1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local64.h> 31 #include <asm/local.h> 32 33 /* 34 * The "absolute" timestamp in the buffer is only 59 bits. 35 * If a clock has the 5 MSBs set, it needs to be saved and 36 * reinserted. 37 */ 38 #define TS_MSB (0xf8ULL << 56) 39 #define ABS_TS_MASK (~TS_MSB) 40 41 static void update_pages_handler(struct work_struct *work); 42 43 /* 44 * The ring buffer header is special. We must manually up keep it. 45 */ 46 int ring_buffer_print_entry_header(struct trace_seq *s) 47 { 48 trace_seq_puts(s, "# compressed entry header\n"); 49 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 50 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 51 trace_seq_puts(s, "\tarray : 32 bits\n"); 52 trace_seq_putc(s, '\n'); 53 trace_seq_printf(s, "\tpadding : type == %d\n", 54 RINGBUF_TYPE_PADDING); 55 trace_seq_printf(s, "\ttime_extend : type == %d\n", 56 RINGBUF_TYPE_TIME_EXTEND); 57 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 58 RINGBUF_TYPE_TIME_STAMP); 59 trace_seq_printf(s, "\tdata max type_len == %d\n", 60 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 61 62 return !trace_seq_has_overflowed(s); 63 } 64 65 /* 66 * The ring buffer is made up of a list of pages. A separate list of pages is 67 * allocated for each CPU. A writer may only write to a buffer that is 68 * associated with the CPU it is currently executing on. A reader may read 69 * from any per cpu buffer. 70 * 71 * The reader is special. For each per cpu buffer, the reader has its own 72 * reader page. When a reader has read the entire reader page, this reader 73 * page is swapped with another page in the ring buffer. 74 * 75 * Now, as long as the writer is off the reader page, the reader can do what 76 * ever it wants with that page. The writer will never write to that page 77 * again (as long as it is out of the ring buffer). 78 * 79 * Here's some silly ASCII art. 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page | 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * | |-->| |-->| | 97 * +---+ +---+ +---+ 98 * ^ | 99 * | | 100 * +---------------+ 101 * 102 * 103 * +------+ 104 * |reader| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | |-->| |-->| | 108 * | +---+ +---+ +---+ 109 * | | 110 * | | 111 * +------------------------------+ 112 * 113 * 114 * +------+ 115 * |buffer| RING BUFFER 116 * |page |------------------v 117 * +------+ +---+ +---+ +---+ 118 * ^ | | | |-->| | 119 * | New +---+ +---+ +---+ 120 * | Reader------^ | 121 * | page | 122 * +------------------------------+ 123 * 124 * 125 * After we make this swap, the reader can hand this page off to the splice 126 * code and be done with it. It can even allocate a new page if it needs to 127 * and swap that into the ring buffer. 128 * 129 * We will be using cmpxchg soon to make all this lockless. 130 * 131 */ 132 133 /* Used for individual buffers (after the counter) */ 134 #define RB_BUFFER_OFF (1 << 20) 135 136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 137 138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 139 #define RB_ALIGNMENT 4U 140 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 141 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 142 143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 144 # define RB_FORCE_8BYTE_ALIGNMENT 0 145 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 146 #else 147 # define RB_FORCE_8BYTE_ALIGNMENT 1 148 # define RB_ARCH_ALIGNMENT 8U 149 #endif 150 151 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 152 153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 155 156 enum { 157 RB_LEN_TIME_EXTEND = 8, 158 RB_LEN_TIME_STAMP = 8, 159 }; 160 161 #define skip_time_extend(event) \ 162 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 163 164 #define extended_time(event) \ 165 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 166 167 static inline bool rb_null_event(struct ring_buffer_event *event) 168 { 169 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 170 } 171 172 static void rb_event_set_padding(struct ring_buffer_event *event) 173 { 174 /* padding has a NULL time_delta */ 175 event->type_len = RINGBUF_TYPE_PADDING; 176 event->time_delta = 0; 177 } 178 179 static unsigned 180 rb_event_data_length(struct ring_buffer_event *event) 181 { 182 unsigned length; 183 184 if (event->type_len) 185 length = event->type_len * RB_ALIGNMENT; 186 else 187 length = event->array[0]; 188 return length + RB_EVNT_HDR_SIZE; 189 } 190 191 /* 192 * Return the length of the given event. Will return 193 * the length of the time extend if the event is a 194 * time extend. 195 */ 196 static inline unsigned 197 rb_event_length(struct ring_buffer_event *event) 198 { 199 switch (event->type_len) { 200 case RINGBUF_TYPE_PADDING: 201 if (rb_null_event(event)) 202 /* undefined */ 203 return -1; 204 return event->array[0] + RB_EVNT_HDR_SIZE; 205 206 case RINGBUF_TYPE_TIME_EXTEND: 207 return RB_LEN_TIME_EXTEND; 208 209 case RINGBUF_TYPE_TIME_STAMP: 210 return RB_LEN_TIME_STAMP; 211 212 case RINGBUF_TYPE_DATA: 213 return rb_event_data_length(event); 214 default: 215 WARN_ON_ONCE(1); 216 } 217 /* not hit */ 218 return 0; 219 } 220 221 /* 222 * Return total length of time extend and data, 223 * or just the event length for all other events. 224 */ 225 static inline unsigned 226 rb_event_ts_length(struct ring_buffer_event *event) 227 { 228 unsigned len = 0; 229 230 if (extended_time(event)) { 231 /* time extends include the data event after it */ 232 len = RB_LEN_TIME_EXTEND; 233 event = skip_time_extend(event); 234 } 235 return len + rb_event_length(event); 236 } 237 238 /** 239 * ring_buffer_event_length - return the length of the event 240 * @event: the event to get the length of 241 * 242 * Returns the size of the data load of a data event. 243 * If the event is something other than a data event, it 244 * returns the size of the event itself. With the exception 245 * of a TIME EXTEND, where it still returns the size of the 246 * data load of the data event after it. 247 */ 248 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 249 { 250 unsigned length; 251 252 if (extended_time(event)) 253 event = skip_time_extend(event); 254 255 length = rb_event_length(event); 256 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 257 return length; 258 length -= RB_EVNT_HDR_SIZE; 259 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 260 length -= sizeof(event->array[0]); 261 return length; 262 } 263 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 264 265 /* inline for ring buffer fast paths */ 266 static __always_inline void * 267 rb_event_data(struct ring_buffer_event *event) 268 { 269 if (extended_time(event)) 270 event = skip_time_extend(event); 271 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 272 /* If length is in len field, then array[0] has the data */ 273 if (event->type_len) 274 return (void *)&event->array[0]; 275 /* Otherwise length is in array[0] and array[1] has the data */ 276 return (void *)&event->array[1]; 277 } 278 279 /** 280 * ring_buffer_event_data - return the data of the event 281 * @event: the event to get the data from 282 */ 283 void *ring_buffer_event_data(struct ring_buffer_event *event) 284 { 285 return rb_event_data(event); 286 } 287 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 288 289 #define for_each_buffer_cpu(buffer, cpu) \ 290 for_each_cpu(cpu, buffer->cpumask) 291 292 #define for_each_online_buffer_cpu(buffer, cpu) \ 293 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 294 295 #define TS_SHIFT 27 296 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 297 #define TS_DELTA_TEST (~TS_MASK) 298 299 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 300 { 301 u64 ts; 302 303 ts = event->array[0]; 304 ts <<= TS_SHIFT; 305 ts += event->time_delta; 306 307 return ts; 308 } 309 310 /* Flag when events were overwritten */ 311 #define RB_MISSED_EVENTS (1 << 31) 312 /* Missed count stored at end */ 313 #define RB_MISSED_STORED (1 << 30) 314 315 struct buffer_data_page { 316 u64 time_stamp; /* page time stamp */ 317 local_t commit; /* write committed index */ 318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 319 }; 320 321 struct buffer_data_read_page { 322 unsigned order; /* order of the page */ 323 struct buffer_data_page *data; /* actual data, stored in this page */ 324 }; 325 326 /* 327 * Note, the buffer_page list must be first. The buffer pages 328 * are allocated in cache lines, which means that each buffer 329 * page will be at the beginning of a cache line, and thus 330 * the least significant bits will be zero. We use this to 331 * add flags in the list struct pointers, to make the ring buffer 332 * lockless. 333 */ 334 struct buffer_page { 335 struct list_head list; /* list of buffer pages */ 336 local_t write; /* index for next write */ 337 unsigned read; /* index for next read */ 338 local_t entries; /* entries on this page */ 339 unsigned long real_end; /* real end of data */ 340 unsigned order; /* order of the page */ 341 struct buffer_data_page *page; /* Actual data page */ 342 }; 343 344 /* 345 * The buffer page counters, write and entries, must be reset 346 * atomically when crossing page boundaries. To synchronize this 347 * update, two counters are inserted into the number. One is 348 * the actual counter for the write position or count on the page. 349 * 350 * The other is a counter of updaters. Before an update happens 351 * the update partition of the counter is incremented. This will 352 * allow the updater to update the counter atomically. 353 * 354 * The counter is 20 bits, and the state data is 12. 355 */ 356 #define RB_WRITE_MASK 0xfffff 357 #define RB_WRITE_INTCNT (1 << 20) 358 359 static void rb_init_page(struct buffer_data_page *bpage) 360 { 361 local_set(&bpage->commit, 0); 362 } 363 364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 365 { 366 return local_read(&bpage->page->commit); 367 } 368 369 static void free_buffer_page(struct buffer_page *bpage) 370 { 371 free_pages((unsigned long)bpage->page, bpage->order); 372 kfree(bpage); 373 } 374 375 /* 376 * We need to fit the time_stamp delta into 27 bits. 377 */ 378 static inline bool test_time_stamp(u64 delta) 379 { 380 return !!(delta & TS_DELTA_TEST); 381 } 382 383 struct rb_irq_work { 384 struct irq_work work; 385 wait_queue_head_t waiters; 386 wait_queue_head_t full_waiters; 387 bool waiters_pending; 388 bool full_waiters_pending; 389 bool wakeup_full; 390 }; 391 392 /* 393 * Structure to hold event state and handle nested events. 394 */ 395 struct rb_event_info { 396 u64 ts; 397 u64 delta; 398 u64 before; 399 u64 after; 400 unsigned long length; 401 struct buffer_page *tail_page; 402 int add_timestamp; 403 }; 404 405 /* 406 * Used for the add_timestamp 407 * NONE 408 * EXTEND - wants a time extend 409 * ABSOLUTE - the buffer requests all events to have absolute time stamps 410 * FORCE - force a full time stamp. 411 */ 412 enum { 413 RB_ADD_STAMP_NONE = 0, 414 RB_ADD_STAMP_EXTEND = BIT(1), 415 RB_ADD_STAMP_ABSOLUTE = BIT(2), 416 RB_ADD_STAMP_FORCE = BIT(3) 417 }; 418 /* 419 * Used for which event context the event is in. 420 * TRANSITION = 0 421 * NMI = 1 422 * IRQ = 2 423 * SOFTIRQ = 3 424 * NORMAL = 4 425 * 426 * See trace_recursive_lock() comment below for more details. 427 */ 428 enum { 429 RB_CTX_TRANSITION, 430 RB_CTX_NMI, 431 RB_CTX_IRQ, 432 RB_CTX_SOFTIRQ, 433 RB_CTX_NORMAL, 434 RB_CTX_MAX 435 }; 436 437 struct rb_time_struct { 438 local64_t time; 439 }; 440 typedef struct rb_time_struct rb_time_t; 441 442 #define MAX_NEST 5 443 444 /* 445 * head_page == tail_page && head == tail then buffer is empty. 446 */ 447 struct ring_buffer_per_cpu { 448 int cpu; 449 atomic_t record_disabled; 450 atomic_t resize_disabled; 451 struct trace_buffer *buffer; 452 raw_spinlock_t reader_lock; /* serialize readers */ 453 arch_spinlock_t lock; 454 struct lock_class_key lock_key; 455 struct buffer_data_page *free_page; 456 unsigned long nr_pages; 457 unsigned int current_context; 458 struct list_head *pages; 459 struct buffer_page *head_page; /* read from head */ 460 struct buffer_page *tail_page; /* write to tail */ 461 struct buffer_page *commit_page; /* committed pages */ 462 struct buffer_page *reader_page; 463 unsigned long lost_events; 464 unsigned long last_overrun; 465 unsigned long nest; 466 local_t entries_bytes; 467 local_t entries; 468 local_t overrun; 469 local_t commit_overrun; 470 local_t dropped_events; 471 local_t committing; 472 local_t commits; 473 local_t pages_touched; 474 local_t pages_lost; 475 local_t pages_read; 476 long last_pages_touch; 477 size_t shortest_full; 478 unsigned long read; 479 unsigned long read_bytes; 480 rb_time_t write_stamp; 481 rb_time_t before_stamp; 482 u64 event_stamp[MAX_NEST]; 483 u64 read_stamp; 484 /* pages removed since last reset */ 485 unsigned long pages_removed; 486 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 487 long nr_pages_to_update; 488 struct list_head new_pages; /* new pages to add */ 489 struct work_struct update_pages_work; 490 struct completion update_done; 491 492 struct rb_irq_work irq_work; 493 }; 494 495 struct trace_buffer { 496 unsigned flags; 497 int cpus; 498 atomic_t record_disabled; 499 atomic_t resizing; 500 cpumask_var_t cpumask; 501 502 struct lock_class_key *reader_lock_key; 503 504 struct mutex mutex; 505 506 struct ring_buffer_per_cpu **buffers; 507 508 struct hlist_node node; 509 u64 (*clock)(void); 510 511 struct rb_irq_work irq_work; 512 bool time_stamp_abs; 513 514 unsigned int subbuf_size; 515 unsigned int subbuf_order; 516 unsigned int max_data_size; 517 }; 518 519 struct ring_buffer_iter { 520 struct ring_buffer_per_cpu *cpu_buffer; 521 unsigned long head; 522 unsigned long next_event; 523 struct buffer_page *head_page; 524 struct buffer_page *cache_reader_page; 525 unsigned long cache_read; 526 unsigned long cache_pages_removed; 527 u64 read_stamp; 528 u64 page_stamp; 529 struct ring_buffer_event *event; 530 size_t event_size; 531 int missed_events; 532 }; 533 534 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 535 { 536 struct buffer_data_page field; 537 538 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 539 "offset:0;\tsize:%u;\tsigned:%u;\n", 540 (unsigned int)sizeof(field.time_stamp), 541 (unsigned int)is_signed_type(u64)); 542 543 trace_seq_printf(s, "\tfield: local_t commit;\t" 544 "offset:%u;\tsize:%u;\tsigned:%u;\n", 545 (unsigned int)offsetof(typeof(field), commit), 546 (unsigned int)sizeof(field.commit), 547 (unsigned int)is_signed_type(long)); 548 549 trace_seq_printf(s, "\tfield: int overwrite;\t" 550 "offset:%u;\tsize:%u;\tsigned:%u;\n", 551 (unsigned int)offsetof(typeof(field), commit), 552 1, 553 (unsigned int)is_signed_type(long)); 554 555 trace_seq_printf(s, "\tfield: char data;\t" 556 "offset:%u;\tsize:%u;\tsigned:%u;\n", 557 (unsigned int)offsetof(typeof(field), data), 558 (unsigned int)buffer->subbuf_size, 559 (unsigned int)is_signed_type(char)); 560 561 return !trace_seq_has_overflowed(s); 562 } 563 564 static inline void rb_time_read(rb_time_t *t, u64 *ret) 565 { 566 *ret = local64_read(&t->time); 567 } 568 static void rb_time_set(rb_time_t *t, u64 val) 569 { 570 local64_set(&t->time, val); 571 } 572 573 /* 574 * Enable this to make sure that the event passed to 575 * ring_buffer_event_time_stamp() is not committed and also 576 * is on the buffer that it passed in. 577 */ 578 //#define RB_VERIFY_EVENT 579 #ifdef RB_VERIFY_EVENT 580 static struct list_head *rb_list_head(struct list_head *list); 581 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 582 void *event) 583 { 584 struct buffer_page *page = cpu_buffer->commit_page; 585 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 586 struct list_head *next; 587 long commit, write; 588 unsigned long addr = (unsigned long)event; 589 bool done = false; 590 int stop = 0; 591 592 /* Make sure the event exists and is not committed yet */ 593 do { 594 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 595 done = true; 596 commit = local_read(&page->page->commit); 597 write = local_read(&page->write); 598 if (addr >= (unsigned long)&page->page->data[commit] && 599 addr < (unsigned long)&page->page->data[write]) 600 return; 601 602 next = rb_list_head(page->list.next); 603 page = list_entry(next, struct buffer_page, list); 604 } while (!done); 605 WARN_ON_ONCE(1); 606 } 607 #else 608 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 609 void *event) 610 { 611 } 612 #endif 613 614 /* 615 * The absolute time stamp drops the 5 MSBs and some clocks may 616 * require them. The rb_fix_abs_ts() will take a previous full 617 * time stamp, and add the 5 MSB of that time stamp on to the 618 * saved absolute time stamp. Then they are compared in case of 619 * the unlikely event that the latest time stamp incremented 620 * the 5 MSB. 621 */ 622 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 623 { 624 if (save_ts & TS_MSB) { 625 abs |= save_ts & TS_MSB; 626 /* Check for overflow */ 627 if (unlikely(abs < save_ts)) 628 abs += 1ULL << 59; 629 } 630 return abs; 631 } 632 633 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 634 635 /** 636 * ring_buffer_event_time_stamp - return the event's current time stamp 637 * @buffer: The buffer that the event is on 638 * @event: the event to get the time stamp of 639 * 640 * Note, this must be called after @event is reserved, and before it is 641 * committed to the ring buffer. And must be called from the same 642 * context where the event was reserved (normal, softirq, irq, etc). 643 * 644 * Returns the time stamp associated with the current event. 645 * If the event has an extended time stamp, then that is used as 646 * the time stamp to return. 647 * In the highly unlikely case that the event was nested more than 648 * the max nesting, then the write_stamp of the buffer is returned, 649 * otherwise current time is returned, but that really neither of 650 * the last two cases should ever happen. 651 */ 652 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 653 struct ring_buffer_event *event) 654 { 655 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 656 unsigned int nest; 657 u64 ts; 658 659 /* If the event includes an absolute time, then just use that */ 660 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 661 ts = rb_event_time_stamp(event); 662 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 663 } 664 665 nest = local_read(&cpu_buffer->committing); 666 verify_event(cpu_buffer, event); 667 if (WARN_ON_ONCE(!nest)) 668 goto fail; 669 670 /* Read the current saved nesting level time stamp */ 671 if (likely(--nest < MAX_NEST)) 672 return cpu_buffer->event_stamp[nest]; 673 674 /* Shouldn't happen, warn if it does */ 675 WARN_ONCE(1, "nest (%d) greater than max", nest); 676 677 fail: 678 rb_time_read(&cpu_buffer->write_stamp, &ts); 679 680 return ts; 681 } 682 683 /** 684 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 685 * @buffer: The ring_buffer to get the number of pages from 686 * @cpu: The cpu of the ring_buffer to get the number of pages from 687 * 688 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 689 */ 690 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 691 { 692 return buffer->buffers[cpu]->nr_pages; 693 } 694 695 /** 696 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 697 * @buffer: The ring_buffer to get the number of pages from 698 * @cpu: The cpu of the ring_buffer to get the number of pages from 699 * 700 * Returns the number of pages that have content in the ring buffer. 701 */ 702 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 703 { 704 size_t read; 705 size_t lost; 706 size_t cnt; 707 708 read = local_read(&buffer->buffers[cpu]->pages_read); 709 lost = local_read(&buffer->buffers[cpu]->pages_lost); 710 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 711 712 if (WARN_ON_ONCE(cnt < lost)) 713 return 0; 714 715 cnt -= lost; 716 717 /* The reader can read an empty page, but not more than that */ 718 if (cnt < read) { 719 WARN_ON_ONCE(read > cnt + 1); 720 return 0; 721 } 722 723 return cnt - read; 724 } 725 726 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 727 { 728 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 729 size_t nr_pages; 730 size_t dirty; 731 732 nr_pages = cpu_buffer->nr_pages; 733 if (!nr_pages || !full) 734 return true; 735 736 /* 737 * Add one as dirty will never equal nr_pages, as the sub-buffer 738 * that the writer is on is not counted as dirty. 739 * This is needed if "buffer_percent" is set to 100. 740 */ 741 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 742 743 return (dirty * 100) >= (full * nr_pages); 744 } 745 746 /* 747 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 748 * 749 * Schedules a delayed work to wake up any task that is blocked on the 750 * ring buffer waiters queue. 751 */ 752 static void rb_wake_up_waiters(struct irq_work *work) 753 { 754 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 755 756 wake_up_all(&rbwork->waiters); 757 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 758 /* Only cpu_buffer sets the above flags */ 759 struct ring_buffer_per_cpu *cpu_buffer = 760 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 761 762 /* Called from interrupt context */ 763 raw_spin_lock(&cpu_buffer->reader_lock); 764 rbwork->wakeup_full = false; 765 rbwork->full_waiters_pending = false; 766 767 /* Waking up all waiters, they will reset the shortest full */ 768 cpu_buffer->shortest_full = 0; 769 raw_spin_unlock(&cpu_buffer->reader_lock); 770 771 wake_up_all(&rbwork->full_waiters); 772 } 773 } 774 775 /** 776 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 777 * @buffer: The ring buffer to wake waiters on 778 * @cpu: The CPU buffer to wake waiters on 779 * 780 * In the case of a file that represents a ring buffer is closing, 781 * it is prudent to wake up any waiters that are on this. 782 */ 783 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 784 { 785 struct ring_buffer_per_cpu *cpu_buffer; 786 struct rb_irq_work *rbwork; 787 788 if (!buffer) 789 return; 790 791 if (cpu == RING_BUFFER_ALL_CPUS) { 792 793 /* Wake up individual ones too. One level recursion */ 794 for_each_buffer_cpu(buffer, cpu) 795 ring_buffer_wake_waiters(buffer, cpu); 796 797 rbwork = &buffer->irq_work; 798 } else { 799 if (WARN_ON_ONCE(!buffer->buffers)) 800 return; 801 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 802 return; 803 804 cpu_buffer = buffer->buffers[cpu]; 805 /* The CPU buffer may not have been initialized yet */ 806 if (!cpu_buffer) 807 return; 808 rbwork = &cpu_buffer->irq_work; 809 } 810 811 /* This can be called in any context */ 812 irq_work_queue(&rbwork->work); 813 } 814 815 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 816 { 817 struct ring_buffer_per_cpu *cpu_buffer; 818 bool ret = false; 819 820 /* Reads of all CPUs always waits for any data */ 821 if (cpu == RING_BUFFER_ALL_CPUS) 822 return !ring_buffer_empty(buffer); 823 824 cpu_buffer = buffer->buffers[cpu]; 825 826 if (!ring_buffer_empty_cpu(buffer, cpu)) { 827 unsigned long flags; 828 bool pagebusy; 829 830 if (!full) 831 return true; 832 833 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 834 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 835 ret = !pagebusy && full_hit(buffer, cpu, full); 836 837 if (!cpu_buffer->shortest_full || 838 cpu_buffer->shortest_full > full) 839 cpu_buffer->shortest_full = full; 840 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 841 } 842 return ret; 843 } 844 845 /** 846 * ring_buffer_wait - wait for input to the ring buffer 847 * @buffer: buffer to wait on 848 * @cpu: the cpu buffer to wait on 849 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 850 * 851 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 852 * as data is added to any of the @buffer's cpu buffers. Otherwise 853 * it will wait for data to be added to a specific cpu buffer. 