xref: /linux/kernel/trace/ring_buffer.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 struct buffer_data_page {
284 	u64		 time_stamp;	/* page time stamp */
285 	local_t		 commit;	/* write committed index */
286 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
287 };
288 
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298 	struct list_head list;		/* list of buffer pages */
299 	local_t		 write;		/* index for next write */
300 	unsigned	 read;		/* index for next read */
301 	local_t		 entries;	/* entries on this page */
302 	unsigned long	 real_end;	/* real end of data */
303 	struct buffer_data_page *page;	/* Actual data page */
304 };
305 
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK		0xfffff
319 #define RB_WRITE_INTCNT		(1 << 20)
320 
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 	local_set(&bpage->commit, 0);
324 }
325 
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334 	return local_read(&((struct buffer_data_page *)page)->commit)
335 		+ BUF_PAGE_HDR_SIZE;
336 }
337 
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 	free_page((unsigned long)bpage->page);
345 	kfree(bpage);
346 }
347 
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353 	if (delta & TS_DELTA_TEST)
354 		return 1;
355 	return 0;
356 }
357 
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359 
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362 
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 	struct buffer_data_page field;
366 
367 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 			 (unsigned int)sizeof(field.time_stamp),
370 			 (unsigned int)is_signed_type(u64));
371 
372 	trace_seq_printf(s, "\tfield: local_t commit;\t"
373 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 			 (unsigned int)offsetof(typeof(field), commit),
375 			 (unsigned int)sizeof(field.commit),
376 			 (unsigned int)is_signed_type(long));
377 
378 	trace_seq_printf(s, "\tfield: int overwrite;\t"
379 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)offsetof(typeof(field), commit),
381 			 1,
382 			 (unsigned int)is_signed_type(long));
383 
384 	trace_seq_printf(s, "\tfield: char data;\t"
385 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 			 (unsigned int)offsetof(typeof(field), data),
387 			 (unsigned int)BUF_PAGE_SIZE,
388 			 (unsigned int)is_signed_type(char));
389 
390 	return !trace_seq_has_overflowed(s);
391 }
392 
393 struct rb_irq_work {
394 	struct irq_work			work;
395 	wait_queue_head_t		waiters;
396 	wait_queue_head_t		full_waiters;
397 	bool				waiters_pending;
398 	bool				full_waiters_pending;
399 	bool				wakeup_full;
400 };
401 
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406 	u64			ts;
407 	u64			delta;
408 	unsigned long		length;
409 	struct buffer_page	*tail_page;
410 	int			add_timestamp;
411 };
412 
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423 	RB_CTX_NMI,
424 	RB_CTX_IRQ,
425 	RB_CTX_SOFTIRQ,
426 	RB_CTX_NORMAL,
427 	RB_CTX_MAX
428 };
429 
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434 	int				cpu;
435 	atomic_t			record_disabled;
436 	struct ring_buffer		*buffer;
437 	raw_spinlock_t			reader_lock;	/* serialize readers */
438 	arch_spinlock_t			lock;
439 	struct lock_class_key		lock_key;
440 	unsigned int			nr_pages;
441 	unsigned int			current_context;
442 	struct list_head		*pages;
443 	struct buffer_page		*head_page;	/* read from head */
444 	struct buffer_page		*tail_page;	/* write to tail */
445 	struct buffer_page		*commit_page;	/* committed pages */
446 	struct buffer_page		*reader_page;
447 	unsigned long			lost_events;
448 	unsigned long			last_overrun;
449 	local_t				entries_bytes;
450 	local_t				entries;
451 	local_t				overrun;
452 	local_t				commit_overrun;
453 	local_t				dropped_events;
454 	local_t				committing;
455 	local_t				commits;
456 	unsigned long			read;
457 	unsigned long			read_bytes;
458 	u64				write_stamp;
459 	u64				read_stamp;
460 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
461 	int				nr_pages_to_update;
462 	struct list_head		new_pages; /* new pages to add */
463 	struct work_struct		update_pages_work;
464 	struct completion		update_done;
465 
466 	struct rb_irq_work		irq_work;
467 };
468 
469 struct ring_buffer {
470 	unsigned			flags;
471 	int				cpus;
472 	atomic_t			record_disabled;
473 	atomic_t			resize_disabled;
474 	cpumask_var_t			cpumask;
475 
476 	struct lock_class_key		*reader_lock_key;
477 
478 	struct mutex			mutex;
479 
480 	struct ring_buffer_per_cpu	**buffers;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 	struct notifier_block		cpu_notify;
484 #endif
485 	u64				(*clock)(void);
486 
487 	struct rb_irq_work		irq_work;
488 };
489 
490 struct ring_buffer_iter {
491 	struct ring_buffer_per_cpu	*cpu_buffer;
492 	unsigned long			head;
493 	struct buffer_page		*head_page;
494 	struct buffer_page		*cache_reader_page;
495 	unsigned long			cache_read;
496 	u64				read_stamp;
497 };
498 
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508 
509 	wake_up_all(&rbwork->waiters);
510 	if (rbwork->wakeup_full) {
511 		rbwork->wakeup_full = false;
512 		wake_up_all(&rbwork->full_waiters);
513 	}
514 }
515 
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 	DEFINE_WAIT(wait);
530 	struct rb_irq_work *work;
531 	int ret = 0;
532 
533 	/*
534 	 * Depending on what the caller is waiting for, either any
535 	 * data in any cpu buffer, or a specific buffer, put the
536 	 * caller on the appropriate wait queue.
537 	 */
538 	if (cpu == RING_BUFFER_ALL_CPUS) {
539 		work = &buffer->irq_work;
540 		/* Full only makes sense on per cpu reads */
541 		full = false;
542 	} else {
543 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 			return -ENODEV;
545 		cpu_buffer = buffer->buffers[cpu];
546 		work = &cpu_buffer->irq_work;
547 	}
548 
549 
550 	while (true) {
551 		if (full)
552 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 		else
554 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555 
556 		/*
557 		 * The events can happen in critical sections where
558 		 * checking a work queue can cause deadlocks.
559 		 * After adding a task to the queue, this flag is set
560 		 * only to notify events to try to wake up the queue
561 		 * using irq_work.
562 		 *
563 		 * We don't clear it even if the buffer is no longer
564 		 * empty. The flag only causes the next event to run
565 		 * irq_work to do the work queue wake up. The worse
566 		 * that can happen if we race with !trace_empty() is that
567 		 * an event will cause an irq_work to try to wake up
568 		 * an empty queue.
569 		 *
570 		 * There's no reason to protect this flag either, as
571 		 * the work queue and irq_work logic will do the necessary
572 		 * synchronization for the wake ups. The only thing
573 		 * that is necessary is that the wake up happens after
574 		 * a task has been queued. It's OK for spurious wake ups.
575 		 */
576 		if (full)
577 			work->full_waiters_pending = true;
578 		else
579 			work->waiters_pending = true;
580 
581 		if (signal_pending(current)) {
582 			ret = -EINTR;
583 			break;
584 		}
585 
586 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 			break;
588 
589 		if (cpu != RING_BUFFER_ALL_CPUS &&
590 		    !ring_buffer_empty_cpu(buffer, cpu)) {
591 			unsigned long flags;
592 			bool pagebusy;
593 
594 			if (!full)
595 				break;
596 
597 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600 
601 			if (!pagebusy)
602 				break;
603 		}
604 
605 		schedule();
606 	}
607 
608 	if (full)
609 		finish_wait(&work->full_waiters, &wait);
610 	else
611 		finish_wait(&work->waiters, &wait);
612 
613 	return ret;
614 }
615 
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 			  struct file *filp, poll_table *poll_table)
632 {
633 	struct ring_buffer_per_cpu *cpu_buffer;
634 	struct rb_irq_work *work;
635 
636 	if (cpu == RING_BUFFER_ALL_CPUS)
637 		work = &buffer->irq_work;
638 	else {
639 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 			return -EINVAL;
641 
642 		cpu_buffer = buffer->buffers[cpu];
643 		work = &cpu_buffer->irq_work;
644 	}
645 
646 	poll_wait(filp, &work->waiters, poll_table);
647 	work->waiters_pending = true;
648 	/*
649 	 * There's a tight race between setting the waiters_pending and
650 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
651 	 * is set, the next event will wake the task up, but we can get stuck
652 	 * if there's only a single event in.
653 	 *
654 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 	 * but adding a memory barrier to all events will cause too much of a
656 	 * performance hit in the fast path.  We only need a memory barrier when
657 	 * the buffer goes from empty to having content.  But as this race is
658 	 * extremely small, and it's not a problem if another event comes in, we
659 	 * will fix it later.
660 	 */
661 	smp_mb();
662 
663 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 		return POLLIN | POLLRDNORM;
666 	return 0;
667 }
668 
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)						\
671 	({								\
672 		int _____ret = unlikely(cond);				\
673 		if (_____ret) {						\
674 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 				struct ring_buffer_per_cpu *__b =	\
676 					(void *)b;			\
677 				atomic_inc(&__b->buffer->record_disabled); \
678 			} else						\
679 				atomic_inc(&b->record_disabled);	\
680 			WARN_ON(1);					\
681 		}							\
682 		_____ret;						\
683 	})
684 
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687 
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690 	/* shift to debug/test normalization and TIME_EXTENTS */
691 	return buffer->clock() << DEBUG_SHIFT;
692 }
693 
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696 	u64 time;
697 
698 	preempt_disable_notrace();
699 	time = rb_time_stamp(buffer);
700 	preempt_enable_no_resched_notrace();
701 
702 	return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705 
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 				      int cpu, u64 *ts)
708 {
709 	/* Just stupid testing the normalize function and deltas */
710 	*ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713 
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782 
783 #define RB_PAGE_NORMAL		0UL
784 #define RB_PAGE_HEAD		1UL
785 #define RB_PAGE_UPDATE		2UL
786 
787 
788 #define RB_FLAG_MASK		3UL
789 
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED		4UL
792 
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798 	unsigned long val = (unsigned long)list;
799 
800 	return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802 
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 		struct buffer_page *page, struct list_head *list)
814 {
815 	unsigned long val;
816 
817 	val = (unsigned long)list->next;
818 
819 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 		return RB_PAGE_MOVED;
821 
822 	return val & RB_FLAG_MASK;
823 }
824 
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static int rb_is_reader_page(struct buffer_page *page)
833 {
834 	struct list_head *list = page->list.prev;
835 
836 	return rb_list_head(list->next) != &page->list;
837 }
838 
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 				struct list_head *list)
844 {
845 	unsigned long *ptr;
846 
847 	ptr = (unsigned long *)&list->next;
848 	*ptr |= RB_PAGE_HEAD;
849 	*ptr &= ~RB_PAGE_UPDATE;
850 }
851 
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857 	struct buffer_page *head;
858 
859 	head = cpu_buffer->head_page;
860 	if (!head)
861 		return;
862 
863 	/*
864 	 * Set the previous list pointer to have the HEAD flag.
865 	 */
866 	rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868 
869 static void rb_list_head_clear(struct list_head *list)
870 {
871 	unsigned long *ptr = (unsigned long *)&list->next;
872 
873 	*ptr &= ~RB_FLAG_MASK;
874 }
875 
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882 	struct list_head *hd;
883 
884 	/* Go through the whole list and clear any pointers found. */
885 	rb_list_head_clear(cpu_buffer->pages);
886 
887 	list_for_each(hd, cpu_buffer->pages)
888 		rb_list_head_clear(hd);
889 }
890 
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 			    struct buffer_page *head,
893 			    struct buffer_page *prev,
894 			    int old_flag, int new_flag)
895 {
896 	struct list_head *list;
897 	unsigned long val = (unsigned long)&head->list;
898 	unsigned long ret;
899 
900 	list = &prev->list;
901 
902 	val &= ~RB_FLAG_MASK;
903 
904 	ret = cmpxchg((unsigned long *)&list->next,
905 		      val | old_flag, val | new_flag);
906 
907 	/* check if the reader took the page */
908 	if ((ret & ~RB_FLAG_MASK) != val)
909 		return RB_PAGE_MOVED;
910 
911 	return ret & RB_FLAG_MASK;
912 }
913 
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 				   struct buffer_page *head,
916 				   struct buffer_page *prev,
917 				   int old_flag)
918 {
919 	return rb_head_page_set(cpu_buffer, head, prev,
920 				old_flag, RB_PAGE_UPDATE);
921 }
922 
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 				 struct buffer_page *head,
925 				 struct buffer_page *prev,
926 				 int old_flag)
927 {
928 	return rb_head_page_set(cpu_buffer, head, prev,
929 				old_flag, RB_PAGE_HEAD);
930 }
931 
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 				   struct buffer_page *head,
934 				   struct buffer_page *prev,
935 				   int old_flag)
936 {
937 	return rb_head_page_set(cpu_buffer, head, prev,
938 				old_flag, RB_PAGE_NORMAL);
939 }
940 
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 			       struct buffer_page **bpage)
943 {
944 	struct list_head *p = rb_list_head((*bpage)->list.next);
945 
946 	*bpage = list_entry(p, struct buffer_page, list);
947 }
948 
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952 	struct buffer_page *head;
953 	struct buffer_page *page;
954 	struct list_head *list;
955 	int i;
956 
957 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 		return NULL;
959 
960 	/* sanity check */
961 	list = cpu_buffer->pages;
962 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 		return NULL;
964 
965 	page = head = cpu_buffer->head_page;
966 	/*
967 	 * It is possible that the writer moves the header behind
968 	 * where we started, and we miss in one loop.
969 	 * A second loop should grab the header, but we'll do
970 	 * three loops just because I'm paranoid.
971 	 */
972 	for (i = 0; i < 3; i++) {
973 		do {
974 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 				cpu_buffer->head_page = page;
976 				return page;
977 			}
978 			rb_inc_page(cpu_buffer, &page);
979 		} while (page != head);
980 	}
981 
982 	RB_WARN_ON(cpu_buffer, 1);
983 
984 	return NULL;
985 }
986 
987 static int rb_head_page_replace(struct buffer_page *old,
988 				struct buffer_page *new)
989 {
990 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 	unsigned long val;
992 	unsigned long ret;
993 
994 	val = *ptr & ~RB_FLAG_MASK;
995 	val |= RB_PAGE_HEAD;
996 
997 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998 
999 	return ret == val;
1000 }
1001 
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  *
1005  * Returns 1 if moved tail page, 0 if someone else did.
