xref: /linux/kernel/trace/ring_buffer.c (revision db624e82c55f227b84ac9ebfa3de2f6f5fad666b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local64.h>
31 #include <asm/local.h>
32 
33 /*
34  * The "absolute" timestamp in the buffer is only 59 bits.
35  * If a clock has the 5 MSBs set, it needs to be saved and
36  * reinserted.
37  */
38 #define TS_MSB		(0xf8ULL << 56)
39 #define ABS_TS_MASK	(~TS_MSB)
40 
41 static void update_pages_handler(struct work_struct *work);
42 
43 /*
44  * The ring buffer header is special. We must manually up keep it.
45  */
46 int ring_buffer_print_entry_header(struct trace_seq *s)
47 {
48 	trace_seq_puts(s, "# compressed entry header\n");
49 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
50 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
51 	trace_seq_puts(s, "\tarray       :   32 bits\n");
52 	trace_seq_putc(s, '\n');
53 	trace_seq_printf(s, "\tpadding     : type == %d\n",
54 			 RINGBUF_TYPE_PADDING);
55 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
56 			 RINGBUF_TYPE_TIME_EXTEND);
57 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
58 			 RINGBUF_TYPE_TIME_STAMP);
59 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
60 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61 
62 	return !trace_seq_has_overflowed(s);
63 }
64 
65 /*
66  * The ring buffer is made up of a list of pages. A separate list of pages is
67  * allocated for each CPU. A writer may only write to a buffer that is
68  * associated with the CPU it is currently executing on.  A reader may read
69  * from any per cpu buffer.
70  *
71  * The reader is special. For each per cpu buffer, the reader has its own
72  * reader page. When a reader has read the entire reader page, this reader
73  * page is swapped with another page in the ring buffer.
74  *
75  * Now, as long as the writer is off the reader page, the reader can do what
76  * ever it wants with that page. The writer will never write to that page
77  * again (as long as it is out of the ring buffer).
78  *
79  * Here's some silly ASCII art.
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *                   |   |-->|   |-->|   |
97  *                   +---+   +---+   +---+
98  *                     ^               |
99  *                     |               |
100  *                     +---------------+
101  *
102  *
103  *   +------+
104  *   |reader|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |-->|   |-->|   |
108  *      |            +---+   +---+   +---+
109  *      |                              |
110  *      |                              |
111  *      +------------------------------+
112  *
113  *
114  *   +------+
115  *   |buffer|          RING BUFFER
116  *   |page  |------------------v
117  *   +------+        +---+   +---+   +---+
118  *      ^            |   |   |   |-->|   |
119  *      |   New      +---+   +---+   +---+
120  *      |  Reader------^               |
121  *      |   page                       |
122  *      +------------------------------+
123  *
124  *
125  * After we make this swap, the reader can hand this page off to the splice
126  * code and be done with it. It can even allocate a new page if it needs to
127  * and swap that into the ring buffer.
128  *
129  * We will be using cmpxchg soon to make all this lockless.
130  *
131  */
132 
133 /* Used for individual buffers (after the counter) */
134 #define RB_BUFFER_OFF		(1 << 20)
135 
136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137 
138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139 #define RB_ALIGNMENT		4U
140 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
141 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
142 
143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
144 # define RB_FORCE_8BYTE_ALIGNMENT	0
145 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
146 #else
147 # define RB_FORCE_8BYTE_ALIGNMENT	1
148 # define RB_ARCH_ALIGNMENT		8U
149 #endif
150 
151 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
152 
153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
155 
156 enum {
157 	RB_LEN_TIME_EXTEND = 8,
158 	RB_LEN_TIME_STAMP =  8,
159 };
160 
161 #define skip_time_extend(event) \
162 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163 
164 #define extended_time(event) \
165 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166 
167 static inline bool rb_null_event(struct ring_buffer_event *event)
168 {
169 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
170 }
171 
172 static void rb_event_set_padding(struct ring_buffer_event *event)
173 {
174 	/* padding has a NULL time_delta */
175 	event->type_len = RINGBUF_TYPE_PADDING;
176 	event->time_delta = 0;
177 }
178 
179 static unsigned
180 rb_event_data_length(struct ring_buffer_event *event)
181 {
182 	unsigned length;
183 
184 	if (event->type_len)
185 		length = event->type_len * RB_ALIGNMENT;
186 	else
187 		length = event->array[0];
188 	return length + RB_EVNT_HDR_SIZE;
189 }
190 
191 /*
192  * Return the length of the given event. Will return
193  * the length of the time extend if the event is a
194  * time extend.
195  */
196 static inline unsigned
197 rb_event_length(struct ring_buffer_event *event)
198 {
199 	switch (event->type_len) {
200 	case RINGBUF_TYPE_PADDING:
201 		if (rb_null_event(event))
202 			/* undefined */
203 			return -1;
204 		return  event->array[0] + RB_EVNT_HDR_SIZE;
205 
206 	case RINGBUF_TYPE_TIME_EXTEND:
207 		return RB_LEN_TIME_EXTEND;
208 
209 	case RINGBUF_TYPE_TIME_STAMP:
210 		return RB_LEN_TIME_STAMP;
211 
212 	case RINGBUF_TYPE_DATA:
213 		return rb_event_data_length(event);
214 	default:
215 		WARN_ON_ONCE(1);
216 	}
217 	/* not hit */
218 	return 0;
219 }
220 
221 /*
222  * Return total length of time extend and data,
223  *   or just the event length for all other events.
224  */
225 static inline unsigned
226 rb_event_ts_length(struct ring_buffer_event *event)
227 {
228 	unsigned len = 0;
229 
230 	if (extended_time(event)) {
231 		/* time extends include the data event after it */
232 		len = RB_LEN_TIME_EXTEND;
233 		event = skip_time_extend(event);
234 	}
235 	return len + rb_event_length(event);
236 }
237 
238 /**
239  * ring_buffer_event_length - return the length of the event
240  * @event: the event to get the length of
241  *
242  * Returns the size of the data load of a data event.
243  * If the event is something other than a data event, it
244  * returns the size of the event itself. With the exception
245  * of a TIME EXTEND, where it still returns the size of the
246  * data load of the data event after it.
247  */
248 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
249 {
250 	unsigned length;
251 
252 	if (extended_time(event))
253 		event = skip_time_extend(event);
254 
255 	length = rb_event_length(event);
256 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257 		return length;
258 	length -= RB_EVNT_HDR_SIZE;
259 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
260                 length -= sizeof(event->array[0]);
261 	return length;
262 }
263 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264 
265 /* inline for ring buffer fast paths */
266 static __always_inline void *
267 rb_event_data(struct ring_buffer_event *event)
268 {
269 	if (extended_time(event))
270 		event = skip_time_extend(event);
271 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
272 	/* If length is in len field, then array[0] has the data */
273 	if (event->type_len)
274 		return (void *)&event->array[0];
275 	/* Otherwise length is in array[0] and array[1] has the data */
276 	return (void *)&event->array[1];
277 }
278 
279 /**
280  * ring_buffer_event_data - return the data of the event
281  * @event: the event to get the data from
282  */
283 void *ring_buffer_event_data(struct ring_buffer_event *event)
284 {
285 	return rb_event_data(event);
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288 
289 #define for_each_buffer_cpu(buffer, cpu)		\
290 	for_each_cpu(cpu, buffer->cpumask)
291 
292 #define for_each_online_buffer_cpu(buffer, cpu)		\
293 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
294 
295 #define TS_SHIFT	27
296 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
297 #define TS_DELTA_TEST	(~TS_MASK)
298 
299 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
300 {
301 	u64 ts;
302 
303 	ts = event->array[0];
304 	ts <<= TS_SHIFT;
305 	ts += event->time_delta;
306 
307 	return ts;
308 }
309 
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS	(1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED	(1 << 30)
314 
315 struct buffer_data_page {
316 	u64		 time_stamp;	/* page time stamp */
317 	local_t		 commit;	/* write committed index */
318 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
319 };
320 
321 struct buffer_data_read_page {
322 	unsigned		order;	/* order of the page */
323 	struct buffer_data_page	*data;	/* actual data, stored in this page */
324 };
325 
326 /*
327  * Note, the buffer_page list must be first. The buffer pages
328  * are allocated in cache lines, which means that each buffer
329  * page will be at the beginning of a cache line, and thus
330  * the least significant bits will be zero. We use this to
331  * add flags in the list struct pointers, to make the ring buffer
332  * lockless.
333  */
334 struct buffer_page {
335 	struct list_head list;		/* list of buffer pages */
336 	local_t		 write;		/* index for next write */
337 	unsigned	 read;		/* index for next read */
338 	local_t		 entries;	/* entries on this page */
339 	unsigned long	 real_end;	/* real end of data */
340 	unsigned	 order;		/* order of the page */
341 	struct buffer_data_page *page;	/* Actual data page */
342 };
343 
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK		0xfffff
357 #define RB_WRITE_INTCNT		(1 << 20)
358 
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361 	local_set(&bpage->commit, 0);
362 }
363 
364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
365 {
366 	return local_read(&bpage->page->commit);
367 }
368 
369 static void free_buffer_page(struct buffer_page *bpage)
370 {
371 	free_pages((unsigned long)bpage->page, bpage->order);
372 	kfree(bpage);
373 }
374 
375 /*
376  * We need to fit the time_stamp delta into 27 bits.
377  */
378 static inline bool test_time_stamp(u64 delta)
379 {
380 	return !!(delta & TS_DELTA_TEST);
381 }
382 
383 struct rb_irq_work {
384 	struct irq_work			work;
385 	wait_queue_head_t		waiters;
386 	wait_queue_head_t		full_waiters;
387 	bool				waiters_pending;
388 	bool				full_waiters_pending;
389 	bool				wakeup_full;
390 };
391 
392 /*
393  * Structure to hold event state and handle nested events.
394  */
395 struct rb_event_info {
396 	u64			ts;
397 	u64			delta;
398 	u64			before;
399 	u64			after;
400 	unsigned long		length;
401 	struct buffer_page	*tail_page;
402 	int			add_timestamp;
403 };
404 
405 /*
406  * Used for the add_timestamp
407  *  NONE
408  *  EXTEND - wants a time extend
409  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
410  *  FORCE - force a full time stamp.
411  */
412 enum {
413 	RB_ADD_STAMP_NONE		= 0,
414 	RB_ADD_STAMP_EXTEND		= BIT(1),
415 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
416 	RB_ADD_STAMP_FORCE		= BIT(3)
417 };
418 /*
419  * Used for which event context the event is in.
420  *  TRANSITION = 0
421  *  NMI     = 1
422  *  IRQ     = 2
423  *  SOFTIRQ = 3
424  *  NORMAL  = 4
425  *
426  * See trace_recursive_lock() comment below for more details.
427  */
428 enum {
429 	RB_CTX_TRANSITION,
430 	RB_CTX_NMI,
431 	RB_CTX_IRQ,
432 	RB_CTX_SOFTIRQ,
433 	RB_CTX_NORMAL,
434 	RB_CTX_MAX
435 };
436 
437 struct rb_time_struct {
438 	local64_t	time;
439 };
440 typedef struct rb_time_struct rb_time_t;
441 
442 #define MAX_NEST	5
443 
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448 	int				cpu;
449 	atomic_t			record_disabled;
450 	atomic_t			resize_disabled;
451 	struct trace_buffer	*buffer;
452 	raw_spinlock_t			reader_lock;	/* serialize readers */
453 	arch_spinlock_t			lock;
454 	struct lock_class_key		lock_key;
455 	struct buffer_data_page		*free_page;
456 	unsigned long			nr_pages;
457 	unsigned int			current_context;
458 	struct list_head		*pages;
459 	struct buffer_page		*head_page;	/* read from head */
460 	struct buffer_page		*tail_page;	/* write to tail */
461 	struct buffer_page		*commit_page;	/* committed pages */
462 	struct buffer_page		*reader_page;
463 	unsigned long			lost_events;
464 	unsigned long			last_overrun;
465 	unsigned long			nest;
466 	local_t				entries_bytes;
467 	local_t				entries;
468 	local_t				overrun;
469 	local_t				commit_overrun;
470 	local_t				dropped_events;
471 	local_t				committing;
472 	local_t				commits;
473 	local_t				pages_touched;
474 	local_t				pages_lost;
475 	local_t				pages_read;
476 	long				last_pages_touch;
477 	size_t				shortest_full;
478 	unsigned long			read;
479 	unsigned long			read_bytes;
480 	rb_time_t			write_stamp;
481 	rb_time_t			before_stamp;
482 	u64				event_stamp[MAX_NEST];
483 	u64				read_stamp;
484 	/* pages removed since last reset */
485 	unsigned long			pages_removed;
486 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
487 	long				nr_pages_to_update;
488 	struct list_head		new_pages; /* new pages to add */
489 	struct work_struct		update_pages_work;
490 	struct completion		update_done;
491 
492 	struct rb_irq_work		irq_work;
493 };
494 
495 struct trace_buffer {
496 	unsigned			flags;
497 	int				cpus;
498 	atomic_t			record_disabled;
499 	atomic_t			resizing;
500 	cpumask_var_t			cpumask;
501 
502 	struct lock_class_key		*reader_lock_key;
503 
504 	struct mutex			mutex;
505 
506 	struct ring_buffer_per_cpu	**buffers;
507 
508 	struct hlist_node		node;
509 	u64				(*clock)(void);
510 
511 	struct rb_irq_work		irq_work;
512 	bool				time_stamp_abs;
513 
514 	unsigned int			subbuf_size;
515 	unsigned int			subbuf_order;
516 	unsigned int			max_data_size;
517 };
518 
519 struct ring_buffer_iter {
520 	struct ring_buffer_per_cpu	*cpu_buffer;
521 	unsigned long			head;
522 	unsigned long			next_event;
523 	struct buffer_page		*head_page;
524 	struct buffer_page		*cache_reader_page;
525 	unsigned long			cache_read;
526 	unsigned long			cache_pages_removed;
527 	u64				read_stamp;
528 	u64				page_stamp;
529 	struct ring_buffer_event	*event;
530 	size_t				event_size;
531 	int				missed_events;
532 };
533 
534 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
535 {
536 	struct buffer_data_page field;
537 
538 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
539 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
540 			 (unsigned int)sizeof(field.time_stamp),
541 			 (unsigned int)is_signed_type(u64));
542 
543 	trace_seq_printf(s, "\tfield: local_t commit;\t"
544 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
545 			 (unsigned int)offsetof(typeof(field), commit),
546 			 (unsigned int)sizeof(field.commit),
547 			 (unsigned int)is_signed_type(long));
548 
549 	trace_seq_printf(s, "\tfield: int overwrite;\t"
550 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
551 			 (unsigned int)offsetof(typeof(field), commit),
552 			 1,
553 			 (unsigned int)is_signed_type(long));
554 
555 	trace_seq_printf(s, "\tfield: char data;\t"
556 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
557 			 (unsigned int)offsetof(typeof(field), data),
558 			 (unsigned int)buffer->subbuf_size,
559 			 (unsigned int)is_signed_type(char));
560 
561 	return !trace_seq_has_overflowed(s);
562 }
563 
564 static inline void rb_time_read(rb_time_t *t, u64 *ret)
565 {
566 	*ret = local64_read(&t->time);
567 }
568 static void rb_time_set(rb_time_t *t, u64 val)
569 {
570 	local64_set(&t->time, val);
571 }
572 
573 /*
574  * Enable this to make sure that the event passed to
575  * ring_buffer_event_time_stamp() is not committed and also
576  * is on the buffer that it passed in.
577  */
578 //#define RB_VERIFY_EVENT
579 #ifdef RB_VERIFY_EVENT
580 static struct list_head *rb_list_head(struct list_head *list);
581 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
582 			 void *event)
583 {
584 	struct buffer_page *page = cpu_buffer->commit_page;
585 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
586 	struct list_head *next;
587 	long commit, write;
588 	unsigned long addr = (unsigned long)event;
589 	bool done = false;
590 	int stop = 0;
591 
592 	/* Make sure the event exists and is not committed yet */
593 	do {
594 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
595 			done = true;
596 		commit = local_read(&page->page->commit);
597 		write = local_read(&page->write);
598 		if (addr >= (unsigned long)&page->page->data[commit] &&
599 		    addr < (unsigned long)&page->page->data[write])
600 			return;
601 
602 		next = rb_list_head(page->list.next);
603 		page = list_entry(next, struct buffer_page, list);
604 	} while (!done);
605 	WARN_ON_ONCE(1);
606 }
607 #else
608 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
609 			 void *event)
610 {
611 }
612 #endif
613 
614 /*
615  * The absolute time stamp drops the 5 MSBs and some clocks may
616  * require them. The rb_fix_abs_ts() will take a previous full
617  * time stamp, and add the 5 MSB of that time stamp on to the
618  * saved absolute time stamp. Then they are compared in case of
619  * the unlikely event that the latest time stamp incremented
620  * the 5 MSB.
621  */
622 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
623 {
624 	if (save_ts & TS_MSB) {
625 		abs |= save_ts & TS_MSB;
626 		/* Check for overflow */
627 		if (unlikely(abs < save_ts))
628 			abs += 1ULL << 59;
629 	}
630 	return abs;
631 }
632 
633 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
634 
635 /**
636  * ring_buffer_event_time_stamp - return the event's current time stamp
637  * @buffer: The buffer that the event is on
638  * @event: the event to get the time stamp of
639  *
640  * Note, this must be called after @event is reserved, and before it is
641  * committed to the ring buffer. And must be called from the same
642  * context where the event was reserved (normal, softirq, irq, etc).
643  *
644  * Returns the time stamp associated with the current event.
645  * If the event has an extended time stamp, then that is used as
646  * the time stamp to return.
647  * In the highly unlikely case that the event was nested more than
648  * the max nesting, then the write_stamp of the buffer is returned,
649  * otherwise  current time is returned, but that really neither of
650  * the last two cases should ever happen.
651  */
652 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
653 				 struct ring_buffer_event *event)
654 {
655 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
656 	unsigned int nest;
657 	u64 ts;
658 
659 	/* If the event includes an absolute time, then just use that */
660 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
661 		ts = rb_event_time_stamp(event);
662 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
663 	}
664 
665 	nest = local_read(&cpu_buffer->committing);
666 	verify_event(cpu_buffer, event);
667 	if (WARN_ON_ONCE(!nest))
668 		goto fail;
669 
670 	/* Read the current saved nesting level time stamp */
671 	if (likely(--nest < MAX_NEST))
672 		return cpu_buffer->event_stamp[nest];
673 
674 	/* Shouldn't happen, warn if it does */
675 	WARN_ONCE(1, "nest (%d) greater than max", nest);
676 
677  fail:
678 	rb_time_read(&cpu_buffer->write_stamp, &ts);
679 
680 	return ts;
681 }
682 
683 /**
684  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
685  * @buffer: The ring_buffer to get the number of pages from
686  * @cpu: The cpu of the ring_buffer to get the number of pages from
687  *
688  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
689  */
690 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
691 {
692 	return buffer->buffers[cpu]->nr_pages;
693 }
694 
695 /**
696  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
697  * @buffer: The ring_buffer to get the number of pages from
698  * @cpu: The cpu of the ring_buffer to get the number of pages from
699  *
700  * Returns the number of pages that have content in the ring buffer.
701  */
702 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
703 {
704 	size_t read;
705 	size_t lost;
706 	size_t cnt;
707 
708 	read = local_read(&buffer->buffers[cpu]->pages_read);
709 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
710 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
711 
712 	if (WARN_ON_ONCE(cnt < lost))
713 		return 0;
714 
715 	cnt -= lost;
716 
717 	/* The reader can read an empty page, but not more than that */
718 	if (cnt < read) {
719 		WARN_ON_ONCE(read > cnt + 1);
720 		return 0;
721 	}
722 
723 	return cnt - read;
724 }
725 
726 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
727 {
728 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
729 	size_t nr_pages;
730 	size_t dirty;
731 
732 	nr_pages = cpu_buffer->nr_pages;
733 	if (!nr_pages || !full)
734 		return true;
735 
736 	/*
737 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
738 	 * that the writer is on is not counted as dirty.
739 	 * This is needed if "buffer_percent" is set to 100.
740 	 */
741 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
742 
743 	return (dirty * 100) >= (full * nr_pages);
744 }
745 
746 /*
747  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
748  *
749  * Schedules a delayed work to wake up any task that is blocked on the
750  * ring buffer waiters queue.
751  */
752 static void rb_wake_up_waiters(struct irq_work *work)
753 {
754 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
755 
756 	wake_up_all(&rbwork->waiters);
757 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
758 		/* Only cpu_buffer sets the above flags */
759 		struct ring_buffer_per_cpu *cpu_buffer =
760 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
761 
762 		/* Called from interrupt context */
763 		raw_spin_lock(&cpu_buffer->reader_lock);
764 		rbwork->wakeup_full = false;
765 		rbwork->full_waiters_pending = false;
766 
767 		/* Waking up all waiters, they will reset the shortest full */
768 		cpu_buffer->shortest_full = 0;
769 		raw_spin_unlock(&cpu_buffer->reader_lock);
770 
771 		wake_up_all(&rbwork->full_waiters);
772 	}
773 }
774 
775 /**
776  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
777  * @buffer: The ring buffer to wake waiters on
778  * @cpu: The CPU buffer to wake waiters on
779  *
780  * In the case of a file that represents a ring buffer is closing,
781  * it is prudent to wake up any waiters that are on this.
782  */
783 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
784 {
785 	struct ring_buffer_per_cpu *cpu_buffer;
786 	struct rb_irq_work *rbwork;
787 
788 	if (!buffer)
789 		return;
790 
791 	if (cpu == RING_BUFFER_ALL_CPUS) {
792 
793 		/* Wake up individual ones too. One level recursion */
794 		for_each_buffer_cpu(buffer, cpu)
795 			ring_buffer_wake_waiters(buffer, cpu);
796 
797 		rbwork = &buffer->irq_work;
798 	} else {
799 		if (WARN_ON_ONCE(!buffer->buffers))
800 			return;
801 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
802 			return;
803 
804 		cpu_buffer = buffer->buffers[cpu];
805 		/* The CPU buffer may not have been initialized yet */
806 		if (!cpu_buffer)
807 			return;
808 		rbwork = &cpu_buffer->irq_work;
809 	}
810 
811 	/* This can be called in any context */
812 	irq_work_queue(&rbwork->work);
813 }
814 
815 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
816 {
817 	struct ring_buffer_per_cpu *cpu_buffer;
818 	bool ret = false;
819 
820 	/* Reads of all CPUs always waits for any data */
821 	if (cpu == RING_BUFFER_ALL_CPUS)
822 		return !ring_buffer_empty(buffer);
823 
824 	cpu_buffer = buffer->buffers[cpu];
825 
826 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
827 		unsigned long flags;
828 		bool pagebusy;
829 
830 		if (!full)
831 			return true;
832 
833 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
834 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
835 		ret = !pagebusy && full_hit(buffer, cpu, full);
836 
837 		if (!cpu_buffer->shortest_full ||
838 		    cpu_buffer->shortest_full > full)
839 			cpu_buffer->shortest_full = full;
840 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
841 	}
842 	return ret;
843 }
844 
845 /**
846  * ring_buffer_wait - wait for input to the ring buffer
847  * @buffer: buffer to wait on
848  * @cpu: the cpu buffer to wait on
849  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
850  *
851  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
852  * as data is added to any of the @buffer's cpu buffers. Otherwise
853  * it will wait for data to be added to a specific cpu buffer.
854  */
855 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
856 {
857 	struct ring_buffer_per_cpu *cpu_buffer;
858 	DEFINE_WAIT(wait);
859 	struct rb_irq_work *work;
860 	int ret = 0;
861 
862 	/*
863 	 * Depending on what the caller is waiting for, either any
864 	 * data in any cpu buffer, or a specific buffer, put the
865 	 * caller on the appropriate wait queue.
866 	 */
867 	if (cpu == RING_BUFFER_ALL_CPUS) {
868 		work = &buffer->irq_work;
869 		/* Full only makes sense on per cpu reads */
870 		full = 0;
871 	} else {
872 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
873 			return -ENODEV;
874 		cpu_buffer = buffer->buffers[cpu];
875 		work = &cpu_buffer->irq_work;
876 	}
877 
878 	if (full)
879 		prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
880 	else
881 		prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
882 
883 	/*
884 	 * The events can happen in critical sections where
885 	 * checking a work queue can cause deadlocks.
