xref: /linux/kernel/trace/ring_buffer.c (revision cff9c565e65f3622e8dc1dcc21c1520a083dff35)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359 	return local_read(&bpage->page->commit);
360 }
361 
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364 	free_page((unsigned long)bpage->page);
365 	kfree(bpage);
366 }
367 
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
371 static inline bool test_time_stamp(u64 delta)
372 {
373 	return !!(delta & TS_DELTA_TEST);
374 }
375 
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377 
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380 
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383 	struct buffer_data_page field;
384 
385 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
387 			 (unsigned int)sizeof(field.time_stamp),
388 			 (unsigned int)is_signed_type(u64));
389 
390 	trace_seq_printf(s, "\tfield: local_t commit;\t"
391 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
392 			 (unsigned int)offsetof(typeof(field), commit),
393 			 (unsigned int)sizeof(field.commit),
394 			 (unsigned int)is_signed_type(long));
395 
396 	trace_seq_printf(s, "\tfield: int overwrite;\t"
397 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
398 			 (unsigned int)offsetof(typeof(field), commit),
399 			 1,
400 			 (unsigned int)is_signed_type(long));
401 
402 	trace_seq_printf(s, "\tfield: char data;\t"
403 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
404 			 (unsigned int)offsetof(typeof(field), data),
405 			 (unsigned int)BUF_PAGE_SIZE,
406 			 (unsigned int)is_signed_type(char));
407 
408 	return !trace_seq_has_overflowed(s);
409 }
410 
411 struct rb_irq_work {
412 	struct irq_work			work;
413 	wait_queue_head_t		waiters;
414 	wait_queue_head_t		full_waiters;
415 	long				wait_index;
416 	bool				waiters_pending;
417 	bool				full_waiters_pending;
418 	bool				wakeup_full;
419 };
420 
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425 	u64			ts;
426 	u64			delta;
427 	u64			before;
428 	u64			after;
429 	unsigned long		length;
430 	struct buffer_page	*tail_page;
431 	int			add_timestamp;
432 };
433 
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442 	RB_ADD_STAMP_NONE		= 0,
443 	RB_ADD_STAMP_EXTEND		= BIT(1),
444 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
445 	RB_ADD_STAMP_FORCE		= BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458 	RB_CTX_TRANSITION,
459 	RB_CTX_NMI,
460 	RB_CTX_IRQ,
461 	RB_CTX_SOFTIRQ,
462 	RB_CTX_NORMAL,
463 	RB_CTX_MAX
464 };
465 
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469 
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472 
473 #ifdef RB_TIME_32
474 
475 struct rb_time_struct {
476 	local_t		cnt;
477 	local_t		top;
478 	local_t		bottom;
479 	local_t		msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484 	local64_t	time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488 
489 #define MAX_NEST	5
490 
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495 	int				cpu;
496 	atomic_t			record_disabled;
497 	atomic_t			resize_disabled;
498 	struct trace_buffer	*buffer;
499 	raw_spinlock_t			reader_lock;	/* serialize readers */
500 	arch_spinlock_t			lock;
501 	struct lock_class_key		lock_key;
502 	struct buffer_data_page		*free_page;
503 	unsigned long			nr_pages;
504 	unsigned int			current_context;
505 	struct list_head		*pages;
506 	struct buffer_page		*head_page;	/* read from head */
507 	struct buffer_page		*tail_page;	/* write to tail */
508 	struct buffer_page		*commit_page;	/* committed pages */
509 	struct buffer_page		*reader_page;
510 	unsigned long			lost_events;
511 	unsigned long			last_overrun;
512 	unsigned long			nest;
513 	local_t				entries_bytes;
514 	local_t				entries;
515 	local_t				overrun;
516 	local_t				commit_overrun;
517 	local_t				dropped_events;
518 	local_t				committing;
519 	local_t				commits;
520 	local_t				pages_touched;
521 	local_t				pages_lost;
522 	local_t				pages_read;
523 	long				last_pages_touch;
524 	size_t				shortest_full;
525 	unsigned long			read;
526 	unsigned long			read_bytes;
527 	rb_time_t			write_stamp;
528 	rb_time_t			before_stamp;
529 	u64				event_stamp[MAX_NEST];
530 	u64				read_stamp;
531 	/* pages removed since last reset */
532 	unsigned long			pages_removed;
533 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
534 	long				nr_pages_to_update;
535 	struct list_head		new_pages; /* new pages to add */
536 	struct work_struct		update_pages_work;
537 	struct completion		update_done;
538 
539 	struct rb_irq_work		irq_work;
540 };
541 
542 struct trace_buffer {
543 	unsigned			flags;
544 	int				cpus;
545 	atomic_t			record_disabled;
546 	atomic_t			resizing;
547 	cpumask_var_t			cpumask;
548 
549 	struct lock_class_key		*reader_lock_key;
550 
551 	struct mutex			mutex;
552 
553 	struct ring_buffer_per_cpu	**buffers;
554 
555 	struct hlist_node		node;
556 	u64				(*clock)(void);
557 
558 	struct rb_irq_work		irq_work;
559 	bool				time_stamp_abs;
560 };
561 
562 struct ring_buffer_iter {
563 	struct ring_buffer_per_cpu	*cpu_buffer;
564 	unsigned long			head;
565 	unsigned long			next_event;
566 	struct buffer_page		*head_page;
567 	struct buffer_page		*cache_reader_page;
568 	unsigned long			cache_read;
569 	unsigned long			cache_pages_removed;
570 	u64				read_stamp;
571 	u64				page_stamp;
572 	struct ring_buffer_event	*event;
573 	int				missed_events;
574 };
575 
576 #ifdef RB_TIME_32
577 
578 /*
579  * On 32 bit machines, local64_t is very expensive. As the ring
580  * buffer doesn't need all the features of a true 64 bit atomic,
581  * on 32 bit, it uses these functions (64 still uses local64_t).
582  *
583  * For the ring buffer, 64 bit required operations for the time is
584  * the following:
585  *
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT	30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT	 60
611 
612 static inline int rb_time_cnt(unsigned long val)
613 {
614 	return (val >> RB_TIME_SHIFT) & 3;
615 }
616 
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619 	u64 val;
620 
621 	val = top & RB_TIME_VAL_MASK;
622 	val <<= RB_TIME_SHIFT;
623 	val |= bottom & RB_TIME_VAL_MASK;
624 
625 	return val;
626 }
627 
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630 	unsigned long top, bottom, msb;
631 	unsigned long c;
632 
633 	/*
634 	 * If the read is interrupted by a write, then the cnt will
635 	 * be different. Loop until both top and bottom have been read
636 	 * without interruption.
637 	 */
638 	do {
639 		c = local_read(&t->cnt);
640 		top = local_read(&t->top);
641 		bottom = local_read(&t->bottom);
642 		msb = local_read(&t->msb);
643 	} while (c != local_read(&t->cnt));
644 
645 	*cnt = rb_time_cnt(top);
646 
647 	/* If top, msb or bottom counts don't match, this interrupted a write */
648 	if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom))
649 		return false;
650 
651 	/* The shift to msb will lose its cnt bits */
652 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653 	return true;
654 }
655 
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658 	unsigned long cnt;
659 
660 	return __rb_time_read(t, ret, &cnt);
661 }
662 
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667 
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669 				 unsigned long *msb)
670 {
671 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675 
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678 	val = rb_time_val_cnt(val, cnt);
679 	local_set(t, val);
680 }
681 
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684 	unsigned long cnt, top, bottom, msb;
685 
686 	rb_time_split(val, &top, &bottom, &msb);
687 
688 	/* Writes always succeed with a valid number even if it gets interrupted. */
689 	do {
690 		cnt = local_inc_return(&t->cnt);
691 		rb_time_val_set(&t->top, top, cnt);
692 		rb_time_val_set(&t->bottom, bottom, cnt);
693 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694 	} while (cnt != local_read(&t->cnt));
695 }
696 
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700 	return local_try_cmpxchg(l, &expect, set);
701 }
702 
703 #else /* 64 bits */
704 
705 /* local64_t always succeeds */
706 
707 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
708 {
709 	*ret = local64_read(&t->time);
710 	return true;
711 }
712 static void rb_time_set(rb_time_t *t, u64 val)
713 {
714 	local64_set(&t->time, val);
715 }
716 #endif
717 
718 /*
719  * Enable this to make sure that the event passed to
720  * ring_buffer_event_time_stamp() is not committed and also
721  * is on the buffer that it passed in.
722  */
723 //#define RB_VERIFY_EVENT
724 #ifdef RB_VERIFY_EVENT
725 static struct list_head *rb_list_head(struct list_head *list);
726 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
727 			 void *event)
728 {
729 	struct buffer_page *page = cpu_buffer->commit_page;
730 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
731 	struct list_head *next;
732 	long commit, write;
733 	unsigned long addr = (unsigned long)event;
734 	bool done = false;
735 	int stop = 0;
736 
737 	/* Make sure the event exists and is not committed yet */
738 	do {
739 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
740 			done = true;
741 		commit = local_read(&page->page->commit);
742 		write = local_read(&page->write);
743 		if (addr >= (unsigned long)&page->page->data[commit] &&
744 		    addr < (unsigned long)&page->page->data[write])
745 			return;
746 
747 		next = rb_list_head(page->list.next);
748 		page = list_entry(next, struct buffer_page, list);
749 	} while (!done);
750 	WARN_ON_ONCE(1);
751 }
752 #else
753 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
754 			 void *event)
755 {
756 }
757 #endif
758 
759 /*
760  * The absolute time stamp drops the 5 MSBs and some clocks may
761  * require them. The rb_fix_abs_ts() will take a previous full
762  * time stamp, and add the 5 MSB of that time stamp on to the
763  * saved absolute time stamp. Then they are compared in case of
764  * the unlikely event that the latest time stamp incremented
765  * the 5 MSB.
766  */
767 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
768 {
769 	if (save_ts & TS_MSB) {
770 		abs |= save_ts & TS_MSB;
771 		/* Check for overflow */
772 		if (unlikely(abs < save_ts))
773 			abs += 1ULL << 59;
774 	}
775 	return abs;
776 }
777 
778 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
779 
780 /**
781  * ring_buffer_event_time_stamp - return the event's current time stamp
782  * @buffer: The buffer that the event is on
783  * @event: the event to get the time stamp of
784  *
785  * Note, this must be called after @event is reserved, and before it is
786  * committed to the ring buffer. And must be called from the same
787  * context where the event was reserved (normal, softirq, irq, etc).
788  *
789  * Returns the time stamp associated with the current event.
790  * If the event has an extended time stamp, then that is used as
791  * the time stamp to return.
792  * In the highly unlikely case that the event was nested more than
793  * the max nesting, then the write_stamp of the buffer is returned,
794  * otherwise  current time is returned, but that really neither of
795  * the last two cases should ever happen.
796  */
797 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
798 				 struct ring_buffer_event *event)
799 {
800 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
801 	unsigned int nest;
802 	u64 ts;
803 
804 	/* If the event includes an absolute time, then just use that */
805 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
806 		ts = rb_event_time_stamp(event);
807 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
808 	}
809 
810 	nest = local_read(&cpu_buffer->committing);
811 	verify_event(cpu_buffer, event);
812 	if (WARN_ON_ONCE(!nest))
813 		goto fail;
814 
815 	/* Read the current saved nesting level time stamp */
816 	if (likely(--nest < MAX_NEST))
817 		return cpu_buffer->event_stamp[nest];
818 
819 	/* Shouldn't happen, warn if it does */
820 	WARN_ONCE(1, "nest (%d) greater than max", nest);
821 
822  fail:
823 	/* Can only fail on 32 bit */
824 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
825 		/* Screw it, just read the current time */
826 		ts = rb_time_stamp(cpu_buffer->buffer);
827 
828 	return ts;
829 }
830 
831 /**
832  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
833  * @buffer: The ring_buffer to get the number of pages from
834  * @cpu: The cpu of the ring_buffer to get the number of pages from
835  *
836  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
837  */
838 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
839 {
840 	return buffer->buffers[cpu]->nr_pages;
841 }
842 
843 /**
844  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
845  * @buffer: The ring_buffer to get the number of pages from
846  * @cpu: The cpu of the ring_buffer to get the number of pages from
847  *
848  * Returns the number of pages that have content in the ring buffer.
849  */
850 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
851 {
852 	size_t read;
853 	size_t lost;
854 	size_t cnt;
855 
856 	read = local_read(&buffer->buffers[cpu]->pages_read);
857 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
858 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
859 
860 	if (WARN_ON_ONCE(cnt < lost))
861 		return 0;
862 
863 	cnt -= lost;
864 
865 	/* The reader can read an empty page, but not more than that */
866 	if (cnt < read) {
867 		WARN_ON_ONCE(read > cnt + 1);
868 		return 0;
869 	}
870 
871 	return cnt - read;
872 }
873 
874 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
875 {
876 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
877 	size_t nr_pages;
878 	size_t dirty;
879 
880 	nr_pages = cpu_buffer->nr_pages;
881 	if (!nr_pages || !full)
882 		return true;
883 
884 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
885 
886 	return (dirty * 100) > (full * nr_pages);
887 }
888 
889 /*
890  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
891  *
892  * Schedules a delayed work to wake up any task that is blocked on the
893  * ring buffer waiters queue.
894  */
895 static void rb_wake_up_waiters(struct irq_work *work)
896 {
897 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
898 
899 	wake_up_all(&rbwork->waiters);
900 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
901 		rbwork->wakeup_full = false;
902 		rbwork->full_waiters_pending = false;
903 		wake_up_all(&rbwork->full_waiters);
904 	}
905 }
906 
907 /**
908  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
909  * @buffer: The ring buffer to wake waiters on
910  * @cpu: The CPU buffer to wake waiters on
911  *
912  * In the case of a file that represents a ring buffer is closing,
913  * it is prudent to wake up any waiters that are on this.
914  */
915 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
916 {
917 	struct ring_buffer_per_cpu *cpu_buffer;
918 	struct rb_irq_work *rbwork;
919 
920 	if (!buffer)
921 		return;
922 
923 	if (cpu == RING_BUFFER_ALL_CPUS) {
924 
925 		/* Wake up individual ones too. One level recursion */
926 		for_each_buffer_cpu(buffer, cpu)
927 			ring_buffer_wake_waiters(buffer, cpu);
928 
929 		rbwork = &buffer->irq_work;
930 	} else {
931 		if (WARN_ON_ONCE(!buffer->buffers))
932 			return;
933 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
934 			return;
935 
936 		cpu_buffer = buffer->buffers[cpu];
937 		/* The CPU buffer may not have been initialized yet */
938 		if (!cpu_buffer)
939 			return;
940 		rbwork = &cpu_buffer->irq_work;
941 	}
942 
943 	rbwork->wait_index++;
944 	/* make sure the waiters see the new index */
945 	smp_wmb();
946 
947 	rb_wake_up_waiters(&rbwork->work);
948 }
949 
950 /**
951  * ring_buffer_wait - wait for input to the ring buffer
952  * @buffer: buffer to wait on
953  * @cpu: the cpu buffer to wait on
954  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
955  *
956  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
957  * as data is added to any of the @buffer's cpu buffers. Otherwise
958  * it will wait for data to be added to a specific cpu buffer.
959  */
960 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
961 {
962 	struct ring_buffer_per_cpu *cpu_buffer;
963 	DEFINE_WAIT(wait);
964 	struct rb_irq_work *work;
965 	long wait_index;
966 	int ret = 0;
967 
968 	/*
969 	 * Depending on what the caller is waiting for, either any
970 	 * data in any cpu buffer, or a specific buffer, put the
971 	 * caller on the appropriate wait queue.
972 	 */
973 	if (cpu == RING_BUFFER_ALL_CPUS) {
974 		work = &buffer->irq_work;
975 		/* Full only makes sense on per cpu reads */
976 		full = 0;
977 	} else {
978 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
979 			return -ENODEV;
980 		cpu_buffer = buffer->buffers[cpu];
981 		work = &cpu_buffer->irq_work;
982 	}
983 
984 	wait_index = READ_ONCE(work->wait_index);
985 
986 	while (true) {
987 		if (full)
988 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
989 		else
990 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
991 
992 		/*
993 		 * The events can happen in critical sections where
994 		 * checking a work queue can cause deadlocks.
995 		 * After adding a task to the queue, this flag is set
996 		 * only to notify events to try to wake up the queue
997 		 * using irq_work.
998 		 *
999 		 * We don't clear it even if the buffer is no longer
1000 		 * empty. The flag only causes the next event to run
1001 		 * irq_work to do the work queue wake up. The worse
1002 		 * that can happen if we race with !trace_empty() is that
1003 		 * an event will cause an irq_work to try to wake up
1004 		 * an empty queue.
1005 		 *
1006 		 * There's no reason to protect this flag either, as
1007 		 * the work queue and irq_work logic will do the necessary
1008 		 * synchronization for the wake ups. The only thing
1009 		 * that is necessary is that the wake up happens after
1010 		 * a task has been queued. It's OK for spurious wake ups.
1011 		 */
1012 		if (full)
1013 			work->full_waiters_pending = true;
1014 		else
1015 			work->waiters_pending = true;
1016 
1017 		if (signal_pending(current)) {
1018 			ret = -EINTR;
1019 			break;
1020 		}
1021 
1022 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1023 			break;
1024 
1025 		if (cpu != RING_BUFFER_ALL_CPUS &&
1026 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1027 			unsigned long flags;
1028 			bool pagebusy;
1029 			bool done;
1030 
1031 			if (!full)
1032 				break;
1033 
1034 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1035 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1036 			done = !pagebusy && full_hit(buffer, cpu, full);
1037 
1038 			if (!cpu_buffer->shortest_full ||
1039 			    cpu_buffer->shortest_full > full)
1040 				cpu_buffer->shortest_full = full;
1041 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1042 			if (done)
1043 				break;
1044 		}
1045 
1046 		schedule();
1047 
1048 		/* Make sure to see the new wait index */
1049 		smp_rmb();
1050 		if (wait_index != work->wait_index)
1051 			break;
1052 	}
1053 
1054 	if (full)
1055 		finish_wait(&work->full_waiters, &wait);
1056 	else
1057 		finish_wait(&work->waiters, &wait);
1058 
1059 	return ret;
1060 }
1061 
1062 /**
1063  * ring_buffer_poll_wait - poll on buffer input
1064  * @buffer: buffer to wait on
1065  * @cpu: the cpu buffer to wait on
1066  * @filp: the file descriptor
1067  * @poll_table: The poll descriptor
1068  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1069  *
1070  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1071  * as data is added to any of the @buffer's cpu buffers. Otherwise
1072  * it will wait for data to be added to a specific cpu buffer.
1073  *
1074  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1075  * zero otherwise.
1076  */
1077 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1078 			  struct file *filp, poll_table *poll_table, int full)
1079 {
1080 	struct ring_buffer_per_cpu *cpu_buffer;
1081 	struct rb_irq_work *work;
1082 
1083 	if (cpu == RING_BUFFER_ALL_CPUS) {
1084 		work = &buffer->irq_work;
1085 		full = 0;
1086 	} else {
1087 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1088 			return -EINVAL;
1089 
1090 		cpu_buffer = buffer->buffers[cpu];
1091 		work = &cpu_buffer->irq_work;
1092 	}
1093 
1094 	if (full) {
1095 		poll_wait(filp, &work->full_waiters, poll_table);
1096 		work->full_waiters_pending = true;
1097 		if (!cpu_buffer->shortest_full ||
1098 		    cpu_buffer->shortest_full > full)
1099 			cpu_buffer->shortest_full = full;
1100 	} else {
1101 		poll_wait(filp, &work->waiters, poll_table);
1102 		work->waiters_pending = true;
1103 	}
1104 
1105 	/*
1106 	 * There's a tight race between setting the waiters_pending and
1107 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1108 	 * is set, the next event will wake the task up, but we can get stuck
1109 	 * if there's only a single event in.
1110 	 *
1111 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1112 	 * but adding a memory barrier to all events will cause too much of a
1113 	 * performance hit in the fast path.  We only need a memory barrier when
1114 	 * the buffer goes from empty to having content.  But as this race is
1115 	 * extremely small, and it's not a problem if another event comes in, we
1116 	 * will fix it later.
1117 	 */
1118 	smp_mb();
1119 
1120 	if (full)
1121 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1122 
1123 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1124 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1125 		return EPOLLIN | EPOLLRDNORM;
1126 	return 0;
1127 }
1128 
1129 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1130 #define RB_WARN_ON(b, cond)						\
1131 	({								\
1132 		int _____ret = unlikely(cond);				\
1133 		if (_____ret) {						\
1134 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1135 				struct ring_buffer_per_cpu *__b =	\
1136 					(void *)b;			\
1137 				atomic_inc(&__b->buffer->record_disabled); \
1138 			} else						\
1139 				atomic_inc(&b->record_disabled);	\
1140 			WARN_ON(1);					\
1141 		}							\
1142 		_____ret;						\
1143 	})
1144 
1145 /* Up this if you want to test the TIME_EXTENTS and normalization */
1146 #define DEBUG_SHIFT 0
1147 
1148 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1149 {
1150 	u64 ts;
1151 
1152 	/* Skip retpolines :-( */
1153 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1154 		ts = trace_clock_local();
1155 	else
1156 		ts = buffer->clock();
1157 
1158 	/* shift to debug/test normalization and TIME_EXTENTS */
1159 	return ts << DEBUG_SHIFT;
1160 }
1161 
1162 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1163 {
1164 	u64 time;
1165 
1166 	preempt_disable_notrace();
1167 	time = rb_time_stamp(buffer);
1168 	preempt_enable_notrace();
1169 
1170 	return time;
1171 }
1172 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1173 
1174 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1175 				      int cpu, u64 *ts)
1176 {
1177 	/* Just stupid testing the normalize function and deltas */
1178 	*ts >>= DEBUG_SHIFT;
1179 }
1180 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1181 
1182 /*
1183  * Making the ring buffer lockless makes things tricky.
1184  * Although writes only happen on the CPU that they are on,
1185  * and they only need to worry about interrupts. Reads can
1186  * happen on any CPU.