854 */ 855 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 856 { 857 struct ring_buffer_per_cpu *cpu_buffer; 858 DEFINE_WAIT(wait); 859 struct rb_irq_work *work; 860 int ret = 0; 861 862 /* 863 * Depending on what the caller is waiting for, either any 864 * data in any cpu buffer, or a specific buffer, put the 865 * caller on the appropriate wait queue. 866 */ 867 if (cpu == RING_BUFFER_ALL_CPUS) { 868 work = &buffer->irq_work; 869 /* Full only makes sense on per cpu reads */ 870 full = 0; 871 } else { 872 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 873 return -ENODEV; 874 cpu_buffer = buffer->buffers[cpu]; 875 work = &cpu_buffer->irq_work; 876 } 877 878 if (full) 879 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 880 else 881 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 882 883 /* 884 * The events can happen in critical sections where 885 * checking a work queue can cause deadlocks. 886 * After adding a task to the queue, this flag is set 887 * only to notify events to try to wake up the queue 888 * using irq_work. 889 * 890 * We don't clear it even if the buffer is no longer 891 * empty. The flag only causes the next event to run 892 * irq_work to do the work queue wake up. The worse 893 * that can happen if we race with !trace_empty() is that 894 * an event will cause an irq_work to try to wake up 895 * an empty queue. 896 * 897 * There's no reason to protect this flag either, as 898 * the work queue and irq_work logic will do the necessary 899 * synchronization for the wake ups. The only thing 900 * that is necessary is that the wake up happens after 901 * a task has been queued. It's OK for spurious wake ups. 902 */ 903 if (full) 904 work->full_waiters_pending = true; 905 else 906 work->waiters_pending = true; 907 908 if (rb_watermark_hit(buffer, cpu, full)) 909 goto out; 910 911 if (signal_pending(current)) { 912 ret = -EINTR; 913 goto out; 914 } 915 916 schedule(); 917 out: 918 if (full) 919 finish_wait(&work->full_waiters, &wait); 920 else 921 finish_wait(&work->waiters, &wait); 922 923 if (!ret && !rb_watermark_hit(buffer, cpu, full) && signal_pending(current)) 924 ret = -EINTR; 925 926 return ret; 927 } 928 929 /** 930 * ring_buffer_poll_wait - poll on buffer input 931 * @buffer: buffer to wait on 932 * @cpu: the cpu buffer to wait on 933 * @filp: the file descriptor 934 * @poll_table: The poll descriptor 935 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 936 * 937 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 938 * as data is added to any of the @buffer's cpu buffers. Otherwise 939 * it will wait for data to be added to a specific cpu buffer. 940 * 941 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 942 * zero otherwise. 943 */ 944 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 945 struct file *filp, poll_table *poll_table, int full) 946 { 947 struct ring_buffer_per_cpu *cpu_buffer; 948 struct rb_irq_work *rbwork; 949 950 if (cpu == RING_BUFFER_ALL_CPUS) { 951 rbwork = &buffer->irq_work; 952 full = 0; 953 } else { 954 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 955 return EPOLLERR; 956 957 cpu_buffer = buffer->buffers[cpu]; 958 rbwork = &cpu_buffer->irq_work; 959 } 960 961 if (full) { 962 unsigned long flags; 963 964 poll_wait(filp, &rbwork->full_waiters, poll_table); 965 966 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 967 rbwork->full_waiters_pending = true; 968 if (!cpu_buffer->shortest_full || 969 cpu_buffer->shortest_full > full) 970 cpu_buffer->shortest_full = full; 971 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 972 } else { 973 poll_wait(filp, &rbwork->waiters, poll_table); 974 rbwork->waiters_pending = true; 975 } 976 977 /* 978 * There's a tight race between setting the waiters_pending and 979 * checking if the ring buffer is empty. Once the waiters_pending bit 980 * is set, the next event will wake the task up, but we can get stuck 981 * if there's only a single event in. 982 * 983 * FIXME: Ideally, we need a memory barrier on the writer side as well, 984 * but adding a memory barrier to all events will cause too much of a 985 * performance hit in the fast path. We only need a memory barrier when 986 * the buffer goes from empty to having content. But as this race is 987 * extremely small, and it's not a problem if another event comes in, we 988 * will fix it later. 989 */ 990 smp_mb(); 991 992 if (full) 993 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0; 994 995 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 996 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 997 return EPOLLIN | EPOLLRDNORM; 998 return 0; 999 } 1000 1001 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1002 #define RB_WARN_ON(b, cond) \ 1003 ({ \ 1004 int _____ret = unlikely(cond); \ 1005 if (_____ret) { \ 1006 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1007 struct ring_buffer_per_cpu *__b = \ 1008 (void *)b; \ 1009 atomic_inc(&__b->buffer->record_disabled); \ 1010 } else \ 1011 atomic_inc(&b->record_disabled); \ 1012 WARN_ON(1); \ 1013 } \ 1014 _____ret; \ 1015 }) 1016 1017 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1018 #define DEBUG_SHIFT 0 1019 1020 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1021 { 1022 u64 ts; 1023 1024 /* Skip retpolines :-( */ 1025 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1026 ts = trace_clock_local(); 1027 else 1028 ts = buffer->clock(); 1029 1030 /* shift to debug/test normalization and TIME_EXTENTS */ 1031 return ts << DEBUG_SHIFT; 1032 } 1033 1034 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1035 { 1036 u64 time; 1037 1038 preempt_disable_notrace(); 1039 time = rb_time_stamp(buffer); 1040 preempt_enable_notrace(); 1041 1042 return time; 1043 } 1044 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1045 1046 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1047 int cpu, u64 *ts) 1048 { 1049 /* Just stupid testing the normalize function and deltas */ 1050 *ts >>= DEBUG_SHIFT; 1051 } 1052 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1053 1054 /* 1055 * Making the ring buffer lockless makes things tricky. 1056 * Although writes only happen on the CPU that they are on, 1057 * and they only need to worry about interrupts. Reads can 1058 * happen on any CPU. 1059 * 1060 * The reader page is always off the ring buffer, but when the 1061 * reader finishes with a page, it needs to swap its page with 1062 * a new one from the buffer. The reader needs to take from 1063 * the head (writes go to the tail). But if a writer is in overwrite 1064 * mode and wraps, it must push the head page forward. 1065 * 1066 * Here lies the problem. 1067 * 1068 * The reader must be careful to replace only the head page, and 1069 * not another one. As described at the top of the file in the 1070 * ASCII art, the reader sets its old page to point to the next 1071 * page after head. It then sets the page after head to point to 1072 * the old reader page. But if the writer moves the head page 1073 * during this operation, the reader could end up with the tail. 1074 * 1075 * We use cmpxchg to help prevent this race. We also do something 1076 * special with the page before head. We set the LSB to 1. 1077 * 1078 * When the writer must push the page forward, it will clear the 1079 * bit that points to the head page, move the head, and then set 1080 * the bit that points to the new head page. 1081 * 1082 * We also don't want an interrupt coming in and moving the head 1083 * page on another writer. Thus we use the second LSB to catch 1084 * that too. Thus: 1085 * 1086 * head->list->prev->next bit 1 bit 0 1087 * ------- ------- 1088 * Normal page 0 0 1089 * Points to head page 0 1 1090 * New head page 1 0 1091 * 1092 * Note we can not trust the prev pointer of the head page, because: 1093 * 1094 * +----+ +-----+ +-----+ 1095 * | |------>| T |---X--->| N | 1096 * | |<------| | | | 1097 * +----+ +-----+ +-----+ 1098 * ^ ^ | 1099 * | +-----+ | | 1100 * +----------| R |----------+ | 1101 * | |<-----------+ 1102 * +-----+ 1103 * 1104 * Key: ---X--> HEAD flag set in pointer 1105 * T Tail page 1106 * R Reader page 1107 * N Next page 1108 * 1109 * (see __rb_reserve_next() to see where this happens) 1110 * 1111 * What the above shows is that the reader just swapped out 1112 * the reader page with a page in the buffer, but before it 1113 * could make the new header point back to the new page added 1114 * it was preempted by a writer. The writer moved forward onto 1115 * the new page added by the reader and is about to move forward 1116 * again. 1117 * 1118 * You can see, it is legitimate for the previous pointer of 1119 * the head (or any page) not to point back to itself. But only 1120 * temporarily. 1121 */ 1122 1123 #define RB_PAGE_NORMAL 0UL 1124 #define RB_PAGE_HEAD 1UL 1125 #define RB_PAGE_UPDATE 2UL 1126 1127 1128 #define RB_FLAG_MASK 3UL 1129 1130 /* PAGE_MOVED is not part of the mask */ 1131 #define RB_PAGE_MOVED 4UL 1132 1133 /* 1134 * rb_list_head - remove any bit 1135 */ 1136 static struct list_head *rb_list_head(struct list_head *list) 1137 { 1138 unsigned long val = (unsigned long)list; 1139 1140 return (struct list_head *)(val & ~RB_FLAG_MASK); 1141 } 1142 1143 /* 1144 * rb_is_head_page - test if the given page is the head page 1145 * 1146 * Because the reader may move the head_page pointer, we can 1147 * not trust what the head page is (it may be pointing to 1148 * the reader page). But if the next page is a header page, 1149 * its flags will be non zero. 1150 */ 1151 static inline int 1152 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1153 { 1154 unsigned long val; 1155 1156 val = (unsigned long)list->next; 1157 1158 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1159 return RB_PAGE_MOVED; 1160 1161 return val & RB_FLAG_MASK; 1162 } 1163 1164 /* 1165 * rb_is_reader_page 1166 * 1167 * The unique thing about the reader page, is that, if the 1168 * writer is ever on it, the previous pointer never points 1169 * back to the reader page. 1170 */ 1171 static bool rb_is_reader_page(struct buffer_page *page) 1172 { 1173 struct list_head *list = page->list.prev; 1174 1175 return rb_list_head(list->next) != &page->list; 1176 } 1177 1178 /* 1179 * rb_set_list_to_head - set a list_head to be pointing to head. 1180 */ 1181 static void rb_set_list_to_head(struct list_head *list) 1182 { 1183 unsigned long *ptr; 1184 1185 ptr = (unsigned long *)&list->next; 1186 *ptr |= RB_PAGE_HEAD; 1187 *ptr &= ~RB_PAGE_UPDATE; 1188 } 1189 1190 /* 1191 * rb_head_page_activate - sets up head page 1192 */ 1193 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1194 { 1195 struct buffer_page *head; 1196 1197 head = cpu_buffer->head_page; 1198 if (!head) 1199 return; 1200 1201 /* 1202 * Set the previous list pointer to have the HEAD flag. 1203 */ 1204 rb_set_list_to_head(head->list.prev); 1205 } 1206 1207 static void rb_list_head_clear(struct list_head *list) 1208 { 1209 unsigned long *ptr = (unsigned long *)&list->next; 1210 1211 *ptr &= ~RB_FLAG_MASK; 1212 } 1213 1214 /* 1215 * rb_head_page_deactivate - clears head page ptr (for free list) 1216 */ 1217 static void 1218 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1219 { 1220 struct list_head *hd; 1221 1222 /* Go through the whole list and clear any pointers found. */ 1223 rb_list_head_clear(cpu_buffer->pages); 1224 1225 list_for_each(hd, cpu_buffer->pages) 1226 rb_list_head_clear(hd); 1227 } 1228 1229 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1230 struct buffer_page *head, 1231 struct buffer_page *prev, 1232 int old_flag, int new_flag) 1233 { 1234 struct list_head *list; 1235 unsigned long val = (unsigned long)&head->list; 1236 unsigned long ret; 1237 1238 list = &prev->list; 1239 1240 val &= ~RB_FLAG_MASK; 1241 1242 ret = cmpxchg((unsigned long *)&list->next, 1243 val | old_flag, val | new_flag); 1244 1245 /* check if the reader took the page */ 1246 if ((ret & ~RB_FLAG_MASK) != val) 1247 return RB_PAGE_MOVED; 1248 1249 return ret & RB_FLAG_MASK; 1250 } 1251 1252 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1253 struct buffer_page *head, 1254 struct buffer_page *prev, 1255 int old_flag) 1256 { 1257 return rb_head_page_set(cpu_buffer, head, prev, 1258 old_flag, RB_PAGE_UPDATE); 1259 } 1260 1261 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1262 struct buffer_page *head, 1263 struct buffer_page *prev, 1264 int old_flag) 1265 { 1266 return rb_head_page_set(cpu_buffer, head, prev, 1267 old_flag, RB_PAGE_HEAD); 1268 } 1269 1270 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1271 struct buffer_page *head, 1272 struct buffer_page *prev, 1273 int old_flag) 1274 { 1275 return rb_head_page_set(cpu_buffer, head, prev, 1276 old_flag, RB_PAGE_NORMAL); 1277 } 1278 1279 static inline void rb_inc_page(struct buffer_page **bpage) 1280 { 1281 struct list_head *p = rb_list_head((*bpage)->list.next); 1282 1283 *bpage = list_entry(p, struct buffer_page, list); 1284 } 1285 1286 static struct buffer_page * 1287 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1288 { 1289 struct buffer_page *head; 1290 struct buffer_page *page; 1291 struct list_head *list; 1292 int i; 1293 1294 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1295 return NULL; 1296 1297 /* sanity check */ 1298 list = cpu_buffer->pages; 1299 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1300 return NULL; 1301 1302 page = head = cpu_buffer->head_page; 1303 /* 1304 * It is possible that the writer moves the header behind 1305 * where we started, and we miss in one loop. 1306 * A second loop should grab the header, but we'll do 1307 * three loops just because I'm paranoid. 1308 */ 1309 for (i = 0; i < 3; i++) { 1310 do { 1311 if (rb_is_head_page(page, page->list.prev)) { 1312 cpu_buffer->head_page = page; 1313 return page; 1314 } 1315 rb_inc_page(&page); 1316 } while (page != head); 1317 } 1318 1319 RB_WARN_ON(cpu_buffer, 1); 1320 1321 return NULL; 1322 } 1323 1324 static bool rb_head_page_replace(struct buffer_page *old, 1325 struct buffer_page *new) 1326 { 1327 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1328 unsigned long val; 1329 1330 val = *ptr & ~RB_FLAG_MASK; 1331 val |= RB_PAGE_HEAD; 1332 1333 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1334 } 1335 1336 /* 1337 * rb_tail_page_update - move the tail page forward 1338 */ 1339 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1340 struct buffer_page *tail_page, 1341 struct buffer_page *next_page) 1342 { 1343 unsigned long old_entries; 1344 unsigned long old_write; 1345 1346 /* 1347 * The tail page now needs to be moved forward. 1348 * 1349 * We need to reset the tail page, but without messing 1350 * with possible erasing of data brought in by interrupts 1351 * that have moved the tail page and are currently on it. 1352 * 1353 * We add a counter to the write field to denote this. 1354 */ 1355 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1356 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1357 1358 local_inc(&cpu_buffer->pages_touched); 1359 /* 1360 * Just make sure we have seen our old_write and synchronize 1361 * with any interrupts that come in. 1362 */ 1363 barrier(); 1364 1365 /* 1366 * If the tail page is still the same as what we think 1367 * it is, then it is up to us to update the tail 1368 * pointer. 1369 */ 1370 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1371 /* Zero the write counter */ 1372 unsigned long val = old_write & ~RB_WRITE_MASK; 1373 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1374 1375 /* 1376 * This will only succeed if an interrupt did 1377 * not come in and change it. In which case, we 1378 * do not want to modify it. 1379 * 1380 * We add (void) to let the compiler know that we do not care 1381 * about the return value of these functions. We use the 1382 * cmpxchg to only update if an interrupt did not already 1383 * do it for us. If the cmpxchg fails, we don't care. 1384 */ 1385 (void)local_cmpxchg(&next_page->write, old_write, val); 1386 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1387 1388 /* 1389 * No need to worry about races with clearing out the commit. 1390 * it only can increment when a commit takes place. But that 1391 * only happens in the outer most nested commit. 1392 */ 1393 local_set(&next_page->page->commit, 0); 1394 1395 /* Again, either we update tail_page or an interrupt does */ 1396 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1397 } 1398 } 1399 1400 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1401 struct buffer_page *bpage) 1402 { 1403 unsigned long val = (unsigned long)bpage; 1404 1405 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1406 } 1407 1408 /** 1409 * rb_check_pages - integrity check of buffer pages 1410 * @cpu_buffer: CPU buffer with pages to test 1411 * 1412 * As a safety measure we check to make sure the data pages have not 1413 * been corrupted. 1414 */ 1415 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1416 { 1417 struct list_head *head = rb_list_head(cpu_buffer->pages); 1418 struct list_head *tmp; 1419 1420 if (RB_WARN_ON(cpu_buffer, 1421 rb_list_head(rb_list_head(head->next)->prev) != head)) 1422 return; 1423 1424 if (RB_WARN_ON(cpu_buffer, 1425 rb_list_head(rb_list_head(head->prev)->next) != head)) 1426 return; 1427 1428 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1429 if (RB_WARN_ON(cpu_buffer, 1430 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1431 return; 1432 1433 if (RB_WARN_ON(cpu_buffer, 1434 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1435 return; 1436 } 1437 } 1438 1439 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1440 long nr_pages, struct list_head *pages) 1441 { 1442 struct buffer_page *bpage, *tmp; 1443 bool user_thread = current->mm != NULL; 1444 gfp_t mflags; 1445 long i; 1446 1447 /* 1448 * Check if the available memory is there first. 1449 * Note, si_mem_available() only gives us a rough estimate of available 1450 * memory. It may not be accurate. But we don't care, we just want 1451 * to prevent doing any allocation when it is obvious that it is 1452 * not going to succeed. 1453 */ 1454 i = si_mem_available(); 1455 if (i < nr_pages) 1456 return -ENOMEM; 1457 1458 /* 1459 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1460 * gracefully without invoking oom-killer and the system is not 1461 * destabilized. 1462 */ 1463 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1464 1465 /* 1466 * If a user thread allocates too much, and si_mem_available() 1467 * reports there's enough memory, even though there is not. 1468 * Make sure the OOM killer kills this thread. This can happen 1469 * even with RETRY_MAYFAIL because another task may be doing 1470 * an allocation after this task has taken all memory. 1471 * This is the task the OOM killer needs to take out during this 1472 * loop, even if it was triggered by an allocation somewhere else. 1473 */ 1474 if (user_thread) 1475 set_current_oom_origin(); 1476 for (i = 0; i < nr_pages; i++) { 1477 struct page *page; 1478 1479 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1480 mflags, cpu_to_node(cpu_buffer->cpu)); 1481 if (!bpage) 1482 goto free_pages; 1483 1484 rb_check_bpage(cpu_buffer, bpage); 1485 1486 list_add(&bpage->list, pages); 1487 1488 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 1489 cpu_buffer->buffer->subbuf_order); 1490 if (!page) 1491 goto free_pages; 1492 bpage->page = page_address(page); 1493 bpage->order = cpu_buffer->buffer->subbuf_order; 1494 rb_init_page(bpage->page); 1495 1496 if (user_thread && fatal_signal_pending(current)) 1497 goto free_pages; 1498 } 1499 if (user_thread) 1500 clear_current_oom_origin(); 1501 1502 return 0; 1503 1504 free_pages: 1505 list_for_each_entry_safe(bpage, tmp, pages, list) { 1506 list_del_init(&bpage->list); 1507 free_buffer_page(bpage); 1508 } 1509 if (user_thread) 1510 clear_current_oom_origin(); 1511 1512 return -ENOMEM; 1513 } 1514 1515 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1516 unsigned long nr_pages) 1517 { 1518 LIST_HEAD(pages); 1519 1520 WARN_ON(!nr_pages); 1521 1522 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1523 return -ENOMEM; 1524 1525 /* 1526 * The ring buffer page list is a circular list that does not 1527 * start and end with a list head. All page list items point to 1528 * other pages. 1529 */ 1530 cpu_buffer->pages = pages.next; 1531 list_del(&pages); 1532 1533 cpu_buffer->nr_pages = nr_pages; 1534 1535 rb_check_pages(cpu_buffer); 1536 1537 return 0; 1538 } 1539 1540 static struct ring_buffer_per_cpu * 1541 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1542 { 1543 struct ring_buffer_per_cpu *cpu_buffer; 1544 struct buffer_page *bpage; 1545 struct page *page; 1546 int ret; 1547 1548 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1549 GFP_KERNEL, cpu_to_node(cpu)); 1550 if (!cpu_buffer) 1551 return NULL; 1552 1553 cpu_buffer->cpu = cpu; 1554 cpu_buffer->buffer = buffer; 1555 raw_spin_lock_init(&cpu_buffer->reader_lock); 1556 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1557 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1558 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1559 init_completion(&cpu_buffer->update_done); 1560 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1561 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1562 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1563 1564 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1565 GFP_KERNEL, cpu_to_node(cpu)); 1566 if (!bpage) 1567 goto fail_free_buffer; 1568 1569 rb_check_bpage(cpu_buffer, bpage); 1570 1571 cpu_buffer->reader_page = bpage; 1572 1573 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order); 1574 if (!page) 1575 goto fail_free_reader; 1576 bpage->page = page_address(page); 1577 rb_init_page(bpage->page); 1578 1579 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1580 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1581 1582 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1583 if (ret < 0) 1584 goto fail_free_reader; 1585 1586 cpu_buffer->head_page 1587 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1588 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1589 1590 rb_head_page_activate(cpu_buffer); 1591 1592 return cpu_buffer; 1593 1594 fail_free_reader: 1595 free_buffer_page(cpu_buffer->reader_page); 1596 1597 fail_free_buffer: 1598 kfree(cpu_buffer); 1599 return NULL; 1600 } 1601 1602 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1603 { 1604 struct list_head *head = cpu_buffer->pages; 1605 struct buffer_page *bpage, *tmp; 1606 1607 irq_work_sync(&cpu_buffer->irq_work.work); 1608 1609 free_buffer_page(cpu_buffer->reader_page); 1610 1611 if (head) { 1612 rb_head_page_deactivate(cpu_buffer); 1613 1614 list_for_each_entry_safe(bpage, tmp, head, list) { 1615 list_del_init(&bpage->list); 1616 free_buffer_page(bpage); 1617 } 1618 bpage = list_entry(head, struct buffer_page, list); 1619 free_buffer_page(bpage); 1620 } 1621 1622 free_page((unsigned long)cpu_buffer->free_page); 1623 1624 kfree(cpu_buffer); 1625 } 1626 1627 /** 1628 * __ring_buffer_alloc - allocate a new ring_buffer 1629 * @size: the size in bytes per cpu that is needed. 1630 * @flags: attributes to set for the ring buffer. 