1006  */
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 			       struct buffer_page *tail_page,
1009 			       struct buffer_page *next_page)
1010 {
1011 	struct buffer_page *old_tail;
1012 	unsigned long old_entries;
1013 	unsigned long old_write;
1014 	int ret = 0;
1015 
1016 	/*
1017 	 * The tail page now needs to be moved forward.
1018 	 *
1019 	 * We need to reset the tail page, but without messing
1020 	 * with possible erasing of data brought in by interrupts
1021 	 * that have moved the tail page and are currently on it.
1022 	 *
1023 	 * We add a counter to the write field to denote this.
1024 	 */
1025 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027 
1028 	/*
1029 	 * Just make sure we have seen our old_write and synchronize
1030 	 * with any interrupts that come in.
1031 	 */
1032 	barrier();
1033 
1034 	/*
1035 	 * If the tail page is still the same as what we think
1036 	 * it is, then it is up to us to update the tail
1037 	 * pointer.
1038 	 */
1039 	if (tail_page == cpu_buffer->tail_page) {
1040 		/* Zero the write counter */
1041 		unsigned long val = old_write & ~RB_WRITE_MASK;
1042 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043 
1044 		/*
1045 		 * This will only succeed if an interrupt did
1046 		 * not come in and change it. In which case, we
1047 		 * do not want to modify it.
1048 		 *
1049 		 * We add (void) to let the compiler know that we do not care
1050 		 * about the return value of these functions. We use the
1051 		 * cmpxchg to only update if an interrupt did not already
1052 		 * do it for us. If the cmpxchg fails, we don't care.
1053 		 */
1054 		(void)local_cmpxchg(&next_page->write, old_write, val);
1055 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056 
1057 		/*
1058 		 * No need to worry about races with clearing out the commit.
1059 		 * it only can increment when a commit takes place. But that
1060 		 * only happens in the outer most nested commit.
1061 		 */
1062 		local_set(&next_page->page->commit, 0);
1063 
1064 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 				   tail_page, next_page);
1066 
1067 		if (old_tail == tail_page)
1068 			ret = 1;
1069 	}
1070 
1071 	return ret;
1072 }
1073 
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 			  struct buffer_page *bpage)
1076 {
1077 	unsigned long val = (unsigned long)bpage;
1078 
1079 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 		return 1;
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * rb_check_list - make sure a pointer to a list has the last bits zero
1087  */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 			 struct list_head *list)
1090 {
1091 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 		return 1;
1093 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 		return 1;
1095 	return 0;
1096 }
1097 
1098 /**
1099  * rb_check_pages - integrity check of buffer pages
1100  * @cpu_buffer: CPU buffer with pages to test
1101  *
1102  * As a safety measure we check to make sure the data pages have not
1103  * been corrupted.
1104  */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107 	struct list_head *head = cpu_buffer->pages;
1108 	struct buffer_page *bpage, *tmp;
1109 
1110 	/* Reset the head page if it exists */
1111 	if (cpu_buffer->head_page)
1112 		rb_set_head_page(cpu_buffer);
1113 
1114 	rb_head_page_deactivate(cpu_buffer);
1115 
1116 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 		return -1;
1118 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 		return -1;
1120 
1121 	if (rb_check_list(cpu_buffer, head))
1122 		return -1;
1123 
1124 	list_for_each_entry_safe(bpage, tmp, head, list) {
1125 		if (RB_WARN_ON(cpu_buffer,
1126 			       bpage->list.next->prev != &bpage->list))
1127 			return -1;
1128 		if (RB_WARN_ON(cpu_buffer,
1129 			       bpage->list.prev->next != &bpage->list))
1130 			return -1;
1131 		if (rb_check_list(cpu_buffer, &bpage->list))
1132 			return -1;
1133 	}
1134 
1135 	rb_head_page_activate(cpu_buffer);
1136 
1137 	return 0;
1138 }
1139 
1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1141 {
1142 	int i;
1143 	struct buffer_page *bpage, *tmp;
1144 
1145 	for (i = 0; i < nr_pages; i++) {
1146 		struct page *page;
1147 		/*
1148 		 * __GFP_NORETRY flag makes sure that the allocation fails
1149 		 * gracefully without invoking oom-killer and the system is
1150 		 * not destabilized.
1151 		 */
1152 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1153 				    GFP_KERNEL | __GFP_NORETRY,
1154 				    cpu_to_node(cpu));
1155 		if (!bpage)
1156 			goto free_pages;
1157 
1158 		list_add(&bpage->list, pages);
1159 
1160 		page = alloc_pages_node(cpu_to_node(cpu),
1161 					GFP_KERNEL | __GFP_NORETRY, 0);
1162 		if (!page)
1163 			goto free_pages;
1164 		bpage->page = page_address(page);
1165 		rb_init_page(bpage->page);
1166 	}
1167 
1168 	return 0;
1169 
1170 free_pages:
1171 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 		list_del_init(&bpage->list);
1173 		free_buffer_page(bpage);
1174 	}
1175 
1176 	return -ENOMEM;
1177 }
1178 
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 			     unsigned nr_pages)
1181 {
1182 	LIST_HEAD(pages);
1183 
1184 	WARN_ON(!nr_pages);
1185 
1186 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 		return -ENOMEM;
1188 
1189 	/*
1190 	 * The ring buffer page list is a circular list that does not
1191 	 * start and end with a list head. All page list items point to
1192 	 * other pages.
1193 	 */
1194 	cpu_buffer->pages = pages.next;
1195 	list_del(&pages);
1196 
1197 	cpu_buffer->nr_pages = nr_pages;
1198 
1199 	rb_check_pages(cpu_buffer);
1200 
1201 	return 0;
1202 }
1203 
1204 static struct ring_buffer_per_cpu *
1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1206 {
1207 	struct ring_buffer_per_cpu *cpu_buffer;
1208 	struct buffer_page *bpage;
1209 	struct page *page;
1210 	int ret;
1211 
1212 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 				  GFP_KERNEL, cpu_to_node(cpu));
1214 	if (!cpu_buffer)
1215 		return NULL;
1216 
1217 	cpu_buffer->cpu = cpu;
1218 	cpu_buffer->buffer = buffer;
1219 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1220 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1221 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1222 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1223 	init_completion(&cpu_buffer->update_done);
1224 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1225 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1226 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1227 
1228 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229 			    GFP_KERNEL, cpu_to_node(cpu));
1230 	if (!bpage)
1231 		goto fail_free_buffer;
1232 
1233 	rb_check_bpage(cpu_buffer, bpage);
1234 
1235 	cpu_buffer->reader_page = bpage;
1236 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 	if (!page)
1238 		goto fail_free_reader;
1239 	bpage->page = page_address(page);
1240 	rb_init_page(bpage->page);
1241 
1242 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1243 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1244 
1245 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1246 	if (ret < 0)
1247 		goto fail_free_reader;
1248 
1249 	cpu_buffer->head_page
1250 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1251 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1252 
1253 	rb_head_page_activate(cpu_buffer);
1254 
1255 	return cpu_buffer;
1256 
1257  fail_free_reader:
1258 	free_buffer_page(cpu_buffer->reader_page);
1259 
1260  fail_free_buffer:
1261 	kfree(cpu_buffer);
1262 	return NULL;
1263 }
1264 
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266 {
1267 	struct list_head *head = cpu_buffer->pages;
1268 	struct buffer_page *bpage, *tmp;
1269 
1270 	free_buffer_page(cpu_buffer->reader_page);
1271 
1272 	rb_head_page_deactivate(cpu_buffer);
1273 
1274 	if (head) {
1275 		list_for_each_entry_safe(bpage, tmp, head, list) {
1276 			list_del_init(&bpage->list);
1277 			free_buffer_page(bpage);
1278 		}
1279 		bpage = list_entry(head, struct buffer_page, list);
1280 		free_buffer_page(bpage);
1281 	}
1282 
1283 	kfree(cpu_buffer);
1284 }
1285 
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block *self,
1288 			 unsigned long action, void *hcpu);
1289 #endif
1290 
1291 /**
1292  * __ring_buffer_alloc - allocate a new ring_buffer
1293  * @size: the size in bytes per cpu that is needed.
1294  * @flags: attributes to set for the ring buffer.
1295  *
1296  * Currently the only flag that is available is the RB_FL_OVERWRITE
1297  * flag. This flag means that the buffer will overwrite old data
1298  * when the buffer wraps. If this flag is not set, the buffer will
1299  * drop data when the tail hits the head.
1300  */
1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 					struct lock_class_key *key)
1303 {
1304 	struct ring_buffer *buffer;
1305 	int bsize;
1306 	int cpu, nr_pages;
1307 
1308 	/* keep it in its own cache line */
1309 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 			 GFP_KERNEL);
1311 	if (!buffer)
1312 		return NULL;
1313 
1314 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 		goto fail_free_buffer;
1316 
1317 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1318 	buffer->flags = flags;
1319 	buffer->clock = trace_clock_local;
1320 	buffer->reader_lock_key = key;
1321 
1322 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1323 	init_waitqueue_head(&buffer->irq_work.waiters);
1324 
1325 	/* need at least two pages */
1326 	if (nr_pages < 2)
1327 		nr_pages = 2;
1328 
1329 	/*
1330 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 	 * in early initcall, it will not be notified of secondary cpus.
1332 	 * In that off case, we need to allocate for all possible cpus.
1333 	 */
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 	cpu_notifier_register_begin();
1336 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1337 #else
1338 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339 #endif
1340 	buffer->cpus = nr_cpu_ids;
1341 
1342 	bsize = sizeof(void *) * nr_cpu_ids;
1343 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 				  GFP_KERNEL);
1345 	if (!buffer->buffers)
1346 		goto fail_free_cpumask;
1347 
1348 	for_each_buffer_cpu(buffer, cpu) {
1349 		buffer->buffers[cpu] =
1350 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1351 		if (!buffer->buffers[cpu])
1352 			goto fail_free_buffers;
1353 	}
1354 
1355 #ifdef CONFIG_HOTPLUG_CPU
1356 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 	buffer->cpu_notify.priority = 0;
1358 	__register_cpu_notifier(&buffer->cpu_notify);
1359 	cpu_notifier_register_done();
1360 #endif
1361 
1362 	mutex_init(&buffer->mutex);
1363 
1364 	return buffer;
1365 
1366  fail_free_buffers:
1367 	for_each_buffer_cpu(buffer, cpu) {
1368 		if (buffer->buffers[cpu])
1369 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 	}
1371 	kfree(buffer->buffers);
1372 
1373  fail_free_cpumask:
1374 	free_cpumask_var(buffer->cpumask);
1375 #ifdef CONFIG_HOTPLUG_CPU
1376 	cpu_notifier_register_done();
1377 #endif
1378 
1379  fail_free_buffer:
1380 	kfree(buffer);
1381 	return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1384 
1385 /**
1386  * ring_buffer_free - free a ring buffer.
1387  * @buffer: the buffer to free.
1388  */
1389 void
1390 ring_buffer_free(struct ring_buffer *buffer)
1391 {
1392 	int cpu;
1393 
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 	cpu_notifier_register_begin();
1396 	__unregister_cpu_notifier(&buffer->cpu_notify);
1397 #endif
1398 
1399 	for_each_buffer_cpu(buffer, cpu)
1400 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1401 
1402 #ifdef CONFIG_HOTPLUG_CPU
1403 	cpu_notifier_register_done();
1404 #endif
1405 
1406 	kfree(buffer->buffers);
1407 	free_cpumask_var(buffer->cpumask);
1408 
1409 	kfree(buffer);
1410 }
1411 EXPORT_SYMBOL_GPL(ring_buffer_free);
1412 
1413 void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 			   u64 (*clock)(void))
1415 {
1416 	buffer->clock = clock;
1417 }
1418 
1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420 
1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422 {
1423 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1424 }
1425 
1426 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427 {
1428 	return local_read(&bpage->write) & RB_WRITE_MASK;
1429 }
1430 
1431 static int
1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1433 {
1434 	struct list_head *tail_page, *to_remove, *next_page;
1435 	struct buffer_page *to_remove_page, *tmp_iter_page;
1436 	struct buffer_page *last_page, *first_page;
1437 	unsigned int nr_removed;
1438 	unsigned long head_bit;
1439 	int page_entries;
1440 
1441 	head_bit = 0;
1442 
1443 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1444 	atomic_inc(&cpu_buffer->record_disabled);
1445 	/*
1446 	 * We don't race with the readers since we have acquired the reader
1447 	 * lock. We also don't race with writers after disabling recording.
1448 	 * This makes it easy to figure out the first and the last page to be
1449 	 * removed from the list. We unlink all the pages in between including
1450 	 * the first and last pages. This is done in a busy loop so that we
1451 	 * lose the least number of traces.
1452 	 * The pages are freed after we restart recording and unlock readers.
1453 	 */
1454 	tail_page = &cpu_buffer->tail_page->list;
1455 
1456 	/*
1457 	 * tail page might be on reader page, we remove the next page
1458 	 * from the ring buffer
1459 	 */
1460 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 		tail_page = rb_list_head(tail_page->next);
1462 	to_remove = tail_page;
1463 
1464 	/* start of pages to remove */
1465 	first_page = list_entry(rb_list_head(to_remove->next),
1466 				struct buffer_page, list);
1467 
1468 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 		to_remove = rb_list_head(to_remove)->next;
1470 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1471 	}
1472 
1473 	next_page = rb_list_head(to_remove)->next;
1474 
1475 	/*
1476 	 * Now we remove all pages between tail_page and next_page.