886 	 * After adding a task to the queue, this flag is set
887 	 * only to notify events to try to wake up the queue
888 	 * using irq_work.
889 	 *
890 	 * We don't clear it even if the buffer is no longer
891 	 * empty. The flag only causes the next event to run
892 	 * irq_work to do the work queue wake up. The worse
893 	 * that can happen if we race with !trace_empty() is that
894 	 * an event will cause an irq_work to try to wake up
895 	 * an empty queue.
896 	 *
897 	 * There's no reason to protect this flag either, as
898 	 * the work queue and irq_work logic will do the necessary
899 	 * synchronization for the wake ups. The only thing
900 	 * that is necessary is that the wake up happens after
901 	 * a task has been queued. It's OK for spurious wake ups.
902 	 */
903 	if (full)
904 		work->full_waiters_pending = true;
905 	else
906 		work->waiters_pending = true;
907 
908 	if (rb_watermark_hit(buffer, cpu, full))
909 		goto out;
910 
911 	if (signal_pending(current)) {
912 		ret = -EINTR;
913 		goto out;
914 	}
915 
916 	schedule();
917  out:
918 	if (full)
919 		finish_wait(&work->full_waiters, &wait);
920 	else
921 		finish_wait(&work->waiters, &wait);
922 
923 	if (!ret && !rb_watermark_hit(buffer, cpu, full) && signal_pending(current))
924 		ret = -EINTR;
925 
926 	return ret;
927 }
928 
929 /**
930  * ring_buffer_poll_wait - poll on buffer input
931  * @buffer: buffer to wait on
932  * @cpu: the cpu buffer to wait on
933  * @filp: the file descriptor
934  * @poll_table: The poll descriptor
935  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
936  *
937  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
938  * as data is added to any of the @buffer's cpu buffers. Otherwise
939  * it will wait for data to be added to a specific cpu buffer.
940  *
941  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
942  * zero otherwise.
943  */
944 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
945 			  struct file *filp, poll_table *poll_table, int full)
946 {
947 	struct ring_buffer_per_cpu *cpu_buffer;
948 	struct rb_irq_work *rbwork;
949 
950 	if (cpu == RING_BUFFER_ALL_CPUS) {
951 		rbwork = &buffer->irq_work;
952 		full = 0;
953 	} else {
954 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
955 			return EPOLLERR;
956 
957 		cpu_buffer = buffer->buffers[cpu];
958 		rbwork = &cpu_buffer->irq_work;
959 	}
960 
961 	if (full) {
962 		unsigned long flags;
963 
964 		poll_wait(filp, &rbwork->full_waiters, poll_table);
965 
966 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
967 		rbwork->full_waiters_pending = true;
968 		if (!cpu_buffer->shortest_full ||
969 		    cpu_buffer->shortest_full > full)
970 			cpu_buffer->shortest_full = full;
971 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
972 	} else {
973 		poll_wait(filp, &rbwork->waiters, poll_table);
974 		rbwork->waiters_pending = true;
975 	}
976 
977 	/*
978 	 * There's a tight race between setting the waiters_pending and
979 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
980 	 * is set, the next event will wake the task up, but we can get stuck
981 	 * if there's only a single event in.
982 	 *
983 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
984 	 * but adding a memory barrier to all events will cause too much of a
985 	 * performance hit in the fast path.  We only need a memory barrier when
986 	 * the buffer goes from empty to having content.  But as this race is
987 	 * extremely small, and it's not a problem if another event comes in, we
988 	 * will fix it later.
989 	 */
990 	smp_mb();
991 
992 	if (full)
993 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
994 
995 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
996 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
997 		return EPOLLIN | EPOLLRDNORM;
998 	return 0;
999 }
1000 
1001 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1002 #define RB_WARN_ON(b, cond)						\
1003 	({								\
1004 		int _____ret = unlikely(cond);				\
1005 		if (_____ret) {						\
1006 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1007 				struct ring_buffer_per_cpu *__b =	\
1008 					(void *)b;			\
1009 				atomic_inc(&__b->buffer->record_disabled); \
1010 			} else						\
1011 				atomic_inc(&b->record_disabled);	\
1012 			WARN_ON(1);					\
1013 		}							\
1014 		_____ret;						\
1015 	})
1016 
1017 /* Up this if you want to test the TIME_EXTENTS and normalization */
1018 #define DEBUG_SHIFT 0
1019 
1020 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1021 {
1022 	u64 ts;
1023 
1024 	/* Skip retpolines :-( */
1025 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1026 		ts = trace_clock_local();
1027 	else
1028 		ts = buffer->clock();
1029 
1030 	/* shift to debug/test normalization and TIME_EXTENTS */
1031 	return ts << DEBUG_SHIFT;
1032 }
1033 
1034 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1035 {
1036 	u64 time;
1037 
1038 	preempt_disable_notrace();
1039 	time = rb_time_stamp(buffer);
1040 	preempt_enable_notrace();
1041 
1042 	return time;
1043 }
1044 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1045 
1046 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1047 				      int cpu, u64 *ts)
1048 {
1049 	/* Just stupid testing the normalize function and deltas */
1050 	*ts >>= DEBUG_SHIFT;
1051 }
1052 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1053 
1054 /*
1055  * Making the ring buffer lockless makes things tricky.
1056  * Although writes only happen on the CPU that they are on,
1057  * and they only need to worry about interrupts. Reads can
1058  * happen on any CPU.
1059  *
1060  * The reader page is always off the ring buffer, but when the
1061  * reader finishes with a page, it needs to swap its page with
1062  * a new one from the buffer. The reader needs to take from
1063  * the head (writes go to the tail). But if a writer is in overwrite
1064  * mode and wraps, it must push the head page forward.
1065  *
1066  * Here lies the problem.
1067  *
1068  * The reader must be careful to replace only the head page, and
1069  * not another one. As described at the top of the file in the
1070  * ASCII art, the reader sets its old page to point to the next
1071  * page after head. It then sets the page after head to point to
1072  * the old reader page. But if the writer moves the head page
1073  * during this operation, the reader could end up with the tail.
1074  *
1075  * We use cmpxchg to help prevent this race. We also do something
1076  * special with the page before head. We set the LSB to 1.
1077  *
1078  * When the writer must push the page forward, it will clear the
1079  * bit that points to the head page, move the head, and then set
1080  * the bit that points to the new head page.
1081  *
1082  * We also don't want an interrupt coming in and moving the head
1083  * page on another writer. Thus we use the second LSB to catch
1084  * that too. Thus:
1085  *
1086  * head->list->prev->next        bit 1          bit 0
1087  *                              -------        -------
1088  * Normal page                     0              0
1089  * Points to head page             0              1
1090  * New head page                   1              0
1091  *
1092  * Note we can not trust the prev pointer of the head page, because:
1093  *
1094  * +----+       +-----+        +-----+
1095  * |    |------>|  T  |---X--->|  N  |
1096  * |    |<------|     |        |     |
1097  * +----+       +-----+        +-----+
1098  *   ^                           ^ |
1099  *   |          +-----+          | |
1100  *   +----------|  R  |----------+ |
1101  *              |     |<-----------+
1102  *              +-----+
1103  *
1104  * Key:  ---X-->  HEAD flag set in pointer
1105  *         T      Tail page
1106  *         R      Reader page
1107  *         N      Next page
1108  *
1109  * (see __rb_reserve_next() to see where this happens)
1110  *
1111  *  What the above shows is that the reader just swapped out
1112  *  the reader page with a page in the buffer, but before it
1113  *  could make the new header point back to the new page added
1114  *  it was preempted by a writer. The writer moved forward onto
1115  *  the new page added by the reader and is about to move forward
1116  *  again.
1117  *
1118  *  You can see, it is legitimate for the previous pointer of
1119  *  the head (or any page) not to point back to itself. But only
1120  *  temporarily.
1121  */
1122 
1123 #define RB_PAGE_NORMAL		0UL
1124 #define RB_PAGE_HEAD		1UL
1125 #define RB_PAGE_UPDATE		2UL
1126 
1127 
1128 #define RB_FLAG_MASK		3UL
1129 
1130 /* PAGE_MOVED is not part of the mask */
1131 #define RB_PAGE_MOVED		4UL
1132 
1133 /*
1134  * rb_list_head - remove any bit
1135  */
1136 static struct list_head *rb_list_head(struct list_head *list)
1137 {
1138 	unsigned long val = (unsigned long)list;
1139 
1140 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1141 }
1142 
1143 /*
1144  * rb_is_head_page - test if the given page is the head page
1145  *
1146  * Because the reader may move the head_page pointer, we can
1147  * not trust what the head page is (it may be pointing to
1148  * the reader page). But if the next page is a header page,
1149  * its flags will be non zero.
1150  */
1151 static inline int
1152 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1153 {
1154 	unsigned long val;
1155 
1156 	val = (unsigned long)list->next;
1157 
1158 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1159 		return RB_PAGE_MOVED;
1160 
1161 	return val & RB_FLAG_MASK;
1162 }
1163 
1164 /*
1165  * rb_is_reader_page
1166  *
1167  * The unique thing about the reader page, is that, if the
1168  * writer is ever on it, the previous pointer never points
1169  * back to the reader page.
1170  */
1171 static bool rb_is_reader_page(struct buffer_page *page)
1172 {
1173 	struct list_head *list = page->list.prev;
1174 
1175 	return rb_list_head(list->next) != &page->list;
1176 }
1177 
1178 /*
1179  * rb_set_list_to_head - set a list_head to be pointing to head.
1180  */
1181 static void rb_set_list_to_head(struct list_head *list)
1182 {
1183 	unsigned long *ptr;
1184 
1185 	ptr = (unsigned long *)&list->next;
1186 	*ptr |= RB_PAGE_HEAD;
1187 	*ptr &= ~RB_PAGE_UPDATE;
1188 }
1189 
1190 /*
1191  * rb_head_page_activate - sets up head page
1192  */
1193 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1194 {
1195 	struct buffer_page *head;
1196 
1197 	head = cpu_buffer->head_page;
1198 	if (!head)
1199 		return;
1200 
1201 	/*
1202 	 * Set the previous list pointer to have the HEAD flag.
1203 	 */
1204 	rb_set_list_to_head(head->list.prev);
1205 }
1206 
1207 static void rb_list_head_clear(struct list_head *list)
1208 {
1209 	unsigned long *ptr = (unsigned long *)&list->next;
1210 
1211 	*ptr &= ~RB_FLAG_MASK;
1212 }
1213 
1214 /*
1215  * rb_head_page_deactivate - clears head page ptr (for free list)
1216  */
1217 static void
1218 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1219 {
1220 	struct list_head *hd;
1221 
1222 	/* Go through the whole list and clear any pointers found. */
1223 	rb_list_head_clear(cpu_buffer->pages);
1224 
1225 	list_for_each(hd, cpu_buffer->pages)
1226 		rb_list_head_clear(hd);
1227 }
1228 
1229 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1230 			    struct buffer_page *head,
1231 			    struct buffer_page *prev,
1232 			    int old_flag, int new_flag)
1233 {
1234 	struct list_head *list;
1235 	unsigned long val = (unsigned long)&head->list;
1236 	unsigned long ret;
1237 
1238 	list = &prev->list;
1239 
1240 	val &= ~RB_FLAG_MASK;
1241 
1242 	ret = cmpxchg((unsigned long *)&list->next,
1243 		      val | old_flag, val | new_flag);
1244 
1245 	/* check if the reader took the page */
1246 	if ((ret & ~RB_FLAG_MASK) != val)
1247 		return RB_PAGE_MOVED;
1248 
1249 	return ret & RB_FLAG_MASK;
1250 }
1251 
1252 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1253 				   struct buffer_page *head,
1254 				   struct buffer_page *prev,
1255 				   int old_flag)
1256 {
1257 	return rb_head_page_set(cpu_buffer, head, prev,
1258 				old_flag, RB_PAGE_UPDATE);
1259 }
1260 
1261 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1262 				 struct buffer_page *head,
1263 				 struct buffer_page *prev,
1264 				 int old_flag)
1265 {
1266 	return rb_head_page_set(cpu_buffer, head, prev,
1267 				old_flag, RB_PAGE_HEAD);
1268 }
1269 
1270 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1271 				   struct buffer_page *head,
1272 				   struct buffer_page *prev,
1273 				   int old_flag)
1274 {
1275 	return rb_head_page_set(cpu_buffer, head, prev,
1276 				old_flag, RB_PAGE_NORMAL);
1277 }
1278 
1279 static inline void rb_inc_page(struct buffer_page **bpage)
1280 {
1281 	struct list_head *p = rb_list_head((*bpage)->list.next);
1282 
1283 	*bpage = list_entry(p, struct buffer_page, list);
1284 }
1285 
1286 static struct buffer_page *
1287 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1288 {
1289 	struct buffer_page *head;
1290 	struct buffer_page *page;
1291 	struct list_head *list;
1292 	int i;
1293 
1294 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1295 		return NULL;
1296 
1297 	/* sanity check */
1298 	list = cpu_buffer->pages;
1299 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1300 		return NULL;
1301 
1302 	page = head = cpu_buffer->head_page;
1303 	/*
1304 	 * It is possible that the writer moves the header behind
1305 	 * where we started, and we miss in one loop.
1306 	 * A second loop should grab the header, but we'll do
1307 	 * three loops just because I'm paranoid.
1308 	 */
1309 	for (i = 0; i < 3; i++) {
1310 		do {
1311 			if (rb_is_head_page(page, page->list.prev)) {
1312 				cpu_buffer->head_page = page;
1313 				return page;
1314 			}
1315 			rb_inc_page(&page);
1316 		} while (page != head);
1317 	}
1318 
1319 	RB_WARN_ON(cpu_buffer, 1);
1320 
1321 	return NULL;
1322 }
1323 
1324 static bool rb_head_page_replace(struct buffer_page *old,
1325 				struct buffer_page *new)
1326 {
1327 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1328 	unsigned long val;
1329 
1330 	val = *ptr & ~RB_FLAG_MASK;
1331 	val |= RB_PAGE_HEAD;
1332 
1333 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1334 }
1335 
1336 /*
1337  * rb_tail_page_update - move the tail page forward
1338  */
1339 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1340 			       struct buffer_page *tail_page,
1341 			       struct buffer_page *next_page)
1342 {
1343 	unsigned long old_entries;
1344 	unsigned long old_write;
1345 
1346 	/*
1347 	 * The tail page now needs to be moved forward.
1348 	 *
1349 	 * We need to reset the tail page, but without messing
1350 	 * with possible erasing of data brought in by interrupts
1351 	 * that have moved the tail page and are currently on it.
1352 	 *
1353 	 * We add a counter to the write field to denote this.
1354 	 */
1355 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1356 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1357 
1358 	local_inc(&cpu_buffer->pages_touched);
1359 	/*
1360 	 * Just make sure we have seen our old_write and synchronize
1361 	 * with any interrupts that come in.
1362 	 */
1363 	barrier();
1364 
1365 	/*
1366 	 * If the tail page is still the same as what we think
1367 	 * it is, then it is up to us to update the tail
1368 	 * pointer.
1369 	 */
1370 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1371 		/* Zero the write counter */
1372 		unsigned long val = old_write & ~RB_WRITE_MASK;
1373 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1374 
1375 		/*
1376 		 * This will only succeed if an interrupt did
1377 		 * not come in and change it. In which case, we
1378 		 * do not want to modify it.
1379 		 *
1380 		 * We add (void) to let the compiler know that we do not care
1381 		 * about the return value of these functions. We use the
1382 		 * cmpxchg to only update if an interrupt did not already
1383 		 * do it for us. If the cmpxchg fails, we don't care.
1384 		 */
1385 		(void)local_cmpxchg(&next_page->write, old_write, val);
1386 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1387 
1388 		/*
1389 		 * No need to worry about races with clearing out the commit.
1390 		 * it only can increment when a commit takes place. But that
1391 		 * only happens in the outer most nested commit.
1392 		 */
1393 		local_set(&next_page->page->commit, 0);
1394 
1395 		/* Again, either we update tail_page or an interrupt does */
1396 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1397 	}
1398 }
1399 
1400 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1401 			  struct buffer_page *bpage)
1402 {
1403 	unsigned long val = (unsigned long)bpage;
1404 
1405 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1406 }
1407 
1408 /**
1409  * rb_check_pages - integrity check of buffer pages
1410  * @cpu_buffer: CPU buffer with pages to test
1411  *
1412  * As a safety measure we check to make sure the data pages have not
1413  * been corrupted.
1414  */
1415 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1416 {
1417 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1418 	struct list_head *tmp;
1419 
1420 	if (RB_WARN_ON(cpu_buffer,
1421 			rb_list_head(rb_list_head(head->next)->prev) != head))
1422 		return;
1423 
1424 	if (RB_WARN_ON(cpu_buffer,
1425 			rb_list_head(rb_list_head(head->prev)->next) != head))
1426 		return;
1427 
1428 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1429 		if (RB_WARN_ON(cpu_buffer,
1430 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1431 			return;
1432 
1433 		if (RB_WARN_ON(cpu_buffer,
1434 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1435 			return;
1436 	}
1437 }
1438 
1439 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1440 		long nr_pages, struct list_head *pages)
1441 {
1442 	struct buffer_page *bpage, *tmp;
1443 	bool user_thread = current->mm != NULL;
1444 	gfp_t mflags;
1445 	long i;
1446 
1447 	/*
1448 	 * Check if the available memory is there first.
1449 	 * Note, si_mem_available() only gives us a rough estimate of available
1450 	 * memory. It may not be accurate. But we don't care, we just want
1451 	 * to prevent doing any allocation when it is obvious that it is
1452 	 * not going to succeed.
1453 	 */
1454 	i = si_mem_available();
1455 	if (i < nr_pages)
1456 		return -ENOMEM;
1457 
1458 	/*
1459 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1460 	 * gracefully without invoking oom-killer and the system is not
1461 	 * destabilized.
1462 	 */
1463 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1464 
1465 	/*
1466 	 * If a user thread allocates too much, and si_mem_available()
1467 	 * reports there's enough memory, even though there is not.
1468 	 * Make sure the OOM killer kills this thread. This can happen
1469 	 * even with RETRY_MAYFAIL because another task may be doing
1470 	 * an allocation after this task has taken all memory.
1471 	 * This is the task the OOM killer needs to take out during this
1472 	 * loop, even if it was triggered by an allocation somewhere else.
1473 	 */
1474 	if (user_thread)
1475 		set_current_oom_origin();
1476 	for (i = 0; i < nr_pages; i++) {
1477 		struct page *page;
1478 
1479 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1480 				    mflags, cpu_to_node(cpu_buffer->cpu));
1481 		if (!bpage)
1482 			goto free_pages;
1483 
1484 		rb_check_bpage(cpu_buffer, bpage);
1485 
1486 		list_add(&bpage->list, pages);
1487 
1488 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags,
1489 					cpu_buffer->buffer->subbuf_order);
1490 		if (!page)
1491 			goto free_pages;
1492 		bpage->page = page_address(page);
1493 		bpage->order = cpu_buffer->buffer->subbuf_order;
1494 		rb_init_page(bpage->page);
1495 
1496 		if (user_thread && fatal_signal_pending(current))
1497 			goto free_pages;
1498 	}
1499 	if (user_thread)
1500 		clear_current_oom_origin();
1501 
1502 	return 0;
1503 
1504 free_pages:
1505 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1506 		list_del_init(&bpage->list);
1507 		free_buffer_page(bpage);
1508 	}
1509 	if (user_thread)
1510 		clear_current_oom_origin();
1511 
1512 	return -ENOMEM;
1513 }
1514 
1515 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1516 			     unsigned long nr_pages)
1517 {
1518 	LIST_HEAD(pages);
1519 
1520 	WARN_ON(!nr_pages);
1521 
1522 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1523 		return -ENOMEM;
1524 
1525 	/*
1526 	 * The ring buffer page list is a circular list that does not
1527 	 * start and end with a list head. All page list items point to
1528 	 * other pages.
1529 	 */
1530 	cpu_buffer->pages = pages.next;
1531 	list_del(&pages);
1532 
1533 	cpu_buffer->nr_pages = nr_pages;
1534 
1535 	rb_check_pages(cpu_buffer);
1536 
1537 	return 0;
1538 }
1539 
1540 static struct ring_buffer_per_cpu *
1541 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1542 {
1543 	struct ring_buffer_per_cpu *cpu_buffer;
1544 	struct buffer_page *bpage;
1545 	struct page *page;
1546 	int ret;
1547 
1548 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1549 				  GFP_KERNEL, cpu_to_node(cpu));
1550 	if (!cpu_buffer)
1551 		return NULL;
1552 
1553 	cpu_buffer->cpu = cpu;
1554 	cpu_buffer->buffer = buffer;
1555 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1556 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1557 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1558 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1559 	init_completion(&cpu_buffer->update_done);
1560 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1561 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1562 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1563 
1564 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1565 			    GFP_KERNEL, cpu_to_node(cpu));
1566 	if (!bpage)
1567 		goto fail_free_buffer;
1568 
1569 	rb_check_bpage(cpu_buffer, bpage);
1570 
1571 	cpu_buffer->reader_page = bpage;
1572 
1573 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order);
1574 	if (!page)
1575 		goto fail_free_reader;
1576 	bpage->page = page_address(page);
1577 	rb_init_page(bpage->page);
1578 
1579 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1580 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1581 
1582 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1583 	if (ret < 0)
1584 		goto fail_free_reader;
1585 
1586 	cpu_buffer->head_page
1587 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1588 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1589 
1590 	rb_head_page_activate(cpu_buffer);
1591 
1592 	return cpu_buffer;
1593 
1594  fail_free_reader:
1595 	free_buffer_page(cpu_buffer->reader_page);
1596 
1597  fail_free_buffer:
1598 	kfree(cpu_buffer);
1599 	return NULL;
1600 }
1601 
1602 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1603 {
1604 	struct list_head *head = cpu_buffer->pages;
1605 	struct buffer_page *bpage, *tmp;
1606 
1607 	irq_work_sync(&cpu_buffer->irq_work.work);
1608 
1609 	free_buffer_page(cpu_buffer->reader_page);
1610 
1611 	if (head) {
1612 		rb_head_page_deactivate(cpu_buffer);
1613 
1614 		list_for_each_entry_safe(bpage, tmp, head, list) {
1615 			list_del_init(&bpage->list);
1616 			free_buffer_page(bpage);
1617 		}
1618 		bpage = list_entry(head, struct buffer_page, list);
1619 		free_buffer_page(bpage);
1620 	}
1621 
1622 	free_page((unsigned long)cpu_buffer->free_page);
1623 
1624 	kfree(cpu_buffer);
1625 }
1626 
1627 /**
1628  * __ring_buffer_alloc - allocate a new ring_buffer
1629  * @size: the size in bytes per cpu that is needed.
1630  * @flags: attributes to set for the ring buffer.
1631  * @key: ring buffer reader_lock_key.
1632  *
1633  * Currently the only flag that is available is the RB_FL_OVERWRITE
1634  * flag. This flag means that the buffer will overwrite old data
1635  * when the buffer wraps. If this flag is not set, the buffer will
1636  * drop data when the tail hits the head.
1637  */
1638 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1639 					struct lock_class_key *key)
1640 {
1641 	struct trace_buffer *buffer;
1642 	long nr_pages;
1643 	int bsize;
1644 	int cpu;
1645 	int ret;
1646 
1647 	/* keep it in its own cache line */
1648 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1649 			 GFP_KERNEL);
1650 	if (!buffer)
1651 		return NULL;
1652 
1653 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1654 		goto fail_free_buffer;
1655 
1656 	/* Default buffer page size - one system page */
1657 	buffer->subbuf_order = 0;
1658 	buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1659 
1660 	/* Max payload is buffer page size - header (8bytes) */
1661 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1662 
1663 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1664 	buffer->flags = flags;
1665 	buffer->clock = trace_clock_local;
1666 	buffer->reader_lock_key = key;
1667 
1668 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1669 	init_waitqueue_head(&buffer->irq_work.waiters);
1670 
1671 	/* need at least two pages */
1672 	if (nr_pages < 2)
1673 		nr_pages = 2;
1674 
1675 	buffer->cpus = nr_cpu_ids;
1676 
1677 	bsize = sizeof(void *) * nr_cpu_ids;
1678 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1679 				  GFP_KERNEL);
1680 	if (!buffer->buffers)
1681 		goto fail_free_cpumask;
1682 
1683 	cpu = raw_smp_processor_id();
1684 	cpumask_set_cpu(cpu, buffer->cpumask);
1685 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1686 	if (!buffer->buffers[cpu])
1687 		goto fail_free_buffers;
1688 
1689 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690 	if (ret < 0)
1691 		goto fail_free_buffers;
1692 
1693 	mutex_init(&buffer->mutex);
1694 
1695 	return buffer;
1696 
1697  fail_free_buffers:
1698 	for_each_buffer_cpu(buffer, cpu) {
1699 		if (buffer->buffers[cpu])
1700 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1701 	}
1702 	kfree(buffer->buffers);
1703 
1704  fail_free_cpumask:
1705 	free_cpumask_var(buffer->cpumask);
1706 
1707  fail_free_buffer:
1708 	kfree(buffer);
1709 	return NULL;
1710 }
1711 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1712 
1713 /**
1714  * ring_buffer_free - free a ring buffer.
