_read(&bpage->write) & ~RB_WRITE_MASK; 2406 unsigned long event_length = rb_event_length(event); 2407 /* 2408 * This is on the tail page. It is possible that 2409 * a write could come in and move the tail page 2410 * and write to the next page. That is fine 2411 * because we just shorten what is on this page. 2412 */ 2413 old_index += write_mask; 2414 new_index += write_mask; 2415 index = local_cmpxchg(&bpage->write, old_index, new_index); 2416 if (index == old_index) { 2417 /* update counters */ 2418 local_sub(event_length, &cpu_buffer->entries_bytes); 2419 return 1; 2420 } 2421 } 2422 2423 /* could not discard */ 2424 return 0; 2425 } 2426 2427 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2428 { 2429 local_inc(&cpu_buffer->committing); 2430 local_inc(&cpu_buffer->commits); 2431 } 2432 2433 static __always_inline void 2434 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2435 { 2436 unsigned long max_count; 2437 2438 /* 2439 * We only race with interrupts and NMIs on this CPU. 2440 * If we own the commit event, then we can commit 2441 * all others that interrupted us, since the interruptions 2442 * are in stack format (they finish before they come 2443 * back to us). This allows us to do a simple loop to 2444 * assign the commit to the tail. 2445 */ 2446 again: 2447 max_count = cpu_buffer->nr_pages * 100; 2448 2449 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2450 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2451 return; 2452 if (RB_WARN_ON(cpu_buffer, 2453 rb_is_reader_page(cpu_buffer->tail_page))) 2454 return; 2455 local_set(&cpu_buffer->commit_page->page->commit, 2456 rb_page_write(cpu_buffer->commit_page)); 2457 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2458 /* Only update the write stamp if the page has an event */ 2459 if (rb_page_write(cpu_buffer->commit_page)) 2460 cpu_buffer->write_stamp = 2461 cpu_buffer->commit_page->page->time_stamp; 2462 /* add barrier to keep gcc from optimizing too much */ 2463 barrier(); 2464 } 2465 while (rb_commit_index(cpu_buffer) != 2466 rb_page_write(cpu_buffer->commit_page)) { 2467 2468 local_set(&cpu_buffer->commit_page->page->commit, 2469 rb_page_write(cpu_buffer->commit_page)); 2470 RB_WARN_ON(cpu_buffer, 2471 local_read(&cpu_buffer->commit_page->page->commit) & 2472 ~RB_WRITE_MASK); 2473 barrier(); 2474 } 2475 2476 /* again, keep gcc from optimizing */ 2477 barrier(); 2478 2479 /* 2480 * If an interrupt came in just after the first while loop 2481 * and pushed the tail page forward, we will be left with 2482 * a dangling commit that will never go forward. 2483 */ 2484 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2485 goto again; 2486 } 2487 2488 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2489 { 2490 unsigned long commits; 2491 2492 if (RB_WARN_ON(cpu_buffer, 2493 !local_read(&cpu_buffer->committing))) 2494 return; 2495 2496 again: 2497 commits = local_read(&cpu_buffer->commits); 2498 /* synchronize with interrupts */ 2499 barrier(); 2500 if (local_read(&cpu_buffer->committing) == 1) 2501 rb_set_commit_to_write(cpu_buffer); 2502 2503 local_dec(&cpu_buffer->committing); 2504 2505 /* synchronize with interrupts */ 2506 barrier(); 2507 2508 /* 2509 * Need to account for interrupts coming in between the 2510 * updating of the commit page and the clearing of the 2511 * committing counter. 2512 */ 2513 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2514 !local_read(&cpu_buffer->committing)) { 2515 local_inc(&cpu_buffer->committing); 2516 goto again; 2517 } 2518 } 2519 2520 static inline void rb_event_discard(struct ring_buffer_event *event) 2521 { 2522 if (extended_time(event)) 2523 event = skip_time_extend(event); 2524 2525 /* array[0] holds the actual length for the discarded event */ 2526 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2527 event->type_len = RINGBUF_TYPE_PADDING; 2528 /* time delta must be non zero */ 2529 if (!event->time_delta) 2530 event->time_delta = 1; 2531 } 2532 2533 static __always_inline bool 2534 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2535 struct ring_buffer_event *event) 2536 { 2537 unsigned long addr = (unsigned long)event; 2538 unsigned long index; 2539 2540 index = rb_event_index(event); 2541 addr &= PAGE_MASK; 2542 2543 return cpu_buffer->commit_page->page == (void *)addr && 2544 rb_commit_index(cpu_buffer) == index; 2545 } 2546 2547 static __always_inline void 2548 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2549 struct ring_buffer_event *event) 2550 { 2551 u64 delta; 2552 2553 /* 2554 * The event first in the commit queue updates the 2555 * time stamp. 2556 */ 2557 if (rb_event_is_commit(cpu_buffer, event)) { 2558 /* 2559 * A commit event that is first on a page 2560 * updates the write timestamp with the page stamp 2561 */ 2562 if (!rb_event_index(event)) 2563 cpu_buffer->write_stamp = 2564 cpu_buffer->commit_page->page->time_stamp; 2565 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2566 delta = ring_buffer_event_time_stamp(event); 2567 cpu_buffer->write_stamp += delta; 2568 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2569 delta = ring_buffer_event_time_stamp(event); 2570 cpu_buffer->write_stamp = delta; 2571 } else 2572 cpu_buffer->write_stamp += event->time_delta; 2573 } 2574 } 2575 2576 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2577 struct ring_buffer_event *event) 2578 { 2579 local_inc(&cpu_buffer->entries); 2580 rb_update_write_stamp(cpu_buffer, event); 2581 rb_end_commit(cpu_buffer); 2582 } 2583 2584 static __always_inline void 2585 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2586 { 2587 bool pagebusy; 2588 2589 if (buffer->irq_work.waiters_pending) { 2590 buffer->irq_work.waiters_pending = false; 2591 /* irq_work_queue() supplies it's own memory barriers */ 2592 irq_work_queue(&buffer->irq_work.work); 2593 } 2594 2595 if (cpu_buffer->irq_work.waiters_pending) { 2596 cpu_buffer->irq_work.waiters_pending = false; 2597 /* irq_work_queue() supplies it's own memory barriers */ 2598 irq_work_queue(&cpu_buffer->irq_work.work); 2599 } 2600 2601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2602 2603 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2604 cpu_buffer->irq_work.wakeup_full = true; 2605 cpu_buffer->irq_work.full_waiters_pending = false; 2606 /* irq_work_queue() supplies it's own memory barriers */ 2607 irq_work_queue(&cpu_buffer->irq_work.work); 2608 } 2609 } 2610 2611 /* 2612 * The lock and unlock are done within a preempt disable section. 2613 * The current_context per_cpu variable can only be modified 2614 * by the current task between lock and unlock. But it can 2615 * be modified more than once via an interrupt. To pass this 2616 * information from the lock to the unlock without having to 2617 * access the 'in_interrupt()' functions again (which do show 2618 * a bit of overhead in something as critical as function tracing, 2619 * we use a bitmask trick. 2620 * 2621 * bit 0 = NMI context 2622 * bit 1 = IRQ context 2623 * bit 2 = SoftIRQ context 2624 * bit 3 = normal context. 2625 * 2626 * This works because this is the order of contexts that can 2627 * preempt other contexts. A SoftIRQ never preempts an IRQ 2628 * context. 2629 * 2630 * When the context is determined, the corresponding bit is 2631 * checked and set (if it was set, then a recursion of that context 2632 * happened). 2633 * 2634 * On unlock, we need to clear this bit. To do so, just subtract 2635 * 1 from the current_context and AND it to itself. 2636 * 2637 * (binary) 2638 * 101 - 1 = 100 2639 * 101 & 100 = 100 (clearing bit zero) 2640 * 2641 * 1010 - 1 = 1001 2642 * 1010 & 1001 = 1000 (clearing bit 1) 2643 * 2644 * The least significant bit can be cleared this way, and it 2645 * just so happens that it is the same bit corresponding to 2646 * the current context. 2647 */ 2648 2649 static __always_inline int 2650 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2651 { 2652 unsigned int val = cpu_buffer->current_context; 2653 unsigned long pc = preempt_count(); 2654 int bit; 2655 2656 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2657 bit = RB_CTX_NORMAL; 2658 else 2659 bit = pc & NMI_MASK ? RB_CTX_NMI : 2660 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2661 2662 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2663 return 1; 2664 2665 val |= (1 << (bit + cpu_buffer->nest)); 2666 cpu_buffer->current_context = val; 2667 2668 return 0; 2669 } 2670 2671 static __always_inline void 2672 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2673 { 2674 cpu_buffer->current_context &= 2675 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2676 } 2677 2678 /* The recursive locking above uses 4 bits */ 2679 #define NESTED_BITS 4 2680 2681 /** 2682 * ring_buffer_nest_start - Allow to trace while nested 2683 * @buffer: The ring buffer to modify 2684 * 2685 * The ring buffer has a safety mechanism to prevent recursion. 2686 * But there may be a case where a trace needs to be done while 2687 * tracing something else. In this case, calling this function 2688 * will allow this function to nest within a currently active 2689 * ring_buffer_lock_reserve(). 2690 * 2691 * Call this function before calling another ring_buffer_lock_reserve() and 2692 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2693 */ 2694 void ring_buffer_nest_start(struct ring_buffer *buffer) 2695 { 2696 struct ring_buffer_per_cpu *cpu_buffer; 2697 int cpu; 2698 2699 /* Enabled by ring_buffer_nest_end() */ 2700 preempt_disable_notrace(); 2701 cpu = raw_smp_processor_id(); 2702 cpu_buffer = buffer->buffers[cpu]; 2703 /* This is the shift value for the above recursive locking */ 2704 cpu_buffer->nest += NESTED_BITS; 2705 } 2706 2707 /** 2708 * ring_buffer_nest_end - Allow to trace while nested 2709 * @buffer: The ring buffer to modify 2710 * 2711 * Must be called after ring_buffer_nest_start() and after the 2712 * ring_buffer_unlock_commit(). 2713 */ 2714 void ring_buffer_nest_end(struct ring_buffer *buffer) 2715 { 2716 struct ring_buffer_per_cpu *cpu_buffer; 2717 int cpu; 2718 2719 /* disabled by ring_buffer_nest_start() */ 2720 cpu = raw_smp_processor_id(); 2721 cpu_buffer = buffer->buffers[cpu]; 2722 /* This is the shift value for the above recursive locking */ 2723 cpu_buffer->nest -= NESTED_BITS; 2724 preempt_enable_notrace(); 2725 } 2726 2727 /** 2728 * ring_buffer_unlock_commit - commit a reserved 2729 * @buffer: The buffer to commit to 2730 * @event: The event pointer to commit. 