1631 * @key: ring buffer reader_lock_key. 1632 * 1633 * Currently the only flag that is available is the RB_FL_OVERWRITE 1634 * flag. This flag means that the buffer will overwrite old data 1635 * when the buffer wraps. If this flag is not set, the buffer will 1636 * drop data when the tail hits the head. 1637 */ 1638 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1639 struct lock_class_key *key) 1640 { 1641 struct trace_buffer *buffer; 1642 long nr_pages; 1643 int bsize; 1644 int cpu; 1645 int ret; 1646 1647 /* keep it in its own cache line */ 1648 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1649 GFP_KERNEL); 1650 if (!buffer) 1651 return NULL; 1652 1653 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1654 goto fail_free_buffer; 1655 1656 /* Default buffer page size - one system page */ 1657 buffer->subbuf_order = 0; 1658 buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE; 1659 1660 /* Max payload is buffer page size - header (8bytes) */ 1661 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 1662 1663 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 1664 buffer->flags = flags; 1665 buffer->clock = trace_clock_local; 1666 buffer->reader_lock_key = key; 1667 1668 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1669 init_waitqueue_head(&buffer->irq_work.waiters); 1670 1671 /* need at least two pages */ 1672 if (nr_pages < 2) 1673 nr_pages = 2; 1674 1675 buffer->cpus = nr_cpu_ids; 1676 1677 bsize = sizeof(void *) * nr_cpu_ids; 1678 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1679 GFP_KERNEL); 1680 if (!buffer->buffers) 1681 goto fail_free_cpumask; 1682 1683 cpu = raw_smp_processor_id(); 1684 cpumask_set_cpu(cpu, buffer->cpumask); 1685 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1686 if (!buffer->buffers[cpu]) 1687 goto fail_free_buffers; 1688 1689 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1690 if (ret < 0) 1691 goto fail_free_buffers; 1692 1693 mutex_init(&buffer->mutex); 1694 1695 return buffer; 1696 1697 fail_free_buffers: 1698 for_each_buffer_cpu(buffer, cpu) { 1699 if (buffer->buffers[cpu]) 1700 rb_free_cpu_buffer(buffer->buffers[cpu]); 1701 } 1702 kfree(buffer->buffers); 1703 1704 fail_free_cpumask: 1705 free_cpumask_var(buffer->cpumask); 1706 1707 fail_free_buffer: 1708 kfree(buffer); 1709 return NULL; 1710 } 1711 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1712 1713 /** 1714 * ring_buffer_free - free a ring buffer. 1715 * @buffer: the buffer to free. 1716 */ 1717 void 1718 ring_buffer_free(struct trace_buffer *buffer) 1719 { 1720 int cpu; 1721 1722 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1723 1724 irq_work_sync(&buffer->irq_work.work); 1725 1726 for_each_buffer_cpu(buffer, cpu) 1727 rb_free_cpu_buffer(buffer->buffers[cpu]); 1728 1729 kfree(buffer->buffers); 1730 free_cpumask_var(buffer->cpumask); 1731 1732 kfree(buffer); 1733 } 1734 EXPORT_SYMBOL_GPL(ring_buffer_free); 1735 1736 void ring_buffer_set_clock(struct trace_buffer *buffer, 1737 u64 (*clock)(void)) 1738 { 1739 buffer->clock = clock; 1740 } 1741 1742 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1743 { 1744 buffer->time_stamp_abs = abs; 1745 } 1746 1747 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1748 { 1749 return buffer->time_stamp_abs; 1750 } 1751 1752 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1753 1754 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1755 { 1756 return local_read(&bpage->entries) & RB_WRITE_MASK; 1757 } 1758 1759 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1760 { 1761 return local_read(&bpage->write) & RB_WRITE_MASK; 1762 } 1763 1764 static bool 1765 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1766 { 1767 struct list_head *tail_page, *to_remove, *next_page; 1768 struct buffer_page *to_remove_page, *tmp_iter_page; 1769 struct buffer_page *last_page, *first_page; 1770 unsigned long nr_removed; 1771 unsigned long head_bit; 1772 int page_entries; 1773 1774 head_bit = 0; 1775 1776 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1777 atomic_inc(&cpu_buffer->record_disabled); 1778 /* 1779 * We don't race with the readers since we have acquired the reader 1780 * lock. We also don't race with writers after disabling recording. 1781 * This makes it easy to figure out the first and the last page to be 1782 * removed from the list. We unlink all the pages in between including 1783 * the first and last pages. This is done in a busy loop so that we 1784 * lose the least number of traces. 1785 * The pages are freed after we restart recording and unlock readers. 1786 */ 1787 tail_page = &cpu_buffer->tail_page->list; 1788 1789 /* 1790 * tail page might be on reader page, we remove the next page 1791 * from the ring buffer 1792 */ 1793 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1794 tail_page = rb_list_head(tail_page->next); 1795 to_remove = tail_page; 1796 1797 /* start of pages to remove */ 1798 first_page = list_entry(rb_list_head(to_remove->next), 1799 struct buffer_page, list); 1800 1801 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1802 to_remove = rb_list_head(to_remove)->next; 1803 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1804 } 1805 /* Read iterators need to reset themselves when some pages removed */ 1806 cpu_buffer->pages_removed += nr_removed; 1807 1808 next_page = rb_list_head(to_remove)->next; 1809 1810 /* 1811 * Now we remove all pages between tail_page and next_page. 1812 * Make sure that we have head_bit value preserved for the 1813 * next page 1814 */ 1815 tail_page->next = (struct list_head *)((unsigned long)next_page | 1816 head_bit); 1817 next_page = rb_list_head(next_page); 1818 next_page->prev = tail_page; 1819 1820 /* make sure pages points to a valid page in the ring buffer */ 1821 cpu_buffer->pages = next_page; 1822 1823 /* update head page */ 1824 if (head_bit) 1825 cpu_buffer->head_page = list_entry(next_page, 1826 struct buffer_page, list); 1827 1828 /* pages are removed, resume tracing and then free the pages */ 1829 atomic_dec(&cpu_buffer->record_disabled); 1830 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1831 1832 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1833 1834 /* last buffer page to remove */ 1835 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1836 list); 1837 tmp_iter_page = first_page; 1838 1839 do { 1840 cond_resched(); 1841 1842 to_remove_page = tmp_iter_page; 1843 rb_inc_page(&tmp_iter_page); 1844 1845 /* update the counters */ 1846 page_entries = rb_page_entries(to_remove_page); 1847 if (page_entries) { 1848 /* 1849 * If something was added to this page, it was full 1850 * since it is not the tail page. So we deduct the 1851 * bytes consumed in ring buffer from here. 1852 * Increment overrun to account for the lost events. 1853 */ 1854 local_add(page_entries, &cpu_buffer->overrun); 1855 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 1856 local_inc(&cpu_buffer->pages_lost); 1857 } 1858 1859 /* 1860 * We have already removed references to this list item, just 1861 * free up the buffer_page and its page 1862 */ 1863 free_buffer_page(to_remove_page); 1864 nr_removed--; 1865 1866 } while (to_remove_page != last_page); 1867 1868 RB_WARN_ON(cpu_buffer, nr_removed); 1869 1870 return nr_removed == 0; 1871 } 1872 1873 static bool 1874 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1875 { 1876 struct list_head *pages = &cpu_buffer->new_pages; 1877 unsigned long flags; 1878 bool success; 1879 int retries; 1880 1881 /* Can be called at early boot up, where interrupts must not been enabled */ 1882 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1883 /* 1884 * We are holding the reader lock, so the reader page won't be swapped 1885 * in the ring buffer. Now we are racing with the writer trying to 1886 * move head page and the tail page. 1887 * We are going to adapt the reader page update process where: 1888 * 1. We first splice the start and end of list of new pages between 1889 * the head page and its previous page. 1890 * 2. We cmpxchg the prev_page->next to point from head page to the 1891 * start of new pages list. 1892 * 3. Finally, we update the head->prev to the end of new list. 1893 * 1894 * We will try this process 10 times, to make sure that we don't keep 1895 * spinning. 1896 */ 1897 retries = 10; 1898 success = false; 1899 while (retries--) { 1900 struct list_head *head_page, *prev_page; 1901 struct list_head *last_page, *first_page; 1902 struct list_head *head_page_with_bit; 1903 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 1904 1905 if (!hpage) 1906 break; 1907 head_page = &hpage->list; 1908 prev_page = head_page->prev; 1909 1910 first_page = pages->next; 1911 last_page = pages->prev; 1912 1913 head_page_with_bit = (struct list_head *) 1914 ((unsigned long)head_page | RB_PAGE_HEAD); 1915 1916 last_page->next = head_page_with_bit; 1917 first_page->prev = prev_page; 1918 1919 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 1920 if (try_cmpxchg(&prev_page->next, 1921 &head_page_with_bit, first_page)) { 1922 /* 1923 * yay, we replaced the page pointer to our new list, 1924 * now, we just have to update to head page's prev 1925 * pointer to point to end of list 1926 */ 1927 head_page->prev = last_page; 1928 success = true; 1929 break; 1930 } 1931 } 1932 1933 if (success) 1934 INIT_LIST_HEAD(pages); 1935 /* 1936 * If we weren't successful in adding in new pages, warn and stop 1937 * tracing 1938 */ 1939 RB_WARN_ON(cpu_buffer, !success); 1940 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1941 1942 /* free pages if they weren't inserted */ 1943 if (!success) { 1944 struct buffer_page *bpage, *tmp; 1945 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1946 list) { 1947 list_del_init(&bpage->list); 1948 free_buffer_page(bpage); 1949 } 1950 } 1951 return success; 1952 } 1953 1954 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1955 { 1956 bool success; 1957 1958 if (cpu_buffer->nr_pages_to_update > 0) 1959 success = rb_insert_pages(cpu_buffer); 1960 else 1961 success = rb_remove_pages(cpu_buffer, 1962 -cpu_buffer->nr_pages_to_update); 1963 1964 if (success) 1965 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1966 } 1967 1968 static void update_pages_handler(struct work_struct *work) 1969 { 1970 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1971 struct ring_buffer_per_cpu, update_pages_work); 1972 rb_update_pages(cpu_buffer); 1973 complete(&cpu_buffer->update_done); 1974 } 1975 1976 /** 1977 * ring_buffer_resize - resize the ring buffer 1978 * @buffer: the buffer to resize. 1979 * @size: the new size. 1980 * @cpu_id: the cpu buffer to resize 1981 * 1982 * Minimum size is 2 * buffer->subbuf_size. 1983 * 1984 * Returns 0 on success and < 0 on failure. 1985 */ 1986 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1987 int cpu_id) 1988 { 1989 struct ring_buffer_per_cpu *cpu_buffer; 1990 unsigned long nr_pages; 1991 int cpu, err; 1992 1993 /* 1994 * Always succeed at resizing a non-existent buffer: 1995 */ 1996 if (!buffer) 1997 return 0; 1998 1999 /* Make sure the requested buffer exists */ 2000 if (cpu_id != RING_BUFFER_ALL_CPUS && 2001 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2002 return 0; 2003 2004 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2005 2006 /* we need a minimum of two pages */ 2007 if (nr_pages < 2) 2008 nr_pages = 2; 2009 2010 /* prevent another thread from changing buffer sizes */ 2011 mutex_lock(&buffer->mutex); 2012 atomic_inc(&buffer->resizing); 2013 2014 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2015 /* 2016 * Don't succeed if resizing is disabled, as a reader might be 2017 * manipulating the ring buffer and is expecting a sane state while 2018 * this is true. 2019 */ 2020 for_each_buffer_cpu(buffer, cpu) { 2021 cpu_buffer = buffer->buffers[cpu]; 2022 if (atomic_read(&cpu_buffer->resize_disabled)) { 2023 err = -EBUSY; 2024 goto out_err_unlock; 2025 } 2026 } 2027 2028 /* calculate the pages to update */ 2029 for_each_buffer_cpu(buffer, cpu) { 2030 cpu_buffer = buffer->buffers[cpu]; 2031 2032 cpu_buffer->nr_pages_to_update = nr_pages - 2033 cpu_buffer->nr_pages; 2034 /* 2035 * nothing more to do for removing pages or no update 2036 */ 2037 if (cpu_buffer->nr_pages_to_update <= 0) 2038 continue; 2039 /* 2040 * to add pages, make sure all new pages can be 2041 * allocated without receiving ENOMEM 2042 */ 2043 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2044 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2045 &cpu_buffer->new_pages)) { 2046 /* not enough memory for new pages */ 2047 err = -ENOMEM; 2048 goto out_err; 2049 } 2050 2051 cond_resched(); 2052 } 2053 2054 cpus_read_lock(); 2055 /* 2056 * Fire off all the required work handlers 2057 * We can't schedule on offline CPUs, but it's not necessary 2058 * since we can change their buffer sizes without any race. 2059 */ 2060 for_each_buffer_cpu(buffer, cpu) { 2061 cpu_buffer = buffer->buffers[cpu]; 2062 if (!cpu_buffer->nr_pages_to_update) 2063 continue; 2064 2065 /* Can't run something on an offline CPU. */ 2066 if (!cpu_online(cpu)) { 2067 rb_update_pages(cpu_buffer); 2068 cpu_buffer->nr_pages_to_update = 0; 2069 } else { 2070 /* Run directly if possible. */ 2071 migrate_disable(); 2072 if (cpu != smp_processor_id()) { 2073 migrate_enable(); 2074 schedule_work_on(cpu, 2075 &cpu_buffer->update_pages_work); 2076 } else { 2077 update_pages_handler(&cpu_buffer->update_pages_work); 2078 migrate_enable(); 2079 } 2080 } 2081 } 2082 2083 /* wait for all the updates to complete */ 2084 for_each_buffer_cpu(buffer, cpu) { 2085 cpu_buffer = buffer->buffers[cpu]; 2086 if (!cpu_buffer->nr_pages_to_update) 2087 continue; 2088 2089 if (cpu_online(cpu)) 2090 wait_for_completion(&cpu_buffer->update_done); 2091 cpu_buffer->nr_pages_to_update = 0; 2092 } 2093 2094 cpus_read_unlock(); 2095 } else { 2096 cpu_buffer = buffer->buffers[cpu_id]; 2097 2098 if (nr_pages == cpu_buffer->nr_pages) 2099 goto out; 2100 2101 /* 2102 * Don't succeed if resizing is disabled, as a reader might be 2103 * manipulating the ring buffer and is expecting a sane state while 2104 * this is true. 2105 */ 2106 if (atomic_read(&cpu_buffer->resize_disabled)) { 2107 err = -EBUSY; 2108 goto out_err_unlock; 2109 } 2110 2111 cpu_buffer->nr_pages_to_update = nr_pages - 2112 cpu_buffer->nr_pages; 2113 2114 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2115 if (cpu_buffer->nr_pages_to_update > 0 && 2116 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2117 &cpu_buffer->new_pages)) { 2118 err = -ENOMEM; 2119 goto out_err; 2120 } 2121 2122 cpus_read_lock(); 2123 2124 /* Can't run something on an offline CPU. */ 2125 if (!cpu_online(cpu_id)) 2126 rb_update_pages(cpu_buffer); 2127 else { 2128 /* Run directly if possible. */ 2129 migrate_disable(); 2130 if (cpu_id == smp_processor_id()) { 2131 rb_update_pages(cpu_buffer); 2132 migrate_enable(); 2133 } else { 2134 migrate_enable(); 2135 schedule_work_on(cpu_id, 2136 &cpu_buffer->update_pages_work); 2137 wait_for_completion(&cpu_buffer->update_done); 2138 } 2139 } 2140 2141 cpu_buffer->nr_pages_to_update = 0; 2142 cpus_read_unlock(); 2143 } 2144 2145 out: 2146 /* 2147 * The ring buffer resize can happen with the ring buffer 2148 * enabled, so that the update disturbs the tracing as little 2149 * as possible. But if the buffer is disabled, we do not need 2150 * to worry about that, and we can take the time to verify 2151 * that the buffer is not corrupt. 2152 */ 2153 if (atomic_read(&buffer->record_disabled)) { 2154 atomic_inc(&buffer->record_disabled); 2155 /* 2156 * Even though the buffer was disabled, we must make sure 2157 * that it is truly disabled before calling rb_check_pages. 2158 * There could have been a race between checking 2159 * record_disable and incrementing it. 2160 */ 2161 synchronize_rcu(); 2162 for_each_buffer_cpu(buffer, cpu) { 2163 cpu_buffer = buffer->buffers[cpu]; 2164 rb_check_pages(cpu_buffer); 2165 } 2166 atomic_dec(&buffer->record_disabled); 2167 } 2168 2169 atomic_dec(&buffer->resizing); 2170 mutex_unlock(&buffer->mutex); 2171 return 0; 2172 2173 out_err: 2174 for_each_buffer_cpu(buffer, cpu) { 2175 struct buffer_page *bpage, *tmp; 2176 2177 cpu_buffer = buffer->buffers[cpu]; 2178 cpu_buffer->nr_pages_to_update = 0; 2179 2180 if (list_empty(&cpu_buffer->new_pages)) 2181 continue; 2182 2183 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2184 list) { 2185 list_del_init(&bpage->list); 2186 free_buffer_page(bpage); 2187 } 2188 } 2189 out_err_unlock: 2190 atomic_dec(&buffer->resizing); 2191 mutex_unlock(&buffer->mutex); 2192 return err; 2193 } 2194 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2195 2196 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2197 { 2198 mutex_lock(&buffer->mutex); 2199 if (val) 2200 buffer->flags |= RB_FL_OVERWRITE; 2201 else 2202 buffer->flags &= ~RB_FL_OVERWRITE; 2203 mutex_unlock(&buffer->mutex); 2204 } 2205 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2206 2207 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2208 { 2209 return bpage->page->data + index; 2210 } 2211 2212 static __always_inline struct ring_buffer_event * 2213 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2214 { 2215 return __rb_page_index(cpu_buffer->reader_page, 2216 cpu_buffer->reader_page->read); 2217 } 2218 2219 static struct ring_buffer_event * 2220 rb_iter_head_event(struct ring_buffer_iter *iter) 2221 { 2222 struct ring_buffer_event *event; 2223 struct buffer_page *iter_head_page = iter->head_page; 2224 unsigned long commit; 2225 unsigned length; 2226 2227 if (iter->head != iter->next_event) 2228 return iter->event; 2229 2230 /* 2231 * When the writer goes across pages, it issues a cmpxchg which 2232 * is a mb(), which will synchronize with the rmb here. 2233 * (see rb_tail_page_update() and __rb_reserve_next()) 2234 */ 2235 commit = rb_page_commit(iter_head_page); 2236 smp_rmb(); 2237 2238 /* An event needs to be at least 8 bytes in size */ 2239 if (iter->head > commit - 8) 2240 goto reset; 2241 2242 event = __rb_page_index(iter_head_page, iter->head); 2243 length = rb_event_length(event); 2244 2245 /* 2246 * READ_ONCE() doesn't work on functions and we don't want the 2247 * compiler doing any crazy optimizations with length. 2248 */ 2249 barrier(); 2250 2251 if ((iter->head + length) > commit || length > iter->event_size) 2252 /* Writer corrupted the read? */ 2253 goto reset; 2254 2255 memcpy(iter->event, event, length); 2256 /* 2257 * If the page stamp is still the same after this rmb() then the 2258 * event was safely copied without the writer entering the page. 2259 */ 2260 smp_rmb(); 2261 2262 /* Make sure the page didn't change since we read this */ 2263 if (iter->page_stamp != iter_head_page->page->time_stamp || 2264 commit > rb_page_commit(iter_head_page)) 2265 goto reset; 2266 2267 iter->next_event = iter->head + length; 2268 return iter->event; 2269 reset: 2270 /* Reset to the beginning */ 2271 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2272 iter->head = 0; 2273 iter->next_event = 0; 2274 iter->missed_events = 1; 2275 return NULL; 2276 } 2277 2278 /* Size is determined by what has been committed */ 2279 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2280 { 2281 return rb_page_commit(bpage); 2282 } 2283 2284 static __always_inline unsigned 2285 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2286 { 2287 return rb_page_commit(cpu_buffer->commit_page); 2288 } 2289 2290 static __always_inline unsigned 2291 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 2292 { 2293 unsigned long addr = (unsigned long)event; 2294 2295 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 2296 2297 return addr - BUF_PAGE_HDR_SIZE; 2298 } 2299 2300 static void rb_inc_iter(struct ring_buffer_iter *iter) 2301 { 2302 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2303 2304 /* 2305 * The iterator could be on the reader page (it starts there). 2306 * But the head could have moved, since the reader was 2307 * found. Check for this case and assign the iterator 2308 * to the head page instead of next. 2309 */ 2310 if (iter->head_page == cpu_buffer->reader_page) 2311 iter->head_page = rb_set_head_page(cpu_buffer); 2312 else 2313 rb_inc_page(&iter->head_page); 2314 2315 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2316 iter->head = 0; 2317 iter->next_event = 0; 2318 } 2319 2320 /* 2321 * rb_handle_head_page - writer hit the head page 2322 * 2323 * Returns: +1 to retry page 2324 * 0 to continue 2325 * -1 on error 2326 */ 2327 static int 2328 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2329 struct buffer_page *tail_page, 2330 struct buffer_page *next_page) 2331 { 2332 struct buffer_page *new_head; 2333 int entries; 2334 int type; 2335 int ret; 2336 2337 entries = rb_page_entries(next_page); 2338 2339 /* 2340 * The hard part is here. We need to move the head 2341 * forward, and protect against both readers on 2342 * other CPUs and writers coming in via interrupts. 2343 */ 2344 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2345 RB_PAGE_HEAD); 2346 2347 /* 2348 * type can be one of four: 2349 * NORMAL - an interrupt already moved it for us 2350 * HEAD - we are the first to get here. 2351 * UPDATE - we are the interrupt interrupting 2352 * a current move. 2353 * MOVED - a reader on another CPU moved the next 2354 * pointer to its reader page. Give up 2355 * and try again. 2356 */ 2357 2358 switch (type) { 2359 case RB_PAGE_HEAD: 2360 /* 2361 * We changed the head to UPDATE, thus 2362 * it is our responsibility to update 2363 * the counters. 2364 */ 2365 local_add(entries, &cpu_buffer->overrun); 2366 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2367 local_inc(&cpu_buffer->pages_lost); 2368 2369 /* 2370 * The entries will be zeroed out when we move the 2371 * tail page. 2372 */ 2373 2374 /* still more to do */ 2375 break; 2376 2377 case RB_PAGE_UPDATE: 2378 /* 2379 * This is an interrupt that interrupt the 2380 * previous update. Still more to do. 2381 */ 2382 break; 2383 case RB_PAGE_NORMAL: 2384 /* 2385 * An interrupt came in before the update 2386 * and processed this for us. 2387 * Nothing left to do. 2388 */ 2389 return 1; 2390 case RB_PAGE_MOVED: 2391 /* 2392 * The reader is on another CPU and just did 2393 * a swap with our next_page. 2394 * Try again. 2395 */ 2396 return 1; 2397 default: 2398 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2399 return -1; 2400 } 2401 2402 /* 2403 * Now that we are here, the old head pointer is 2404 * set to UPDATE. This will keep the reader from 2405 * swapping the head page with the reader page. 2406 * The reader (on another CPU) will spin till 2407 * we are finished. 2408 * 2409 * We just need to protect against interrupts 2410 * doing the job. We will set the next pointer 2411 * to HEAD. After that, we set the old pointer 2412 * to NORMAL, but only if it was HEAD before. 2413 * otherwise we are an interrupt, and only 2414 * want the outer most commit to reset it. 2415 */ 2416 new_head = next_page; 2417 rb_inc_page(&new_head); 2418 2419 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2420 RB_PAGE_NORMAL); 2421 2422 /* 2423 * Valid returns are: 2424 * HEAD - an interrupt came in and already set it. 2425 * NORMAL - One of two things: 2426 * 1) We really set it. 2427 * 2) A bunch of interrupts came in and moved 2428 * the page forward again. 2429 */ 2430 switch (ret) { 2431 case RB_PAGE_HEAD: 2432 case RB_PAGE_NORMAL: 2433 /* OK */ 2434 break; 2435 default: 2436 RB_WARN_ON(cpu_buffer, 1); 2437 return -1; 2438 } 2439 2440 /* 2441 * It is possible that an interrupt came in, 2442 * set the head up, then more interrupts came in 2443 * and moved it again. When we get back here, 2444 * the page would have been set to NORMAL but we 2445 * just set it back to HEAD. 2446 * 2447 * How do you detect this? Well, if that happened 2448 * the tail page would have moved. 2449 */ 2450 if (ret == RB_PAGE_NORMAL) { 2451 struct buffer_page *buffer_tail_page; 2452 2453 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2454 /* 2455 * If the tail had moved passed next, then we need 2456 * to reset the pointer. 2457 */ 2458 if (buffer_tail_page != tail_page && 2459 buffer_tail_page != next_page) 2460 rb_head_page_set_normal(cpu_buffer, new_head, 2461 next_page, 2462 RB_PAGE_HEAD); 2463 } 2464 2465 /* 2466 * If this was the outer most commit (the one that 2467 * changed the original pointer from HEAD to UPDATE), 2468 * then it is up to us to reset it to NORMAL. 