1187  *
1188  * The reader page is always off the ring buffer, but when the
1189  * reader finishes with a page, it needs to swap its page with
1190  * a new one from the buffer. The reader needs to take from
1191  * the head (writes go to the tail). But if a writer is in overwrite
1192  * mode and wraps, it must push the head page forward.
1193  *
1194  * Here lies the problem.
1195  *
1196  * The reader must be careful to replace only the head page, and
1197  * not another one. As described at the top of the file in the
1198  * ASCII art, the reader sets its old page to point to the next
1199  * page after head. It then sets the page after head to point to
1200  * the old reader page. But if the writer moves the head page
1201  * during this operation, the reader could end up with the tail.
1202  *
1203  * We use cmpxchg to help prevent this race. We also do something
1204  * special with the page before head. We set the LSB to 1.
1205  *
1206  * When the writer must push the page forward, it will clear the
1207  * bit that points to the head page, move the head, and then set
1208  * the bit that points to the new head page.
1209  *
1210  * We also don't want an interrupt coming in and moving the head
1211  * page on another writer. Thus we use the second LSB to catch
1212  * that too. Thus:
1213  *
1214  * head->list->prev->next        bit 1          bit 0
1215  *                              -------        -------
1216  * Normal page                     0              0
1217  * Points to head page             0              1
1218  * New head page                   1              0
1219  *
1220  * Note we can not trust the prev pointer of the head page, because:
1221  *
1222  * +----+       +-----+        +-----+
1223  * |    |------>|  T  |---X--->|  N  |
1224  * |    |<------|     |        |     |
1225  * +----+       +-----+        +-----+
1226  *   ^                           ^ |
1227  *   |          +-----+          | |
1228  *   +----------|  R  |----------+ |
1229  *              |     |<-----------+
1230  *              +-----+
1231  *
1232  * Key:  ---X-->  HEAD flag set in pointer
1233  *         T      Tail page
1234  *         R      Reader page
1235  *         N      Next page
1236  *
1237  * (see __rb_reserve_next() to see where this happens)
1238  *
1239  *  What the above shows is that the reader just swapped out
1240  *  the reader page with a page in the buffer, but before it
1241  *  could make the new header point back to the new page added
1242  *  it was preempted by a writer. The writer moved forward onto
1243  *  the new page added by the reader and is about to move forward
1244  *  again.
1245  *
1246  *  You can see, it is legitimate for the previous pointer of
1247  *  the head (or any page) not to point back to itself. But only
1248  *  temporarily.
1249  */
1250 
1251 #define RB_PAGE_NORMAL		0UL
1252 #define RB_PAGE_HEAD		1UL
1253 #define RB_PAGE_UPDATE		2UL
1254 
1255 
1256 #define RB_FLAG_MASK		3UL
1257 
1258 /* PAGE_MOVED is not part of the mask */
1259 #define RB_PAGE_MOVED		4UL
1260 
1261 /*
1262  * rb_list_head - remove any bit
1263  */
1264 static struct list_head *rb_list_head(struct list_head *list)
1265 {
1266 	unsigned long val = (unsigned long)list;
1267 
1268 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1269 }
1270 
1271 /*
1272  * rb_is_head_page - test if the given page is the head page
1273  *
1274  * Because the reader may move the head_page pointer, we can
1275  * not trust what the head page is (it may be pointing to
1276  * the reader page). But if the next page is a header page,
1277  * its flags will be non zero.
1278  */
1279 static inline int
1280 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1281 {
1282 	unsigned long val;
1283 
1284 	val = (unsigned long)list->next;
1285 
1286 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1287 		return RB_PAGE_MOVED;
1288 
1289 	return val & RB_FLAG_MASK;
1290 }
1291 
1292 /*
1293  * rb_is_reader_page
1294  *
1295  * The unique thing about the reader page, is that, if the
1296  * writer is ever on it, the previous pointer never points
1297  * back to the reader page.
1298  */
1299 static bool rb_is_reader_page(struct buffer_page *page)
1300 {
1301 	struct list_head *list = page->list.prev;
1302 
1303 	return rb_list_head(list->next) != &page->list;
1304 }
1305 
1306 /*
1307  * rb_set_list_to_head - set a list_head to be pointing to head.
1308  */
1309 static void rb_set_list_to_head(struct list_head *list)
1310 {
1311 	unsigned long *ptr;
1312 
1313 	ptr = (unsigned long *)&list->next;
1314 	*ptr |= RB_PAGE_HEAD;
1315 	*ptr &= ~RB_PAGE_UPDATE;
1316 }
1317 
1318 /*
1319  * rb_head_page_activate - sets up head page
1320  */
1321 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1322 {
1323 	struct buffer_page *head;
1324 
1325 	head = cpu_buffer->head_page;
1326 	if (!head)
1327 		return;
1328 
1329 	/*
1330 	 * Set the previous list pointer to have the HEAD flag.
1331 	 */
1332 	rb_set_list_to_head(head->list.prev);
1333 }
1334 
1335 static void rb_list_head_clear(struct list_head *list)
1336 {
1337 	unsigned long *ptr = (unsigned long *)&list->next;
1338 
1339 	*ptr &= ~RB_FLAG_MASK;
1340 }
1341 
1342 /*
1343  * rb_head_page_deactivate - clears head page ptr (for free list)
1344  */
1345 static void
1346 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1347 {
1348 	struct list_head *hd;
1349 
1350 	/* Go through the whole list and clear any pointers found. */
1351 	rb_list_head_clear(cpu_buffer->pages);
1352 
1353 	list_for_each(hd, cpu_buffer->pages)
1354 		rb_list_head_clear(hd);
1355 }
1356 
1357 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1358 			    struct buffer_page *head,
1359 			    struct buffer_page *prev,
1360 			    int old_flag, int new_flag)
1361 {
1362 	struct list_head *list;
1363 	unsigned long val = (unsigned long)&head->list;
1364 	unsigned long ret;
1365 
1366 	list = &prev->list;
1367 
1368 	val &= ~RB_FLAG_MASK;
1369 
1370 	ret = cmpxchg((unsigned long *)&list->next,
1371 		      val | old_flag, val | new_flag);
1372 
1373 	/* check if the reader took the page */
1374 	if ((ret & ~RB_FLAG_MASK) != val)
1375 		return RB_PAGE_MOVED;
1376 
1377 	return ret & RB_FLAG_MASK;
1378 }
1379 
1380 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1381 				   struct buffer_page *head,
1382 				   struct buffer_page *prev,
1383 				   int old_flag)
1384 {
1385 	return rb_head_page_set(cpu_buffer, head, prev,
1386 				old_flag, RB_PAGE_UPDATE);
1387 }
1388 
1389 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1390 				 struct buffer_page *head,
1391 				 struct buffer_page *prev,
1392 				 int old_flag)
1393 {
1394 	return rb_head_page_set(cpu_buffer, head, prev,
1395 				old_flag, RB_PAGE_HEAD);
1396 }
1397 
1398 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1399 				   struct buffer_page *head,
1400 				   struct buffer_page *prev,
1401 				   int old_flag)
1402 {
1403 	return rb_head_page_set(cpu_buffer, head, prev,
1404 				old_flag, RB_PAGE_NORMAL);
1405 }
1406 
1407 static inline void rb_inc_page(struct buffer_page **bpage)
1408 {
1409 	struct list_head *p = rb_list_head((*bpage)->list.next);
1410 
1411 	*bpage = list_entry(p, struct buffer_page, list);
1412 }
1413 
1414 static struct buffer_page *
1415 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1416 {
1417 	struct buffer_page *head;
1418 	struct buffer_page *page;
1419 	struct list_head *list;
1420 	int i;
1421 
1422 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1423 		return NULL;
1424 
1425 	/* sanity check */
1426 	list = cpu_buffer->pages;
1427 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1428 		return NULL;
1429 
1430 	page = head = cpu_buffer->head_page;
1431 	/*
1432 	 * It is possible that the writer moves the header behind
1433 	 * where we started, and we miss in one loop.
1434 	 * A second loop should grab the header, but we'll do
1435 	 * three loops just because I'm paranoid.
1436 	 */
1437 	for (i = 0; i < 3; i++) {
1438 		do {
1439 			if (rb_is_head_page(page, page->list.prev)) {
1440 				cpu_buffer->head_page = page;
1441 				return page;
1442 			}
1443 			rb_inc_page(&page);
1444 		} while (page != head);
1445 	}
1446 
1447 	RB_WARN_ON(cpu_buffer, 1);
1448 
1449 	return NULL;
1450 }
1451 
1452 static bool rb_head_page_replace(struct buffer_page *old,
1453 				struct buffer_page *new)
1454 {
1455 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1456 	unsigned long val;
1457 
1458 	val = *ptr & ~RB_FLAG_MASK;
1459 	val |= RB_PAGE_HEAD;
1460 
1461 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1462 }
1463 
1464 /*
1465  * rb_tail_page_update - move the tail page forward
1466  */
1467 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1468 			       struct buffer_page *tail_page,
1469 			       struct buffer_page *next_page)
1470 {
1471 	unsigned long old_entries;
1472 	unsigned long old_write;
1473 
1474 	/*
1475 	 * The tail page now needs to be moved forward.
1476 	 *
1477 	 * We need to reset the tail page, but without messing
1478 	 * with possible erasing of data brought in by interrupts
1479 	 * that have moved the tail page and are currently on it.
1480 	 *
1481 	 * We add a counter to the write field to denote this.
1482 	 */
1483 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1484 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1485 
1486 	local_inc(&cpu_buffer->pages_touched);
1487 	/*
1488 	 * Just make sure we have seen our old_write and synchronize
1489 	 * with any interrupts that come in.
1490 	 */
1491 	barrier();
1492 
1493 	/*
1494 	 * If the tail page is still the same as what we think
1495 	 * it is, then it is up to us to update the tail
1496 	 * pointer.
1497 	 */
1498 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1499 		/* Zero the write counter */
1500 		unsigned long val = old_write & ~RB_WRITE_MASK;
1501 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1502 
1503 		/*
1504 		 * This will only succeed if an interrupt did
1505 		 * not come in and change it. In which case, we
1506 		 * do not want to modify it.
1507 		 *
1508 		 * We add (void) to let the compiler know that we do not care
1509 		 * about the return value of these functions. We use the
1510 		 * cmpxchg to only update if an interrupt did not already
1511 		 * do it for us. If the cmpxchg fails, we don't care.
1512 		 */
1513 		(void)local_cmpxchg(&next_page->write, old_write, val);
1514 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1515 
1516 		/*
1517 		 * No need to worry about races with clearing out the commit.
1518 		 * it only can increment when a commit takes place. But that
1519 		 * only happens in the outer most nested commit.
1520 		 */
1521 		local_set(&next_page->page->commit, 0);
1522 
1523 		/* Again, either we update tail_page or an interrupt does */
1524 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1525 	}
1526 }
1527 
1528 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1529 			  struct buffer_page *bpage)
1530 {
1531 	unsigned long val = (unsigned long)bpage;
1532 
1533 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1534 }
1535 
1536 /**
1537  * rb_check_pages - integrity check of buffer pages
1538  * @cpu_buffer: CPU buffer with pages to test
1539  *
1540  * As a safety measure we check to make sure the data pages have not
1541  * been corrupted.
1542  */
1543 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1544 {
1545 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1546 	struct list_head *tmp;
1547 
1548 	if (RB_WARN_ON(cpu_buffer,
1549 			rb_list_head(rb_list_head(head->next)->prev) != head))
1550 		return;
1551 
1552 	if (RB_WARN_ON(cpu_buffer,
1553 			rb_list_head(rb_list_head(head->prev)->next) != head))
1554 		return;
1555 
1556 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1557 		if (RB_WARN_ON(cpu_buffer,
1558 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1559 			return;
1560 
1561 		if (RB_WARN_ON(cpu_buffer,
1562 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1563 			return;
1564 	}
1565 }
1566 
1567 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1568 		long nr_pages, struct list_head *pages)
1569 {
1570 	struct buffer_page *bpage, *tmp;
1571 	bool user_thread = current->mm != NULL;
1572 	gfp_t mflags;
1573 	long i;
1574 
1575 	/*
1576 	 * Check if the available memory is there first.
1577 	 * Note, si_mem_available() only gives us a rough estimate of available
1578 	 * memory. It may not be accurate. But we don't care, we just want
1579 	 * to prevent doing any allocation when it is obvious that it is
1580 	 * not going to succeed.
1581 	 */
1582 	i = si_mem_available();
1583 	if (i < nr_pages)
1584 		return -ENOMEM;
1585 
1586 	/*
1587 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1588 	 * gracefully without invoking oom-killer and the system is not
1589 	 * destabilized.
1590 	 */
1591 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1592 
1593 	/*
1594 	 * If a user thread allocates too much, and si_mem_available()
1595 	 * reports there's enough memory, even though there is not.
1596 	 * Make sure the OOM killer kills this thread. This can happen
1597 	 * even with RETRY_MAYFAIL because another task may be doing
1598 	 * an allocation after this task has taken all memory.
1599 	 * This is the task the OOM killer needs to take out during this
1600 	 * loop, even if it was triggered by an allocation somewhere else.
1601 	 */
1602 	if (user_thread)
1603 		set_current_oom_origin();
1604 	for (i = 0; i < nr_pages; i++) {
1605 		struct page *page;
1606 
1607 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1608 				    mflags, cpu_to_node(cpu_buffer->cpu));
1609 		if (!bpage)
1610 			goto free_pages;
1611 
1612 		rb_check_bpage(cpu_buffer, bpage);
1613 
1614 		list_add(&bpage->list, pages);
1615 
1616 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1617 		if (!page)
1618 			goto free_pages;
1619 		bpage->page = page_address(page);
1620 		rb_init_page(bpage->page);
1621 
1622 		if (user_thread && fatal_signal_pending(current))
1623 			goto free_pages;
1624 	}
1625 	if (user_thread)
1626 		clear_current_oom_origin();
1627 
1628 	return 0;
1629 
1630 free_pages:
1631 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1632 		list_del_init(&bpage->list);
1633 		free_buffer_page(bpage);
1634 	}
1635 	if (user_thread)
1636 		clear_current_oom_origin();
1637 
1638 	return -ENOMEM;
1639 }
1640 
1641 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1642 			     unsigned long nr_pages)
1643 {
1644 	LIST_HEAD(pages);
1645 
1646 	WARN_ON(!nr_pages);
1647 
1648 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1649 		return -ENOMEM;
1650 
1651 	/*
1652 	 * The ring buffer page list is a circular list that does not
1653 	 * start and end with a list head. All page list items point to
1654 	 * other pages.
1655 	 */
1656 	cpu_buffer->pages = pages.next;
1657 	list_del(&pages);
1658 
1659 	cpu_buffer->nr_pages = nr_pages;
1660 
1661 	rb_check_pages(cpu_buffer);
1662 
1663 	return 0;
1664 }
1665 
1666 static struct ring_buffer_per_cpu *
1667 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1668 {
1669 	struct ring_buffer_per_cpu *cpu_buffer;
1670 	struct buffer_page *bpage;
1671 	struct page *page;
1672 	int ret;
1673 
1674 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1675 				  GFP_KERNEL, cpu_to_node(cpu));
1676 	if (!cpu_buffer)
1677 		return NULL;
1678 
1679 	cpu_buffer->cpu = cpu;
1680 	cpu_buffer->buffer = buffer;
1681 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1682 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1683 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1684 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1685 	init_completion(&cpu_buffer->update_done);
1686 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1687 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1688 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1689 
1690 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1691 			    GFP_KERNEL, cpu_to_node(cpu));
1692 	if (!bpage)
1693 		goto fail_free_buffer;
1694 
1695 	rb_check_bpage(cpu_buffer, bpage);
1696 
1697 	cpu_buffer->reader_page = bpage;
1698 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1699 	if (!page)
1700 		goto fail_free_reader;
1701 	bpage->page = page_address(page);
1702 	rb_init_page(bpage->page);
1703 
1704 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1705 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1706 
1707 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1708 	if (ret < 0)
1709 		goto fail_free_reader;
1710 
1711 	cpu_buffer->head_page
1712 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1713 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1714 
1715 	rb_head_page_activate(cpu_buffer);
1716 
1717 	return cpu_buffer;
1718 
1719  fail_free_reader:
1720 	free_buffer_page(cpu_buffer->reader_page);
1721 
1722  fail_free_buffer:
1723 	kfree(cpu_buffer);
1724 	return NULL;
1725 }
1726 
1727 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1728 {
1729 	struct list_head *head = cpu_buffer->pages;
1730 	struct buffer_page *bpage, *tmp;
1731 
1732 	irq_work_sync(&cpu_buffer->irq_work.work);
1733 
1734 	free_buffer_page(cpu_buffer->reader_page);
1735 
1736 	if (head) {
1737 		rb_head_page_deactivate(cpu_buffer);
1738 
1739 		list_for_each_entry_safe(bpage, tmp, head, list) {
1740 			list_del_init(&bpage->list);
1741 			free_buffer_page(bpage);
1742 		}
1743 		bpage = list_entry(head, struct buffer_page, list);
1744 		free_buffer_page(bpage);
1745 	}
1746 
1747 	free_page((unsigned long)cpu_buffer->free_page);
1748 
1749 	kfree(cpu_buffer);
1750 }
1751 
1752 /**
1753  * __ring_buffer_alloc - allocate a new ring_buffer
1754  * @size: the size in bytes per cpu that is needed.
1755  * @flags: attributes to set for the ring buffer.
1756  * @key: ring buffer reader_lock_key.
1757  *
1758  * Currently the only flag that is available is the RB_FL_OVERWRITE
1759  * flag. This flag means that the buffer will overwrite old data
1760  * when the buffer wraps. If this flag is not set, the buffer will
1761  * drop data when the tail hits the head.
1762  */
1763 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1764 					struct lock_class_key *key)
1765 {
1766 	struct trace_buffer *buffer;
1767 	long nr_pages;
1768 	int bsize;
1769 	int cpu;
1770 	int ret;
1771 
1772 	/* keep it in its own cache line */
1773 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1774 			 GFP_KERNEL);
1775 	if (!buffer)
1776 		return NULL;
1777 
1778 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1779 		goto fail_free_buffer;
1780 
1781 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1782 	buffer->flags = flags;
1783 	buffer->clock = trace_clock_local;
1784 	buffer->reader_lock_key = key;
1785 
1786 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1787 	init_waitqueue_head(&buffer->irq_work.waiters);
1788 
1789 	/* need at least two pages */
1790 	if (nr_pages < 2)
1791 		nr_pages = 2;
1792 
1793 	buffer->cpus = nr_cpu_ids;
1794 
1795 	bsize = sizeof(void *) * nr_cpu_ids;
1796 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1797 				  GFP_KERNEL);
1798 	if (!buffer->buffers)
1799 		goto fail_free_cpumask;
1800 
1801 	cpu = raw_smp_processor_id();
1802 	cpumask_set_cpu(cpu, buffer->cpumask);
1803 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1804 	if (!buffer->buffers[cpu])
1805 		goto fail_free_buffers;
1806 
1807 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1808 	if (ret < 0)
1809 		goto fail_free_buffers;
1810 
1811 	mutex_init(&buffer->mutex);
1812 
1813 	return buffer;
1814 
1815  fail_free_buffers:
1816 	for_each_buffer_cpu(buffer, cpu) {
1817 		if (buffer->buffers[cpu])
1818 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1819 	}
1820 	kfree(buffer->buffers);
1821 
1822  fail_free_cpumask:
1823 	free_cpumask_var(buffer->cpumask);
1824 
1825  fail_free_buffer:
1826 	kfree(buffer);
1827 	return NULL;
1828 }
1829 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1830 
1831 /**
1832  * ring_buffer_free - free a ring buffer.
1833  * @buffer: the buffer to free.
1834  */
1835 void
1836 ring_buffer_free(struct trace_buffer *buffer)
1837 {
1838 	int cpu;
1839 
1840 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1841 
1842 	irq_work_sync(&buffer->irq_work.work);
1843 
1844 	for_each_buffer_cpu(buffer, cpu)
1845 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1846 
1847 	kfree(buffer->buffers);
1848 	free_cpumask_var(buffer->cpumask);
1849 
1850 	kfree(buffer);
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_free);
1853 
1854 void ring_buffer_set_clock(struct trace_buffer *buffer,
1855 			   u64 (*clock)(void))
1856 {
1857 	buffer->clock = clock;
1858 }
1859 
1860 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1861 {
1862 	buffer->time_stamp_abs = abs;
1863 }
1864 
1865 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1866 {
1867 	return buffer->time_stamp_abs;
1868 }
1869 
1870 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1871 
1872 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1873 {
1874 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1875 }
1876 
1877 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1878 {
1879 	return local_read(&bpage->write) & RB_WRITE_MASK;
1880 }
1881 
1882 static bool
1883 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1884 {
1885 	struct list_head *tail_page, *to_remove, *next_page;
1886 	struct buffer_page *to_remove_page, *tmp_iter_page;
1887 	struct buffer_page *last_page, *first_page;
1888 	unsigned long nr_removed;
1889 	unsigned long head_bit;
1890 	int page_entries;
1891 
1892 	head_bit = 0;
1893 
1894 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1895 	atomic_inc(&cpu_buffer->record_disabled);
1896 	/*
1897 	 * We don't race with the readers since we have acquired the reader
1898 	 * lock. We also don't race with writers after disabling recording.
1899 	 * This makes it easy to figure out the first and the last page to be
1900 	 * removed from the list. We unlink all the pages in between including
1901 	 * the first and last pages. This is done in a busy loop so that we
1902 	 * lose the least number of traces.
1903 	 * The pages are freed after we restart recording and unlock readers.
1904 	 */
1905 	tail_page = &cpu_buffer->tail_page->list;
1906 
1907 	/*
1908 	 * tail page might be on reader page, we remove the next page
1909 	 * from the ring buffer
1910 	 */
1911 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1912 		tail_page = rb_list_head(tail_page->next);
1913 	to_remove = tail_page;
1914 
1915 	/* start of pages to remove */
1916 	first_page = list_entry(rb_list_head(to_remove->next),
1917 				struct buffer_page, list);
1918 
1919 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1920 		to_remove = rb_list_head(to_remove)->next;
1921 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1922 	}
1923 	/* Read iterators need to reset themselves when some pages removed */
1924 	cpu_buffer->pages_removed += nr_removed;
1925 
1926 	next_page = rb_list_head(to_remove)->next;
1927 
1928 	/*
1929 	 * Now we remove all pages between tail_page and next_page.