2731 * 2732 * This commits the data to the ring buffer, and releases any locks held. 2733 * 2734 * Must be paired with ring_buffer_lock_reserve. 2735 */ 2736 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2737 struct ring_buffer_event *event) 2738 { 2739 struct ring_buffer_per_cpu *cpu_buffer; 2740 int cpu = raw_smp_processor_id(); 2741 2742 cpu_buffer = buffer->buffers[cpu]; 2743 2744 rb_commit(cpu_buffer, event); 2745 2746 rb_wakeups(buffer, cpu_buffer); 2747 2748 trace_recursive_unlock(cpu_buffer); 2749 2750 preempt_enable_notrace(); 2751 2752 return 0; 2753 } 2754 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2755 2756 static noinline void 2757 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2758 struct rb_event_info *info) 2759 { 2760 WARN_ONCE(info->delta > (1ULL << 59), 2761 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2762 (unsigned long long)info->delta, 2763 (unsigned long long)info->ts, 2764 (unsigned long long)cpu_buffer->write_stamp, 2765 sched_clock_stable() ? "" : 2766 "If you just came from a suspend/resume,\n" 2767 "please switch to the trace global clock:\n" 2768 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2769 "or add trace_clock=global to the kernel command line\n"); 2770 info->add_timestamp = 1; 2771 } 2772 2773 static struct ring_buffer_event * 2774 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2775 struct rb_event_info *info) 2776 { 2777 struct ring_buffer_event *event; 2778 struct buffer_page *tail_page; 2779 unsigned long tail, write; 2780 2781 /* 2782 * If the time delta since the last event is too big to 2783 * hold in the time field of the event, then we append a 2784 * TIME EXTEND event ahead of the data event. 2785 */ 2786 if (unlikely(info->add_timestamp)) 2787 info->length += RB_LEN_TIME_EXTEND; 2788 2789 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2790 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2791 write = local_add_return(info->length, &tail_page->write); 2792 2793 /* set write to only the index of the write */ 2794 write &= RB_WRITE_MASK; 2795 tail = write - info->length; 2796 2797 /* 2798 * If this is the first commit on the page, then it has the same 2799 * timestamp as the page itself. 2800 */ 2801 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2802 info->delta = 0; 2803 2804 /* See if we shot pass the end of this buffer page */ 2805 if (unlikely(write > BUF_PAGE_SIZE)) 2806 return rb_move_tail(cpu_buffer, tail, info); 2807 2808 /* We reserved something on the buffer */ 2809 2810 event = __rb_page_index(tail_page, tail); 2811 rb_update_event(cpu_buffer, event, info); 2812 2813 local_inc(&tail_page->entries); 2814 2815 /* 2816 * If this is the first commit on the page, then update 2817 * its timestamp. 2818 */ 2819 if (!tail) 2820 tail_page->page->time_stamp = info->ts; 2821 2822 /* account for these added bytes */ 2823 local_add(info->length, &cpu_buffer->entries_bytes); 2824 2825 return event; 2826 } 2827 2828 static __always_inline struct ring_buffer_event * 2829 rb_reserve_next_event(struct ring_buffer *buffer, 2830 struct ring_buffer_per_cpu *cpu_buffer, 2831 unsigned long length) 2832 { 2833 struct ring_buffer_event *event; 2834 struct rb_event_info info; 2835 int nr_loops = 0; 2836 u64 diff; 2837 2838 rb_start_commit(cpu_buffer); 2839 2840 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2841 /* 2842 * Due to the ability to swap a cpu buffer from a buffer 2843 * it is possible it was swapped before we committed. 2844 * (committing stops a swap). We check for it here and 2845 * if it happened, we have to fail the write. 2846 */ 2847 barrier(); 2848 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2849 local_dec(&cpu_buffer->committing); 2850 local_dec(&cpu_buffer->commits); 2851 return NULL; 2852 } 2853 #endif 2854 2855 info.length = rb_calculate_event_length(length); 2856 again: 2857 info.add_timestamp = 0; 2858 info.delta = 0; 2859 2860 /* 2861 * We allow for interrupts to reenter here and do a trace. 2862 * If one does, it will cause this original code to loop 2863 * back here. Even with heavy interrupts happening, this 2864 * should only happen a few times in a row. If this happens 2865 * 1000 times in a row, there must be either an interrupt 2866 * storm or we have something buggy. 2867 * Bail! 2868 */ 2869 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2870 goto out_fail; 2871 2872 info.ts = rb_time_stamp(cpu_buffer->buffer); 2873 diff = info.ts - cpu_buffer->write_stamp; 2874 2875 /* make sure this diff is calculated here */ 2876 barrier(); 2877 2878 if (ring_buffer_time_stamp_abs(buffer)) { 2879 info.delta = info.ts; 2880 rb_handle_timestamp(cpu_buffer, &info); 2881 } else /* Did the write stamp get updated already? */ 2882 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2883 info.delta = diff; 2884 if (unlikely(test_time_stamp(info.delta))) 2885 rb_handle_timestamp(cpu_buffer, &info); 2886 } 2887 2888 event = __rb_reserve_next(cpu_buffer, &info); 2889 2890 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2891 if (info.add_timestamp) 2892 info.length -= RB_LEN_TIME_EXTEND; 2893 goto again; 2894 } 2895 2896 if (!event) 2897 goto out_fail; 2898 2899 return event; 2900 2901 out_fail: 2902 rb_end_commit(cpu_buffer); 2903 return NULL; 2904 } 2905 2906 /** 2907 * ring_buffer_lock_reserve - reserve a part of the buffer 2908 * @buffer: the ring buffer to reserve from 2909 * @length: the length of the data to reserve (excluding event header) 2910 * 2911 * Returns a reserved event on the ring buffer to copy directly to. 2912 * The user of this interface will need to get the body to write into 2913 * and can use the ring_buffer_event_data() interface. 2914 * 2915 * The length is the length of the data needed, not the event length 2916 * which also includes the event header. 2917 * 2918 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2919 * If NULL is returned, then nothing has been allocated or locked. 2920 */ 2921 struct ring_buffer_event * 2922 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2923 { 2924 struct ring_buffer_per_cpu *cpu_buffer; 2925 struct ring_buffer_event *event; 2926 int cpu; 2927 2928 /* If we are tracing schedule, we don't want to recurse */ 2929 preempt_disable_notrace(); 2930 2931 if (unlikely(atomic_read(&buffer->record_disabled))) 2932 goto out; 2933 2934 cpu = raw_smp_processor_id(); 2935 2936 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2937 goto out; 2938 2939 cpu_buffer = buffer->buffers[cpu]; 2940 2941 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2942 goto out; 2943 2944 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2945 goto out; 2946 2947 if (unlikely(trace_recursive_lock(cpu_buffer))) 2948 goto out; 2949 2950 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2951 if (!event) 2952 goto out_unlock; 2953 2954 return event; 2955 2956 out_unlock: 2957 trace_recursive_unlock(cpu_buffer); 2958 out: 2959 preempt_enable_notrace(); 2960 return NULL; 2961 } 2962 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2963 2964 /* 2965 * Decrement the entries to the page that an event is on. 2966 * The event does not even need to exist, only the pointer 2967 * to the page it is on. This may only be called before the commit 2968 * takes place. 2969 */ 2970 static inline void 2971 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2972 struct ring_buffer_event *event) 2973 { 2974 unsigned long addr = (unsigned long)event; 2975 struct buffer_page *bpage = cpu_buffer->commit_page; 2976 struct buffer_page *start; 2977 2978 addr &= PAGE_MASK; 2979 2980 /* Do the likely case first */ 2981 if (likely(bpage->page == (void *)addr)) { 2982 local_dec(&bpage->entries); 2983 return; 2984 } 2985 2986 /* 2987 * Because the commit page may be on the reader page we 2988 * start with the next page and check the end loop there. 2989 */ 2990 rb_inc_page(cpu_buffer, &bpage); 2991 start = bpage; 2992 do { 2993 if (bpage->page == (void *)addr) { 2994 local_dec(&bpage->entries); 2995 return; 2996 } 2997 rb_inc_page(cpu_buffer, &bpage); 2998 } while (bpage != start); 2999 3000 /* commit not part of this buffer?? */ 3001 RB_WARN_ON(cpu_buffer, 1); 3002 } 3003 3004 /** 3005 * ring_buffer_commit_discard - discard an event that has not been committed 3006 * @buffer: the ring buffer 3007 * @event: non committed event to discard 3008 * 3009 * Sometimes an event that is in the ring buffer needs to be ignored. 3010 * This function lets the user discard an event in the ring buffer 3011 * and then that event will not be read later. 3012 * 3013 * This function only works if it is called before the item has been 3014 * committed. It will try to free the event from the ring buffer 3015 * if another event has not been added behind it. 3016 * 3017 * If another event has been added behind it, it will set the event 3018 * up as discarded, and perform the commit. 3019 * 3020 * If this function is called, do not call ring_buffer_unlock_commit on 3021 * the event. 3022 */ 3023 void ring_buffer_discard_commit(struct ring_buffer *buffer, 3024 struct ring_buffer_event *event) 3025 { 3026 struct ring_buffer_per_cpu *cpu_buffer; 3027 int cpu; 3028 3029 /* The event is discarded regardless */ 3030 rb_event_discard(event); 3031 3032 cpu = smp_processor_id(); 3033 cpu_buffer = buffer->buffers[cpu]; 3034 3035 /* 3036 * This must only be called if the event has not been 3037 * committed yet. Thus we can assume that preemption 3038 * is still disabled. 3039 */ 3040 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3041 3042 rb_decrement_entry(cpu_buffer, event); 3043 if (rb_try_to_discard(cpu_buffer, event)) 3044 goto out; 3045 3046 /* 3047 * The commit is still visible by the reader, so we 3048 * must still update the timestamp. 3049 */ 3050 rb_update_write_stamp(cpu_buffer, event); 3051 out: 3052 rb_end_commit(cpu_buffer); 3053 3054 trace_recursive_unlock(cpu_buffer); 3055 3056 preempt_enable_notrace(); 3057 3058 } 3059 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3060 3061 /** 3062 * ring_buffer_write - write data to the buffer without reserving 3063 * @buffer: The ring buffer to write to. 3064 * @length: The length of the data being written (excluding the event header) 3065 * @data: The data to write to the buffer. 3066 * 3067 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3068 * one function. If you already have the data to write to the buffer, it 3069 * may be easier to simply call this function. 