2469 */ 2470 if (type == RB_PAGE_HEAD) { 2471 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2472 tail_page, 2473 RB_PAGE_UPDATE); 2474 if (RB_WARN_ON(cpu_buffer, 2475 ret != RB_PAGE_UPDATE)) 2476 return -1; 2477 } 2478 2479 return 0; 2480 } 2481 2482 static inline void 2483 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2484 unsigned long tail, struct rb_event_info *info) 2485 { 2486 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 2487 struct buffer_page *tail_page = info->tail_page; 2488 struct ring_buffer_event *event; 2489 unsigned long length = info->length; 2490 2491 /* 2492 * Only the event that crossed the page boundary 2493 * must fill the old tail_page with padding. 2494 */ 2495 if (tail >= bsize) { 2496 /* 2497 * If the page was filled, then we still need 2498 * to update the real_end. Reset it to zero 2499 * and the reader will ignore it. 2500 */ 2501 if (tail == bsize) 2502 tail_page->real_end = 0; 2503 2504 local_sub(length, &tail_page->write); 2505 return; 2506 } 2507 2508 event = __rb_page_index(tail_page, tail); 2509 2510 /* 2511 * Save the original length to the meta data. 2512 * This will be used by the reader to add lost event 2513 * counter. 2514 */ 2515 tail_page->real_end = tail; 2516 2517 /* 2518 * If this event is bigger than the minimum size, then 2519 * we need to be careful that we don't subtract the 2520 * write counter enough to allow another writer to slip 2521 * in on this page. 2522 * We put in a discarded commit instead, to make sure 2523 * that this space is not used again, and this space will 2524 * not be accounted into 'entries_bytes'. 2525 * 2526 * If we are less than the minimum size, we don't need to 2527 * worry about it. 2528 */ 2529 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 2530 /* No room for any events */ 2531 2532 /* Mark the rest of the page with padding */ 2533 rb_event_set_padding(event); 2534 2535 /* Make sure the padding is visible before the write update */ 2536 smp_wmb(); 2537 2538 /* Set the write back to the previous setting */ 2539 local_sub(length, &tail_page->write); 2540 return; 2541 } 2542 2543 /* Put in a discarded event */ 2544 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 2545 event->type_len = RINGBUF_TYPE_PADDING; 2546 /* time delta must be non zero */ 2547 event->time_delta = 1; 2548 2549 /* account for padding bytes */ 2550 local_add(bsize - tail, &cpu_buffer->entries_bytes); 2551 2552 /* Make sure the padding is visible before the tail_page->write update */ 2553 smp_wmb(); 2554 2555 /* Set write to end of buffer */ 2556 length = (tail + length) - bsize; 2557 local_sub(length, &tail_page->write); 2558 } 2559 2560 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2561 2562 /* 2563 * This is the slow path, force gcc not to inline it. 2564 */ 2565 static noinline struct ring_buffer_event * 2566 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2567 unsigned long tail, struct rb_event_info *info) 2568 { 2569 struct buffer_page *tail_page = info->tail_page; 2570 struct buffer_page *commit_page = cpu_buffer->commit_page; 2571 struct trace_buffer *buffer = cpu_buffer->buffer; 2572 struct buffer_page *next_page; 2573 int ret; 2574 2575 next_page = tail_page; 2576 2577 rb_inc_page(&next_page); 2578 2579 /* 2580 * If for some reason, we had an interrupt storm that made 2581 * it all the way around the buffer, bail, and warn 2582 * about it. 2583 */ 2584 if (unlikely(next_page == commit_page)) { 2585 local_inc(&cpu_buffer->commit_overrun); 2586 goto out_reset; 2587 } 2588 2589 /* 2590 * This is where the fun begins! 2591 * 2592 * We are fighting against races between a reader that 2593 * could be on another CPU trying to swap its reader 2594 * page with the buffer head. 2595 * 2596 * We are also fighting against interrupts coming in and 2597 * moving the head or tail on us as well. 2598 * 2599 * If the next page is the head page then we have filled 2600 * the buffer, unless the commit page is still on the 2601 * reader page. 2602 */ 2603 if (rb_is_head_page(next_page, &tail_page->list)) { 2604 2605 /* 2606 * If the commit is not on the reader page, then 2607 * move the header page. 2608 */ 2609 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2610 /* 2611 * If we are not in overwrite mode, 2612 * this is easy, just stop here. 2613 */ 2614 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2615 local_inc(&cpu_buffer->dropped_events); 2616 goto out_reset; 2617 } 2618 2619 ret = rb_handle_head_page(cpu_buffer, 2620 tail_page, 2621 next_page); 2622 if (ret < 0) 2623 goto out_reset; 2624 if (ret) 2625 goto out_again; 2626 } else { 2627 /* 2628 * We need to be careful here too. The 2629 * commit page could still be on the reader 2630 * page. We could have a small buffer, and 2631 * have filled up the buffer with events 2632 * from interrupts and such, and wrapped. 2633 * 2634 * Note, if the tail page is also on the 2635 * reader_page, we let it move out. 2636 */ 2637 if (unlikely((cpu_buffer->commit_page != 2638 cpu_buffer->tail_page) && 2639 (cpu_buffer->commit_page == 2640 cpu_buffer->reader_page))) { 2641 local_inc(&cpu_buffer->commit_overrun); 2642 goto out_reset; 2643 } 2644 } 2645 } 2646 2647 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2648 2649 out_again: 2650 2651 rb_reset_tail(cpu_buffer, tail, info); 2652 2653 /* Commit what we have for now. */ 2654 rb_end_commit(cpu_buffer); 2655 /* rb_end_commit() decs committing */ 2656 local_inc(&cpu_buffer->committing); 2657 2658 /* fail and let the caller try again */ 2659 return ERR_PTR(-EAGAIN); 2660 2661 out_reset: 2662 /* reset write */ 2663 rb_reset_tail(cpu_buffer, tail, info); 2664 2665 return NULL; 2666 } 2667 2668 /* Slow path */ 2669 static struct ring_buffer_event * 2670 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2671 struct ring_buffer_event *event, u64 delta, bool abs) 2672 { 2673 if (abs) 2674 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2675 else 2676 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2677 2678 /* Not the first event on the page, or not delta? */ 2679 if (abs || rb_event_index(cpu_buffer, event)) { 2680 event->time_delta = delta & TS_MASK; 2681 event->array[0] = delta >> TS_SHIFT; 2682 } else { 2683 /* nope, just zero it */ 2684 event->time_delta = 0; 2685 event->array[0] = 0; 2686 } 2687 2688 return skip_time_extend(event); 2689 } 2690 2691 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2692 static inline bool sched_clock_stable(void) 2693 { 2694 return true; 2695 } 2696 #endif 2697 2698 static void 2699 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2700 struct rb_event_info *info) 2701 { 2702 u64 write_stamp; 2703 2704 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2705 (unsigned long long)info->delta, 2706 (unsigned long long)info->ts, 2707 (unsigned long long)info->before, 2708 (unsigned long long)info->after, 2709 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 2710 sched_clock_stable() ? "" : 2711 "If you just came from a suspend/resume,\n" 2712 "please switch to the trace global clock:\n" 2713 " echo global > /sys/kernel/tracing/trace_clock\n" 2714 "or add trace_clock=global to the kernel command line\n"); 2715 } 2716 2717 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2718 struct ring_buffer_event **event, 2719 struct rb_event_info *info, 2720 u64 *delta, 2721 unsigned int *length) 2722 { 2723 bool abs = info->add_timestamp & 2724 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2725 2726 if (unlikely(info->delta > (1ULL << 59))) { 2727 /* 2728 * Some timers can use more than 59 bits, and when a timestamp 2729 * is added to the buffer, it will lose those bits. 2730 */ 2731 if (abs && (info->ts & TS_MSB)) { 2732 info->delta &= ABS_TS_MASK; 2733 2734 /* did the clock go backwards */ 2735 } else if (info->before == info->after && info->before > info->ts) { 2736 /* not interrupted */ 2737 static int once; 2738 2739 /* 2740 * This is possible with a recalibrating of the TSC. 2741 * Do not produce a call stack, but just report it. 2742 */ 2743 if (!once) { 2744 once++; 2745 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2746 info->before, info->ts); 2747 } 2748 } else 2749 rb_check_timestamp(cpu_buffer, info); 2750 if (!abs) 2751 info->delta = 0; 2752 } 2753 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 2754 *length -= RB_LEN_TIME_EXTEND; 2755 *delta = 0; 2756 } 2757 2758 /** 2759 * rb_update_event - update event type and data 2760 * @cpu_buffer: The per cpu buffer of the @event 2761 * @event: the event to update 2762 * @info: The info to update the @event with (contains length and delta) 2763 * 2764 * Update the type and data fields of the @event. The length 2765 * is the actual size that is written to the ring buffer, 2766 * and with this, we can determine what to place into the 2767 * data field. 2768 */ 2769 static void 2770 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2771 struct ring_buffer_event *event, 2772 struct rb_event_info *info) 2773 { 2774 unsigned length = info->length; 2775 u64 delta = info->delta; 2776 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2777 2778 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2779 cpu_buffer->event_stamp[nest] = info->ts; 2780 2781 /* 2782 * If we need to add a timestamp, then we 2783 * add it to the start of the reserved space. 2784 */ 2785 if (unlikely(info->add_timestamp)) 2786 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2787 2788 event->time_delta = delta; 2789 length -= RB_EVNT_HDR_SIZE; 2790 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2791 event->type_len = 0; 2792 event->array[0] = length; 2793 } else 2794 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2795 } 2796 2797 static unsigned rb_calculate_event_length(unsigned length) 2798 { 2799 struct ring_buffer_event event; /* Used only for sizeof array */ 2800 2801 /* zero length can cause confusions */ 2802 if (!length) 2803 length++; 2804 2805 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2806 length += sizeof(event.array[0]); 2807 2808 length += RB_EVNT_HDR_SIZE; 2809 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2810 2811 /* 2812 * In case the time delta is larger than the 27 bits for it 2813 * in the header, we need to add a timestamp. If another 2814 * event comes in when trying to discard this one to increase 2815 * the length, then the timestamp will be added in the allocated 2816 * space of this event. If length is bigger than the size needed 2817 * for the TIME_EXTEND, then padding has to be used. The events 2818 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2819 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2820 * As length is a multiple of 4, we only need to worry if it 2821 * is 12 (RB_LEN_TIME_EXTEND + 4). 2822 */ 2823 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2824 length += RB_ALIGNMENT; 2825 2826 return length; 2827 } 2828 2829 static inline bool 2830 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2831 struct ring_buffer_event *event) 2832 { 2833 unsigned long new_index, old_index; 2834 struct buffer_page *bpage; 2835 unsigned long addr; 2836 2837 new_index = rb_event_index(cpu_buffer, event); 2838 old_index = new_index + rb_event_ts_length(event); 2839 addr = (unsigned long)event; 2840 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 2841 2842 bpage = READ_ONCE(cpu_buffer->tail_page); 2843 2844 /* 2845 * Make sure the tail_page is still the same and 2846 * the next write location is the end of this event 2847 */ 2848 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2849 unsigned long write_mask = 2850 local_read(&bpage->write) & ~RB_WRITE_MASK; 2851 unsigned long event_length = rb_event_length(event); 2852 2853 /* 2854 * For the before_stamp to be different than the write_stamp 2855 * to make sure that the next event adds an absolute 2856 * value and does not rely on the saved write stamp, which 2857 * is now going to be bogus. 2858 * 2859 * By setting the before_stamp to zero, the next event 2860 * is not going to use the write_stamp and will instead 2861 * create an absolute timestamp. This means there's no 2862 * reason to update the wirte_stamp! 2863 */ 2864 rb_time_set(&cpu_buffer->before_stamp, 0); 2865 2866 /* 2867 * If an event were to come in now, it would see that the 2868 * write_stamp and the before_stamp are different, and assume 2869 * that this event just added itself before updating 2870 * the write stamp. The interrupting event will fix the 2871 * write stamp for us, and use an absolute timestamp. 2872 */ 2873 2874 /* 2875 * This is on the tail page. It is possible that 2876 * a write could come in and move the tail page 2877 * and write to the next page. That is fine 2878 * because we just shorten what is on this page. 2879 */ 2880 old_index += write_mask; 2881 new_index += write_mask; 2882 2883 /* caution: old_index gets updated on cmpxchg failure */ 2884 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 2885 /* update counters */ 2886 local_sub(event_length, &cpu_buffer->entries_bytes); 2887 return true; 2888 } 2889 } 2890 2891 /* could not discard */ 2892 return false; 2893 } 2894 2895 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2896 { 2897 local_inc(&cpu_buffer->committing); 2898 local_inc(&cpu_buffer->commits); 2899 } 2900 2901 static __always_inline void 2902 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2903 { 2904 unsigned long max_count; 2905 2906 /* 2907 * We only race with interrupts and NMIs on this CPU. 2908 * If we own the commit event, then we can commit 2909 * all others that interrupted us, since the interruptions 2910 * are in stack format (they finish before they come 2911 * back to us). This allows us to do a simple loop to 2912 * assign the commit to the tail. 2913 */ 2914 again: 2915 max_count = cpu_buffer->nr_pages * 100; 2916 2917 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2918 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2919 return; 2920 if (RB_WARN_ON(cpu_buffer, 2921 rb_is_reader_page(cpu_buffer->tail_page))) 2922 return; 2923 /* 2924 * No need for a memory barrier here, as the update 2925 * of the tail_page did it for this page. 2926 */ 2927 local_set(&cpu_buffer->commit_page->page->commit, 2928 rb_page_write(cpu_buffer->commit_page)); 2929 rb_inc_page(&cpu_buffer->commit_page); 2930 /* add barrier to keep gcc from optimizing too much */ 2931 barrier(); 2932 } 2933 while (rb_commit_index(cpu_buffer) != 2934 rb_page_write(cpu_buffer->commit_page)) { 2935 2936 /* Make sure the readers see the content of what is committed. */ 2937 smp_wmb(); 2938 local_set(&cpu_buffer->commit_page->page->commit, 2939 rb_page_write(cpu_buffer->commit_page)); 2940 RB_WARN_ON(cpu_buffer, 2941 local_read(&cpu_buffer->commit_page->page->commit) & 2942 ~RB_WRITE_MASK); 2943 barrier(); 2944 } 2945 2946 /* again, keep gcc from optimizing */ 2947 barrier(); 2948 2949 /* 2950 * If an interrupt came in just after the first while loop 2951 * and pushed the tail page forward, we will be left with 2952 * a dangling commit that will never go forward. 2953 */ 2954 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2955 goto again; 2956 } 2957 2958 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2959 { 2960 unsigned long commits; 2961 2962 if (RB_WARN_ON(cpu_buffer, 2963 !local_read(&cpu_buffer->committing))) 2964 return; 2965 2966 again: 2967 commits = local_read(&cpu_buffer->commits); 2968 /* synchronize with interrupts */ 2969 barrier(); 2970 if (local_read(&cpu_buffer->committing) == 1) 2971 rb_set_commit_to_write(cpu_buffer); 2972 2973 local_dec(&cpu_buffer->committing); 2974 2975 /* synchronize with interrupts */ 2976 barrier(); 2977 2978 /* 2979 * Need to account for interrupts coming in between the 2980 * updating of the commit page and the clearing of the 2981 * committing counter. 2982 */ 2983 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2984 !local_read(&cpu_buffer->committing)) { 2985 local_inc(&cpu_buffer->committing); 2986 goto again; 2987 } 2988 } 2989 2990 static inline void rb_event_discard(struct ring_buffer_event *event) 2991 { 2992 if (extended_time(event)) 2993 event = skip_time_extend(event); 2994 2995 /* array[0] holds the actual length for the discarded event */ 2996 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2997 event->type_len = RINGBUF_TYPE_PADDING; 2998 /* time delta must be non zero */ 2999 if (!event->time_delta) 3000 event->time_delta = 1; 3001 } 3002 3003 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3004 { 3005 local_inc(&cpu_buffer->entries); 3006 rb_end_commit(cpu_buffer); 3007 } 3008 3009 static __always_inline void 3010 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3011 { 3012 if (buffer->irq_work.waiters_pending) { 3013 buffer->irq_work.waiters_pending = false; 3014 /* irq_work_queue() supplies it's own memory barriers */ 3015 irq_work_queue(&buffer->irq_work.work); 3016 } 3017 3018 if (cpu_buffer->irq_work.waiters_pending) { 3019 cpu_buffer->irq_work.waiters_pending = false; 3020 /* irq_work_queue() supplies it's own memory barriers */ 3021 irq_work_queue(&cpu_buffer->irq_work.work); 3022 } 3023 3024 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3025 return; 3026 3027 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3028 return; 3029 3030 if (!cpu_buffer->irq_work.full_waiters_pending) 3031 return; 3032 3033 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3034 3035 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3036 return; 3037 3038 cpu_buffer->irq_work.wakeup_full = true; 3039 cpu_buffer->irq_work.full_waiters_pending = false; 3040 /* irq_work_queue() supplies it's own memory barriers */ 3041 irq_work_queue(&cpu_buffer->irq_work.work); 3042 } 3043 3044 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3045 # define do_ring_buffer_record_recursion() \ 3046 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3047 #else 3048 # define do_ring_buffer_record_recursion() do { } while (0) 3049 #endif 3050 3051 /* 3052 * The lock and unlock are done within a preempt disable section. 3053 * The current_context per_cpu variable can only be modified 3054 * by the current task between lock and unlock. But it can 3055 * be modified more than once via an interrupt. To pass this 3056 * information from the lock to the unlock without having to 3057 * access the 'in_interrupt()' functions again (which do show 3058 * a bit of overhead in something as critical as function tracing, 3059 * we use a bitmask trick. 3060 * 3061 * bit 1 = NMI context 3062 * bit 2 = IRQ context 3063 * bit 3 = SoftIRQ context 3064 * bit 4 = normal context. 3065 * 3066 * This works because this is the order of contexts that can 3067 * preempt other contexts. A SoftIRQ never preempts an IRQ 3068 * context. 3069 * 3070 * When the context is determined, the corresponding bit is 3071 * checked and set (if it was set, then a recursion of that context 3072 * happened). 3073 * 3074 * On unlock, we need to clear this bit. To do so, just subtract 3075 * 1 from the current_context and AND it to itself. 3076 * 3077 * (binary) 3078 * 101 - 1 = 100 3079 * 101 & 100 = 100 (clearing bit zero) 3080 * 3081 * 1010 - 1 = 1001 3082 * 1010 & 1001 = 1000 (clearing bit 1) 3083 * 3084 * The least significant bit can be cleared this way, and it 3085 * just so happens that it is the same bit corresponding to 3086 * the current context. 3087 * 3088 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3089 * is set when a recursion is detected at the current context, and if 3090 * the TRANSITION bit is already set, it will fail the recursion. 3091 * This is needed because there's a lag between the changing of 3092 * interrupt context and updating the preempt count. In this case, 3093 * a false positive will be found. To handle this, one extra recursion 3094 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3095 * bit is already set, then it is considered a recursion and the function 3096 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3097 * 3098 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3099 * to be cleared. Even if it wasn't the context that set it. That is, 3100 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3101 * is called before preempt_count() is updated, since the check will 3102 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3103 * NMI then comes in, it will set the NMI bit, but when the NMI code 3104 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3105 * and leave the NMI bit set. But this is fine, because the interrupt 3106 * code that set the TRANSITION bit will then clear the NMI bit when it 3107 * calls trace_recursive_unlock(). If another NMI comes in, it will 3108 * set the TRANSITION bit and continue. 3109 * 3110 * Note: The TRANSITION bit only handles a single transition between context. 3111 */ 3112 3113 static __always_inline bool 3114 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3115 { 3116 unsigned int val = cpu_buffer->current_context; 3117 int bit = interrupt_context_level(); 3118 3119 bit = RB_CTX_NORMAL - bit; 3120 3121 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3122 /* 3123 * It is possible that this was called by transitioning 3124 * between interrupt context, and preempt_count() has not 3125 * been updated yet. In this case, use the TRANSITION bit. 3126 */ 3127 bit = RB_CTX_TRANSITION; 3128 if (val & (1 << (bit + cpu_buffer->nest))) { 3129 do_ring_buffer_record_recursion(); 3130 return true; 3131 } 3132 } 3133 3134 val |= (1 << (bit + cpu_buffer->nest)); 3135 cpu_buffer->current_context = val; 3136 3137 return false; 3138 } 3139 3140 static __always_inline void 3141 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3142 { 3143 cpu_buffer->current_context &= 3144 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3145 } 3146 3147 /* The recursive locking above uses 5 bits */ 3148 #define NESTED_BITS 5 3149 3150 /** 3151 * ring_buffer_nest_start - Allow to trace while nested 3152 * @buffer: The ring buffer to modify 3153 * 3154 * The ring buffer has a safety mechanism to prevent recursion. 3155 * But there may be a case where a trace needs to be done while 3156 * tracing something else. In this case, calling this function 3157 * will allow this function to nest within a currently active 3158 * ring_buffer_lock_reserve(). 3159 * 3160 * Call this function before calling another ring_buffer_lock_reserve() and 3161 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3162 */ 3163 void ring_buffer_nest_start(struct trace_buffer *buffer) 3164 { 3165 struct ring_buffer_per_cpu *cpu_buffer; 3166 int cpu; 3167 3168 /* Enabled by ring_buffer_nest_end() */ 3169 preempt_disable_notrace(); 3170 cpu = raw_smp_processor_id(); 3171 cpu_buffer = buffer->buffers[cpu]; 3172 /* This is the shift value for the above recursive locking */ 3173 cpu_buffer->nest += NESTED_BITS; 3174 } 3175 3176 /** 3177 * ring_buffer_nest_end - Allow to trace while nested 3178 * @buffer: The ring buffer to modify 3179 * 3180 * Must be called after ring_buffer_nest_start() and after the 3181 * ring_buffer_unlock_commit(). 3182 */ 3183 void ring_buffer_nest_end(struct trace_buffer *buffer) 3184 { 3185 struct ring_buffer_per_cpu *cpu_buffer; 3186 int cpu; 3187 3188 /* disabled by ring_buffer_nest_start() */ 3189 cpu = raw_smp_processor_id(); 3190 cpu_buffer = buffer->buffers[cpu]; 3191 /* This is the shift value for the above recursive locking */ 3192 cpu_buffer->nest -= NESTED_BITS; 3193 preempt_enable_notrace(); 3194 } 3195 3196 /** 3197 * ring_buffer_unlock_commit - commit a reserved 3198 * @buffer: The buffer to commit to 3199 * 3200 * This commits the data to the ring buffer, and releases any locks held. 3201 * 3202 * Must be paired with ring_buffer_lock_reserve. 