1930 	 * Make sure that we have head_bit value preserved for the
1931 	 * next page
1932 	 */
1933 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1934 						head_bit);
1935 	next_page = rb_list_head(next_page);
1936 	next_page->prev = tail_page;
1937 
1938 	/* make sure pages points to a valid page in the ring buffer */
1939 	cpu_buffer->pages = next_page;
1940 
1941 	/* update head page */
1942 	if (head_bit)
1943 		cpu_buffer->head_page = list_entry(next_page,
1944 						struct buffer_page, list);
1945 
1946 	/* pages are removed, resume tracing and then free the pages */
1947 	atomic_dec(&cpu_buffer->record_disabled);
1948 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1949 
1950 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1951 
1952 	/* last buffer page to remove */
1953 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1954 				list);
1955 	tmp_iter_page = first_page;
1956 
1957 	do {
1958 		cond_resched();
1959 
1960 		to_remove_page = tmp_iter_page;
1961 		rb_inc_page(&tmp_iter_page);
1962 
1963 		/* update the counters */
1964 		page_entries = rb_page_entries(to_remove_page);
1965 		if (page_entries) {
1966 			/*
1967 			 * If something was added to this page, it was full
1968 			 * since it is not the tail page. So we deduct the
1969 			 * bytes consumed in ring buffer from here.
1970 			 * Increment overrun to account for the lost events.
1971 			 */
1972 			local_add(page_entries, &cpu_buffer->overrun);
1973 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1974 			local_inc(&cpu_buffer->pages_lost);
1975 		}
1976 
1977 		/*
1978 		 * We have already removed references to this list item, just
1979 		 * free up the buffer_page and its page
1980 		 */
1981 		free_buffer_page(to_remove_page);
1982 		nr_removed--;
1983 
1984 	} while (to_remove_page != last_page);
1985 
1986 	RB_WARN_ON(cpu_buffer, nr_removed);
1987 
1988 	return nr_removed == 0;
1989 }
1990 
1991 static bool
1992 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1993 {
1994 	struct list_head *pages = &cpu_buffer->new_pages;
1995 	unsigned long flags;
1996 	bool success;
1997 	int retries;
1998 
1999 	/* Can be called at early boot up, where interrupts must not been enabled */
2000 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2001 	/*
2002 	 * We are holding the reader lock, so the reader page won't be swapped
2003 	 * in the ring buffer. Now we are racing with the writer trying to
2004 	 * move head page and the tail page.
2005 	 * We are going to adapt the reader page update process where:
2006 	 * 1. We first splice the start and end of list of new pages between
2007 	 *    the head page and its previous page.
2008 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2009 	 *    start of new pages list.
2010 	 * 3. Finally, we update the head->prev to the end of new list.
2011 	 *
2012 	 * We will try this process 10 times, to make sure that we don't keep
2013 	 * spinning.
2014 	 */
2015 	retries = 10;
2016 	success = false;
2017 	while (retries--) {
2018 		struct list_head *head_page, *prev_page;
2019 		struct list_head *last_page, *first_page;
2020 		struct list_head *head_page_with_bit;
2021 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2022 
2023 		if (!hpage)
2024 			break;
2025 		head_page = &hpage->list;
2026 		prev_page = head_page->prev;
2027 
2028 		first_page = pages->next;
2029 		last_page  = pages->prev;
2030 
2031 		head_page_with_bit = (struct list_head *)
2032 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2033 
2034 		last_page->next = head_page_with_bit;
2035 		first_page->prev = prev_page;
2036 
2037 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2038 		if (try_cmpxchg(&prev_page->next,
2039 				&head_page_with_bit, first_page)) {
2040 			/*
2041 			 * yay, we replaced the page pointer to our new list,
2042 			 * now, we just have to update to head page's prev
2043 			 * pointer to point to end of list
2044 			 */
2045 			head_page->prev = last_page;
2046 			success = true;
2047 			break;
2048 		}
2049 	}
2050 
2051 	if (success)
2052 		INIT_LIST_HEAD(pages);
2053 	/*
2054 	 * If we weren't successful in adding in new pages, warn and stop
2055 	 * tracing
2056 	 */
2057 	RB_WARN_ON(cpu_buffer, !success);
2058 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2059 
2060 	/* free pages if they weren't inserted */
2061 	if (!success) {
2062 		struct buffer_page *bpage, *tmp;
2063 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2064 					 list) {
2065 			list_del_init(&bpage->list);
2066 			free_buffer_page(bpage);
2067 		}
2068 	}
2069 	return success;
2070 }
2071 
2072 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2073 {
2074 	bool success;
2075 
2076 	if (cpu_buffer->nr_pages_to_update > 0)
2077 		success = rb_insert_pages(cpu_buffer);
2078 	else
2079 		success = rb_remove_pages(cpu_buffer,
2080 					-cpu_buffer->nr_pages_to_update);
2081 
2082 	if (success)
2083 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2084 }
2085 
2086 static void update_pages_handler(struct work_struct *work)
2087 {
2088 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2089 			struct ring_buffer_per_cpu, update_pages_work);
2090 	rb_update_pages(cpu_buffer);
2091 	complete(&cpu_buffer->update_done);
2092 }
2093 
2094 /**
2095  * ring_buffer_resize - resize the ring buffer
2096  * @buffer: the buffer to resize.
2097  * @size: the new size.
2098  * @cpu_id: the cpu buffer to resize
2099  *
2100  * Minimum size is 2 * BUF_PAGE_SIZE.
2101  *
2102  * Returns 0 on success and < 0 on failure.
2103  */
2104 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2105 			int cpu_id)
2106 {
2107 	struct ring_buffer_per_cpu *cpu_buffer;
2108 	unsigned long nr_pages;
2109 	int cpu, err;
2110 
2111 	/*
2112 	 * Always succeed at resizing a non-existent buffer:
2113 	 */
2114 	if (!buffer)
2115 		return 0;
2116 
2117 	/* Make sure the requested buffer exists */
2118 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2119 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2120 		return 0;
2121 
2122 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2123 
2124 	/* we need a minimum of two pages */
2125 	if (nr_pages < 2)
2126 		nr_pages = 2;
2127 
2128 	/* prevent another thread from changing buffer sizes */
2129 	mutex_lock(&buffer->mutex);
2130 	atomic_inc(&buffer->resizing);
2131 
2132 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2133 		/*
2134 		 * Don't succeed if resizing is disabled, as a reader might be
2135 		 * manipulating the ring buffer and is expecting a sane state while
2136 		 * this is true.
2137 		 */
2138 		for_each_buffer_cpu(buffer, cpu) {
2139 			cpu_buffer = buffer->buffers[cpu];
2140 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2141 				err = -EBUSY;
2142 				goto out_err_unlock;
2143 			}
2144 		}
2145 
2146 		/* calculate the pages to update */
2147 		for_each_buffer_cpu(buffer, cpu) {
2148 			cpu_buffer = buffer->buffers[cpu];
2149 
2150 			cpu_buffer->nr_pages_to_update = nr_pages -
2151 							cpu_buffer->nr_pages;
2152 			/*
2153 			 * nothing more to do for removing pages or no update
2154 			 */
2155 			if (cpu_buffer->nr_pages_to_update <= 0)
2156 				continue;
2157 			/*
2158 			 * to add pages, make sure all new pages can be
2159 			 * allocated without receiving ENOMEM
2160 			 */
2161 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2162 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2163 						&cpu_buffer->new_pages)) {
2164 				/* not enough memory for new pages */
2165 				err = -ENOMEM;
2166 				goto out_err;
2167 			}
2168 
2169 			cond_resched();
2170 		}
2171 
2172 		cpus_read_lock();
2173 		/*
2174 		 * Fire off all the required work handlers
2175 		 * We can't schedule on offline CPUs, but it's not necessary
2176 		 * since we can change their buffer sizes without any race.
2177 		 */
2178 		for_each_buffer_cpu(buffer, cpu) {
2179 			cpu_buffer = buffer->buffers[cpu];
2180 			if (!cpu_buffer->nr_pages_to_update)
2181 				continue;
2182 
2183 			/* Can't run something on an offline CPU. */
2184 			if (!cpu_online(cpu)) {
2185 				rb_update_pages(cpu_buffer);
2186 				cpu_buffer->nr_pages_to_update = 0;
2187 			} else {
2188 				/* Run directly if possible. */
2189 				migrate_disable();
2190 				if (cpu != smp_processor_id()) {
2191 					migrate_enable();
2192 					schedule_work_on(cpu,
2193 							 &cpu_buffer->update_pages_work);
2194 				} else {
2195 					update_pages_handler(&cpu_buffer->update_pages_work);
2196 					migrate_enable();
2197 				}
2198 			}
2199 		}
2200 
2201 		/* wait for all the updates to complete */
2202 		for_each_buffer_cpu(buffer, cpu) {
2203 			cpu_buffer = buffer->buffers[cpu];
2204 			if (!cpu_buffer->nr_pages_to_update)
2205 				continue;
2206 
2207 			if (cpu_online(cpu))
2208 				wait_for_completion(&cpu_buffer->update_done);
2209 			cpu_buffer->nr_pages_to_update = 0;
2210 		}
2211 
2212 		cpus_read_unlock();
2213 	} else {
2214 		cpu_buffer = buffer->buffers[cpu_id];
2215 
2216 		if (nr_pages == cpu_buffer->nr_pages)
2217 			goto out;
2218 
2219 		/*
2220 		 * Don't succeed if resizing is disabled, as a reader might be
2221 		 * manipulating the ring buffer and is expecting a sane state while
2222 		 * this is true.
2223 		 */
2224 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2225 			err = -EBUSY;
2226 			goto out_err_unlock;
2227 		}
2228 
2229 		cpu_buffer->nr_pages_to_update = nr_pages -
2230 						cpu_buffer->nr_pages;
2231 
2232 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2233 		if (cpu_buffer->nr_pages_to_update > 0 &&
2234 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2235 					    &cpu_buffer->new_pages)) {
2236 			err = -ENOMEM;
2237 			goto out_err;
2238 		}
2239 
2240 		cpus_read_lock();
2241 
2242 		/* Can't run something on an offline CPU. */
2243 		if (!cpu_online(cpu_id))
2244 			rb_update_pages(cpu_buffer);
2245 		else {
2246 			/* Run directly if possible. */
2247 			migrate_disable();
2248 			if (cpu_id == smp_processor_id()) {
2249 				rb_update_pages(cpu_buffer);
2250 				migrate_enable();
2251 			} else {
2252 				migrate_enable();
2253 				schedule_work_on(cpu_id,
2254 						 &cpu_buffer->update_pages_work);
2255 				wait_for_completion(&cpu_buffer->update_done);
2256 			}
2257 		}
2258 
2259 		cpu_buffer->nr_pages_to_update = 0;
2260 		cpus_read_unlock();
2261 	}
2262 
2263  out:
2264 	/*
2265 	 * The ring buffer resize can happen with the ring buffer
2266 	 * enabled, so that the update disturbs the tracing as little
2267 	 * as possible. But if the buffer is disabled, we do not need
2268 	 * to worry about that, and we can take the time to verify
2269 	 * that the buffer is not corrupt.
2270 	 */
2271 	if (atomic_read(&buffer->record_disabled)) {
2272 		atomic_inc(&buffer->record_disabled);
2273 		/*
2274 		 * Even though the buffer was disabled, we must make sure
2275 		 * that it is truly disabled before calling rb_check_pages.
2276 		 * There could have been a race between checking
2277 		 * record_disable and incrementing it.
2278 		 */
2279 		synchronize_rcu();
2280 		for_each_buffer_cpu(buffer, cpu) {
2281 			cpu_buffer = buffer->buffers[cpu];
2282 			rb_check_pages(cpu_buffer);
2283 		}
2284 		atomic_dec(&buffer->record_disabled);
2285 	}
2286 
2287 	atomic_dec(&buffer->resizing);
2288 	mutex_unlock(&buffer->mutex);
2289 	return 0;
2290 
2291  out_err:
2292 	for_each_buffer_cpu(buffer, cpu) {
2293 		struct buffer_page *bpage, *tmp;
2294 
2295 		cpu_buffer = buffer->buffers[cpu];
2296 		cpu_buffer->nr_pages_to_update = 0;
2297 
2298 		if (list_empty(&cpu_buffer->new_pages))
2299 			continue;
2300 
2301 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2302 					list) {
2303 			list_del_init(&bpage->list);
2304 			free_buffer_page(bpage);
2305 		}
2306 	}
2307  out_err_unlock:
2308 	atomic_dec(&buffer->resizing);
2309 	mutex_unlock(&buffer->mutex);
2310 	return err;
2311 }
2312 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2313 
2314 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2315 {
2316 	mutex_lock(&buffer->mutex);
2317 	if (val)
2318 		buffer->flags |= RB_FL_OVERWRITE;
2319 	else
2320 		buffer->flags &= ~RB_FL_OVERWRITE;
2321 	mutex_unlock(&buffer->mutex);
2322 }
2323 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2324 
2325 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2326 {
2327 	return bpage->page->data + index;
2328 }
2329 
2330 static __always_inline struct ring_buffer_event *
2331 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2332 {
2333 	return __rb_page_index(cpu_buffer->reader_page,
2334 			       cpu_buffer->reader_page->read);
2335 }
2336 
2337 static struct ring_buffer_event *
2338 rb_iter_head_event(struct ring_buffer_iter *iter)
2339 {
2340 	struct ring_buffer_event *event;
2341 	struct buffer_page *iter_head_page = iter->head_page;
2342 	unsigned long commit;
2343 	unsigned length;
2344 
2345 	if (iter->head != iter->next_event)
2346 		return iter->event;
2347 
2348 	/*
2349 	 * When the writer goes across pages, it issues a cmpxchg which
2350 	 * is a mb(), which will synchronize with the rmb here.
2351 	 * (see rb_tail_page_update() and __rb_reserve_next())
2352 	 */
2353 	commit = rb_page_commit(iter_head_page);
2354 	smp_rmb();
2355 
2356 	/* An event needs to be at least 8 bytes in size */
2357 	if (iter->head > commit - 8)
2358 		goto reset;
2359 
2360 	event = __rb_page_index(iter_head_page, iter->head);
2361 	length = rb_event_length(event);
2362 
2363 	/*
2364 	 * READ_ONCE() doesn't work on functions and we don't want the
2365 	 * compiler doing any crazy optimizations with length.
2366 	 */
2367 	barrier();
2368 
2369 	if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2370 		/* Writer corrupted the read? */
2371 		goto reset;
2372 
2373 	memcpy(iter->event, event, length);
2374 	/*
2375 	 * If the page stamp is still the same after this rmb() then the
2376 	 * event was safely copied without the writer entering the page.
2377 	 */
2378 	smp_rmb();
2379 
2380 	/* Make sure the page didn't change since we read this */
2381 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2382 	    commit > rb_page_commit(iter_head_page))
2383 		goto reset;
2384 
2385 	iter->next_event = iter->head + length;
2386 	return iter->event;
2387  reset:
2388 	/* Reset to the beginning */
2389 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2390 	iter->head = 0;
2391 	iter->next_event = 0;
2392 	iter->missed_events = 1;
2393 	return NULL;
2394 }
2395 
2396 /* Size is determined by what has been committed */
2397 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2398 {
2399 	return rb_page_commit(bpage);
2400 }
2401 
2402 static __always_inline unsigned
2403 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2404 {
2405 	return rb_page_commit(cpu_buffer->commit_page);
2406 }
2407 
2408 static __always_inline unsigned
2409 rb_event_index(struct ring_buffer_event *event)
2410 {
2411 	unsigned long addr = (unsigned long)event;
2412 
2413 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2414 }
2415 
2416 static void rb_inc_iter(struct ring_buffer_iter *iter)
2417 {
2418 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2419 
2420 	/*
2421 	 * The iterator could be on the reader page (it starts there).
2422 	 * But the head could have moved, since the reader was
2423 	 * found. Check for this case and assign the iterator
2424 	 * to the head page instead of next.
2425 	 */
2426 	if (iter->head_page == cpu_buffer->reader_page)
2427 		iter->head_page = rb_set_head_page(cpu_buffer);
2428 	else
2429 		rb_inc_page(&iter->head_page);
2430 
2431 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2432 	iter->head = 0;
2433 	iter->next_event = 0;
2434 }
2435 
2436 /*
2437  * rb_handle_head_page - writer hit the head page
2438  *
2439  * Returns: +1 to retry page
2440  *           0 to continue
2441  *          -1 on error
2442  */
2443 static int
2444 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2445 		    struct buffer_page *tail_page,
2446 		    struct buffer_page *next_page)
2447 {
2448 	struct buffer_page *new_head;
2449 	int entries;
2450 	int type;
2451 	int ret;
2452 
2453 	entries = rb_page_entries(next_page);
2454 
2455 	/*
2456 	 * The hard part is here. We need to move the head
2457 	 * forward, and protect against both readers on
2458 	 * other CPUs and writers coming in via interrupts.
2459 	 */
2460 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2461 				       RB_PAGE_HEAD);
2462 
2463 	/*
2464 	 * type can be one of four:
2465 	 *  NORMAL - an interrupt already moved it for us
2466 	 *  HEAD   - we are the first to get here.
2467 	 *  UPDATE - we are the interrupt interrupting
2468 	 *           a current move.
2469 	 *  MOVED  - a reader on another CPU moved the next
2470 	 *           pointer to its reader page. Give up
2471 	 *           and try again.
2472 	 */
2473 
2474 	switch (type) {
2475 	case RB_PAGE_HEAD:
2476 		/*
2477 		 * We changed the head to UPDATE, thus
2478 		 * it is our responsibility to update
2479 		 * the counters.
2480 		 */
2481 		local_add(entries, &cpu_buffer->overrun);
2482 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2483 		local_inc(&cpu_buffer->pages_lost);
2484 
2485 		/*
2486 		 * The entries will be zeroed out when we move the
2487 		 * tail page.
2488 		 */
2489 
2490 		/* still more to do */
2491 		break;
2492 
2493 	case RB_PAGE_UPDATE:
2494 		/*
2495 		 * This is an interrupt that interrupt the
2496 		 * previous update. Still more to do.
2497 		 */
2498 		break;
2499 	case RB_PAGE_NORMAL:
2500 		/*
2501 		 * An interrupt came in before the update
2502 		 * and processed this for us.
2503 		 * Nothing left to do.
2504 		 */
2505 		return 1;
2506 	case RB_PAGE_MOVED:
2507 		/*
2508 		 * The reader is on another CPU and just did
2509 		 * a swap with our next_page.
2510 		 * Try again.
2511 		 */
2512 		return 1;
2513 	default:
2514 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2515 		return -1;
2516 	}
2517 
2518 	/*
2519 	 * Now that we are here, the old head pointer is
2520 	 * set to UPDATE. This will keep the reader from
2521 	 * swapping the head page with the reader page.
2522 	 * The reader (on another CPU) will spin till
2523 	 * we are finished.
2524 	 *
2525 	 * We just need to protect against interrupts
2526 	 * doing the job. We will set the next pointer
2527 	 * to HEAD. After that, we set the old pointer
2528 	 * to NORMAL, but only if it was HEAD before.
2529 	 * otherwise we are an interrupt, and only
2530 	 * want the outer most commit to reset it.
2531 	 */
2532 	new_head = next_page;
2533 	rb_inc_page(&new_head);
2534 
2535 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2536 				    RB_PAGE_NORMAL);
2537 
2538 	/*
2539 	 * Valid returns are:
2540 	 *  HEAD   - an interrupt came in and already set it.
2541 	 *  NORMAL - One of two things:
2542 	 *            1) We really set it.
2543 	 *            2) A bunch of interrupts came in and moved
2544 	 *               the page forward again.
2545 	 */
2546 	switch (ret) {
2547 	case RB_PAGE_HEAD:
2548 	case RB_PAGE_NORMAL:
2549 		/* OK */
2550 		break;
2551 	default:
2552 		RB_WARN_ON(cpu_buffer, 1);
2553 		return -1;
2554 	}
2555 
2556 	/*
2557 	 * It is possible that an interrupt came in,
2558 	 * set the head up, then more interrupts came in
2559 	 * and moved it again. When we get back here,
2560 	 * the page would have been set to NORMAL but we
2561 	 * just set it back to HEAD.
2562 	 *
2563 	 * How do you detect this? Well, if that happened
2564 	 * the tail page would have moved.
2565 	 */
2566 	if (ret == RB_PAGE_NORMAL) {
2567 		struct buffer_page *buffer_tail_page;
2568 
2569 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2570 		/*
2571 		 * If the tail had moved passed next, then we need
2572 		 * to reset the pointer.
2573 		 */
2574 		if (buffer_tail_page != tail_page &&
2575 		    buffer_tail_page != next_page)
2576 			rb_head_page_set_normal(cpu_buffer, new_head,
2577 						next_page,
2578 						RB_PAGE_HEAD);
2579 	}
2580 
2581 	/*
2582 	 * If this was the outer most commit (the one that
2583 	 * changed the original pointer from HEAD to UPDATE),
2584 	 * then it is up to us to reset it to NORMAL.
2585 	 */
2586 	if (type == RB_PAGE_HEAD) {
2587 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2588 					      tail_page,
2589 					      RB_PAGE_UPDATE);
2590 		if (RB_WARN_ON(cpu_buffer,
2591 			       ret != RB_PAGE_UPDATE))
2592 			return -1;
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 static inline void
2599 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2600 	      unsigned long tail, struct rb_event_info *info)
2601 {
2602 	struct buffer_page *tail_page = info->tail_page;
2603 	struct ring_buffer_event *event;
2604 	unsigned long length = info->length;
2605 
2606 	/*
2607 	 * Only the event that crossed the page boundary
2608 	 * must fill the old tail_page with padding.
2609 	 */
2610 	if (tail >= BUF_PAGE_SIZE) {
2611 		/*
2612 		 * If the page was filled, then we still need
2613 		 * to update the real_end. Reset it to zero
2614 		 * and the reader will ignore it.