1715  * @buffer: the buffer to free.
1716  */
1717 void
1718 ring_buffer_free(struct trace_buffer *buffer)
1719 {
1720 	int cpu;
1721 
1722 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1723 
1724 	irq_work_sync(&buffer->irq_work.work);
1725 
1726 	for_each_buffer_cpu(buffer, cpu)
1727 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1728 
1729 	kfree(buffer->buffers);
1730 	free_cpumask_var(buffer->cpumask);
1731 
1732 	kfree(buffer);
1733 }
1734 EXPORT_SYMBOL_GPL(ring_buffer_free);
1735 
1736 void ring_buffer_set_clock(struct trace_buffer *buffer,
1737 			   u64 (*clock)(void))
1738 {
1739 	buffer->clock = clock;
1740 }
1741 
1742 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1743 {
1744 	buffer->time_stamp_abs = abs;
1745 }
1746 
1747 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1748 {
1749 	return buffer->time_stamp_abs;
1750 }
1751 
1752 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1753 
1754 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1755 {
1756 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1757 }
1758 
1759 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1760 {
1761 	return local_read(&bpage->write) & RB_WRITE_MASK;
1762 }
1763 
1764 static bool
1765 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1766 {
1767 	struct list_head *tail_page, *to_remove, *next_page;
1768 	struct buffer_page *to_remove_page, *tmp_iter_page;
1769 	struct buffer_page *last_page, *first_page;
1770 	unsigned long nr_removed;
1771 	unsigned long head_bit;
1772 	int page_entries;
1773 
1774 	head_bit = 0;
1775 
1776 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1777 	atomic_inc(&cpu_buffer->record_disabled);
1778 	/*
1779 	 * We don't race with the readers since we have acquired the reader
1780 	 * lock. We also don't race with writers after disabling recording.
1781 	 * This makes it easy to figure out the first and the last page to be
1782 	 * removed from the list. We unlink all the pages in between including
1783 	 * the first and last pages. This is done in a busy loop so that we
1784 	 * lose the least number of traces.
1785 	 * The pages are freed after we restart recording and unlock readers.
1786 	 */
1787 	tail_page = &cpu_buffer->tail_page->list;
1788 
1789 	/*
1790 	 * tail page might be on reader page, we remove the next page
1791 	 * from the ring buffer
1792 	 */
1793 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1794 		tail_page = rb_list_head(tail_page->next);
1795 	to_remove = tail_page;
1796 
1797 	/* start of pages to remove */
1798 	first_page = list_entry(rb_list_head(to_remove->next),
1799 				struct buffer_page, list);
1800 
1801 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1802 		to_remove = rb_list_head(to_remove)->next;
1803 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1804 	}
1805 	/* Read iterators need to reset themselves when some pages removed */
1806 	cpu_buffer->pages_removed += nr_removed;
1807 
1808 	next_page = rb_list_head(to_remove)->next;
1809 
1810 	/*
1811 	 * Now we remove all pages between tail_page and next_page.
1812 	 * Make sure that we have head_bit value preserved for the
1813 	 * next page
1814 	 */
1815 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1816 						head_bit);
1817 	next_page = rb_list_head(next_page);
1818 	next_page->prev = tail_page;
1819 
1820 	/* make sure pages points to a valid page in the ring buffer */
1821 	cpu_buffer->pages = next_page;
1822 
1823 	/* update head page */
1824 	if (head_bit)
1825 		cpu_buffer->head_page = list_entry(next_page,
1826 						struct buffer_page, list);
1827 
1828 	/* pages are removed, resume tracing and then free the pages */
1829 	atomic_dec(&cpu_buffer->record_disabled);
1830 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1831 
1832 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1833 
1834 	/* last buffer page to remove */
1835 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1836 				list);
1837 	tmp_iter_page = first_page;
1838 
1839 	do {
1840 		cond_resched();
1841 
1842 		to_remove_page = tmp_iter_page;
1843 		rb_inc_page(&tmp_iter_page);
1844 
1845 		/* update the counters */
1846 		page_entries = rb_page_entries(to_remove_page);
1847 		if (page_entries) {
1848 			/*
1849 			 * If something was added to this page, it was full
1850 			 * since it is not the tail page. So we deduct the
1851 			 * bytes consumed in ring buffer from here.
1852 			 * Increment overrun to account for the lost events.
1853 			 */
1854 			local_add(page_entries, &cpu_buffer->overrun);
1855 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1856 			local_inc(&cpu_buffer->pages_lost);
1857 		}
1858 
1859 		/*
1860 		 * We have already removed references to this list item, just
1861 		 * free up the buffer_page and its page
1862 		 */
1863 		free_buffer_page(to_remove_page);
1864 		nr_removed--;
1865 
1866 	} while (to_remove_page != last_page);
1867 
1868 	RB_WARN_ON(cpu_buffer, nr_removed);
1869 
1870 	return nr_removed == 0;
1871 }
1872 
1873 static bool
1874 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1875 {
1876 	struct list_head *pages = &cpu_buffer->new_pages;
1877 	unsigned long flags;
1878 	bool success;
1879 	int retries;
1880 
1881 	/* Can be called at early boot up, where interrupts must not been enabled */
1882 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1883 	/*
1884 	 * We are holding the reader lock, so the reader page won't be swapped
1885 	 * in the ring buffer. Now we are racing with the writer trying to
1886 	 * move head page and the tail page.
1887 	 * We are going to adapt the reader page update process where:
1888 	 * 1. We first splice the start and end of list of new pages between
1889 	 *    the head page and its previous page.
1890 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1891 	 *    start of new pages list.
1892 	 * 3. Finally, we update the head->prev to the end of new list.
1893 	 *
1894 	 * We will try this process 10 times, to make sure that we don't keep
1895 	 * spinning.
1896 	 */
1897 	retries = 10;
1898 	success = false;
1899 	while (retries--) {
1900 		struct list_head *head_page, *prev_page;
1901 		struct list_head *last_page, *first_page;
1902 		struct list_head *head_page_with_bit;
1903 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1904 
1905 		if (!hpage)
1906 			break;
1907 		head_page = &hpage->list;
1908 		prev_page = head_page->prev;
1909 
1910 		first_page = pages->next;
1911 		last_page  = pages->prev;
1912 
1913 		head_page_with_bit = (struct list_head *)
1914 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1915 
1916 		last_page->next = head_page_with_bit;
1917 		first_page->prev = prev_page;
1918 
1919 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
1920 		if (try_cmpxchg(&prev_page->next,
1921 				&head_page_with_bit, first_page)) {
1922 			/*
1923 			 * yay, we replaced the page pointer to our new list,
1924 			 * now, we just have to update to head page's prev
1925 			 * pointer to point to end of list
1926 			 */
1927 			head_page->prev = last_page;
1928 			success = true;
1929 			break;
1930 		}
1931 	}
1932 
1933 	if (success)
1934 		INIT_LIST_HEAD(pages);
1935 	/*
1936 	 * If we weren't successful in adding in new pages, warn and stop
1937 	 * tracing
1938 	 */
1939 	RB_WARN_ON(cpu_buffer, !success);
1940 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1941 
1942 	/* free pages if they weren't inserted */
1943 	if (!success) {
1944 		struct buffer_page *bpage, *tmp;
1945 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1946 					 list) {
1947 			list_del_init(&bpage->list);
1948 			free_buffer_page(bpage);
1949 		}
1950 	}
1951 	return success;
1952 }
1953 
1954 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1955 {
1956 	bool success;
1957 
1958 	if (cpu_buffer->nr_pages_to_update > 0)
1959 		success = rb_insert_pages(cpu_buffer);
1960 	else
1961 		success = rb_remove_pages(cpu_buffer,
1962 					-cpu_buffer->nr_pages_to_update);
1963 
1964 	if (success)
1965 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1966 }
1967 
1968 static void update_pages_handler(struct work_struct *work)
1969 {
1970 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1971 			struct ring_buffer_per_cpu, update_pages_work);
1972 	rb_update_pages(cpu_buffer);
1973 	complete(&cpu_buffer->update_done);
1974 }
1975 
1976 /**
1977  * ring_buffer_resize - resize the ring buffer
1978  * @buffer: the buffer to resize.
1979  * @size: the new size.
1980  * @cpu_id: the cpu buffer to resize
1981  *
1982  * Minimum size is 2 * buffer->subbuf_size.
1983  *
1984  * Returns 0 on success and < 0 on failure.
1985  */
1986 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1987 			int cpu_id)
1988 {
1989 	struct ring_buffer_per_cpu *cpu_buffer;
1990 	unsigned long nr_pages;
1991 	int cpu, err;
1992 
1993 	/*
1994 	 * Always succeed at resizing a non-existent buffer:
1995 	 */
1996 	if (!buffer)
1997 		return 0;
1998 
1999 	/* Make sure the requested buffer exists */
2000 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2001 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2002 		return 0;
2003 
2004 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2005 
2006 	/* we need a minimum of two pages */
2007 	if (nr_pages < 2)
2008 		nr_pages = 2;
2009 
2010 	/* prevent another thread from changing buffer sizes */
2011 	mutex_lock(&buffer->mutex);
2012 	atomic_inc(&buffer->resizing);
2013 
2014 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2015 		/*
2016 		 * Don't succeed if resizing is disabled, as a reader might be
2017 		 * manipulating the ring buffer and is expecting a sane state while
2018 		 * this is true.
2019 		 */
2020 		for_each_buffer_cpu(buffer, cpu) {
2021 			cpu_buffer = buffer->buffers[cpu];
2022 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2023 				err = -EBUSY;
2024 				goto out_err_unlock;
2025 			}
2026 		}
2027 
2028 		/* calculate the pages to update */
2029 		for_each_buffer_cpu(buffer, cpu) {
2030 			cpu_buffer = buffer->buffers[cpu];
2031 
2032 			cpu_buffer->nr_pages_to_update = nr_pages -
2033 							cpu_buffer->nr_pages;
2034 			/*
2035 			 * nothing more to do for removing pages or no update
2036 			 */
2037 			if (cpu_buffer->nr_pages_to_update <= 0)
2038 				continue;
2039 			/*
2040 			 * to add pages, make sure all new pages can be
2041 			 * allocated without receiving ENOMEM
2042 			 */
2043 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2044 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2045 						&cpu_buffer->new_pages)) {
2046 				/* not enough memory for new pages */
2047 				err = -ENOMEM;
2048 				goto out_err;
2049 			}
2050 
2051 			cond_resched();
2052 		}
2053 
2054 		cpus_read_lock();
2055 		/*
2056 		 * Fire off all the required work handlers
2057 		 * We can't schedule on offline CPUs, but it's not necessary
2058 		 * since we can change their buffer sizes without any race.
2059 		 */
2060 		for_each_buffer_cpu(buffer, cpu) {
2061 			cpu_buffer = buffer->buffers[cpu];
2062 			if (!cpu_buffer->nr_pages_to_update)
2063 				continue;
2064 
2065 			/* Can't run something on an offline CPU. */
2066 			if (!cpu_online(cpu)) {
2067 				rb_update_pages(cpu_buffer);
2068 				cpu_buffer->nr_pages_to_update = 0;
2069 			} else {
2070 				/* Run directly if possible. */
2071 				migrate_disable();
2072 				if (cpu != smp_processor_id()) {
2073 					migrate_enable();
2074 					schedule_work_on(cpu,
2075 							 &cpu_buffer->update_pages_work);
2076 				} else {
2077 					update_pages_handler(&cpu_buffer->update_pages_work);
2078 					migrate_enable();
2079 				}
2080 			}
2081 		}
2082 
2083 		/* wait for all the updates to complete */
2084 		for_each_buffer_cpu(buffer, cpu) {
2085 			cpu_buffer = buffer->buffers[cpu];
2086 			if (!cpu_buffer->nr_pages_to_update)
2087 				continue;
2088 
2089 			if (cpu_online(cpu))
2090 				wait_for_completion(&cpu_buffer->update_done);
2091 			cpu_buffer->nr_pages_to_update = 0;
2092 		}
2093 
2094 		cpus_read_unlock();
2095 	} else {
2096 		cpu_buffer = buffer->buffers[cpu_id];
2097 
2098 		if (nr_pages == cpu_buffer->nr_pages)
2099 			goto out;
2100 
2101 		/*
2102 		 * Don't succeed if resizing is disabled, as a reader might be
2103 		 * manipulating the ring buffer and is expecting a sane state while
2104 		 * this is true.
2105 		 */
2106 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2107 			err = -EBUSY;
2108 			goto out_err_unlock;
2109 		}
2110 
2111 		cpu_buffer->nr_pages_to_update = nr_pages -
2112 						cpu_buffer->nr_pages;
2113 
2114 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2115 		if (cpu_buffer->nr_pages_to_update > 0 &&
2116 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2117 					    &cpu_buffer->new_pages)) {
2118 			err = -ENOMEM;
2119 			goto out_err;
2120 		}
2121 
2122 		cpus_read_lock();
2123 
2124 		/* Can't run something on an offline CPU. */
2125 		if (!cpu_online(cpu_id))
2126 			rb_update_pages(cpu_buffer);
2127 		else {
2128 			/* Run directly if possible. */
2129 			migrate_disable();
2130 			if (cpu_id == smp_processor_id()) {
2131 				rb_update_pages(cpu_buffer);
2132 				migrate_enable();
2133 			} else {
2134 				migrate_enable();
2135 				schedule_work_on(cpu_id,
2136 						 &cpu_buffer->update_pages_work);
2137 				wait_for_completion(&cpu_buffer->update_done);
2138 			}
2139 		}
2140 
2141 		cpu_buffer->nr_pages_to_update = 0;
2142 		cpus_read_unlock();
2143 	}
2144 
2145  out:
2146 	/*
2147 	 * The ring buffer resize can happen with the ring buffer
2148 	 * enabled, so that the update disturbs the tracing as little
2149 	 * as possible. But if the buffer is disabled, we do not need
2150 	 * to worry about that, and we can take the time to verify
2151 	 * that the buffer is not corrupt.
2152 	 */
2153 	if (atomic_read(&buffer->record_disabled)) {
2154 		atomic_inc(&buffer->record_disabled);
2155 		/*
2156 		 * Even though the buffer was disabled, we must make sure
2157 		 * that it is truly disabled before calling rb_check_pages.
2158 		 * There could have been a race between checking
2159 		 * record_disable and incrementing it.
2160 		 */
2161 		synchronize_rcu();
2162 		for_each_buffer_cpu(buffer, cpu) {
2163 			cpu_buffer = buffer->buffers[cpu];
2164 			rb_check_pages(cpu_buffer);
2165 		}
2166 		atomic_dec(&buffer->record_disabled);
2167 	}
2168 
2169 	atomic_dec(&buffer->resizing);
2170 	mutex_unlock(&buffer->mutex);
2171 	return 0;
2172 
2173  out_err:
2174 	for_each_buffer_cpu(buffer, cpu) {
2175 		struct buffer_page *bpage, *tmp;
2176 
2177 		cpu_buffer = buffer->buffers[cpu];
2178 		cpu_buffer->nr_pages_to_update = 0;
2179 
2180 		if (list_empty(&cpu_buffer->new_pages))
2181 			continue;
2182 
2183 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2184 					list) {
2185 			list_del_init(&bpage->list);
2186 			free_buffer_page(bpage);
2187 		}
2188 	}
2189  out_err_unlock:
2190 	atomic_dec(&buffer->resizing);
2191 	mutex_unlock(&buffer->mutex);
2192 	return err;
2193 }
2194 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2195 
2196 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2197 {
2198 	mutex_lock(&buffer->mutex);
2199 	if (val)
2200 		buffer->flags |= RB_FL_OVERWRITE;
2201 	else
2202 		buffer->flags &= ~RB_FL_OVERWRITE;
2203 	mutex_unlock(&buffer->mutex);
2204 }
2205 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2206 
2207 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2208 {
2209 	return bpage->page->data + index;
2210 }
2211 
2212 static __always_inline struct ring_buffer_event *
2213 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2214 {
2215 	return __rb_page_index(cpu_buffer->reader_page,
2216 			       cpu_buffer->reader_page->read);
2217 }
2218 
2219 static struct ring_buffer_event *
2220 rb_iter_head_event(struct ring_buffer_iter *iter)
2221 {
2222 	struct ring_buffer_event *event;
2223 	struct buffer_page *iter_head_page = iter->head_page;
2224 	unsigned long commit;
2225 	unsigned length;
2226 
2227 	if (iter->head != iter->next_event)
2228 		return iter->event;
2229 
2230 	/*
2231 	 * When the writer goes across pages, it issues a cmpxchg which
2232 	 * is a mb(), which will synchronize with the rmb here.
2233 	 * (see rb_tail_page_update() and __rb_reserve_next())
2234 	 */
2235 	commit = rb_page_commit(iter_head_page);
2236 	smp_rmb();
2237 
2238 	/* An event needs to be at least 8 bytes in size */
2239 	if (iter->head > commit - 8)
2240 		goto reset;
2241 
2242 	event = __rb_page_index(iter_head_page, iter->head);
2243 	length = rb_event_length(event);
2244 
2245 	/*
2246 	 * READ_ONCE() doesn't work on functions and we don't want the
2247 	 * compiler doing any crazy optimizations with length.
2248 	 */
2249 	barrier();
2250 
2251 	if ((iter->head + length) > commit || length > iter->event_size)
2252 		/* Writer corrupted the read? */
2253 		goto reset;
2254 
2255 	memcpy(iter->event, event, length);
2256 	/*
2257 	 * If the page stamp is still the same after this rmb() then the
2258 	 * event was safely copied without the writer entering the page.
2259 	 */
2260 	smp_rmb();
2261 
2262 	/* Make sure the page didn't change since we read this */
2263 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2264 	    commit > rb_page_commit(iter_head_page))
2265 		goto reset;
2266 
2267 	iter->next_event = iter->head + length;
2268 	return iter->event;
2269  reset:
2270 	/* Reset to the beginning */
2271 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2272 	iter->head = 0;
2273 	iter->next_event = 0;
2274 	iter->missed_events = 1;
2275 	return NULL;
2276 }
2277 
2278 /* Size is determined by what has been committed */
2279 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2280 {
2281 	return rb_page_commit(bpage);
2282 }
2283 
2284 static __always_inline unsigned
2285 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2286 {
2287 	return rb_page_commit(cpu_buffer->commit_page);
2288 }
2289 
2290 static __always_inline unsigned
2291 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2292 {
2293 	unsigned long addr = (unsigned long)event;
2294 
2295 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2296 
2297 	return addr - BUF_PAGE_HDR_SIZE;
2298 }
2299 
2300 static void rb_inc_iter(struct ring_buffer_iter *iter)
2301 {
2302 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2303 
2304 	/*
2305 	 * The iterator could be on the reader page (it starts there).
2306 	 * But the head could have moved, since the reader was
2307 	 * found. Check for this case and assign the iterator
2308 	 * to the head page instead of next.
2309 	 */
2310 	if (iter->head_page == cpu_buffer->reader_page)
2311 		iter->head_page = rb_set_head_page(cpu_buffer);
2312 	else
2313 		rb_inc_page(&iter->head_page);
2314 
2315 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2316 	iter->head = 0;
2317 	iter->next_event = 0;
2318 }
2319 
2320 /*
2321  * rb_handle_head_page - writer hit the head page
2322  *
2323  * Returns: +1 to retry page
2324  *           0 to continue
2325  *          -1 on error
2326  */
2327 static int
2328 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2329 		    struct buffer_page *tail_page,
2330 		    struct buffer_page *next_page)
2331 {
2332 	struct buffer_page *new_head;
2333 	int entries;
2334 	int type;
2335 	int ret;
2336 
2337 	entries = rb_page_entries(next_page);
2338 
2339 	/*
2340 	 * The hard part is here. We need to move the head
2341 	 * forward, and protect against both readers on
2342 	 * other CPUs and writers coming in via interrupts.
2343 	 */
2344 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2345 				       RB_PAGE_HEAD);
2346 
2347 	/*
2348 	 * type can be one of four:
2349 	 *  NORMAL - an interrupt already moved it for us
2350 	 *  HEAD   - we are the first to get here.
2351 	 *  UPDATE - we are the interrupt interrupting
2352 	 *           a current move.
2353 	 *  MOVED  - a reader on another CPU moved the next
2354 	 *           pointer to its reader page. Give up
2355 	 *           and try again.
2356 	 */
2357 
2358 	switch (type) {
2359 	case RB_PAGE_HEAD:
2360 		/*
2361 		 * We changed the head to UPDATE, thus
2362 		 * it is our responsibility to update
2363 		 * the counters.
2364 		 */
2365 		local_add(entries, &cpu_buffer->overrun);
2366 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2367 		local_inc(&cpu_buffer->pages_lost);
2368 
2369 		/*
2370 		 * The entries will be zeroed out when we move the
2371 		 * tail page.
2372 		 */
2373 
2374 		/* still more to do */
2375 		break;
2376 
2377 	case RB_PAGE_UPDATE:
2378 		/*
2379 		 * This is an interrupt that interrupt the
2380 		 * previous update. Still more to do.
2381 		 */
2382 		break;
2383 	case RB_PAGE_NORMAL:
2384 		/*
2385 		 * An interrupt came in before the update
2386 		 * and processed this for us.
2387 		 * Nothing left to do.
2388 		 */
2389 		return 1;
2390 	case RB_PAGE_MOVED:
2391 		/*
2392 		 * The reader is on another CPU and just did
2393 		 * a swap with our next_page.
2394 		 * Try again.
2395 		 */
2396 		return 1;
2397 	default:
2398 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2399 		return -1;
2400 	}
2401 
2402 	/*
2403 	 * Now that we are here, the old head pointer is
2404 	 * set to UPDATE. This will keep the reader from
2405 	 * swapping the head page with the reader page.
2406 	 * The reader (on another CPU) will spin till
2407 	 * we are finished.
2408 	 *
2409 	 * We just need to protect against interrupts
2410 	 * doing the job. We will set the next pointer
2411 	 * to HEAD. After that, we set the old pointer
2412 	 * to NORMAL, but only if it was HEAD before.
2413 	 * otherwise we are an interrupt, and only
2414 	 * want the outer most commit to reset it.
2415 	 */
2416 	new_head = next_page;
2417 	rb_inc_page(&new_head);
2418 
2419 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2420 				    RB_PAGE_NORMAL);
2421 
2422 	/*
2423 	 * Valid returns are:
2424 	 *  HEAD   - an interrupt came in and already set it.
2425 	 *  NORMAL - One of two things:
2426 	 *            1) We really set it.
2427 	 *            2) A bunch of interrupts came in and moved
2428 	 *               the page forward again.
2429 	 */
2430 	switch (ret) {
2431 	case RB_PAGE_HEAD:
2432 	case RB_PAGE_NORMAL:
2433 		/* OK */
2434 		break;
2435 	default:
2436 		RB_WARN_ON(cpu_buffer, 1);
2437 		return -1;
2438 	}
2439 
2440 	/*
2441 	 * It is possible that an interrupt came in,
2442 	 * set the head up, then more interrupts came in
2443 	 * and moved it again. When we get back here,
2444 	 * the page would have been set to NORMAL but we
2445 	 * just set it back to HEAD.
2446 	 *
2447 	 * How do you detect this? Well, if that happened
2448 	 * the tail page would have moved.
2449 	 */
2450 	if (ret == RB_PAGE_NORMAL) {
2451 		struct buffer_page *buffer_tail_page;
2452 
2453 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2454 		/*
2455 		 * If the tail had moved passed next, then we need
2456 		 * to reset the pointer.