1477 	 * Make sure that we have head_bit value preserved for the
1478 	 * next page
1479 	 */
1480 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 						head_bit);
1482 	next_page = rb_list_head(next_page);
1483 	next_page->prev = tail_page;
1484 
1485 	/* make sure pages points to a valid page in the ring buffer */
1486 	cpu_buffer->pages = next_page;
1487 
1488 	/* update head page */
1489 	if (head_bit)
1490 		cpu_buffer->head_page = list_entry(next_page,
1491 						struct buffer_page, list);
1492 
1493 	/*
1494 	 * change read pointer to make sure any read iterators reset
1495 	 * themselves
1496 	 */
1497 	cpu_buffer->read = 0;
1498 
1499 	/* pages are removed, resume tracing and then free the pages */
1500 	atomic_dec(&cpu_buffer->record_disabled);
1501 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1502 
1503 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504 
1505 	/* last buffer page to remove */
1506 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 				list);
1508 	tmp_iter_page = first_page;
1509 
1510 	do {
1511 		to_remove_page = tmp_iter_page;
1512 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1513 
1514 		/* update the counters */
1515 		page_entries = rb_page_entries(to_remove_page);
1516 		if (page_entries) {
1517 			/*
1518 			 * If something was added to this page, it was full
1519 			 * since it is not the tail page. So we deduct the
1520 			 * bytes consumed in ring buffer from here.
1521 			 * Increment overrun to account for the lost events.
1522 			 */
1523 			local_add(page_entries, &cpu_buffer->overrun);
1524 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 		}
1526 
1527 		/*
1528 		 * We have already removed references to this list item, just
1529 		 * free up the buffer_page and its page
1530 		 */
1531 		free_buffer_page(to_remove_page);
1532 		nr_removed--;
1533 
1534 	} while (to_remove_page != last_page);
1535 
1536 	RB_WARN_ON(cpu_buffer, nr_removed);
1537 
1538 	return nr_removed == 0;
1539 }
1540 
1541 static int
1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1543 {
1544 	struct list_head *pages = &cpu_buffer->new_pages;
1545 	int retries, success;
1546 
1547 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1548 	/*
1549 	 * We are holding the reader lock, so the reader page won't be swapped
1550 	 * in the ring buffer. Now we are racing with the writer trying to
1551 	 * move head page and the tail page.
1552 	 * We are going to adapt the reader page update process where:
1553 	 * 1. We first splice the start and end of list of new pages between
1554 	 *    the head page and its previous page.
1555 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 	 *    start of new pages list.
1557 	 * 3. Finally, we update the head->prev to the end of new list.
1558 	 *
1559 	 * We will try this process 10 times, to make sure that we don't keep
1560 	 * spinning.
1561 	 */
1562 	retries = 10;
1563 	success = 0;
1564 	while (retries--) {
1565 		struct list_head *head_page, *prev_page, *r;
1566 		struct list_head *last_page, *first_page;
1567 		struct list_head *head_page_with_bit;
1568 
1569 		head_page = &rb_set_head_page(cpu_buffer)->list;
1570 		if (!head_page)
1571 			break;
1572 		prev_page = head_page->prev;
1573 
1574 		first_page = pages->next;
1575 		last_page  = pages->prev;
1576 
1577 		head_page_with_bit = (struct list_head *)
1578 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1579 
1580 		last_page->next = head_page_with_bit;
1581 		first_page->prev = prev_page;
1582 
1583 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584 
1585 		if (r == head_page_with_bit) {
1586 			/*
1587 			 * yay, we replaced the page pointer to our new list,
1588 			 * now, we just have to update to head page's prev
1589 			 * pointer to point to end of list
1590 			 */
1591 			head_page->prev = last_page;
1592 			success = 1;
1593 			break;
1594 		}
1595 	}
1596 
1597 	if (success)
1598 		INIT_LIST_HEAD(pages);
1599 	/*
1600 	 * If we weren't successful in adding in new pages, warn and stop
1601 	 * tracing
1602 	 */
1603 	RB_WARN_ON(cpu_buffer, !success);
1604 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1605 
1606 	/* free pages if they weren't inserted */
1607 	if (!success) {
1608 		struct buffer_page *bpage, *tmp;
1609 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 					 list) {
1611 			list_del_init(&bpage->list);
1612 			free_buffer_page(bpage);
1613 		}
1614 	}
1615 	return success;
1616 }
1617 
1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1619 {
1620 	int success;
1621 
1622 	if (cpu_buffer->nr_pages_to_update > 0)
1623 		success = rb_insert_pages(cpu_buffer);
1624 	else
1625 		success = rb_remove_pages(cpu_buffer,
1626 					-cpu_buffer->nr_pages_to_update);
1627 
1628 	if (success)
1629 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1630 }
1631 
1632 static void update_pages_handler(struct work_struct *work)
1633 {
1634 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 			struct ring_buffer_per_cpu, update_pages_work);
1636 	rb_update_pages(cpu_buffer);
1637 	complete(&cpu_buffer->update_done);
1638 }
1639 
1640 /**
1641  * ring_buffer_resize - resize the ring buffer
1642  * @buffer: the buffer to resize.
1643  * @size: the new size.
1644  * @cpu_id: the cpu buffer to resize
1645  *
1646  * Minimum size is 2 * BUF_PAGE_SIZE.
1647  *
1648  * Returns 0 on success and < 0 on failure.
1649  */
1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 			int cpu_id)
1652 {
1653 	struct ring_buffer_per_cpu *cpu_buffer;
1654 	unsigned nr_pages;
1655 	int cpu, err = 0;
1656 
1657 	/*
1658 	 * Always succeed at resizing a non-existent buffer:
1659 	 */
1660 	if (!buffer)
1661 		return size;
1662 
1663 	/* Make sure the requested buffer exists */
1664 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 		return size;
1667 
1668 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 	size *= BUF_PAGE_SIZE;
1670 
1671 	/* we need a minimum of two pages */
1672 	if (size < BUF_PAGE_SIZE * 2)
1673 		size = BUF_PAGE_SIZE * 2;
1674 
1675 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1676 
1677 	/*
1678 	 * Don't succeed if resizing is disabled, as a reader might be
1679 	 * manipulating the ring buffer and is expecting a sane state while
1680 	 * this is true.
1681 	 */
1682 	if (atomic_read(&buffer->resize_disabled))
1683 		return -EBUSY;
1684 
1685 	/* prevent another thread from changing buffer sizes */
1686 	mutex_lock(&buffer->mutex);
1687 
1688 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 		/* calculate the pages to update */
1690 		for_each_buffer_cpu(buffer, cpu) {
1691 			cpu_buffer = buffer->buffers[cpu];
1692 
1693 			cpu_buffer->nr_pages_to_update = nr_pages -
1694 							cpu_buffer->nr_pages;
1695 			/*
1696 			 * nothing more to do for removing pages or no update
1697 			 */
1698 			if (cpu_buffer->nr_pages_to_update <= 0)
1699 				continue;
1700 			/*
1701 			 * to add pages, make sure all new pages can be
1702 			 * allocated without receiving ENOMEM
1703 			 */
1704 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1706 						&cpu_buffer->new_pages, cpu)) {
1707 				/* not enough memory for new pages */
1708 				err = -ENOMEM;
1709 				goto out_err;
1710 			}
1711 		}
1712 
1713 		get_online_cpus();
1714 		/*
1715 		 * Fire off all the required work handlers
1716 		 * We can't schedule on offline CPUs, but it's not necessary
1717 		 * since we can change their buffer sizes without any race.
1718 		 */
1719 		for_each_buffer_cpu(buffer, cpu) {
1720 			cpu_buffer = buffer->buffers[cpu];
1721 			if (!cpu_buffer->nr_pages_to_update)
1722 				continue;
1723 
1724 			/* Can't run something on an offline CPU. */
1725 			if (!cpu_online(cpu)) {
1726 				rb_update_pages(cpu_buffer);
1727 				cpu_buffer->nr_pages_to_update = 0;
1728 			} else {
1729 				schedule_work_on(cpu,
1730 						&cpu_buffer->update_pages_work);
1731 			}
1732 		}
1733 
1734 		/* wait for all the updates to complete */
1735 		for_each_buffer_cpu(buffer, cpu) {
1736 			cpu_buffer = buffer->buffers[cpu];
1737 			if (!cpu_buffer->nr_pages_to_update)
1738 				continue;
1739 
1740 			if (cpu_online(cpu))
1741 				wait_for_completion(&cpu_buffer->update_done);
1742 			cpu_buffer->nr_pages_to_update = 0;
1743 		}
1744 
1745 		put_online_cpus();
1746 	} else {
1747 		/* Make sure this CPU has been intitialized */
1748 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 			goto out;
1750 
1751 		cpu_buffer = buffer->buffers[cpu_id];
1752 
1753 		if (nr_pages == cpu_buffer->nr_pages)
1754 			goto out;
1755 
1756 		cpu_buffer->nr_pages_to_update = nr_pages -
1757 						cpu_buffer->nr_pages;
1758 
1759 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 		if (cpu_buffer->nr_pages_to_update > 0 &&
1761 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1762 					    &cpu_buffer->new_pages, cpu_id)) {
1763 			err = -ENOMEM;
1764 			goto out_err;
1765 		}
1766 
1767 		get_online_cpus();
1768 
1769 		/* Can't run something on an offline CPU. */
1770 		if (!cpu_online(cpu_id))
1771 			rb_update_pages(cpu_buffer);
1772 		else {
1773 			schedule_work_on(cpu_id,
1774 					 &cpu_buffer->update_pages_work);
1775 			wait_for_completion(&cpu_buffer->update_done);
1776 		}
1777 
1778 		cpu_buffer->nr_pages_to_update = 0;
1779 		put_online_cpus();
1780 	}
1781 
1782  out:
1783 	/*
1784 	 * The ring buffer resize can happen with the ring buffer
1785 	 * enabled, so that the update disturbs the tracing as little
1786 	 * as possible. But if the buffer is disabled, we do not need
1787 	 * to worry about that, and we can take the time to verify
1788 	 * that the buffer is not corrupt.
1789 	 */
1790 	if (atomic_read(&buffer->record_disabled)) {
1791 		atomic_inc(&buffer->record_disabled);
1792 		/*
1793 		 * Even though the buffer was disabled, we must make sure
1794 		 * that it is truly disabled before calling rb_check_pages.
1795 		 * There could have been a race between checking
1796 		 * record_disable and incrementing it.
1797 		 */
1798 		synchronize_sched();
1799 		for_each_buffer_cpu(buffer, cpu) {
1800 			cpu_buffer = buffer->buffers[cpu];
1801 			rb_check_pages(cpu_buffer);
1802 		}
1803 		atomic_dec(&buffer->record_disabled);
1804 	}
1805 
1806 	mutex_unlock(&buffer->mutex);
1807 	return size;
1808 
1809  out_err:
1810 	for_each_buffer_cpu(buffer, cpu) {
1811 		struct buffer_page *bpage, *tmp;
1812 
1813 		cpu_buffer = buffer->buffers[cpu];
1814 		cpu_buffer->nr_pages_to_update = 0;
1815 
1816 		if (list_empty(&cpu_buffer->new_pages))
1817 			continue;
1818 
1819 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 					list) {
1821 			list_del_init(&bpage->list);
1822 			free_buffer_page(bpage);
1823 		}
1824 	}
1825 	mutex_unlock(&buffer->mutex);
1826 	return err;
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1829 
1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831 {
1832 	mutex_lock(&buffer->mutex);
1833 	if (val)
1834 		buffer->flags |= RB_FL_OVERWRITE;
1835 	else
1836 		buffer->flags &= ~RB_FL_OVERWRITE;
1837 	mutex_unlock(&buffer->mutex);
1838 }
1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840 
1841 static inline void *
1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1843 {
1844 	return bpage->data + index;
1845 }
1846 
1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1848 {
1849 	return bpage->page->data + index;
1850 }
1851 
1852 static inline struct ring_buffer_event *
1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855 	return __rb_page_index(cpu_buffer->reader_page,
1856 			       cpu_buffer->reader_page->read);
1857 }
1858 
1859 static inline struct ring_buffer_event *
1860 rb_iter_head_event(struct ring_buffer_iter *iter)
1861 {
1862 	return __rb_page_index(iter->head_page, iter->head);
1863 }
1864 
1865 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866 {
1867 	return local_read(&bpage->page->commit);
1868 }
1869 
1870 /* Size is determined by what has been committed */
1871 static inline unsigned rb_page_size(struct buffer_page *bpage)
1872 {
1873 	return rb_page_commit(bpage);
1874 }
1875 
1876 static inline unsigned
1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879 	return rb_page_commit(cpu_buffer->commit_page);
1880 }
1881 
1882 static inline unsigned
1883 rb_event_index(struct ring_buffer_event *event)
1884 {
1885 	unsigned long addr = (unsigned long)event;
1886 
1887 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1888 }
1889 
1890 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1891 {
1892 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1893 	cpu_buffer->reader_page->read = 0;
1894 }
1895 
1896 static void rb_inc_iter(struct ring_buffer_iter *iter)
1897 {
1898 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1899 
1900 	/*
1901 	 * The iterator could be on the reader page (it starts there).
1902 	 * But the head could have moved, since the reader was
1903 	 * found. Check for this case and assign the iterator
1904 	 * to the head page instead of next.
1905 	 */
1906 	if (iter->head_page == cpu_buffer->reader_page)
1907 		iter->head_page = rb_set_head_page(cpu_buffer);
1908 	else
1909 		rb_inc_page(cpu_buffer, &iter->head_page);
1910 
1911 	iter->read_stamp = iter->head_page->page->time_stamp;
1912 	iter->head = 0;
1913 }
1914 
1915 /*
1916  * rb_handle_head_page - writer hit the head page
1917  *
1918  * Returns: +1 to retry page
1919  *           0 to continue
1920  *          -1 on error
1921  */
1922 static int
1923 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1924 		    struct buffer_page *tail_page,
1925 		    struct buffer_page *next_page)
1926 {
1927 	struct buffer_page *new_head;
1928 	int entries;
1929 	int type;
1930 	int ret;
1931 
1932 	entries = rb_page_entries(next_page);
1933 
1934 	/*
1935 	 * The hard part is here. We need to move the head
1936 	 * forward, and protect against both readers on
1937 	 * other CPUs and writers coming in via interrupts.
1938 	 */
1939 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1940 				       RB_PAGE_HEAD);
1941 
1942 	/*
1943 	 * type can be one of four:
1944 	 *  NORMAL - an interrupt already moved it for us
1945 	 *  HEAD   - we are the first to get here.
1946 	 *  UPDATE - we are the interrupt interrupting
1947 	 *           a current move.
1948 	 *  MOVED  - a reader on another CPU moved the next
1949 	 *           pointer to its reader page. Give up
1950 	 *           and try again.