3203 */ 3204 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3205 { 3206 struct ring_buffer_per_cpu *cpu_buffer; 3207 int cpu = raw_smp_processor_id(); 3208 3209 cpu_buffer = buffer->buffers[cpu]; 3210 3211 rb_commit(cpu_buffer); 3212 3213 rb_wakeups(buffer, cpu_buffer); 3214 3215 trace_recursive_unlock(cpu_buffer); 3216 3217 preempt_enable_notrace(); 3218 3219 return 0; 3220 } 3221 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3222 3223 /* Special value to validate all deltas on a page. */ 3224 #define CHECK_FULL_PAGE 1L 3225 3226 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3227 3228 static const char *show_irq_str(int bits) 3229 { 3230 const char *type[] = { 3231 ".", // 0 3232 "s", // 1 3233 "h", // 2 3234 "Hs", // 3 3235 "n", // 4 3236 "Ns", // 5 3237 "Nh", // 6 3238 "NHs", // 7 3239 }; 3240 3241 return type[bits]; 3242 } 3243 3244 /* Assume this is an trace event */ 3245 static const char *show_flags(struct ring_buffer_event *event) 3246 { 3247 struct trace_entry *entry; 3248 int bits = 0; 3249 3250 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3251 return "X"; 3252 3253 entry = ring_buffer_event_data(event); 3254 3255 if (entry->flags & TRACE_FLAG_SOFTIRQ) 3256 bits |= 1; 3257 3258 if (entry->flags & TRACE_FLAG_HARDIRQ) 3259 bits |= 2; 3260 3261 if (entry->flags & TRACE_FLAG_NMI) 3262 bits |= 4; 3263 3264 return show_irq_str(bits); 3265 } 3266 3267 static const char *show_irq(struct ring_buffer_event *event) 3268 { 3269 struct trace_entry *entry; 3270 3271 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3272 return ""; 3273 3274 entry = ring_buffer_event_data(event); 3275 if (entry->flags & TRACE_FLAG_IRQS_OFF) 3276 return "d"; 3277 return ""; 3278 } 3279 3280 static const char *show_interrupt_level(void) 3281 { 3282 unsigned long pc = preempt_count(); 3283 unsigned char level = 0; 3284 3285 if (pc & SOFTIRQ_OFFSET) 3286 level |= 1; 3287 3288 if (pc & HARDIRQ_MASK) 3289 level |= 2; 3290 3291 if (pc & NMI_MASK) 3292 level |= 4; 3293 3294 return show_irq_str(level); 3295 } 3296 3297 static void dump_buffer_page(struct buffer_data_page *bpage, 3298 struct rb_event_info *info, 3299 unsigned long tail) 3300 { 3301 struct ring_buffer_event *event; 3302 u64 ts, delta; 3303 int e; 3304 3305 ts = bpage->time_stamp; 3306 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3307 3308 for (e = 0; e < tail; e += rb_event_length(event)) { 3309 3310 event = (struct ring_buffer_event *)(bpage->data + e); 3311 3312 switch (event->type_len) { 3313 3314 case RINGBUF_TYPE_TIME_EXTEND: 3315 delta = rb_event_time_stamp(event); 3316 ts += delta; 3317 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 3318 e, ts, delta); 3319 break; 3320 3321 case RINGBUF_TYPE_TIME_STAMP: 3322 delta = rb_event_time_stamp(event); 3323 ts = rb_fix_abs_ts(delta, ts); 3324 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 3325 e, ts, delta); 3326 break; 3327 3328 case RINGBUF_TYPE_PADDING: 3329 ts += event->time_delta; 3330 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 3331 e, ts, event->time_delta); 3332 break; 3333 3334 case RINGBUF_TYPE_DATA: 3335 ts += event->time_delta; 3336 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 3337 e, ts, event->time_delta, 3338 show_flags(event), show_irq(event)); 3339 break; 3340 3341 default: 3342 break; 3343 } 3344 } 3345 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 3346 } 3347 3348 static DEFINE_PER_CPU(atomic_t, checking); 3349 static atomic_t ts_dump; 3350 3351 #define buffer_warn_return(fmt, ...) \ 3352 do { \ 3353 /* If another report is happening, ignore this one */ \ 3354 if (atomic_inc_return(&ts_dump) != 1) { \ 3355 atomic_dec(&ts_dump); \ 3356 goto out; \ 3357 } \ 3358 atomic_inc(&cpu_buffer->record_disabled); \ 3359 pr_warn(fmt, ##__VA_ARGS__); \ 3360 dump_buffer_page(bpage, info, tail); \ 3361 atomic_dec(&ts_dump); \ 3362 /* There's some cases in boot up that this can happen */ \ 3363 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 3364 /* Do not re-enable checking */ \ 3365 return; \ 3366 } while (0) 3367 3368 /* 3369 * Check if the current event time stamp matches the deltas on 3370 * the buffer page. 3371 */ 3372 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3373 struct rb_event_info *info, 3374 unsigned long tail) 3375 { 3376 struct ring_buffer_event *event; 3377 struct buffer_data_page *bpage; 3378 u64 ts, delta; 3379 bool full = false; 3380 int e; 3381 3382 bpage = info->tail_page->page; 3383 3384 if (tail == CHECK_FULL_PAGE) { 3385 full = true; 3386 tail = local_read(&bpage->commit); 3387 } else if (info->add_timestamp & 3388 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3389 /* Ignore events with absolute time stamps */ 3390 return; 3391 } 3392 3393 /* 3394 * Do not check the first event (skip possible extends too). 3395 * Also do not check if previous events have not been committed. 3396 */ 3397 if (tail <= 8 || tail > local_read(&bpage->commit)) 3398 return; 3399 3400 /* 3401 * If this interrupted another event, 3402 */ 3403 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3404 goto out; 3405 3406 ts = bpage->time_stamp; 3407 3408 for (e = 0; e < tail; e += rb_event_length(event)) { 3409 3410 event = (struct ring_buffer_event *)(bpage->data + e); 3411 3412 switch (event->type_len) { 3413 3414 case RINGBUF_TYPE_TIME_EXTEND: 3415 delta = rb_event_time_stamp(event); 3416 ts += delta; 3417 break; 3418 3419 case RINGBUF_TYPE_TIME_STAMP: 3420 delta = rb_event_time_stamp(event); 3421 delta = rb_fix_abs_ts(delta, ts); 3422 if (delta < ts) { 3423 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 3424 cpu_buffer->cpu, ts, delta); 3425 } 3426 ts = delta; 3427 break; 3428 3429 case RINGBUF_TYPE_PADDING: 3430 if (event->time_delta == 1) 3431 break; 3432 fallthrough; 3433 case RINGBUF_TYPE_DATA: 3434 ts += event->time_delta; 3435 break; 3436 3437 default: 3438 RB_WARN_ON(cpu_buffer, 1); 3439 } 3440 } 3441 if ((full && ts > info->ts) || 3442 (!full && ts + info->delta != info->ts)) { 3443 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 3444 cpu_buffer->cpu, 3445 ts + info->delta, info->ts, info->delta, 3446 info->before, info->after, 3447 full ? " (full)" : "", show_interrupt_level()); 3448 } 3449 out: 3450 atomic_dec(this_cpu_ptr(&checking)); 3451 } 3452 #else 3453 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3454 struct rb_event_info *info, 3455 unsigned long tail) 3456 { 3457 } 3458 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3459 3460 static struct ring_buffer_event * 3461 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3462 struct rb_event_info *info) 3463 { 3464 struct ring_buffer_event *event; 3465 struct buffer_page *tail_page; 3466 unsigned long tail, write, w; 3467 3468 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3469 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3470 3471 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3472 barrier(); 3473 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3474 rb_time_read(&cpu_buffer->write_stamp, &info->after); 3475 barrier(); 3476 info->ts = rb_time_stamp(cpu_buffer->buffer); 3477 3478 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3479 info->delta = info->ts; 3480 } else { 3481 /* 3482 * If interrupting an event time update, we may need an 3483 * absolute timestamp. 3484 * Don't bother if this is the start of a new page (w == 0). 3485 */ 3486 if (!w) { 3487 /* Use the sub-buffer timestamp */ 3488 info->delta = 0; 3489 } else if (unlikely(info->before != info->after)) { 3490 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3491 info->length += RB_LEN_TIME_EXTEND; 3492 } else { 3493 info->delta = info->ts - info->after; 3494 if (unlikely(test_time_stamp(info->delta))) { 3495 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3496 info->length += RB_LEN_TIME_EXTEND; 3497 } 3498 } 3499 } 3500 3501 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3502 3503 /*C*/ write = local_add_return(info->length, &tail_page->write); 3504 3505 /* set write to only the index of the write */ 3506 write &= RB_WRITE_MASK; 3507 3508 tail = write - info->length; 3509 3510 /* See if we shot pass the end of this buffer page */ 3511 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 3512 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3513 return rb_move_tail(cpu_buffer, tail, info); 3514 } 3515 3516 if (likely(tail == w)) { 3517 /* Nothing interrupted us between A and C */ 3518 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3519 /* 3520 * If something came in between C and D, the write stamp 3521 * may now not be in sync. But that's fine as the before_stamp 3522 * will be different and then next event will just be forced 3523 * to use an absolute timestamp. 3524 */ 3525 if (likely(!(info->add_timestamp & 3526 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3527 /* This did not interrupt any time update */ 3528 info->delta = info->ts - info->after; 3529 else 3530 /* Just use full timestamp for interrupting event */ 3531 info->delta = info->ts; 3532 check_buffer(cpu_buffer, info, tail); 3533 } else { 3534 u64 ts; 3535 /* SLOW PATH - Interrupted between A and C */ 3536 3537 /* Save the old before_stamp */ 3538 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3539 3540 /* 3541 * Read a new timestamp and update the before_stamp to make 3542 * the next event after this one force using an absolute 3543 * timestamp. This is in case an interrupt were to come in 3544 * between E and F. 3545 */ 3546 ts = rb_time_stamp(cpu_buffer->buffer); 3547 rb_time_set(&cpu_buffer->before_stamp, ts); 3548 3549 barrier(); 3550 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 3551 barrier(); 3552 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3553 info->after == info->before && info->after < ts) { 3554 /* 3555 * Nothing came after this event between C and F, it is 3556 * safe to use info->after for the delta as it 3557 * matched info->before and is still valid. 3558 */ 3559 info->delta = ts - info->after; 3560 } else { 3561 /* 3562 * Interrupted between C and F: 3563 * Lost the previous events time stamp. Just set the 3564 * delta to zero, and this will be the same time as 3565 * the event this event interrupted. And the events that 3566 * came after this will still be correct (as they would 3567 * have built their delta on the previous event. 3568 */ 3569 info->delta = 0; 3570 } 3571 info->ts = ts; 3572 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3573 } 3574 3575 /* 3576 * If this is the first commit on the page, then it has the same 3577 * timestamp as the page itself. 3578 */ 3579 if (unlikely(!tail && !(info->add_timestamp & 3580 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3581 info->delta = 0; 3582 3583 /* We reserved something on the buffer */ 3584 3585 event = __rb_page_index(tail_page, tail); 3586 rb_update_event(cpu_buffer, event, info); 3587 3588 local_inc(&tail_page->entries); 3589 3590 /* 3591 * If this is the first commit on the page, then update 3592 * its timestamp. 3593 */ 3594 if (unlikely(!tail)) 3595 tail_page->page->time_stamp = info->ts; 3596 3597 /* account for these added bytes */ 3598 local_add(info->length, &cpu_buffer->entries_bytes); 3599 3600 return event; 3601 } 3602 3603 static __always_inline struct ring_buffer_event * 3604 rb_reserve_next_event(struct trace_buffer *buffer, 3605 struct ring_buffer_per_cpu *cpu_buffer, 3606 unsigned long length) 3607 { 3608 struct ring_buffer_event *event; 3609 struct rb_event_info info; 3610 int nr_loops = 0; 3611 int add_ts_default; 3612 3613 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 3614 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 3615 (unlikely(in_nmi()))) { 3616 return NULL; 3617 } 3618 3619 rb_start_commit(cpu_buffer); 3620 /* The commit page can not change after this */ 3621 3622 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3623 /* 3624 * Due to the ability to swap a cpu buffer from a buffer 3625 * it is possible it was swapped before we committed. 3626 * (committing stops a swap). We check for it here and 3627 * if it happened, we have to fail the write. 3628 */ 3629 barrier(); 3630 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3631 local_dec(&cpu_buffer->committing); 3632 local_dec(&cpu_buffer->commits); 3633 return NULL; 3634 } 3635 #endif 3636 3637 info.length = rb_calculate_event_length(length); 3638 3639 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3640 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3641 info.length += RB_LEN_TIME_EXTEND; 3642 if (info.length > cpu_buffer->buffer->max_data_size) 3643 goto out_fail; 3644 } else { 3645 add_ts_default = RB_ADD_STAMP_NONE; 3646 } 3647 3648 again: 3649 info.add_timestamp = add_ts_default; 3650 info.delta = 0; 3651 3652 /* 3653 * We allow for interrupts to reenter here and do a trace. 3654 * If one does, it will cause this original code to loop 3655 * back here. Even with heavy interrupts happening, this 3656 * should only happen a few times in a row. If this happens 3657 * 1000 times in a row, there must be either an interrupt 3658 * storm or we have something buggy. 3659 * Bail! 3660 */ 3661 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3662 goto out_fail; 3663 3664 event = __rb_reserve_next(cpu_buffer, &info); 3665 3666 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3667 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3668 info.length -= RB_LEN_TIME_EXTEND; 3669 goto again; 3670 } 3671 3672 if (likely(event)) 3673 return event; 3674 out_fail: 3675 rb_end_commit(cpu_buffer); 3676 return NULL; 3677 } 3678 3679 /** 3680 * ring_buffer_lock_reserve - reserve a part of the buffer 3681 * @buffer: the ring buffer to reserve from 3682 * @length: the length of the data to reserve (excluding event header) 3683 * 3684 * Returns a reserved event on the ring buffer to copy directly to. 3685 * The user of this interface will need to get the body to write into 3686 * and can use the ring_buffer_event_data() interface. 3687 * 3688 * The length is the length of the data needed, not the event length 3689 * which also includes the event header. 3690 * 3691 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3692 * If NULL is returned, then nothing has been allocated or locked. 3693 */ 3694 struct ring_buffer_event * 3695 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3696 { 3697 struct ring_buffer_per_cpu *cpu_buffer; 3698 struct ring_buffer_event *event; 3699 int cpu; 3700 3701 /* If we are tracing schedule, we don't want to recurse */ 3702 preempt_disable_notrace(); 3703 3704 if (unlikely(atomic_read(&buffer->record_disabled))) 3705 goto out; 3706 3707 cpu = raw_smp_processor_id(); 3708 3709 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3710 goto out; 3711 3712 cpu_buffer = buffer->buffers[cpu]; 3713 3714 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3715 goto out; 3716 3717 if (unlikely(length > buffer->max_data_size)) 3718 goto out; 3719 3720 if (unlikely(trace_recursive_lock(cpu_buffer))) 3721 goto out; 3722 3723 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3724 if (!event) 3725 goto out_unlock; 3726 3727 return event; 3728 3729 out_unlock: 3730 trace_recursive_unlock(cpu_buffer); 3731 out: 3732 preempt_enable_notrace(); 3733 return NULL; 3734 } 3735 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3736 3737 /* 3738 * Decrement the entries to the page that an event is on. 3739 * The event does not even need to exist, only the pointer 3740 * to the page it is on. This may only be called before the commit 3741 * takes place. 3742 */ 3743 static inline void 3744 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3745 struct ring_buffer_event *event) 3746 { 3747 unsigned long addr = (unsigned long)event; 3748 struct buffer_page *bpage = cpu_buffer->commit_page; 3749 struct buffer_page *start; 3750 3751 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3752 3753 /* Do the likely case first */ 3754 if (likely(bpage->page == (void *)addr)) { 3755 local_dec(&bpage->entries); 3756 return; 3757 } 3758 3759 /* 3760 * Because the commit page may be on the reader page we 3761 * start with the next page and check the end loop there. 3762 */ 3763 rb_inc_page(&bpage); 3764 start = bpage; 3765 do { 3766 if (bpage->page == (void *)addr) { 3767 local_dec(&bpage->entries); 3768 return; 3769 } 3770 rb_inc_page(&bpage); 3771 } while (bpage != start); 3772 3773 /* commit not part of this buffer?? */ 3774 RB_WARN_ON(cpu_buffer, 1); 3775 } 3776 3777 /** 3778 * ring_buffer_discard_commit - discard an event that has not been committed 3779 * @buffer: the ring buffer 3780 * @event: non committed event to discard 3781 * 3782 * Sometimes an event that is in the ring buffer needs to be ignored. 3783 * This function lets the user discard an event in the ring buffer 3784 * and then that event will not be read later. 3785 * 3786 * This function only works if it is called before the item has been 3787 * committed. It will try to free the event from the ring buffer 3788 * if another event has not been added behind it. 3789 * 3790 * If another event has been added behind it, it will set the event 3791 * up as discarded, and perform the commit. 3792 * 3793 * If this function is called, do not call ring_buffer_unlock_commit on 3794 * the event. 3795 */ 3796 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3797 struct ring_buffer_event *event) 3798 { 3799 struct ring_buffer_per_cpu *cpu_buffer; 3800 int cpu; 3801 3802 /* The event is discarded regardless */ 3803 rb_event_discard(event); 3804 3805 cpu = smp_processor_id(); 3806 cpu_buffer = buffer->buffers[cpu]; 3807 3808 /* 3809 * This must only be called if the event has not been 3810 * committed yet. Thus we can assume that preemption 3811 * is still disabled. 3812 */ 3813 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3814 3815 rb_decrement_entry(cpu_buffer, event); 3816 if (rb_try_to_discard(cpu_buffer, event)) 3817 goto out; 3818 3819 out: 3820 rb_end_commit(cpu_buffer); 3821 3822 trace_recursive_unlock(cpu_buffer); 3823 3824 preempt_enable_notrace(); 3825 3826 } 3827 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3828 3829 /** 3830 * ring_buffer_write - write data to the buffer without reserving 3831 * @buffer: The ring buffer to write to. 3832 * @length: The length of the data being written (excluding the event header) 3833 * @data: The data to write to the buffer. 3834 * 3835 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3836 * one function. If you already have the data to write to the buffer, it 3837 * may be easier to simply call this function. 3838 * 3839 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3840 * and not the length of the event which would hold the header. 3841 */ 3842 int ring_buffer_write(struct trace_buffer *buffer, 3843 unsigned long length, 3844 void *data) 3845 { 3846 struct ring_buffer_per_cpu *cpu_buffer; 3847 struct ring_buffer_event *event; 3848 void *body; 3849 int ret = -EBUSY; 3850 int cpu; 3851 3852 preempt_disable_notrace(); 3853 3854 if (atomic_read(&buffer->record_disabled)) 3855 goto out; 3856 3857 cpu = raw_smp_processor_id(); 3858 3859 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3860 goto out; 3861 3862 cpu_buffer = buffer->buffers[cpu]; 3863 3864 if (atomic_read(&cpu_buffer->record_disabled)) 3865 goto out; 3866 3867 if (length > buffer->max_data_size) 3868 goto out; 3869 3870 if (unlikely(trace_recursive_lock(cpu_buffer))) 3871 goto out; 3872 3873 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3874 if (!event) 3875 goto out_unlock; 3876 3877 body = rb_event_data(event); 3878 3879 memcpy(body, data, length); 3880 3881 rb_commit(cpu_buffer); 3882 3883 rb_wakeups(buffer, cpu_buffer); 3884 3885 ret = 0; 3886 3887 out_unlock: 3888 trace_recursive_unlock(cpu_buffer); 3889 3890 out: 3891 preempt_enable_notrace(); 3892 3893 return ret; 3894 } 3895 EXPORT_SYMBOL_GPL(ring_buffer_write); 3896 3897 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3898 { 3899 struct buffer_page *reader = cpu_buffer->reader_page; 3900 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3901 struct buffer_page *commit = cpu_buffer->commit_page; 3902 3903 /* In case of error, head will be NULL */ 3904 if (unlikely(!head)) 3905 return true; 3906 3907 /* Reader should exhaust content in reader page */ 3908 if (reader->read != rb_page_commit(reader)) 3909 return false; 3910 3911 /* 3912 * If writers are committing on the reader page, knowing all 3913 * committed content has been read, the ring buffer is empty. 3914 */ 3915 if (commit == reader) 3916 return true; 3917 3918 /* 3919 * If writers are committing on a page other than reader page 3920 * and head page, there should always be content to read. 3921 */ 3922 if (commit != head) 3923 return false; 3924 3925 /* 3926 * Writers are committing on the head page, we just need 3927 * to care about there're committed data, and the reader will 3928 * swap reader page with head page when it is to read data. 3929 */ 3930 return rb_page_commit(commit) == 0; 3931 } 3932 3933 /** 3934 * ring_buffer_record_disable - stop all writes into the buffer 3935 * @buffer: The ring buffer to stop writes to. 3936 * 3937 * This prevents all writes to the buffer. Any attempt to write 3938 * to the buffer after this will fail and return NULL. 3939 * 3940 * The caller should call synchronize_rcu() after this. 3941 */ 3942 void ring_buffer_record_disable(struct trace_buffer *buffer) 3943 { 3944 atomic_inc(&buffer->record_disabled); 3945 } 3946 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3947 3948 /** 3949 * ring_buffer_record_enable - enable writes to the buffer 3950 * @buffer: The ring buffer to enable writes 3951 * 3952 * Note, multiple disables will need the same number of enables 3953 * to truly enable the writing (much like preempt_disable). 3954 */ 3955 void ring_buffer_record_enable(struct trace_buffer *buffer) 3956 { 3957 atomic_dec(&buffer->record_disabled); 3958 } 3959 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3960 3961 /** 3962 * ring_buffer_record_off - stop all writes into the buffer 3963 * @buffer: The ring buffer to stop writes to. 3964 * 3965 * This prevents all writes to the buffer. Any attempt to write 3966 * to the buffer after this will fail and return NULL. 3967 * 3968 * This is different than ring_buffer_record_disable() as 3969 * it works like an on/off switch, where as the disable() version 3970 * must be paired with a enable(). 3971 */ 3972 void ring_buffer_record_off(struct trace_buffer *buffer) 3973 { 3974 unsigned int rd; 3975 unsigned int new_rd; 3976 3977 rd = atomic_read(&buffer->record_disabled); 3978 do { 3979 new_rd = rd | RB_BUFFER_OFF; 3980 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 3981 } 3982 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3983 3984 /** 3985 * ring_buffer_record_on - restart writes into the buffer 3986 * @buffer: The ring buffer to start writes to. 3987 * 3988 * This enables all writes to the buffer that was disabled by 3989 * ring_buffer_record_off(). 3990 * 3991 * This is different than ring_buffer_record_enable() as 3992 * it works like an on/off switch, where as the enable() version 3993 * must be paired with a disable(). 3994 */ 3995 void ring_buffer_record_on(struct trace_buffer *buffer) 3996 { 3997 unsigned int rd; 3998 unsigned int new_rd; 3999 4000 rd = atomic_read(&buffer->record_disabled); 4001 do { 4002 new_rd = rd & ~RB_BUFFER_OFF; 4003 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4004 } 4005 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4006 4007 /** 4008 * ring_buffer_record_is_on - return true if the ring buffer can write 4009 * @buffer: The ring buffer to see if write is enabled 4010 * 4011 * Returns true if the ring buffer is in a state that it accepts writes. 