2457 		 */
2458 		if (buffer_tail_page != tail_page &&
2459 		    buffer_tail_page != next_page)
2460 			rb_head_page_set_normal(cpu_buffer, new_head,
2461 						next_page,
2462 						RB_PAGE_HEAD);
2463 	}
2464 
2465 	/*
2466 	 * If this was the outer most commit (the one that
2467 	 * changed the original pointer from HEAD to UPDATE),
2468 	 * then it is up to us to reset it to NORMAL.
2469 	 */
2470 	if (type == RB_PAGE_HEAD) {
2471 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2472 					      tail_page,
2473 					      RB_PAGE_UPDATE);
2474 		if (RB_WARN_ON(cpu_buffer,
2475 			       ret != RB_PAGE_UPDATE))
2476 			return -1;
2477 	}
2478 
2479 	return 0;
2480 }
2481 
2482 static inline void
2483 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2484 	      unsigned long tail, struct rb_event_info *info)
2485 {
2486 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2487 	struct buffer_page *tail_page = info->tail_page;
2488 	struct ring_buffer_event *event;
2489 	unsigned long length = info->length;
2490 
2491 	/*
2492 	 * Only the event that crossed the page boundary
2493 	 * must fill the old tail_page with padding.
2494 	 */
2495 	if (tail >= bsize) {
2496 		/*
2497 		 * If the page was filled, then we still need
2498 		 * to update the real_end. Reset it to zero
2499 		 * and the reader will ignore it.
2500 		 */
2501 		if (tail == bsize)
2502 			tail_page->real_end = 0;
2503 
2504 		local_sub(length, &tail_page->write);
2505 		return;
2506 	}
2507 
2508 	event = __rb_page_index(tail_page, tail);
2509 
2510 	/*
2511 	 * Save the original length to the meta data.
2512 	 * This will be used by the reader to add lost event
2513 	 * counter.
2514 	 */
2515 	tail_page->real_end = tail;
2516 
2517 	/*
2518 	 * If this event is bigger than the minimum size, then
2519 	 * we need to be careful that we don't subtract the
2520 	 * write counter enough to allow another writer to slip
2521 	 * in on this page.
2522 	 * We put in a discarded commit instead, to make sure
2523 	 * that this space is not used again, and this space will
2524 	 * not be accounted into 'entries_bytes'.
2525 	 *
2526 	 * If we are less than the minimum size, we don't need to
2527 	 * worry about it.
2528 	 */
2529 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2530 		/* No room for any events */
2531 
2532 		/* Mark the rest of the page with padding */
2533 		rb_event_set_padding(event);
2534 
2535 		/* Make sure the padding is visible before the write update */
2536 		smp_wmb();
2537 
2538 		/* Set the write back to the previous setting */
2539 		local_sub(length, &tail_page->write);
2540 		return;
2541 	}
2542 
2543 	/* Put in a discarded event */
2544 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2545 	event->type_len = RINGBUF_TYPE_PADDING;
2546 	/* time delta must be non zero */
2547 	event->time_delta = 1;
2548 
2549 	/* account for padding bytes */
2550 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
2551 
2552 	/* Make sure the padding is visible before the tail_page->write update */
2553 	smp_wmb();
2554 
2555 	/* Set write to end of buffer */
2556 	length = (tail + length) - bsize;
2557 	local_sub(length, &tail_page->write);
2558 }
2559 
2560 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2561 
2562 /*
2563  * This is the slow path, force gcc not to inline it.
2564  */
2565 static noinline struct ring_buffer_event *
2566 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2567 	     unsigned long tail, struct rb_event_info *info)
2568 {
2569 	struct buffer_page *tail_page = info->tail_page;
2570 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2571 	struct trace_buffer *buffer = cpu_buffer->buffer;
2572 	struct buffer_page *next_page;
2573 	int ret;
2574 
2575 	next_page = tail_page;
2576 
2577 	rb_inc_page(&next_page);
2578 
2579 	/*
2580 	 * If for some reason, we had an interrupt storm that made
2581 	 * it all the way around the buffer, bail, and warn
2582 	 * about it.
2583 	 */
2584 	if (unlikely(next_page == commit_page)) {
2585 		local_inc(&cpu_buffer->commit_overrun);
2586 		goto out_reset;
2587 	}
2588 
2589 	/*
2590 	 * This is where the fun begins!
2591 	 *
2592 	 * We are fighting against races between a reader that
2593 	 * could be on another CPU trying to swap its reader
2594 	 * page with the buffer head.
2595 	 *
2596 	 * We are also fighting against interrupts coming in and
2597 	 * moving the head or tail on us as well.
2598 	 *
2599 	 * If the next page is the head page then we have filled
2600 	 * the buffer, unless the commit page is still on the
2601 	 * reader page.
2602 	 */
2603 	if (rb_is_head_page(next_page, &tail_page->list)) {
2604 
2605 		/*
2606 		 * If the commit is not on the reader page, then
2607 		 * move the header page.
2608 		 */
2609 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2610 			/*
2611 			 * If we are not in overwrite mode,
2612 			 * this is easy, just stop here.
2613 			 */
2614 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2615 				local_inc(&cpu_buffer->dropped_events);
2616 				goto out_reset;
2617 			}
2618 
2619 			ret = rb_handle_head_page(cpu_buffer,
2620 						  tail_page,
2621 						  next_page);
2622 			if (ret < 0)
2623 				goto out_reset;
2624 			if (ret)
2625 				goto out_again;
2626 		} else {
2627 			/*
2628 			 * We need to be careful here too. The
2629 			 * commit page could still be on the reader
2630 			 * page. We could have a small buffer, and
2631 			 * have filled up the buffer with events
2632 			 * from interrupts and such, and wrapped.
2633 			 *
2634 			 * Note, if the tail page is also on the
2635 			 * reader_page, we let it move out.
2636 			 */
2637 			if (unlikely((cpu_buffer->commit_page !=
2638 				      cpu_buffer->tail_page) &&
2639 				     (cpu_buffer->commit_page ==
2640 				      cpu_buffer->reader_page))) {
2641 				local_inc(&cpu_buffer->commit_overrun);
2642 				goto out_reset;
2643 			}
2644 		}
2645 	}
2646 
2647 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2648 
2649  out_again:
2650 
2651 	rb_reset_tail(cpu_buffer, tail, info);
2652 
2653 	/* Commit what we have for now. */
2654 	rb_end_commit(cpu_buffer);
2655 	/* rb_end_commit() decs committing */
2656 	local_inc(&cpu_buffer->committing);
2657 
2658 	/* fail and let the caller try again */
2659 	return ERR_PTR(-EAGAIN);
2660 
2661  out_reset:
2662 	/* reset write */
2663 	rb_reset_tail(cpu_buffer, tail, info);
2664 
2665 	return NULL;
2666 }
2667 
2668 /* Slow path */
2669 static struct ring_buffer_event *
2670 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2671 		  struct ring_buffer_event *event, u64 delta, bool abs)
2672 {
2673 	if (abs)
2674 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2675 	else
2676 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2677 
2678 	/* Not the first event on the page, or not delta? */
2679 	if (abs || rb_event_index(cpu_buffer, event)) {
2680 		event->time_delta = delta & TS_MASK;
2681 		event->array[0] = delta >> TS_SHIFT;
2682 	} else {
2683 		/* nope, just zero it */
2684 		event->time_delta = 0;
2685 		event->array[0] = 0;
2686 	}
2687 
2688 	return skip_time_extend(event);
2689 }
2690 
2691 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2692 static inline bool sched_clock_stable(void)
2693 {
2694 	return true;
2695 }
2696 #endif
2697 
2698 static void
2699 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2700 		   struct rb_event_info *info)
2701 {
2702 	u64 write_stamp;
2703 
2704 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2705 		  (unsigned long long)info->delta,
2706 		  (unsigned long long)info->ts,
2707 		  (unsigned long long)info->before,
2708 		  (unsigned long long)info->after,
2709 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2710 		  sched_clock_stable() ? "" :
2711 		  "If you just came from a suspend/resume,\n"
2712 		  "please switch to the trace global clock:\n"
2713 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2714 		  "or add trace_clock=global to the kernel command line\n");
2715 }
2716 
2717 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2718 				      struct ring_buffer_event **event,
2719 				      struct rb_event_info *info,
2720 				      u64 *delta,
2721 				      unsigned int *length)
2722 {
2723 	bool abs = info->add_timestamp &
2724 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2725 
2726 	if (unlikely(info->delta > (1ULL << 59))) {
2727 		/*
2728 		 * Some timers can use more than 59 bits, and when a timestamp
2729 		 * is added to the buffer, it will lose those bits.
2730 		 */
2731 		if (abs && (info->ts & TS_MSB)) {
2732 			info->delta &= ABS_TS_MASK;
2733 
2734 		/* did the clock go backwards */
2735 		} else if (info->before == info->after && info->before > info->ts) {
2736 			/* not interrupted */
2737 			static int once;
2738 
2739 			/*
2740 			 * This is possible with a recalibrating of the TSC.
2741 			 * Do not produce a call stack, but just report it.
2742 			 */
2743 			if (!once) {
2744 				once++;
2745 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2746 					info->before, info->ts);
2747 			}
2748 		} else
2749 			rb_check_timestamp(cpu_buffer, info);
2750 		if (!abs)
2751 			info->delta = 0;
2752 	}
2753 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2754 	*length -= RB_LEN_TIME_EXTEND;
2755 	*delta = 0;
2756 }
2757 
2758 /**
2759  * rb_update_event - update event type and data
2760  * @cpu_buffer: The per cpu buffer of the @event
2761  * @event: the event to update
2762  * @info: The info to update the @event with (contains length and delta)
2763  *
2764  * Update the type and data fields of the @event. The length
2765  * is the actual size that is written to the ring buffer,
2766  * and with this, we can determine what to place into the
2767  * data field.
2768  */
2769 static void
2770 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2771 		struct ring_buffer_event *event,
2772 		struct rb_event_info *info)
2773 {
2774 	unsigned length = info->length;
2775 	u64 delta = info->delta;
2776 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2777 
2778 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2779 		cpu_buffer->event_stamp[nest] = info->ts;
2780 
2781 	/*
2782 	 * If we need to add a timestamp, then we
2783 	 * add it to the start of the reserved space.
2784 	 */
2785 	if (unlikely(info->add_timestamp))
2786 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2787 
2788 	event->time_delta = delta;
2789 	length -= RB_EVNT_HDR_SIZE;
2790 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2791 		event->type_len = 0;
2792 		event->array[0] = length;
2793 	} else
2794 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2795 }
2796 
2797 static unsigned rb_calculate_event_length(unsigned length)
2798 {
2799 	struct ring_buffer_event event; /* Used only for sizeof array */
2800 
2801 	/* zero length can cause confusions */
2802 	if (!length)
2803 		length++;
2804 
2805 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2806 		length += sizeof(event.array[0]);
2807 
2808 	length += RB_EVNT_HDR_SIZE;
2809 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2810 
2811 	/*
2812 	 * In case the time delta is larger than the 27 bits for it
2813 	 * in the header, we need to add a timestamp. If another
2814 	 * event comes in when trying to discard this one to increase
2815 	 * the length, then the timestamp will be added in the allocated
2816 	 * space of this event. If length is bigger than the size needed
2817 	 * for the TIME_EXTEND, then padding has to be used. The events
2818 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2819 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2820 	 * As length is a multiple of 4, we only need to worry if it
2821 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2822 	 */
2823 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2824 		length += RB_ALIGNMENT;
2825 
2826 	return length;
2827 }
2828 
2829 static inline bool
2830 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2831 		  struct ring_buffer_event *event)
2832 {
2833 	unsigned long new_index, old_index;
2834 	struct buffer_page *bpage;
2835 	unsigned long addr;
2836 
2837 	new_index = rb_event_index(cpu_buffer, event);
2838 	old_index = new_index + rb_event_ts_length(event);
2839 	addr = (unsigned long)event;
2840 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2841 
2842 	bpage = READ_ONCE(cpu_buffer->tail_page);
2843 
2844 	/*
2845 	 * Make sure the tail_page is still the same and
2846 	 * the next write location is the end of this event
2847 	 */
2848 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2849 		unsigned long write_mask =
2850 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2851 		unsigned long event_length = rb_event_length(event);
2852 
2853 		/*
2854 		 * For the before_stamp to be different than the write_stamp
2855 		 * to make sure that the next event adds an absolute
2856 		 * value and does not rely on the saved write stamp, which
2857 		 * is now going to be bogus.
2858 		 *
2859 		 * By setting the before_stamp to zero, the next event
2860 		 * is not going to use the write_stamp and will instead
2861 		 * create an absolute timestamp. This means there's no
2862 		 * reason to update the wirte_stamp!
2863 		 */
2864 		rb_time_set(&cpu_buffer->before_stamp, 0);
2865 
2866 		/*
2867 		 * If an event were to come in now, it would see that the
2868 		 * write_stamp and the before_stamp are different, and assume
2869 		 * that this event just added itself before updating
2870 		 * the write stamp. The interrupting event will fix the
2871 		 * write stamp for us, and use an absolute timestamp.
2872 		 */
2873 
2874 		/*
2875 		 * This is on the tail page. It is possible that
2876 		 * a write could come in and move the tail page
2877 		 * and write to the next page. That is fine
2878 		 * because we just shorten what is on this page.
2879 		 */
2880 		old_index += write_mask;
2881 		new_index += write_mask;
2882 
2883 		/* caution: old_index gets updated on cmpxchg failure */
2884 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2885 			/* update counters */
2886 			local_sub(event_length, &cpu_buffer->entries_bytes);
2887 			return true;
2888 		}
2889 	}
2890 
2891 	/* could not discard */
2892 	return false;
2893 }
2894 
2895 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2896 {
2897 	local_inc(&cpu_buffer->committing);
2898 	local_inc(&cpu_buffer->commits);
2899 }
2900 
2901 static __always_inline void
2902 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2903 {
2904 	unsigned long max_count;
2905 
2906 	/*
2907 	 * We only race with interrupts and NMIs on this CPU.
2908 	 * If we own the commit event, then we can commit
2909 	 * all others that interrupted us, since the interruptions
2910 	 * are in stack format (they finish before they come
2911 	 * back to us). This allows us to do a simple loop to
2912 	 * assign the commit to the tail.
2913 	 */
2914  again:
2915 	max_count = cpu_buffer->nr_pages * 100;
2916 
2917 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2918 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2919 			return;
2920 		if (RB_WARN_ON(cpu_buffer,
2921 			       rb_is_reader_page(cpu_buffer->tail_page)))
2922 			return;
2923 		/*
2924 		 * No need for a memory barrier here, as the update
2925 		 * of the tail_page did it for this page.
2926 		 */
2927 		local_set(&cpu_buffer->commit_page->page->commit,
2928 			  rb_page_write(cpu_buffer->commit_page));
2929 		rb_inc_page(&cpu_buffer->commit_page);
2930 		/* add barrier to keep gcc from optimizing too much */
2931 		barrier();
2932 	}
2933 	while (rb_commit_index(cpu_buffer) !=
2934 	       rb_page_write(cpu_buffer->commit_page)) {
2935 
2936 		/* Make sure the readers see the content of what is committed. */
2937 		smp_wmb();
2938 		local_set(&cpu_buffer->commit_page->page->commit,
2939 			  rb_page_write(cpu_buffer->commit_page));
2940 		RB_WARN_ON(cpu_buffer,
2941 			   local_read(&cpu_buffer->commit_page->page->commit) &
2942 			   ~RB_WRITE_MASK);
2943 		barrier();
2944 	}
2945 
2946 	/* again, keep gcc from optimizing */
2947 	barrier();
2948 
2949 	/*
2950 	 * If an interrupt came in just after the first while loop
2951 	 * and pushed the tail page forward, we will be left with
2952 	 * a dangling commit that will never go forward.
2953 	 */
2954 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2955 		goto again;
2956 }
2957 
2958 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2959 {
2960 	unsigned long commits;
2961 
2962 	if (RB_WARN_ON(cpu_buffer,
2963 		       !local_read(&cpu_buffer->committing)))
2964 		return;
2965 
2966  again:
2967 	commits = local_read(&cpu_buffer->commits);
2968 	/* synchronize with interrupts */
2969 	barrier();
2970 	if (local_read(&cpu_buffer->committing) == 1)
2971 		rb_set_commit_to_write(cpu_buffer);
2972 
2973 	local_dec(&cpu_buffer->committing);
2974 
2975 	/* synchronize with interrupts */
2976 	barrier();
2977 
2978 	/*
2979 	 * Need to account for interrupts coming in between the
2980 	 * updating of the commit page and the clearing of the
2981 	 * committing counter.
2982 	 */
2983 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2984 	    !local_read(&cpu_buffer->committing)) {
2985 		local_inc(&cpu_buffer->committing);
2986 		goto again;
2987 	}
2988 }
2989 
2990 static inline void rb_event_discard(struct ring_buffer_event *event)
2991 {
2992 	if (extended_time(event))
2993 		event = skip_time_extend(event);
2994 
2995 	/* array[0] holds the actual length for the discarded event */
2996 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2997 	event->type_len = RINGBUF_TYPE_PADDING;
2998 	/* time delta must be non zero */
2999 	if (!event->time_delta)
3000 		event->time_delta = 1;
3001 }
3002 
3003 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3004 {
3005 	local_inc(&cpu_buffer->entries);
3006 	rb_end_commit(cpu_buffer);
3007 }
3008 
3009 static __always_inline void
3010 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3011 {
3012 	if (buffer->irq_work.waiters_pending) {
3013 		buffer->irq_work.waiters_pending = false;
3014 		/* irq_work_queue() supplies it's own memory barriers */
3015 		irq_work_queue(&buffer->irq_work.work);
3016 	}
3017 
3018 	if (cpu_buffer->irq_work.waiters_pending) {
3019 		cpu_buffer->irq_work.waiters_pending = false;
3020 		/* irq_work_queue() supplies it's own memory barriers */
3021 		irq_work_queue(&cpu_buffer->irq_work.work);
3022 	}
3023 
3024 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3025 		return;
3026 
3027 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3028 		return;
3029 
3030 	if (!cpu_buffer->irq_work.full_waiters_pending)
3031 		return;
3032 
3033 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3034 
3035 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3036 		return;
3037 
3038 	cpu_buffer->irq_work.wakeup_full = true;
3039 	cpu_buffer->irq_work.full_waiters_pending = false;
3040 	/* irq_work_queue() supplies it's own memory barriers */
3041 	irq_work_queue(&cpu_buffer->irq_work.work);
3042 }
3043 
3044 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3045 # define do_ring_buffer_record_recursion()	\
3046 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3047 #else
3048 # define do_ring_buffer_record_recursion() do { } while (0)
3049 #endif
3050 
3051 /*
3052  * The lock and unlock are done within a preempt disable section.
3053  * The current_context per_cpu variable can only be modified
3054  * by the current task between lock and unlock. But it can
3055  * be modified more than once via an interrupt. To pass this
3056  * information from the lock to the unlock without having to
3057  * access the 'in_interrupt()' functions again (which do show
3058  * a bit of overhead in something as critical as function tracing,
3059  * we use a bitmask trick.
3060  *
3061  *  bit 1 =  NMI context
3062  *  bit 2 =  IRQ context
3063  *  bit 3 =  SoftIRQ context
3064  *  bit 4 =  normal context.
3065  *
3066  * This works because this is the order of contexts that can
3067  * preempt other contexts. A SoftIRQ never preempts an IRQ
3068  * context.
3069  *
3070  * When the context is determined, the corresponding bit is
3071  * checked and set (if it was set, then a recursion of that context
3072  * happened).
3073  *
3074  * On unlock, we need to clear this bit. To do so, just subtract
3075  * 1 from the current_context and AND it to itself.
3076  *
3077  * (binary)
3078  *  101 - 1 = 100
3079  *  101 & 100 = 100 (clearing bit zero)
3080  *
3081  *  1010 - 1 = 1001
3082  *  1010 & 1001 = 1000 (clearing bit 1)
3083  *
3084  * The least significant bit can be cleared this way, and it
3085  * just so happens that it is the same bit corresponding to
3086  * the current context.
3087  *
3088  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3089  * is set when a recursion is detected at the current context, and if
3090  * the TRANSITION bit is already set, it will fail the recursion.
3091  * This is needed because there's a lag between the changing of
3092  * interrupt context and updating the preempt count. In this case,
3093  * a false positive will be found. To handle this, one extra recursion
3094  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3095  * bit is already set, then it is considered a recursion and the function
3096  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3097  *
3098  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3099  * to be cleared. Even if it wasn't the context that set it. That is,
3100  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3101  * is called before preempt_count() is updated, since the check will
3102  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3103  * NMI then comes in, it will set the NMI bit, but when the NMI code
3104  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3105  * and leave the NMI bit set. But this is fine, because the interrupt
3106  * code that set the TRANSITION bit will then clear the NMI bit when it
3107  * calls trace_recursive_unlock(). If another NMI comes in, it will
3108  * set the TRANSITION bit and continue.
3109  *
3110  * Note: The TRANSITION bit only handles a single transition between context.
3111  */
3112 
3113 static __always_inline bool
3114 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3115 {
3116 	unsigned int val = cpu_buffer->current_context;
3117 	int bit = interrupt_context_level();
3118 
3119 	bit = RB_CTX_NORMAL - bit;
3120 
3121 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3122 		/*
3123 		 * It is possible that this was called by transitioning
3124 		 * between interrupt context, and preempt_count() has not
3125 		 * been updated yet. In this case, use the TRANSITION bit.
3126 		 */
3127 		bit = RB_CTX_TRANSITION;
3128 		if (val & (1 << (bit + cpu_buffer->nest))) {
3129 			do_ring_buffer_record_recursion();
3130 			return true;
3131 		}
3132 	}
3133 
3134 	val |= (1 << (bit + cpu_buffer->nest));
3135 	cpu_buffer->current_context = val;
3136 
3137 	return false;
3138 }
3139 
3140 static __always_inline void
3141 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3142 {
3143 	cpu_buffer->current_context &=
3144 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3145 }
3146 
3147 /* The recursive locking above uses 5 bits */
3148 #define NESTED_BITS 5
3149 
3150 /**
3151  * ring_buffer_nest_start - Allow to trace while nested
3152  * @buffer: The ring buffer to modify
3153  *
3154  * The ring buffer has a safety mechanism to prevent recursion.
3155  * But there may be a case where a trace needs to be done while
3156  * tracing something else. In this case, calling this function
3157  * will allow this function to nest within a currently active
3158  * ring_buffer_lock_reserve().
3159  *
3160  * Call this function before calling another ring_buffer_lock_reserve() and
3161  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3162  */
3163 void ring_buffer_nest_start(struct trace_buffer *buffer)
3164 {
3165 	struct ring_buffer_per_cpu *cpu_buffer;
3166 	int cpu;
3167 
3168 	/* Enabled by ring_buffer_nest_end() */
3169 	preempt_disable_notrace();
3170 	cpu = raw_smp_processor_id();
3171 	cpu_buffer = buffer->buffers[cpu];
3172 	/* This is the shift value for the above recursive locking */
3173 	cpu_buffer->nest += NESTED_BITS;
3174 }
3175 
3176 /**
3177  * ring_buffer_nest_end - Allow to trace while nested
3178  * @buffer: The ring buffer to modify
3179  *
3180  * Must be called after ring_buffer_nest_start() and after the
3181  * ring_buffer_unlock_commit().
3182  */
3183 void ring_buffer_nest_end(struct trace_buffer *buffer)
3184 {
3185 	struct ring_buffer_per_cpu *cpu_buffer;
3186 	int cpu;
3187 
3188 	/* disabled by ring_buffer_nest_start() */
3189 	cpu = raw_smp_processor_id();
3190 	cpu_buffer = buffer->buffers[cpu];
3191 	/* This is the shift value for the above recursive locking */
3192 	cpu_buffer->nest -= NESTED_BITS;
3193 	preempt_enable_notrace();
3194 }
3195 
3196 /**
3197  * ring_buffer_unlock_commit - commit a reserved
3198  * @buffer: The buffer to commit to
3199  *
3200  * This commits the data to the ring buffer, and releases any locks held.
3201  *
3202  * Must be paired with ring_buffer_lock_reserve.