1951 	 */
1952 
1953 	switch (type) {
1954 	case RB_PAGE_HEAD:
1955 		/*
1956 		 * We changed the head to UPDATE, thus
1957 		 * it is our responsibility to update
1958 		 * the counters.
1959 		 */
1960 		local_add(entries, &cpu_buffer->overrun);
1961 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1962 
1963 		/*
1964 		 * The entries will be zeroed out when we move the
1965 		 * tail page.
1966 		 */
1967 
1968 		/* still more to do */
1969 		break;
1970 
1971 	case RB_PAGE_UPDATE:
1972 		/*
1973 		 * This is an interrupt that interrupt the
1974 		 * previous update. Still more to do.
1975 		 */
1976 		break;
1977 	case RB_PAGE_NORMAL:
1978 		/*
1979 		 * An interrupt came in before the update
1980 		 * and processed this for us.
1981 		 * Nothing left to do.
1982 		 */
1983 		return 1;
1984 	case RB_PAGE_MOVED:
1985 		/*
1986 		 * The reader is on another CPU and just did
1987 		 * a swap with our next_page.
1988 		 * Try again.
1989 		 */
1990 		return 1;
1991 	default:
1992 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1993 		return -1;
1994 	}
1995 
1996 	/*
1997 	 * Now that we are here, the old head pointer is
1998 	 * set to UPDATE. This will keep the reader from
1999 	 * swapping the head page with the reader page.
2000 	 * The reader (on another CPU) will spin till
2001 	 * we are finished.
2002 	 *
2003 	 * We just need to protect against interrupts
2004 	 * doing the job. We will set the next pointer
2005 	 * to HEAD. After that, we set the old pointer
2006 	 * to NORMAL, but only if it was HEAD before.
2007 	 * otherwise we are an interrupt, and only
2008 	 * want the outer most commit to reset it.
2009 	 */
2010 	new_head = next_page;
2011 	rb_inc_page(cpu_buffer, &new_head);
2012 
2013 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2014 				    RB_PAGE_NORMAL);
2015 
2016 	/*
2017 	 * Valid returns are:
2018 	 *  HEAD   - an interrupt came in and already set it.
2019 	 *  NORMAL - One of two things:
2020 	 *            1) We really set it.
2021 	 *            2) A bunch of interrupts came in and moved
2022 	 *               the page forward again.
2023 	 */
2024 	switch (ret) {
2025 	case RB_PAGE_HEAD:
2026 	case RB_PAGE_NORMAL:
2027 		/* OK */
2028 		break;
2029 	default:
2030 		RB_WARN_ON(cpu_buffer, 1);
2031 		return -1;
2032 	}
2033 
2034 	/*
2035 	 * It is possible that an interrupt came in,
2036 	 * set the head up, then more interrupts came in
2037 	 * and moved it again. When we get back here,
2038 	 * the page would have been set to NORMAL but we
2039 	 * just set it back to HEAD.
2040 	 *
2041 	 * How do you detect this? Well, if that happened
2042 	 * the tail page would have moved.
2043 	 */
2044 	if (ret == RB_PAGE_NORMAL) {
2045 		/*
2046 		 * If the tail had moved passed next, then we need
2047 		 * to reset the pointer.
2048 		 */
2049 		if (cpu_buffer->tail_page != tail_page &&
2050 		    cpu_buffer->tail_page != next_page)
2051 			rb_head_page_set_normal(cpu_buffer, new_head,
2052 						next_page,
2053 						RB_PAGE_HEAD);
2054 	}
2055 
2056 	/*
2057 	 * If this was the outer most commit (the one that
2058 	 * changed the original pointer from HEAD to UPDATE),
2059 	 * then it is up to us to reset it to NORMAL.
2060 	 */
2061 	if (type == RB_PAGE_HEAD) {
2062 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2063 					      tail_page,
2064 					      RB_PAGE_UPDATE);
2065 		if (RB_WARN_ON(cpu_buffer,
2066 			       ret != RB_PAGE_UPDATE))
2067 			return -1;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static inline void
2074 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2075 	      unsigned long tail, struct rb_event_info *info)
2076 {
2077 	struct buffer_page *tail_page = info->tail_page;
2078 	struct ring_buffer_event *event;
2079 	unsigned long length = info->length;
2080 
2081 	/*
2082 	 * Only the event that crossed the page boundary
2083 	 * must fill the old tail_page with padding.
2084 	 */
2085 	if (tail >= BUF_PAGE_SIZE) {
2086 		/*
2087 		 * If the page was filled, then we still need
2088 		 * to update the real_end. Reset it to zero
2089 		 * and the reader will ignore it.
2090 		 */
2091 		if (tail == BUF_PAGE_SIZE)
2092 			tail_page->real_end = 0;
2093 
2094 		local_sub(length, &tail_page->write);
2095 		return;
2096 	}
2097 
2098 	event = __rb_page_index(tail_page, tail);
2099 	kmemcheck_annotate_bitfield(event, bitfield);
2100 
2101 	/* account for padding bytes */
2102 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2103 
2104 	/*
2105 	 * Save the original length to the meta data.
2106 	 * This will be used by the reader to add lost event
2107 	 * counter.
2108 	 */
2109 	tail_page->real_end = tail;
2110 
2111 	/*
2112 	 * If this event is bigger than the minimum size, then
2113 	 * we need to be careful that we don't subtract the
2114 	 * write counter enough to allow another writer to slip
2115 	 * in on this page.
2116 	 * We put in a discarded commit instead, to make sure
2117 	 * that this space is not used again.
2118 	 *
2119 	 * If we are less than the minimum size, we don't need to
2120 	 * worry about it.
2121 	 */
2122 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2123 		/* No room for any events */
2124 
2125 		/* Mark the rest of the page with padding */
2126 		rb_event_set_padding(event);
2127 
2128 		/* Set the write back to the previous setting */
2129 		local_sub(length, &tail_page->write);
2130 		return;
2131 	}
2132 
2133 	/* Put in a discarded event */
2134 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2135 	event->type_len = RINGBUF_TYPE_PADDING;
2136 	/* time delta must be non zero */
2137 	event->time_delta = 1;
2138 
2139 	/* Set write to end of buffer */
2140 	length = (tail + length) - BUF_PAGE_SIZE;
2141 	local_sub(length, &tail_page->write);
2142 }
2143 
2144 /*
2145  * This is the slow path, force gcc not to inline it.
2146  */
2147 static noinline struct ring_buffer_event *
2148 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2149 	     unsigned long tail, struct rb_event_info *info)
2150 {
2151 	struct buffer_page *tail_page = info->tail_page;
2152 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2153 	struct ring_buffer *buffer = cpu_buffer->buffer;
2154 	struct buffer_page *next_page;
2155 	int ret;
2156 	u64 ts;
2157 
2158 	next_page = tail_page;
2159 
2160 	rb_inc_page(cpu_buffer, &next_page);
2161 
2162 	/*
2163 	 * If for some reason, we had an interrupt storm that made
2164 	 * it all the way around the buffer, bail, and warn
2165 	 * about it.
2166 	 */
2167 	if (unlikely(next_page == commit_page)) {
2168 		local_inc(&cpu_buffer->commit_overrun);
2169 		goto out_reset;
2170 	}
2171 
2172 	/*
2173 	 * This is where the fun begins!
2174 	 *
2175 	 * We are fighting against races between a reader that
2176 	 * could be on another CPU trying to swap its reader
2177 	 * page with the buffer head.
2178 	 *
2179 	 * We are also fighting against interrupts coming in and
2180 	 * moving the head or tail on us as well.
2181 	 *
2182 	 * If the next page is the head page then we have filled
2183 	 * the buffer, unless the commit page is still on the
2184 	 * reader page.
2185 	 */
2186 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2187 
2188 		/*
2189 		 * If the commit is not on the reader page, then
2190 		 * move the header page.
2191 		 */
2192 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2193 			/*
2194 			 * If we are not in overwrite mode,
2195 			 * this is easy, just stop here.
2196 			 */
2197 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2198 				local_inc(&cpu_buffer->dropped_events);
2199 				goto out_reset;
2200 			}
2201 
2202 			ret = rb_handle_head_page(cpu_buffer,
2203 						  tail_page,
2204 						  next_page);
2205 			if (ret < 0)
2206 				goto out_reset;
2207 			if (ret)
2208 				goto out_again;
2209 		} else {
2210 			/*
2211 			 * We need to be careful here too. The
2212 			 * commit page could still be on the reader
2213 			 * page. We could have a small buffer, and
2214 			 * have filled up the buffer with events
2215 			 * from interrupts and such, and wrapped.
2216 			 *
2217 			 * Note, if the tail page is also the on the
2218 			 * reader_page, we let it move out.
2219 			 */
2220 			if (unlikely((cpu_buffer->commit_page !=
2221 				      cpu_buffer->tail_page) &&
2222 				     (cpu_buffer->commit_page ==
2223 				      cpu_buffer->reader_page))) {
2224 				local_inc(&cpu_buffer->commit_overrun);
2225 				goto out_reset;
2226 			}
2227 		}
2228 	}
2229 
2230 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2231 	if (ret) {
2232 		/*
2233 		 * Nested commits always have zero deltas, so
2234 		 * just reread the time stamp
2235 		 */
2236 		ts = rb_time_stamp(buffer);
2237 		next_page->page->time_stamp = ts;
2238 	}
2239 
2240  out_again:
2241 
2242 	rb_reset_tail(cpu_buffer, tail, info);
2243 
2244 	/* fail and let the caller try again */
2245 	return ERR_PTR(-EAGAIN);
2246 
2247  out_reset:
2248 	/* reset write */
2249 	rb_reset_tail(cpu_buffer, tail, info);
2250 
2251 	return NULL;
2252 }
2253 
2254 /* Slow path, do not inline */
2255 static noinline struct ring_buffer_event *
2256 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2257 {
2258 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2259 
2260 	/* Not the first event on the page? */
2261 	if (rb_event_index(event)) {
2262 		event->time_delta = delta & TS_MASK;
2263 		event->array[0] = delta >> TS_SHIFT;
2264 	} else {
2265 		/* nope, just zero it */
2266 		event->time_delta = 0;
2267 		event->array[0] = 0;
2268 	}
2269 
2270 	return skip_time_extend(event);
2271 }
2272 
2273 static inline int rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2274 				     struct ring_buffer_event *event);
2275 
2276 /**
2277  * rb_update_event - update event type and data
2278  * @event: the event to update
2279  * @type: the type of event
2280  * @length: the size of the event field in the ring buffer
2281  *
2282  * Update the type and data fields of the event. The length
2283  * is the actual size that is written to the ring buffer,
2284  * and with this, we can determine what to place into the
2285  * data field.
2286  */
2287 static void
2288 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2289 		struct ring_buffer_event *event,
2290 		struct rb_event_info *info)
2291 {
2292 	unsigned length = info->length;
2293 	u64 delta = info->delta;
2294 
2295 	/* Only a commit updates the timestamp */
2296 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2297 		delta = 0;
2298 
2299 	/*
2300 	 * If we need to add a timestamp, then we
2301 	 * add it to the start of the resevered space.
2302 	 */
2303 	if (unlikely(info->add_timestamp)) {
2304 		event = rb_add_time_stamp(event, delta);
2305 		length -= RB_LEN_TIME_EXTEND;
2306 		delta = 0;
2307 	}
2308 
2309 	event->time_delta = delta;
2310 	length -= RB_EVNT_HDR_SIZE;
2311 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2312 		event->type_len = 0;
2313 		event->array[0] = length;
2314 	} else
2315 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2316 }
2317 
2318 static unsigned rb_calculate_event_length(unsigned length)
2319 {
2320 	struct ring_buffer_event event; /* Used only for sizeof array */
2321 
2322 	/* zero length can cause confusions */
2323 	if (!length)
2324 		length++;
2325 
2326 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2327 		length += sizeof(event.array[0]);
2328 
2329 	length += RB_EVNT_HDR_SIZE;
2330 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2331 
2332 	/*
2333 	 * In case the time delta is larger than the 27 bits for it
2334 	 * in the header, we need to add a timestamp. If another
2335 	 * event comes in when trying to discard this one to increase
2336 	 * the length, then the timestamp will be added in the allocated
2337 	 * space of this event. If length is bigger than the size needed
2338 	 * for the TIME_EXTEND, then padding has to be used. The events
2339 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2340 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2341 	 * As length is a multiple of 4, we only need to worry if it
2342 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2343 	 */
2344 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2345 		length += RB_ALIGNMENT;
2346 
2347 	return length;
2348 }
2349 
2350 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2351 static inline bool sched_clock_stable(void)
2352 {
2353 	return true;
2354 }
2355 #endif
2356 
2357 static inline int
2358 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2359 		  struct ring_buffer_event *event)
2360 {
2361 	unsigned long new_index, old_index;
2362 	struct buffer_page *bpage;
2363 	unsigned long index;
2364 	unsigned long addr;
2365 
2366 	new_index = rb_event_index(event);
2367 	old_index = new_index + rb_event_ts_length(event);
2368 	addr = (unsigned long)event;
2369 	addr &= PAGE_MASK;
2370 
2371 	bpage = cpu_buffer->tail_page;
2372 
2373 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2374 		unsigned long write_mask =
2375 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2376 		unsigned long event_length = rb_event_length(event);
2377 		/*
2378 		 * This is on the tail page. It is possible that
2379 		 * a write could come in and move the tail page
2380 		 * and write to the next page. That is fine
2381 		 * because we just shorten what is on this page.
2382 		 */
2383 		old_index += write_mask;
2384 		new_index += write_mask;
2385 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2386 		if (index == old_index) {
2387 			/* update counters */
2388 			local_sub(event_length, &cpu_buffer->entries_bytes);
2389 			return 1;
2390 		}
2391 	}
2392 
2393 	/* could not discard */
2394 	return 0;
2395 }
2396 
2397 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2398 {
2399 	local_inc(&cpu_buffer->committing);
2400 	local_inc(&cpu_buffer->commits);
2401 }
2402 
2403 static void
2404 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2405 {
2406 	unsigned long max_count;
2407 
2408 	/*
2409 	 * We only race with interrupts and NMIs on this CPU.
2410 	 * If we own the commit event, then we can commit
2411 	 * all others that interrupted us, since the interruptions
2412 	 * are in stack format (they finish before they come
2413 	 * back to us). This allows us to do a simple loop to
2414 	 * assign the commit to the tail.