3070 * 3071 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3072 * and not the length of the event which would hold the header. 3073 */ 3074 int ring_buffer_write(struct ring_buffer *buffer, 3075 unsigned long length, 3076 void *data) 3077 { 3078 struct ring_buffer_per_cpu *cpu_buffer; 3079 struct ring_buffer_event *event; 3080 void *body; 3081 int ret = -EBUSY; 3082 int cpu; 3083 3084 preempt_disable_notrace(); 3085 3086 if (atomic_read(&buffer->record_disabled)) 3087 goto out; 3088 3089 cpu = raw_smp_processor_id(); 3090 3091 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3092 goto out; 3093 3094 cpu_buffer = buffer->buffers[cpu]; 3095 3096 if (atomic_read(&cpu_buffer->record_disabled)) 3097 goto out; 3098 3099 if (length > BUF_MAX_DATA_SIZE) 3100 goto out; 3101 3102 if (unlikely(trace_recursive_lock(cpu_buffer))) 3103 goto out; 3104 3105 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3106 if (!event) 3107 goto out_unlock; 3108 3109 body = rb_event_data(event); 3110 3111 memcpy(body, data, length); 3112 3113 rb_commit(cpu_buffer, event); 3114 3115 rb_wakeups(buffer, cpu_buffer); 3116 3117 ret = 0; 3118 3119 out_unlock: 3120 trace_recursive_unlock(cpu_buffer); 3121 3122 out: 3123 preempt_enable_notrace(); 3124 3125 return ret; 3126 } 3127 EXPORT_SYMBOL_GPL(ring_buffer_write); 3128 3129 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3130 { 3131 struct buffer_page *reader = cpu_buffer->reader_page; 3132 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3133 struct buffer_page *commit = cpu_buffer->commit_page; 3134 3135 /* In case of error, head will be NULL */ 3136 if (unlikely(!head)) 3137 return true; 3138 3139 return reader->read == rb_page_commit(reader) && 3140 (commit == reader || 3141 (commit == head && 3142 head->read == rb_page_commit(commit))); 3143 } 3144 3145 /** 3146 * ring_buffer_record_disable - stop all writes into the buffer 3147 * @buffer: The ring buffer to stop writes to. 3148 * 3149 * This prevents all writes to the buffer. Any attempt to write 3150 * to the buffer after this will fail and return NULL. 3151 * 3152 * The caller should call synchronize_sched() after this. 3153 */ 3154 void ring_buffer_record_disable(struct ring_buffer *buffer) 3155 { 3156 atomic_inc(&buffer->record_disabled); 3157 } 3158 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3159 3160 /** 3161 * ring_buffer_record_enable - enable writes to the buffer 3162 * @buffer: The ring buffer to enable writes 3163 * 3164 * Note, multiple disables will need the same number of enables 3165 * to truly enable the writing (much like preempt_disable). 3166 */ 3167 void ring_buffer_record_enable(struct ring_buffer *buffer) 3168 { 3169 atomic_dec(&buffer->record_disabled); 3170 } 3171 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3172 3173 /** 3174 * ring_buffer_record_off - stop all writes into the buffer 3175 * @buffer: The ring buffer to stop writes to. 3176 * 3177 * This prevents all writes to the buffer. Any attempt to write 3178 * to the buffer after this will fail and return NULL. 3179 * 3180 * This is different than ring_buffer_record_disable() as 3181 * it works like an on/off switch, where as the disable() version 3182 * must be paired with a enable(). 3183 */ 3184 void ring_buffer_record_off(struct ring_buffer *buffer) 3185 { 3186 unsigned int rd; 3187 unsigned int new_rd; 3188 3189 do { 3190 rd = atomic_read(&buffer->record_disabled); 3191 new_rd = rd | RB_BUFFER_OFF; 3192 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3193 } 3194 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3195 3196 /** 3197 * ring_buffer_record_on - restart writes into the buffer 3198 * @buffer: The ring buffer to start writes to. 3199 * 3200 * This enables all writes to the buffer that was disabled by 3201 * ring_buffer_record_off(). 3202 * 3203 * This is different than ring_buffer_record_enable() as 3204 * it works like an on/off switch, where as the enable() version 3205 * must be paired with a disable(). 3206 */ 3207 void ring_buffer_record_on(struct ring_buffer *buffer) 3208 { 3209 unsigned int rd; 3210 unsigned int new_rd; 3211 3212 do { 3213 rd = atomic_read(&buffer->record_disabled); 3214 new_rd = rd & ~RB_BUFFER_OFF; 3215 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3216 } 3217 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3218 3219 /** 3220 * ring_buffer_record_is_on - return true if the ring buffer can write 3221 * @buffer: The ring buffer to see if write is enabled 3222 * 3223 * Returns true if the ring buffer is in a state that it accepts writes. 3224 */ 3225 bool ring_buffer_record_is_on(struct ring_buffer *buffer) 3226 { 3227 return !atomic_read(&buffer->record_disabled); 3228 } 3229 3230 /** 3231 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3232 * @buffer: The ring buffer to see if write is set enabled 3233 * 3234 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3235 * Note that this does NOT mean it is in a writable state. 3236 * 3237 * It may return true when the ring buffer has been disabled by 3238 * ring_buffer_record_disable(), as that is a temporary disabling of 3239 * the ring buffer. 3240 */ 3241 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer) 3242 { 3243 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3244 } 3245 3246 /** 3247 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3248 * @buffer: The ring buffer to stop writes to. 3249 * @cpu: The CPU buffer to stop 3250 * 3251 * This prevents all writes to the buffer. Any attempt to write 3252 * to the buffer after this will fail and return NULL. 3253 * 3254 * The caller should call synchronize_sched() after this. 3255 */ 3256 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3257 { 3258 struct ring_buffer_per_cpu *cpu_buffer; 3259 3260 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3261 return; 3262 3263 cpu_buffer = buffer->buffers[cpu]; 3264 atomic_inc(&cpu_buffer->record_disabled); 3265 } 3266 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3267 3268 /** 3269 * ring_buffer_record_enable_cpu - enable writes to the buffer 3270 * @buffer: The ring buffer to enable writes 3271 * @cpu: The CPU to enable. 3272 * 3273 * Note, multiple disables will need the same number of enables 3274 * to truly enable the writing (much like preempt_disable). 3275 */ 3276 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3277 { 3278 struct ring_buffer_per_cpu *cpu_buffer; 3279 3280 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3281 return; 3282 3283 cpu_buffer = buffer->buffers[cpu]; 3284 atomic_dec(&cpu_buffer->record_disabled); 3285 } 3286 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3287 3288 /* 3289 * The total entries in the ring buffer is the running counter 3290 * of entries entered into the ring buffer, minus the sum of 3291 * the entries read from the ring buffer and the number of 3292 * entries that were overwritten. 3293 */ 3294 static inline unsigned long 3295 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3296 { 3297 return local_read(&cpu_buffer->entries) - 3298 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3299 } 3300 3301 /** 3302 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3303 * @buffer: The ring buffer 3304 * @cpu: The per CPU buffer to read from. 3305 */ 3306 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3307 { 3308 unsigned long flags; 3309 struct ring_buffer_per_cpu *cpu_buffer; 3310 struct buffer_page *bpage; 3311 u64 ret = 0; 3312 3313 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3314 return 0; 3315 3316 cpu_buffer = buffer->buffers[cpu]; 3317 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3318 /* 3319 * if the tail is on reader_page, oldest time stamp is on the reader 3320 * page 3321 */ 3322 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3323 bpage = cpu_buffer->reader_page; 3324 else 3325 bpage = rb_set_head_page(cpu_buffer); 3326 if (bpage) 3327 ret = bpage->page->time_stamp; 3328 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3329 3330 return ret; 3331 } 3332 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3333 3334 /** 3335 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3336 * @buffer: The ring buffer 3337 * @cpu: The per CPU buffer to read from. 3338 */ 3339 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3340 { 3341 struct ring_buffer_per_cpu *cpu_buffer; 3342 unsigned long ret; 3343 3344 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3345 return 0; 3346 3347 cpu_buffer = buffer->buffers[cpu]; 3348 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3349 3350 return ret; 3351 } 3352 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3353 3354 /** 3355 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3356 * @buffer: The ring buffer 3357 * @cpu: The per CPU buffer to get the entries from. 3358 */ 3359 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3360 { 3361 struct ring_buffer_per_cpu *cpu_buffer; 3362 3363 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3364 return 0; 3365 3366 cpu_buffer = buffer->buffers[cpu]; 3367 3368 return rb_num_of_entries(cpu_buffer); 3369 } 3370 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3371 3372 /** 3373 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3374 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3375 * @buffer: The ring buffer 3376 * @cpu: The per CPU buffer to get the number of overruns from 3377 */ 3378 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3379 { 3380 struct ring_buffer_per_cpu *cpu_buffer; 3381 unsigned long ret; 3382 3383 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3384 return 0; 3385 3386 cpu_buffer = buffer->buffers[cpu]; 3387 ret = local_read(&cpu_buffer->overrun); 3388 3389 return ret; 3390 } 3391 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3392 3393 /** 3394 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3395 * commits failing due to the buffer wrapping around while there are uncommitted 3396 * events, such as during an interrupt storm. 