3203  */
3204 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3205 {
3206 	struct ring_buffer_per_cpu *cpu_buffer;
3207 	int cpu = raw_smp_processor_id();
3208 
3209 	cpu_buffer = buffer->buffers[cpu];
3210 
3211 	rb_commit(cpu_buffer);
3212 
3213 	rb_wakeups(buffer, cpu_buffer);
3214 
3215 	trace_recursive_unlock(cpu_buffer);
3216 
3217 	preempt_enable_notrace();
3218 
3219 	return 0;
3220 }
3221 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3222 
3223 /* Special value to validate all deltas on a page. */
3224 #define CHECK_FULL_PAGE		1L
3225 
3226 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3227 
3228 static const char *show_irq_str(int bits)
3229 {
3230 	const char *type[] = {
3231 		".",	// 0
3232 		"s",	// 1
3233 		"h",	// 2
3234 		"Hs",	// 3
3235 		"n",	// 4
3236 		"Ns",	// 5
3237 		"Nh",	// 6
3238 		"NHs",	// 7
3239 	};
3240 
3241 	return type[bits];
3242 }
3243 
3244 /* Assume this is an trace event */
3245 static const char *show_flags(struct ring_buffer_event *event)
3246 {
3247 	struct trace_entry *entry;
3248 	int bits = 0;
3249 
3250 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3251 		return "X";
3252 
3253 	entry = ring_buffer_event_data(event);
3254 
3255 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
3256 		bits |= 1;
3257 
3258 	if (entry->flags & TRACE_FLAG_HARDIRQ)
3259 		bits |= 2;
3260 
3261 	if (entry->flags & TRACE_FLAG_NMI)
3262 		bits |= 4;
3263 
3264 	return show_irq_str(bits);
3265 }
3266 
3267 static const char *show_irq(struct ring_buffer_event *event)
3268 {
3269 	struct trace_entry *entry;
3270 
3271 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3272 		return "";
3273 
3274 	entry = ring_buffer_event_data(event);
3275 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
3276 		return "d";
3277 	return "";
3278 }
3279 
3280 static const char *show_interrupt_level(void)
3281 {
3282 	unsigned long pc = preempt_count();
3283 	unsigned char level = 0;
3284 
3285 	if (pc & SOFTIRQ_OFFSET)
3286 		level |= 1;
3287 
3288 	if (pc & HARDIRQ_MASK)
3289 		level |= 2;
3290 
3291 	if (pc & NMI_MASK)
3292 		level |= 4;
3293 
3294 	return show_irq_str(level);
3295 }
3296 
3297 static void dump_buffer_page(struct buffer_data_page *bpage,
3298 			     struct rb_event_info *info,
3299 			     unsigned long tail)
3300 {
3301 	struct ring_buffer_event *event;
3302 	u64 ts, delta;
3303 	int e;
3304 
3305 	ts = bpage->time_stamp;
3306 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3307 
3308 	for (e = 0; e < tail; e += rb_event_length(event)) {
3309 
3310 		event = (struct ring_buffer_event *)(bpage->data + e);
3311 
3312 		switch (event->type_len) {
3313 
3314 		case RINGBUF_TYPE_TIME_EXTEND:
3315 			delta = rb_event_time_stamp(event);
3316 			ts += delta;
3317 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3318 				e, ts, delta);
3319 			break;
3320 
3321 		case RINGBUF_TYPE_TIME_STAMP:
3322 			delta = rb_event_time_stamp(event);
3323 			ts = rb_fix_abs_ts(delta, ts);
3324 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3325 				e, ts, delta);
3326 			break;
3327 
3328 		case RINGBUF_TYPE_PADDING:
3329 			ts += event->time_delta;
3330 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3331 				e, ts, event->time_delta);
3332 			break;
3333 
3334 		case RINGBUF_TYPE_DATA:
3335 			ts += event->time_delta;
3336 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3337 				e, ts, event->time_delta,
3338 				show_flags(event), show_irq(event));
3339 			break;
3340 
3341 		default:
3342 			break;
3343 		}
3344 	}
3345 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3346 }
3347 
3348 static DEFINE_PER_CPU(atomic_t, checking);
3349 static atomic_t ts_dump;
3350 
3351 #define buffer_warn_return(fmt, ...)					\
3352 	do {								\
3353 		/* If another report is happening, ignore this one */	\
3354 		if (atomic_inc_return(&ts_dump) != 1) {			\
3355 			atomic_dec(&ts_dump);				\
3356 			goto out;					\
3357 		}							\
3358 		atomic_inc(&cpu_buffer->record_disabled);		\
3359 		pr_warn(fmt, ##__VA_ARGS__);				\
3360 		dump_buffer_page(bpage, info, tail);			\
3361 		atomic_dec(&ts_dump);					\
3362 		/* There's some cases in boot up that this can happen */ \
3363 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
3364 			/* Do not re-enable checking */			\
3365 			return;						\
3366 	} while (0)
3367 
3368 /*
3369  * Check if the current event time stamp matches the deltas on
3370  * the buffer page.
3371  */
3372 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3373 			 struct rb_event_info *info,
3374 			 unsigned long tail)
3375 {
3376 	struct ring_buffer_event *event;
3377 	struct buffer_data_page *bpage;
3378 	u64 ts, delta;
3379 	bool full = false;
3380 	int e;
3381 
3382 	bpage = info->tail_page->page;
3383 
3384 	if (tail == CHECK_FULL_PAGE) {
3385 		full = true;
3386 		tail = local_read(&bpage->commit);
3387 	} else if (info->add_timestamp &
3388 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3389 		/* Ignore events with absolute time stamps */
3390 		return;
3391 	}
3392 
3393 	/*
3394 	 * Do not check the first event (skip possible extends too).
3395 	 * Also do not check if previous events have not been committed.
3396 	 */
3397 	if (tail <= 8 || tail > local_read(&bpage->commit))
3398 		return;
3399 
3400 	/*
3401 	 * If this interrupted another event,
3402 	 */
3403 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3404 		goto out;
3405 
3406 	ts = bpage->time_stamp;
3407 
3408 	for (e = 0; e < tail; e += rb_event_length(event)) {
3409 
3410 		event = (struct ring_buffer_event *)(bpage->data + e);
3411 
3412 		switch (event->type_len) {
3413 
3414 		case RINGBUF_TYPE_TIME_EXTEND:
3415 			delta = rb_event_time_stamp(event);
3416 			ts += delta;
3417 			break;
3418 
3419 		case RINGBUF_TYPE_TIME_STAMP:
3420 			delta = rb_event_time_stamp(event);
3421 			delta = rb_fix_abs_ts(delta, ts);
3422 			if (delta < ts) {
3423 				buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3424 						   cpu_buffer->cpu, ts, delta);
3425 			}
3426 			ts = delta;
3427 			break;
3428 
3429 		case RINGBUF_TYPE_PADDING:
3430 			if (event->time_delta == 1)
3431 				break;
3432 			fallthrough;
3433 		case RINGBUF_TYPE_DATA:
3434 			ts += event->time_delta;
3435 			break;
3436 
3437 		default:
3438 			RB_WARN_ON(cpu_buffer, 1);
3439 		}
3440 	}
3441 	if ((full && ts > info->ts) ||
3442 	    (!full && ts + info->delta != info->ts)) {
3443 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3444 				   cpu_buffer->cpu,
3445 				   ts + info->delta, info->ts, info->delta,
3446 				   info->before, info->after,
3447 				   full ? " (full)" : "", show_interrupt_level());
3448 	}
3449 out:
3450 	atomic_dec(this_cpu_ptr(&checking));
3451 }
3452 #else
3453 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3454 			 struct rb_event_info *info,
3455 			 unsigned long tail)
3456 {
3457 }
3458 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3459 
3460 static struct ring_buffer_event *
3461 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3462 		  struct rb_event_info *info)
3463 {
3464 	struct ring_buffer_event *event;
3465 	struct buffer_page *tail_page;
3466 	unsigned long tail, write, w;
3467 
3468 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3469 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3470 
3471  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3472 	barrier();
3473 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
3474 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
3475 	barrier();
3476 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3477 
3478 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3479 		info->delta = info->ts;
3480 	} else {
3481 		/*
3482 		 * If interrupting an event time update, we may need an
3483 		 * absolute timestamp.
3484 		 * Don't bother if this is the start of a new page (w == 0).
3485 		 */
3486 		if (!w) {
3487 			/* Use the sub-buffer timestamp */
3488 			info->delta = 0;
3489 		} else if (unlikely(info->before != info->after)) {
3490 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3491 			info->length += RB_LEN_TIME_EXTEND;
3492 		} else {
3493 			info->delta = info->ts - info->after;
3494 			if (unlikely(test_time_stamp(info->delta))) {
3495 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3496 				info->length += RB_LEN_TIME_EXTEND;
3497 			}
3498 		}
3499 	}
3500 
3501  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3502 
3503  /*C*/	write = local_add_return(info->length, &tail_page->write);
3504 
3505 	/* set write to only the index of the write */
3506 	write &= RB_WRITE_MASK;
3507 
3508 	tail = write - info->length;
3509 
3510 	/* See if we shot pass the end of this buffer page */
3511 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3512 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3513 		return rb_move_tail(cpu_buffer, tail, info);
3514 	}
3515 
3516 	if (likely(tail == w)) {
3517 		/* Nothing interrupted us between A and C */
3518  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3519 		/*
3520 		 * If something came in between C and D, the write stamp
3521 		 * may now not be in sync. But that's fine as the before_stamp
3522 		 * will be different and then next event will just be forced
3523 		 * to use an absolute timestamp.
3524 		 */
3525 		if (likely(!(info->add_timestamp &
3526 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3527 			/* This did not interrupt any time update */
3528 			info->delta = info->ts - info->after;
3529 		else
3530 			/* Just use full timestamp for interrupting event */
3531 			info->delta = info->ts;
3532 		check_buffer(cpu_buffer, info, tail);
3533 	} else {
3534 		u64 ts;
3535 		/* SLOW PATH - Interrupted between A and C */
3536 
3537 		/* Save the old before_stamp */
3538 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
3539 
3540 		/*
3541 		 * Read a new timestamp and update the before_stamp to make
3542 		 * the next event after this one force using an absolute
3543 		 * timestamp. This is in case an interrupt were to come in
3544 		 * between E and F.
3545 		 */
3546 		ts = rb_time_stamp(cpu_buffer->buffer);
3547 		rb_time_set(&cpu_buffer->before_stamp, ts);
3548 
3549 		barrier();
3550  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
3551 		barrier();
3552  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3553 		    info->after == info->before && info->after < ts) {
3554 			/*
3555 			 * Nothing came after this event between C and F, it is
3556 			 * safe to use info->after for the delta as it
3557 			 * matched info->before and is still valid.
3558 			 */
3559 			info->delta = ts - info->after;
3560 		} else {
3561 			/*
3562 			 * Interrupted between C and F:
3563 			 * Lost the previous events time stamp. Just set the
3564 			 * delta to zero, and this will be the same time as
3565 			 * the event this event interrupted. And the events that
3566 			 * came after this will still be correct (as they would
3567 			 * have built their delta on the previous event.
3568 			 */
3569 			info->delta = 0;
3570 		}
3571 		info->ts = ts;
3572 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3573 	}
3574 
3575 	/*
3576 	 * If this is the first commit on the page, then it has the same
3577 	 * timestamp as the page itself.
3578 	 */
3579 	if (unlikely(!tail && !(info->add_timestamp &
3580 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3581 		info->delta = 0;
3582 
3583 	/* We reserved something on the buffer */
3584 
3585 	event = __rb_page_index(tail_page, tail);
3586 	rb_update_event(cpu_buffer, event, info);
3587 
3588 	local_inc(&tail_page->entries);
3589 
3590 	/*
3591 	 * If this is the first commit on the page, then update
3592 	 * its timestamp.
3593 	 */
3594 	if (unlikely(!tail))
3595 		tail_page->page->time_stamp = info->ts;
3596 
3597 	/* account for these added bytes */
3598 	local_add(info->length, &cpu_buffer->entries_bytes);
3599 
3600 	return event;
3601 }
3602 
3603 static __always_inline struct ring_buffer_event *
3604 rb_reserve_next_event(struct trace_buffer *buffer,
3605 		      struct ring_buffer_per_cpu *cpu_buffer,
3606 		      unsigned long length)
3607 {
3608 	struct ring_buffer_event *event;
3609 	struct rb_event_info info;
3610 	int nr_loops = 0;
3611 	int add_ts_default;
3612 
3613 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3614 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3615 	    (unlikely(in_nmi()))) {
3616 		return NULL;
3617 	}
3618 
3619 	rb_start_commit(cpu_buffer);
3620 	/* The commit page can not change after this */
3621 
3622 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3623 	/*
3624 	 * Due to the ability to swap a cpu buffer from a buffer
3625 	 * it is possible it was swapped before we committed.
3626 	 * (committing stops a swap). We check for it here and
3627 	 * if it happened, we have to fail the write.
3628 	 */
3629 	barrier();
3630 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3631 		local_dec(&cpu_buffer->committing);
3632 		local_dec(&cpu_buffer->commits);
3633 		return NULL;
3634 	}
3635 #endif
3636 
3637 	info.length = rb_calculate_event_length(length);
3638 
3639 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3640 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3641 		info.length += RB_LEN_TIME_EXTEND;
3642 		if (info.length > cpu_buffer->buffer->max_data_size)
3643 			goto out_fail;
3644 	} else {
3645 		add_ts_default = RB_ADD_STAMP_NONE;
3646 	}
3647 
3648  again:
3649 	info.add_timestamp = add_ts_default;
3650 	info.delta = 0;
3651 
3652 	/*
3653 	 * We allow for interrupts to reenter here and do a trace.
3654 	 * If one does, it will cause this original code to loop
3655 	 * back here. Even with heavy interrupts happening, this
3656 	 * should only happen a few times in a row. If this happens
3657 	 * 1000 times in a row, there must be either an interrupt
3658 	 * storm or we have something buggy.
3659 	 * Bail!
3660 	 */
3661 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3662 		goto out_fail;
3663 
3664 	event = __rb_reserve_next(cpu_buffer, &info);
3665 
3666 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3667 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3668 			info.length -= RB_LEN_TIME_EXTEND;
3669 		goto again;
3670 	}
3671 
3672 	if (likely(event))
3673 		return event;
3674  out_fail:
3675 	rb_end_commit(cpu_buffer);
3676 	return NULL;
3677 }
3678 
3679 /**
3680  * ring_buffer_lock_reserve - reserve a part of the buffer
3681  * @buffer: the ring buffer to reserve from
3682  * @length: the length of the data to reserve (excluding event header)
3683  *
3684  * Returns a reserved event on the ring buffer to copy directly to.
3685  * The user of this interface will need to get the body to write into
3686  * and can use the ring_buffer_event_data() interface.
3687  *
3688  * The length is the length of the data needed, not the event length
3689  * which also includes the event header.
3690  *
3691  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3692  * If NULL is returned, then nothing has been allocated or locked.
3693  */
3694 struct ring_buffer_event *
3695 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3696 {
3697 	struct ring_buffer_per_cpu *cpu_buffer;
3698 	struct ring_buffer_event *event;
3699 	int cpu;
3700 
3701 	/* If we are tracing schedule, we don't want to recurse */
3702 	preempt_disable_notrace();
3703 
3704 	if (unlikely(atomic_read(&buffer->record_disabled)))
3705 		goto out;
3706 
3707 	cpu = raw_smp_processor_id();
3708 
3709 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3710 		goto out;
3711 
3712 	cpu_buffer = buffer->buffers[cpu];
3713 
3714 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3715 		goto out;
3716 
3717 	if (unlikely(length > buffer->max_data_size))
3718 		goto out;
3719 
3720 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3721 		goto out;
3722 
3723 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3724 	if (!event)
3725 		goto out_unlock;
3726 
3727 	return event;
3728 
3729  out_unlock:
3730 	trace_recursive_unlock(cpu_buffer);
3731  out:
3732 	preempt_enable_notrace();
3733 	return NULL;
3734 }
3735 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3736 
3737 /*
3738  * Decrement the entries to the page that an event is on.
3739  * The event does not even need to exist, only the pointer
3740  * to the page it is on. This may only be called before the commit
3741  * takes place.
3742  */
3743 static inline void
3744 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3745 		   struct ring_buffer_event *event)
3746 {
3747 	unsigned long addr = (unsigned long)event;
3748 	struct buffer_page *bpage = cpu_buffer->commit_page;
3749 	struct buffer_page *start;
3750 
3751 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3752 
3753 	/* Do the likely case first */
3754 	if (likely(bpage->page == (void *)addr)) {
3755 		local_dec(&bpage->entries);
3756 		return;
3757 	}
3758 
3759 	/*
3760 	 * Because the commit page may be on the reader page we
3761 	 * start with the next page and check the end loop there.
3762 	 */
3763 	rb_inc_page(&bpage);
3764 	start = bpage;
3765 	do {
3766 		if (bpage->page == (void *)addr) {
3767 			local_dec(&bpage->entries);
3768 			return;
3769 		}
3770 		rb_inc_page(&bpage);
3771 	} while (bpage != start);
3772 
3773 	/* commit not part of this buffer?? */
3774 	RB_WARN_ON(cpu_buffer, 1);
3775 }
3776 
3777 /**
3778  * ring_buffer_discard_commit - discard an event that has not been committed
3779  * @buffer: the ring buffer
3780  * @event: non committed event to discard
3781  *
3782  * Sometimes an event that is in the ring buffer needs to be ignored.
3783  * This function lets the user discard an event in the ring buffer
3784  * and then that event will not be read later.
3785  *
3786  * This function only works if it is called before the item has been
3787  * committed. It will try to free the event from the ring buffer
3788  * if another event has not been added behind it.
3789  *
3790  * If another event has been added behind it, it will set the event
3791  * up as discarded, and perform the commit.
3792  *
3793  * If this function is called, do not call ring_buffer_unlock_commit on
3794  * the event.
3795  */
3796 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3797 				struct ring_buffer_event *event)
3798 {
3799 	struct ring_buffer_per_cpu *cpu_buffer;
3800 	int cpu;
3801 
3802 	/* The event is discarded regardless */
3803 	rb_event_discard(event);
3804 
3805 	cpu = smp_processor_id();
3806 	cpu_buffer = buffer->buffers[cpu];
3807 
3808 	/*
3809 	 * This must only be called if the event has not been
3810 	 * committed yet. Thus we can assume that preemption
3811 	 * is still disabled.
3812 	 */
3813 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3814 
3815 	rb_decrement_entry(cpu_buffer, event);
3816 	if (rb_try_to_discard(cpu_buffer, event))
3817 		goto out;
3818 
3819  out:
3820 	rb_end_commit(cpu_buffer);
3821 
3822 	trace_recursive_unlock(cpu_buffer);
3823 
3824 	preempt_enable_notrace();
3825 
3826 }
3827 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3828 
3829 /**
3830  * ring_buffer_write - write data to the buffer without reserving
3831  * @buffer: The ring buffer to write to.
3832  * @length: The length of the data being written (excluding the event header)
3833  * @data: The data to write to the buffer.
3834  *
3835  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3836  * one function. If you already have the data to write to the buffer, it
3837  * may be easier to simply call this function.
3838  *
3839  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3840  * and not the length of the event which would hold the header.
3841  */
3842 int ring_buffer_write(struct trace_buffer *buffer,
3843 		      unsigned long length,
3844 		      void *data)
3845 {
3846 	struct ring_buffer_per_cpu *cpu_buffer;
3847 	struct ring_buffer_event *event;
3848 	void *body;
3849 	int ret = -EBUSY;
3850 	int cpu;
3851 
3852 	preempt_disable_notrace();
3853 
3854 	if (atomic_read(&buffer->record_disabled))
3855 		goto out;
3856 
3857 	cpu = raw_smp_processor_id();
3858 
3859 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3860 		goto out;
3861 
3862 	cpu_buffer = buffer->buffers[cpu];
3863 
3864 	if (atomic_read(&cpu_buffer->record_disabled))
3865 		goto out;
3866 
3867 	if (length > buffer->max_data_size)
3868 		goto out;
3869 
3870 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3871 		goto out;
3872 
3873 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3874 	if (!event)
3875 		goto out_unlock;
3876 
3877 	body = rb_event_data(event);
3878 
3879 	memcpy(body, data, length);
3880 
3881 	rb_commit(cpu_buffer);
3882 
3883 	rb_wakeups(buffer, cpu_buffer);
3884 
3885 	ret = 0;
3886 
3887  out_unlock:
3888 	trace_recursive_unlock(cpu_buffer);
3889 
3890  out:
3891 	preempt_enable_notrace();
3892 
3893 	return ret;
3894 }
3895 EXPORT_SYMBOL_GPL(ring_buffer_write);
3896 
3897 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3898 {
3899 	struct buffer_page *reader = cpu_buffer->reader_page;
3900 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3901 	struct buffer_page *commit = cpu_buffer->commit_page;
3902 
3903 	/* In case of error, head will be NULL */
3904 	if (unlikely(!head))
3905 		return true;
3906 
3907 	/* Reader should exhaust content in reader page */
3908 	if (reader->read != rb_page_commit(reader))
3909 		return false;
3910 
3911 	/*
3912 	 * If writers are committing on the reader page, knowing all
3913 	 * committed content has been read, the ring buffer is empty.
3914 	 */
3915 	if (commit == reader)
3916 		return true;
3917 
3918 	/*
3919 	 * If writers are committing on a page other than reader page
3920 	 * and head page, there should always be content to read.
3921 	 */
3922 	if (commit != head)
3923 		return false;
3924 
3925 	/*
3926 	 * Writers are committing on the head page, we just need
3927 	 * to care about there're committed data, and the reader will
3928 	 * swap reader page with head page when it is to read data.
3929 	 */
3930 	return rb_page_commit(commit) == 0;
3931 }
3932 
3933 /**
3934  * ring_buffer_record_disable - stop all writes into the buffer
3935  * @buffer: The ring buffer to stop writes to.
3936  *
3937  * This prevents all writes to the buffer. Any attempt to write
3938  * to the buffer after this will fail and return NULL.
3939  *
3940  * The caller should call synchronize_rcu() after this.
3941  */
3942 void ring_buffer_record_disable(struct trace_buffer *buffer)
3943 {
3944 	atomic_inc(&buffer->record_disabled);
3945 }
3946 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3947 
3948 /**
3949  * ring_buffer_record_enable - enable writes to the buffer
3950  * @buffer: The ring buffer to enable writes
3951  *
3952  * Note, multiple disables will need the same number of enables
3953  * to truly enable the writing (much like preempt_disable).
3954  */
3955 void ring_buffer_record_enable(struct trace_buffer *buffer)
3956 {
3957 	atomic_dec(&buffer->record_disabled);
3958 }
3959 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3960 
3961 /**
3962  * ring_buffer_record_off - stop all writes into the buffer
3963  * @buffer: The ring buffer to stop writes to.
3964  *
3965  * This prevents all writes to the buffer. Any attempt to write
3966  * to the buffer after this will fail and return NULL.
3967  *
3968  * This is different than ring_buffer_record_disable() as
3969  * it works like an on/off switch, where as the disable() version
3970  * must be paired with a enable().
3971  */
3972 void ring_buffer_record_off(struct trace_buffer *buffer)
3973 {
3974 	unsigned int rd;
3975 	unsigned int new_rd;
3976 
3977 	rd = atomic_read(&buffer->record_disabled);
3978 	do {
3979 		new_rd = rd | RB_BUFFER_OFF;
3980 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3981 }
3982 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3983 
3984 /**
3985  * ring_buffer_record_on - restart writes into the buffer
3986  * @buffer: The ring buffer to start writes to.
3987  *
3988  * This enables all writes to the buffer that was disabled by
3989  * ring_buffer_record_off().
3990  *
3991  * This is different than ring_buffer_record_enable() as
3992  * it works like an on/off switch, where as the enable() version
3993  * must be paired with a disable().
3994  */
3995 void ring_buffer_record_on(struct trace_buffer *buffer)
3996 {
3997 	unsigned int rd;
3998 	unsigned int new_rd;
3999 
4000 	rd = atomic_read(&buffer->record_disabled);
4001 	do {
4002 		new_rd = rd & ~RB_BUFFER_OFF;
4003 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4006 
4007 /**
4008  * ring_buffer_record_is_on - return true if the ring buffer can write
4009  * @buffer: The ring buffer to see if write is enabled
4010  *
4011  * Returns true if the ring buffer is in a state that it accepts writes.