2415 	 */
2416  again:
2417 	max_count = cpu_buffer->nr_pages * 100;
2418 
2419 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2420 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2421 			return;
2422 		if (RB_WARN_ON(cpu_buffer,
2423 			       rb_is_reader_page(cpu_buffer->tail_page)))
2424 			return;
2425 		local_set(&cpu_buffer->commit_page->page->commit,
2426 			  rb_page_write(cpu_buffer->commit_page));
2427 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2428 		cpu_buffer->write_stamp =
2429 			cpu_buffer->commit_page->page->time_stamp;
2430 		/* add barrier to keep gcc from optimizing too much */
2431 		barrier();
2432 	}
2433 	while (rb_commit_index(cpu_buffer) !=
2434 	       rb_page_write(cpu_buffer->commit_page)) {
2435 
2436 		local_set(&cpu_buffer->commit_page->page->commit,
2437 			  rb_page_write(cpu_buffer->commit_page));
2438 		RB_WARN_ON(cpu_buffer,
2439 			   local_read(&cpu_buffer->commit_page->page->commit) &
2440 			   ~RB_WRITE_MASK);
2441 		barrier();
2442 	}
2443 
2444 	/* again, keep gcc from optimizing */
2445 	barrier();
2446 
2447 	/*
2448 	 * If an interrupt came in just after the first while loop
2449 	 * and pushed the tail page forward, we will be left with
2450 	 * a dangling commit that will never go forward.
2451 	 */
2452 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2453 		goto again;
2454 }
2455 
2456 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2457 {
2458 	unsigned long commits;
2459 
2460 	if (RB_WARN_ON(cpu_buffer,
2461 		       !local_read(&cpu_buffer->committing)))
2462 		return;
2463 
2464  again:
2465 	commits = local_read(&cpu_buffer->commits);
2466 	/* synchronize with interrupts */
2467 	barrier();
2468 	if (local_read(&cpu_buffer->committing) == 1)
2469 		rb_set_commit_to_write(cpu_buffer);
2470 
2471 	local_dec(&cpu_buffer->committing);
2472 
2473 	/* synchronize with interrupts */
2474 	barrier();
2475 
2476 	/*
2477 	 * Need to account for interrupts coming in between the
2478 	 * updating of the commit page and the clearing of the
2479 	 * committing counter.
2480 	 */
2481 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2482 	    !local_read(&cpu_buffer->committing)) {
2483 		local_inc(&cpu_buffer->committing);
2484 		goto again;
2485 	}
2486 }
2487 
2488 static inline void rb_event_discard(struct ring_buffer_event *event)
2489 {
2490 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2491 		event = skip_time_extend(event);
2492 
2493 	/* array[0] holds the actual length for the discarded event */
2494 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2495 	event->type_len = RINGBUF_TYPE_PADDING;
2496 	/* time delta must be non zero */
2497 	if (!event->time_delta)
2498 		event->time_delta = 1;
2499 }
2500 
2501 static inline int
2502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503 		   struct ring_buffer_event *event)
2504 {
2505 	unsigned long addr = (unsigned long)event;
2506 	unsigned long index;
2507 
2508 	index = rb_event_index(event);
2509 	addr &= PAGE_MASK;
2510 
2511 	return cpu_buffer->commit_page->page == (void *)addr &&
2512 		rb_commit_index(cpu_buffer) == index;
2513 }
2514 
2515 static void
2516 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2517 		      struct ring_buffer_event *event)
2518 {
2519 	u64 delta;
2520 
2521 	/*
2522 	 * The event first in the commit queue updates the
2523 	 * time stamp.
2524 	 */
2525 	if (rb_event_is_commit(cpu_buffer, event)) {
2526 		/*
2527 		 * A commit event that is first on a page
2528 		 * updates the write timestamp with the page stamp
2529 		 */
2530 		if (!rb_event_index(event))
2531 			cpu_buffer->write_stamp =
2532 				cpu_buffer->commit_page->page->time_stamp;
2533 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2534 			delta = event->array[0];
2535 			delta <<= TS_SHIFT;
2536 			delta += event->time_delta;
2537 			cpu_buffer->write_stamp += delta;
2538 		} else
2539 			cpu_buffer->write_stamp += event->time_delta;
2540 	}
2541 }
2542 
2543 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2544 		      struct ring_buffer_event *event)
2545 {
2546 	local_inc(&cpu_buffer->entries);
2547 	rb_update_write_stamp(cpu_buffer, event);
2548 	rb_end_commit(cpu_buffer);
2549 }
2550 
2551 static __always_inline void
2552 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2553 {
2554 	bool pagebusy;
2555 
2556 	if (buffer->irq_work.waiters_pending) {
2557 		buffer->irq_work.waiters_pending = false;
2558 		/* irq_work_queue() supplies it's own memory barriers */
2559 		irq_work_queue(&buffer->irq_work.work);
2560 	}
2561 
2562 	if (cpu_buffer->irq_work.waiters_pending) {
2563 		cpu_buffer->irq_work.waiters_pending = false;
2564 		/* irq_work_queue() supplies it's own memory barriers */
2565 		irq_work_queue(&cpu_buffer->irq_work.work);
2566 	}
2567 
2568 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2569 
2570 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2571 		cpu_buffer->irq_work.wakeup_full = true;
2572 		cpu_buffer->irq_work.full_waiters_pending = false;
2573 		/* irq_work_queue() supplies it's own memory barriers */
2574 		irq_work_queue(&cpu_buffer->irq_work.work);
2575 	}
2576 }
2577 
2578 /*
2579  * The lock and unlock are done within a preempt disable section.
2580  * The current_context per_cpu variable can only be modified
2581  * by the current task between lock and unlock. But it can
2582  * be modified more than once via an interrupt. To pass this
2583  * information from the lock to the unlock without having to
2584  * access the 'in_interrupt()' functions again (which do show
2585  * a bit of overhead in something as critical as function tracing,
2586  * we use a bitmask trick.
2587  *
2588  *  bit 0 =  NMI context
2589  *  bit 1 =  IRQ context
2590  *  bit 2 =  SoftIRQ context
2591  *  bit 3 =  normal context.
2592  *
2593  * This works because this is the order of contexts that can
2594  * preempt other contexts. A SoftIRQ never preempts an IRQ
2595  * context.
2596  *
2597  * When the context is determined, the corresponding bit is
2598  * checked and set (if it was set, then a recursion of that context
2599  * happened).
2600  *
2601  * On unlock, we need to clear this bit. To do so, just subtract
2602  * 1 from the current_context and AND it to itself.
2603  *
2604  * (binary)
2605  *  101 - 1 = 100
2606  *  101 & 100 = 100 (clearing bit zero)
2607  *
2608  *  1010 - 1 = 1001
2609  *  1010 & 1001 = 1000 (clearing bit 1)
2610  *
2611  * The least significant bit can be cleared this way, and it
2612  * just so happens that it is the same bit corresponding to
2613  * the current context.
2614  */
2615 
2616 static __always_inline int
2617 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2618 {
2619 	unsigned int val = cpu_buffer->current_context;
2620 	int bit;
2621 
2622 	if (in_interrupt()) {
2623 		if (in_nmi())
2624 			bit = RB_CTX_NMI;
2625 		else if (in_irq())
2626 			bit = RB_CTX_IRQ;
2627 		else
2628 			bit = RB_CTX_SOFTIRQ;
2629 	} else
2630 		bit = RB_CTX_NORMAL;
2631 
2632 	if (unlikely(val & (1 << bit)))
2633 		return 1;
2634 
2635 	val |= (1 << bit);
2636 	cpu_buffer->current_context = val;
2637 
2638 	return 0;
2639 }
2640 
2641 static __always_inline void
2642 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2643 {
2644 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2645 }
2646 
2647 /**
2648  * ring_buffer_unlock_commit - commit a reserved
2649  * @buffer: The buffer to commit to
2650  * @event: The event pointer to commit.
2651  *
2652  * This commits the data to the ring buffer, and releases any locks held.
2653  *
2654  * Must be paired with ring_buffer_lock_reserve.
2655  */
2656 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2657 			      struct ring_buffer_event *event)
2658 {
2659 	struct ring_buffer_per_cpu *cpu_buffer;
2660 	int cpu = raw_smp_processor_id();
2661 
2662 	cpu_buffer = buffer->buffers[cpu];
2663 
2664 	rb_commit(cpu_buffer, event);
2665 
2666 	rb_wakeups(buffer, cpu_buffer);
2667 
2668 	trace_recursive_unlock(cpu_buffer);
2669 
2670 	preempt_enable_notrace();
2671 
2672 	return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2675 
2676 static noinline void
2677 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2678 		    struct rb_event_info *info)
2679 {
2680 	WARN_ONCE(info->delta > (1ULL << 59),
2681 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2682 		  (unsigned long long)info->delta,
2683 		  (unsigned long long)info->ts,
2684 		  (unsigned long long)cpu_buffer->write_stamp,
2685 		  sched_clock_stable() ? "" :
2686 		  "If you just came from a suspend/resume,\n"
2687 		  "please switch to the trace global clock:\n"
2688 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2689 	info->add_timestamp = 1;
2690 }
2691 
2692 static struct ring_buffer_event *
2693 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2694 		  struct rb_event_info *info)
2695 {
2696 	struct ring_buffer_event *event;
2697 	struct buffer_page *tail_page;
2698 	unsigned long tail, write;
2699 
2700 	/*
2701 	 * If the time delta since the last event is too big to
2702 	 * hold in the time field of the event, then we append a
2703 	 * TIME EXTEND event ahead of the data event.
2704 	 */
2705 	if (unlikely(info->add_timestamp))
2706 		info->length += RB_LEN_TIME_EXTEND;
2707 
2708 	tail_page = info->tail_page = cpu_buffer->tail_page;
2709 	write = local_add_return(info->length, &tail_page->write);
2710 
2711 	/* set write to only the index of the write */
2712 	write &= RB_WRITE_MASK;
2713 	tail = write - info->length;
2714 
2715 	/*
2716 	 * If this is the first commit on the page, then it has the same
2717 	 * timestamp as the page itself.
2718 	 */
2719 	if (!tail)
2720 		info->delta = 0;
2721 
2722 	/* See if we shot pass the end of this buffer page */
2723 	if (unlikely(write > BUF_PAGE_SIZE))
2724 		return rb_move_tail(cpu_buffer, tail, info);
2725 
2726 	/* We reserved something on the buffer */
2727 
2728 	event = __rb_page_index(tail_page, tail);
2729 	kmemcheck_annotate_bitfield(event, bitfield);
2730 	rb_update_event(cpu_buffer, event, info);
2731 
2732 	local_inc(&tail_page->entries);
2733 
2734 	/*
2735 	 * If this is the first commit on the page, then update
2736 	 * its timestamp.
2737 	 */
2738 	if (!tail)
2739 		tail_page->page->time_stamp = info->ts;
2740 
2741 	/* account for these added bytes */
2742 	local_add(info->length, &cpu_buffer->entries_bytes);
2743 
2744 	return event;
2745 }
2746 
2747 static struct ring_buffer_event *
2748 rb_reserve_next_event(struct ring_buffer *buffer,
2749 		      struct ring_buffer_per_cpu *cpu_buffer,
2750 		      unsigned long length)
2751 {
2752 	struct ring_buffer_event *event;
2753 	struct rb_event_info info;
2754 	int nr_loops = 0;
2755 	u64 diff;
2756 
2757 	rb_start_commit(cpu_buffer);
2758 
2759 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2760 	/*
2761 	 * Due to the ability to swap a cpu buffer from a buffer
2762 	 * it is possible it was swapped before we committed.
2763 	 * (committing stops a swap). We check for it here and
2764 	 * if it happened, we have to fail the write.
2765 	 */
2766 	barrier();
2767 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2768 		local_dec(&cpu_buffer->committing);
2769 		local_dec(&cpu_buffer->commits);
2770 		return NULL;
2771 	}
2772 #endif
2773 
2774 	info.length = rb_calculate_event_length(length);
2775  again:
2776 	info.add_timestamp = 0;
2777 	info.delta = 0;
2778 
2779 	/*
2780 	 * We allow for interrupts to reenter here and do a trace.
2781 	 * If one does, it will cause this original code to loop
2782 	 * back here. Even with heavy interrupts happening, this
2783 	 * should only happen a few times in a row. If this happens
2784 	 * 1000 times in a row, there must be either an interrupt
2785 	 * storm or we have something buggy.
2786 	 * Bail!
2787 	 */
2788 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2789 		goto out_fail;
2790 
2791 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2792 	diff = info.ts - cpu_buffer->write_stamp;
2793 
2794 	/* make sure this diff is calculated here */
2795 	barrier();
2796 
2797 	/* Did the write stamp get updated already? */
2798 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2799 		info.delta = diff;
2800 		if (unlikely(test_time_stamp(info.delta)))
2801 			rb_handle_timestamp(cpu_buffer, &info);
2802 	}
2803 
2804 	event = __rb_reserve_next(cpu_buffer, &info);
2805 
2806 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2807 		goto again;
2808 
2809 	if (!event)
2810 		goto out_fail;
2811 
2812 	return event;
2813 
2814  out_fail:
2815 	rb_end_commit(cpu_buffer);
2816 	return NULL;
2817 }
2818 
2819 /**
2820  * ring_buffer_lock_reserve - reserve a part of the buffer
2821  * @buffer: the ring buffer to reserve from
2822  * @length: the length of the data to reserve (excluding event header)
2823  *
2824  * Returns a reseverd event on the ring buffer to copy directly to.
2825  * The user of this interface will need to get the body to write into
2826  * and can use the ring_buffer_event_data() interface.
2827  *
2828  * The length is the length of the data needed, not the event length
2829  * which also includes the event header.
2830  *
2831  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2832  * If NULL is returned, then nothing has been allocated or locked.