4012 */ 4013 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4014 { 4015 return !atomic_read(&buffer->record_disabled); 4016 } 4017 4018 /** 4019 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4020 * @buffer: The ring buffer to see if write is set enabled 4021 * 4022 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4023 * Note that this does NOT mean it is in a writable state. 4024 * 4025 * It may return true when the ring buffer has been disabled by 4026 * ring_buffer_record_disable(), as that is a temporary disabling of 4027 * the ring buffer. 4028 */ 4029 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4030 { 4031 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4032 } 4033 4034 /** 4035 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4036 * @buffer: The ring buffer to stop writes to. 4037 * @cpu: The CPU buffer to stop 4038 * 4039 * This prevents all writes to the buffer. Any attempt to write 4040 * to the buffer after this will fail and return NULL. 4041 * 4042 * The caller should call synchronize_rcu() after this. 4043 */ 4044 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4045 { 4046 struct ring_buffer_per_cpu *cpu_buffer; 4047 4048 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4049 return; 4050 4051 cpu_buffer = buffer->buffers[cpu]; 4052 atomic_inc(&cpu_buffer->record_disabled); 4053 } 4054 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4055 4056 /** 4057 * ring_buffer_record_enable_cpu - enable writes to the buffer 4058 * @buffer: The ring buffer to enable writes 4059 * @cpu: The CPU to enable. 4060 * 4061 * Note, multiple disables will need the same number of enables 4062 * to truly enable the writing (much like preempt_disable). 4063 */ 4064 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4065 { 4066 struct ring_buffer_per_cpu *cpu_buffer; 4067 4068 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4069 return; 4070 4071 cpu_buffer = buffer->buffers[cpu]; 4072 atomic_dec(&cpu_buffer->record_disabled); 4073 } 4074 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4075 4076 /* 4077 * The total entries in the ring buffer is the running counter 4078 * of entries entered into the ring buffer, minus the sum of 4079 * the entries read from the ring buffer and the number of 4080 * entries that were overwritten. 4081 */ 4082 static inline unsigned long 4083 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4084 { 4085 return local_read(&cpu_buffer->entries) - 4086 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4087 } 4088 4089 /** 4090 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4091 * @buffer: The ring buffer 4092 * @cpu: The per CPU buffer to read from. 4093 */ 4094 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4095 { 4096 unsigned long flags; 4097 struct ring_buffer_per_cpu *cpu_buffer; 4098 struct buffer_page *bpage; 4099 u64 ret = 0; 4100 4101 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4102 return 0; 4103 4104 cpu_buffer = buffer->buffers[cpu]; 4105 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4106 /* 4107 * if the tail is on reader_page, oldest time stamp is on the reader 4108 * page 4109 */ 4110 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4111 bpage = cpu_buffer->reader_page; 4112 else 4113 bpage = rb_set_head_page(cpu_buffer); 4114 if (bpage) 4115 ret = bpage->page->time_stamp; 4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4117 4118 return ret; 4119 } 4120 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4121 4122 /** 4123 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4124 * @buffer: The ring buffer 4125 * @cpu: The per CPU buffer to read from. 4126 */ 4127 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4128 { 4129 struct ring_buffer_per_cpu *cpu_buffer; 4130 unsigned long ret; 4131 4132 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4133 return 0; 4134 4135 cpu_buffer = buffer->buffers[cpu]; 4136 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4137 4138 return ret; 4139 } 4140 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4141 4142 /** 4143 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4144 * @buffer: The ring buffer 4145 * @cpu: The per CPU buffer to get the entries from. 4146 */ 4147 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4148 { 4149 struct ring_buffer_per_cpu *cpu_buffer; 4150 4151 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4152 return 0; 4153 4154 cpu_buffer = buffer->buffers[cpu]; 4155 4156 return rb_num_of_entries(cpu_buffer); 4157 } 4158 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4159 4160 /** 4161 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4162 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4163 * @buffer: The ring buffer 4164 * @cpu: The per CPU buffer to get the number of overruns from 4165 */ 4166 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4167 { 4168 struct ring_buffer_per_cpu *cpu_buffer; 4169 unsigned long ret; 4170 4171 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4172 return 0; 4173 4174 cpu_buffer = buffer->buffers[cpu]; 4175 ret = local_read(&cpu_buffer->overrun); 4176 4177 return ret; 4178 } 4179 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4180 4181 /** 4182 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4183 * commits failing due to the buffer wrapping around while there are uncommitted 4184 * events, such as during an interrupt storm. 4185 * @buffer: The ring buffer 4186 * @cpu: The per CPU buffer to get the number of overruns from 4187 */ 4188 unsigned long 4189 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4190 { 4191 struct ring_buffer_per_cpu *cpu_buffer; 4192 unsigned long ret; 4193 4194 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4195 return 0; 4196 4197 cpu_buffer = buffer->buffers[cpu]; 4198 ret = local_read(&cpu_buffer->commit_overrun); 4199 4200 return ret; 4201 } 4202 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4203 4204 /** 4205 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4206 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4207 * @buffer: The ring buffer 4208 * @cpu: The per CPU buffer to get the number of overruns from 4209 */ 4210 unsigned long 4211 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4212 { 4213 struct ring_buffer_per_cpu *cpu_buffer; 4214 unsigned long ret; 4215 4216 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4217 return 0; 4218 4219 cpu_buffer = buffer->buffers[cpu]; 4220 ret = local_read(&cpu_buffer->dropped_events); 4221 4222 return ret; 4223 } 4224 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4225 4226 /** 4227 * ring_buffer_read_events_cpu - get the number of events successfully read 4228 * @buffer: The ring buffer 4229 * @cpu: The per CPU buffer to get the number of events read 4230 */ 4231 unsigned long 4232 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4233 { 4234 struct ring_buffer_per_cpu *cpu_buffer; 4235 4236 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4237 return 0; 4238 4239 cpu_buffer = buffer->buffers[cpu]; 4240 return cpu_buffer->read; 4241 } 4242 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4243 4244 /** 4245 * ring_buffer_entries - get the number of entries in a buffer 4246 * @buffer: The ring buffer 4247 * 4248 * Returns the total number of entries in the ring buffer 4249 * (all CPU entries) 4250 */ 4251 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4252 { 4253 struct ring_buffer_per_cpu *cpu_buffer; 4254 unsigned long entries = 0; 4255 int cpu; 4256 4257 /* if you care about this being correct, lock the buffer */ 4258 for_each_buffer_cpu(buffer, cpu) { 4259 cpu_buffer = buffer->buffers[cpu]; 4260 entries += rb_num_of_entries(cpu_buffer); 4261 } 4262 4263 return entries; 4264 } 4265 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4266 4267 /** 4268 * ring_buffer_overruns - get the number of overruns in buffer 4269 * @buffer: The ring buffer 4270 * 4271 * Returns the total number of overruns in the ring buffer 4272 * (all CPU entries) 4273 */ 4274 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4275 { 4276 struct ring_buffer_per_cpu *cpu_buffer; 4277 unsigned long overruns = 0; 4278 int cpu; 4279 4280 /* if you care about this being correct, lock the buffer */ 4281 for_each_buffer_cpu(buffer, cpu) { 4282 cpu_buffer = buffer->buffers[cpu]; 4283 overruns += local_read(&cpu_buffer->overrun); 4284 } 4285 4286 return overruns; 4287 } 4288 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4289 4290 static void rb_iter_reset(struct ring_buffer_iter *iter) 4291 { 4292 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4293 4294 /* Iterator usage is expected to have record disabled */ 4295 iter->head_page = cpu_buffer->reader_page; 4296 iter->head = cpu_buffer->reader_page->read; 4297 iter->next_event = iter->head; 4298 4299 iter->cache_reader_page = iter->head_page; 4300 iter->cache_read = cpu_buffer->read; 4301 iter->cache_pages_removed = cpu_buffer->pages_removed; 4302 4303 if (iter->head) { 4304 iter->read_stamp = cpu_buffer->read_stamp; 4305 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4306 } else { 4307 iter->read_stamp = iter->head_page->page->time_stamp; 4308 iter->page_stamp = iter->read_stamp; 4309 } 4310 } 4311 4312 /** 4313 * ring_buffer_iter_reset - reset an iterator 4314 * @iter: The iterator to reset 4315 * 4316 * Resets the iterator, so that it will start from the beginning 4317 * again. 4318 */ 4319 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4320 { 4321 struct ring_buffer_per_cpu *cpu_buffer; 4322 unsigned long flags; 4323 4324 if (!iter) 4325 return; 4326 4327 cpu_buffer = iter->cpu_buffer; 4328 4329 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4330 rb_iter_reset(iter); 4331 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4332 } 4333 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4334 4335 /** 4336 * ring_buffer_iter_empty - check if an iterator has no more to read 4337 * @iter: The iterator to check 4338 */ 4339 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4340 { 4341 struct ring_buffer_per_cpu *cpu_buffer; 4342 struct buffer_page *reader; 4343 struct buffer_page *head_page; 4344 struct buffer_page *commit_page; 4345 struct buffer_page *curr_commit_page; 4346 unsigned commit; 4347 u64 curr_commit_ts; 4348 u64 commit_ts; 4349 4350 cpu_buffer = iter->cpu_buffer; 4351 reader = cpu_buffer->reader_page; 4352 head_page = cpu_buffer->head_page; 4353 commit_page = cpu_buffer->commit_page; 4354 commit_ts = commit_page->page->time_stamp; 4355 4356 /* 4357 * When the writer goes across pages, it issues a cmpxchg which 4358 * is a mb(), which will synchronize with the rmb here. 4359 * (see rb_tail_page_update()) 4360 */ 4361 smp_rmb(); 4362 commit = rb_page_commit(commit_page); 4363 /* We want to make sure that the commit page doesn't change */ 4364 smp_rmb(); 4365 4366 /* Make sure commit page didn't change */ 4367 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4368 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4369 4370 /* If the commit page changed, then there's more data */ 4371 if (curr_commit_page != commit_page || 4372 curr_commit_ts != commit_ts) 4373 return 0; 4374 4375 /* Still racy, as it may return a false positive, but that's OK */ 4376 return ((iter->head_page == commit_page && iter->head >= commit) || 4377 (iter->head_page == reader && commit_page == head_page && 4378 head_page->read == commit && 4379 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4380 } 4381 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4382 4383 static void 4384 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4385 struct ring_buffer_event *event) 4386 { 4387 u64 delta; 4388 4389 switch (event->type_len) { 4390 case RINGBUF_TYPE_PADDING: 4391 return; 4392 4393 case RINGBUF_TYPE_TIME_EXTEND: 4394 delta = rb_event_time_stamp(event); 4395 cpu_buffer->read_stamp += delta; 4396 return; 4397 4398 case RINGBUF_TYPE_TIME_STAMP: 4399 delta = rb_event_time_stamp(event); 4400 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4401 cpu_buffer->read_stamp = delta; 4402 return; 4403 4404 case RINGBUF_TYPE_DATA: 4405 cpu_buffer->read_stamp += event->time_delta; 4406 return; 4407 4408 default: 4409 RB_WARN_ON(cpu_buffer, 1); 4410 } 4411 } 4412 4413 static void 4414 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4415 struct ring_buffer_event *event) 4416 { 4417 u64 delta; 4418 4419 switch (event->type_len) { 4420 case RINGBUF_TYPE_PADDING: 4421 return; 4422 4423 case RINGBUF_TYPE_TIME_EXTEND: 4424 delta = rb_event_time_stamp(event); 4425 iter->read_stamp += delta; 4426 return; 4427 4428 case RINGBUF_TYPE_TIME_STAMP: 4429 delta = rb_event_time_stamp(event); 4430 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4431 iter->read_stamp = delta; 4432 return; 4433 4434 case RINGBUF_TYPE_DATA: 4435 iter->read_stamp += event->time_delta; 4436 return; 4437 4438 default: 4439 RB_WARN_ON(iter->cpu_buffer, 1); 4440 } 4441 } 4442 4443 static struct buffer_page * 4444 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4445 { 4446 struct buffer_page *reader = NULL; 4447 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 4448 unsigned long overwrite; 4449 unsigned long flags; 4450 int nr_loops = 0; 4451 bool ret; 4452 4453 local_irq_save(flags); 4454 arch_spin_lock(&cpu_buffer->lock); 4455 4456 again: 4457 /* 4458 * This should normally only loop twice. But because the 4459 * start of the reader inserts an empty page, it causes 4460 * a case where we will loop three times. There should be no 4461 * reason to loop four times (that I know of). 4462 */ 4463 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4464 reader = NULL; 4465 goto out; 4466 } 4467 4468 reader = cpu_buffer->reader_page; 4469 4470 /* If there's more to read, return this page */ 4471 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4472 goto out; 4473 4474 /* Never should we have an index greater than the size */ 4475 if (RB_WARN_ON(cpu_buffer, 4476 cpu_buffer->reader_page->read > rb_page_size(reader))) 4477 goto out; 4478 4479 /* check if we caught up to the tail */ 4480 reader = NULL; 4481 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4482 goto out; 4483 4484 /* Don't bother swapping if the ring buffer is empty */ 4485 if (rb_num_of_entries(cpu_buffer) == 0) 4486 goto out; 4487 4488 /* 4489 * Reset the reader page to size zero. 4490 */ 4491 local_set(&cpu_buffer->reader_page->write, 0); 4492 local_set(&cpu_buffer->reader_page->entries, 0); 4493 local_set(&cpu_buffer->reader_page->page->commit, 0); 4494 cpu_buffer->reader_page->real_end = 0; 4495 4496 spin: 4497 /* 4498 * Splice the empty reader page into the list around the head. 4499 */ 4500 reader = rb_set_head_page(cpu_buffer); 4501 if (!reader) 4502 goto out; 4503 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4504 cpu_buffer->reader_page->list.prev = reader->list.prev; 4505 4506 /* 4507 * cpu_buffer->pages just needs to point to the buffer, it 4508 * has no specific buffer page to point to. Lets move it out 4509 * of our way so we don't accidentally swap it. 4510 */ 4511 cpu_buffer->pages = reader->list.prev; 4512 4513 /* The reader page will be pointing to the new head */ 4514 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4515 4516 /* 4517 * We want to make sure we read the overruns after we set up our 4518 * pointers to the next object. The writer side does a 4519 * cmpxchg to cross pages which acts as the mb on the writer 4520 * side. Note, the reader will constantly fail the swap 4521 * while the writer is updating the pointers, so this 4522 * guarantees that the overwrite recorded here is the one we 4523 * want to compare with the last_overrun. 4524 */ 4525 smp_mb(); 4526 overwrite = local_read(&(cpu_buffer->overrun)); 4527 4528 /* 4529 * Here's the tricky part. 4530 * 4531 * We need to move the pointer past the header page. 4532 * But we can only do that if a writer is not currently 4533 * moving it. The page before the header page has the 4534 * flag bit '1' set if it is pointing to the page we want. 4535 * but if the writer is in the process of moving it 4536 * than it will be '2' or already moved '0'. 4537 */ 4538 4539 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4540 4541 /* 4542 * If we did not convert it, then we must try again. 4543 */ 4544 if (!ret) 4545 goto spin; 4546 4547 /* 4548 * Yay! We succeeded in replacing the page. 4549 * 4550 * Now make the new head point back to the reader page. 4551 */ 4552 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4553 rb_inc_page(&cpu_buffer->head_page); 4554 4555 local_inc(&cpu_buffer->pages_read); 4556 4557 /* Finally update the reader page to the new head */ 4558 cpu_buffer->reader_page = reader; 4559 cpu_buffer->reader_page->read = 0; 4560 4561 if (overwrite != cpu_buffer->last_overrun) { 4562 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4563 cpu_buffer->last_overrun = overwrite; 4564 } 4565 4566 goto again; 4567 4568 out: 4569 /* Update the read_stamp on the first event */ 4570 if (reader && reader->read == 0) 4571 cpu_buffer->read_stamp = reader->page->time_stamp; 4572 4573 arch_spin_unlock(&cpu_buffer->lock); 4574 local_irq_restore(flags); 4575 4576 /* 4577 * The writer has preempt disable, wait for it. But not forever 4578 * Although, 1 second is pretty much "forever" 4579 */ 4580 #define USECS_WAIT 1000000 4581 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4582 /* If the write is past the end of page, a writer is still updating it */ 4583 if (likely(!reader || rb_page_write(reader) <= bsize)) 4584 break; 4585 4586 udelay(1); 4587 4588 /* Get the latest version of the reader write value */ 4589 smp_rmb(); 4590 } 4591 4592 /* The writer is not moving forward? Something is wrong */ 4593 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4594 reader = NULL; 4595 4596 /* 4597 * Make sure we see any padding after the write update 4598 * (see rb_reset_tail()). 4599 * 4600 * In addition, a writer may be writing on the reader page 4601 * if the page has not been fully filled, so the read barrier 4602 * is also needed to make sure we see the content of what is 4603 * committed by the writer (see rb_set_commit_to_write()). 4604 */ 4605 smp_rmb(); 4606 4607 4608 return reader; 4609 } 4610 4611 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4612 { 4613 struct ring_buffer_event *event; 4614 struct buffer_page *reader; 4615 unsigned length; 4616 4617 reader = rb_get_reader_page(cpu_buffer); 4618 4619 /* This function should not be called when buffer is empty */ 4620 if (RB_WARN_ON(cpu_buffer, !reader)) 4621 return; 4622 4623 event = rb_reader_event(cpu_buffer); 4624 4625 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4626 cpu_buffer->read++; 4627 4628 rb_update_read_stamp(cpu_buffer, event); 4629 4630 length = rb_event_length(event); 4631 cpu_buffer->reader_page->read += length; 4632 cpu_buffer->read_bytes += length; 4633 } 4634 4635 static void rb_advance_iter(struct ring_buffer_iter *iter) 4636 { 4637 struct ring_buffer_per_cpu *cpu_buffer; 4638 4639 cpu_buffer = iter->cpu_buffer; 4640 4641 /* If head == next_event then we need to jump to the next event */ 4642 if (iter->head == iter->next_event) { 4643 /* If the event gets overwritten again, there's nothing to do */ 4644 if (rb_iter_head_event(iter) == NULL) 4645 return; 4646 } 4647 4648 iter->head = iter->next_event; 4649 4650 /* 4651 * Check if we are at the end of the buffer. 4652 */ 4653 if (iter->next_event >= rb_page_size(iter->head_page)) { 4654 /* discarded commits can make the page empty */ 4655 if (iter->head_page == cpu_buffer->commit_page) 4656 return; 4657 rb_inc_iter(iter); 4658 return; 4659 } 4660 4661 rb_update_iter_read_stamp(iter, iter->event); 4662 } 4663 4664 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4665 { 4666 return cpu_buffer->lost_events; 4667 } 4668 4669 static struct ring_buffer_event * 4670 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4671 unsigned long *lost_events) 4672 { 4673 struct ring_buffer_event *event; 4674 struct buffer_page *reader; 4675 int nr_loops = 0; 4676 4677 if (ts) 4678 *ts = 0; 4679 again: 4680 /* 4681 * We repeat when a time extend is encountered. 4682 * Since the time extend is always attached to a data event, 4683 * we should never loop more than once. 4684 * (We never hit the following condition more than twice). 4685 */ 4686 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4687 return NULL; 4688 4689 reader = rb_get_reader_page(cpu_buffer); 4690 if (!reader) 4691 return NULL; 4692 4693 event = rb_reader_event(cpu_buffer); 4694 4695 switch (event->type_len) { 4696 case RINGBUF_TYPE_PADDING: 4697 if (rb_null_event(event)) 4698 RB_WARN_ON(cpu_buffer, 1); 4699 /* 4700 * Because the writer could be discarding every 4701 * event it creates (which would probably be bad) 4702 * if we were to go back to "again" then we may never 4703 * catch up, and will trigger the warn on, or lock 4704 * the box. Return the padding, and we will release 4705 * the current locks, and try again. 4706 */ 4707 return event; 4708 4709 case RINGBUF_TYPE_TIME_EXTEND: 4710 /* Internal data, OK to advance */ 4711 rb_advance_reader(cpu_buffer); 4712 goto again; 4713 4714 case RINGBUF_TYPE_TIME_STAMP: 4715 if (ts) { 4716 *ts = rb_event_time_stamp(event); 4717 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4718 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4719 cpu_buffer->cpu, ts); 4720 } 4721 /* Internal data, OK to advance */ 4722 rb_advance_reader(cpu_buffer); 4723 goto again; 4724 4725 case RINGBUF_TYPE_DATA: 4726 if (ts && !(*ts)) { 4727 *ts = cpu_buffer->read_stamp + event->time_delta; 4728 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4729 cpu_buffer->cpu, ts); 4730 } 4731 if (lost_events) 4732 *lost_events = rb_lost_events(cpu_buffer); 4733 return event; 4734 4735 default: 4736 RB_WARN_ON(cpu_buffer, 1); 4737 } 4738 4739 return NULL; 4740 } 4741 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4742 4743 static struct ring_buffer_event * 4744 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4745 { 4746 struct trace_buffer *buffer; 4747 struct ring_buffer_per_cpu *cpu_buffer; 4748 struct ring_buffer_event *event; 4749 int nr_loops = 0; 4750 4751 if (ts) 4752 *ts = 0; 4753 4754 cpu_buffer = iter->cpu_buffer; 4755 buffer = cpu_buffer->buffer; 4756 4757 /* 4758 * Check if someone performed a consuming read to the buffer 4759 * or removed some pages from the buffer. In these cases, 4760 * iterator was invalidated and we need to reset it. 4761 */ 4762 if (unlikely(iter->cache_read != cpu_buffer->read || 4763 iter->cache_reader_page != cpu_buffer->reader_page || 4764 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4765 rb_iter_reset(iter); 4766 4767 again: 4768 if (ring_buffer_iter_empty(iter)) 4769 return NULL; 4770 4771 /* 4772 * As the writer can mess with what the iterator is trying 4773 * to read, just give up if we fail to get an event after 4774 * three tries. The iterator is not as reliable when reading 4775 * the ring buffer with an active write as the consumer is. 4776 * Do not warn if the three failures is reached. 4777 */ 4778 if (++nr_loops > 3) 4779 return NULL; 4780 4781 if (rb_per_cpu_empty(cpu_buffer)) 4782 return NULL; 4783 4784 if (iter->head >= rb_page_size(iter->head_page)) { 4785 rb_inc_iter(iter); 4786 goto again; 4787 } 4788 4789 event = rb_iter_head_event(iter); 4790 if (!event) 4791 goto again; 4792 4793 switch (event->type_len) { 4794 case RINGBUF_TYPE_PADDING: 4795 if (rb_null_event(event)) { 4796 rb_inc_iter(iter); 4797 goto again; 4798 } 4799 rb_advance_iter(iter); 4800 return event; 4801 4802 case RINGBUF_TYPE_TIME_EXTEND: 4803 /* Internal data, OK to advance */ 4804 rb_advance_iter(iter); 4805 goto again; 4806 4807 case RINGBUF_TYPE_TIME_STAMP: 4808 if (ts) { 4809 *ts = rb_event_time_stamp(event); 4810 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4811 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4812 cpu_buffer->cpu, ts); 4813 } 4814 /* Internal data, OK to advance */ 4815 rb_advance_iter(iter); 4816 goto again; 4817 4818 case RINGBUF_TYPE_DATA: 4819 if (ts && !