4012  */
4013 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4014 {
4015 	return !atomic_read(&buffer->record_disabled);
4016 }
4017 
4018 /**
4019  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4020  * @buffer: The ring buffer to see if write is set enabled
4021  *
4022  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4023  * Note that this does NOT mean it is in a writable state.
4024  *
4025  * It may return true when the ring buffer has been disabled by
4026  * ring_buffer_record_disable(), as that is a temporary disabling of
4027  * the ring buffer.
4028  */
4029 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4030 {
4031 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4032 }
4033 
4034 /**
4035  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4036  * @buffer: The ring buffer to stop writes to.
4037  * @cpu: The CPU buffer to stop
4038  *
4039  * This prevents all writes to the buffer. Any attempt to write
4040  * to the buffer after this will fail and return NULL.
4041  *
4042  * The caller should call synchronize_rcu() after this.
4043  */
4044 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4045 {
4046 	struct ring_buffer_per_cpu *cpu_buffer;
4047 
4048 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4049 		return;
4050 
4051 	cpu_buffer = buffer->buffers[cpu];
4052 	atomic_inc(&cpu_buffer->record_disabled);
4053 }
4054 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4055 
4056 /**
4057  * ring_buffer_record_enable_cpu - enable writes to the buffer
4058  * @buffer: The ring buffer to enable writes
4059  * @cpu: The CPU to enable.
4060  *
4061  * Note, multiple disables will need the same number of enables
4062  * to truly enable the writing (much like preempt_disable).
4063  */
4064 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4065 {
4066 	struct ring_buffer_per_cpu *cpu_buffer;
4067 
4068 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4069 		return;
4070 
4071 	cpu_buffer = buffer->buffers[cpu];
4072 	atomic_dec(&cpu_buffer->record_disabled);
4073 }
4074 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4075 
4076 /*
4077  * The total entries in the ring buffer is the running counter
4078  * of entries entered into the ring buffer, minus the sum of
4079  * the entries read from the ring buffer and the number of
4080  * entries that were overwritten.
4081  */
4082 static inline unsigned long
4083 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4084 {
4085 	return local_read(&cpu_buffer->entries) -
4086 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4087 }
4088 
4089 /**
4090  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4091  * @buffer: The ring buffer
4092  * @cpu: The per CPU buffer to read from.
4093  */
4094 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4095 {
4096 	unsigned long flags;
4097 	struct ring_buffer_per_cpu *cpu_buffer;
4098 	struct buffer_page *bpage;
4099 	u64 ret = 0;
4100 
4101 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4102 		return 0;
4103 
4104 	cpu_buffer = buffer->buffers[cpu];
4105 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106 	/*
4107 	 * if the tail is on reader_page, oldest time stamp is on the reader
4108 	 * page
4109 	 */
4110 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4111 		bpage = cpu_buffer->reader_page;
4112 	else
4113 		bpage = rb_set_head_page(cpu_buffer);
4114 	if (bpage)
4115 		ret = bpage->page->time_stamp;
4116 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117 
4118 	return ret;
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4121 
4122 /**
4123  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4124  * @buffer: The ring buffer
4125  * @cpu: The per CPU buffer to read from.
4126  */
4127 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4128 {
4129 	struct ring_buffer_per_cpu *cpu_buffer;
4130 	unsigned long ret;
4131 
4132 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133 		return 0;
4134 
4135 	cpu_buffer = buffer->buffers[cpu];
4136 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4137 
4138 	return ret;
4139 }
4140 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4141 
4142 /**
4143  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4144  * @buffer: The ring buffer
4145  * @cpu: The per CPU buffer to get the entries from.
4146  */
4147 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4148 {
4149 	struct ring_buffer_per_cpu *cpu_buffer;
4150 
4151 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4152 		return 0;
4153 
4154 	cpu_buffer = buffer->buffers[cpu];
4155 
4156 	return rb_num_of_entries(cpu_buffer);
4157 }
4158 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4159 
4160 /**
4161  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4162  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4163  * @buffer: The ring buffer
4164  * @cpu: The per CPU buffer to get the number of overruns from
4165  */
4166 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4167 {
4168 	struct ring_buffer_per_cpu *cpu_buffer;
4169 	unsigned long ret;
4170 
4171 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172 		return 0;
4173 
4174 	cpu_buffer = buffer->buffers[cpu];
4175 	ret = local_read(&cpu_buffer->overrun);
4176 
4177 	return ret;
4178 }
4179 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4180 
4181 /**
4182  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4183  * commits failing due to the buffer wrapping around while there are uncommitted
4184  * events, such as during an interrupt storm.
4185  * @buffer: The ring buffer
4186  * @cpu: The per CPU buffer to get the number of overruns from
4187  */
4188 unsigned long
4189 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4190 {
4191 	struct ring_buffer_per_cpu *cpu_buffer;
4192 	unsigned long ret;
4193 
4194 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4195 		return 0;
4196 
4197 	cpu_buffer = buffer->buffers[cpu];
4198 	ret = local_read(&cpu_buffer->commit_overrun);
4199 
4200 	return ret;
4201 }
4202 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4203 
4204 /**
4205  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4206  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4207  * @buffer: The ring buffer
4208  * @cpu: The per CPU buffer to get the number of overruns from
4209  */
4210 unsigned long
4211 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4212 {
4213 	struct ring_buffer_per_cpu *cpu_buffer;
4214 	unsigned long ret;
4215 
4216 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217 		return 0;
4218 
4219 	cpu_buffer = buffer->buffers[cpu];
4220 	ret = local_read(&cpu_buffer->dropped_events);
4221 
4222 	return ret;
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4225 
4226 /**
4227  * ring_buffer_read_events_cpu - get the number of events successfully read
4228  * @buffer: The ring buffer
4229  * @cpu: The per CPU buffer to get the number of events read
4230  */
4231 unsigned long
4232 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4233 {
4234 	struct ring_buffer_per_cpu *cpu_buffer;
4235 
4236 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4237 		return 0;
4238 
4239 	cpu_buffer = buffer->buffers[cpu];
4240 	return cpu_buffer->read;
4241 }
4242 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4243 
4244 /**
4245  * ring_buffer_entries - get the number of entries in a buffer
4246  * @buffer: The ring buffer
4247  *
4248  * Returns the total number of entries in the ring buffer
4249  * (all CPU entries)
4250  */
4251 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4252 {
4253 	struct ring_buffer_per_cpu *cpu_buffer;
4254 	unsigned long entries = 0;
4255 	int cpu;
4256 
4257 	/* if you care about this being correct, lock the buffer */
4258 	for_each_buffer_cpu(buffer, cpu) {
4259 		cpu_buffer = buffer->buffers[cpu];
4260 		entries += rb_num_of_entries(cpu_buffer);
4261 	}
4262 
4263 	return entries;
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4266 
4267 /**
4268  * ring_buffer_overruns - get the number of overruns in buffer
4269  * @buffer: The ring buffer
4270  *
4271  * Returns the total number of overruns in the ring buffer
4272  * (all CPU entries)
4273  */
4274 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4275 {
4276 	struct ring_buffer_per_cpu *cpu_buffer;
4277 	unsigned long overruns = 0;
4278 	int cpu;
4279 
4280 	/* if you care about this being correct, lock the buffer */
4281 	for_each_buffer_cpu(buffer, cpu) {
4282 		cpu_buffer = buffer->buffers[cpu];
4283 		overruns += local_read(&cpu_buffer->overrun);
4284 	}
4285 
4286 	return overruns;
4287 }
4288 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4289 
4290 static void rb_iter_reset(struct ring_buffer_iter *iter)
4291 {
4292 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4293 
4294 	/* Iterator usage is expected to have record disabled */
4295 	iter->head_page = cpu_buffer->reader_page;
4296 	iter->head = cpu_buffer->reader_page->read;
4297 	iter->next_event = iter->head;
4298 
4299 	iter->cache_reader_page = iter->head_page;
4300 	iter->cache_read = cpu_buffer->read;
4301 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4302 
4303 	if (iter->head) {
4304 		iter->read_stamp = cpu_buffer->read_stamp;
4305 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4306 	} else {
4307 		iter->read_stamp = iter->head_page->page->time_stamp;
4308 		iter->page_stamp = iter->read_stamp;
4309 	}
4310 }
4311 
4312 /**
4313  * ring_buffer_iter_reset - reset an iterator
4314  * @iter: The iterator to reset
4315  *
4316  * Resets the iterator, so that it will start from the beginning
4317  * again.
4318  */
4319 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4320 {
4321 	struct ring_buffer_per_cpu *cpu_buffer;
4322 	unsigned long flags;
4323 
4324 	if (!iter)
4325 		return;
4326 
4327 	cpu_buffer = iter->cpu_buffer;
4328 
4329 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4330 	rb_iter_reset(iter);
4331 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4332 }
4333 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4334 
4335 /**
4336  * ring_buffer_iter_empty - check if an iterator has no more to read
4337  * @iter: The iterator to check
4338  */
4339 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4340 {
4341 	struct ring_buffer_per_cpu *cpu_buffer;
4342 	struct buffer_page *reader;
4343 	struct buffer_page *head_page;
4344 	struct buffer_page *commit_page;
4345 	struct buffer_page *curr_commit_page;
4346 	unsigned commit;
4347 	u64 curr_commit_ts;
4348 	u64 commit_ts;
4349 
4350 	cpu_buffer = iter->cpu_buffer;
4351 	reader = cpu_buffer->reader_page;
4352 	head_page = cpu_buffer->head_page;
4353 	commit_page = cpu_buffer->commit_page;
4354 	commit_ts = commit_page->page->time_stamp;
4355 
4356 	/*
4357 	 * When the writer goes across pages, it issues a cmpxchg which
4358 	 * is a mb(), which will synchronize with the rmb here.
4359 	 * (see rb_tail_page_update())
4360 	 */
4361 	smp_rmb();
4362 	commit = rb_page_commit(commit_page);
4363 	/* We want to make sure that the commit page doesn't change */
4364 	smp_rmb();
4365 
4366 	/* Make sure commit page didn't change */
4367 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4368 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4369 
4370 	/* If the commit page changed, then there's more data */
4371 	if (curr_commit_page != commit_page ||
4372 	    curr_commit_ts != commit_ts)
4373 		return 0;
4374 
4375 	/* Still racy, as it may return a false positive, but that's OK */
4376 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4377 		(iter->head_page == reader && commit_page == head_page &&
4378 		 head_page->read == commit &&
4379 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4380 }
4381 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4382 
4383 static void
4384 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4385 		     struct ring_buffer_event *event)
4386 {
4387 	u64 delta;
4388 
4389 	switch (event->type_len) {
4390 	case RINGBUF_TYPE_PADDING:
4391 		return;
4392 
4393 	case RINGBUF_TYPE_TIME_EXTEND:
4394 		delta = rb_event_time_stamp(event);
4395 		cpu_buffer->read_stamp += delta;
4396 		return;
4397 
4398 	case RINGBUF_TYPE_TIME_STAMP:
4399 		delta = rb_event_time_stamp(event);
4400 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4401 		cpu_buffer->read_stamp = delta;
4402 		return;
4403 
4404 	case RINGBUF_TYPE_DATA:
4405 		cpu_buffer->read_stamp += event->time_delta;
4406 		return;
4407 
4408 	default:
4409 		RB_WARN_ON(cpu_buffer, 1);
4410 	}
4411 }
4412 
4413 static void
4414 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4415 			  struct ring_buffer_event *event)
4416 {
4417 	u64 delta;
4418 
4419 	switch (event->type_len) {
4420 	case RINGBUF_TYPE_PADDING:
4421 		return;
4422 
4423 	case RINGBUF_TYPE_TIME_EXTEND:
4424 		delta = rb_event_time_stamp(event);
4425 		iter->read_stamp += delta;
4426 		return;
4427 
4428 	case RINGBUF_TYPE_TIME_STAMP:
4429 		delta = rb_event_time_stamp(event);
4430 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4431 		iter->read_stamp = delta;
4432 		return;
4433 
4434 	case RINGBUF_TYPE_DATA:
4435 		iter->read_stamp += event->time_delta;
4436 		return;
4437 
4438 	default:
4439 		RB_WARN_ON(iter->cpu_buffer, 1);
4440 	}
4441 }
4442 
4443 static struct buffer_page *
4444 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4445 {
4446 	struct buffer_page *reader = NULL;
4447 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4448 	unsigned long overwrite;
4449 	unsigned long flags;
4450 	int nr_loops = 0;
4451 	bool ret;
4452 
4453 	local_irq_save(flags);
4454 	arch_spin_lock(&cpu_buffer->lock);
4455 
4456  again:
4457 	/*
4458 	 * This should normally only loop twice. But because the
4459 	 * start of the reader inserts an empty page, it causes
4460 	 * a case where we will loop three times. There should be no
4461 	 * reason to loop four times (that I know of).
4462 	 */
4463 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4464 		reader = NULL;
4465 		goto out;
4466 	}
4467 
4468 	reader = cpu_buffer->reader_page;
4469 
4470 	/* If there's more to read, return this page */
4471 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4472 		goto out;
4473 
4474 	/* Never should we have an index greater than the size */
4475 	if (RB_WARN_ON(cpu_buffer,
4476 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4477 		goto out;
4478 
4479 	/* check if we caught up to the tail */
4480 	reader = NULL;
4481 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4482 		goto out;
4483 
4484 	/* Don't bother swapping if the ring buffer is empty */
4485 	if (rb_num_of_entries(cpu_buffer) == 0)
4486 		goto out;
4487 
4488 	/*
4489 	 * Reset the reader page to size zero.
4490 	 */
4491 	local_set(&cpu_buffer->reader_page->write, 0);
4492 	local_set(&cpu_buffer->reader_page->entries, 0);
4493 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4494 	cpu_buffer->reader_page->real_end = 0;
4495 
4496  spin:
4497 	/*
4498 	 * Splice the empty reader page into the list around the head.
4499 	 */
4500 	reader = rb_set_head_page(cpu_buffer);
4501 	if (!reader)
4502 		goto out;
4503 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4504 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4505 
4506 	/*
4507 	 * cpu_buffer->pages just needs to point to the buffer, it
4508 	 *  has no specific buffer page to point to. Lets move it out
4509 	 *  of our way so we don't accidentally swap it.
4510 	 */
4511 	cpu_buffer->pages = reader->list.prev;
4512 
4513 	/* The reader page will be pointing to the new head */
4514 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4515 
4516 	/*
4517 	 * We want to make sure we read the overruns after we set up our
4518 	 * pointers to the next object. The writer side does a
4519 	 * cmpxchg to cross pages which acts as the mb on the writer
4520 	 * side. Note, the reader will constantly fail the swap
4521 	 * while the writer is updating the pointers, so this
4522 	 * guarantees that the overwrite recorded here is the one we
4523 	 * want to compare with the last_overrun.
4524 	 */
4525 	smp_mb();
4526 	overwrite = local_read(&(cpu_buffer->overrun));
4527 
4528 	/*
4529 	 * Here's the tricky part.
4530 	 *
4531 	 * We need to move the pointer past the header page.
4532 	 * But we can only do that if a writer is not currently
4533 	 * moving it. The page before the header page has the
4534 	 * flag bit '1' set if it is pointing to the page we want.
4535 	 * but if the writer is in the process of moving it
4536 	 * than it will be '2' or already moved '0'.
4537 	 */
4538 
4539 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4540 
4541 	/*
4542 	 * If we did not convert it, then we must try again.
4543 	 */
4544 	if (!ret)
4545 		goto spin;
4546 
4547 	/*
4548 	 * Yay! We succeeded in replacing the page.
4549 	 *
4550 	 * Now make the new head point back to the reader page.
4551 	 */
4552 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4553 	rb_inc_page(&cpu_buffer->head_page);
4554 
4555 	local_inc(&cpu_buffer->pages_read);
4556 
4557 	/* Finally update the reader page to the new head */
4558 	cpu_buffer->reader_page = reader;
4559 	cpu_buffer->reader_page->read = 0;
4560 
4561 	if (overwrite != cpu_buffer->last_overrun) {
4562 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4563 		cpu_buffer->last_overrun = overwrite;
4564 	}
4565 
4566 	goto again;
4567 
4568  out:
4569 	/* Update the read_stamp on the first event */
4570 	if (reader && reader->read == 0)
4571 		cpu_buffer->read_stamp = reader->page->time_stamp;
4572 
4573 	arch_spin_unlock(&cpu_buffer->lock);
4574 	local_irq_restore(flags);
4575 
4576 	/*
4577 	 * The writer has preempt disable, wait for it. But not forever
4578 	 * Although, 1 second is pretty much "forever"
4579 	 */
4580 #define USECS_WAIT	1000000
4581         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4582 		/* If the write is past the end of page, a writer is still updating it */
4583 		if (likely(!reader || rb_page_write(reader) <= bsize))
4584 			break;
4585 
4586 		udelay(1);
4587 
4588 		/* Get the latest version of the reader write value */
4589 		smp_rmb();
4590 	}
4591 
4592 	/* The writer is not moving forward? Something is wrong */
4593 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4594 		reader = NULL;
4595 
4596 	/*
4597 	 * Make sure we see any padding after the write update
4598 	 * (see rb_reset_tail()).
4599 	 *
4600 	 * In addition, a writer may be writing on the reader page
4601 	 * if the page has not been fully filled, so the read barrier
4602 	 * is also needed to make sure we see the content of what is
4603 	 * committed by the writer (see rb_set_commit_to_write()).
4604 	 */
4605 	smp_rmb();
4606 
4607 
4608 	return reader;
4609 }
4610 
4611 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4612 {
4613 	struct ring_buffer_event *event;
4614 	struct buffer_page *reader;
4615 	unsigned length;
4616 
4617 	reader = rb_get_reader_page(cpu_buffer);
4618 
4619 	/* This function should not be called when buffer is empty */
4620 	if (RB_WARN_ON(cpu_buffer, !reader))
4621 		return;
4622 
4623 	event = rb_reader_event(cpu_buffer);
4624 
4625 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4626 		cpu_buffer->read++;
4627 
4628 	rb_update_read_stamp(cpu_buffer, event);
4629 
4630 	length = rb_event_length(event);
4631 	cpu_buffer->reader_page->read += length;
4632 	cpu_buffer->read_bytes += length;
4633 }
4634 
4635 static void rb_advance_iter(struct ring_buffer_iter *iter)
4636 {
4637 	struct ring_buffer_per_cpu *cpu_buffer;
4638 
4639 	cpu_buffer = iter->cpu_buffer;
4640 
4641 	/* If head == next_event then we need to jump to the next event */
4642 	if (iter->head == iter->next_event) {
4643 		/* If the event gets overwritten again, there's nothing to do */
4644 		if (rb_iter_head_event(iter) == NULL)
4645 			return;
4646 	}
4647 
4648 	iter->head = iter->next_event;
4649 
4650 	/*
4651 	 * Check if we are at the end of the buffer.
4652 	 */
4653 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4654 		/* discarded commits can make the page empty */
4655 		if (iter->head_page == cpu_buffer->commit_page)
4656 			return;
4657 		rb_inc_iter(iter);
4658 		return;
4659 	}
4660 
4661 	rb_update_iter_read_stamp(iter, iter->event);
4662 }
4663 
4664 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4665 {
4666 	return cpu_buffer->lost_events;
4667 }
4668 
4669 static struct ring_buffer_event *
4670 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4671 	       unsigned long *lost_events)
4672 {
4673 	struct ring_buffer_event *event;
4674 	struct buffer_page *reader;
4675 	int nr_loops = 0;
4676 
4677 	if (ts)
4678 		*ts = 0;
4679  again:
4680 	/*
4681 	 * We repeat when a time extend is encountered.
4682 	 * Since the time extend is always attached to a data event,
4683 	 * we should never loop more than once.
4684 	 * (We never hit the following condition more than twice).
4685 	 */
4686 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4687 		return NULL;
4688 
4689 	reader = rb_get_reader_page(cpu_buffer);
4690 	if (!reader)
4691 		return NULL;
4692 
4693 	event = rb_reader_event(cpu_buffer);
4694 
4695 	switch (event->type_len) {
4696 	case RINGBUF_TYPE_PADDING:
4697 		if (rb_null_event(event))
4698 			RB_WARN_ON(cpu_buffer, 1);
4699 		/*
4700 		 * Because the writer could be discarding every
4701 		 * event it creates (which would probably be bad)
4702 		 * if we were to go back to "again" then we may never
4703 		 * catch up, and will trigger the warn on, or lock
4704 		 * the box. Return the padding, and we will release
4705 		 * the current locks, and try again.
4706 		 */
4707 		return event;
4708 
4709 	case RINGBUF_TYPE_TIME_EXTEND:
4710 		/* Internal data, OK to advance */
4711 		rb_advance_reader(cpu_buffer);
4712 		goto again;
4713 
4714 	case RINGBUF_TYPE_TIME_STAMP:
4715 		if (ts) {
4716 			*ts = rb_event_time_stamp(event);
4717 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4718 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4719 							 cpu_buffer->cpu, ts);
4720 		}
4721 		/* Internal data, OK to advance */
4722 		rb_advance_reader(cpu_buffer);
4723 		goto again;
4724 
4725 	case RINGBUF_TYPE_DATA:
4726 		if (ts && !(*ts)) {
4727 			*ts = cpu_buffer->read_stamp + event->time_delta;
4728 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4729 							 cpu_buffer->cpu, ts);
4730 		}
4731 		if (lost_events)
4732 			*lost_events = rb_lost_events(cpu_buffer);
4733 		return event;
4734 
4735 	default:
4736 		RB_WARN_ON(cpu_buffer, 1);
4737 	}
4738 
4739 	return NULL;
4740 }
4741 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4742 
4743 static struct ring_buffer_event *
4744 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4745 {
4746 	struct trace_buffer *buffer;
4747 	struct ring_buffer_per_cpu *cpu_buffer;
4748 	struct ring_buffer_event *event;
4749 	int nr_loops = 0;
4750 
4751 	if (ts)
4752 		*ts = 0;
4753 
4754 	cpu_buffer = iter->cpu_buffer;
4755 	buffer = cpu_buffer->buffer;
4756 
4757 	/*
4758 	 * Check if someone performed a consuming read to the buffer
4759 	 * or removed some pages from the buffer. In these cases,
4760 	 * iterator was invalidated and we need to reset it.
4761 	 */
4762 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4763 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4764 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4765 		rb_iter_reset(iter);
4766 
4767  again:
4768 	if (ring_buffer_iter_empty(iter))
4769 		return NULL;
4770 
4771 	/*
4772 	 * As the writer can mess with what the iterator is trying
4773 	 * to read, just give up if we fail to get an event after
4774 	 * three tries. The iterator is not as reliable when reading
4775 	 * the ring buffer with an active write as the consumer is.
4776 	 * Do not warn if the three failures is reached.
4777 	 */
4778 	if (++nr_loops > 3)
4779 		return NULL;
4780 
4781 	if (rb_per_cpu_empty(cpu_buffer))
4782 		return NULL;
4783 
4784 	if (iter->head >= rb_page_size(iter->head_page)) {
4785 		rb_inc_iter(iter);
4786 		goto again;
4787 	}
4788 
4789 	event = rb_iter_head_event(iter);
4790 	if (!event)
4791 		goto again;
4792 
4793 	switch (event->type_len) {
4794 	case RINGBUF_TYPE_PADDING:
4795 		if (rb_null_event(event)) {
4796 			rb_inc_iter(iter);
4797 			goto again;
4798 		}
4799 		rb_advance_iter(iter);
4800 		return event;
4801 
4802 	case RINGBUF_TYPE_TIME_EXTEND:
4803 		/* Internal data, OK to advance */
4804 		rb_advance_iter(iter);
4805 		goto again;
4806 
4807 	case RINGBUF_TYPE_TIME_STAMP:
4808 		if (ts) {
4809 			*ts = rb_event_time_stamp(event);
4810 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4811 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812 							 cpu_buffer->cpu, ts);
4813 		}
4814 		/* Internal data, OK to advance */
4815 		rb_advance_iter(iter);
4816 		goto again;
4817 
4818 	case RINGBUF_TYPE_DATA:
4819 		if (ts && !(*ts)) {
4820 			*ts = iter->read_stamp + event->time_delta;
4821 			ring_buffer_normalize_time_stamp(buffer,
4822 							 cpu_buffer->cpu, ts);
4823 		}
4824 		return event;
4825 
4826 	default:
4827 		RB_WARN_ON(cpu_buffer, 1);
4828 	}
4829 
4830 	return NULL;
4831 }
4832 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4833 
4834 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4835 {
4836 	if (likely(!in_nmi())) {
4837 		raw_spin_lock(&cpu_buffer->reader_lock);
4838 		return true;
4839 	}
4840 
4841 	/*
4842 	 * If an NMI die dumps out the content of the ring buffer
4843 	 * trylock must be used to prevent a deadlock if the NMI
4844 	 * preempted a task that holds the ring buffer locks. If
4845 	 * we get the lock then all is fine, if not, then continue
4846 	 * to do the read, but this can corrupt the ring buffer,
4847 	 * so it must be permanently disabled from future writes.