2833  */
2834 struct ring_buffer_event *
2835 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2836 {
2837 	struct ring_buffer_per_cpu *cpu_buffer;
2838 	struct ring_buffer_event *event;
2839 	int cpu;
2840 
2841 	/* If we are tracing schedule, we don't want to recurse */
2842 	preempt_disable_notrace();
2843 
2844 	if (unlikely(atomic_read(&buffer->record_disabled)))
2845 		goto out;
2846 
2847 	cpu = raw_smp_processor_id();
2848 
2849 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2850 		goto out;
2851 
2852 	cpu_buffer = buffer->buffers[cpu];
2853 
2854 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2855 		goto out;
2856 
2857 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2858 		goto out;
2859 
2860 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2861 		goto out;
2862 
2863 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2864 	if (!event)
2865 		goto out_unlock;
2866 
2867 	return event;
2868 
2869  out_unlock:
2870 	trace_recursive_unlock(cpu_buffer);
2871  out:
2872 	preempt_enable_notrace();
2873 	return NULL;
2874 }
2875 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2876 
2877 /*
2878  * Decrement the entries to the page that an event is on.
2879  * The event does not even need to exist, only the pointer
2880  * to the page it is on. This may only be called before the commit
2881  * takes place.
2882  */
2883 static inline void
2884 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2885 		   struct ring_buffer_event *event)
2886 {
2887 	unsigned long addr = (unsigned long)event;
2888 	struct buffer_page *bpage = cpu_buffer->commit_page;
2889 	struct buffer_page *start;
2890 
2891 	addr &= PAGE_MASK;
2892 
2893 	/* Do the likely case first */
2894 	if (likely(bpage->page == (void *)addr)) {
2895 		local_dec(&bpage->entries);
2896 		return;
2897 	}
2898 
2899 	/*
2900 	 * Because the commit page may be on the reader page we
2901 	 * start with the next page and check the end loop there.
2902 	 */
2903 	rb_inc_page(cpu_buffer, &bpage);
2904 	start = bpage;
2905 	do {
2906 		if (bpage->page == (void *)addr) {
2907 			local_dec(&bpage->entries);
2908 			return;
2909 		}
2910 		rb_inc_page(cpu_buffer, &bpage);
2911 	} while (bpage != start);
2912 
2913 	/* commit not part of this buffer?? */
2914 	RB_WARN_ON(cpu_buffer, 1);
2915 }
2916 
2917 /**
2918  * ring_buffer_commit_discard - discard an event that has not been committed
2919  * @buffer: the ring buffer
2920  * @event: non committed event to discard
2921  *
2922  * Sometimes an event that is in the ring buffer needs to be ignored.
2923  * This function lets the user discard an event in the ring buffer
2924  * and then that event will not be read later.
2925  *
2926  * This function only works if it is called before the the item has been
2927  * committed. It will try to free the event from the ring buffer
2928  * if another event has not been added behind it.
2929  *
2930  * If another event has been added behind it, it will set the event
2931  * up as discarded, and perform the commit.
2932  *
2933  * If this function is called, do not call ring_buffer_unlock_commit on
2934  * the event.
2935  */
2936 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2937 				struct ring_buffer_event *event)
2938 {
2939 	struct ring_buffer_per_cpu *cpu_buffer;
2940 	int cpu;
2941 
2942 	/* The event is discarded regardless */
2943 	rb_event_discard(event);
2944 
2945 	cpu = smp_processor_id();
2946 	cpu_buffer = buffer->buffers[cpu];
2947 
2948 	/*
2949 	 * This must only be called if the event has not been
2950 	 * committed yet. Thus we can assume that preemption
2951 	 * is still disabled.
2952 	 */
2953 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2954 
2955 	rb_decrement_entry(cpu_buffer, event);
2956 	if (rb_try_to_discard(cpu_buffer, event))
2957 		goto out;
2958 
2959 	/*
2960 	 * The commit is still visible by the reader, so we
2961 	 * must still update the timestamp.
2962 	 */
2963 	rb_update_write_stamp(cpu_buffer, event);
2964  out:
2965 	rb_end_commit(cpu_buffer);
2966 
2967 	trace_recursive_unlock(cpu_buffer);
2968 
2969 	preempt_enable_notrace();
2970 
2971 }
2972 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2973 
2974 /**
2975  * ring_buffer_write - write data to the buffer without reserving
2976  * @buffer: The ring buffer to write to.
2977  * @length: The length of the data being written (excluding the event header)
2978  * @data: The data to write to the buffer.
2979  *
2980  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2981  * one function. If you already have the data to write to the buffer, it
2982  * may be easier to simply call this function.
2983  *
2984  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2985  * and not the length of the event which would hold the header.
2986  */
2987 int ring_buffer_write(struct ring_buffer *buffer,
2988 		      unsigned long length,
2989 		      void *data)
2990 {
2991 	struct ring_buffer_per_cpu *cpu_buffer;
2992 	struct ring_buffer_event *event;
2993 	void *body;
2994 	int ret = -EBUSY;
2995 	int cpu;
2996 
2997 	preempt_disable_notrace();
2998 
2999 	if (atomic_read(&buffer->record_disabled))
3000 		goto out;
3001 
3002 	cpu = raw_smp_processor_id();
3003 
3004 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3005 		goto out;
3006 
3007 	cpu_buffer = buffer->buffers[cpu];
3008 
3009 	if (atomic_read(&cpu_buffer->record_disabled))
3010 		goto out;
3011 
3012 	if (length > BUF_MAX_DATA_SIZE)
3013 		goto out;
3014 
3015 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3016 		goto out;
3017 
3018 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3019 	if (!event)
3020 		goto out_unlock;
3021 
3022 	body = rb_event_data(event);
3023 
3024 	memcpy(body, data, length);
3025 
3026 	rb_commit(cpu_buffer, event);
3027 
3028 	rb_wakeups(buffer, cpu_buffer);
3029 
3030 	ret = 0;
3031 
3032  out_unlock:
3033 	trace_recursive_unlock(cpu_buffer);
3034 
3035  out:
3036 	preempt_enable_notrace();
3037 
3038 	return ret;
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_write);
3041 
3042 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3043 {
3044 	struct buffer_page *reader = cpu_buffer->reader_page;
3045 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3046 	struct buffer_page *commit = cpu_buffer->commit_page;
3047 
3048 	/* In case of error, head will be NULL */
3049 	if (unlikely(!head))
3050 		return 1;
3051 
3052 	return reader->read == rb_page_commit(reader) &&
3053 		(commit == reader ||
3054 		 (commit == head &&
3055 		  head->read == rb_page_commit(commit)));
3056 }
3057 
3058 /**
3059  * ring_buffer_record_disable - stop all writes into the buffer
3060  * @buffer: The ring buffer to stop writes to.
3061  *
3062  * This prevents all writes to the buffer. Any attempt to write
3063  * to the buffer after this will fail and return NULL.
3064  *
3065  * The caller should call synchronize_sched() after this.
3066  */
3067 void ring_buffer_record_disable(struct ring_buffer *buffer)
3068 {
3069 	atomic_inc(&buffer->record_disabled);
3070 }
3071 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3072 
3073 /**
3074  * ring_buffer_record_enable - enable writes to the buffer
3075  * @buffer: The ring buffer to enable writes
3076  *
3077  * Note, multiple disables will need the same number of enables
3078  * to truly enable the writing (much like preempt_disable).
3079  */
3080 void ring_buffer_record_enable(struct ring_buffer *buffer)
3081 {
3082 	atomic_dec(&buffer->record_disabled);
3083 }
3084 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3085 
3086 /**
3087  * ring_buffer_record_off - stop all writes into the buffer
3088  * @buffer: The ring buffer to stop writes to.
3089  *
3090  * This prevents all writes to the buffer. Any attempt to write
3091  * to the buffer after this will fail and return NULL.
3092  *
3093  * This is different than ring_buffer_record_disable() as
3094  * it works like an on/off switch, where as the disable() version
3095  * must be paired with a enable().
3096  */
3097 void ring_buffer_record_off(struct ring_buffer *buffer)
3098 {
3099 	unsigned int rd;
3100 	unsigned int new_rd;
3101 
3102 	do {
3103 		rd = atomic_read(&buffer->record_disabled);
3104 		new_rd = rd | RB_BUFFER_OFF;
3105 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3106 }
3107 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3108 
3109 /**
3110  * ring_buffer_record_on - restart writes into the buffer
3111  * @buffer: The ring buffer to start writes to.
3112  *
3113  * This enables all writes to the buffer that was disabled by
3114  * ring_buffer_record_off().
3115  *
3116  * This is different than ring_buffer_record_enable() as
3117  * it works like an on/off switch, where as the enable() version
3118  * must be paired with a disable().
3119  */
3120 void ring_buffer_record_on(struct ring_buffer *buffer)
3121 {
3122 	unsigned int rd;
3123 	unsigned int new_rd;
3124 
3125 	do {
3126 		rd = atomic_read(&buffer->record_disabled);
3127 		new_rd = rd & ~RB_BUFFER_OFF;
3128 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3129 }
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3131 
3132 /**
3133  * ring_buffer_record_is_on - return true if the ring buffer can write
3134  * @buffer: The ring buffer to see if write is enabled
3135  *
3136  * Returns true if the ring buffer is in a state that it accepts writes.
3137  */
3138 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3139 {
3140 	return !atomic_read(&buffer->record_disabled);
3141 }
3142 
3143 /**
3144  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3145  * @buffer: The ring buffer to stop writes to.
3146  * @cpu: The CPU buffer to stop
3147  *
3148  * This prevents all writes to the buffer. Any attempt to write
3149  * to the buffer after this will fail and return NULL.
3150  *
3151  * The caller should call synchronize_sched() after this.
3152  */
3153 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3154 {
3155 	struct ring_buffer_per_cpu *cpu_buffer;
3156 
3157 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158 		return;
3159 
3160 	cpu_buffer = buffer->buffers[cpu];
3161 	atomic_inc(&cpu_buffer->record_disabled);
3162 }
3163 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3164 
3165 /**
3166  * ring_buffer_record_enable_cpu - enable writes to the buffer
3167  * @buffer: The ring buffer to enable writes
3168  * @cpu: The CPU to enable.
3169  *
3170  * Note, multiple disables will need the same number of enables
3171  * to truly enable the writing (much like preempt_disable).
3172  */
3173 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3174 {
3175 	struct ring_buffer_per_cpu *cpu_buffer;
3176 
3177 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3178 		return;
3179 
3180 	cpu_buffer = buffer->buffers[cpu];
3181 	atomic_dec(&cpu_buffer->record_disabled);
3182 }
3183 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3184 
3185 /*
3186  * The total entries in the ring buffer is the running counter
3187  * of entries entered into the ring buffer, minus the sum of
3188  * the entries read from the ring buffer and the number of
3189  * entries that were overwritten.
3190  */
3191 static inline unsigned long
3192 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3193 {
3194 	return local_read(&cpu_buffer->entries) -
3195 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3196 }
3197 
3198 /**
3199  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3200  * @buffer: The ring buffer
3201  * @cpu: The per CPU buffer to read from.
3202  */
3203 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3204 {
3205 	unsigned long flags;
3206 	struct ring_buffer_per_cpu *cpu_buffer;
3207 	struct buffer_page *bpage;
3208 	u64 ret = 0;
3209 
3210 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3211 		return 0;
3212 
3213 	cpu_buffer = buffer->buffers[cpu];
3214 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3215 	/*
3216 	 * if the tail is on reader_page, oldest time stamp is on the reader
3217 	 * page
3218 	 */
3219 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3220 		bpage = cpu_buffer->reader_page;
3221 	else
3222 		bpage = rb_set_head_page(cpu_buffer);
3223 	if (bpage)
3224 		ret = bpage->page->time_stamp;
3225 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3226 
3227 	return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3230 
3231 /**
3232  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3233  * @buffer: The ring buffer
3234  * @cpu: The per CPU buffer to read from.
3235  */
3236 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3237 {
3238 	struct ring_buffer_per_cpu *cpu_buffer;
3239 	unsigned long ret;
3240 
3241 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 		return 0;
3243 
3244 	cpu_buffer = buffer->buffers[cpu];
3245 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3246 
3247 	return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3250 
3251 /**
3252  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3253  * @buffer: The ring buffer
3254  * @cpu: The per CPU buffer to get the entries from.
3255  */
3256 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258 	struct ring_buffer_per_cpu *cpu_buffer;
3259 
3260 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261 		return 0;
3262 
3263 	cpu_buffer = buffer->buffers[cpu];
3264 
3265 	return rb_num_of_entries(cpu_buffer);
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3268 
3269 /**
3270  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3271  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3272  * @buffer: The ring buffer
3273  * @cpu: The per CPU buffer to get the number of overruns from
3274  */
3275 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3276 {
3277 	struct ring_buffer_per_cpu *cpu_buffer;
3278 	unsigned long ret;
3279 
3280 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281 		return 0;
3282 
3283 	cpu_buffer = buffer->buffers[cpu];
3284 	ret = local_read(&cpu_buffer->overrun);
3285 
3286 	return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3289 
3290 /**
3291  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3292  * commits failing due to the buffer wrapping around while there are uncommitted
3293  * events, such as during an interrupt storm.