(*ts)) { 4820 *ts = iter->read_stamp + event->time_delta; 4821 ring_buffer_normalize_time_stamp(buffer, 4822 cpu_buffer->cpu, ts); 4823 } 4824 return event; 4825 4826 default: 4827 RB_WARN_ON(cpu_buffer, 1); 4828 } 4829 4830 return NULL; 4831 } 4832 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4833 4834 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4835 { 4836 if (likely(!in_nmi())) { 4837 raw_spin_lock(&cpu_buffer->reader_lock); 4838 return true; 4839 } 4840 4841 /* 4842 * If an NMI die dumps out the content of the ring buffer 4843 * trylock must be used to prevent a deadlock if the NMI 4844 * preempted a task that holds the ring buffer locks. If 4845 * we get the lock then all is fine, if not, then continue 4846 * to do the read, but this can corrupt the ring buffer, 4847 * so it must be permanently disabled from future writes. 4848 * Reading from NMI is a oneshot deal. 4849 */ 4850 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4851 return true; 4852 4853 /* Continue without locking, but disable the ring buffer */ 4854 atomic_inc(&cpu_buffer->record_disabled); 4855 return false; 4856 } 4857 4858 static inline void 4859 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4860 { 4861 if (likely(locked)) 4862 raw_spin_unlock(&cpu_buffer->reader_lock); 4863 } 4864 4865 /** 4866 * ring_buffer_peek - peek at the next event to be read 4867 * @buffer: The ring buffer to read 4868 * @cpu: The cpu to peak at 4869 * @ts: The timestamp counter of this event. 4870 * @lost_events: a variable to store if events were lost (may be NULL) 4871 * 4872 * This will return the event that will be read next, but does 4873 * not consume the data. 4874 */ 4875 struct ring_buffer_event * 4876 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4877 unsigned long *lost_events) 4878 { 4879 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4880 struct ring_buffer_event *event; 4881 unsigned long flags; 4882 bool dolock; 4883 4884 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4885 return NULL; 4886 4887 again: 4888 local_irq_save(flags); 4889 dolock = rb_reader_lock(cpu_buffer); 4890 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4891 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4892 rb_advance_reader(cpu_buffer); 4893 rb_reader_unlock(cpu_buffer, dolock); 4894 local_irq_restore(flags); 4895 4896 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4897 goto again; 4898 4899 return event; 4900 } 4901 4902 /** ring_buffer_iter_dropped - report if there are dropped events 4903 * @iter: The ring buffer iterator 4904 * 4905 * Returns true if there was dropped events since the last peek. 4906 */ 4907 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4908 { 4909 bool ret = iter->missed_events != 0; 4910 4911 iter->missed_events = 0; 4912 return ret; 4913 } 4914 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4915 4916 /** 4917 * ring_buffer_iter_peek - peek at the next event to be read 4918 * @iter: The ring buffer iterator 4919 * @ts: The timestamp counter of this event. 4920 * 4921 * This will return the event that will be read next, but does 4922 * not increment the iterator. 4923 */ 4924 struct ring_buffer_event * 4925 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4926 { 4927 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4928 struct ring_buffer_event *event; 4929 unsigned long flags; 4930 4931 again: 4932 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4933 event = rb_iter_peek(iter, ts); 4934 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4935 4936 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4937 goto again; 4938 4939 return event; 4940 } 4941 4942 /** 4943 * ring_buffer_consume - return an event and consume it 4944 * @buffer: The ring buffer to get the next event from 4945 * @cpu: the cpu to read the buffer from 4946 * @ts: a variable to store the timestamp (may be NULL) 4947 * @lost_events: a variable to store if events were lost (may be NULL) 4948 * 4949 * Returns the next event in the ring buffer, and that event is consumed. 4950 * Meaning, that sequential reads will keep returning a different event, 4951 * and eventually empty the ring buffer if the producer is slower. 4952 */ 4953 struct ring_buffer_event * 4954 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4955 unsigned long *lost_events) 4956 { 4957 struct ring_buffer_per_cpu *cpu_buffer; 4958 struct ring_buffer_event *event = NULL; 4959 unsigned long flags; 4960 bool dolock; 4961 4962 again: 4963 /* might be called in atomic */ 4964 preempt_disable(); 4965 4966 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4967 goto out; 4968 4969 cpu_buffer = buffer->buffers[cpu]; 4970 local_irq_save(flags); 4971 dolock = rb_reader_lock(cpu_buffer); 4972 4973 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4974 if (event) { 4975 cpu_buffer->lost_events = 0; 4976 rb_advance_reader(cpu_buffer); 4977 } 4978 4979 rb_reader_unlock(cpu_buffer, dolock); 4980 local_irq_restore(flags); 4981 4982 out: 4983 preempt_enable(); 4984 4985 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4986 goto again; 4987 4988 return event; 4989 } 4990 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4991 4992 /** 4993 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4994 * @buffer: The ring buffer to read from 4995 * @cpu: The cpu buffer to iterate over 4996 * @flags: gfp flags to use for memory allocation 4997 * 4998 * This performs the initial preparations necessary to iterate 4999 * through the buffer. Memory is allocated, buffer recording 5000 * is disabled, and the iterator pointer is returned to the caller. 5001 * 5002 * Disabling buffer recording prevents the reading from being 5003 * corrupted. This is not a consuming read, so a producer is not 5004 * expected. 5005 * 5006 * After a sequence of ring_buffer_read_prepare calls, the user is 5007 * expected to make at least one call to ring_buffer_read_prepare_sync. 5008 * Afterwards, ring_buffer_read_start is invoked to get things going 5009 * for real. 5010 * 5011 * This overall must be paired with ring_buffer_read_finish. 5012 */ 5013 struct ring_buffer_iter * 5014 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5015 { 5016 struct ring_buffer_per_cpu *cpu_buffer; 5017 struct ring_buffer_iter *iter; 5018 5019 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5020 return NULL; 5021 5022 iter = kzalloc(sizeof(*iter), flags); 5023 if (!iter) 5024 return NULL; 5025 5026 /* Holds the entire event: data and meta data */ 5027 iter->event_size = buffer->subbuf_size; 5028 iter->event = kmalloc(iter->event_size, flags); 5029 if (!iter->event) { 5030 kfree(iter); 5031 return NULL; 5032 } 5033 5034 cpu_buffer = buffer->buffers[cpu]; 5035 5036 iter->cpu_buffer = cpu_buffer; 5037 5038 atomic_inc(&cpu_buffer->resize_disabled); 5039 5040 return iter; 5041 } 5042 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5043 5044 /** 5045 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5046 * 5047 * All previously invoked ring_buffer_read_prepare calls to prepare 5048 * iterators will be synchronized. Afterwards, read_buffer_read_start 5049 * calls on those iterators are allowed. 5050 */ 5051 void 5052 ring_buffer_read_prepare_sync(void) 5053 { 5054 synchronize_rcu(); 5055 } 5056 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5057 5058 /** 5059 * ring_buffer_read_start - start a non consuming read of the buffer 5060 * @iter: The iterator returned by ring_buffer_read_prepare 5061 * 5062 * This finalizes the startup of an iteration through the buffer. 5063 * The iterator comes from a call to ring_buffer_read_prepare and 5064 * an intervening ring_buffer_read_prepare_sync must have been 5065 * performed. 5066 * 5067 * Must be paired with ring_buffer_read_finish. 5068 */ 5069 void 5070 ring_buffer_read_start(struct ring_buffer_iter *iter) 5071 { 5072 struct ring_buffer_per_cpu *cpu_buffer; 5073 unsigned long flags; 5074 5075 if (!iter) 5076 return; 5077 5078 cpu_buffer = iter->cpu_buffer; 5079 5080 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5081 arch_spin_lock(&cpu_buffer->lock); 5082 rb_iter_reset(iter); 5083 arch_spin_unlock(&cpu_buffer->lock); 5084 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5085 } 5086 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5087 5088 /** 5089 * ring_buffer_read_finish - finish reading the iterator of the buffer 5090 * @iter: The iterator retrieved by ring_buffer_start 5091 * 5092 * This re-enables the recording to the buffer, and frees the 5093 * iterator. 5094 */ 5095 void 5096 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5097 { 5098 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5099 unsigned long flags; 5100 5101 /* 5102 * Ring buffer is disabled from recording, here's a good place 5103 * to check the integrity of the ring buffer. 5104 * Must prevent readers from trying to read, as the check 5105 * clears the HEAD page and readers require it. 5106 */ 5107 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5108 rb_check_pages(cpu_buffer); 5109 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5110 5111 atomic_dec(&cpu_buffer->resize_disabled); 5112 kfree(iter->event); 5113 kfree(iter); 5114 } 5115 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5116 5117 /** 5118 * ring_buffer_iter_advance - advance the iterator to the next location 5119 * @iter: The ring buffer iterator 5120 * 5121 * Move the location of the iterator such that the next read will 5122 * be the next location of the iterator. 5123 */ 5124 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5125 { 5126 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5127 unsigned long flags; 5128 5129 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5130 5131 rb_advance_iter(iter); 5132 5133 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5134 } 5135 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5136 5137 /** 5138 * ring_buffer_size - return the size of the ring buffer (in bytes) 5139 * @buffer: The ring buffer. 5140 * @cpu: The CPU to get ring buffer size from. 5141 */ 5142 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5143 { 5144 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5145 return 0; 5146 5147 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5148 } 5149 EXPORT_SYMBOL_GPL(ring_buffer_size); 5150 5151 /** 5152 * ring_buffer_max_event_size - return the max data size of an event 5153 * @buffer: The ring buffer. 5154 * 5155 * Returns the maximum size an event can be. 5156 */ 5157 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5158 { 5159 /* If abs timestamp is requested, events have a timestamp too */ 5160 if (ring_buffer_time_stamp_abs(buffer)) 5161 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5162 return buffer->max_data_size; 5163 } 5164 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5165 5166 static void rb_clear_buffer_page(struct buffer_page *page) 5167 { 5168 local_set(&page->write, 0); 5169 local_set(&page->entries, 0); 5170 rb_init_page(page->page); 5171 page->read = 0; 5172 } 5173 5174 static void 5175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5176 { 5177 struct buffer_page *page; 5178 5179 rb_head_page_deactivate(cpu_buffer); 5180 5181 cpu_buffer->head_page 5182 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5183 rb_clear_buffer_page(cpu_buffer->head_page); 5184 list_for_each_entry(page, cpu_buffer->pages, list) { 5185 rb_clear_buffer_page(page); 5186 } 5187 5188 cpu_buffer->tail_page = cpu_buffer->head_page; 5189 cpu_buffer->commit_page = cpu_buffer->head_page; 5190 5191 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5192 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5193 rb_clear_buffer_page(cpu_buffer->reader_page); 5194 5195 local_set(&cpu_buffer->entries_bytes, 0); 5196 local_set(&cpu_buffer->overrun, 0); 5197 local_set(&cpu_buffer->commit_overrun, 0); 5198 local_set(&cpu_buffer->dropped_events, 0); 5199 local_set(&cpu_buffer->entries, 0); 5200 local_set(&cpu_buffer->committing, 0); 5201 local_set(&cpu_buffer->commits, 0); 5202 local_set(&cpu_buffer->pages_touched, 0); 5203 local_set(&cpu_buffer->pages_lost, 0); 5204 local_set(&cpu_buffer->pages_read, 0); 5205 cpu_buffer->last_pages_touch = 0; 5206 cpu_buffer->shortest_full = 0; 5207 cpu_buffer->read = 0; 5208 cpu_buffer->read_bytes = 0; 5209 5210 rb_time_set(&cpu_buffer->write_stamp, 0); 5211 rb_time_set(&cpu_buffer->before_stamp, 0); 5212 5213 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5214 5215 cpu_buffer->lost_events = 0; 5216 cpu_buffer->last_overrun = 0; 5217 5218 rb_head_page_activate(cpu_buffer); 5219 cpu_buffer->pages_removed = 0; 5220 } 5221 5222 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5223 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5224 { 5225 unsigned long flags; 5226 5227 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5228 5229 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5230 goto out; 5231 5232 arch_spin_lock(&cpu_buffer->lock); 5233 5234 rb_reset_cpu(cpu_buffer); 5235 5236 arch_spin_unlock(&cpu_buffer->lock); 5237 5238 out: 5239 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5240 } 5241 5242 /** 5243 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5244 * @buffer: The ring buffer to reset a per cpu buffer of 5245 * @cpu: The CPU buffer to be reset 5246 */ 5247 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5248 { 5249 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5250 5251 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5252 return; 5253 5254 /* prevent another thread from changing buffer sizes */ 5255 mutex_lock(&buffer->mutex); 5256 5257 atomic_inc(&cpu_buffer->resize_disabled); 5258 atomic_inc(&cpu_buffer->record_disabled); 5259 5260 /* Make sure all commits have finished */ 5261 synchronize_rcu(); 5262 5263 reset_disabled_cpu_buffer(cpu_buffer); 5264 5265 atomic_dec(&cpu_buffer->record_disabled); 5266 atomic_dec(&cpu_buffer->resize_disabled); 5267 5268 mutex_unlock(&buffer->mutex); 5269 } 5270 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5271 5272 /* Flag to ensure proper resetting of atomic variables */ 5273 #define RESET_BIT (1 << 30) 5274 5275 /** 5276 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5277 * @buffer: The ring buffer to reset a per cpu buffer of 5278 */ 5279 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5280 { 5281 struct ring_buffer_per_cpu *cpu_buffer; 5282 int cpu; 5283 5284 /* prevent another thread from changing buffer sizes */ 5285 mutex_lock(&buffer->mutex); 5286 5287 for_each_online_buffer_cpu(buffer, cpu) { 5288 cpu_buffer = buffer->buffers[cpu]; 5289 5290 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5291 atomic_inc(&cpu_buffer->record_disabled); 5292 } 5293 5294 /* Make sure all commits have finished */ 5295 synchronize_rcu(); 5296 5297 for_each_buffer_cpu(buffer, cpu) { 5298 cpu_buffer = buffer->buffers[cpu]; 5299 5300 /* 5301 * If a CPU came online during the synchronize_rcu(), then 5302 * ignore it. 5303 */ 5304 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5305 continue; 5306 5307 reset_disabled_cpu_buffer(cpu_buffer); 5308 5309 atomic_dec(&cpu_buffer->record_disabled); 5310 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5311 } 5312 5313 mutex_unlock(&buffer->mutex); 5314 } 5315 5316 /** 5317 * ring_buffer_reset - reset a ring buffer 5318 * @buffer: The ring buffer to reset all cpu buffers 5319 */ 5320 void ring_buffer_reset(struct trace_buffer *buffer) 5321 { 5322 struct ring_buffer_per_cpu *cpu_buffer; 5323 int cpu; 5324 5325 /* prevent another thread from changing buffer sizes */ 5326 mutex_lock(&buffer->mutex); 5327 5328 for_each_buffer_cpu(buffer, cpu) { 5329 cpu_buffer = buffer->buffers[cpu]; 5330 5331 atomic_inc(&cpu_buffer->resize_disabled); 5332 atomic_inc(&cpu_buffer->record_disabled); 5333 } 5334 5335 /* Make sure all commits have finished */ 5336 synchronize_rcu(); 5337 5338 for_each_buffer_cpu(buffer, cpu) { 5339 cpu_buffer = buffer->buffers[cpu]; 5340 5341 reset_disabled_cpu_buffer(cpu_buffer); 5342 5343 atomic_dec(&cpu_buffer->record_disabled); 5344 atomic_dec(&cpu_buffer->resize_disabled); 5345 } 5346 5347 mutex_unlock(&buffer->mutex); 5348 } 5349 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5350 5351 /** 5352 * ring_buffer_empty - is the ring buffer empty? 5353 * @buffer: The ring buffer to test 5354 */ 5355 bool ring_buffer_empty(struct trace_buffer *buffer) 5356 { 5357 struct ring_buffer_per_cpu *cpu_buffer; 5358 unsigned long flags; 5359 bool dolock; 5360 bool ret; 5361 int cpu; 5362 5363 /* yes this is racy, but if you don't like the race, lock the buffer */ 5364 for_each_buffer_cpu(buffer, cpu) { 5365 cpu_buffer = buffer->buffers[cpu]; 5366 local_irq_save(flags); 5367 dolock = rb_reader_lock(cpu_buffer); 5368 ret = rb_per_cpu_empty(cpu_buffer); 5369 rb_reader_unlock(cpu_buffer, dolock); 5370 local_irq_restore(flags); 5371 5372 if (!ret) 5373 return false; 5374 } 5375 5376 return true; 5377 } 5378 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5379 5380 /** 5381 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5382 * @buffer: The ring buffer 5383 * @cpu: The CPU buffer to test 5384 */ 5385 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5386 { 5387 struct ring_buffer_per_cpu *cpu_buffer; 5388 unsigned long flags; 5389 bool dolock; 5390 bool ret; 5391 5392 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5393 return true; 5394 5395 cpu_buffer = buffer->buffers[cpu]; 5396 local_irq_save(flags); 5397 dolock = rb_reader_lock(cpu_buffer); 5398 ret = rb_per_cpu_empty(cpu_buffer); 5399 rb_reader_unlock(cpu_buffer, dolock); 5400 local_irq_restore(flags); 5401 5402 return ret; 5403 } 5404 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5405 5406 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5407 /** 5408 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5409 * @buffer_a: One buffer to swap with 5410 * @buffer_b: The other buffer to swap with 5411 * @cpu: the CPU of the buffers to swap 5412 * 5413 * This function is useful for tracers that want to take a "snapshot" 5414 * of a CPU buffer and has another back up buffer lying around. 5415 * it is expected that the tracer handles the cpu buffer not being 5416 * used at the moment. 5417 */ 5418 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5419 struct trace_buffer *buffer_b, int cpu) 5420 { 5421 struct ring_buffer_per_cpu *cpu_buffer_a; 5422 struct ring_buffer_per_cpu *cpu_buffer_b; 5423 int ret = -EINVAL; 5424 5425 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5426 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5427 goto out; 5428 5429 cpu_buffer_a = buffer_a->buffers[cpu]; 5430 cpu_buffer_b = buffer_b->buffers[cpu]; 5431 5432 /* At least make sure the two buffers are somewhat the same */ 5433 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5434 goto out; 5435 5436 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 5437 goto out; 5438 5439 ret = -EAGAIN; 5440 5441 if (atomic_read(&buffer_a->record_disabled)) 5442 goto out; 5443 5444 if (atomic_read(&buffer_b->record_disabled)) 5445 goto out; 5446 5447 if (atomic_read(&cpu_buffer_a->record_disabled)) 5448 goto out; 5449 5450 if (atomic_read(&cpu_buffer_b->record_disabled)) 5451 goto out; 5452 5453 /* 5454 * We can't do a synchronize_rcu here because this 5455 * function can be called in atomic context. 5456 * Normally this will be called from the same CPU as cpu. 5457 * If not it's up to the caller to protect this. 5458 */ 5459 atomic_inc(&cpu_buffer_a->record_disabled); 5460 atomic_inc(&cpu_buffer_b->record_disabled); 5461 5462 ret = -EBUSY; 5463 if (local_read(&cpu_buffer_a->committing)) 5464 goto out_dec; 5465 if (local_read(&cpu_buffer_b->committing)) 5466 goto out_dec; 5467 5468 /* 5469 * When resize is in progress, we cannot swap it because 5470 * it will mess the state of the cpu buffer. 5471 */ 5472 if (atomic_read(&buffer_a->resizing)) 5473 goto out_dec; 5474 if (atomic_read(&buffer_b->resizing)) 5475 goto out_dec; 5476 5477 buffer_a->buffers[cpu] = cpu_buffer_b; 5478 buffer_b->buffers[cpu] = cpu_buffer_a; 5479 5480 cpu_buffer_b->buffer = buffer_a; 5481 cpu_buffer_a->buffer = buffer_b; 5482 5483 ret = 0; 5484 5485 out_dec: 5486 atomic_dec(&cpu_buffer_a->record_disabled); 5487 atomic_dec(&cpu_buffer_b->record_disabled); 5488 out: 5489 return ret; 5490 } 5491 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5492 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5493 5494 /** 5495 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5496 * @buffer: the buffer to allocate for. 5497 * @cpu: the cpu buffer to allocate. 5498 * 5499 * This function is used in conjunction with ring_buffer_read_page. 5500 * When reading a full page from the ring buffer, these functions 5501 * can be used to speed up the process. The calling function should 5502 * allocate a few pages first with this function. Then when it 5503 * needs to get pages from the ring buffer, it passes the result 5504 * of this function into ring_buffer_read_page, which will swap 5505 * the page that was allocated, with the read page of the buffer. 5506 * 5507 * Returns: 5508 * The page allocated, or ERR_PTR 5509 */ 5510 struct buffer_data_read_page * 5511 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5512 { 5513 struct ring_buffer_per_cpu *cpu_buffer; 5514 struct buffer_data_read_page *bpage = NULL; 5515 unsigned long flags; 5516 struct page *page; 5517 5518 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5519 return ERR_PTR(-ENODEV); 5520 5521 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 5522 if (!bpage) 5523 return ERR_PTR(-ENOMEM); 5524 5525 bpage->order = buffer->subbuf_order; 5526 cpu_buffer = buffer->buffers[cpu]; 5527 local_irq_save(flags); 5528 arch_spin_lock(&cpu_buffer->lock); 5529 5530 if (cpu_buffer->free_page) { 5531 bpage->data = cpu_buffer->free_page; 5532 cpu_buffer->free_page = NULL; 5533 } 5534 5535 arch_spin_unlock(&cpu_buffer->lock); 5536 local_irq_restore(flags); 5537 5538 if (bpage->data) 5539 goto out; 5540 5541 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY, 5542 cpu_buffer->buffer->subbuf_order); 5543 if (!page) { 5544 kfree(bpage); 5545 return ERR_PTR(-ENOMEM); 5546 } 5547 5548 bpage->data = page_address(page); 5549 5550 out: 5551 rb_init_page(bpage->data); 5552 5553 return bpage; 5554 } 5555 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5556 5557 /** 5558 * ring_buffer_free_read_page - free an allocated read page 5559 * @buffer: the buffer the page was allocate for 5560 * @cpu: the cpu buffer the page came from 5561 * @data_page: the page to free 5562 * 5563 * Free a page allocated from ring_buffer_alloc_read_page. 5564 */ 5565 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 5566 struct buffer_data_read_page *data_page) 5567 { 5568 struct ring_buffer_per_cpu *cpu_buffer; 5569 struct buffer_data_page *bpage = data_page->data; 5570 struct page *page = virt_to_page(bpage); 5571 unsigned long flags; 5572 5573 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5574 return; 5575 5576 cpu_buffer = buffer->buffers[cpu]; 5577 5578 /* 5579 * If the page is still in use someplace else, or order of the page 5580 * is different from the subbuffer order of the buffer - 5581 * we can't reuse it 5582 */ 5583 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 5584 goto out; 5585 5586 local_irq_save(flags); 5587 arch_spin_lock(&cpu_buffer->lock); 5588 5589 if (!cpu_buffer->free_page) { 5590 cpu_buffer->free_page = bpage; 5591 bpage = NULL; 5592 } 5593 5594 arch_spin_unlock(&cpu_buffer->lock); 5595 local_irq_restore(flags); 5596 5597 out: 5598 free_pages((unsigned long)bpage, data_page->order); 5599 kfree(data_page); 5600 } 5601 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5602 5603 /** 5604 * ring_buffer_read_page - extract a page from the ring buffer 5605 * @buffer: buffer to extract from 5606 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5607 * @len: amount to extract 5608 * @cpu: the cpu of the buffer to extract 5609 * @full: should the extraction only happen when the page is full. 5610 * 5611 * This function will pull out a page from the ring buffer and consume it. 5612 * @data_page must be the address of the variable that was returned 5613 * from ring_buffer_alloc_read_page. This is because the page might be used 5614 * to swap with a page in the ring buffer. 