4848 	 * Reading from NMI is a oneshot deal.
4849 	 */
4850 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4851 		return true;
4852 
4853 	/* Continue without locking, but disable the ring buffer */
4854 	atomic_inc(&cpu_buffer->record_disabled);
4855 	return false;
4856 }
4857 
4858 static inline void
4859 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4860 {
4861 	if (likely(locked))
4862 		raw_spin_unlock(&cpu_buffer->reader_lock);
4863 }
4864 
4865 /**
4866  * ring_buffer_peek - peek at the next event to be read
4867  * @buffer: The ring buffer to read
4868  * @cpu: The cpu to peak at
4869  * @ts: The timestamp counter of this event.
4870  * @lost_events: a variable to store if events were lost (may be NULL)
4871  *
4872  * This will return the event that will be read next, but does
4873  * not consume the data.
4874  */
4875 struct ring_buffer_event *
4876 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4877 		 unsigned long *lost_events)
4878 {
4879 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4880 	struct ring_buffer_event *event;
4881 	unsigned long flags;
4882 	bool dolock;
4883 
4884 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885 		return NULL;
4886 
4887  again:
4888 	local_irq_save(flags);
4889 	dolock = rb_reader_lock(cpu_buffer);
4890 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4891 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4892 		rb_advance_reader(cpu_buffer);
4893 	rb_reader_unlock(cpu_buffer, dolock);
4894 	local_irq_restore(flags);
4895 
4896 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4897 		goto again;
4898 
4899 	return event;
4900 }
4901 
4902 /** ring_buffer_iter_dropped - report if there are dropped events
4903  * @iter: The ring buffer iterator
4904  *
4905  * Returns true if there was dropped events since the last peek.
4906  */
4907 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4908 {
4909 	bool ret = iter->missed_events != 0;
4910 
4911 	iter->missed_events = 0;
4912 	return ret;
4913 }
4914 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4915 
4916 /**
4917  * ring_buffer_iter_peek - peek at the next event to be read
4918  * @iter: The ring buffer iterator
4919  * @ts: The timestamp counter of this event.
4920  *
4921  * This will return the event that will be read next, but does
4922  * not increment the iterator.
4923  */
4924 struct ring_buffer_event *
4925 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4926 {
4927 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4928 	struct ring_buffer_event *event;
4929 	unsigned long flags;
4930 
4931  again:
4932 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4933 	event = rb_iter_peek(iter, ts);
4934 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4935 
4936 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4937 		goto again;
4938 
4939 	return event;
4940 }
4941 
4942 /**
4943  * ring_buffer_consume - return an event and consume it
4944  * @buffer: The ring buffer to get the next event from
4945  * @cpu: the cpu to read the buffer from
4946  * @ts: a variable to store the timestamp (may be NULL)
4947  * @lost_events: a variable to store if events were lost (may be NULL)
4948  *
4949  * Returns the next event in the ring buffer, and that event is consumed.
4950  * Meaning, that sequential reads will keep returning a different event,
4951  * and eventually empty the ring buffer if the producer is slower.
4952  */
4953 struct ring_buffer_event *
4954 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4955 		    unsigned long *lost_events)
4956 {
4957 	struct ring_buffer_per_cpu *cpu_buffer;
4958 	struct ring_buffer_event *event = NULL;
4959 	unsigned long flags;
4960 	bool dolock;
4961 
4962  again:
4963 	/* might be called in atomic */
4964 	preempt_disable();
4965 
4966 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4967 		goto out;
4968 
4969 	cpu_buffer = buffer->buffers[cpu];
4970 	local_irq_save(flags);
4971 	dolock = rb_reader_lock(cpu_buffer);
4972 
4973 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4974 	if (event) {
4975 		cpu_buffer->lost_events = 0;
4976 		rb_advance_reader(cpu_buffer);
4977 	}
4978 
4979 	rb_reader_unlock(cpu_buffer, dolock);
4980 	local_irq_restore(flags);
4981 
4982  out:
4983 	preempt_enable();
4984 
4985 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4986 		goto again;
4987 
4988 	return event;
4989 }
4990 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4991 
4992 /**
4993  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4994  * @buffer: The ring buffer to read from
4995  * @cpu: The cpu buffer to iterate over
4996  * @flags: gfp flags to use for memory allocation
4997  *
4998  * This performs the initial preparations necessary to iterate
4999  * through the buffer.  Memory is allocated, buffer recording
5000  * is disabled, and the iterator pointer is returned to the caller.
5001  *
5002  * Disabling buffer recording prevents the reading from being
5003  * corrupted. This is not a consuming read, so a producer is not
5004  * expected.
5005  *
5006  * After a sequence of ring_buffer_read_prepare calls, the user is
5007  * expected to make at least one call to ring_buffer_read_prepare_sync.
5008  * Afterwards, ring_buffer_read_start is invoked to get things going
5009  * for real.
5010  *
5011  * This overall must be paired with ring_buffer_read_finish.
5012  */
5013 struct ring_buffer_iter *
5014 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5015 {
5016 	struct ring_buffer_per_cpu *cpu_buffer;
5017 	struct ring_buffer_iter *iter;
5018 
5019 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5020 		return NULL;
5021 
5022 	iter = kzalloc(sizeof(*iter), flags);
5023 	if (!iter)
5024 		return NULL;
5025 
5026 	/* Holds the entire event: data and meta data */
5027 	iter->event_size = buffer->subbuf_size;
5028 	iter->event = kmalloc(iter->event_size, flags);
5029 	if (!iter->event) {
5030 		kfree(iter);
5031 		return NULL;
5032 	}
5033 
5034 	cpu_buffer = buffer->buffers[cpu];
5035 
5036 	iter->cpu_buffer = cpu_buffer;
5037 
5038 	atomic_inc(&cpu_buffer->resize_disabled);
5039 
5040 	return iter;
5041 }
5042 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5043 
5044 /**
5045  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5046  *
5047  * All previously invoked ring_buffer_read_prepare calls to prepare
5048  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5049  * calls on those iterators are allowed.
5050  */
5051 void
5052 ring_buffer_read_prepare_sync(void)
5053 {
5054 	synchronize_rcu();
5055 }
5056 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5057 
5058 /**
5059  * ring_buffer_read_start - start a non consuming read of the buffer
5060  * @iter: The iterator returned by ring_buffer_read_prepare
5061  *
5062  * This finalizes the startup of an iteration through the buffer.
5063  * The iterator comes from a call to ring_buffer_read_prepare and
5064  * an intervening ring_buffer_read_prepare_sync must have been
5065  * performed.
5066  *
5067  * Must be paired with ring_buffer_read_finish.
5068  */
5069 void
5070 ring_buffer_read_start(struct ring_buffer_iter *iter)
5071 {
5072 	struct ring_buffer_per_cpu *cpu_buffer;
5073 	unsigned long flags;
5074 
5075 	if (!iter)
5076 		return;
5077 
5078 	cpu_buffer = iter->cpu_buffer;
5079 
5080 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5081 	arch_spin_lock(&cpu_buffer->lock);
5082 	rb_iter_reset(iter);
5083 	arch_spin_unlock(&cpu_buffer->lock);
5084 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5085 }
5086 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5087 
5088 /**
5089  * ring_buffer_read_finish - finish reading the iterator of the buffer
5090  * @iter: The iterator retrieved by ring_buffer_start
5091  *
5092  * This re-enables the recording to the buffer, and frees the
5093  * iterator.
5094  */
5095 void
5096 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5097 {
5098 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5099 	unsigned long flags;
5100 
5101 	/*
5102 	 * Ring buffer is disabled from recording, here's a good place
5103 	 * to check the integrity of the ring buffer.
5104 	 * Must prevent readers from trying to read, as the check
5105 	 * clears the HEAD page and readers require it.
5106 	 */
5107 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5108 	rb_check_pages(cpu_buffer);
5109 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5110 
5111 	atomic_dec(&cpu_buffer->resize_disabled);
5112 	kfree(iter->event);
5113 	kfree(iter);
5114 }
5115 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5116 
5117 /**
5118  * ring_buffer_iter_advance - advance the iterator to the next location
5119  * @iter: The ring buffer iterator
5120  *
5121  * Move the location of the iterator such that the next read will
5122  * be the next location of the iterator.
5123  */
5124 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5125 {
5126 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5127 	unsigned long flags;
5128 
5129 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5130 
5131 	rb_advance_iter(iter);
5132 
5133 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5134 }
5135 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5136 
5137 /**
5138  * ring_buffer_size - return the size of the ring buffer (in bytes)
5139  * @buffer: The ring buffer.
5140  * @cpu: The CPU to get ring buffer size from.
5141  */
5142 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5143 {
5144 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5145 		return 0;
5146 
5147 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5148 }
5149 EXPORT_SYMBOL_GPL(ring_buffer_size);
5150 
5151 /**
5152  * ring_buffer_max_event_size - return the max data size of an event
5153  * @buffer: The ring buffer.
5154  *
5155  * Returns the maximum size an event can be.
5156  */
5157 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5158 {
5159 	/* If abs timestamp is requested, events have a timestamp too */
5160 	if (ring_buffer_time_stamp_abs(buffer))
5161 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5162 	return buffer->max_data_size;
5163 }
5164 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5165 
5166 static void rb_clear_buffer_page(struct buffer_page *page)
5167 {
5168 	local_set(&page->write, 0);
5169 	local_set(&page->entries, 0);
5170 	rb_init_page(page->page);
5171 	page->read = 0;
5172 }
5173 
5174 static void
5175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5176 {
5177 	struct buffer_page *page;
5178 
5179 	rb_head_page_deactivate(cpu_buffer);
5180 
5181 	cpu_buffer->head_page
5182 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5183 	rb_clear_buffer_page(cpu_buffer->head_page);
5184 	list_for_each_entry(page, cpu_buffer->pages, list) {
5185 		rb_clear_buffer_page(page);
5186 	}
5187 
5188 	cpu_buffer->tail_page = cpu_buffer->head_page;
5189 	cpu_buffer->commit_page = cpu_buffer->head_page;
5190 
5191 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5192 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5193 	rb_clear_buffer_page(cpu_buffer->reader_page);
5194 
5195 	local_set(&cpu_buffer->entries_bytes, 0);
5196 	local_set(&cpu_buffer->overrun, 0);
5197 	local_set(&cpu_buffer->commit_overrun, 0);
5198 	local_set(&cpu_buffer->dropped_events, 0);
5199 	local_set(&cpu_buffer->entries, 0);
5200 	local_set(&cpu_buffer->committing, 0);
5201 	local_set(&cpu_buffer->commits, 0);
5202 	local_set(&cpu_buffer->pages_touched, 0);
5203 	local_set(&cpu_buffer->pages_lost, 0);
5204 	local_set(&cpu_buffer->pages_read, 0);
5205 	cpu_buffer->last_pages_touch = 0;
5206 	cpu_buffer->shortest_full = 0;
5207 	cpu_buffer->read = 0;
5208 	cpu_buffer->read_bytes = 0;
5209 
5210 	rb_time_set(&cpu_buffer->write_stamp, 0);
5211 	rb_time_set(&cpu_buffer->before_stamp, 0);
5212 
5213 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5214 
5215 	cpu_buffer->lost_events = 0;
5216 	cpu_buffer->last_overrun = 0;
5217 
5218 	rb_head_page_activate(cpu_buffer);
5219 	cpu_buffer->pages_removed = 0;
5220 }
5221 
5222 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5223 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5224 {
5225 	unsigned long flags;
5226 
5227 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5228 
5229 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5230 		goto out;
5231 
5232 	arch_spin_lock(&cpu_buffer->lock);
5233 
5234 	rb_reset_cpu(cpu_buffer);
5235 
5236 	arch_spin_unlock(&cpu_buffer->lock);
5237 
5238  out:
5239 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5240 }
5241 
5242 /**
5243  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5244  * @buffer: The ring buffer to reset a per cpu buffer of
5245  * @cpu: The CPU buffer to be reset
5246  */
5247 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5248 {
5249 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5250 
5251 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5252 		return;
5253 
5254 	/* prevent another thread from changing buffer sizes */
5255 	mutex_lock(&buffer->mutex);
5256 
5257 	atomic_inc(&cpu_buffer->resize_disabled);
5258 	atomic_inc(&cpu_buffer->record_disabled);
5259 
5260 	/* Make sure all commits have finished */
5261 	synchronize_rcu();
5262 
5263 	reset_disabled_cpu_buffer(cpu_buffer);
5264 
5265 	atomic_dec(&cpu_buffer->record_disabled);
5266 	atomic_dec(&cpu_buffer->resize_disabled);
5267 
5268 	mutex_unlock(&buffer->mutex);
5269 }
5270 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5271 
5272 /* Flag to ensure proper resetting of atomic variables */
5273 #define RESET_BIT	(1 << 30)
5274 
5275 /**
5276  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5277  * @buffer: The ring buffer to reset a per cpu buffer of
5278  */
5279 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5280 {
5281 	struct ring_buffer_per_cpu *cpu_buffer;
5282 	int cpu;
5283 
5284 	/* prevent another thread from changing buffer sizes */
5285 	mutex_lock(&buffer->mutex);
5286 
5287 	for_each_online_buffer_cpu(buffer, cpu) {
5288 		cpu_buffer = buffer->buffers[cpu];
5289 
5290 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5291 		atomic_inc(&cpu_buffer->record_disabled);
5292 	}
5293 
5294 	/* Make sure all commits have finished */
5295 	synchronize_rcu();
5296 
5297 	for_each_buffer_cpu(buffer, cpu) {
5298 		cpu_buffer = buffer->buffers[cpu];
5299 
5300 		/*
5301 		 * If a CPU came online during the synchronize_rcu(), then
5302 		 * ignore it.
5303 		 */
5304 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5305 			continue;
5306 
5307 		reset_disabled_cpu_buffer(cpu_buffer);
5308 
5309 		atomic_dec(&cpu_buffer->record_disabled);
5310 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5311 	}
5312 
5313 	mutex_unlock(&buffer->mutex);
5314 }
5315 
5316 /**
5317  * ring_buffer_reset - reset a ring buffer
5318  * @buffer: The ring buffer to reset all cpu buffers
5319  */
5320 void ring_buffer_reset(struct trace_buffer *buffer)
5321 {
5322 	struct ring_buffer_per_cpu *cpu_buffer;
5323 	int cpu;
5324 
5325 	/* prevent another thread from changing buffer sizes */
5326 	mutex_lock(&buffer->mutex);
5327 
5328 	for_each_buffer_cpu(buffer, cpu) {
5329 		cpu_buffer = buffer->buffers[cpu];
5330 
5331 		atomic_inc(&cpu_buffer->resize_disabled);
5332 		atomic_inc(&cpu_buffer->record_disabled);
5333 	}
5334 
5335 	/* Make sure all commits have finished */
5336 	synchronize_rcu();
5337 
5338 	for_each_buffer_cpu(buffer, cpu) {
5339 		cpu_buffer = buffer->buffers[cpu];
5340 
5341 		reset_disabled_cpu_buffer(cpu_buffer);
5342 
5343 		atomic_dec(&cpu_buffer->record_disabled);
5344 		atomic_dec(&cpu_buffer->resize_disabled);
5345 	}
5346 
5347 	mutex_unlock(&buffer->mutex);
5348 }
5349 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5350 
5351 /**
5352  * ring_buffer_empty - is the ring buffer empty?
5353  * @buffer: The ring buffer to test
5354  */
5355 bool ring_buffer_empty(struct trace_buffer *buffer)
5356 {
5357 	struct ring_buffer_per_cpu *cpu_buffer;
5358 	unsigned long flags;
5359 	bool dolock;
5360 	bool ret;
5361 	int cpu;
5362 
5363 	/* yes this is racy, but if you don't like the race, lock the buffer */
5364 	for_each_buffer_cpu(buffer, cpu) {
5365 		cpu_buffer = buffer->buffers[cpu];
5366 		local_irq_save(flags);
5367 		dolock = rb_reader_lock(cpu_buffer);
5368 		ret = rb_per_cpu_empty(cpu_buffer);
5369 		rb_reader_unlock(cpu_buffer, dolock);
5370 		local_irq_restore(flags);
5371 
5372 		if (!ret)
5373 			return false;
5374 	}
5375 
5376 	return true;
5377 }
5378 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5379 
5380 /**
5381  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5382  * @buffer: The ring buffer
5383  * @cpu: The CPU buffer to test
5384  */
5385 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5386 {
5387 	struct ring_buffer_per_cpu *cpu_buffer;
5388 	unsigned long flags;
5389 	bool dolock;
5390 	bool ret;
5391 
5392 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5393 		return true;
5394 
5395 	cpu_buffer = buffer->buffers[cpu];
5396 	local_irq_save(flags);
5397 	dolock = rb_reader_lock(cpu_buffer);
5398 	ret = rb_per_cpu_empty(cpu_buffer);
5399 	rb_reader_unlock(cpu_buffer, dolock);
5400 	local_irq_restore(flags);
5401 
5402 	return ret;
5403 }
5404 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5405 
5406 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5407 /**
5408  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5409  * @buffer_a: One buffer to swap with
5410  * @buffer_b: The other buffer to swap with
5411  * @cpu: the CPU of the buffers to swap
5412  *
5413  * This function is useful for tracers that want to take a "snapshot"
5414  * of a CPU buffer and has another back up buffer lying around.
5415  * it is expected that the tracer handles the cpu buffer not being
5416  * used at the moment.
5417  */
5418 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5419 			 struct trace_buffer *buffer_b, int cpu)
5420 {
5421 	struct ring_buffer_per_cpu *cpu_buffer_a;
5422 	struct ring_buffer_per_cpu *cpu_buffer_b;
5423 	int ret = -EINVAL;
5424 
5425 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5426 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5427 		goto out;
5428 
5429 	cpu_buffer_a = buffer_a->buffers[cpu];
5430 	cpu_buffer_b = buffer_b->buffers[cpu];
5431 
5432 	/* At least make sure the two buffers are somewhat the same */
5433 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5434 		goto out;
5435 
5436 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5437 		goto out;
5438 
5439 	ret = -EAGAIN;
5440 
5441 	if (atomic_read(&buffer_a->record_disabled))
5442 		goto out;
5443 
5444 	if (atomic_read(&buffer_b->record_disabled))
5445 		goto out;
5446 
5447 	if (atomic_read(&cpu_buffer_a->record_disabled))
5448 		goto out;
5449 
5450 	if (atomic_read(&cpu_buffer_b->record_disabled))
5451 		goto out;
5452 
5453 	/*
5454 	 * We can't do a synchronize_rcu here because this
5455 	 * function can be called in atomic context.
5456 	 * Normally this will be called from the same CPU as cpu.
5457 	 * If not it's up to the caller to protect this.
5458 	 */
5459 	atomic_inc(&cpu_buffer_a->record_disabled);
5460 	atomic_inc(&cpu_buffer_b->record_disabled);
5461 
5462 	ret = -EBUSY;
5463 	if (local_read(&cpu_buffer_a->committing))
5464 		goto out_dec;
5465 	if (local_read(&cpu_buffer_b->committing))
5466 		goto out_dec;
5467 
5468 	/*
5469 	 * When resize is in progress, we cannot swap it because
5470 	 * it will mess the state of the cpu buffer.
5471 	 */
5472 	if (atomic_read(&buffer_a->resizing))
5473 		goto out_dec;
5474 	if (atomic_read(&buffer_b->resizing))
5475 		goto out_dec;
5476 
5477 	buffer_a->buffers[cpu] = cpu_buffer_b;
5478 	buffer_b->buffers[cpu] = cpu_buffer_a;
5479 
5480 	cpu_buffer_b->buffer = buffer_a;
5481 	cpu_buffer_a->buffer = buffer_b;
5482 
5483 	ret = 0;
5484 
5485 out_dec:
5486 	atomic_dec(&cpu_buffer_a->record_disabled);
5487 	atomic_dec(&cpu_buffer_b->record_disabled);
5488 out:
5489 	return ret;
5490 }
5491 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5492 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5493 
5494 /**
5495  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5496  * @buffer: the buffer to allocate for.
5497  * @cpu: the cpu buffer to allocate.
5498  *
5499  * This function is used in conjunction with ring_buffer_read_page.
5500  * When reading a full page from the ring buffer, these functions
5501  * can be used to speed up the process. The calling function should
5502  * allocate a few pages first with this function. Then when it
5503  * needs to get pages from the ring buffer, it passes the result
5504  * of this function into ring_buffer_read_page, which will swap
5505  * the page that was allocated, with the read page of the buffer.
5506  *
5507  * Returns:
5508  *  The page allocated, or ERR_PTR
5509  */
5510 struct buffer_data_read_page *
5511 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5512 {
5513 	struct ring_buffer_per_cpu *cpu_buffer;
5514 	struct buffer_data_read_page *bpage = NULL;
5515 	unsigned long flags;
5516 	struct page *page;
5517 
5518 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5519 		return ERR_PTR(-ENODEV);
5520 
5521 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5522 	if (!bpage)
5523 		return ERR_PTR(-ENOMEM);
5524 
5525 	bpage->order = buffer->subbuf_order;
5526 	cpu_buffer = buffer->buffers[cpu];
5527 	local_irq_save(flags);
5528 	arch_spin_lock(&cpu_buffer->lock);
5529 
5530 	if (cpu_buffer->free_page) {
5531 		bpage->data = cpu_buffer->free_page;
5532 		cpu_buffer->free_page = NULL;
5533 	}
5534 
5535 	arch_spin_unlock(&cpu_buffer->lock);
5536 	local_irq_restore(flags);
5537 
5538 	if (bpage->data)
5539 		goto out;
5540 
5541 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY,
5542 				cpu_buffer->buffer->subbuf_order);
5543 	if (!page) {
5544 		kfree(bpage);
5545 		return ERR_PTR(-ENOMEM);
5546 	}
5547 
5548 	bpage->data = page_address(page);
5549 
5550  out:
5551 	rb_init_page(bpage->data);
5552 
5553 	return bpage;
5554 }
5555 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5556 
5557 /**
5558  * ring_buffer_free_read_page - free an allocated read page
5559  * @buffer: the buffer the page was allocate for
5560  * @cpu: the cpu buffer the page came from
5561  * @data_page: the page to free
5562  *
5563  * Free a page allocated from ring_buffer_alloc_read_page.
5564  */
5565 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5566 				struct buffer_data_read_page *data_page)
5567 {
5568 	struct ring_buffer_per_cpu *cpu_buffer;
5569 	struct buffer_data_page *bpage = data_page->data;
5570 	struct page *page = virt_to_page(bpage);
5571 	unsigned long flags;
5572 
5573 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5574 		return;
5575 
5576 	cpu_buffer = buffer->buffers[cpu];
5577 
5578 	/*
5579 	 * If the page is still in use someplace else, or order of the page
5580 	 * is different from the subbuffer order of the buffer -
5581 	 * we can't reuse it
5582 	 */
5583 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5584 		goto out;
5585 
5586 	local_irq_save(flags);
5587 	arch_spin_lock(&cpu_buffer->lock);
5588 
5589 	if (!cpu_buffer->free_page) {
5590 		cpu_buffer->free_page = bpage;
5591 		bpage = NULL;
5592 	}
5593 
5594 	arch_spin_unlock(&cpu_buffer->lock);
5595 	local_irq_restore(flags);
5596 
5597  out:
5598 	free_pages((unsigned long)bpage, data_page->order);
5599 	kfree(data_page);
5600 }
5601 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5602 
5603 /**
5604  * ring_buffer_read_page - extract a page from the ring buffer
5605  * @buffer: buffer to extract from
5606  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5607  * @len: amount to extract
5608  * @cpu: the cpu of the buffer to extract
5609  * @full: should the extraction only happen when the page is full.
5610  *
5611  * This function will pull out a page from the ring buffer and consume it.