2615 		 */
2616 		if (tail == BUF_PAGE_SIZE)
2617 			tail_page->real_end = 0;
2618 
2619 		local_sub(length, &tail_page->write);
2620 		return;
2621 	}
2622 
2623 	event = __rb_page_index(tail_page, tail);
2624 
2625 	/*
2626 	 * Save the original length to the meta data.
2627 	 * This will be used by the reader to add lost event
2628 	 * counter.
2629 	 */
2630 	tail_page->real_end = tail;
2631 
2632 	/*
2633 	 * If this event is bigger than the minimum size, then
2634 	 * we need to be careful that we don't subtract the
2635 	 * write counter enough to allow another writer to slip
2636 	 * in on this page.
2637 	 * We put in a discarded commit instead, to make sure
2638 	 * that this space is not used again, and this space will
2639 	 * not be accounted into 'entries_bytes'.
2640 	 *
2641 	 * If we are less than the minimum size, we don't need to
2642 	 * worry about it.
2643 	 */
2644 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2645 		/* No room for any events */
2646 
2647 		/* Mark the rest of the page with padding */
2648 		rb_event_set_padding(event);
2649 
2650 		/* Make sure the padding is visible before the write update */
2651 		smp_wmb();
2652 
2653 		/* Set the write back to the previous setting */
2654 		local_sub(length, &tail_page->write);
2655 		return;
2656 	}
2657 
2658 	/* Put in a discarded event */
2659 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2660 	event->type_len = RINGBUF_TYPE_PADDING;
2661 	/* time delta must be non zero */
2662 	event->time_delta = 1;
2663 
2664 	/* account for padding bytes */
2665 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2666 
2667 	/* Make sure the padding is visible before the tail_page->write update */
2668 	smp_wmb();
2669 
2670 	/* Set write to end of buffer */
2671 	length = (tail + length) - BUF_PAGE_SIZE;
2672 	local_sub(length, &tail_page->write);
2673 }
2674 
2675 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2676 
2677 /*
2678  * This is the slow path, force gcc not to inline it.
2679  */
2680 static noinline struct ring_buffer_event *
2681 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2682 	     unsigned long tail, struct rb_event_info *info)
2683 {
2684 	struct buffer_page *tail_page = info->tail_page;
2685 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2686 	struct trace_buffer *buffer = cpu_buffer->buffer;
2687 	struct buffer_page *next_page;
2688 	int ret;
2689 
2690 	next_page = tail_page;
2691 
2692 	rb_inc_page(&next_page);
2693 
2694 	/*
2695 	 * If for some reason, we had an interrupt storm that made
2696 	 * it all the way around the buffer, bail, and warn
2697 	 * about it.
2698 	 */
2699 	if (unlikely(next_page == commit_page)) {
2700 		local_inc(&cpu_buffer->commit_overrun);
2701 		goto out_reset;
2702 	}
2703 
2704 	/*
2705 	 * This is where the fun begins!
2706 	 *
2707 	 * We are fighting against races between a reader that
2708 	 * could be on another CPU trying to swap its reader
2709 	 * page with the buffer head.
2710 	 *
2711 	 * We are also fighting against interrupts coming in and
2712 	 * moving the head or tail on us as well.
2713 	 *
2714 	 * If the next page is the head page then we have filled
2715 	 * the buffer, unless the commit page is still on the
2716 	 * reader page.
2717 	 */
2718 	if (rb_is_head_page(next_page, &tail_page->list)) {
2719 
2720 		/*
2721 		 * If the commit is not on the reader page, then
2722 		 * move the header page.
2723 		 */
2724 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2725 			/*
2726 			 * If we are not in overwrite mode,
2727 			 * this is easy, just stop here.
2728 			 */
2729 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2730 				local_inc(&cpu_buffer->dropped_events);
2731 				goto out_reset;
2732 			}
2733 
2734 			ret = rb_handle_head_page(cpu_buffer,
2735 						  tail_page,
2736 						  next_page);
2737 			if (ret < 0)
2738 				goto out_reset;
2739 			if (ret)
2740 				goto out_again;
2741 		} else {
2742 			/*
2743 			 * We need to be careful here too. The
2744 			 * commit page could still be on the reader
2745 			 * page. We could have a small buffer, and
2746 			 * have filled up the buffer with events
2747 			 * from interrupts and such, and wrapped.
2748 			 *
2749 			 * Note, if the tail page is also on the
2750 			 * reader_page, we let it move out.
2751 			 */
2752 			if (unlikely((cpu_buffer->commit_page !=
2753 				      cpu_buffer->tail_page) &&
2754 				     (cpu_buffer->commit_page ==
2755 				      cpu_buffer->reader_page))) {
2756 				local_inc(&cpu_buffer->commit_overrun);
2757 				goto out_reset;
2758 			}
2759 		}
2760 	}
2761 
2762 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2763 
2764  out_again:
2765 
2766 	rb_reset_tail(cpu_buffer, tail, info);
2767 
2768 	/* Commit what we have for now. */
2769 	rb_end_commit(cpu_buffer);
2770 	/* rb_end_commit() decs committing */
2771 	local_inc(&cpu_buffer->committing);
2772 
2773 	/* fail and let the caller try again */
2774 	return ERR_PTR(-EAGAIN);
2775 
2776  out_reset:
2777 	/* reset write */
2778 	rb_reset_tail(cpu_buffer, tail, info);
2779 
2780 	return NULL;
2781 }
2782 
2783 /* Slow path */
2784 static struct ring_buffer_event *
2785 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2786 {
2787 	if (abs)
2788 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2789 	else
2790 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2791 
2792 	/* Not the first event on the page, or not delta? */
2793 	if (abs || rb_event_index(event)) {
2794 		event->time_delta = delta & TS_MASK;
2795 		event->array[0] = delta >> TS_SHIFT;
2796 	} else {
2797 		/* nope, just zero it */
2798 		event->time_delta = 0;
2799 		event->array[0] = 0;
2800 	}
2801 
2802 	return skip_time_extend(event);
2803 }
2804 
2805 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2806 static inline bool sched_clock_stable(void)
2807 {
2808 	return true;
2809 }
2810 #endif
2811 
2812 static void
2813 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2814 		   struct rb_event_info *info)
2815 {
2816 	u64 write_stamp;
2817 
2818 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2819 		  (unsigned long long)info->delta,
2820 		  (unsigned long long)info->ts,
2821 		  (unsigned long long)info->before,
2822 		  (unsigned long long)info->after,
2823 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2824 		  sched_clock_stable() ? "" :
2825 		  "If you just came from a suspend/resume,\n"
2826 		  "please switch to the trace global clock:\n"
2827 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2828 		  "or add trace_clock=global to the kernel command line\n");
2829 }
2830 
2831 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2832 				      struct ring_buffer_event **event,
2833 				      struct rb_event_info *info,
2834 				      u64 *delta,
2835 				      unsigned int *length)
2836 {
2837 	bool abs = info->add_timestamp &
2838 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2839 
2840 	if (unlikely(info->delta > (1ULL << 59))) {
2841 		/*
2842 		 * Some timers can use more than 59 bits, and when a timestamp
2843 		 * is added to the buffer, it will lose those bits.
2844 		 */
2845 		if (abs && (info->ts & TS_MSB)) {
2846 			info->delta &= ABS_TS_MASK;
2847 
2848 		/* did the clock go backwards */
2849 		} else if (info->before == info->after && info->before > info->ts) {
2850 			/* not interrupted */
2851 			static int once;
2852 
2853 			/*
2854 			 * This is possible with a recalibrating of the TSC.
2855 			 * Do not produce a call stack, but just report it.
2856 			 */
2857 			if (!once) {
2858 				once++;
2859 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2860 					info->before, info->ts);
2861 			}
2862 		} else
2863 			rb_check_timestamp(cpu_buffer, info);
2864 		if (!abs)
2865 			info->delta = 0;
2866 	}
2867 	*event = rb_add_time_stamp(*event, info->delta, abs);
2868 	*length -= RB_LEN_TIME_EXTEND;
2869 	*delta = 0;
2870 }
2871 
2872 /**
2873  * rb_update_event - update event type and data
2874  * @cpu_buffer: The per cpu buffer of the @event
2875  * @event: the event to update
2876  * @info: The info to update the @event with (contains length and delta)
2877  *
2878  * Update the type and data fields of the @event. The length
2879  * is the actual size that is written to the ring buffer,
2880  * and with this, we can determine what to place into the
2881  * data field.
2882  */
2883 static void
2884 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2885 		struct ring_buffer_event *event,
2886 		struct rb_event_info *info)
2887 {
2888 	unsigned length = info->length;
2889 	u64 delta = info->delta;
2890 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2891 
2892 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2893 		cpu_buffer->event_stamp[nest] = info->ts;
2894 
2895 	/*
2896 	 * If we need to add a timestamp, then we
2897 	 * add it to the start of the reserved space.
2898 	 */
2899 	if (unlikely(info->add_timestamp))
2900 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2901 
2902 	event->time_delta = delta;
2903 	length -= RB_EVNT_HDR_SIZE;
2904 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2905 		event->type_len = 0;
2906 		event->array[0] = length;
2907 	} else
2908 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2909 }
2910 
2911 static unsigned rb_calculate_event_length(unsigned length)
2912 {
2913 	struct ring_buffer_event event; /* Used only for sizeof array */
2914 
2915 	/* zero length can cause confusions */
2916 	if (!length)
2917 		length++;
2918 
2919 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2920 		length += sizeof(event.array[0]);
2921 
2922 	length += RB_EVNT_HDR_SIZE;
2923 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2924 
2925 	/*
2926 	 * In case the time delta is larger than the 27 bits for it
2927 	 * in the header, we need to add a timestamp. If another
2928 	 * event comes in when trying to discard this one to increase
2929 	 * the length, then the timestamp will be added in the allocated
2930 	 * space of this event. If length is bigger than the size needed
2931 	 * for the TIME_EXTEND, then padding has to be used. The events
2932 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2933 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2934 	 * As length is a multiple of 4, we only need to worry if it
2935 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2936 	 */
2937 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2938 		length += RB_ALIGNMENT;
2939 
2940 	return length;
2941 }
2942 
2943 static inline bool
2944 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2945 		  struct ring_buffer_event *event)
2946 {
2947 	unsigned long new_index, old_index;
2948 	struct buffer_page *bpage;
2949 	unsigned long addr;
2950 
2951 	new_index = rb_event_index(event);
2952 	old_index = new_index + rb_event_ts_length(event);
2953 	addr = (unsigned long)event;
2954 	addr &= PAGE_MASK;
2955 
2956 	bpage = READ_ONCE(cpu_buffer->tail_page);
2957 
2958 	/*
2959 	 * Make sure the tail_page is still the same and
2960 	 * the next write location is the end of this event
2961 	 */
2962 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2963 		unsigned long write_mask =
2964 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2965 		unsigned long event_length = rb_event_length(event);
2966 
2967 		/*
2968 		 * For the before_stamp to be different than the write_stamp
2969 		 * to make sure that the next event adds an absolute
2970 		 * value and does not rely on the saved write stamp, which
2971 		 * is now going to be bogus.
2972 		 *
2973 		 * By setting the before_stamp to zero, the next event
2974 		 * is not going to use the write_stamp and will instead
2975 		 * create an absolute timestamp. This means there's no
2976 		 * reason to update the wirte_stamp!
2977 		 */
2978 		rb_time_set(&cpu_buffer->before_stamp, 0);
2979 
2980 		/*
2981 		 * If an event were to come in now, it would see that the
2982 		 * write_stamp and the before_stamp are different, and assume
2983 		 * that this event just added itself before updating
2984 		 * the write stamp. The interrupting event will fix the
2985 		 * write stamp for us, and use an absolute timestamp.
2986 		 */
2987 
2988 		/*
2989 		 * This is on the tail page. It is possible that
2990 		 * a write could come in and move the tail page
2991 		 * and write to the next page. That is fine
2992 		 * because we just shorten what is on this page.
2993 		 */
2994 		old_index += write_mask;
2995 		new_index += write_mask;
2996 
2997 		/* caution: old_index gets updated on cmpxchg failure */
2998 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2999 			/* update counters */
3000 			local_sub(event_length, &cpu_buffer->entries_bytes);
3001 			return true;
3002 		}
3003 	}
3004 
3005 	/* could not discard */
3006 	return false;
3007 }
3008 
3009 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3010 {
3011 	local_inc(&cpu_buffer->committing);
3012 	local_inc(&cpu_buffer->commits);
3013 }
3014 
3015 static __always_inline void
3016 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3017 {
3018 	unsigned long max_count;
3019 
3020 	/*
3021 	 * We only race with interrupts and NMIs on this CPU.
3022 	 * If we own the commit event, then we can commit
3023 	 * all others that interrupted us, since the interruptions
3024 	 * are in stack format (they finish before they come
3025 	 * back to us). This allows us to do a simple loop to
3026 	 * assign the commit to the tail.
3027 	 */
3028  again:
3029 	max_count = cpu_buffer->nr_pages * 100;
3030 
3031 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3032 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3033 			return;
3034 		if (RB_WARN_ON(cpu_buffer,
3035 			       rb_is_reader_page(cpu_buffer->tail_page)))
3036 			return;
3037 		/*
3038 		 * No need for a memory barrier here, as the update
3039 		 * of the tail_page did it for this page.
3040 		 */
3041 		local_set(&cpu_buffer->commit_page->page->commit,
3042 			  rb_page_write(cpu_buffer->commit_page));
3043 		rb_inc_page(&cpu_buffer->commit_page);
3044 		/* add barrier to keep gcc from optimizing too much */
3045 		barrier();
3046 	}
3047 	while (rb_commit_index(cpu_buffer) !=
3048 	       rb_page_write(cpu_buffer->commit_page)) {
3049 
3050 		/* Make sure the readers see the content of what is committed. */
3051 		smp_wmb();
3052 		local_set(&cpu_buffer->commit_page->page->commit,
3053 			  rb_page_write(cpu_buffer->commit_page));
3054 		RB_WARN_ON(cpu_buffer,
3055 			   local_read(&cpu_buffer->commit_page->page->commit) &
3056 			   ~RB_WRITE_MASK);
3057 		barrier();
3058 	}
3059 
3060 	/* again, keep gcc from optimizing */
3061 	barrier();
3062 
3063 	/*
3064 	 * If an interrupt came in just after the first while loop
3065 	 * and pushed the tail page forward, we will be left with
3066 	 * a dangling commit that will never go forward.
3067 	 */
3068 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3069 		goto again;
3070 }
3071 
3072 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3073 {
3074 	unsigned long commits;
3075 
3076 	if (RB_WARN_ON(cpu_buffer,
3077 		       !local_read(&cpu_buffer->committing)))
3078 		return;
3079 
3080  again:
3081 	commits = local_read(&cpu_buffer->commits);
3082 	/* synchronize with interrupts */
3083 	barrier();
3084 	if (local_read(&cpu_buffer->committing) == 1)
3085 		rb_set_commit_to_write(cpu_buffer);
3086 
3087 	local_dec(&cpu_buffer->committing);
3088 
3089 	/* synchronize with interrupts */
3090 	barrier();
3091 
3092 	/*
3093 	 * Need to account for interrupts coming in between the
3094 	 * updating of the commit page and the clearing of the
3095 	 * committing counter.
3096 	 */
3097 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3098 	    !local_read(&cpu_buffer->committing)) {
3099 		local_inc(&cpu_buffer->committing);
3100 		goto again;
3101 	}
3102 }
3103 
3104 static inline void rb_event_discard(struct ring_buffer_event *event)
3105 {
3106 	if (extended_time(event))
3107 		event = skip_time_extend(event);
3108 
3109 	/* array[0] holds the actual length for the discarded event */
3110 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3111 	event->type_len = RINGBUF_TYPE_PADDING;
3112 	/* time delta must be non zero */
3113 	if (!event->time_delta)
3114 		event->time_delta = 1;
3115 }
3116 
3117 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3118 {
3119 	local_inc(&cpu_buffer->entries);
3120 	rb_end_commit(cpu_buffer);
3121 }
3122 
3123 static __always_inline void
3124 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3125 {
3126 	if (buffer->irq_work.waiters_pending) {
3127 		buffer->irq_work.waiters_pending = false;
3128 		/* irq_work_queue() supplies it's own memory barriers */
3129 		irq_work_queue(&buffer->irq_work.work);
3130 	}
3131 
3132 	if (cpu_buffer->irq_work.waiters_pending) {
3133 		cpu_buffer->irq_work.waiters_pending = false;
3134 		/* irq_work_queue() supplies it's own memory barriers */
3135 		irq_work_queue(&cpu_buffer->irq_work.work);
3136 	}
3137 
3138 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3139 		return;
3140 
3141 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3142 		return;
3143 
3144 	if (!cpu_buffer->irq_work.full_waiters_pending)
3145 		return;
3146 
3147 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3148 
3149 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3150 		return;
3151 
3152 	cpu_buffer->irq_work.wakeup_full = true;
3153 	cpu_buffer->irq_work.full_waiters_pending = false;
3154 	/* irq_work_queue() supplies it's own memory barriers */
3155 	irq_work_queue(&cpu_buffer->irq_work.work);
3156 }
3157 
3158 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3159 # define do_ring_buffer_record_recursion()	\
3160 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3161 #else
3162 # define do_ring_buffer_record_recursion() do { } while (0)
3163 #endif
3164 
3165 /*
3166  * The lock and unlock are done within a preempt disable section.
3167  * The current_context per_cpu variable can only be modified
3168  * by the current task between lock and unlock. But it can
3169  * be modified more than once via an interrupt. To pass this
3170  * information from the lock to the unlock without having to
3171  * access the 'in_interrupt()' functions again (which do show
3172  * a bit of overhead in something as critical as function tracing,
3173  * we use a bitmask trick.
3174  *
3175  *  bit 1 =  NMI context
3176  *  bit 2 =  IRQ context
3177  *  bit 3 =  SoftIRQ context
3178  *  bit 4 =  normal context.
3179  *
3180  * This works because this is the order of contexts that can
3181  * preempt other contexts. A SoftIRQ never preempts an IRQ
3182  * context.
3183  *
3184  * When the context is determined, the corresponding bit is
3185  * checked and set (if it was set, then a recursion of that context
3186  * happened).
3187  *
3188  * On unlock, we need to clear this bit. To do so, just subtract
3189  * 1 from the current_context and AND it to itself.
3190  *
3191  * (binary)
3192  *  101 - 1 = 100
3193  *  101 & 100 = 100 (clearing bit zero)
3194  *
3195  *  1010 - 1 = 1001
3196  *  1010 & 1001 = 1000 (clearing bit 1)
3197  *
3198  * The least significant bit can be cleared this way, and it
3199  * just so happens that it is the same bit corresponding to
3200  * the current context.
3201  *
3202  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3203  * is set when a recursion is detected at the current context, and if
3204  * the TRANSITION bit is already set, it will fail the recursion.
3205  * This is needed because there's a lag between the changing of
3206  * interrupt context and updating the preempt count. In this case,
3207  * a false positive will be found. To handle this, one extra recursion
3208  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3209  * bit is already set, then it is considered a recursion and the function
3210  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3211  *
3212  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3213  * to be cleared. Even if it wasn't the context that set it. That is,
3214  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3215  * is called before preempt_count() is updated, since the check will
3216  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3217  * NMI then comes in, it will set the NMI bit, but when the NMI code
3218  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3219  * and leave the NMI bit set. But this is fine, because the interrupt
3220  * code that set the TRANSITION bit will then clear the NMI bit when it
3221  * calls trace_recursive_unlock(). If another NMI comes in, it will
3222  * set the TRANSITION bit and continue.
3223  *
3224  * Note: The TRANSITION bit only handles a single transition between context.
3225  */
3226 
3227 static __always_inline bool
3228 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3229 {
3230 	unsigned int val = cpu_buffer->current_context;
3231 	int bit = interrupt_context_level();
3232 
3233 	bit = RB_CTX_NORMAL - bit;
3234 
3235 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3236 		/*
3237 		 * It is possible that this was called by transitioning
3238 		 * between interrupt context, and preempt_count() has not
3239 		 * been updated yet. In this case, use the TRANSITION bit.
3240 		 */
3241 		bit = RB_CTX_TRANSITION;
3242 		if (val & (1 << (bit + cpu_buffer->nest))) {
3243 			do_ring_buffer_record_recursion();
3244 			return true;
3245 		}
3246 	}
3247 
3248 	val |= (1 << (bit + cpu_buffer->nest));
3249 	cpu_buffer->current_context = val;
3250 
3251 	return false;
3252 }
3253 
3254 static __always_inline void
3255 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3256 {
3257 	cpu_buffer->current_context &=
3258 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3259 }
3260 
3261 /* The recursive locking above uses 5 bits */
3262 #define NESTED_BITS 5
3263 
3264 /**
3265  * ring_buffer_nest_start - Allow to trace while nested
3266  * @buffer: The ring buffer to modify
3267  *
3268  * The ring buffer has a safety mechanism to prevent recursion.
3269  * But there may be a case where a trace needs to be done while
3270  * tracing something else. In this case, calling this function
3271  * will allow this function to nest within a currently active
3272  * ring_buffer_lock_reserve().
3273  *
3274  * Call this function before calling another ring_buffer_lock_reserve() and
3275  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3276  */
3277 void ring_buffer_nest_start(struct trace_buffer *buffer)
3278 {
3279 	struct ring_buffer_per_cpu *cpu_buffer;
3280 	int cpu;
3281 
3282 	/* Enabled by ring_buffer_nest_end() */
3283 	preempt_disable_notrace();
3284 	cpu = raw_smp_processor_id();
3285 	cpu_buffer = buffer->buffers[cpu];
3286 	/* This is the shift value for the above recursive locking */
3287 	cpu_buffer->nest += NESTED_BITS;
3288 }
3289 
3290 /**
3291  * ring_buffer_nest_end - Allow to trace while nested
3292  * @buffer: The ring buffer to modify
3293  *
3294  * Must be called after ring_buffer_nest_start() and after the
3295  * ring_buffer_unlock_commit().