3397 * @buffer: The ring buffer 3398 * @cpu: The per CPU buffer to get the number of overruns from 3399 */ 3400 unsigned long 3401 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3402 { 3403 struct ring_buffer_per_cpu *cpu_buffer; 3404 unsigned long ret; 3405 3406 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3407 return 0; 3408 3409 cpu_buffer = buffer->buffers[cpu]; 3410 ret = local_read(&cpu_buffer->commit_overrun); 3411 3412 return ret; 3413 } 3414 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3415 3416 /** 3417 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3418 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3419 * @buffer: The ring buffer 3420 * @cpu: The per CPU buffer to get the number of overruns from 3421 */ 3422 unsigned long 3423 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3424 { 3425 struct ring_buffer_per_cpu *cpu_buffer; 3426 unsigned long ret; 3427 3428 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3429 return 0; 3430 3431 cpu_buffer = buffer->buffers[cpu]; 3432 ret = local_read(&cpu_buffer->dropped_events); 3433 3434 return ret; 3435 } 3436 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3437 3438 /** 3439 * ring_buffer_read_events_cpu - get the number of events successfully read 3440 * @buffer: The ring buffer 3441 * @cpu: The per CPU buffer to get the number of events read 3442 */ 3443 unsigned long 3444 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3445 { 3446 struct ring_buffer_per_cpu *cpu_buffer; 3447 3448 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3449 return 0; 3450 3451 cpu_buffer = buffer->buffers[cpu]; 3452 return cpu_buffer->read; 3453 } 3454 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3455 3456 /** 3457 * ring_buffer_entries - get the number of entries in a buffer 3458 * @buffer: The ring buffer 3459 * 3460 * Returns the total number of entries in the ring buffer 3461 * (all CPU entries) 3462 */ 3463 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3464 { 3465 struct ring_buffer_per_cpu *cpu_buffer; 3466 unsigned long entries = 0; 3467 int cpu; 3468 3469 /* if you care about this being correct, lock the buffer */ 3470 for_each_buffer_cpu(buffer, cpu) { 3471 cpu_buffer = buffer->buffers[cpu]; 3472 entries += rb_num_of_entries(cpu_buffer); 3473 } 3474 3475 return entries; 3476 } 3477 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3478 3479 /** 3480 * ring_buffer_overruns - get the number of overruns in buffer 3481 * @buffer: The ring buffer 3482 * 3483 * Returns the total number of overruns in the ring buffer 3484 * (all CPU entries) 3485 */ 3486 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3487 { 3488 struct ring_buffer_per_cpu *cpu_buffer; 3489 unsigned long overruns = 0; 3490 int cpu; 3491 3492 /* if you care about this being correct, lock the buffer */ 3493 for_each_buffer_cpu(buffer, cpu) { 3494 cpu_buffer = buffer->buffers[cpu]; 3495 overruns += local_read(&cpu_buffer->overrun); 3496 } 3497 3498 return overruns; 3499 } 3500 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3501 3502 static void rb_iter_reset(struct ring_buffer_iter *iter) 3503 { 3504 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3505 3506 /* Iterator usage is expected to have record disabled */ 3507 iter->head_page = cpu_buffer->reader_page; 3508 iter->head = cpu_buffer->reader_page->read; 3509 3510 iter->cache_reader_page = iter->head_page; 3511 iter->cache_read = cpu_buffer->read; 3512 3513 if (iter->head) 3514 iter->read_stamp = cpu_buffer->read_stamp; 3515 else 3516 iter->read_stamp = iter->head_page->page->time_stamp; 3517 } 3518 3519 /** 3520 * ring_buffer_iter_reset - reset an iterator 3521 * @iter: The iterator to reset 3522 * 3523 * Resets the iterator, so that it will start from the beginning 3524 * again. 3525 */ 3526 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3527 { 3528 struct ring_buffer_per_cpu *cpu_buffer; 3529 unsigned long flags; 3530 3531 if (!iter) 3532 return; 3533 3534 cpu_buffer = iter->cpu_buffer; 3535 3536 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3537 rb_iter_reset(iter); 3538 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3539 } 3540 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3541 3542 /** 3543 * ring_buffer_iter_empty - check if an iterator has no more to read 3544 * @iter: The iterator to check 3545 */ 3546 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3547 { 3548 struct ring_buffer_per_cpu *cpu_buffer; 3549 struct buffer_page *reader; 3550 struct buffer_page *head_page; 3551 struct buffer_page *commit_page; 3552 unsigned commit; 3553 3554 cpu_buffer = iter->cpu_buffer; 3555 3556 /* Remember, trace recording is off when iterator is in use */ 3557 reader = cpu_buffer->reader_page; 3558 head_page = cpu_buffer->head_page; 3559 commit_page = cpu_buffer->commit_page; 3560 commit = rb_page_commit(commit_page); 3561 3562 return ((iter->head_page == commit_page && iter->head == commit) || 3563 (iter->head_page == reader && commit_page == head_page && 3564 head_page->read == commit && 3565 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3566 } 3567 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3568 3569 static void 3570 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3571 struct ring_buffer_event *event) 3572 { 3573 u64 delta; 3574 3575 switch (event->type_len) { 3576 case RINGBUF_TYPE_PADDING: 3577 return; 3578 3579 case RINGBUF_TYPE_TIME_EXTEND: 3580 delta = ring_buffer_event_time_stamp(event); 3581 cpu_buffer->read_stamp += delta; 3582 return; 3583 3584 case RINGBUF_TYPE_TIME_STAMP: 3585 delta = ring_buffer_event_time_stamp(event); 3586 cpu_buffer->read_stamp = delta; 3587 return; 3588 3589 case RINGBUF_TYPE_DATA: 3590 cpu_buffer->read_stamp += event->time_delta; 3591 return; 3592 3593 default: 3594 BUG(); 3595 } 3596 return; 3597 } 3598 3599 static void 3600 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3601 struct ring_buffer_event *event) 3602 { 3603 u64 delta; 3604 3605 switch (event->type_len) { 3606 case RINGBUF_TYPE_PADDING: 3607 return; 3608 3609 case RINGBUF_TYPE_TIME_EXTEND: 3610 delta = ring_buffer_event_time_stamp(event); 3611 iter->read_stamp += delta; 3612 return; 3613 3614 case RINGBUF_TYPE_TIME_STAMP: 3615 delta = ring_buffer_event_time_stamp(event); 3616 iter->read_stamp = delta; 3617 return; 3618 3619 case RINGBUF_TYPE_DATA: 3620 iter->read_stamp += event->time_delta; 3621 return; 3622 3623 default: 3624 BUG(); 3625 } 3626 return; 3627 } 3628 3629 static struct buffer_page * 3630 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3631 { 3632 struct buffer_page *reader = NULL; 3633 unsigned long overwrite; 3634 unsigned long flags; 3635 int nr_loops = 0; 3636 int ret; 3637 3638 local_irq_save(flags); 3639 arch_spin_lock(&cpu_buffer->lock); 3640 3641 again: 3642 /* 3643 * This should normally only loop twice. But because the 3644 * start of the reader inserts an empty page, it causes 3645 * a case where we will loop three times. There should be no 3646 * reason to loop four times (that I know of). 3647 */ 3648 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3649 reader = NULL; 3650 goto out; 3651 } 3652 3653 reader = cpu_buffer->reader_page; 3654 3655 /* If there's more to read, return this page */ 3656 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3657 goto out; 3658 3659 /* Never should we have an index greater than the size */ 3660 if (RB_WARN_ON(cpu_buffer, 3661 cpu_buffer->reader_page->read > rb_page_size(reader))) 3662 goto out; 3663 3664 /* check if we caught up to the tail */ 3665 reader = NULL; 3666 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3667 goto out; 3668 3669 /* Don't bother swapping if the ring buffer is empty */ 3670 if (rb_num_of_entries(cpu_buffer) == 0) 3671 goto out; 3672 3673 /* 3674 * Reset the reader page to size zero. 3675 */ 3676 local_set(&cpu_buffer->reader_page->write, 0); 3677 local_set(&cpu_buffer->reader_page->entries, 0); 3678 local_set(&cpu_buffer->reader_page->page->commit, 0); 3679 cpu_buffer->reader_page->real_end = 0; 3680 3681 spin: 3682 /* 3683 * Splice the empty reader page into the list around the head. 3684 */ 3685 reader = rb_set_head_page(cpu_buffer); 3686 if (!reader) 3687 goto out; 3688 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3689 cpu_buffer->reader_page->list.prev = reader->list.prev; 3690 3691 /* 3692 * cpu_buffer->pages just needs to point to the buffer, it 3693 * has no specific buffer page to point to. Lets move it out 3694 * of our way so we don't accidentally swap it. 3695 */ 3696 cpu_buffer->pages = reader->list.prev; 3697 3698 /* The reader page will be pointing to the new head */ 3699 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3700 3701 /* 3702 * We want to make sure we read the overruns after we set up our 3703 * pointers to the next object. The writer side does a 3704 * cmpxchg to cross pages which acts as the mb on the writer 3705 * side. Note, the reader will constantly fail the swap 3706 * while the writer is updating the pointers, so this 3707 * guarantees that the overwrite recorded here is the one we 3708 * want to compare with the last_overrun. 3709 */ 3710 smp_mb(); 3711 overwrite = local_read(&(cpu_buffer->overrun)); 3712 3713 /* 3714 * Here's the tricky part. 3715 * 3716 * We need to move the pointer past the header page. 3717 * But we can only do that if a writer is not currently 3718 * moving it. The page before the header page has the 3719 * flag bit '1' set if it is pointing to the page we want. 3720 * but if the writer is in the process of moving it 3721 * than it will be '2' or already moved '0'. 3722 */ 3723 3724 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3725 3726 /* 3727 * If we did not convert it, then we must try again. 3728 */ 3729 if (!ret) 3730 goto spin; 3731 3732 /* 3733 * Yeah! We succeeded in replacing the page. 3734 * 3735 * Now make the new head point back to the reader page. 3736 */ 3737 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3738 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3739 3740 /* Finally update the reader page to the new head */ 3741 cpu_buffer->reader_page = reader; 3742 cpu_buffer->reader_page->read = 0; 3743 3744 if (overwrite != cpu_buffer->last_overrun) { 3745 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3746 cpu_buffer->last_overrun = overwrite; 3747 } 3748 3749 goto again; 3750 3751 out: 3752 /* Update the read_stamp on the first event */ 3753 if (reader && reader->read == 0) 3754 cpu_buffer->read_stamp = reader->page->time_stamp; 3755 3756 arch_spin_unlock(&cpu_buffer->lock); 3757 local_irq_restore(flags); 3758 3759 return reader; 3760 } 3761 3762 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3763 { 3764 struct ring_buffer_event *event; 3765 struct buffer_page *reader; 3766 unsigned length; 3767 3768 reader = rb_get_reader_page(cpu_buffer); 3769 3770 /* This function should not be called when buffer is empty */ 3771 if (RB_WARN_ON(cpu_buffer, !reader)) 3772 return; 3773 3774 event = rb_reader_event(cpu_buffer); 3775 3776 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3777 cpu_buffer->read++; 3778 3779 rb_update_read_stamp(cpu_buffer, event); 3780 3781 length = rb_event_length(event); 3782 cpu_buffer->reader_page->read += length; 3783 } 3784 3785 static void rb_advance_iter(struct ring_buffer_iter *iter) 3786 { 3787 struct ring_buffer_per_cpu *cpu_buffer; 3788 struct ring_buffer_event *event; 3789 unsigned length; 3790 3791 cpu_buffer = iter->cpu_buffer; 3792 3793 /* 3794 * Check if we are at the end of the buffer. 