5615 * 5616 * for example: 5617 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5618 * if (IS_ERR(rpage)) 5619 * return PTR_ERR(rpage); 5620 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 5621 * if (ret >= 0) 5622 * process_page(ring_buffer_read_page_data(rpage), ret); 5623 * ring_buffer_free_read_page(buffer, cpu, rpage); 5624 * 5625 * When @full is set, the function will not return true unless 5626 * the writer is off the reader page. 5627 * 5628 * Note: it is up to the calling functions to handle sleeps and wakeups. 5629 * The ring buffer can be used anywhere in the kernel and can not 5630 * blindly call wake_up. The layer that uses the ring buffer must be 5631 * responsible for that. 5632 * 5633 * Returns: 5634 * >=0 if data has been transferred, returns the offset of consumed data. 5635 * <0 if no data has been transferred. 5636 */ 5637 int ring_buffer_read_page(struct trace_buffer *buffer, 5638 struct buffer_data_read_page *data_page, 5639 size_t len, int cpu, int full) 5640 { 5641 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5642 struct ring_buffer_event *event; 5643 struct buffer_data_page *bpage; 5644 struct buffer_page *reader; 5645 unsigned long missed_events; 5646 unsigned long flags; 5647 unsigned int commit; 5648 unsigned int read; 5649 u64 save_timestamp; 5650 int ret = -1; 5651 5652 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5653 goto out; 5654 5655 /* 5656 * If len is not big enough to hold the page header, then 5657 * we can not copy anything. 5658 */ 5659 if (len <= BUF_PAGE_HDR_SIZE) 5660 goto out; 5661 5662 len -= BUF_PAGE_HDR_SIZE; 5663 5664 if (!data_page || !data_page->data) 5665 goto out; 5666 if (data_page->order != buffer->subbuf_order) 5667 goto out; 5668 5669 bpage = data_page->data; 5670 if (!bpage) 5671 goto out; 5672 5673 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5674 5675 reader = rb_get_reader_page(cpu_buffer); 5676 if (!reader) 5677 goto out_unlock; 5678 5679 event = rb_reader_event(cpu_buffer); 5680 5681 read = reader->read; 5682 commit = rb_page_commit(reader); 5683 5684 /* Check if any events were dropped */ 5685 missed_events = cpu_buffer->lost_events; 5686 5687 /* 5688 * If this page has been partially read or 5689 * if len is not big enough to read the rest of the page or 5690 * a writer is still on the page, then 5691 * we must copy the data from the page to the buffer. 5692 * Otherwise, we can simply swap the page with the one passed in. 5693 */ 5694 if (read || (len < (commit - read)) || 5695 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5696 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5697 unsigned int rpos = read; 5698 unsigned int pos = 0; 5699 unsigned int size; 5700 5701 /* 5702 * If a full page is expected, this can still be returned 5703 * if there's been a previous partial read and the 5704 * rest of the page can be read and the commit page is off 5705 * the reader page. 5706 */ 5707 if (full && 5708 (!read || (len < (commit - read)) || 5709 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5710 goto out_unlock; 5711 5712 if (len > (commit - read)) 5713 len = (commit - read); 5714 5715 /* Always keep the time extend and data together */ 5716 size = rb_event_ts_length(event); 5717 5718 if (len < size) 5719 goto out_unlock; 5720 5721 /* save the current timestamp, since the user will need it */ 5722 save_timestamp = cpu_buffer->read_stamp; 5723 5724 /* Need to copy one event at a time */ 5725 do { 5726 /* We need the size of one event, because 5727 * rb_advance_reader only advances by one event, 5728 * whereas rb_event_ts_length may include the size of 5729 * one or two events. 5730 * We have already ensured there's enough space if this 5731 * is a time extend. */ 5732 size = rb_event_length(event); 5733 memcpy(bpage->data + pos, rpage->data + rpos, size); 5734 5735 len -= size; 5736 5737 rb_advance_reader(cpu_buffer); 5738 rpos = reader->read; 5739 pos += size; 5740 5741 if (rpos >= commit) 5742 break; 5743 5744 event = rb_reader_event(cpu_buffer); 5745 /* Always keep the time extend and data together */ 5746 size = rb_event_ts_length(event); 5747 } while (len >= size); 5748 5749 /* update bpage */ 5750 local_set(&bpage->commit, pos); 5751 bpage->time_stamp = save_timestamp; 5752 5753 /* we copied everything to the beginning */ 5754 read = 0; 5755 } else { 5756 /* update the entry counter */ 5757 cpu_buffer->read += rb_page_entries(reader); 5758 cpu_buffer->read_bytes += rb_page_commit(reader); 5759 5760 /* swap the pages */ 5761 rb_init_page(bpage); 5762 bpage = reader->page; 5763 reader->page = data_page->data; 5764 local_set(&reader->write, 0); 5765 local_set(&reader->entries, 0); 5766 reader->read = 0; 5767 data_page->data = bpage; 5768 5769 /* 5770 * Use the real_end for the data size, 5771 * This gives us a chance to store the lost events 5772 * on the page. 5773 */ 5774 if (reader->real_end) 5775 local_set(&bpage->commit, reader->real_end); 5776 } 5777 ret = read; 5778 5779 cpu_buffer->lost_events = 0; 5780 5781 commit = local_read(&bpage->commit); 5782 /* 5783 * Set a flag in the commit field if we lost events 5784 */ 5785 if (missed_events) { 5786 /* If there is room at the end of the page to save the 5787 * missed events, then record it there. 5788 */ 5789 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 5790 memcpy(&bpage->data[commit], &missed_events, 5791 sizeof(missed_events)); 5792 local_add(RB_MISSED_STORED, &bpage->commit); 5793 commit += sizeof(missed_events); 5794 } 5795 local_add(RB_MISSED_EVENTS, &bpage->commit); 5796 } 5797 5798 /* 5799 * This page may be off to user land. Zero it out here. 5800 */ 5801 if (commit < buffer->subbuf_size) 5802 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 5803 5804 out_unlock: 5805 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5806 5807 out: 5808 return ret; 5809 } 5810 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5811 5812 /** 5813 * ring_buffer_read_page_data - get pointer to the data in the page. 5814 * @page: the page to get the data from 5815 * 5816 * Returns pointer to the actual data in this page. 5817 */ 5818 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 5819 { 5820 return page->data; 5821 } 5822 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 5823 5824 /** 5825 * ring_buffer_subbuf_size_get - get size of the sub buffer. 5826 * @buffer: the buffer to get the sub buffer size from 5827 * 5828 * Returns size of the sub buffer, in bytes. 5829 */ 5830 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 5831 { 5832 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 5833 } 5834 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 5835 5836 /** 5837 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 5838 * @buffer: The ring_buffer to get the system sub page order from 5839 * 5840 * By default, one ring buffer sub page equals to one system page. This parameter 5841 * is configurable, per ring buffer. The size of the ring buffer sub page can be 5842 * extended, but must be an order of system page size. 5843 * 5844 * Returns the order of buffer sub page size, in system pages: 5845 * 0 means the sub buffer size is 1 system page and so forth. 5846 * In case of an error < 0 is returned. 5847 */ 5848 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 5849 { 5850 if (!buffer) 5851 return -EINVAL; 5852 5853 return buffer->subbuf_order; 5854 } 5855 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 5856 5857 /** 5858 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 5859 * @buffer: The ring_buffer to set the new page size. 5860 * @order: Order of the system pages in one sub buffer page 5861 * 5862 * By default, one ring buffer pages equals to one system page. This API can be 5863 * used to set new size of the ring buffer page. The size must be order of 5864 * system page size, that's why the input parameter @order is the order of 5865 * system pages that are allocated for one ring buffer page: 5866 * 0 - 1 system page 5867 * 1 - 2 system pages 5868 * 3 - 4 system pages 5869 * ... 5870 * 5871 * Returns 0 on success or < 0 in case of an error. 5872 */ 5873 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 5874 { 5875 struct ring_buffer_per_cpu *cpu_buffer; 5876 struct buffer_page *bpage, *tmp; 5877 int old_order, old_size; 5878 int nr_pages; 5879 int psize; 5880 int err; 5881 int cpu; 5882 5883 if (!buffer || order < 0) 5884 return -EINVAL; 5885 5886 if (buffer->subbuf_order == order) 5887 return 0; 5888 5889 psize = (1 << order) * PAGE_SIZE; 5890 if (psize <= BUF_PAGE_HDR_SIZE) 5891 return -EINVAL; 5892 5893 /* Size of a subbuf cannot be greater than the write counter */ 5894 if (psize > RB_WRITE_MASK + 1) 5895 return -EINVAL; 5896 5897 old_order = buffer->subbuf_order; 5898 old_size = buffer->subbuf_size; 5899 5900 /* prevent another thread from changing buffer sizes */ 5901 mutex_lock(&buffer->mutex); 5902 atomic_inc(&buffer->record_disabled); 5903 5904 /* Make sure all commits have finished */ 5905 synchronize_rcu(); 5906 5907 buffer->subbuf_order = order; 5908 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 5909 5910 /* Make sure all new buffers are allocated, before deleting the old ones */ 5911 for_each_buffer_cpu(buffer, cpu) { 5912 5913 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5914 continue; 5915 5916 cpu_buffer = buffer->buffers[cpu]; 5917 5918 /* Update the number of pages to match the new size */ 5919 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 5920 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 5921 5922 /* we need a minimum of two pages */ 5923 if (nr_pages < 2) 5924 nr_pages = 2; 5925 5926 cpu_buffer->nr_pages_to_update = nr_pages; 5927 5928 /* Include the reader page */ 5929 nr_pages++; 5930 5931 /* Allocate the new size buffer */ 5932 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5933 if (__rb_allocate_pages(cpu_buffer, nr_pages, 5934 &cpu_buffer->new_pages)) { 5935 /* not enough memory for new pages */ 5936 err = -ENOMEM; 5937 goto error; 5938 } 5939 } 5940 5941 for_each_buffer_cpu(buffer, cpu) { 5942 5943 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5944 continue; 5945 5946 cpu_buffer = buffer->buffers[cpu]; 5947 5948 /* Clear the head bit to make the link list normal to read */ 5949 rb_head_page_deactivate(cpu_buffer); 5950 5951 /* Now walk the list and free all the old sub buffers */ 5952 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) { 5953 list_del_init(&bpage->list); 5954 free_buffer_page(bpage); 5955 } 5956 /* The above loop stopped an the last page needing to be freed */ 5957 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list); 5958 free_buffer_page(bpage); 5959 5960 /* Free the current reader page */ 5961 free_buffer_page(cpu_buffer->reader_page); 5962 5963 /* One page was allocated for the reader page */ 5964 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 5965 struct buffer_page, list); 5966 list_del_init(&cpu_buffer->reader_page->list); 5967 5968 /* The cpu_buffer pages are a link list with no head */ 5969 cpu_buffer->pages = cpu_buffer->new_pages.next; 5970 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev; 5971 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next; 5972 5973 /* Clear the new_pages list */ 5974 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5975 5976 cpu_buffer->head_page 5977 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5978 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 5979 5980 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 5981 cpu_buffer->nr_pages_to_update = 0; 5982 5983 free_pages((unsigned long)cpu_buffer->free_page, old_order); 5984 cpu_buffer->free_page = NULL; 5985 5986 rb_head_page_activate(cpu_buffer); 5987 5988 rb_check_pages(cpu_buffer); 5989 } 5990 5991 atomic_dec(&buffer->record_disabled); 5992 mutex_unlock(&buffer->mutex); 5993 5994 return 0; 5995 5996 error: 5997 buffer->subbuf_order = old_order; 5998 buffer->subbuf_size = old_size; 5999 6000 atomic_dec(&buffer->record_disabled); 6001 mutex_unlock(&buffer->mutex); 6002 6003 for_each_buffer_cpu(buffer, cpu) { 6004 cpu_buffer = buffer->buffers[cpu]; 6005 6006 if (!cpu_buffer->nr_pages_to_update) 6007 continue; 6008 6009 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6010 list_del_init(&bpage->list); 6011 free_buffer_page(bpage); 6012 } 6013 } 6014 6015 return err; 6016 } 6017 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6018 6019 /* 6020 * We only allocate new buffers, never free them if the CPU goes down. 6021 * If we were to free the buffer, then the user would lose any trace that was in 6022 * the buffer. 6023 */ 6024 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 6025 { 6026 struct trace_buffer *buffer; 6027 long nr_pages_same; 6028 int cpu_i; 6029 unsigned long nr_pages; 6030 6031 buffer = container_of(node, struct trace_buffer, node); 6032 if (cpumask_test_cpu(cpu, buffer->cpumask)) 6033 return 0; 6034 6035 nr_pages = 0; 6036 nr_pages_same = 1; 6037 /* check if all cpu sizes are same */ 6038 for_each_buffer_cpu(buffer, cpu_i) { 6039 /* fill in the size from first enabled cpu */ 6040 if (nr_pages == 0) 6041 nr_pages = buffer->buffers[cpu_i]->nr_pages; 6042 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 6043 nr_pages_same = 0; 6044 break; 6045 } 6046 } 6047 /* allocate minimum pages, user can later expand it */ 6048 if (!nr_pages_same) 6049 nr_pages = 2; 6050 buffer->buffers[cpu] = 6051 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 6052 if (!buffer->buffers[cpu]) { 6053 WARN(1, "failed to allocate ring buffer on CPU %u\n", 6054 cpu); 6055 return -ENOMEM; 6056 } 6057 smp_wmb(); 6058 cpumask_set_cpu(cpu, buffer->cpumask); 6059 return 0; 6060 } 6061 6062 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 6063 /* 6064 * This is a basic integrity check of the ring buffer. 6065 * Late in the boot cycle this test will run when configured in. 6066 * It will kick off a thread per CPU that will go into a loop 6067 * writing to the per cpu ring buffer various sizes of data. 6068 * Some of the data will be large items, some small. 6069 * 6070 * Another thread is created that goes into a spin, sending out 6071 * IPIs to the other CPUs to also write into the ring buffer. 6072 * this is to test the nesting ability of the buffer. 6073 * 6074 * Basic stats are recorded and reported. If something in the 6075 * ring buffer should happen that's not expected, a big warning 6076 * is displayed and all ring buffers are disabled. 6077 */ 6078 static struct task_struct *rb_threads[NR_CPUS] __initdata; 6079 6080 struct rb_test_data { 6081 struct trace_buffer *buffer; 6082 unsigned long events; 6083 unsigned long bytes_written; 6084 unsigned long bytes_alloc; 6085 unsigned long bytes_dropped; 6086 unsigned long events_nested; 6087 unsigned long bytes_written_nested; 6088 unsigned long bytes_alloc_nested; 6089 unsigned long bytes_dropped_nested; 6090 int min_size_nested; 6091 int max_size_nested; 6092 int max_size; 6093 int min_size; 6094 int cpu; 6095 int cnt; 6096 }; 6097 6098 static struct rb_test_data rb_data[NR_CPUS] __initdata; 6099 6100 /* 1 meg per cpu */ 6101 #define RB_TEST_BUFFER_SIZE 1048576 6102 6103 static char rb_string[] __initdata = 6104 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 6105 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 6106 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 6107 6108 static bool rb_test_started __initdata; 6109 6110 struct rb_item { 6111 int size; 6112 char str[]; 6113 }; 6114 6115 static __init int rb_write_something(struct rb_test_data *data, bool nested) 6116 { 6117 struct ring_buffer_event *event; 6118 struct rb_item *item; 6119 bool started; 6120 int event_len; 6121 int size; 6122 int len; 6123 int cnt; 6124 6125 /* Have nested writes different that what is written */ 6126 cnt = data->cnt + (nested ? 27 : 0); 6127 6128 /* Multiply cnt by ~e, to make some unique increment */ 6129 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 6130 6131 len = size + sizeof(struct rb_item); 6132 6133 started = rb_test_started; 6134 /* read rb_test_started before checking buffer enabled */ 6135 smp_rmb(); 6136 6137 event = ring_buffer_lock_reserve(data->buffer, len); 6138 if (!event) { 6139 /* Ignore dropped events before test starts. */ 6140 if (started) { 6141 if (nested) 6142 data->bytes_dropped += len; 6143 else 6144 data->bytes_dropped_nested += len; 6145 } 6146 return len; 6147 } 6148 6149 event_len = ring_buffer_event_length(event); 6150 6151 if (RB_WARN_ON(data->buffer, event_len < len)) 6152 goto out; 6153 6154 item = ring_buffer_event_data(event); 6155 item->size = size; 6156 memcpy(item->str, rb_string, size); 6157 6158 if (nested) { 6159 data->bytes_alloc_nested += event_len; 6160 data->bytes_written_nested += len; 6161 data->events_nested++; 6162 if (!data->min_size_nested || len < data->min_size_nested) 6163 data->min_size_nested = len; 6164 if (len > data->max_size_nested) 6165 data->max_size_nested = len; 6166 } else { 6167 data->bytes_alloc += event_len; 6168 data->bytes_written += len; 6169 data->events++; 6170 if (!data->min_size || len < data->min_size) 6171 data->max_size = len; 6172 if (len > data->max_size) 6173 data->max_size = len; 6174 } 6175 6176 out: 6177 ring_buffer_unlock_commit(data->buffer); 6178 6179 return 0; 6180 } 6181 6182 static __init int rb_test(void *arg) 6183 { 6184 struct rb_test_data *data = arg; 6185 6186 while (!kthread_should_stop()) { 6187 rb_write_something(data, false); 6188 data->cnt++; 6189 6190 set_current_state(TASK_INTERRUPTIBLE); 6191 /* Now sleep between a min of 100-300us and a max of 1ms */ 6192 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6193 } 6194 6195 return 0; 6196 } 6197 6198 static __init void rb_ipi(void *ignore) 6199 { 6200 struct rb_test_data *data; 6201 int cpu = smp_processor_id(); 6202 6203 data = &rb_data[cpu]; 6204 rb_write_something(data, true); 6205 } 6206 6207 static __init int rb_hammer_test(void *arg) 6208 { 6209 while (!kthread_should_stop()) { 6210 6211 /* Send an IPI to all cpus to write data! */ 6212 smp_call_function(rb_ipi, NULL, 1); 6213 /* No sleep, but for non preempt, let others run */ 6214 schedule(); 6215 } 6216 6217 return 0; 6218 } 6219 6220 static __init int test_ringbuffer(void) 6221 { 6222 struct task_struct *rb_hammer; 6223 struct trace_buffer *buffer; 6224 int cpu; 6225 int ret = 0; 6226 6227 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6228 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6229 return 0; 6230 } 6231 6232 pr_info("Running ring buffer tests...\n"); 6233 6234 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6235 if (WARN_ON(!buffer)) 6236 return 0; 6237 6238 /* Disable buffer so that threads can't write to it yet */ 6239 ring_buffer_record_off(buffer); 6240 6241 for_each_online_cpu(cpu) { 6242 rb_data[cpu].buffer = buffer; 6243 rb_data[cpu].cpu = cpu; 6244 rb_data[cpu].cnt = cpu; 6245 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6246 cpu, "rbtester/%u"); 6247 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6248 pr_cont("FAILED\n"); 6249 ret = PTR_ERR(rb_threads[cpu]); 6250 goto out_free; 6251 } 6252 } 6253 6254 /* Now create the rb hammer! */ 6255 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6256 if (WARN_ON(IS_ERR(rb_hammer))) { 6257 pr_cont("FAILED\n"); 6258 ret = PTR_ERR(rb_hammer); 6259 goto out_free; 6260 } 6261 6262 ring_buffer_record_on(buffer); 6263 /* 6264 * Show buffer is enabled before setting rb_test_started. 6265 * Yes there's a small race window where events could be 6266 * dropped and the thread wont catch it. But when a ring 6267 * buffer gets enabled, there will always be some kind of 6268 * delay before other CPUs see it. Thus, we don't care about 6269 * those dropped events. We care about events dropped after 6270 * the threads see that the buffer is active. 6271 */ 6272 smp_wmb(); 6273 rb_test_started = true; 6274 6275 set_current_state(TASK_INTERRUPTIBLE); 6276 /* Just run for 10 seconds */; 6277 schedule_timeout(10 * HZ); 6278 6279 kthread_stop(rb_hammer); 6280 6281 out_free: 6282 for_each_online_cpu(cpu) { 6283 if (!rb_threads[cpu]) 6284 break; 6285 kthread_stop(rb_threads[cpu]); 6286 } 6287 if (ret) { 6288 ring_buffer_free(buffer); 6289 return ret; 6290 } 6291 6292 /* Report! */ 6293 pr_info("finished\n"); 6294 for_each_online_cpu(cpu) { 6295 struct ring_buffer_event *event; 6296 struct rb_test_data *data = &rb_data[cpu]; 6297 struct rb_item *item; 6298 unsigned long total_events; 6299 unsigned long total_dropped; 6300 unsigned long total_written; 6301 unsigned long total_alloc; 6302 unsigned long total_read = 0; 6303 unsigned long total_size = 0; 6304 unsigned long total_len = 0; 6305 unsigned long total_lost = 0; 6306 unsigned long lost; 6307 int big_event_size; 6308 int small_event_size; 6309 6310 ret = -1; 6311 6312 total_events = data->events + data->events_nested; 6313 total_written = data->bytes_written + data->bytes_written_nested; 6314 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6315 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6316 6317 big_event_size = data->max_size + data->max_size_nested; 6318 small_event_size = data->min_size + data->min_size_nested; 6319 6320 pr_info("CPU %d:\n", cpu); 6321 pr_info(" events: %ld\n", total_events); 6322 pr_info(" dropped bytes: %ld\n", total_dropped); 6323 pr_info(" alloced bytes: %ld\n", total_alloc); 6324 pr_info(" written bytes: %ld\n", total_written); 6325 pr_info(" biggest event: %d\n", big_event_size); 6326 pr_info(" smallest event: %d\n", small_event_size); 6327 6328 if (RB_WARN_ON(buffer, total_dropped)) 6329 break; 6330 6331 ret = 0; 6332 6333 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6334 total_lost += lost; 6335 item = ring_buffer_event_data(event); 6336 total_len += ring_buffer_event_length(event); 6337 total_size += item->size + sizeof(struct rb_item); 6338 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6339 pr_info("FAILED!\n"); 6340 pr_info("buffer had: %.*s\n", item->size, item->str); 6341 pr_info("expected: %.*s\n", item->size, rb_string); 6342 RB_WARN_ON(buffer, 1); 6343 ret = -1; 6344 break; 6345 } 6346 total_read++; 6347 } 6348 if (ret) 6349 break; 6350 6351 ret = -1; 6352 6353 pr_info(" read events: %ld\n", total_read); 6354 pr_info(" lost events: %ld\n", total_lost); 6355 pr_info(" total events: %ld\n", total_lost + total_read); 6356 pr_info(" recorded len bytes: %ld\n", total_len); 6357 pr_info(" recorded size bytes: %ld\n", total_size); 6358 if (total_lost) { 6359 pr_info(" With dropped events, record len and size may not match\n" 6360 " alloced and written from above\n"); 6361 } else { 6362 if (RB_WARN_ON(buffer, total_len != total_alloc || 6363 total_size != total_written)) 6364 break; 6365 } 6366 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6367 break; 6368 6369 ret = 0; 6370 } 6371 if (!ret) 6372 pr_info("Ring buffer PASSED!\n"); 6373 6374 ring_buffer_free(buffer); 6375 return 0; 6376 } 6377 6378 late_initcall(test_ringbuffer); 6379 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6380