3296  */
3297 void ring_buffer_nest_end(struct trace_buffer *buffer)
3298 {
3299 	struct ring_buffer_per_cpu *cpu_buffer;
3300 	int cpu;
3301 
3302 	/* disabled by ring_buffer_nest_start() */
3303 	cpu = raw_smp_processor_id();
3304 	cpu_buffer = buffer->buffers[cpu];
3305 	/* This is the shift value for the above recursive locking */
3306 	cpu_buffer->nest -= NESTED_BITS;
3307 	preempt_enable_notrace();
3308 }
3309 
3310 /**
3311  * ring_buffer_unlock_commit - commit a reserved
3312  * @buffer: The buffer to commit to
3313  *
3314  * This commits the data to the ring buffer, and releases any locks held.
3315  *
3316  * Must be paired with ring_buffer_lock_reserve.
3317  */
3318 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3319 {
3320 	struct ring_buffer_per_cpu *cpu_buffer;
3321 	int cpu = raw_smp_processor_id();
3322 
3323 	cpu_buffer = buffer->buffers[cpu];
3324 
3325 	rb_commit(cpu_buffer);
3326 
3327 	rb_wakeups(buffer, cpu_buffer);
3328 
3329 	trace_recursive_unlock(cpu_buffer);
3330 
3331 	preempt_enable_notrace();
3332 
3333 	return 0;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3336 
3337 /* Special value to validate all deltas on a page. */
3338 #define CHECK_FULL_PAGE		1L
3339 
3340 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3341 static void dump_buffer_page(struct buffer_data_page *bpage,
3342 			     struct rb_event_info *info,
3343 			     unsigned long tail)
3344 {
3345 	struct ring_buffer_event *event;
3346 	u64 ts, delta;
3347 	int e;
3348 
3349 	ts = bpage->time_stamp;
3350 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3351 
3352 	for (e = 0; e < tail; e += rb_event_length(event)) {
3353 
3354 		event = (struct ring_buffer_event *)(bpage->data + e);
3355 
3356 		switch (event->type_len) {
3357 
3358 		case RINGBUF_TYPE_TIME_EXTEND:
3359 			delta = rb_event_time_stamp(event);
3360 			ts += delta;
3361 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3362 			break;
3363 
3364 		case RINGBUF_TYPE_TIME_STAMP:
3365 			delta = rb_event_time_stamp(event);
3366 			ts = rb_fix_abs_ts(delta, ts);
3367 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3368 			break;
3369 
3370 		case RINGBUF_TYPE_PADDING:
3371 			ts += event->time_delta;
3372 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3373 			break;
3374 
3375 		case RINGBUF_TYPE_DATA:
3376 			ts += event->time_delta;
3377 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3378 			break;
3379 
3380 		default:
3381 			break;
3382 		}
3383 	}
3384 }
3385 
3386 static DEFINE_PER_CPU(atomic_t, checking);
3387 static atomic_t ts_dump;
3388 
3389 /*
3390  * Check if the current event time stamp matches the deltas on
3391  * the buffer page.
3392  */
3393 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3394 			 struct rb_event_info *info,
3395 			 unsigned long tail)
3396 {
3397 	struct ring_buffer_event *event;
3398 	struct buffer_data_page *bpage;
3399 	u64 ts, delta;
3400 	bool full = false;
3401 	int e;
3402 
3403 	bpage = info->tail_page->page;
3404 
3405 	if (tail == CHECK_FULL_PAGE) {
3406 		full = true;
3407 		tail = local_read(&bpage->commit);
3408 	} else if (info->add_timestamp &
3409 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3410 		/* Ignore events with absolute time stamps */
3411 		return;
3412 	}
3413 
3414 	/*
3415 	 * Do not check the first event (skip possible extends too).
3416 	 * Also do not check if previous events have not been committed.
3417 	 */
3418 	if (tail <= 8 || tail > local_read(&bpage->commit))
3419 		return;
3420 
3421 	/*
3422 	 * If this interrupted another event,
3423 	 */
3424 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3425 		goto out;
3426 
3427 	ts = bpage->time_stamp;
3428 
3429 	for (e = 0; e < tail; e += rb_event_length(event)) {
3430 
3431 		event = (struct ring_buffer_event *)(bpage->data + e);
3432 
3433 		switch (event->type_len) {
3434 
3435 		case RINGBUF_TYPE_TIME_EXTEND:
3436 			delta = rb_event_time_stamp(event);
3437 			ts += delta;
3438 			break;
3439 
3440 		case RINGBUF_TYPE_TIME_STAMP:
3441 			delta = rb_event_time_stamp(event);
3442 			ts = rb_fix_abs_ts(delta, ts);
3443 			break;
3444 
3445 		case RINGBUF_TYPE_PADDING:
3446 			if (event->time_delta == 1)
3447 				break;
3448 			fallthrough;
3449 		case RINGBUF_TYPE_DATA:
3450 			ts += event->time_delta;
3451 			break;
3452 
3453 		default:
3454 			RB_WARN_ON(cpu_buffer, 1);
3455 		}
3456 	}
3457 	if ((full && ts > info->ts) ||
3458 	    (!full && ts + info->delta != info->ts)) {
3459 		/* If another report is happening, ignore this one */
3460 		if (atomic_inc_return(&ts_dump) != 1) {
3461 			atomic_dec(&ts_dump);
3462 			goto out;
3463 		}
3464 		atomic_inc(&cpu_buffer->record_disabled);
3465 		/* There's some cases in boot up that this can happen */
3466 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3467 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3468 			cpu_buffer->cpu,
3469 			ts + info->delta, info->ts, info->delta,
3470 			info->before, info->after,
3471 			full ? " (full)" : "");
3472 		dump_buffer_page(bpage, info, tail);
3473 		atomic_dec(&ts_dump);
3474 		/* Do not re-enable checking */
3475 		return;
3476 	}
3477 out:
3478 	atomic_dec(this_cpu_ptr(&checking));
3479 }
3480 #else
3481 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3482 			 struct rb_event_info *info,
3483 			 unsigned long tail)
3484 {
3485 }
3486 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3487 
3488 static struct ring_buffer_event *
3489 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3490 		  struct rb_event_info *info)
3491 {
3492 	struct ring_buffer_event *event;
3493 	struct buffer_page *tail_page;
3494 	unsigned long tail, write, w;
3495 	bool a_ok;
3496 	bool b_ok;
3497 
3498 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3499 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3500 
3501  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3502 	barrier();
3503 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3504 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3505 	barrier();
3506 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3507 
3508 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3509 		info->delta = info->ts;
3510 	} else {
3511 		/*
3512 		 * If interrupting an event time update, we may need an
3513 		 * absolute timestamp.
3514 		 * Don't bother if this is the start of a new page (w == 0).
3515 		 */
3516 		if (!w) {
3517 			/* Use the sub-buffer timestamp */
3518 			info->delta = 0;
3519 		} else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3520 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3521 			info->length += RB_LEN_TIME_EXTEND;
3522 		} else {
3523 			info->delta = info->ts - info->after;
3524 			if (unlikely(test_time_stamp(info->delta))) {
3525 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3526 				info->length += RB_LEN_TIME_EXTEND;
3527 			}
3528 		}
3529 	}
3530 
3531  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3532 
3533  /*C*/	write = local_add_return(info->length, &tail_page->write);
3534 
3535 	/* set write to only the index of the write */
3536 	write &= RB_WRITE_MASK;
3537 
3538 	tail = write - info->length;
3539 
3540 	/* See if we shot pass the end of this buffer page */
3541 	if (unlikely(write > BUF_PAGE_SIZE)) {
3542 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3543 		return rb_move_tail(cpu_buffer, tail, info);
3544 	}
3545 
3546 	if (likely(tail == w)) {
3547 		/* Nothing interrupted us between A and C */
3548  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3549 		/*
3550 		 * If something came in between C and D, the write stamp
3551 		 * may now not be in sync. But that's fine as the before_stamp
3552 		 * will be different and then next event will just be forced
3553 		 * to use an absolute timestamp.
3554 		 */
3555 		if (likely(!(info->add_timestamp &
3556 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3557 			/* This did not interrupt any time update */
3558 			info->delta = info->ts - info->after;
3559 		else
3560 			/* Just use full timestamp for interrupting event */
3561 			info->delta = info->ts;
3562 		check_buffer(cpu_buffer, info, tail);
3563 	} else {
3564 		u64 ts;
3565 		/* SLOW PATH - Interrupted between A and C */
3566 
3567 		/* Save the old before_stamp */
3568 		a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3569 		RB_WARN_ON(cpu_buffer, !a_ok);
3570 
3571 		/*
3572 		 * Read a new timestamp and update the before_stamp to make
3573 		 * the next event after this one force using an absolute
3574 		 * timestamp. This is in case an interrupt were to come in
3575 		 * between E and F.
3576 		 */
3577 		ts = rb_time_stamp(cpu_buffer->buffer);
3578 		rb_time_set(&cpu_buffer->before_stamp, ts);
3579 
3580 		barrier();
3581  /*E*/		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3582 		/* Was interrupted before here, write_stamp must be valid */
3583 		RB_WARN_ON(cpu_buffer, !a_ok);
3584 		barrier();
3585  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3586 		    info->after == info->before && info->after < ts) {
3587 			/*
3588 			 * Nothing came after this event between C and F, it is
3589 			 * safe to use info->after for the delta as it
3590 			 * matched info->before and is still valid.
3591 			 */
3592 			info->delta = ts - info->after;
3593 		} else {
3594 			/*
3595 			 * Interrupted between C and F:
3596 			 * Lost the previous events time stamp. Just set the
3597 			 * delta to zero, and this will be the same time as
3598 			 * the event this event interrupted. And the events that
3599 			 * came after this will still be correct (as they would
3600 			 * have built their delta on the previous event.
3601 			 */
3602 			info->delta = 0;
3603 		}
3604 		info->ts = ts;
3605 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3606 	}
3607 
3608 	/*
3609 	 * If this is the first commit on the page, then it has the same
3610 	 * timestamp as the page itself.
3611 	 */
3612 	if (unlikely(!tail && !(info->add_timestamp &
3613 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3614 		info->delta = 0;
3615 
3616 	/* We reserved something on the buffer */
3617 
3618 	event = __rb_page_index(tail_page, tail);
3619 	rb_update_event(cpu_buffer, event, info);
3620 
3621 	local_inc(&tail_page->entries);
3622 
3623 	/*
3624 	 * If this is the first commit on the page, then update
3625 	 * its timestamp.
3626 	 */
3627 	if (unlikely(!tail))
3628 		tail_page->page->time_stamp = info->ts;
3629 
3630 	/* account for these added bytes */
3631 	local_add(info->length, &cpu_buffer->entries_bytes);
3632 
3633 	return event;
3634 }
3635 
3636 static __always_inline struct ring_buffer_event *
3637 rb_reserve_next_event(struct trace_buffer *buffer,
3638 		      struct ring_buffer_per_cpu *cpu_buffer,
3639 		      unsigned long length)
3640 {
3641 	struct ring_buffer_event *event;
3642 	struct rb_event_info info;
3643 	int nr_loops = 0;
3644 	int add_ts_default;
3645 
3646 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3647 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3648 	    (unlikely(in_nmi()))) {
3649 		return NULL;
3650 	}
3651 
3652 	rb_start_commit(cpu_buffer);
3653 	/* The commit page can not change after this */
3654 
3655 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3656 	/*
3657 	 * Due to the ability to swap a cpu buffer from a buffer
3658 	 * it is possible it was swapped before we committed.
3659 	 * (committing stops a swap). We check for it here and
3660 	 * if it happened, we have to fail the write.
3661 	 */
3662 	barrier();
3663 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3664 		local_dec(&cpu_buffer->committing);
3665 		local_dec(&cpu_buffer->commits);
3666 		return NULL;
3667 	}
3668 #endif
3669 
3670 	info.length = rb_calculate_event_length(length);
3671 
3672 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3673 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3674 		info.length += RB_LEN_TIME_EXTEND;
3675 		if (info.length > BUF_MAX_DATA_SIZE)
3676 			goto out_fail;
3677 	} else {
3678 		add_ts_default = RB_ADD_STAMP_NONE;
3679 	}
3680 
3681  again:
3682 	info.add_timestamp = add_ts_default;
3683 	info.delta = 0;
3684 
3685 	/*
3686 	 * We allow for interrupts to reenter here and do a trace.
3687 	 * If one does, it will cause this original code to loop
3688 	 * back here. Even with heavy interrupts happening, this
3689 	 * should only happen a few times in a row. If this happens
3690 	 * 1000 times in a row, there must be either an interrupt
3691 	 * storm or we have something buggy.
3692 	 * Bail!
3693 	 */
3694 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3695 		goto out_fail;
3696 
3697 	event = __rb_reserve_next(cpu_buffer, &info);
3698 
3699 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3700 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3701 			info.length -= RB_LEN_TIME_EXTEND;
3702 		goto again;
3703 	}
3704 
3705 	if (likely(event))
3706 		return event;
3707  out_fail:
3708 	rb_end_commit(cpu_buffer);
3709 	return NULL;
3710 }
3711 
3712 /**
3713  * ring_buffer_lock_reserve - reserve a part of the buffer
3714  * @buffer: the ring buffer to reserve from
3715  * @length: the length of the data to reserve (excluding event header)
3716  *
3717  * Returns a reserved event on the ring buffer to copy directly to.
3718  * The user of this interface will need to get the body to write into
3719  * and can use the ring_buffer_event_data() interface.
3720  *
3721  * The length is the length of the data needed, not the event length
3722  * which also includes the event header.
3723  *
3724  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3725  * If NULL is returned, then nothing has been allocated or locked.
3726  */
3727 struct ring_buffer_event *
3728 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3729 {
3730 	struct ring_buffer_per_cpu *cpu_buffer;
3731 	struct ring_buffer_event *event;
3732 	int cpu;
3733 
3734 	/* If we are tracing schedule, we don't want to recurse */
3735 	preempt_disable_notrace();
3736 
3737 	if (unlikely(atomic_read(&buffer->record_disabled)))
3738 		goto out;
3739 
3740 	cpu = raw_smp_processor_id();
3741 
3742 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3743 		goto out;
3744 
3745 	cpu_buffer = buffer->buffers[cpu];
3746 
3747 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3748 		goto out;
3749 
3750 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3751 		goto out;
3752 
3753 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3754 		goto out;
3755 
3756 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3757 	if (!event)
3758 		goto out_unlock;
3759 
3760 	return event;
3761 
3762  out_unlock:
3763 	trace_recursive_unlock(cpu_buffer);
3764  out:
3765 	preempt_enable_notrace();
3766 	return NULL;
3767 }
3768 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3769 
3770 /*
3771  * Decrement the entries to the page that an event is on.
3772  * The event does not even need to exist, only the pointer
3773  * to the page it is on. This may only be called before the commit
3774  * takes place.
3775  */
3776 static inline void
3777 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3778 		   struct ring_buffer_event *event)
3779 {
3780 	unsigned long addr = (unsigned long)event;
3781 	struct buffer_page *bpage = cpu_buffer->commit_page;
3782 	struct buffer_page *start;
3783 
3784 	addr &= PAGE_MASK;
3785 
3786 	/* Do the likely case first */
3787 	if (likely(bpage->page == (void *)addr)) {
3788 		local_dec(&bpage->entries);
3789 		return;
3790 	}
3791 
3792 	/*
3793 	 * Because the commit page may be on the reader page we
3794 	 * start with the next page and check the end loop there.
3795 	 */
3796 	rb_inc_page(&bpage);
3797 	start = bpage;
3798 	do {
3799 		if (bpage->page == (void *)addr) {
3800 			local_dec(&bpage->entries);
3801 			return;
3802 		}
3803 		rb_inc_page(&bpage);
3804 	} while (bpage != start);
3805 
3806 	/* commit not part of this buffer?? */
3807 	RB_WARN_ON(cpu_buffer, 1);
3808 }
3809 
3810 /**
3811  * ring_buffer_discard_commit - discard an event that has not been committed
3812  * @buffer: the ring buffer
3813  * @event: non committed event to discard
3814  *
3815  * Sometimes an event that is in the ring buffer needs to be ignored.
3816  * This function lets the user discard an event in the ring buffer
3817  * and then that event will not be read later.
3818  *
3819  * This function only works if it is called before the item has been
3820  * committed. It will try to free the event from the ring buffer
3821  * if another event has not been added behind it.
3822  *
3823  * If another event has been added behind it, it will set the event
3824  * up as discarded, and perform the commit.
3825  *
3826  * If this function is called, do not call ring_buffer_unlock_commit on
3827  * the event.
3828  */
3829 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3830 				struct ring_buffer_event *event)
3831 {
3832 	struct ring_buffer_per_cpu *cpu_buffer;
3833 	int cpu;
3834 
3835 	/* The event is discarded regardless */
3836 	rb_event_discard(event);
3837 
3838 	cpu = smp_processor_id();
3839 	cpu_buffer = buffer->buffers[cpu];
3840 
3841 	/*
3842 	 * This must only be called if the event has not been
3843 	 * committed yet. Thus we can assume that preemption
3844 	 * is still disabled.
3845 	 */
3846 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3847 
3848 	rb_decrement_entry(cpu_buffer, event);
3849 	if (rb_try_to_discard(cpu_buffer, event))
3850 		goto out;
3851 
3852  out:
3853 	rb_end_commit(cpu_buffer);
3854 
3855 	trace_recursive_unlock(cpu_buffer);
3856 
3857 	preempt_enable_notrace();
3858 
3859 }
3860 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3861 
3862 /**
3863  * ring_buffer_write - write data to the buffer without reserving
3864  * @buffer: The ring buffer to write to.
3865  * @length: The length of the data being written (excluding the event header)
3866  * @data: The data to write to the buffer.
3867  *
3868  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3869  * one function. If you already have the data to write to the buffer, it
3870  * may be easier to simply call this function.
3871  *
3872  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3873  * and not the length of the event which would hold the header.
3874  */
3875 int ring_buffer_write(struct trace_buffer *buffer,
3876 		      unsigned long length,
3877 		      void *data)
3878 {
3879 	struct ring_buffer_per_cpu *cpu_buffer;
3880 	struct ring_buffer_event *event;
3881 	void *body;
3882 	int ret = -EBUSY;
3883 	int cpu;
3884 
3885 	preempt_disable_notrace();
3886 
3887 	if (atomic_read(&buffer->record_disabled))
3888 		goto out;
3889 
3890 	cpu = raw_smp_processor_id();
3891 
3892 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3893 		goto out;
3894 
3895 	cpu_buffer = buffer->buffers[cpu];
3896 
3897 	if (atomic_read(&cpu_buffer->record_disabled))
3898 		goto out;
3899 
3900 	if (length > BUF_MAX_DATA_SIZE)
3901 		goto out;
3902 
3903 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3904 		goto out;
3905 
3906 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3907 	if (!event)
3908 		goto out_unlock;
3909 
3910 	body = rb_event_data(event);
3911 
3912 	memcpy(body, data, length);
3913 
3914 	rb_commit(cpu_buffer);
3915 
3916 	rb_wakeups(buffer, cpu_buffer);
3917 
3918 	ret = 0;
3919 
3920  out_unlock:
3921 	trace_recursive_unlock(cpu_buffer);
3922 
3923  out:
3924 	preempt_enable_notrace();
3925 
3926 	return ret;
3927 }
3928 EXPORT_SYMBOL_GPL(ring_buffer_write);
3929 
3930 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3931 {
3932 	struct buffer_page *reader = cpu_buffer->reader_page;
3933 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3934 	struct buffer_page *commit = cpu_buffer->commit_page;
3935 
3936 	/* In case of error, head will be NULL */
3937 	if (unlikely(!head))
3938 		return true;
3939 
3940 	/* Reader should exhaust content in reader page */
3941 	if (reader->read != rb_page_commit(reader))
3942 		return false;
3943 
3944 	/*
3945 	 * If writers are committing on the reader page, knowing all
3946 	 * committed content has been read, the ring buffer is empty.
3947 	 */
3948 	if (commit == reader)
3949 		return true;
3950 
3951 	/*
3952 	 * If writers are committing on a page other than reader page
3953 	 * and head page, there should always be content to read.
3954 	 */
3955 	if (commit != head)
3956 		return false;
3957 
3958 	/*
3959 	 * Writers are committing on the head page, we just need
3960 	 * to care about there're committed data, and the reader will
3961 	 * swap reader page with head page when it is to read data.
3962 	 */
3963 	return rb_page_commit(commit) == 0;
3964 }
3965 
3966 /**
3967  * ring_buffer_record_disable - stop all writes into the buffer
3968  * @buffer: The ring buffer to stop writes to.
3969  *
3970  * This prevents all writes to the buffer. Any attempt to write
3971  * to the buffer after this will fail and return NULL.
3972  *
3973  * The caller should call synchronize_rcu() after this.
3974  */
3975 void ring_buffer_record_disable(struct trace_buffer *buffer)
3976 {
3977 	atomic_inc(&buffer->record_disabled);
3978 }
3979 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3980 
3981 /**
3982  * ring_buffer_record_enable - enable writes to the buffer
3983  * @buffer: The ring buffer to enable writes
3984  *
3985  * Note, multiple disables will need the same number of enables
3986  * to truly enable the writing (much like preempt_disable).
3987  */
3988 void ring_buffer_record_enable(struct trace_buffer *buffer)
3989 {
3990 	atomic_dec(&buffer->record_disabled);
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3993 
3994 /**
3995  * ring_buffer_record_off - stop all writes into the buffer
3996  * @buffer: The ring buffer to stop writes to.
3997  *
3998  * This prevents all writes to the buffer. Any attempt to write
3999  * to the buffer after this will fail and return NULL.
4000  *
4001  * This is different than ring_buffer_record_disable() as
4002  * it works like an on/off switch, where as the disable() version
4003  * must be paired with a enable().
4004  */
4005 void ring_buffer_record_off(struct trace_buffer *buffer)
4006 {
4007 	unsigned int rd;
4008 	unsigned int new_rd;
4009 
4010 	rd = atomic_read(&buffer->record_disabled);
4011 	do {
4012 		new_rd = rd | RB_BUFFER_OFF;
4013 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4014 }
4015 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4016 
4017 /**
4018  * ring_buffer_record_on - restart writes into the buffer
4019  * @buffer: The ring buffer to start writes to.