3795 */ 3796 if (iter->head >= rb_page_size(iter->head_page)) { 3797 /* discarded commits can make the page empty */ 3798 if (iter->head_page == cpu_buffer->commit_page) 3799 return; 3800 rb_inc_iter(iter); 3801 return; 3802 } 3803 3804 event = rb_iter_head_event(iter); 3805 3806 length = rb_event_length(event); 3807 3808 /* 3809 * This should not be called to advance the header if we are 3810 * at the tail of the buffer. 3811 */ 3812 if (RB_WARN_ON(cpu_buffer, 3813 (iter->head_page == cpu_buffer->commit_page) && 3814 (iter->head + length > rb_commit_index(cpu_buffer)))) 3815 return; 3816 3817 rb_update_iter_read_stamp(iter, event); 3818 3819 iter->head += length; 3820 3821 /* check for end of page padding */ 3822 if ((iter->head >= rb_page_size(iter->head_page)) && 3823 (iter->head_page != cpu_buffer->commit_page)) 3824 rb_inc_iter(iter); 3825 } 3826 3827 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3828 { 3829 return cpu_buffer->lost_events; 3830 } 3831 3832 static struct ring_buffer_event * 3833 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3834 unsigned long *lost_events) 3835 { 3836 struct ring_buffer_event *event; 3837 struct buffer_page *reader; 3838 int nr_loops = 0; 3839 3840 if (ts) 3841 *ts = 0; 3842 again: 3843 /* 3844 * We repeat when a time extend is encountered. 3845 * Since the time extend is always attached to a data event, 3846 * we should never loop more than once. 3847 * (We never hit the following condition more than twice). 3848 */ 3849 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3850 return NULL; 3851 3852 reader = rb_get_reader_page(cpu_buffer); 3853 if (!reader) 3854 return NULL; 3855 3856 event = rb_reader_event(cpu_buffer); 3857 3858 switch (event->type_len) { 3859 case RINGBUF_TYPE_PADDING: 3860 if (rb_null_event(event)) 3861 RB_WARN_ON(cpu_buffer, 1); 3862 /* 3863 * Because the writer could be discarding every 3864 * event it creates (which would probably be bad) 3865 * if we were to go back to "again" then we may never 3866 * catch up, and will trigger the warn on, or lock 3867 * the box. Return the padding, and we will release 3868 * the current locks, and try again. 3869 */ 3870 return event; 3871 3872 case RINGBUF_TYPE_TIME_EXTEND: 3873 /* Internal data, OK to advance */ 3874 rb_advance_reader(cpu_buffer); 3875 goto again; 3876 3877 case RINGBUF_TYPE_TIME_STAMP: 3878 if (ts) { 3879 *ts = ring_buffer_event_time_stamp(event); 3880 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3881 cpu_buffer->cpu, ts); 3882 } 3883 /* Internal data, OK to advance */ 3884 rb_advance_reader(cpu_buffer); 3885 goto again; 3886 3887 case RINGBUF_TYPE_DATA: 3888 if (ts && !(*ts)) { 3889 *ts = cpu_buffer->read_stamp + event->time_delta; 3890 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3891 cpu_buffer->cpu, ts); 3892 } 3893 if (lost_events) 3894 *lost_events = rb_lost_events(cpu_buffer); 3895 return event; 3896 3897 default: 3898 BUG(); 3899 } 3900 3901 return NULL; 3902 } 3903 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3904 3905 static struct ring_buffer_event * 3906 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3907 { 3908 struct ring_buffer *buffer; 3909 struct ring_buffer_per_cpu *cpu_buffer; 3910 struct ring_buffer_event *event; 3911 int nr_loops = 0; 3912 3913 if (ts) 3914 *ts = 0; 3915 3916 cpu_buffer = iter->cpu_buffer; 3917 buffer = cpu_buffer->buffer; 3918 3919 /* 3920 * Check if someone performed a consuming read to 3921 * the buffer. A consuming read invalidates the iterator 3922 * and we need to reset the iterator in this case. 3923 */ 3924 if (unlikely(iter->cache_read != cpu_buffer->read || 3925 iter->cache_reader_page != cpu_buffer->reader_page)) 3926 rb_iter_reset(iter); 3927 3928 again: 3929 if (ring_buffer_iter_empty(iter)) 3930 return NULL; 3931 3932 /* 3933 * We repeat when a time extend is encountered or we hit 3934 * the end of the page. Since the time extend is always attached 3935 * to a data event, we should never loop more than three times. 3936 * Once for going to next page, once on time extend, and 3937 * finally once to get the event. 3938 * (We never hit the following condition more than thrice). 3939 */ 3940 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3941 return NULL; 3942 3943 if (rb_per_cpu_empty(cpu_buffer)) 3944 return NULL; 3945 3946 if (iter->head >= rb_page_size(iter->head_page)) { 3947 rb_inc_iter(iter); 3948 goto again; 3949 } 3950 3951 event = rb_iter_head_event(iter); 3952 3953 switch (event->type_len) { 3954 case RINGBUF_TYPE_PADDING: 3955 if (rb_null_event(event)) { 3956 rb_inc_iter(iter); 3957 goto again; 3958 } 3959 rb_advance_iter(iter); 3960 return event; 3961 3962 case RINGBUF_TYPE_TIME_EXTEND: 3963 /* Internal data, OK to advance */ 3964 rb_advance_iter(iter); 3965 goto again; 3966 3967 case RINGBUF_TYPE_TIME_STAMP: 3968 if (ts) { 3969 *ts = ring_buffer_event_time_stamp(event); 3970 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3971 cpu_buffer->cpu, ts); 3972 } 3973 /* Internal data, OK to advance */ 3974 rb_advance_iter(iter); 3975 goto again; 3976 3977 case RINGBUF_TYPE_DATA: 3978 if (ts && !(*ts)) { 3979 *ts = iter->read_stamp + event->time_delta; 3980 ring_buffer_normalize_time_stamp(buffer, 3981 cpu_buffer->cpu, ts); 3982 } 3983 return event; 3984 3985 default: 3986 BUG(); 3987 } 3988 3989 return NULL; 3990 } 3991 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3992 3993 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3994 { 3995 if (likely(!in_nmi())) { 3996 raw_spin_lock(&cpu_buffer->reader_lock); 3997 return true; 3998 } 3999 4000 /* 4001 * If an NMI die dumps out the content of the ring buffer 4002 * trylock must be used to prevent a deadlock if the NMI 4003 * preempted a task that holds the ring buffer locks. If 4004 * we get the lock then all is fine, if not, then continue 4005 * to do the read, but this can corrupt the ring buffer, 4006 * so it must be permanently disabled from future writes. 4007 * Reading from NMI is a oneshot deal. 4008 */ 4009 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4010 return true; 4011 4012 /* Continue without locking, but disable the ring buffer */ 4013 atomic_inc(&cpu_buffer->record_disabled); 4014 return false; 4015 } 4016 4017 static inline void 4018 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4019 { 4020 if (likely(locked)) 4021 raw_spin_unlock(&cpu_buffer->reader_lock); 4022 return; 4023 } 4024 4025 /** 4026 * ring_buffer_peek - peek at the next event to be read 4027 * @buffer: The ring buffer to read 4028 * @cpu: The cpu to peak at 4029 * @ts: The timestamp counter of this event. 4030 * @lost_events: a variable to store if events were lost (may be NULL) 4031 * 4032 * This will return the event that will be read next, but does 4033 * not consume the data. 4034 */ 4035 struct ring_buffer_event * 4036 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 4037 unsigned long *lost_events) 4038 { 4039 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4040 struct ring_buffer_event *event; 4041 unsigned long flags; 4042 bool dolock; 4043 4044 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4045 return NULL; 4046 4047 again: 4048 local_irq_save(flags); 4049 dolock = rb_reader_lock(cpu_buffer); 4050 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4051 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4052 rb_advance_reader(cpu_buffer); 4053 rb_reader_unlock(cpu_buffer, dolock); 4054 local_irq_restore(flags); 4055 4056 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4057 goto again; 4058 4059 return event; 4060 } 4061 4062 /** 4063 * ring_buffer_iter_peek - peek at the next event to be read 4064 * @iter: The ring buffer iterator 4065 * @ts: The timestamp counter of this event. 4066 * 4067 * This will return the event that will be read next, but does 4068 * not increment the iterator. 4069 */ 4070 struct ring_buffer_event * 4071 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4072 { 4073 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4074 struct ring_buffer_event *event; 4075 unsigned long flags; 4076 4077 again: 4078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4079 event = rb_iter_peek(iter, ts); 4080 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4081 4082 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4083 goto again; 4084 4085 return event; 4086 } 4087 4088 /** 4089 * ring_buffer_consume - return an event and consume it 4090 * @buffer: The ring buffer to get the next event from 4091 * @cpu: the cpu to read the buffer from 4092 * @ts: a variable to store the timestamp (may be NULL) 4093 * @lost_events: a variable to store if events were lost (may be NULL) 4094 * 4095 * Returns the next event in the ring buffer, and that event is consumed. 4096 * Meaning, that sequential reads will keep returning a different event, 4097 * and eventually empty the ring buffer if the producer is slower. 4098 */ 4099 struct ring_buffer_event * 4100 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 4101 unsigned long *lost_events) 4102 { 4103 struct ring_buffer_per_cpu *cpu_buffer; 4104 struct ring_buffer_event *event = NULL; 4105 unsigned long flags; 4106 bool dolock; 4107 4108 again: 4109 /* might be called in atomic */ 4110 preempt_disable(); 4111 4112 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4113 goto out; 4114 4115 cpu_buffer = buffer->buffers[cpu]; 4116 local_irq_save(flags); 4117 dolock = rb_reader_lock(cpu_buffer); 4118 4119 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4120 if (event) { 4121 cpu_buffer->lost_events = 0; 4122 rb_advance_reader(cpu_buffer); 4123 } 4124 4125 rb_reader_unlock(cpu_buffer, dolock); 4126 local_irq_restore(flags); 4127 4128 out: 4129 preempt_enable(); 4130 4131 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4132 goto again; 4133 4134 return event; 4135 } 4136 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4137 4138 /** 4139 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4140 * @buffer: The ring buffer to read from 4141 * @cpu: The cpu buffer to iterate over 4142 * 4143 * This performs the initial preparations necessary to iterate 4144 * through the buffer. Memory is allocated, buffer recording 4145 * is disabled, and the iterator pointer is returned to the caller. 