3294  * @buffer: The ring buffer
3295  * @cpu: The per CPU buffer to get the number of overruns from
3296  */
3297 unsigned long
3298 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300 	struct ring_buffer_per_cpu *cpu_buffer;
3301 	unsigned long ret;
3302 
3303 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304 		return 0;
3305 
3306 	cpu_buffer = buffer->buffers[cpu];
3307 	ret = local_read(&cpu_buffer->commit_overrun);
3308 
3309 	return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3312 
3313 /**
3314  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3315  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3316  * @buffer: The ring buffer
3317  * @cpu: The per CPU buffer to get the number of overruns from
3318  */
3319 unsigned long
3320 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3321 {
3322 	struct ring_buffer_per_cpu *cpu_buffer;
3323 	unsigned long ret;
3324 
3325 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3326 		return 0;
3327 
3328 	cpu_buffer = buffer->buffers[cpu];
3329 	ret = local_read(&cpu_buffer->dropped_events);
3330 
3331 	return ret;
3332 }
3333 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3334 
3335 /**
3336  * ring_buffer_read_events_cpu - get the number of events successfully read
3337  * @buffer: The ring buffer
3338  * @cpu: The per CPU buffer to get the number of events read
3339  */
3340 unsigned long
3341 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3342 {
3343 	struct ring_buffer_per_cpu *cpu_buffer;
3344 
3345 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3346 		return 0;
3347 
3348 	cpu_buffer = buffer->buffers[cpu];
3349 	return cpu_buffer->read;
3350 }
3351 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3352 
3353 /**
3354  * ring_buffer_entries - get the number of entries in a buffer
3355  * @buffer: The ring buffer
3356  *
3357  * Returns the total number of entries in the ring buffer
3358  * (all CPU entries)
3359  */
3360 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3361 {
3362 	struct ring_buffer_per_cpu *cpu_buffer;
3363 	unsigned long entries = 0;
3364 	int cpu;
3365 
3366 	/* if you care about this being correct, lock the buffer */
3367 	for_each_buffer_cpu(buffer, cpu) {
3368 		cpu_buffer = buffer->buffers[cpu];
3369 		entries += rb_num_of_entries(cpu_buffer);
3370 	}
3371 
3372 	return entries;
3373 }
3374 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3375 
3376 /**
3377  * ring_buffer_overruns - get the number of overruns in buffer
3378  * @buffer: The ring buffer
3379  *
3380  * Returns the total number of overruns in the ring buffer
3381  * (all CPU entries)
3382  */
3383 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3384 {
3385 	struct ring_buffer_per_cpu *cpu_buffer;
3386 	unsigned long overruns = 0;
3387 	int cpu;
3388 
3389 	/* if you care about this being correct, lock the buffer */
3390 	for_each_buffer_cpu(buffer, cpu) {
3391 		cpu_buffer = buffer->buffers[cpu];
3392 		overruns += local_read(&cpu_buffer->overrun);
3393 	}
3394 
3395 	return overruns;
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3398 
3399 static void rb_iter_reset(struct ring_buffer_iter *iter)
3400 {
3401 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3402 
3403 	/* Iterator usage is expected to have record disabled */
3404 	iter->head_page = cpu_buffer->reader_page;
3405 	iter->head = cpu_buffer->reader_page->read;
3406 
3407 	iter->cache_reader_page = iter->head_page;
3408 	iter->cache_read = cpu_buffer->read;
3409 
3410 	if (iter->head)
3411 		iter->read_stamp = cpu_buffer->read_stamp;
3412 	else
3413 		iter->read_stamp = iter->head_page->page->time_stamp;
3414 }
3415 
3416 /**
3417  * ring_buffer_iter_reset - reset an iterator
3418  * @iter: The iterator to reset
3419  *
3420  * Resets the iterator, so that it will start from the beginning
3421  * again.
3422  */
3423 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3424 {
3425 	struct ring_buffer_per_cpu *cpu_buffer;
3426 	unsigned long flags;
3427 
3428 	if (!iter)
3429 		return;
3430 
3431 	cpu_buffer = iter->cpu_buffer;
3432 
3433 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3434 	rb_iter_reset(iter);
3435 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3436 }
3437 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3438 
3439 /**
3440  * ring_buffer_iter_empty - check if an iterator has no more to read
3441  * @iter: The iterator to check
3442  */
3443 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3444 {
3445 	struct ring_buffer_per_cpu *cpu_buffer;
3446 
3447 	cpu_buffer = iter->cpu_buffer;
3448 
3449 	return iter->head_page == cpu_buffer->commit_page &&
3450 		iter->head == rb_commit_index(cpu_buffer);
3451 }
3452 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3453 
3454 static void
3455 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3456 		     struct ring_buffer_event *event)
3457 {
3458 	u64 delta;
3459 
3460 	switch (event->type_len) {
3461 	case RINGBUF_TYPE_PADDING:
3462 		return;
3463 
3464 	case RINGBUF_TYPE_TIME_EXTEND:
3465 		delta = event->array[0];
3466 		delta <<= TS_SHIFT;
3467 		delta += event->time_delta;
3468 		cpu_buffer->read_stamp += delta;
3469 		return;
3470 
3471 	case RINGBUF_TYPE_TIME_STAMP:
3472 		/* FIXME: not implemented */
3473 		return;
3474 
3475 	case RINGBUF_TYPE_DATA:
3476 		cpu_buffer->read_stamp += event->time_delta;
3477 		return;
3478 
3479 	default:
3480 		BUG();
3481 	}
3482 	return;
3483 }
3484 
3485 static void
3486 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3487 			  struct ring_buffer_event *event)
3488 {
3489 	u64 delta;
3490 
3491 	switch (event->type_len) {
3492 	case RINGBUF_TYPE_PADDING:
3493 		return;
3494 
3495 	case RINGBUF_TYPE_TIME_EXTEND:
3496 		delta = event->array[0];
3497 		delta <<= TS_SHIFT;
3498 		delta += event->time_delta;
3499 		iter->read_stamp += delta;
3500 		return;
3501 
3502 	case RINGBUF_TYPE_TIME_STAMP:
3503 		/* FIXME: not implemented */
3504 		return;
3505 
3506 	case RINGBUF_TYPE_DATA:
3507 		iter->read_stamp += event->time_delta;
3508 		return;
3509 
3510 	default:
3511 		BUG();
3512 	}
3513 	return;
3514 }
3515 
3516 static struct buffer_page *
3517 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3518 {
3519 	struct buffer_page *reader = NULL;
3520 	unsigned long overwrite;
3521 	unsigned long flags;
3522 	int nr_loops = 0;
3523 	int ret;
3524 
3525 	local_irq_save(flags);
3526 	arch_spin_lock(&cpu_buffer->lock);
3527 
3528  again:
3529 	/*
3530 	 * This should normally only loop twice. But because the
3531 	 * start of the reader inserts an empty page, it causes
3532 	 * a case where we will loop three times. There should be no
3533 	 * reason to loop four times (that I know of).
3534 	 */
3535 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3536 		reader = NULL;
3537 		goto out;
3538 	}
3539 
3540 	reader = cpu_buffer->reader_page;
3541 
3542 	/* If there's more to read, return this page */
3543 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3544 		goto out;
3545 
3546 	/* Never should we have an index greater than the size */
3547 	if (RB_WARN_ON(cpu_buffer,
3548 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3549 		goto out;
3550 
3551 	/* check if we caught up to the tail */
3552 	reader = NULL;
3553 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3554 		goto out;
3555 
3556 	/* Don't bother swapping if the ring buffer is empty */
3557 	if (rb_num_of_entries(cpu_buffer) == 0)
3558 		goto out;
3559 
3560 	/*
3561 	 * Reset the reader page to size zero.
3562 	 */
3563 	local_set(&cpu_buffer->reader_page->write, 0);
3564 	local_set(&cpu_buffer->reader_page->entries, 0);
3565 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3566 	cpu_buffer->reader_page->real_end = 0;
3567 
3568  spin:
3569 	/*
3570 	 * Splice the empty reader page into the list around the head.
3571 	 */
3572 	reader = rb_set_head_page(cpu_buffer);
3573 	if (!reader)
3574 		goto out;
3575 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3576 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3577 
3578 	/*
3579 	 * cpu_buffer->pages just needs to point to the buffer, it
3580 	 *  has no specific buffer page to point to. Lets move it out
3581 	 *  of our way so we don't accidentally swap it.
3582 	 */
3583 	cpu_buffer->pages = reader->list.prev;
3584 
3585 	/* The reader page will be pointing to the new head */
3586 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3587 
3588 	/*
3589 	 * We want to make sure we read the overruns after we set up our
3590 	 * pointers to the next object. The writer side does a
3591 	 * cmpxchg to cross pages which acts as the mb on the writer
3592 	 * side. Note, the reader will constantly fail the swap
3593 	 * while the writer is updating the pointers, so this
3594 	 * guarantees that the overwrite recorded here is the one we
3595 	 * want to compare with the last_overrun.
3596 	 */
3597 	smp_mb();
3598 	overwrite = local_read(&(cpu_buffer->overrun));
3599 
3600 	/*
3601 	 * Here's the tricky part.
3602 	 *
3603 	 * We need to move the pointer past the header page.
3604 	 * But we can only do that if a writer is not currently
3605 	 * moving it. The page before the header page has the
3606 	 * flag bit '1' set if it is pointing to the page we want.
3607 	 * but if the writer is in the process of moving it
3608 	 * than it will be '2' or already moved '0'.
3609 	 */
3610 
3611 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3612 
3613 	/*
3614 	 * If we did not convert it, then we must try again.
3615 	 */
3616 	if (!ret)
3617 		goto spin;
3618 
3619 	/*
3620 	 * Yeah! We succeeded in replacing the page.
3621 	 *
3622 	 * Now make the new head point back to the reader page.
3623 	 */
3624 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3625 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3626 
3627 	/* Finally update the reader page to the new head */
3628 	cpu_buffer->reader_page = reader;
3629 	rb_reset_reader_page(cpu_buffer);
3630 
3631 	if (overwrite != cpu_buffer->last_overrun) {
3632 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3633 		cpu_buffer->last_overrun = overwrite;
3634 	}
3635 
3636 	goto again;
3637 
3638  out:
3639 	arch_spin_unlock(&cpu_buffer->lock);
3640 	local_irq_restore(flags);
3641 
3642 	return reader;
3643 }
3644 
3645 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3646 {
3647 	struct ring_buffer_event *event;
3648 	struct buffer_page *reader;
3649 	unsigned length;
3650 
3651 	reader = rb_get_reader_page(cpu_buffer);
3652 
3653 	/* This function should not be called when buffer is empty */
3654 	if (RB_WARN_ON(cpu_buffer, !reader))
3655 		return;
3656 
3657 	event = rb_reader_event(cpu_buffer);
3658 
3659 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3660 		cpu_buffer->read++;
3661 
3662 	rb_update_read_stamp(cpu_buffer, event);
3663 
3664 	length = rb_event_length(event);
3665 	cpu_buffer->reader_page->read += length;
3666 }
3667 
3668 static void rb_advance_iter(struct ring_buffer_iter *iter)
3669 {
3670 	struct ring_buffer_per_cpu *cpu_buffer;
3671 	struct ring_buffer_event *event;
3672 	unsigned length;
3673 
3674 	cpu_buffer = iter->cpu_buffer;
3675 
3676 	/*
3677 	 * Check if we are at the end of the buffer.
3678 	 */
3679 	if (iter->head >= rb_page_size(iter->head_page)) {
3680 		/* discarded commits can make the page empty */
3681 		if (iter->head_page == cpu_buffer->commit_page)
3682 			return;
3683 		rb_inc_iter(iter);
3684 		return;
3685 	}
3686 
3687 	event = rb_iter_head_event(iter);
3688 
3689 	length = rb_event_length(event);
3690 
3691 	/*
3692 	 * This should not be called to advance the header if we are
3693 	 * at the tail of the buffer.
3694 	 */
3695 	if (RB_WARN_ON(cpu_buffer,
3696 		       (iter->head_page == cpu_buffer->commit_page) &&
3697 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3698 		return;
3699 
3700 	rb_update_iter_read_stamp(iter, event);
3701 
3702 	iter->head += length;
3703 
3704 	/* check for end of page padding */
3705 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3706 	    (iter->head_page != cpu_buffer->commit_page))
3707 		rb_inc_iter(iter);
3708 }
3709 
3710 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3711 {
3712 	return cpu_buffer->lost_events;
3713 }
3714 
3715 static struct ring_buffer_event *
3716 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3717 	       unsigned long *lost_events)
3718 {
3719 	struct ring_buffer_event *event;
3720 	struct buffer_page *reader;
3721 	int nr_loops = 0;
3722 
3723  again:
3724 	/*
3725 	 * We repeat when a time extend is encountered.
3726 	 * Since the time extend is always attached to a data event,
3727 	 * we should never loop more than once.
3728 	 * (We never hit the following condition more than twice).
3729 	 */
3730 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3731 		return NULL;
3732 
3733 	reader = rb_get_reader_page(cpu_buffer);
3734 	if (!reader)
3735 		return NULL;
3736 
3737 	event = rb_reader_event(cpu_buffer);
3738 
3739 	switch (event->type_len) {
3740 	case RINGBUF_TYPE_PADDING:
3741 		if (rb_null_event(event))
3742 			RB_WARN_ON(cpu_buffer, 1);
3743 		/*
3744 		 * Because the writer could be discarding every
3745 		 * event it creates (which would probably be bad)
3746 		 * if we were to go back to "again" then we may never
3747 		 * catch up, and will trigger the warn on, or lock
3748 		 * the box. Return the padding, and we will release
3749 		 * the current locks, and try again.
3750 		 */
3751 		return event;
3752 
3753 	case RINGBUF_TYPE_TIME_EXTEND:
3754 		/* Internal data, OK to advance */
3755 		rb_advance_reader(cpu_buffer);
3756 		goto again;
3757 
3758 	case RINGBUF_TYPE_TIME_STAMP:
3759 		/* FIXME: not implemented */
3760 		rb_advance_reader(cpu_buffer);
3761 		goto again;
3762 
3763 	case RINGBUF_TYPE_DATA:
3764 		if (ts) {
3765 			*ts = cpu_buffer->read_stamp + event->time_delta;
3766 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3767 							 cpu_buffer->cpu, ts);
3768 		}
3769 		if (lost_events)
3770 			*lost_events = rb_lost_events(cpu_buffer);
3771 		return event;
3772 
3773 	default:
3774 		BUG();
3775 	}
3776 
3777 	return NULL;
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3780 
3781 static struct ring_buffer_event *
3782 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3783 {
3784 	struct ring_buffer *buffer;
3785 	struct ring_buffer_per_cpu *cpu_buffer;
3786 	struct ring_buffer_event *event;
3787 	int nr_loops = 0;
3788 
3789 	cpu_buffer = iter->cpu_buffer;
3790 	buffer = cpu_buffer->buffer;
3791 
3792 	/*
3793 	 * Check if someone performed a consuming read to
3794 	 * the buffer. A consuming read invalidates the iterator
3795 	 * and we need to reset the iterator in this case.
3796 	 */
3797 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3798 		     iter->cache_reader_page != cpu_buffer->reader_page))
3799 		rb_iter_reset(iter);
3800 
3801  again:
3802 	if (ring_buffer_iter_empty(iter))
3803 		return NULL;
3804 
3805 	/*
3806 	 * We repeat when a time extend is encountered or we hit
3807 	 * the end of the page. Since the time extend is always attached
3808 	 * to a data event, we should never loop more than three times.
3809 	 * Once for going to next page, once on time extend, and
3810 	 * finally once to get the event.