4020  *
4021  * This enables all writes to the buffer that was disabled by
4022  * ring_buffer_record_off().
4023  *
4024  * This is different than ring_buffer_record_enable() as
4025  * it works like an on/off switch, where as the enable() version
4026  * must be paired with a disable().
4027  */
4028 void ring_buffer_record_on(struct trace_buffer *buffer)
4029 {
4030 	unsigned int rd;
4031 	unsigned int new_rd;
4032 
4033 	rd = atomic_read(&buffer->record_disabled);
4034 	do {
4035 		new_rd = rd & ~RB_BUFFER_OFF;
4036 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4037 }
4038 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4039 
4040 /**
4041  * ring_buffer_record_is_on - return true if the ring buffer can write
4042  * @buffer: The ring buffer to see if write is enabled
4043  *
4044  * Returns true if the ring buffer is in a state that it accepts writes.
4045  */
4046 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4047 {
4048 	return !atomic_read(&buffer->record_disabled);
4049 }
4050 
4051 /**
4052  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4053  * @buffer: The ring buffer to see if write is set enabled
4054  *
4055  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4056  * Note that this does NOT mean it is in a writable state.
4057  *
4058  * It may return true when the ring buffer has been disabled by
4059  * ring_buffer_record_disable(), as that is a temporary disabling of
4060  * the ring buffer.
4061  */
4062 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4063 {
4064 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4065 }
4066 
4067 /**
4068  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4069  * @buffer: The ring buffer to stop writes to.
4070  * @cpu: The CPU buffer to stop
4071  *
4072  * This prevents all writes to the buffer. Any attempt to write
4073  * to the buffer after this will fail and return NULL.
4074  *
4075  * The caller should call synchronize_rcu() after this.
4076  */
4077 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4078 {
4079 	struct ring_buffer_per_cpu *cpu_buffer;
4080 
4081 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4082 		return;
4083 
4084 	cpu_buffer = buffer->buffers[cpu];
4085 	atomic_inc(&cpu_buffer->record_disabled);
4086 }
4087 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4088 
4089 /**
4090  * ring_buffer_record_enable_cpu - enable writes to the buffer
4091  * @buffer: The ring buffer to enable writes
4092  * @cpu: The CPU to enable.
4093  *
4094  * Note, multiple disables will need the same number of enables
4095  * to truly enable the writing (much like preempt_disable).
4096  */
4097 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4098 {
4099 	struct ring_buffer_per_cpu *cpu_buffer;
4100 
4101 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4102 		return;
4103 
4104 	cpu_buffer = buffer->buffers[cpu];
4105 	atomic_dec(&cpu_buffer->record_disabled);
4106 }
4107 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4108 
4109 /*
4110  * The total entries in the ring buffer is the running counter
4111  * of entries entered into the ring buffer, minus the sum of
4112  * the entries read from the ring buffer and the number of
4113  * entries that were overwritten.
4114  */
4115 static inline unsigned long
4116 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4117 {
4118 	return local_read(&cpu_buffer->entries) -
4119 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4120 }
4121 
4122 /**
4123  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4124  * @buffer: The ring buffer
4125  * @cpu: The per CPU buffer to read from.
4126  */
4127 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4128 {
4129 	unsigned long flags;
4130 	struct ring_buffer_per_cpu *cpu_buffer;
4131 	struct buffer_page *bpage;
4132 	u64 ret = 0;
4133 
4134 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4135 		return 0;
4136 
4137 	cpu_buffer = buffer->buffers[cpu];
4138 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4139 	/*
4140 	 * if the tail is on reader_page, oldest time stamp is on the reader
4141 	 * page
4142 	 */
4143 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4144 		bpage = cpu_buffer->reader_page;
4145 	else
4146 		bpage = rb_set_head_page(cpu_buffer);
4147 	if (bpage)
4148 		ret = bpage->page->time_stamp;
4149 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150 
4151 	return ret;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4154 
4155 /**
4156  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4157  * @buffer: The ring buffer
4158  * @cpu: The per CPU buffer to read from.
4159  */
4160 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4161 {
4162 	struct ring_buffer_per_cpu *cpu_buffer;
4163 	unsigned long ret;
4164 
4165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166 		return 0;
4167 
4168 	cpu_buffer = buffer->buffers[cpu];
4169 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4170 
4171 	return ret;
4172 }
4173 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4174 
4175 /**
4176  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4177  * @buffer: The ring buffer
4178  * @cpu: The per CPU buffer to get the entries from.
4179  */
4180 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4181 {
4182 	struct ring_buffer_per_cpu *cpu_buffer;
4183 
4184 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4185 		return 0;
4186 
4187 	cpu_buffer = buffer->buffers[cpu];
4188 
4189 	return rb_num_of_entries(cpu_buffer);
4190 }
4191 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4192 
4193 /**
4194  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4195  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4196  * @buffer: The ring buffer
4197  * @cpu: The per CPU buffer to get the number of overruns from
4198  */
4199 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4200 {
4201 	struct ring_buffer_per_cpu *cpu_buffer;
4202 	unsigned long ret;
4203 
4204 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4205 		return 0;
4206 
4207 	cpu_buffer = buffer->buffers[cpu];
4208 	ret = local_read(&cpu_buffer->overrun);
4209 
4210 	return ret;
4211 }
4212 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4213 
4214 /**
4215  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4216  * commits failing due to the buffer wrapping around while there are uncommitted
4217  * events, such as during an interrupt storm.
4218  * @buffer: The ring buffer
4219  * @cpu: The per CPU buffer to get the number of overruns from
4220  */
4221 unsigned long
4222 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4223 {
4224 	struct ring_buffer_per_cpu *cpu_buffer;
4225 	unsigned long ret;
4226 
4227 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4228 		return 0;
4229 
4230 	cpu_buffer = buffer->buffers[cpu];
4231 	ret = local_read(&cpu_buffer->commit_overrun);
4232 
4233 	return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4236 
4237 /**
4238  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4239  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4240  * @buffer: The ring buffer
4241  * @cpu: The per CPU buffer to get the number of overruns from
4242  */
4243 unsigned long
4244 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4245 {
4246 	struct ring_buffer_per_cpu *cpu_buffer;
4247 	unsigned long ret;
4248 
4249 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4250 		return 0;
4251 
4252 	cpu_buffer = buffer->buffers[cpu];
4253 	ret = local_read(&cpu_buffer->dropped_events);
4254 
4255 	return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4258 
4259 /**
4260  * ring_buffer_read_events_cpu - get the number of events successfully read
4261  * @buffer: The ring buffer
4262  * @cpu: The per CPU buffer to get the number of events read
4263  */
4264 unsigned long
4265 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4266 {
4267 	struct ring_buffer_per_cpu *cpu_buffer;
4268 
4269 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4270 		return 0;
4271 
4272 	cpu_buffer = buffer->buffers[cpu];
4273 	return cpu_buffer->read;
4274 }
4275 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4276 
4277 /**
4278  * ring_buffer_entries - get the number of entries in a buffer
4279  * @buffer: The ring buffer
4280  *
4281  * Returns the total number of entries in the ring buffer
4282  * (all CPU entries)
4283  */
4284 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4285 {
4286 	struct ring_buffer_per_cpu *cpu_buffer;
4287 	unsigned long entries = 0;
4288 	int cpu;
4289 
4290 	/* if you care about this being correct, lock the buffer */
4291 	for_each_buffer_cpu(buffer, cpu) {
4292 		cpu_buffer = buffer->buffers[cpu];
4293 		entries += rb_num_of_entries(cpu_buffer);
4294 	}
4295 
4296 	return entries;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4299 
4300 /**
4301  * ring_buffer_overruns - get the number of overruns in buffer
4302  * @buffer: The ring buffer
4303  *
4304  * Returns the total number of overruns in the ring buffer
4305  * (all CPU entries)
4306  */
4307 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4308 {
4309 	struct ring_buffer_per_cpu *cpu_buffer;
4310 	unsigned long overruns = 0;
4311 	int cpu;
4312 
4313 	/* if you care about this being correct, lock the buffer */
4314 	for_each_buffer_cpu(buffer, cpu) {
4315 		cpu_buffer = buffer->buffers[cpu];
4316 		overruns += local_read(&cpu_buffer->overrun);
4317 	}
4318 
4319 	return overruns;
4320 }
4321 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4322 
4323 static void rb_iter_reset(struct ring_buffer_iter *iter)
4324 {
4325 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4326 
4327 	/* Iterator usage is expected to have record disabled */
4328 	iter->head_page = cpu_buffer->reader_page;
4329 	iter->head = cpu_buffer->reader_page->read;
4330 	iter->next_event = iter->head;
4331 
4332 	iter->cache_reader_page = iter->head_page;
4333 	iter->cache_read = cpu_buffer->read;
4334 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4335 
4336 	if (iter->head) {
4337 		iter->read_stamp = cpu_buffer->read_stamp;
4338 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4339 	} else {
4340 		iter->read_stamp = iter->head_page->page->time_stamp;
4341 		iter->page_stamp = iter->read_stamp;
4342 	}
4343 }
4344 
4345 /**
4346  * ring_buffer_iter_reset - reset an iterator
4347  * @iter: The iterator to reset
4348  *
4349  * Resets the iterator, so that it will start from the beginning
4350  * again.
4351  */
4352 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4353 {
4354 	struct ring_buffer_per_cpu *cpu_buffer;
4355 	unsigned long flags;
4356 
4357 	if (!iter)
4358 		return;
4359 
4360 	cpu_buffer = iter->cpu_buffer;
4361 
4362 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4363 	rb_iter_reset(iter);
4364 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4365 }
4366 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4367 
4368 /**
4369  * ring_buffer_iter_empty - check if an iterator has no more to read
4370  * @iter: The iterator to check
4371  */
4372 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4373 {
4374 	struct ring_buffer_per_cpu *cpu_buffer;
4375 	struct buffer_page *reader;
4376 	struct buffer_page *head_page;
4377 	struct buffer_page *commit_page;
4378 	struct buffer_page *curr_commit_page;
4379 	unsigned commit;
4380 	u64 curr_commit_ts;
4381 	u64 commit_ts;
4382 
4383 	cpu_buffer = iter->cpu_buffer;
4384 	reader = cpu_buffer->reader_page;
4385 	head_page = cpu_buffer->head_page;
4386 	commit_page = cpu_buffer->commit_page;
4387 	commit_ts = commit_page->page->time_stamp;
4388 
4389 	/*
4390 	 * When the writer goes across pages, it issues a cmpxchg which
4391 	 * is a mb(), which will synchronize with the rmb here.
4392 	 * (see rb_tail_page_update())
4393 	 */
4394 	smp_rmb();
4395 	commit = rb_page_commit(commit_page);
4396 	/* We want to make sure that the commit page doesn't change */
4397 	smp_rmb();
4398 
4399 	/* Make sure commit page didn't change */
4400 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4401 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4402 
4403 	/* If the commit page changed, then there's more data */
4404 	if (curr_commit_page != commit_page ||
4405 	    curr_commit_ts != commit_ts)
4406 		return 0;
4407 
4408 	/* Still racy, as it may return a false positive, but that's OK */
4409 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4410 		(iter->head_page == reader && commit_page == head_page &&
4411 		 head_page->read == commit &&
4412 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4413 }
4414 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4415 
4416 static void
4417 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4418 		     struct ring_buffer_event *event)
4419 {
4420 	u64 delta;
4421 
4422 	switch (event->type_len) {
4423 	case RINGBUF_TYPE_PADDING:
4424 		return;
4425 
4426 	case RINGBUF_TYPE_TIME_EXTEND:
4427 		delta = rb_event_time_stamp(event);
4428 		cpu_buffer->read_stamp += delta;
4429 		return;
4430 
4431 	case RINGBUF_TYPE_TIME_STAMP:
4432 		delta = rb_event_time_stamp(event);
4433 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4434 		cpu_buffer->read_stamp = delta;
4435 		return;
4436 
4437 	case RINGBUF_TYPE_DATA:
4438 		cpu_buffer->read_stamp += event->time_delta;
4439 		return;
4440 
4441 	default:
4442 		RB_WARN_ON(cpu_buffer, 1);
4443 	}
4444 }
4445 
4446 static void
4447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4448 			  struct ring_buffer_event *event)
4449 {
4450 	u64 delta;
4451 
4452 	switch (event->type_len) {
4453 	case RINGBUF_TYPE_PADDING:
4454 		return;
4455 
4456 	case RINGBUF_TYPE_TIME_EXTEND:
4457 		delta = rb_event_time_stamp(event);
4458 		iter->read_stamp += delta;
4459 		return;
4460 
4461 	case RINGBUF_TYPE_TIME_STAMP:
4462 		delta = rb_event_time_stamp(event);
4463 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4464 		iter->read_stamp = delta;
4465 		return;
4466 
4467 	case RINGBUF_TYPE_DATA:
4468 		iter->read_stamp += event->time_delta;
4469 		return;
4470 
4471 	default:
4472 		RB_WARN_ON(iter->cpu_buffer, 1);
4473 	}
4474 }
4475 
4476 static struct buffer_page *
4477 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4478 {
4479 	struct buffer_page *reader = NULL;
4480 	unsigned long overwrite;
4481 	unsigned long flags;
4482 	int nr_loops = 0;
4483 	bool ret;
4484 
4485 	local_irq_save(flags);
4486 	arch_spin_lock(&cpu_buffer->lock);
4487 
4488  again:
4489 	/*
4490 	 * This should normally only loop twice. But because the
4491 	 * start of the reader inserts an empty page, it causes
4492 	 * a case where we will loop three times. There should be no
4493 	 * reason to loop four times (that I know of).
4494 	 */
4495 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4496 		reader = NULL;
4497 		goto out;
4498 	}
4499 
4500 	reader = cpu_buffer->reader_page;
4501 
4502 	/* If there's more to read, return this page */
4503 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4504 		goto out;
4505 
4506 	/* Never should we have an index greater than the size */
4507 	if (RB_WARN_ON(cpu_buffer,
4508 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4509 		goto out;
4510 
4511 	/* check if we caught up to the tail */
4512 	reader = NULL;
4513 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4514 		goto out;
4515 
4516 	/* Don't bother swapping if the ring buffer is empty */
4517 	if (rb_num_of_entries(cpu_buffer) == 0)
4518 		goto out;
4519 
4520 	/*
4521 	 * Reset the reader page to size zero.
4522 	 */
4523 	local_set(&cpu_buffer->reader_page->write, 0);
4524 	local_set(&cpu_buffer->reader_page->entries, 0);
4525 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4526 	cpu_buffer->reader_page->real_end = 0;
4527 
4528  spin:
4529 	/*
4530 	 * Splice the empty reader page into the list around the head.
4531 	 */
4532 	reader = rb_set_head_page(cpu_buffer);
4533 	if (!reader)
4534 		goto out;
4535 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4536 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4537 
4538 	/*
4539 	 * cpu_buffer->pages just needs to point to the buffer, it
4540 	 *  has no specific buffer page to point to. Lets move it out
4541 	 *  of our way so we don't accidentally swap it.
4542 	 */
4543 	cpu_buffer->pages = reader->list.prev;
4544 
4545 	/* The reader page will be pointing to the new head */
4546 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4547 
4548 	/*
4549 	 * We want to make sure we read the overruns after we set up our
4550 	 * pointers to the next object. The writer side does a
4551 	 * cmpxchg to cross pages which acts as the mb on the writer
4552 	 * side. Note, the reader will constantly fail the swap
4553 	 * while the writer is updating the pointers, so this
4554 	 * guarantees that the overwrite recorded here is the one we
4555 	 * want to compare with the last_overrun.
4556 	 */
4557 	smp_mb();
4558 	overwrite = local_read(&(cpu_buffer->overrun));
4559 
4560 	/*
4561 	 * Here's the tricky part.
4562 	 *
4563 	 * We need to move the pointer past the header page.
4564 	 * But we can only do that if a writer is not currently
4565 	 * moving it. The page before the header page has the
4566 	 * flag bit '1' set if it is pointing to the page we want.
4567 	 * but if the writer is in the process of moving it
4568 	 * than it will be '2' or already moved '0'.
4569 	 */
4570 
4571 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4572 
4573 	/*
4574 	 * If we did not convert it, then we must try again.
4575 	 */
4576 	if (!ret)
4577 		goto spin;
4578 
4579 	/*
4580 	 * Yay! We succeeded in replacing the page.
4581 	 *
4582 	 * Now make the new head point back to the reader page.
4583 	 */
4584 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4585 	rb_inc_page(&cpu_buffer->head_page);
4586 
4587 	local_inc(&cpu_buffer->pages_read);
4588 
4589 	/* Finally update the reader page to the new head */
4590 	cpu_buffer->reader_page = reader;
4591 	cpu_buffer->reader_page->read = 0;
4592 
4593 	if (overwrite != cpu_buffer->last_overrun) {
4594 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4595 		cpu_buffer->last_overrun = overwrite;
4596 	}
4597 
4598 	goto again;
4599 
4600  out:
4601 	/* Update the read_stamp on the first event */
4602 	if (reader && reader->read == 0)
4603 		cpu_buffer->read_stamp = reader->page->time_stamp;
4604 
4605 	arch_spin_unlock(&cpu_buffer->lock);
4606 	local_irq_restore(flags);
4607 
4608 	/*
4609 	 * The writer has preempt disable, wait for it. But not forever
4610 	 * Although, 1 second is pretty much "forever"
4611 	 */
4612 #define USECS_WAIT	1000000
4613         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4614 		/* If the write is past the end of page, a writer is still updating it */
4615 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4616 			break;
4617 
4618 		udelay(1);
4619 
4620 		/* Get the latest version of the reader write value */
4621 		smp_rmb();
4622 	}
4623 
4624 	/* The writer is not moving forward? Something is wrong */
4625 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4626 		reader = NULL;
4627 
4628 	/*
4629 	 * Make sure we see any padding after the write update
4630 	 * (see rb_reset_tail()).
4631 	 *
4632 	 * In addition, a writer may be writing on the reader page
4633 	 * if the page has not been fully filled, so the read barrier
4634 	 * is also needed to make sure we see the content of what is
4635 	 * committed by the writer (see rb_set_commit_to_write()).
4636 	 */
4637 	smp_rmb();
4638 
4639 
4640 	return reader;
4641 }
4642 
4643 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4644 {
4645 	struct ring_buffer_event *event;
4646 	struct buffer_page *reader;
4647 	unsigned length;
4648 
4649 	reader = rb_get_reader_page(cpu_buffer);
4650 
4651 	/* This function should not be called when buffer is empty */
4652 	if (RB_WARN_ON(cpu_buffer, !reader))
4653 		return;
4654 
4655 	event = rb_reader_event(cpu_buffer);
4656 
4657 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4658 		cpu_buffer->read++;
4659 
4660 	rb_update_read_stamp(cpu_buffer, event);
4661 
4662 	length = rb_event_length(event);
4663 	cpu_buffer->reader_page->read += length;
4664 	cpu_buffer->read_bytes += length;
4665 }
4666 
4667 static void rb_advance_iter(struct ring_buffer_iter *iter)
4668 {
4669 	struct ring_buffer_per_cpu *cpu_buffer;
4670 
4671 	cpu_buffer = iter->cpu_buffer;
4672 
4673 	/* If head == next_event then we need to jump to the next event */
4674 	if (iter->head == iter->next_event) {
4675 		/* If the event gets overwritten again, there's nothing to do */
4676 		if (rb_iter_head_event(iter) == NULL)
4677 			return;
4678 	}
4679 
4680 	iter->head = iter->next_event;
4681 
4682 	/*
4683 	 * Check if we are at the end of the buffer.
4684 	 */
4685 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4686 		/* discarded commits can make the page empty */
4687 		if (iter->head_page == cpu_buffer->commit_page)
4688 			return;
4689 		rb_inc_iter(iter);
4690 		return;
4691 	}
4692 
4693 	rb_update_iter_read_stamp(iter, iter->event);
4694 }
4695 
4696 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4697 {
4698 	return cpu_buffer->lost_events;
4699 }
4700 
4701 static struct ring_buffer_event *
4702 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4703 	       unsigned long *lost_events)
4704 {
4705 	struct ring_buffer_event *event;
4706 	struct buffer_page *reader;
4707 	int nr_loops = 0;
4708 
4709 	if (ts)
4710 		*ts = 0;
4711  again:
4712 	/*
4713 	 * We repeat when a time extend is encountered.
4714 	 * Since the time extend is always attached to a data event,
4715 	 * we should never loop more than once.
4716 	 * (We never hit the following condition more than twice).
4717 	 */
4718 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4719 		return NULL;
4720 
4721 	reader = rb_get_reader_page(cpu_buffer);
4722 	if (!reader)
4723 		return NULL;
4724 
4725 	event = rb_reader_event(cpu_buffer);
4726 
4727 	switch (event->type_len) {
4728 	case RINGBUF_TYPE_PADDING:
4729 		if (rb_null_event(event))
4730 			RB_WARN_ON(cpu_buffer, 1);
4731 		/*
4732 		 * Because the writer could be discarding every
4733 		 * event it creates (which would probably be bad)
4734 		 * if we were to go back to "again" then we may never
4735 		 * catch up, and will trigger the warn on, or lock
4736 		 * the box. Return the padding, and we will release
4737 		 * the current locks, and try again.
4738 		 */
4739 		return event;
4740 
4741 	case RINGBUF_TYPE_TIME_EXTEND:
4742 		/* Internal data, OK to advance */
4743 		rb_advance_reader(cpu_buffer);
4744 		goto again;
4745 
4746 	case RINGBUF_TYPE_TIME_STAMP:
4747 		if (ts) {
4748 			*ts = rb_event_time_stamp(event);
4749 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4750 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4751 							 cpu_buffer->cpu, ts);
4752 		}
4753 		/* Internal data, OK to advance */
4754 		rb_advance_reader(cpu_buffer);
4755 		goto again;
4756 
4757 	case RINGBUF_TYPE_DATA:
4758 		if (ts && !(*ts)) {
4759 			*ts = cpu_buffer->read_stamp + event->time_delta;
4760 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4761 							 cpu_buffer->cpu, ts);
4762 		}
4763 		if (lost_events)
4764 			*lost_events = rb_lost_events(cpu_buffer);
4765 		return event;
4766 
4767 	default:
4768 		RB_WARN_ON(cpu_buffer, 1);
4769 	}
4770 
4771 	return NULL;
4772 }
4773 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4774 
4775 static struct ring_buffer_event *
4776 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4777 {
4778 	struct trace_buffer *buffer;
4779 	struct ring_buffer_per_cpu *cpu_buffer;
4780 	struct ring_buffer_event *event;
4781 	int nr_loops = 0;
4782 
4783 	if (ts)
4784 		*ts = 0;
4785 
4786 	cpu_buffer = iter->cpu_buffer;
4787 	buffer = cpu_buffer->buffer;
4788 
4789 	/*
4790 	 * Check if someone performed a consuming read to the buffer
4791 	 * or removed some pages from the buffer. In these cases,
4792 	 * iterator was invalidated and we need to reset it.