4146 * 4147 * Disabling buffer recording prevents the reading from being 4148 * corrupted. This is not a consuming read, so a producer is not 4149 * expected. 4150 * 4151 * After a sequence of ring_buffer_read_prepare calls, the user is 4152 * expected to make at least one call to ring_buffer_read_prepare_sync. 4153 * Afterwards, ring_buffer_read_start is invoked to get things going 4154 * for real. 4155 * 4156 * This overall must be paired with ring_buffer_read_finish. 4157 */ 4158 struct ring_buffer_iter * 4159 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4160 { 4161 struct ring_buffer_per_cpu *cpu_buffer; 4162 struct ring_buffer_iter *iter; 4163 4164 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4165 return NULL; 4166 4167 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4168 if (!iter) 4169 return NULL; 4170 4171 cpu_buffer = buffer->buffers[cpu]; 4172 4173 iter->cpu_buffer = cpu_buffer; 4174 4175 atomic_inc(&buffer->resize_disabled); 4176 atomic_inc(&cpu_buffer->record_disabled); 4177 4178 return iter; 4179 } 4180 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4181 4182 /** 4183 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4184 * 4185 * All previously invoked ring_buffer_read_prepare calls to prepare 4186 * iterators will be synchronized. Afterwards, read_buffer_read_start 4187 * calls on those iterators are allowed. 4188 */ 4189 void 4190 ring_buffer_read_prepare_sync(void) 4191 { 4192 synchronize_sched(); 4193 } 4194 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4195 4196 /** 4197 * ring_buffer_read_start - start a non consuming read of the buffer 4198 * @iter: The iterator returned by ring_buffer_read_prepare 4199 * 4200 * This finalizes the startup of an iteration through the buffer. 4201 * The iterator comes from a call to ring_buffer_read_prepare and 4202 * an intervening ring_buffer_read_prepare_sync must have been 4203 * performed. 4204 * 4205 * Must be paired with ring_buffer_read_finish. 4206 */ 4207 void 4208 ring_buffer_read_start(struct ring_buffer_iter *iter) 4209 { 4210 struct ring_buffer_per_cpu *cpu_buffer; 4211 unsigned long flags; 4212 4213 if (!iter) 4214 return; 4215 4216 cpu_buffer = iter->cpu_buffer; 4217 4218 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4219 arch_spin_lock(&cpu_buffer->lock); 4220 rb_iter_reset(iter); 4221 arch_spin_unlock(&cpu_buffer->lock); 4222 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4223 } 4224 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4225 4226 /** 4227 * ring_buffer_read_finish - finish reading the iterator of the buffer 4228 * @iter: The iterator retrieved by ring_buffer_start 4229 * 4230 * This re-enables the recording to the buffer, and frees the 4231 * iterator. 4232 */ 4233 void 4234 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4235 { 4236 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4237 unsigned long flags; 4238 4239 /* 4240 * Ring buffer is disabled from recording, here's a good place 4241 * to check the integrity of the ring buffer. 4242 * Must prevent readers from trying to read, as the check 4243 * clears the HEAD page and readers require it. 4244 */ 4245 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4246 rb_check_pages(cpu_buffer); 4247 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4248 4249 atomic_dec(&cpu_buffer->record_disabled); 4250 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4251 kfree(iter); 4252 } 4253 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4254 4255 /** 4256 * ring_buffer_read - read the next item in the ring buffer by the iterator 4257 * @iter: The ring buffer iterator 4258 * @ts: The time stamp of the event read. 4259 * 4260 * This reads the next event in the ring buffer and increments the iterator. 4261 */ 4262 struct ring_buffer_event * 4263 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4264 { 4265 struct ring_buffer_event *event; 4266 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4267 unsigned long flags; 4268 4269 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4270 again: 4271 event = rb_iter_peek(iter, ts); 4272 if (!event) 4273 goto out; 4274 4275 if (event->type_len == RINGBUF_TYPE_PADDING) 4276 goto again; 4277 4278 rb_advance_iter(iter); 4279 out: 4280 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4281 4282 return event; 4283 } 4284 EXPORT_SYMBOL_GPL(ring_buffer_read); 4285 4286 /** 4287 * ring_buffer_size - return the size of the ring buffer (in bytes) 4288 * @buffer: The ring buffer. 4289 */ 4290 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4291 { 4292 /* 4293 * Earlier, this method returned 4294 * BUF_PAGE_SIZE * buffer->nr_pages 4295 * Since the nr_pages field is now removed, we have converted this to 4296 * return the per cpu buffer value. 4297 */ 4298 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4299 return 0; 4300 4301 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4302 } 4303 EXPORT_SYMBOL_GPL(ring_buffer_size); 4304 4305 static void 4306 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4307 { 4308 rb_head_page_deactivate(cpu_buffer); 4309 4310 cpu_buffer->head_page 4311 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4312 local_set(&cpu_buffer->head_page->write, 0); 4313 local_set(&cpu_buffer->head_page->entries, 0); 4314 local_set(&cpu_buffer->head_page->page->commit, 0); 4315 4316 cpu_buffer->head_page->read = 0; 4317 4318 cpu_buffer->tail_page = cpu_buffer->head_page; 4319 cpu_buffer->commit_page = cpu_buffer->head_page; 4320 4321 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4322 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4323 local_set(&cpu_buffer->reader_page->write, 0); 4324 local_set(&cpu_buffer->reader_page->entries, 0); 4325 local_set(&cpu_buffer->reader_page->page->commit, 0); 4326 cpu_buffer->reader_page->read = 0; 4327 4328 local_set(&cpu_buffer->entries_bytes, 0); 4329 local_set(&cpu_buffer->overrun, 0); 4330 local_set(&cpu_buffer->commit_overrun, 0); 4331 local_set(&cpu_buffer->dropped_events, 0); 4332 local_set(&cpu_buffer->entries, 0); 4333 local_set(&cpu_buffer->committing, 0); 4334 local_set(&cpu_buffer->commits, 0); 4335 cpu_buffer->read = 0; 4336 cpu_buffer->read_bytes = 0; 4337 4338 cpu_buffer->write_stamp = 0; 4339 cpu_buffer->read_stamp = 0; 4340 4341 cpu_buffer->lost_events = 0; 4342 cpu_buffer->last_overrun = 0; 4343 4344 rb_head_page_activate(cpu_buffer); 4345 } 4346 4347 /** 4348 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4349 * @buffer: The ring buffer to reset a per cpu buffer of 4350 * @cpu: The CPU buffer to be reset 4351 */ 4352 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4353 { 4354 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4355 unsigned long flags; 4356 4357 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4358 return; 4359 4360 atomic_inc(&buffer->resize_disabled); 4361 atomic_inc(&cpu_buffer->record_disabled); 4362 4363 /* Make sure all commits have finished */ 4364 synchronize_sched(); 4365 4366 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4367 4368 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4369 goto out; 4370 4371 arch_spin_lock(&cpu_buffer->lock); 4372 4373 rb_reset_cpu(cpu_buffer); 4374 4375 arch_spin_unlock(&cpu_buffer->lock); 4376 4377 out: 4378 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4379 4380 atomic_dec(&cpu_buffer->record_disabled); 4381 atomic_dec(&buffer->resize_disabled); 4382 } 4383 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4384 4385 /** 4386 * ring_buffer_reset - reset a ring buffer 4387 * @buffer: The ring buffer to reset all cpu buffers 4388 */ 4389 void ring_buffer_reset(struct ring_buffer *buffer) 4390 { 4391 int cpu; 4392 4393 for_each_buffer_cpu(buffer, cpu) 4394 ring_buffer_reset_cpu(buffer, cpu); 4395 } 4396 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4397 4398 /** 4399 * rind_buffer_empty - is the ring buffer empty? 4400 * @buffer: The ring buffer to test 4401 */ 4402 bool ring_buffer_empty(struct ring_buffer *buffer) 4403 { 4404 struct ring_buffer_per_cpu *cpu_buffer; 4405 unsigned long flags; 4406 bool dolock; 4407 int cpu; 4408 int ret; 4409 4410 /* yes this is racy, but if you don't like the race, lock the buffer */ 4411 for_each_buffer_cpu(buffer, cpu) { 4412 cpu_buffer = buffer->buffers[cpu]; 4413 local_irq_save(flags); 4414 dolock = rb_reader_lock(cpu_buffer); 4415 ret = rb_per_cpu_empty(cpu_buffer); 4416 rb_reader_unlock(cpu_buffer, dolock); 4417 local_irq_restore(flags); 4418 4419 if (!ret) 4420 return false; 4421 } 4422 4423 return true; 4424 } 4425 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4426 4427 /** 4428 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4429 * @buffer: The ring buffer 4430 * @cpu: The CPU buffer to test 4431 */ 4432 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4433 { 4434 struct ring_buffer_per_cpu *cpu_buffer; 4435 unsigned long flags; 4436 bool dolock; 4437 int ret; 4438 4439 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4440 return true; 4441 4442 cpu_buffer = buffer->buffers[cpu]; 4443 local_irq_save(flags); 4444 dolock = rb_reader_lock(cpu_buffer); 4445 ret = rb_per_cpu_empty(cpu_buffer); 4446 rb_reader_unlock(cpu_buffer, dolock); 4447 local_irq_restore(flags); 4448 4449 return ret; 4450 } 4451 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4452 4453 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4454 /** 4455 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4456 * @buffer_a: One buffer to swap with 4457 * @buffer_b: The other buffer to swap with 4458 * 4459 * This function is useful for tracers that want to take a "snapshot" 4460 * of a CPU buffer and has another back up buffer lying around. 4461 * it is expected that the tracer handles the cpu buffer not being 4462 * used at the moment. 