5612  * @data_page must be the address of the variable that was returned
5613  * from ring_buffer_alloc_read_page. This is because the page might be used
5614  * to swap with a page in the ring buffer.
5615  *
5616  * for example:
5617  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5618  *	if (IS_ERR(rpage))
5619  *		return PTR_ERR(rpage);
5620  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5621  *	if (ret >= 0)
5622  *		process_page(ring_buffer_read_page_data(rpage), ret);
5623  *	ring_buffer_free_read_page(buffer, cpu, rpage);
5624  *
5625  * When @full is set, the function will not return true unless
5626  * the writer is off the reader page.
5627  *
5628  * Note: it is up to the calling functions to handle sleeps and wakeups.
5629  *  The ring buffer can be used anywhere in the kernel and can not
5630  *  blindly call wake_up. The layer that uses the ring buffer must be
5631  *  responsible for that.
5632  *
5633  * Returns:
5634  *  >=0 if data has been transferred, returns the offset of consumed data.
5635  *  <0 if no data has been transferred.
5636  */
5637 int ring_buffer_read_page(struct trace_buffer *buffer,
5638 			  struct buffer_data_read_page *data_page,
5639 			  size_t len, int cpu, int full)
5640 {
5641 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5642 	struct ring_buffer_event *event;
5643 	struct buffer_data_page *bpage;
5644 	struct buffer_page *reader;
5645 	unsigned long missed_events;
5646 	unsigned long flags;
5647 	unsigned int commit;
5648 	unsigned int read;
5649 	u64 save_timestamp;
5650 	int ret = -1;
5651 
5652 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5653 		goto out;
5654 
5655 	/*
5656 	 * If len is not big enough to hold the page header, then
5657 	 * we can not copy anything.
5658 	 */
5659 	if (len <= BUF_PAGE_HDR_SIZE)
5660 		goto out;
5661 
5662 	len -= BUF_PAGE_HDR_SIZE;
5663 
5664 	if (!data_page || !data_page->data)
5665 		goto out;
5666 	if (data_page->order != buffer->subbuf_order)
5667 		goto out;
5668 
5669 	bpage = data_page->data;
5670 	if (!bpage)
5671 		goto out;
5672 
5673 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5674 
5675 	reader = rb_get_reader_page(cpu_buffer);
5676 	if (!reader)
5677 		goto out_unlock;
5678 
5679 	event = rb_reader_event(cpu_buffer);
5680 
5681 	read = reader->read;
5682 	commit = rb_page_commit(reader);
5683 
5684 	/* Check if any events were dropped */
5685 	missed_events = cpu_buffer->lost_events;
5686 
5687 	/*
5688 	 * If this page has been partially read or
5689 	 * if len is not big enough to read the rest of the page or
5690 	 * a writer is still on the page, then
5691 	 * we must copy the data from the page to the buffer.
5692 	 * Otherwise, we can simply swap the page with the one passed in.
5693 	 */
5694 	if (read || (len < (commit - read)) ||
5695 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5696 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5697 		unsigned int rpos = read;
5698 		unsigned int pos = 0;
5699 		unsigned int size;
5700 
5701 		/*
5702 		 * If a full page is expected, this can still be returned
5703 		 * if there's been a previous partial read and the
5704 		 * rest of the page can be read and the commit page is off
5705 		 * the reader page.
5706 		 */
5707 		if (full &&
5708 		    (!read || (len < (commit - read)) ||
5709 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5710 			goto out_unlock;
5711 
5712 		if (len > (commit - read))
5713 			len = (commit - read);
5714 
5715 		/* Always keep the time extend and data together */
5716 		size = rb_event_ts_length(event);
5717 
5718 		if (len < size)
5719 			goto out_unlock;
5720 
5721 		/* save the current timestamp, since the user will need it */
5722 		save_timestamp = cpu_buffer->read_stamp;
5723 
5724 		/* Need to copy one event at a time */
5725 		do {
5726 			/* We need the size of one event, because
5727 			 * rb_advance_reader only advances by one event,
5728 			 * whereas rb_event_ts_length may include the size of
5729 			 * one or two events.
5730 			 * We have already ensured there's enough space if this
5731 			 * is a time extend. */
5732 			size = rb_event_length(event);
5733 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5734 
5735 			len -= size;
5736 
5737 			rb_advance_reader(cpu_buffer);
5738 			rpos = reader->read;
5739 			pos += size;
5740 
5741 			if (rpos >= commit)
5742 				break;
5743 
5744 			event = rb_reader_event(cpu_buffer);
5745 			/* Always keep the time extend and data together */
5746 			size = rb_event_ts_length(event);
5747 		} while (len >= size);
5748 
5749 		/* update bpage */
5750 		local_set(&bpage->commit, pos);
5751 		bpage->time_stamp = save_timestamp;
5752 
5753 		/* we copied everything to the beginning */
5754 		read = 0;
5755 	} else {
5756 		/* update the entry counter */
5757 		cpu_buffer->read += rb_page_entries(reader);
5758 		cpu_buffer->read_bytes += rb_page_commit(reader);
5759 
5760 		/* swap the pages */
5761 		rb_init_page(bpage);
5762 		bpage = reader->page;
5763 		reader->page = data_page->data;
5764 		local_set(&reader->write, 0);
5765 		local_set(&reader->entries, 0);
5766 		reader->read = 0;
5767 		data_page->data = bpage;
5768 
5769 		/*
5770 		 * Use the real_end for the data size,
5771 		 * This gives us a chance to store the lost events
5772 		 * on the page.
5773 		 */
5774 		if (reader->real_end)
5775 			local_set(&bpage->commit, reader->real_end);
5776 	}
5777 	ret = read;
5778 
5779 	cpu_buffer->lost_events = 0;
5780 
5781 	commit = local_read(&bpage->commit);
5782 	/*
5783 	 * Set a flag in the commit field if we lost events
5784 	 */
5785 	if (missed_events) {
5786 		/* If there is room at the end of the page to save the
5787 		 * missed events, then record it there.
5788 		 */
5789 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5790 			memcpy(&bpage->data[commit], &missed_events,
5791 			       sizeof(missed_events));
5792 			local_add(RB_MISSED_STORED, &bpage->commit);
5793 			commit += sizeof(missed_events);
5794 		}
5795 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5796 	}
5797 
5798 	/*
5799 	 * This page may be off to user land. Zero it out here.
5800 	 */
5801 	if (commit < buffer->subbuf_size)
5802 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5803 
5804  out_unlock:
5805 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5806 
5807  out:
5808 	return ret;
5809 }
5810 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5811 
5812 /**
5813  * ring_buffer_read_page_data - get pointer to the data in the page.
5814  * @page:  the page to get the data from
5815  *
5816  * Returns pointer to the actual data in this page.
5817  */
5818 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5819 {
5820 	return page->data;
5821 }
5822 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5823 
5824 /**
5825  * ring_buffer_subbuf_size_get - get size of the sub buffer.
5826  * @buffer: the buffer to get the sub buffer size from
5827  *
5828  * Returns size of the sub buffer, in bytes.
5829  */
5830 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5831 {
5832 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5833 }
5834 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5835 
5836 /**
5837  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5838  * @buffer: The ring_buffer to get the system sub page order from
5839  *
5840  * By default, one ring buffer sub page equals to one system page. This parameter
5841  * is configurable, per ring buffer. The size of the ring buffer sub page can be
5842  * extended, but must be an order of system page size.
5843  *
5844  * Returns the order of buffer sub page size, in system pages:
5845  * 0 means the sub buffer size is 1 system page and so forth.
5846  * In case of an error < 0 is returned.
5847  */
5848 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5849 {
5850 	if (!buffer)
5851 		return -EINVAL;
5852 
5853 	return buffer->subbuf_order;
5854 }
5855 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5856 
5857 /**
5858  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5859  * @buffer: The ring_buffer to set the new page size.
5860  * @order: Order of the system pages in one sub buffer page
5861  *
5862  * By default, one ring buffer pages equals to one system page. This API can be
5863  * used to set new size of the ring buffer page. The size must be order of
5864  * system page size, that's why the input parameter @order is the order of
5865  * system pages that are allocated for one ring buffer page:
5866  *  0 - 1 system page
5867  *  1 - 2 system pages
5868  *  3 - 4 system pages
5869  *  ...
5870  *
5871  * Returns 0 on success or < 0 in case of an error.
5872  */
5873 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5874 {
5875 	struct ring_buffer_per_cpu *cpu_buffer;
5876 	struct buffer_page *bpage, *tmp;
5877 	int old_order, old_size;
5878 	int nr_pages;
5879 	int psize;
5880 	int err;
5881 	int cpu;
5882 
5883 	if (!buffer || order < 0)
5884 		return -EINVAL;
5885 
5886 	if (buffer->subbuf_order == order)
5887 		return 0;
5888 
5889 	psize = (1 << order) * PAGE_SIZE;
5890 	if (psize <= BUF_PAGE_HDR_SIZE)
5891 		return -EINVAL;
5892 
5893 	/* Size of a subbuf cannot be greater than the write counter */
5894 	if (psize > RB_WRITE_MASK + 1)
5895 		return -EINVAL;
5896 
5897 	old_order = buffer->subbuf_order;
5898 	old_size = buffer->subbuf_size;
5899 
5900 	/* prevent another thread from changing buffer sizes */
5901 	mutex_lock(&buffer->mutex);
5902 	atomic_inc(&buffer->record_disabled);
5903 
5904 	/* Make sure all commits have finished */
5905 	synchronize_rcu();
5906 
5907 	buffer->subbuf_order = order;
5908 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5909 
5910 	/* Make sure all new buffers are allocated, before deleting the old ones */
5911 	for_each_buffer_cpu(buffer, cpu) {
5912 
5913 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5914 			continue;
5915 
5916 		cpu_buffer = buffer->buffers[cpu];
5917 
5918 		/* Update the number of pages to match the new size */
5919 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5920 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5921 
5922 		/* we need a minimum of two pages */
5923 		if (nr_pages < 2)
5924 			nr_pages = 2;
5925 
5926 		cpu_buffer->nr_pages_to_update = nr_pages;
5927 
5928 		/* Include the reader page */
5929 		nr_pages++;
5930 
5931 		/* Allocate the new size buffer */
5932 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
5933 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
5934 					&cpu_buffer->new_pages)) {
5935 			/* not enough memory for new pages */
5936 			err = -ENOMEM;
5937 			goto error;
5938 		}
5939 	}
5940 
5941 	for_each_buffer_cpu(buffer, cpu) {
5942 
5943 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5944 			continue;
5945 
5946 		cpu_buffer = buffer->buffers[cpu];
5947 
5948 		/* Clear the head bit to make the link list normal to read */
5949 		rb_head_page_deactivate(cpu_buffer);
5950 
5951 		/* Now walk the list and free all the old sub buffers */
5952 		list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5953 			list_del_init(&bpage->list);
5954 			free_buffer_page(bpage);
5955 		}
5956 		/* The above loop stopped an the last page needing to be freed */
5957 		bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5958 		free_buffer_page(bpage);
5959 
5960 		/* Free the current reader page */
5961 		free_buffer_page(cpu_buffer->reader_page);
5962 
5963 		/* One page was allocated for the reader page */
5964 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
5965 						     struct buffer_page, list);
5966 		list_del_init(&cpu_buffer->reader_page->list);
5967 
5968 		/* The cpu_buffer pages are a link list with no head */
5969 		cpu_buffer->pages = cpu_buffer->new_pages.next;
5970 		cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
5971 		cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
5972 
5973 		/* Clear the new_pages list */
5974 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
5975 
5976 		cpu_buffer->head_page
5977 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
5978 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
5979 
5980 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
5981 		cpu_buffer->nr_pages_to_update = 0;
5982 
5983 		free_pages((unsigned long)cpu_buffer->free_page, old_order);
5984 		cpu_buffer->free_page = NULL;
5985 
5986 		rb_head_page_activate(cpu_buffer);
5987 
5988 		rb_check_pages(cpu_buffer);
5989 	}
5990 
5991 	atomic_dec(&buffer->record_disabled);
5992 	mutex_unlock(&buffer->mutex);
5993 
5994 	return 0;
5995 
5996 error:
5997 	buffer->subbuf_order = old_order;
5998 	buffer->subbuf_size = old_size;
5999 
6000 	atomic_dec(&buffer->record_disabled);
6001 	mutex_unlock(&buffer->mutex);
6002 
6003 	for_each_buffer_cpu(buffer, cpu) {
6004 		cpu_buffer = buffer->buffers[cpu];
6005 
6006 		if (!cpu_buffer->nr_pages_to_update)
6007 			continue;
6008 
6009 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6010 			list_del_init(&bpage->list);
6011 			free_buffer_page(bpage);
6012 		}
6013 	}
6014 
6015 	return err;
6016 }
6017 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6018 
6019 /*
6020  * We only allocate new buffers, never free them if the CPU goes down.
6021  * If we were to free the buffer, then the user would lose any trace that was in
6022  * the buffer.
6023  */
6024 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6025 {
6026 	struct trace_buffer *buffer;
6027 	long nr_pages_same;
6028 	int cpu_i;
6029 	unsigned long nr_pages;
6030 
6031 	buffer = container_of(node, struct trace_buffer, node);
6032 	if (cpumask_test_cpu(cpu, buffer->cpumask))
6033 		return 0;
6034 
6035 	nr_pages = 0;
6036 	nr_pages_same = 1;
6037 	/* check if all cpu sizes are same */
6038 	for_each_buffer_cpu(buffer, cpu_i) {
6039 		/* fill in the size from first enabled cpu */
6040 		if (nr_pages == 0)
6041 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
6042 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6043 			nr_pages_same = 0;
6044 			break;
6045 		}
6046 	}
6047 	/* allocate minimum pages, user can later expand it */
6048 	if (!nr_pages_same)
6049 		nr_pages = 2;
6050 	buffer->buffers[cpu] =
6051 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6052 	if (!buffer->buffers[cpu]) {
6053 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
6054 		     cpu);
6055 		return -ENOMEM;
6056 	}
6057 	smp_wmb();
6058 	cpumask_set_cpu(cpu, buffer->cpumask);
6059 	return 0;
6060 }
6061 
6062 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6063 /*
6064  * This is a basic integrity check of the ring buffer.
6065  * Late in the boot cycle this test will run when configured in.
6066  * It will kick off a thread per CPU that will go into a loop
6067  * writing to the per cpu ring buffer various sizes of data.
6068  * Some of the data will be large items, some small.
6069  *
6070  * Another thread is created that goes into a spin, sending out
6071  * IPIs to the other CPUs to also write into the ring buffer.
6072  * this is to test the nesting ability of the buffer.
6073  *
6074  * Basic stats are recorded and reported. If something in the
6075  * ring buffer should happen that's not expected, a big warning
6076  * is displayed and all ring buffers are disabled.
6077  */
6078 static struct task_struct *rb_threads[NR_CPUS] __initdata;
6079 
6080 struct rb_test_data {
6081 	struct trace_buffer *buffer;
6082 	unsigned long		events;
6083 	unsigned long		bytes_written;
6084 	unsigned long		bytes_alloc;
6085 	unsigned long		bytes_dropped;
6086 	unsigned long		events_nested;
6087 	unsigned long		bytes_written_nested;
6088 	unsigned long		bytes_alloc_nested;
6089 	unsigned long		bytes_dropped_nested;
6090 	int			min_size_nested;
6091 	int			max_size_nested;
6092 	int			max_size;
6093 	int			min_size;
6094 	int			cpu;
6095 	int			cnt;
6096 };
6097 
6098 static struct rb_test_data rb_data[NR_CPUS] __initdata;
6099 
6100 /* 1 meg per cpu */
6101 #define RB_TEST_BUFFER_SIZE	1048576
6102 
6103 static char rb_string[] __initdata =
6104 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6105 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6106 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6107 
6108 static bool rb_test_started __initdata;
6109 
6110 struct rb_item {
6111 	int size;
6112 	char str[];
6113 };
6114 
6115 static __init int rb_write_something(struct rb_test_data *data, bool nested)
6116 {
6117 	struct ring_buffer_event *event;
6118 	struct rb_item *item;
6119 	bool started;
6120 	int event_len;
6121 	int size;
6122 	int len;
6123 	int cnt;
6124 
6125 	/* Have nested writes different that what is written */
6126 	cnt = data->cnt + (nested ? 27 : 0);
6127 
6128 	/* Multiply cnt by ~e, to make some unique increment */
6129 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6130 
6131 	len = size + sizeof(struct rb_item);
6132 
6133 	started = rb_test_started;
6134 	/* read rb_test_started before checking buffer enabled */
6135 	smp_rmb();
6136 
6137 	event = ring_buffer_lock_reserve(data->buffer, len);
6138 	if (!event) {
6139 		/* Ignore dropped events before test starts. */
6140 		if (started) {
6141 			if (nested)
6142 				data->bytes_dropped += len;
6143 			else
6144 				data->bytes_dropped_nested += len;
6145 		}
6146 		return len;
6147 	}
6148 
6149 	event_len = ring_buffer_event_length(event);
6150 
6151 	if (RB_WARN_ON(data->buffer, event_len < len))
6152 		goto out;
6153 
6154 	item = ring_buffer_event_data(event);
6155 	item->size = size;
6156 	memcpy(item->str, rb_string, size);
6157 
6158 	if (nested) {
6159 		data->bytes_alloc_nested += event_len;
6160 		data->bytes_written_nested += len;
6161 		data->events_nested++;
6162 		if (!data->min_size_nested || len < data->min_size_nested)
6163 			data->min_size_nested = len;
6164 		if (len > data->max_size_nested)
6165 			data->max_size_nested = len;
6166 	} else {
6167 		data->bytes_alloc += event_len;
6168 		data->bytes_written += len;
6169 		data->events++;
6170 		if (!data->min_size || len < data->min_size)
6171 			data->max_size = len;
6172 		if (len > data->max_size)
6173 			data->max_size = len;
6174 	}
6175 
6176  out:
6177 	ring_buffer_unlock_commit(data->buffer);
6178 
6179 	return 0;
6180 }
6181 
6182 static __init int rb_test(void *arg)
6183 {
6184 	struct rb_test_data *data = arg;
6185 
6186 	while (!kthread_should_stop()) {
6187 		rb_write_something(data, false);
6188 		data->cnt++;
6189 
6190 		set_current_state(TASK_INTERRUPTIBLE);
6191 		/* Now sleep between a min of 100-300us and a max of 1ms */
6192 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6193 	}
6194 
6195 	return 0;
6196 }
6197 
6198 static __init void rb_ipi(void *ignore)
6199 {
6200 	struct rb_test_data *data;
6201 	int cpu = smp_processor_id();
6202 
6203 	data = &rb_data[cpu];
6204 	rb_write_something(data, true);
6205 }
6206 
6207 static __init int rb_hammer_test(void *arg)
6208 {
6209 	while (!kthread_should_stop()) {
6210 
6211 		/* Send an IPI to all cpus to write data! */
6212 		smp_call_function(rb_ipi, NULL, 1);
6213 		/* No sleep, but for non preempt, let others run */
6214 		schedule();
6215 	}
6216 
6217 	return 0;
6218 }
6219 
6220 static __init int test_ringbuffer(void)
6221 {
6222 	struct task_struct *rb_hammer;
6223 	struct trace_buffer *buffer;
6224 	int cpu;
6225 	int ret = 0;
6226 
6227 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6228 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6229 		return 0;
6230 	}
6231 
6232 	pr_info("Running ring buffer tests...\n");
6233 
6234 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6235 	if (WARN_ON(!buffer))
6236 		return 0;
6237 
6238 	/* Disable buffer so that threads can't write to it yet */
6239 	ring_buffer_record_off(buffer);
6240 
6241 	for_each_online_cpu(cpu) {
6242 		rb_data[cpu].buffer = buffer;
6243 		rb_data[cpu].cpu = cpu;
6244 		rb_data[cpu].cnt = cpu;
6245 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6246 						     cpu, "rbtester/%u");
6247 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6248 			pr_cont("FAILED\n");
6249 			ret = PTR_ERR(rb_threads[cpu]);
6250 			goto out_free;
6251 		}
6252 	}
6253 
6254 	/* Now create the rb hammer! */
6255 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6256 	if (WARN_ON(IS_ERR(rb_hammer))) {
6257 		pr_cont("FAILED\n");
6258 		ret = PTR_ERR(rb_hammer);
6259 		goto out_free;
6260 	}
6261 
6262 	ring_buffer_record_on(buffer);
6263 	/*
6264 	 * Show buffer is enabled before setting rb_test_started.
6265 	 * Yes there's a small race window where events could be
6266 	 * dropped and the thread wont catch it. But when a ring
6267 	 * buffer gets enabled, there will always be some kind of
6268 	 * delay before other CPUs see it. Thus, we don't care about
6269 	 * those dropped events. We care about events dropped after
6270 	 * the threads see that the buffer is active.
6271 	 */
6272 	smp_wmb();
6273 	rb_test_started = true;
6274 
6275 	set_current_state(TASK_INTERRUPTIBLE);
6276 	/* Just run for 10 seconds */;
6277 	schedule_timeout(10 * HZ);
6278 
6279 	kthread_stop(rb_hammer);
6280 
6281  out_free:
6282 	for_each_online_cpu(cpu) {
6283 		if (!rb_threads[cpu])
6284 			break;
6285 		kthread_stop(rb_threads[cpu]);
6286 	}
6287 	if (ret) {
6288 		ring_buffer_free(buffer);
6289 		return ret;
6290 	}
6291 
6292 	/* Report! */
6293 	pr_info("finished\n");
6294 	for_each_online_cpu(cpu) {
6295 		struct ring_buffer_event *event;
6296 		struct rb_test_data *data = &rb_data[cpu];
6297 		struct rb_item *item;
6298 		unsigned long total_events;
6299 		unsigned long total_dropped;
6300 		unsigned long total_written;
6301 		unsigned long total_alloc;
6302 		unsigned long total_read = 0;
6303 		unsigned long total_size = 0;
6304 		unsigned long total_len = 0;
6305 		unsigned long total_lost = 0;
6306 		unsigned long lost;
6307 		int big_event_size;
6308 		int small_event_size;
6309 
6310 		ret = -1;
6311 
6312 		total_events = data->events + data->events_nested;
6313 		total_written = data->bytes_written + data->bytes_written_nested;
6314 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6315 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6316 
6317 		big_event_size = data->max_size + data->max_size_nested;
6318 		small_event_size = data->min_size + data->min_size_nested;
6319 
6320 		pr_info("CPU %d:\n", cpu);
6321 		pr_info("              events:    %ld\n", total_events);
6322 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6323 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6324 		pr_info("       written bytes:    %ld\n", total_written);
6325 		pr_info("       biggest event:    %d\n", big_event_size);
6326 		pr_info("      smallest event:    %d\n", small_event_size);
6327 
6328 		if (RB_WARN_ON(buffer, total_dropped))
6329 			break;
6330 
6331 		ret = 0;
6332 
6333 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6334 			total_lost += lost;
6335 			item = ring_buffer_event_data(event);
6336 			total_len += ring_buffer_event_length(event);
6337 			total_size += item->size + sizeof(struct rb_item);
6338 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6339 				pr_info("FAILED!\n");
6340 				pr_info("buffer had: %.*s\n", item->size, item->str);
6341 				pr_info("expected:   %.*s\n", item->size, rb_string);
6342 				RB_WARN_ON(buffer, 1);
6343 				ret = -1;
6344 				break;
6345 			}
6346 			total_read++;
6347 		}
6348 		if (ret)
6349 			break;
6350 
6351 		ret = -1;
6352 
6353 		pr_info("         read events:   %ld\n", total_read);
6354 		pr_info("         lost events:   %ld\n", total_lost);
6355 		pr_info("        total events:   %ld\n", total_lost + total_read);
6356 		pr_info("  recorded len bytes:   %ld\n", total_len);
6357 		pr_info(" recorded size bytes:   %ld\n", total_size);
6358 		if (total_lost) {
6359 			pr_info(" With dropped events, record len and size may not match\n"
6360 				" alloced and written from above\n");
6361 		} else {
6362 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6363 				       total_size != total_written))
6364 				break;
6365 		}
6366 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6367 			break;
6368 
6369 		ret = 0;
6370 	}
6371 	if (!ret)
6372 		pr_info("Ring buffer PASSED!\n");
6373 
6374 	ring_buffer_free(buffer);
6375 	return 0;
6376 }
6377 
6378 late_initcall(test_ringbuffer);
6379 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6380