4793 	 */
4794 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4795 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4796 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4797 		rb_iter_reset(iter);
4798 
4799  again:
4800 	if (ring_buffer_iter_empty(iter))
4801 		return NULL;
4802 
4803 	/*
4804 	 * As the writer can mess with what the iterator is trying
4805 	 * to read, just give up if we fail to get an event after
4806 	 * three tries. The iterator is not as reliable when reading
4807 	 * the ring buffer with an active write as the consumer is.
4808 	 * Do not warn if the three failures is reached.
4809 	 */
4810 	if (++nr_loops > 3)
4811 		return NULL;
4812 
4813 	if (rb_per_cpu_empty(cpu_buffer))
4814 		return NULL;
4815 
4816 	if (iter->head >= rb_page_size(iter->head_page)) {
4817 		rb_inc_iter(iter);
4818 		goto again;
4819 	}
4820 
4821 	event = rb_iter_head_event(iter);
4822 	if (!event)
4823 		goto again;
4824 
4825 	switch (event->type_len) {
4826 	case RINGBUF_TYPE_PADDING:
4827 		if (rb_null_event(event)) {
4828 			rb_inc_iter(iter);
4829 			goto again;
4830 		}
4831 		rb_advance_iter(iter);
4832 		return event;
4833 
4834 	case RINGBUF_TYPE_TIME_EXTEND:
4835 		/* Internal data, OK to advance */
4836 		rb_advance_iter(iter);
4837 		goto again;
4838 
4839 	case RINGBUF_TYPE_TIME_STAMP:
4840 		if (ts) {
4841 			*ts = rb_event_time_stamp(event);
4842 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4843 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4844 							 cpu_buffer->cpu, ts);
4845 		}
4846 		/* Internal data, OK to advance */
4847 		rb_advance_iter(iter);
4848 		goto again;
4849 
4850 	case RINGBUF_TYPE_DATA:
4851 		if (ts && !(*ts)) {
4852 			*ts = iter->read_stamp + event->time_delta;
4853 			ring_buffer_normalize_time_stamp(buffer,
4854 							 cpu_buffer->cpu, ts);
4855 		}
4856 		return event;
4857 
4858 	default:
4859 		RB_WARN_ON(cpu_buffer, 1);
4860 	}
4861 
4862 	return NULL;
4863 }
4864 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4865 
4866 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4867 {
4868 	if (likely(!in_nmi())) {
4869 		raw_spin_lock(&cpu_buffer->reader_lock);
4870 		return true;
4871 	}
4872 
4873 	/*
4874 	 * If an NMI die dumps out the content of the ring buffer
4875 	 * trylock must be used to prevent a deadlock if the NMI
4876 	 * preempted a task that holds the ring buffer locks. If
4877 	 * we get the lock then all is fine, if not, then continue
4878 	 * to do the read, but this can corrupt the ring buffer,
4879 	 * so it must be permanently disabled from future writes.
4880 	 * Reading from NMI is a oneshot deal.
4881 	 */
4882 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4883 		return true;
4884 
4885 	/* Continue without locking, but disable the ring buffer */
4886 	atomic_inc(&cpu_buffer->record_disabled);
4887 	return false;
4888 }
4889 
4890 static inline void
4891 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4892 {
4893 	if (likely(locked))
4894 		raw_spin_unlock(&cpu_buffer->reader_lock);
4895 }
4896 
4897 /**
4898  * ring_buffer_peek - peek at the next event to be read
4899  * @buffer: The ring buffer to read
4900  * @cpu: The cpu to peak at
4901  * @ts: The timestamp counter of this event.
4902  * @lost_events: a variable to store if events were lost (may be NULL)
4903  *
4904  * This will return the event that will be read next, but does
4905  * not consume the data.
4906  */
4907 struct ring_buffer_event *
4908 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4909 		 unsigned long *lost_events)
4910 {
4911 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4912 	struct ring_buffer_event *event;
4913 	unsigned long flags;
4914 	bool dolock;
4915 
4916 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4917 		return NULL;
4918 
4919  again:
4920 	local_irq_save(flags);
4921 	dolock = rb_reader_lock(cpu_buffer);
4922 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4923 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4924 		rb_advance_reader(cpu_buffer);
4925 	rb_reader_unlock(cpu_buffer, dolock);
4926 	local_irq_restore(flags);
4927 
4928 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4929 		goto again;
4930 
4931 	return event;
4932 }
4933 
4934 /** ring_buffer_iter_dropped - report if there are dropped events
4935  * @iter: The ring buffer iterator
4936  *
4937  * Returns true if there was dropped events since the last peek.
4938  */
4939 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4940 {
4941 	bool ret = iter->missed_events != 0;
4942 
4943 	iter->missed_events = 0;
4944 	return ret;
4945 }
4946 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4947 
4948 /**
4949  * ring_buffer_iter_peek - peek at the next event to be read
4950  * @iter: The ring buffer iterator
4951  * @ts: The timestamp counter of this event.
4952  *
4953  * This will return the event that will be read next, but does
4954  * not increment the iterator.
4955  */
4956 struct ring_buffer_event *
4957 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4958 {
4959 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4960 	struct ring_buffer_event *event;
4961 	unsigned long flags;
4962 
4963  again:
4964 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4965 	event = rb_iter_peek(iter, ts);
4966 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4967 
4968 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4969 		goto again;
4970 
4971 	return event;
4972 }
4973 
4974 /**
4975  * ring_buffer_consume - return an event and consume it
4976  * @buffer: The ring buffer to get the next event from
4977  * @cpu: the cpu to read the buffer from
4978  * @ts: a variable to store the timestamp (may be NULL)
4979  * @lost_events: a variable to store if events were lost (may be NULL)
4980  *
4981  * Returns the next event in the ring buffer, and that event is consumed.
4982  * Meaning, that sequential reads will keep returning a different event,
4983  * and eventually empty the ring buffer if the producer is slower.
4984  */
4985 struct ring_buffer_event *
4986 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4987 		    unsigned long *lost_events)
4988 {
4989 	struct ring_buffer_per_cpu *cpu_buffer;
4990 	struct ring_buffer_event *event = NULL;
4991 	unsigned long flags;
4992 	bool dolock;
4993 
4994  again:
4995 	/* might be called in atomic */
4996 	preempt_disable();
4997 
4998 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4999 		goto out;
5000 
5001 	cpu_buffer = buffer->buffers[cpu];
5002 	local_irq_save(flags);
5003 	dolock = rb_reader_lock(cpu_buffer);
5004 
5005 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5006 	if (event) {
5007 		cpu_buffer->lost_events = 0;
5008 		rb_advance_reader(cpu_buffer);
5009 	}
5010 
5011 	rb_reader_unlock(cpu_buffer, dolock);
5012 	local_irq_restore(flags);
5013 
5014  out:
5015 	preempt_enable();
5016 
5017 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5018 		goto again;
5019 
5020 	return event;
5021 }
5022 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5023 
5024 /**
5025  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5026  * @buffer: The ring buffer to read from
5027  * @cpu: The cpu buffer to iterate over
5028  * @flags: gfp flags to use for memory allocation
5029  *
5030  * This performs the initial preparations necessary to iterate
5031  * through the buffer.  Memory is allocated, buffer recording
5032  * is disabled, and the iterator pointer is returned to the caller.
5033  *
5034  * Disabling buffer recording prevents the reading from being
5035  * corrupted. This is not a consuming read, so a producer is not
5036  * expected.
5037  *
5038  * After a sequence of ring_buffer_read_prepare calls, the user is
5039  * expected to make at least one call to ring_buffer_read_prepare_sync.
5040  * Afterwards, ring_buffer_read_start is invoked to get things going
5041  * for real.
5042  *
5043  * This overall must be paired with ring_buffer_read_finish.
5044  */
5045 struct ring_buffer_iter *
5046 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5047 {
5048 	struct ring_buffer_per_cpu *cpu_buffer;
5049 	struct ring_buffer_iter *iter;
5050 
5051 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5052 		return NULL;
5053 
5054 	iter = kzalloc(sizeof(*iter), flags);
5055 	if (!iter)
5056 		return NULL;
5057 
5058 	/* Holds the entire event: data and meta data */
5059 	iter->event = kmalloc(BUF_PAGE_SIZE, flags);
5060 	if (!iter->event) {
5061 		kfree(iter);
5062 		return NULL;
5063 	}
5064 
5065 	cpu_buffer = buffer->buffers[cpu];
5066 
5067 	iter->cpu_buffer = cpu_buffer;
5068 
5069 	atomic_inc(&cpu_buffer->resize_disabled);
5070 
5071 	return iter;
5072 }
5073 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5074 
5075 /**
5076  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5077  *
5078  * All previously invoked ring_buffer_read_prepare calls to prepare
5079  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5080  * calls on those iterators are allowed.
5081  */
5082 void
5083 ring_buffer_read_prepare_sync(void)
5084 {
5085 	synchronize_rcu();
5086 }
5087 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5088 
5089 /**
5090  * ring_buffer_read_start - start a non consuming read of the buffer
5091  * @iter: The iterator returned by ring_buffer_read_prepare
5092  *
5093  * This finalizes the startup of an iteration through the buffer.
5094  * The iterator comes from a call to ring_buffer_read_prepare and
5095  * an intervening ring_buffer_read_prepare_sync must have been
5096  * performed.
5097  *
5098  * Must be paired with ring_buffer_read_finish.
5099  */
5100 void
5101 ring_buffer_read_start(struct ring_buffer_iter *iter)
5102 {
5103 	struct ring_buffer_per_cpu *cpu_buffer;
5104 	unsigned long flags;
5105 
5106 	if (!iter)
5107 		return;
5108 
5109 	cpu_buffer = iter->cpu_buffer;
5110 
5111 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5112 	arch_spin_lock(&cpu_buffer->lock);
5113 	rb_iter_reset(iter);
5114 	arch_spin_unlock(&cpu_buffer->lock);
5115 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5116 }
5117 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5118 
5119 /**
5120  * ring_buffer_read_finish - finish reading the iterator of the buffer
5121  * @iter: The iterator retrieved by ring_buffer_start
5122  *
5123  * This re-enables the recording to the buffer, and frees the
5124  * iterator.
5125  */
5126 void
5127 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5128 {
5129 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5130 	unsigned long flags;
5131 
5132 	/*
5133 	 * Ring buffer is disabled from recording, here's a good place
5134 	 * to check the integrity of the ring buffer.
5135 	 * Must prevent readers from trying to read, as the check
5136 	 * clears the HEAD page and readers require it.
5137 	 */
5138 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5139 	rb_check_pages(cpu_buffer);
5140 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5141 
5142 	atomic_dec(&cpu_buffer->resize_disabled);
5143 	kfree(iter->event);
5144 	kfree(iter);
5145 }
5146 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5147 
5148 /**
5149  * ring_buffer_iter_advance - advance the iterator to the next location
5150  * @iter: The ring buffer iterator
5151  *
5152  * Move the location of the iterator such that the next read will
5153  * be the next location of the iterator.
5154  */
5155 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5156 {
5157 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5158 	unsigned long flags;
5159 
5160 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5161 
5162 	rb_advance_iter(iter);
5163 
5164 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5165 }
5166 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5167 
5168 /**
5169  * ring_buffer_size - return the size of the ring buffer (in bytes)
5170  * @buffer: The ring buffer.
5171  * @cpu: The CPU to get ring buffer size from.
5172  */
5173 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5174 {
5175 	/*
5176 	 * Earlier, this method returned
5177 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5178 	 * Since the nr_pages field is now removed, we have converted this to
5179 	 * return the per cpu buffer value.
5180 	 */
5181 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5182 		return 0;
5183 
5184 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5185 }
5186 EXPORT_SYMBOL_GPL(ring_buffer_size);
5187 
5188 static void rb_clear_buffer_page(struct buffer_page *page)
5189 {
5190 	local_set(&page->write, 0);
5191 	local_set(&page->entries, 0);
5192 	rb_init_page(page->page);
5193 	page->read = 0;
5194 }
5195 
5196 static void
5197 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5198 {
5199 	struct buffer_page *page;
5200 
5201 	rb_head_page_deactivate(cpu_buffer);
5202 
5203 	cpu_buffer->head_page
5204 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5205 	rb_clear_buffer_page(cpu_buffer->head_page);
5206 	list_for_each_entry(page, cpu_buffer->pages, list) {
5207 		rb_clear_buffer_page(page);
5208 	}
5209 
5210 	cpu_buffer->tail_page = cpu_buffer->head_page;
5211 	cpu_buffer->commit_page = cpu_buffer->head_page;
5212 
5213 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5214 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5215 	rb_clear_buffer_page(cpu_buffer->reader_page);
5216 
5217 	local_set(&cpu_buffer->entries_bytes, 0);
5218 	local_set(&cpu_buffer->overrun, 0);
5219 	local_set(&cpu_buffer->commit_overrun, 0);
5220 	local_set(&cpu_buffer->dropped_events, 0);
5221 	local_set(&cpu_buffer->entries, 0);
5222 	local_set(&cpu_buffer->committing, 0);
5223 	local_set(&cpu_buffer->commits, 0);
5224 	local_set(&cpu_buffer->pages_touched, 0);
5225 	local_set(&cpu_buffer->pages_lost, 0);
5226 	local_set(&cpu_buffer->pages_read, 0);
5227 	cpu_buffer->last_pages_touch = 0;
5228 	cpu_buffer->shortest_full = 0;
5229 	cpu_buffer->read = 0;
5230 	cpu_buffer->read_bytes = 0;
5231 
5232 	rb_time_set(&cpu_buffer->write_stamp, 0);
5233 	rb_time_set(&cpu_buffer->before_stamp, 0);
5234 
5235 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5236 
5237 	cpu_buffer->lost_events = 0;
5238 	cpu_buffer->last_overrun = 0;
5239 
5240 	rb_head_page_activate(cpu_buffer);
5241 	cpu_buffer->pages_removed = 0;
5242 }
5243 
5244 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5245 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5246 {
5247 	unsigned long flags;
5248 
5249 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5250 
5251 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5252 		goto out;
5253 
5254 	arch_spin_lock(&cpu_buffer->lock);
5255 
5256 	rb_reset_cpu(cpu_buffer);
5257 
5258 	arch_spin_unlock(&cpu_buffer->lock);
5259 
5260  out:
5261 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5262 }
5263 
5264 /**
5265  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5266  * @buffer: The ring buffer to reset a per cpu buffer of
5267  * @cpu: The CPU buffer to be reset
5268  */
5269 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5270 {
5271 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5272 
5273 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5274 		return;
5275 
5276 	/* prevent another thread from changing buffer sizes */
5277 	mutex_lock(&buffer->mutex);
5278 
5279 	atomic_inc(&cpu_buffer->resize_disabled);
5280 	atomic_inc(&cpu_buffer->record_disabled);
5281 
5282 	/* Make sure all commits have finished */
5283 	synchronize_rcu();
5284 
5285 	reset_disabled_cpu_buffer(cpu_buffer);
5286 
5287 	atomic_dec(&cpu_buffer->record_disabled);
5288 	atomic_dec(&cpu_buffer->resize_disabled);
5289 
5290 	mutex_unlock(&buffer->mutex);
5291 }
5292 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5293 
5294 /* Flag to ensure proper resetting of atomic variables */
5295 #define RESET_BIT	(1 << 30)
5296 
5297 /**
5298  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5299  * @buffer: The ring buffer to reset a per cpu buffer of
5300  */
5301 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5302 {
5303 	struct ring_buffer_per_cpu *cpu_buffer;
5304 	int cpu;
5305 
5306 	/* prevent another thread from changing buffer sizes */
5307 	mutex_lock(&buffer->mutex);
5308 
5309 	for_each_online_buffer_cpu(buffer, cpu) {
5310 		cpu_buffer = buffer->buffers[cpu];
5311 
5312 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5313 		atomic_inc(&cpu_buffer->record_disabled);
5314 	}
5315 
5316 	/* Make sure all commits have finished */
5317 	synchronize_rcu();
5318 
5319 	for_each_buffer_cpu(buffer, cpu) {
5320 		cpu_buffer = buffer->buffers[cpu];
5321 
5322 		/*
5323 		 * If a CPU came online during the synchronize_rcu(), then
5324 		 * ignore it.
5325 		 */
5326 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5327 			continue;
5328 
5329 		reset_disabled_cpu_buffer(cpu_buffer);
5330 
5331 		atomic_dec(&cpu_buffer->record_disabled);
5332 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5333 	}
5334 
5335 	mutex_unlock(&buffer->mutex);
5336 }
5337 
5338 /**
5339  * ring_buffer_reset - reset a ring buffer
5340  * @buffer: The ring buffer to reset all cpu buffers
5341  */
5342 void ring_buffer_reset(struct trace_buffer *buffer)
5343 {
5344 	struct ring_buffer_per_cpu *cpu_buffer;
5345 	int cpu;
5346 
5347 	/* prevent another thread from changing buffer sizes */
5348 	mutex_lock(&buffer->mutex);
5349 
5350 	for_each_buffer_cpu(buffer, cpu) {
5351 		cpu_buffer = buffer->buffers[cpu];
5352 
5353 		atomic_inc(&cpu_buffer->resize_disabled);
5354 		atomic_inc(&cpu_buffer->record_disabled);
5355 	}
5356 
5357 	/* Make sure all commits have finished */
5358 	synchronize_rcu();
5359 
5360 	for_each_buffer_cpu(buffer, cpu) {
5361 		cpu_buffer = buffer->buffers[cpu];
5362 
5363 		reset_disabled_cpu_buffer(cpu_buffer);
5364 
5365 		atomic_dec(&cpu_buffer->record_disabled);
5366 		atomic_dec(&cpu_buffer->resize_disabled);
5367 	}
5368 
5369 	mutex_unlock(&buffer->mutex);
5370 }
5371 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5372 
5373 /**
5374  * ring_buffer_empty - is the ring buffer empty?
5375  * @buffer: The ring buffer to test
5376  */
5377 bool ring_buffer_empty(struct trace_buffer *buffer)
5378 {
5379 	struct ring_buffer_per_cpu *cpu_buffer;
5380 	unsigned long flags;
5381 	bool dolock;
5382 	bool ret;
5383 	int cpu;
5384 
5385 	/* yes this is racy, but if you don't like the race, lock the buffer */
5386 	for_each_buffer_cpu(buffer, cpu) {
5387 		cpu_buffer = buffer->buffers[cpu];
5388 		local_irq_save(flags);
5389 		dolock = rb_reader_lock(cpu_buffer);
5390 		ret = rb_per_cpu_empty(cpu_buffer);
5391 		rb_reader_unlock(cpu_buffer, dolock);
5392 		local_irq_restore(flags);
5393 
5394 		if (!ret)
5395 			return false;
5396 	}
5397 
5398 	return true;
5399 }
5400 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5401 
5402 /**
5403  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5404  * @buffer: The ring buffer
5405  * @cpu: The CPU buffer to test
5406  */
5407 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5408 {
5409 	struct ring_buffer_per_cpu *cpu_buffer;
5410 	unsigned long flags;
5411 	bool dolock;
5412 	bool ret;
5413 
5414 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5415 		return true;
5416 
5417 	cpu_buffer = buffer->buffers[cpu];
5418 	local_irq_save(flags);
5419 	dolock = rb_reader_lock(cpu_buffer);
5420 	ret = rb_per_cpu_empty(cpu_buffer);
5421 	rb_reader_unlock(cpu_buffer, dolock);
5422 	local_irq_restore(flags);
5423 
5424 	return ret;
5425 }
5426 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5427 
5428 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5429 /**
5430  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5431  * @buffer_a: One buffer to swap with
5432  * @buffer_b: The other buffer to swap with
5433  * @cpu: the CPU of the buffers to swap
5434  *
5435  * This function is useful for tracers that want to take a "snapshot"
5436  * of a CPU buffer and has another back up buffer lying around.
5437  * it is expected that the tracer handles the cpu buffer not being
5438  * used at the moment.
5439  */
5440 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5441 			 struct trace_buffer *buffer_b, int cpu)
5442 {
5443 	struct ring_buffer_per_cpu *cpu_buffer_a;
5444 	struct ring_buffer_per_cpu *cpu_buffer_b;
5445 	int ret = -EINVAL;
5446 
5447 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5448 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5449 		goto out;
5450 
5451 	cpu_buffer_a = buffer_a->buffers[cpu];
5452 	cpu_buffer_b = buffer_b->buffers[cpu];
5453 
5454 	/* At least make sure the two buffers are somewhat the same */
5455 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5456 		goto out;
5457 
5458 	ret = -EAGAIN;
5459 
5460 	if (atomic_read(&buffer_a->record_disabled))
5461 		goto out;
5462 
5463 	if (atomic_read(&buffer_b->record_disabled))
5464 		goto out;
5465 
5466 	if (atomic_read(&cpu_buffer_a->record_disabled))
5467 		goto out;
5468 
5469 	if (atomic_read(&cpu_buffer_b->record_disabled))
5470 		goto out;
5471 
5472 	/*
5473 	 * We can't do a synchronize_rcu here because this
5474 	 * function can be called in atomic context.
5475 	 * Normally this will be called from the same CPU as cpu.
5476 	 * If not it's up to the caller to protect this.