4463 */ 4464 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4465 struct ring_buffer *buffer_b, int cpu) 4466 { 4467 struct ring_buffer_per_cpu *cpu_buffer_a; 4468 struct ring_buffer_per_cpu *cpu_buffer_b; 4469 int ret = -EINVAL; 4470 4471 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4472 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4473 goto out; 4474 4475 cpu_buffer_a = buffer_a->buffers[cpu]; 4476 cpu_buffer_b = buffer_b->buffers[cpu]; 4477 4478 /* At least make sure the two buffers are somewhat the same */ 4479 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4480 goto out; 4481 4482 ret = -EAGAIN; 4483 4484 if (atomic_read(&buffer_a->record_disabled)) 4485 goto out; 4486 4487 if (atomic_read(&buffer_b->record_disabled)) 4488 goto out; 4489 4490 if (atomic_read(&cpu_buffer_a->record_disabled)) 4491 goto out; 4492 4493 if (atomic_read(&cpu_buffer_b->record_disabled)) 4494 goto out; 4495 4496 /* 4497 * We can't do a synchronize_sched here because this 4498 * function can be called in atomic context. 4499 * Normally this will be called from the same CPU as cpu. 4500 * If not it's up to the caller to protect this. 4501 */ 4502 atomic_inc(&cpu_buffer_a->record_disabled); 4503 atomic_inc(&cpu_buffer_b->record_disabled); 4504 4505 ret = -EBUSY; 4506 if (local_read(&cpu_buffer_a->committing)) 4507 goto out_dec; 4508 if (local_read(&cpu_buffer_b->committing)) 4509 goto out_dec; 4510 4511 buffer_a->buffers[cpu] = cpu_buffer_b; 4512 buffer_b->buffers[cpu] = cpu_buffer_a; 4513 4514 cpu_buffer_b->buffer = buffer_a; 4515 cpu_buffer_a->buffer = buffer_b; 4516 4517 ret = 0; 4518 4519 out_dec: 4520 atomic_dec(&cpu_buffer_a->record_disabled); 4521 atomic_dec(&cpu_buffer_b->record_disabled); 4522 out: 4523 return ret; 4524 } 4525 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4526 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4527 4528 /** 4529 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4530 * @buffer: the buffer to allocate for. 4531 * @cpu: the cpu buffer to allocate. 4532 * 4533 * This function is used in conjunction with ring_buffer_read_page. 4534 * When reading a full page from the ring buffer, these functions 4535 * can be used to speed up the process. The calling function should 4536 * allocate a few pages first with this function. Then when it 4537 * needs to get pages from the ring buffer, it passes the result 4538 * of this function into ring_buffer_read_page, which will swap 4539 * the page that was allocated, with the read page of the buffer. 4540 * 4541 * Returns: 4542 * The page allocated, or ERR_PTR 4543 */ 4544 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4545 { 4546 struct ring_buffer_per_cpu *cpu_buffer; 4547 struct buffer_data_page *bpage = NULL; 4548 unsigned long flags; 4549 struct page *page; 4550 4551 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4552 return ERR_PTR(-ENODEV); 4553 4554 cpu_buffer = buffer->buffers[cpu]; 4555 local_irq_save(flags); 4556 arch_spin_lock(&cpu_buffer->lock); 4557 4558 if (cpu_buffer->free_page) { 4559 bpage = cpu_buffer->free_page; 4560 cpu_buffer->free_page = NULL; 4561 } 4562 4563 arch_spin_unlock(&cpu_buffer->lock); 4564 local_irq_restore(flags); 4565 4566 if (bpage) 4567 goto out; 4568 4569 page = alloc_pages_node(cpu_to_node(cpu), 4570 GFP_KERNEL | __GFP_NORETRY, 0); 4571 if (!page) 4572 return ERR_PTR(-ENOMEM); 4573 4574 bpage = page_address(page); 4575 4576 out: 4577 rb_init_page(bpage); 4578 4579 return bpage; 4580 } 4581 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4582 4583 /** 4584 * ring_buffer_free_read_page - free an allocated read page 4585 * @buffer: the buffer the page was allocate for 4586 * @cpu: the cpu buffer the page came from 4587 * @data: the page to free 4588 * 4589 * Free a page allocated from ring_buffer_alloc_read_page. 4590 */ 4591 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4592 { 4593 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4594 struct buffer_data_page *bpage = data; 4595 struct page *page = virt_to_page(bpage); 4596 unsigned long flags; 4597 4598 /* If the page is still in use someplace else, we can't reuse it */ 4599 if (page_ref_count(page) > 1) 4600 goto out; 4601 4602 local_irq_save(flags); 4603 arch_spin_lock(&cpu_buffer->lock); 4604 4605 if (!cpu_buffer->free_page) { 4606 cpu_buffer->free_page = bpage; 4607 bpage = NULL; 4608 } 4609 4610 arch_spin_unlock(&cpu_buffer->lock); 4611 local_irq_restore(flags); 4612 4613 out: 4614 free_page((unsigned long)bpage); 4615 } 4616 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4617 4618 /** 4619 * ring_buffer_read_page - extract a page from the ring buffer 4620 * @buffer: buffer to extract from 4621 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4622 * @len: amount to extract 4623 * @cpu: the cpu of the buffer to extract 4624 * @full: should the extraction only happen when the page is full. 4625 * 4626 * This function will pull out a page from the ring buffer and consume it. 4627 * @data_page must be the address of the variable that was returned 4628 * from ring_buffer_alloc_read_page. This is because the page might be used 4629 * to swap with a page in the ring buffer. 4630 * 4631 * for example: 4632 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4633 * if (IS_ERR(rpage)) 4634 * return PTR_ERR(rpage); 4635 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4636 * if (ret >= 0) 4637 * process_page(rpage, ret); 4638 * 4639 * When @full is set, the function will not return true unless 4640 * the writer is off the reader page. 4641 * 4642 * Note: it is up to the calling functions to handle sleeps and wakeups. 4643 * The ring buffer can be used anywhere in the kernel and can not 4644 * blindly call wake_up. The layer that uses the ring buffer must be 4645 * responsible for that. 4646 * 4647 * Returns: 4648 * >=0 if data has been transferred, returns the offset of consumed data. 4649 * <0 if no data has been transferred. 4650 */ 4651 int ring_buffer_read_page(struct ring_buffer *buffer, 4652 void **data_page, size_t len, int cpu, int full) 4653 { 4654 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4655 struct ring_buffer_event *event; 4656 struct buffer_data_page *bpage; 4657 struct buffer_page *reader; 4658 unsigned long missed_events; 4659 unsigned long flags; 4660 unsigned int commit; 4661 unsigned int read; 4662 u64 save_timestamp; 4663 int ret = -1; 4664 4665 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4666 goto out; 4667 4668 /* 4669 * If len is not big enough to hold the page header, then 4670 * we can not copy anything. 4671 */ 4672 if (len <= BUF_PAGE_HDR_SIZE) 4673 goto out; 4674 4675 len -= BUF_PAGE_HDR_SIZE; 4676 4677 if (!data_page) 4678 goto out; 4679 4680 bpage = *data_page; 4681 if (!bpage) 4682 goto out; 4683 4684 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4685 4686 reader = rb_get_reader_page(cpu_buffer); 4687 if (!reader) 4688 goto out_unlock; 4689 4690 event = rb_reader_event(cpu_buffer); 4691 4692 read = reader->read; 4693 commit = rb_page_commit(reader); 4694 4695 /* Check if any events were dropped */ 4696 missed_events = cpu_buffer->lost_events; 4697 4698 /* 4699 * If this page has been partially read or 4700 * if len is not big enough to read the rest of the page or 4701 * a writer is still on the page, then 4702 * we must copy the data from the page to the buffer. 4703 * Otherwise, we can simply swap the page with the one passed in. 4704 */ 4705 if (read || (len < (commit - read)) || 4706 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4707 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4708 unsigned int rpos = read; 4709 unsigned int pos = 0; 4710 unsigned int size; 4711 4712 if (full) 4713 goto out_unlock; 4714 4715 if (len > (commit - read)) 4716 len = (commit - read); 4717 4718 /* Always keep the time extend and data together */ 4719 size = rb_event_ts_length(event); 4720 4721 if (len < size) 4722 goto out_unlock; 4723 4724 /* save the current timestamp, since the user will need it */ 4725 save_timestamp = cpu_buffer->read_stamp; 4726 4727 /* Need to copy one event at a time */ 4728 do { 4729 /* We need the size of one event, because 4730 * rb_advance_reader only advances by one event, 4731 * whereas rb_event_ts_length may include the size of 4732 * one or two events. 4733 * We have already ensured there's enough space if this 4734 * is a time extend. */ 4735 size = rb_event_length(event); 4736 memcpy(bpage->data + pos, rpage->data + rpos, size); 4737 4738 len -= size; 4739 4740 rb_advance_reader(cpu_buffer); 4741 rpos = reader->read; 4742 pos += size; 4743 4744 if (rpos >= commit) 4745 break; 4746 4747 event = rb_reader_event(cpu_buffer); 4748 /* Always keep the time extend and data together */ 4749 size = rb_event_ts_length(event); 4750 } while (len >= size); 4751 4752 /* update bpage */ 4753 local_set(&bpage->commit, pos); 4754 bpage->time_stamp = save_timestamp; 4755 4756 /* we copied everything to the beginning */ 4757 read = 0; 4758 } else { 4759 /* update the entry counter */ 4760 cpu_buffer->read += rb_page_entries(reader); 4761 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4762 4763 /* swap the pages */ 4764 rb_init_page(bpage); 4765 bpage = reader->page; 4766 reader->page = *data_page; 4767 local_set(&reader->write, 0); 4768 local_set(&reader->entries, 0); 4769 reader->read = 0; 4770 *data_page = bpage; 4771 4772 /* 4773 * Use the real_end for the data size, 4774 * This gives us a chance to store the lost events 4775 * on the page. 4776 */ 4777 if (reader->real_end) 4778 local_set(&bpage->commit, reader->real_end); 4779 } 4780 ret = read; 4781 4782 cpu_buffer->lost_events = 0; 4783 4784 commit = local_read(&bpage->commit); 4785 /* 4786 * Set a flag in the commit field if we lost events 4787 */ 4788 if (missed_events) { 4789 /* If there is room at the end of the page to save the 4790 * missed events, then record it there. 4791 */ 4792 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4793 memcpy(&bpage->data[commit], &missed_events, 4794 sizeof(missed_events)); 4795 local_add(RB_MISSED_STORED, &bpage->commit); 4796 commit += sizeof(missed_events); 4797 } 4798 local_add(RB_MISSED_EVENTS, &bpage->commit); 4799 } 4800 4801 /* 4802 * This page may be off to user land. Zero it out here. 4803 */ 4804 if (commit < BUF_PAGE_SIZE) 4805 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4806 4807 out_unlock: 4808 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4809 4810 out: 4811 return ret; 4812 } 4813 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4814 4815 /* 4816 * We only allocate new buffers, never free them if the CPU goes down. 4817 * If we were to free the buffer, then the user would lose any trace that was in 4818 * the buffer. 4819 */ 4820 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4821 { 4822 struct ring_buffer *buffer; 4823 long nr_pages_same; 4824 int cpu_i; 4825 unsigned long nr_pages; 4826 4827 buffer = container_of(node, struct ring_buffer, node); 4828 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4829 return 0; 4830 4831 nr_pages = 0; 4832 nr_pages_same = 1; 4833 /* check if all cpu sizes are same */ 4834 for_each_buffer_cpu(buffer, cpu_i) { 4835 /* fill in the size from first enabled cpu */ 4836 if (nr_pages == 0) 4837 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4838 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4839 nr_pages_same = 0; 4840 break; 4841 } 4842 } 4843 /* allocate minimum pages, user can later expand it */ 4844 if (!nr_pages_same) 4845 nr_pages = 2; 4846 buffer->buffers[cpu] = 4847 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4848 if (!buffer->buffers[cpu]) { 4849 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4850 cpu); 4851 return -ENOMEM; 4852 } 4853 smp_wmb(); 4854 cpumask_set_cpu(cpu, buffer->cpumask); 4855 return 0; 4856 } 4857 4858 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4859 /* 4860 * This is a basic integrity check of the ring buffer. 4861 * Late in the boot cycle this test will run when configured in. 4862 * It will kick off a thread per CPU that will go into a loop 4863 * writing to the per cpu ring buffer various sizes of data. 4864 * Some of the data will be large items, some small. 4865 * 4866 * Another thread is created that goes into a spin, sending out 4867 * IPIs to the other CPUs to also write into the ring buffer. 4868 * this is to test the nesting ability of the buffer. 4869 * 4870 * Basic stats are recorded and reported. If something in the 4871 * ring buffer should happen that's not expected, a big warning 4872 * is displayed and all ring buffers are disabled. 4873 */ 4874 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4875 4876 struct rb_test_data { 4877 struct ring_buffer *buffer; 4878 unsigned long events; 4879 unsigned long bytes_written; 4880 unsigned long bytes_alloc; 4881 unsigned long bytes_dropped; 4882 unsigned long events_nested; 4883 unsigned long bytes_written_nested; 4884 unsigned long bytes_alloc_nested; 4885 unsigned long bytes_dropped_nested; 4886 int min_size_nested; 4887 int max_size_nested; 4888 int max_size; 4889 int min_size; 4890 int cpu; 4891 int cnt; 4892 }; 4893 4894 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4895 4896 /* 1 meg per cpu */ 4897 #define RB_TEST_BUFFER_SIZE 1048576 4898 4899 static char rb_string[] __initdata = 4900 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4901 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4902 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4903 4904 static bool rb_test_started __initdata; 4905 4906 struct rb_item { 4907 int size; 4908 char str[]; 4909 }; 4910 4911 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4912 { 4913 struct ring_buffer_event *event; 4914 struct rb_item *item; 4915 bool started; 4916 int event_len; 4917 int size; 4918 int len; 4919 int cnt; 4920 4921 /* Have nested writes different that what is written */ 4922 cnt = data->cnt + (nested ? 27 : 0); 4923 4924 /* Multiply cnt by ~e, to make some unique increment */ 4925 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4926 4927 len = size + sizeof(struct rb_item); 4928 4929 started = rb_test_started; 4930 /* read rb_test_started before checking buffer enabled */ 4931 smp_rmb(); 4932 4933 event = ring_buffer_lock_reserve(data->buffer, len); 4934 if (!event) { 4935 /* Ignore dropped events before test starts. */ 4936 if (started) { 4937 if (nested) 4938 data->bytes_dropped += len; 4939 else 4940 data->bytes_dropped_nested += len; 4941 } 4942 return len; 4943 } 4944 4945 event_len = ring_buffer_event_length(event); 4946 4947 if (RB_WARN_ON(data->buffer, event_len < len)) 4948 goto out; 4949 4950 item = ring_buffer_event_data(event); 4951 item->size = size; 4952 memcpy(item->str, rb_string, size); 4953 4954 if (nested) { 4955 data->bytes_alloc_nested += event_len; 4956 data->bytes_written_nested += len; 4957 data->events_nested++; 4958 if (!data->min_size_nested || len < data->min_size_nested) 4959 data->min_size_nested = len; 4960 if (len > data->max_size_nested) 4961 data->max_size_nested = len; 4962 } else { 4963 data->bytes_alloc += event_len; 4964 data->bytes_written += len; 4965 data->events++; 4966 if (!data->min_size || len < data->min_size) 4967 data->max_size = len; 4968 if (len > data->max_size) 4969 data->max_size = len; 4970 } 4971 4972 out: 4973 ring_buffer_unlock_commit(data->buffer, event); 4974 4975 return 0; 4976 } 4977 4978 static __init int rb_test(void *arg) 4979 { 4980 struct rb_test_data *data = arg; 4981 4982 while (!kthread_should_stop()) { 4983 rb_write_something(data, false); 4984 data->cnt++; 4985 4986 set_current_state(TASK_INTERRUPTIBLE); 4987 /* Now sleep between a min of 100-300us and a max of 1ms */ 4988 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4989 } 4990 4991 return 0; 4992 } 4993 4994 static __init void rb_ipi(void *ignore) 4995 { 4996 struct rb_test_data *data; 4997 int cpu = smp_processor_id(); 4998 4999 data = &rb_data[cpu]; 5000 rb_write_something(data, true); 5001 } 5002 5003 static __init int rb_hammer_test(void *arg) 5004 { 5005 while (!kthread_should_stop()) { 5006 5007 /* Send an IPI to all cpus to write data! */ 5008 smp_call_function(rb_ipi, NULL, 1); 5009 /* No sleep, but for non preempt, let others run */ 5010 schedule(); 5011 } 5012 5013 return 0; 5014 } 5015 5016 static __init int test_ringbuffer(void) 5017 { 5018 struct task_struct *rb_hammer; 5019 struct ring_buffer *buffer; 5020 int cpu; 5021 int ret = 0; 5022 5023 pr_info("Running ring buffer tests...\n"); 5024 5025 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5026 if (WARN_ON(!buffer)) 5027 return 0; 5028 5029 /* Disable buffer so that threads can't write to it yet */ 5030 ring_buffer_record_off(buffer); 5031 5032 for_each_online_cpu(cpu) { 5033 rb_data[cpu].buffer = buffer; 5034 rb_data[cpu].cpu = cpu; 5035 rb_data[cpu].cnt = cpu; 5036 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5037 "rbtester/%d", cpu); 5038 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5039 pr_cont("FAILED\n"); 5040 ret = PTR_ERR(rb_threads[cpu]); 5041 goto out_free; 5042 } 5043 5044 kthread_bind(rb_threads[cpu], cpu); 5045 wake_up_process(rb_threads[cpu]); 5046 } 5047 5048 /* Now create the rb hammer! */ 5049 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5050 if (WARN_ON(IS_ERR(rb_hammer))) { 5051 pr_cont("FAILED\n"); 5052 ret = PTR_ERR(rb_hammer); 5053 goto out_free; 5054 } 5055 5056 ring_buffer_record_on(buffer); 5057 /* 5058 * Show buffer is enabled before setting rb_test_started. 5059 * Yes there's a small race window where events could be 5060 * dropped and the thread wont catch it. But when a ring 5061 * buffer gets enabled, there will always be some kind of 5062 * delay before other CPUs see it. Thus, we don't care about 5063 * those dropped events. We care about events dropped after 5064 * the threads see that the buffer is active. 5065 */ 5066 smp_wmb(); 5067 rb_test_started = true; 5068 5069 set_current_state(TASK_INTERRUPTIBLE); 5070 /* Just run for 10 seconds */; 5071 schedule_timeout(10 * HZ); 5072 5073 kthread_stop(rb_hammer); 5074 5075 out_free: 5076 for_each_online_cpu(cpu) { 5077 if (!rb_threads[cpu]) 5078 break; 5079 kthread_stop(rb_threads[cpu]); 5080 } 5081 if (ret) { 5082 ring_buffer_free(buffer); 5083 return ret; 5084 } 5085 5086 /* Report! */ 5087 pr_info("finished\n"); 5088 for_each_online_cpu(cpu) { 5089 struct ring_buffer_event *event; 5090 struct rb_test_data *data = &rb_data[cpu]; 5091 struct rb_item *item; 5092 unsigned long total_events; 5093 unsigned long total_dropped; 5094 unsigned long total_written; 5095 unsigned long total_alloc; 5096 unsigned long total_read = 0; 5097 unsigned long total_size = 0; 5098 unsigned long total_len = 0; 5099 unsigned long total_lost = 0; 5100 unsigned long lost; 5101 int big_event_size; 5102 int small_event_size; 5103 5104 ret = -1; 5105 5106 total_events = data->events + data->events_nested; 5107 total_written = data->bytes_written + data->bytes_written_nested; 5108 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5109 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5110 5111 big_event_size = data->max_size + data->max_size_nested; 5112 small_event_size = data->min_size + data->min_size_nested; 5113 5114 pr_info("CPU %d:\n", cpu); 5115 pr_info(" events: %ld\n", total_events); 5116 pr_info(" dropped bytes: %ld\n", total_dropped); 5117 pr_info(" alloced bytes: %ld\n", total_alloc); 5118 pr_info(" written bytes: %ld\n", total_written); 5119 pr_info(" biggest event: %d\n", big_event_size); 5120 pr_info(" smallest event: %d\n", small_event_size); 5121 5122 if (RB_WARN_ON(buffer, total_dropped)) 5123 break; 5124 5125 ret = 0; 5126 5127 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5128 total_lost += lost; 5129 item = ring_buffer_event_data(event); 5130 total_len += ring_buffer_event_length(event); 5131 total_size += item->size + sizeof(struct rb_item); 5132 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5133 pr_info("FAILED!\n"); 5134 pr_info("buffer had: %.*s\n", item->size, item->str); 5135 pr_info("expected: %.*s\n", item->size, rb_string); 5136 RB_WARN_ON(buffer, 1); 5137 ret = -1; 5138 break; 5139 } 5140 total_read++; 5141 } 5142 if (ret) 5143 break; 5144 5145 ret = -1; 5146 5147 pr_info(" read events: %ld\n", total_read); 5148 pr_info(" lost events: %ld\n", total_lost); 5149 pr_info(" total events: %ld\n", total_lost + total_read); 5150 pr_info(" recorded len bytes: %ld\n", total_len); 5151 pr_info(" recorded size bytes: %ld\n", total_size); 5152 if (total_lost) 5153 pr_info(" With dropped events, record len and size may not match\n" 5154 " alloced and written from above\n"); 5155 if (!total_lost) { 5156 if (RB_WARN_ON(buffer, total_len != total_alloc || 5157 total_size != total_written)) 5158 break; 5159 } 5160 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5161 break; 5162 5163 ret = 0; 5164 } 5165 if (!ret) 5166 pr_info("Ring buffer PASSED!\n"); 5167 5168 ring_buffer_free(buffer); 5169 return 0; 5170 } 5171 5172 late_initcall(test_ringbuffer); 5173 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5174