5477 	 */
5478 	atomic_inc(&cpu_buffer_a->record_disabled);
5479 	atomic_inc(&cpu_buffer_b->record_disabled);
5480 
5481 	ret = -EBUSY;
5482 	if (local_read(&cpu_buffer_a->committing))
5483 		goto out_dec;
5484 	if (local_read(&cpu_buffer_b->committing))
5485 		goto out_dec;
5486 
5487 	/*
5488 	 * When resize is in progress, we cannot swap it because
5489 	 * it will mess the state of the cpu buffer.
5490 	 */
5491 	if (atomic_read(&buffer_a->resizing))
5492 		goto out_dec;
5493 	if (atomic_read(&buffer_b->resizing))
5494 		goto out_dec;
5495 
5496 	buffer_a->buffers[cpu] = cpu_buffer_b;
5497 	buffer_b->buffers[cpu] = cpu_buffer_a;
5498 
5499 	cpu_buffer_b->buffer = buffer_a;
5500 	cpu_buffer_a->buffer = buffer_b;
5501 
5502 	ret = 0;
5503 
5504 out_dec:
5505 	atomic_dec(&cpu_buffer_a->record_disabled);
5506 	atomic_dec(&cpu_buffer_b->record_disabled);
5507 out:
5508 	return ret;
5509 }
5510 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5511 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5512 
5513 /**
5514  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5515  * @buffer: the buffer to allocate for.
5516  * @cpu: the cpu buffer to allocate.
5517  *
5518  * This function is used in conjunction with ring_buffer_read_page.
5519  * When reading a full page from the ring buffer, these functions
5520  * can be used to speed up the process. The calling function should
5521  * allocate a few pages first with this function. Then when it
5522  * needs to get pages from the ring buffer, it passes the result
5523  * of this function into ring_buffer_read_page, which will swap
5524  * the page that was allocated, with the read page of the buffer.
5525  *
5526  * Returns:
5527  *  The page allocated, or ERR_PTR
5528  */
5529 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5530 {
5531 	struct ring_buffer_per_cpu *cpu_buffer;
5532 	struct buffer_data_page *bpage = NULL;
5533 	unsigned long flags;
5534 	struct page *page;
5535 
5536 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5537 		return ERR_PTR(-ENODEV);
5538 
5539 	cpu_buffer = buffer->buffers[cpu];
5540 	local_irq_save(flags);
5541 	arch_spin_lock(&cpu_buffer->lock);
5542 
5543 	if (cpu_buffer->free_page) {
5544 		bpage = cpu_buffer->free_page;
5545 		cpu_buffer->free_page = NULL;
5546 	}
5547 
5548 	arch_spin_unlock(&cpu_buffer->lock);
5549 	local_irq_restore(flags);
5550 
5551 	if (bpage)
5552 		goto out;
5553 
5554 	page = alloc_pages_node(cpu_to_node(cpu),
5555 				GFP_KERNEL | __GFP_NORETRY, 0);
5556 	if (!page)
5557 		return ERR_PTR(-ENOMEM);
5558 
5559 	bpage = page_address(page);
5560 
5561  out:
5562 	rb_init_page(bpage);
5563 
5564 	return bpage;
5565 }
5566 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5567 
5568 /**
5569  * ring_buffer_free_read_page - free an allocated read page
5570  * @buffer: the buffer the page was allocate for
5571  * @cpu: the cpu buffer the page came from
5572  * @data: the page to free
5573  *
5574  * Free a page allocated from ring_buffer_alloc_read_page.
5575  */
5576 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5577 {
5578 	struct ring_buffer_per_cpu *cpu_buffer;
5579 	struct buffer_data_page *bpage = data;
5580 	struct page *page = virt_to_page(bpage);
5581 	unsigned long flags;
5582 
5583 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5584 		return;
5585 
5586 	cpu_buffer = buffer->buffers[cpu];
5587 
5588 	/* If the page is still in use someplace else, we can't reuse it */
5589 	if (page_ref_count(page) > 1)
5590 		goto out;
5591 
5592 	local_irq_save(flags);
5593 	arch_spin_lock(&cpu_buffer->lock);
5594 
5595 	if (!cpu_buffer->free_page) {
5596 		cpu_buffer->free_page = bpage;
5597 		bpage = NULL;
5598 	}
5599 
5600 	arch_spin_unlock(&cpu_buffer->lock);
5601 	local_irq_restore(flags);
5602 
5603  out:
5604 	free_page((unsigned long)bpage);
5605 }
5606 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5607 
5608 /**
5609  * ring_buffer_read_page - extract a page from the ring buffer
5610  * @buffer: buffer to extract from
5611  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5612  * @len: amount to extract
5613  * @cpu: the cpu of the buffer to extract
5614  * @full: should the extraction only happen when the page is full.
5615  *
5616  * This function will pull out a page from the ring buffer and consume it.
5617  * @data_page must be the address of the variable that was returned
5618  * from ring_buffer_alloc_read_page. This is because the page might be used
5619  * to swap with a page in the ring buffer.
5620  *
5621  * for example:
5622  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5623  *	if (IS_ERR(rpage))
5624  *		return PTR_ERR(rpage);
5625  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5626  *	if (ret >= 0)
5627  *		process_page(rpage, ret);
5628  *
5629  * When @full is set, the function will not return true unless
5630  * the writer is off the reader page.
5631  *
5632  * Note: it is up to the calling functions to handle sleeps and wakeups.
5633  *  The ring buffer can be used anywhere in the kernel and can not
5634  *  blindly call wake_up. The layer that uses the ring buffer must be
5635  *  responsible for that.
5636  *
5637  * Returns:
5638  *  >=0 if data has been transferred, returns the offset of consumed data.
5639  *  <0 if no data has been transferred.
5640  */
5641 int ring_buffer_read_page(struct trace_buffer *buffer,
5642 			  void **data_page, size_t len, int cpu, int full)
5643 {
5644 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5645 	struct ring_buffer_event *event;
5646 	struct buffer_data_page *bpage;
5647 	struct buffer_page *reader;
5648 	unsigned long missed_events;
5649 	unsigned long flags;
5650 	unsigned int commit;
5651 	unsigned int read;
5652 	u64 save_timestamp;
5653 	int ret = -1;
5654 
5655 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5656 		goto out;
5657 
5658 	/*
5659 	 * If len is not big enough to hold the page header, then
5660 	 * we can not copy anything.
5661 	 */
5662 	if (len <= BUF_PAGE_HDR_SIZE)
5663 		goto out;
5664 
5665 	len -= BUF_PAGE_HDR_SIZE;
5666 
5667 	if (!data_page)
5668 		goto out;
5669 
5670 	bpage = *data_page;
5671 	if (!bpage)
5672 		goto out;
5673 
5674 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5675 
5676 	reader = rb_get_reader_page(cpu_buffer);
5677 	if (!reader)
5678 		goto out_unlock;
5679 
5680 	event = rb_reader_event(cpu_buffer);
5681 
5682 	read = reader->read;
5683 	commit = rb_page_commit(reader);
5684 
5685 	/* Check if any events were dropped */
5686 	missed_events = cpu_buffer->lost_events;
5687 
5688 	/*
5689 	 * If this page has been partially read or
5690 	 * if len is not big enough to read the rest of the page or
5691 	 * a writer is still on the page, then
5692 	 * we must copy the data from the page to the buffer.
5693 	 * Otherwise, we can simply swap the page with the one passed in.
5694 	 */
5695 	if (read || (len < (commit - read)) ||
5696 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5697 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5698 		unsigned int rpos = read;
5699 		unsigned int pos = 0;
5700 		unsigned int size;
5701 
5702 		/*
5703 		 * If a full page is expected, this can still be returned
5704 		 * if there's been a previous partial read and the
5705 		 * rest of the page can be read and the commit page is off
5706 		 * the reader page.
5707 		 */
5708 		if (full &&
5709 		    (!read || (len < (commit - read)) ||
5710 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5711 			goto out_unlock;
5712 
5713 		if (len > (commit - read))
5714 			len = (commit - read);
5715 
5716 		/* Always keep the time extend and data together */
5717 		size = rb_event_ts_length(event);
5718 
5719 		if (len < size)
5720 			goto out_unlock;
5721 
5722 		/* save the current timestamp, since the user will need it */
5723 		save_timestamp = cpu_buffer->read_stamp;
5724 
5725 		/* Need to copy one event at a time */
5726 		do {
5727 			/* We need the size of one event, because
5728 			 * rb_advance_reader only advances by one event,
5729 			 * whereas rb_event_ts_length may include the size of
5730 			 * one or two events.
5731 			 * We have already ensured there's enough space if this
5732 			 * is a time extend. */
5733 			size = rb_event_length(event);
5734 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5735 
5736 			len -= size;
5737 
5738 			rb_advance_reader(cpu_buffer);
5739 			rpos = reader->read;
5740 			pos += size;
5741 
5742 			if (rpos >= commit)
5743 				break;
5744 
5745 			event = rb_reader_event(cpu_buffer);
5746 			/* Always keep the time extend and data together */
5747 			size = rb_event_ts_length(event);
5748 		} while (len >= size);
5749 
5750 		/* update bpage */
5751 		local_set(&bpage->commit, pos);
5752 		bpage->time_stamp = save_timestamp;
5753 
5754 		/* we copied everything to the beginning */
5755 		read = 0;
5756 	} else {
5757 		/* update the entry counter */
5758 		cpu_buffer->read += rb_page_entries(reader);
5759 		cpu_buffer->read_bytes += rb_page_commit(reader);
5760 
5761 		/* swap the pages */
5762 		rb_init_page(bpage);
5763 		bpage = reader->page;
5764 		reader->page = *data_page;
5765 		local_set(&reader->write, 0);
5766 		local_set(&reader->entries, 0);
5767 		reader->read = 0;
5768 		*data_page = bpage;
5769 
5770 		/*
5771 		 * Use the real_end for the data size,
5772 		 * This gives us a chance to store the lost events
5773 		 * on the page.
5774 		 */
5775 		if (reader->real_end)
5776 			local_set(&bpage->commit, reader->real_end);
5777 	}
5778 	ret = read;
5779 
5780 	cpu_buffer->lost_events = 0;
5781 
5782 	commit = local_read(&bpage->commit);
5783 	/*
5784 	 * Set a flag in the commit field if we lost events
5785 	 */
5786 	if (missed_events) {
5787 		/* If there is room at the end of the page to save the
5788 		 * missed events, then record it there.
5789 		 */
5790 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5791 			memcpy(&bpage->data[commit], &missed_events,
5792 			       sizeof(missed_events));
5793 			local_add(RB_MISSED_STORED, &bpage->commit);
5794 			commit += sizeof(missed_events);
5795 		}
5796 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5797 	}
5798 
5799 	/*
5800 	 * This page may be off to user land. Zero it out here.
5801 	 */
5802 	if (commit < BUF_PAGE_SIZE)
5803 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5804 
5805  out_unlock:
5806 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5807 
5808  out:
5809 	return ret;
5810 }
5811 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5812 
5813 /*
5814  * We only allocate new buffers, never free them if the CPU goes down.
5815  * If we were to free the buffer, then the user would lose any trace that was in
5816  * the buffer.
5817  */
5818 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5819 {
5820 	struct trace_buffer *buffer;
5821 	long nr_pages_same;
5822 	int cpu_i;
5823 	unsigned long nr_pages;
5824 
5825 	buffer = container_of(node, struct trace_buffer, node);
5826 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5827 		return 0;
5828 
5829 	nr_pages = 0;
5830 	nr_pages_same = 1;
5831 	/* check if all cpu sizes are same */
5832 	for_each_buffer_cpu(buffer, cpu_i) {
5833 		/* fill in the size from first enabled cpu */
5834 		if (nr_pages == 0)
5835 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5836 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5837 			nr_pages_same = 0;
5838 			break;
5839 		}
5840 	}
5841 	/* allocate minimum pages, user can later expand it */
5842 	if (!nr_pages_same)
5843 		nr_pages = 2;
5844 	buffer->buffers[cpu] =
5845 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5846 	if (!buffer->buffers[cpu]) {
5847 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5848 		     cpu);
5849 		return -ENOMEM;
5850 	}
5851 	smp_wmb();
5852 	cpumask_set_cpu(cpu, buffer->cpumask);
5853 	return 0;
5854 }
5855 
5856 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5857 /*
5858  * This is a basic integrity check of the ring buffer.
5859  * Late in the boot cycle this test will run when configured in.
5860  * It will kick off a thread per CPU that will go into a loop
5861  * writing to the per cpu ring buffer various sizes of data.
5862  * Some of the data will be large items, some small.
5863  *
5864  * Another thread is created that goes into a spin, sending out
5865  * IPIs to the other CPUs to also write into the ring buffer.
5866  * this is to test the nesting ability of the buffer.
5867  *
5868  * Basic stats are recorded and reported. If something in the
5869  * ring buffer should happen that's not expected, a big warning
5870  * is displayed and all ring buffers are disabled.
5871  */
5872 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5873 
5874 struct rb_test_data {
5875 	struct trace_buffer *buffer;
5876 	unsigned long		events;
5877 	unsigned long		bytes_written;
5878 	unsigned long		bytes_alloc;
5879 	unsigned long		bytes_dropped;
5880 	unsigned long		events_nested;
5881 	unsigned long		bytes_written_nested;
5882 	unsigned long		bytes_alloc_nested;
5883 	unsigned long		bytes_dropped_nested;
5884 	int			min_size_nested;
5885 	int			max_size_nested;
5886 	int			max_size;
5887 	int			min_size;
5888 	int			cpu;
5889 	int			cnt;
5890 };
5891 
5892 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5893 
5894 /* 1 meg per cpu */
5895 #define RB_TEST_BUFFER_SIZE	1048576
5896 
5897 static char rb_string[] __initdata =
5898 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5899 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5900 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5901 
5902 static bool rb_test_started __initdata;
5903 
5904 struct rb_item {
5905 	int size;
5906 	char str[];
5907 };
5908 
5909 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5910 {
5911 	struct ring_buffer_event *event;
5912 	struct rb_item *item;
5913 	bool started;
5914 	int event_len;
5915 	int size;
5916 	int len;
5917 	int cnt;
5918 
5919 	/* Have nested writes different that what is written */
5920 	cnt = data->cnt + (nested ? 27 : 0);
5921 
5922 	/* Multiply cnt by ~e, to make some unique increment */
5923 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5924 
5925 	len = size + sizeof(struct rb_item);
5926 
5927 	started = rb_test_started;
5928 	/* read rb_test_started before checking buffer enabled */
5929 	smp_rmb();
5930 
5931 	event = ring_buffer_lock_reserve(data->buffer, len);
5932 	if (!event) {
5933 		/* Ignore dropped events before test starts. */
5934 		if (started) {
5935 			if (nested)
5936 				data->bytes_dropped += len;
5937 			else
5938 				data->bytes_dropped_nested += len;
5939 		}
5940 		return len;
5941 	}
5942 
5943 	event_len = ring_buffer_event_length(event);
5944 
5945 	if (RB_WARN_ON(data->buffer, event_len < len))
5946 		goto out;
5947 
5948 	item = ring_buffer_event_data(event);
5949 	item->size = size;
5950 	memcpy(item->str, rb_string, size);
5951 
5952 	if (nested) {
5953 		data->bytes_alloc_nested += event_len;
5954 		data->bytes_written_nested += len;
5955 		data->events_nested++;
5956 		if (!data->min_size_nested || len < data->min_size_nested)
5957 			data->min_size_nested = len;
5958 		if (len > data->max_size_nested)
5959 			data->max_size_nested = len;
5960 	} else {
5961 		data->bytes_alloc += event_len;
5962 		data->bytes_written += len;
5963 		data->events++;
5964 		if (!data->min_size || len < data->min_size)
5965 			data->max_size = len;
5966 		if (len > data->max_size)
5967 			data->max_size = len;
5968 	}
5969 
5970  out:
5971 	ring_buffer_unlock_commit(data->buffer);
5972 
5973 	return 0;
5974 }
5975 
5976 static __init int rb_test(void *arg)
5977 {
5978 	struct rb_test_data *data = arg;
5979 
5980 	while (!kthread_should_stop()) {
5981 		rb_write_something(data, false);
5982 		data->cnt++;
5983 
5984 		set_current_state(TASK_INTERRUPTIBLE);
5985 		/* Now sleep between a min of 100-300us and a max of 1ms */
5986 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5987 	}
5988 
5989 	return 0;
5990 }
5991 
5992 static __init void rb_ipi(void *ignore)
5993 {
5994 	struct rb_test_data *data;
5995 	int cpu = smp_processor_id();
5996 
5997 	data = &rb_data[cpu];
5998 	rb_write_something(data, true);
5999 }
6000 
6001 static __init int rb_hammer_test(void *arg)
6002 {
6003 	while (!kthread_should_stop()) {
6004 
6005 		/* Send an IPI to all cpus to write data! */
6006 		smp_call_function(rb_ipi, NULL, 1);
6007 		/* No sleep, but for non preempt, let others run */
6008 		schedule();
6009 	}
6010 
6011 	return 0;
6012 }
6013 
6014 static __init int test_ringbuffer(void)
6015 {
6016 	struct task_struct *rb_hammer;
6017 	struct trace_buffer *buffer;
6018 	int cpu;
6019 	int ret = 0;
6020 
6021 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6022 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6023 		return 0;
6024 	}
6025 
6026 	pr_info("Running ring buffer tests...\n");
6027 
6028 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6029 	if (WARN_ON(!buffer))
6030 		return 0;
6031 
6032 	/* Disable buffer so that threads can't write to it yet */
6033 	ring_buffer_record_off(buffer);
6034 
6035 	for_each_online_cpu(cpu) {
6036 		rb_data[cpu].buffer = buffer;
6037 		rb_data[cpu].cpu = cpu;
6038 		rb_data[cpu].cnt = cpu;
6039 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6040 						     cpu, "rbtester/%u");
6041 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6042 			pr_cont("FAILED\n");
6043 			ret = PTR_ERR(rb_threads[cpu]);
6044 			goto out_free;
6045 		}
6046 	}
6047 
6048 	/* Now create the rb hammer! */
6049 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6050 	if (WARN_ON(IS_ERR(rb_hammer))) {
6051 		pr_cont("FAILED\n");
6052 		ret = PTR_ERR(rb_hammer);
6053 		goto out_free;
6054 	}
6055 
6056 	ring_buffer_record_on(buffer);
6057 	/*
6058 	 * Show buffer is enabled before setting rb_test_started.
6059 	 * Yes there's a small race window where events could be
6060 	 * dropped and the thread wont catch it. But when a ring
6061 	 * buffer gets enabled, there will always be some kind of
6062 	 * delay before other CPUs see it. Thus, we don't care about
6063 	 * those dropped events. We care about events dropped after
6064 	 * the threads see that the buffer is active.
6065 	 */
6066 	smp_wmb();
6067 	rb_test_started = true;
6068 
6069 	set_current_state(TASK_INTERRUPTIBLE);
6070 	/* Just run for 10 seconds */;
6071 	schedule_timeout(10 * HZ);
6072 
6073 	kthread_stop(rb_hammer);
6074 
6075  out_free:
6076 	for_each_online_cpu(cpu) {
6077 		if (!rb_threads[cpu])
6078 			break;
6079 		kthread_stop(rb_threads[cpu]);
6080 	}
6081 	if (ret) {
6082 		ring_buffer_free(buffer);
6083 		return ret;
6084 	}
6085 
6086 	/* Report! */
6087 	pr_info("finished\n");
6088 	for_each_online_cpu(cpu) {
6089 		struct ring_buffer_event *event;
6090 		struct rb_test_data *data = &rb_data[cpu];
6091 		struct rb_item *item;
6092 		unsigned long total_events;
6093 		unsigned long total_dropped;
6094 		unsigned long total_written;
6095 		unsigned long total_alloc;
6096 		unsigned long total_read = 0;
6097 		unsigned long total_size = 0;
6098 		unsigned long total_len = 0;
6099 		unsigned long total_lost = 0;
6100 		unsigned long lost;
6101 		int big_event_size;
6102 		int small_event_size;
6103 
6104 		ret = -1;
6105 
6106 		total_events = data->events + data->events_nested;
6107 		total_written = data->bytes_written + data->bytes_written_nested;
6108 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6109 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6110 
6111 		big_event_size = data->max_size + data->max_size_nested;
6112 		small_event_size = data->min_size + data->min_size_nested;
6113 
6114 		pr_info("CPU %d:\n", cpu);
6115 		pr_info("              events:    %ld\n", total_events);
6116 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6117 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6118 		pr_info("       written bytes:    %ld\n", total_written);
6119 		pr_info("       biggest event:    %d\n", big_event_size);
6120 		pr_info("      smallest event:    %d\n", small_event_size);
6121 
6122 		if (RB_WARN_ON(buffer, total_dropped))
6123 			break;
6124 
6125 		ret = 0;
6126 
6127 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6128 			total_lost += lost;
6129 			item = ring_buffer_event_data(event);
6130 			total_len += ring_buffer_event_length(event);
6131 			total_size += item->size + sizeof(struct rb_item);
6132 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6133 				pr_info("FAILED!\n");
6134 				pr_info("buffer had: %.*s\n", item->size, item->str);
6135 				pr_info("expected:   %.*s\n", item->size, rb_string);
6136 				RB_WARN_ON(buffer, 1);
6137 				ret = -1;
6138 				break;
6139 			}
6140 			total_read++;
6141 		}
6142 		if (ret)
6143 			break;
6144 
6145 		ret = -1;
6146 
6147 		pr_info("         read events:   %ld\n", total_read);
6148 		pr_info("         lost events:   %ld\n", total_lost);
6149 		pr_info("        total events:   %ld\n", total_lost + total_read);
6150 		pr_info("  recorded len bytes:   %ld\n", total_len);
6151 		pr_info(" recorded size bytes:   %ld\n", total_size);
6152 		if (total_lost) {
6153 			pr_info(" With dropped events, record len and size may not match\n"
6154 				" alloced and written from above\n");
6155 		} else {
6156 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6157 				       total_size != total_written))
6158 				break;
6159 		}
6160 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6161 			break;
6162 
6163 		ret = 0;
6164 	}
6165 	if (!ret)
6166 		pr_info("Ring buffer PASSED!\n");
6167 
6168 	ring_buffer_free(buffer);
6169 	return 0;
6170 }
6171 
6172 late_initcall(test_ringbuffer);
6173 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6174