3811 	 * (We never hit the following condition more than thrice).
3812 	 */
3813 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3814 		return NULL;
3815 
3816 	if (rb_per_cpu_empty(cpu_buffer))
3817 		return NULL;
3818 
3819 	if (iter->head >= rb_page_size(iter->head_page)) {
3820 		rb_inc_iter(iter);
3821 		goto again;
3822 	}
3823 
3824 	event = rb_iter_head_event(iter);
3825 
3826 	switch (event->type_len) {
3827 	case RINGBUF_TYPE_PADDING:
3828 		if (rb_null_event(event)) {
3829 			rb_inc_iter(iter);
3830 			goto again;
3831 		}
3832 		rb_advance_iter(iter);
3833 		return event;
3834 
3835 	case RINGBUF_TYPE_TIME_EXTEND:
3836 		/* Internal data, OK to advance */
3837 		rb_advance_iter(iter);
3838 		goto again;
3839 
3840 	case RINGBUF_TYPE_TIME_STAMP:
3841 		/* FIXME: not implemented */
3842 		rb_advance_iter(iter);
3843 		goto again;
3844 
3845 	case RINGBUF_TYPE_DATA:
3846 		if (ts) {
3847 			*ts = iter->read_stamp + event->time_delta;
3848 			ring_buffer_normalize_time_stamp(buffer,
3849 							 cpu_buffer->cpu, ts);
3850 		}
3851 		return event;
3852 
3853 	default:
3854 		BUG();
3855 	}
3856 
3857 	return NULL;
3858 }
3859 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3860 
3861 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3862 {
3863 	if (likely(!in_nmi())) {
3864 		raw_spin_lock(&cpu_buffer->reader_lock);
3865 		return true;
3866 	}
3867 
3868 	/*
3869 	 * If an NMI die dumps out the content of the ring buffer
3870 	 * trylock must be used to prevent a deadlock if the NMI
3871 	 * preempted a task that holds the ring buffer locks. If
3872 	 * we get the lock then all is fine, if not, then continue
3873 	 * to do the read, but this can corrupt the ring buffer,
3874 	 * so it must be permanently disabled from future writes.
3875 	 * Reading from NMI is a oneshot deal.
3876 	 */
3877 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3878 		return true;
3879 
3880 	/* Continue without locking, but disable the ring buffer */
3881 	atomic_inc(&cpu_buffer->record_disabled);
3882 	return false;
3883 }
3884 
3885 static inline void
3886 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3887 {
3888 	if (likely(locked))
3889 		raw_spin_unlock(&cpu_buffer->reader_lock);
3890 	return;
3891 }
3892 
3893 /**
3894  * ring_buffer_peek - peek at the next event to be read
3895  * @buffer: The ring buffer to read
3896  * @cpu: The cpu to peak at
3897  * @ts: The timestamp counter of this event.
3898  * @lost_events: a variable to store if events were lost (may be NULL)
3899  *
3900  * This will return the event that will be read next, but does
3901  * not consume the data.
3902  */
3903 struct ring_buffer_event *
3904 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3905 		 unsigned long *lost_events)
3906 {
3907 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3908 	struct ring_buffer_event *event;
3909 	unsigned long flags;
3910 	bool dolock;
3911 
3912 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3913 		return NULL;
3914 
3915  again:
3916 	local_irq_save(flags);
3917 	dolock = rb_reader_lock(cpu_buffer);
3918 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3919 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3920 		rb_advance_reader(cpu_buffer);
3921 	rb_reader_unlock(cpu_buffer, dolock);
3922 	local_irq_restore(flags);
3923 
3924 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3925 		goto again;
3926 
3927 	return event;
3928 }
3929 
3930 /**
3931  * ring_buffer_iter_peek - peek at the next event to be read
3932  * @iter: The ring buffer iterator
3933  * @ts: The timestamp counter of this event.
3934  *
3935  * This will return the event that will be read next, but does
3936  * not increment the iterator.
3937  */
3938 struct ring_buffer_event *
3939 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3940 {
3941 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3942 	struct ring_buffer_event *event;
3943 	unsigned long flags;
3944 
3945  again:
3946 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3947 	event = rb_iter_peek(iter, ts);
3948 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3949 
3950 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3951 		goto again;
3952 
3953 	return event;
3954 }
3955 
3956 /**
3957  * ring_buffer_consume - return an event and consume it
3958  * @buffer: The ring buffer to get the next event from
3959  * @cpu: the cpu to read the buffer from
3960  * @ts: a variable to store the timestamp (may be NULL)
3961  * @lost_events: a variable to store if events were lost (may be NULL)
3962  *
3963  * Returns the next event in the ring buffer, and that event is consumed.
3964  * Meaning, that sequential reads will keep returning a different event,
3965  * and eventually empty the ring buffer if the producer is slower.
3966  */
3967 struct ring_buffer_event *
3968 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3969 		    unsigned long *lost_events)
3970 {
3971 	struct ring_buffer_per_cpu *cpu_buffer;
3972 	struct ring_buffer_event *event = NULL;
3973 	unsigned long flags;
3974 	bool dolock;
3975 
3976  again:
3977 	/* might be called in atomic */
3978 	preempt_disable();
3979 
3980 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3981 		goto out;
3982 
3983 	cpu_buffer = buffer->buffers[cpu];
3984 	local_irq_save(flags);
3985 	dolock = rb_reader_lock(cpu_buffer);
3986 
3987 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3988 	if (event) {
3989 		cpu_buffer->lost_events = 0;
3990 		rb_advance_reader(cpu_buffer);
3991 	}
3992 
3993 	rb_reader_unlock(cpu_buffer, dolock);
3994 	local_irq_restore(flags);
3995 
3996  out:
3997 	preempt_enable();
3998 
3999 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4000 		goto again;
4001 
4002 	return event;
4003 }
4004 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4005 
4006 /**
4007  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4008  * @buffer: The ring buffer to read from
4009  * @cpu: The cpu buffer to iterate over
4010  *
4011  * This performs the initial preparations necessary to iterate
4012  * through the buffer.  Memory is allocated, buffer recording
4013  * is disabled, and the iterator pointer is returned to the caller.
4014  *
4015  * Disabling buffer recordng prevents the reading from being
4016  * corrupted. This is not a consuming read, so a producer is not
4017  * expected.
4018  *
4019  * After a sequence of ring_buffer_read_prepare calls, the user is
4020  * expected to make at least one call to ring_buffer_read_prepare_sync.
4021  * Afterwards, ring_buffer_read_start is invoked to get things going
4022  * for real.
4023  *
4024  * This overall must be paired with ring_buffer_read_finish.
4025  */
4026 struct ring_buffer_iter *
4027 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4028 {
4029 	struct ring_buffer_per_cpu *cpu_buffer;
4030 	struct ring_buffer_iter *iter;
4031 
4032 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4033 		return NULL;
4034 
4035 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4036 	if (!iter)
4037 		return NULL;
4038 
4039 	cpu_buffer = buffer->buffers[cpu];
4040 
4041 	iter->cpu_buffer = cpu_buffer;
4042 
4043 	atomic_inc(&buffer->resize_disabled);
4044 	atomic_inc(&cpu_buffer->record_disabled);
4045 
4046 	return iter;
4047 }
4048 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4049 
4050 /**
4051  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4052  *
4053  * All previously invoked ring_buffer_read_prepare calls to prepare
4054  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4055  * calls on those iterators are allowed.
4056  */
4057 void
4058 ring_buffer_read_prepare_sync(void)
4059 {
4060 	synchronize_sched();
4061 }
4062 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4063 
4064 /**
4065  * ring_buffer_read_start - start a non consuming read of the buffer
4066  * @iter: The iterator returned by ring_buffer_read_prepare
4067  *
4068  * This finalizes the startup of an iteration through the buffer.
4069  * The iterator comes from a call to ring_buffer_read_prepare and
4070  * an intervening ring_buffer_read_prepare_sync must have been
4071  * performed.
4072  *
4073  * Must be paired with ring_buffer_read_finish.
4074  */
4075 void
4076 ring_buffer_read_start(struct ring_buffer_iter *iter)
4077 {
4078 	struct ring_buffer_per_cpu *cpu_buffer;
4079 	unsigned long flags;
4080 
4081 	if (!iter)
4082 		return;
4083 
4084 	cpu_buffer = iter->cpu_buffer;
4085 
4086 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4087 	arch_spin_lock(&cpu_buffer->lock);
4088 	rb_iter_reset(iter);
4089 	arch_spin_unlock(&cpu_buffer->lock);
4090 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4093 
4094 /**
4095  * ring_buffer_read_finish - finish reading the iterator of the buffer
4096  * @iter: The iterator retrieved by ring_buffer_start
4097  *
4098  * This re-enables the recording to the buffer, and frees the
4099  * iterator.
4100  */
4101 void
4102 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4103 {
4104 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4105 	unsigned long flags;
4106 
4107 	/*
4108 	 * Ring buffer is disabled from recording, here's a good place
4109 	 * to check the integrity of the ring buffer.
4110 	 * Must prevent readers from trying to read, as the check
4111 	 * clears the HEAD page and readers require it.
4112 	 */
4113 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4114 	rb_check_pages(cpu_buffer);
4115 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4116 
4117 	atomic_dec(&cpu_buffer->record_disabled);
4118 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4119 	kfree(iter);
4120 }
4121 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4122 
4123 /**
4124  * ring_buffer_read - read the next item in the ring buffer by the iterator
4125  * @iter: The ring buffer iterator
4126  * @ts: The time stamp of the event read.
4127  *
4128  * This reads the next event in the ring buffer and increments the iterator.
4129  */
4130 struct ring_buffer_event *
4131 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4132 {
4133 	struct ring_buffer_event *event;
4134 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4135 	unsigned long flags;
4136 
4137 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4138  again:
4139 	event = rb_iter_peek(iter, ts);
4140 	if (!event)
4141 		goto out;
4142 
4143 	if (event->type_len == RINGBUF_TYPE_PADDING)
4144 		goto again;
4145 
4146 	rb_advance_iter(iter);
4147  out:
4148 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4149 
4150 	return event;
4151 }
4152 EXPORT_SYMBOL_GPL(ring_buffer_read);
4153 
4154 /**
4155  * ring_buffer_size - return the size of the ring buffer (in bytes)
4156  * @buffer: The ring buffer.
4157  */
4158 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4159 {
4160 	/*
4161 	 * Earlier, this method returned
4162 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4163 	 * Since the nr_pages field is now removed, we have converted this to
4164 	 * return the per cpu buffer value.
4165 	 */
4166 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167 		return 0;
4168 
4169 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4170 }
4171 EXPORT_SYMBOL_GPL(ring_buffer_size);
4172 
4173 static void
4174 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4175 {
4176 	rb_head_page_deactivate(cpu_buffer);
4177 
4178 	cpu_buffer->head_page
4179 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4180 	local_set(&cpu_buffer->head_page->write, 0);
4181 	local_set(&cpu_buffer->head_page->entries, 0);
4182 	local_set(&cpu_buffer->head_page->page->commit, 0);
4183 
4184 	cpu_buffer->head_page->read = 0;
4185 
4186 	cpu_buffer->tail_page = cpu_buffer->head_page;
4187 	cpu_buffer->commit_page = cpu_buffer->head_page;
4188 
4189 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4190 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4191 	local_set(&cpu_buffer->reader_page->write, 0);
4192 	local_set(&cpu_buffer->reader_page->entries, 0);
4193 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4194 	cpu_buffer->reader_page->read = 0;
4195 
4196 	local_set(&cpu_buffer->entries_bytes, 0);
4197 	local_set(&cpu_buffer->overrun, 0);
4198 	local_set(&cpu_buffer->commit_overrun, 0);
4199 	local_set(&cpu_buffer->dropped_events, 0);
4200 	local_set(&cpu_buffer->entries, 0);
4201 	local_set(&cpu_buffer->committing, 0);
4202 	local_set(&cpu_buffer->commits, 0);
4203 	cpu_buffer->read = 0;
4204 	cpu_buffer->read_bytes = 0;
4205 
4206 	cpu_buffer->write_stamp = 0;
4207 	cpu_buffer->read_stamp = 0;
4208 
4209 	cpu_buffer->lost_events = 0;
4210 	cpu_buffer->last_overrun = 0;
4211 
4212 	rb_head_page_activate(cpu_buffer);
4213 }
4214 
4215 /**
4216  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4217  * @buffer: The ring buffer to reset a per cpu buffer of
4218  * @cpu: The CPU buffer to be reset
4219  */
4220 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4221 {
4222 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4223 	unsigned long flags;
4224 
4225 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4226 		return;
4227 
4228 	atomic_inc(&buffer->resize_disabled);
4229 	atomic_inc(&cpu_buffer->record_disabled);
4230 
4231 	/* Make sure all commits have finished */
4232 	synchronize_sched();
4233 
4234 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4235 
4236 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4237 		goto out;
4238 
4239 	arch_spin_lock(&cpu_buffer->lock);
4240 
4241 	rb_reset_cpu(cpu_buffer);
4242 
4243 	arch_spin_unlock(&cpu_buffer->lock);
4244 
4245  out:
4246 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4247 
4248 	atomic_dec(&cpu_buffer->record_disabled);
4249 	atomic_dec(&buffer->resize_disabled);
4250 }
4251 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4252 
4253 /**
4254  * ring_buffer_reset - reset a ring buffer
4255  * @buffer: The ring buffer to reset all cpu buffers
4256  */
4257 void ring_buffer_reset(struct ring_buffer *buffer)
4258 {
4259 	int cpu;
4260 
4261 	for_each_buffer_cpu(buffer, cpu)
4262 		ring_buffer_reset_cpu(buffer, cpu);
4263 }
4264 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4265 
4266 /**
4267  * rind_buffer_empty - is the ring buffer empty?
4268  * @buffer: The ring buffer to test
4269  */
4270 int ring_buffer_empty(struct ring_buffer *buffer)
4271 {
4272 	struct ring_buffer_per_cpu *cpu_buffer;
4273 	unsigned long flags;
4274 	bool dolock;
4275 	int cpu;
4276 	int ret;
4277 
4278 	/* yes this is racy, but if you don't like the race, lock the buffer */
4279 	for_each_buffer_cpu(buffer, cpu) {
4280 		cpu_buffer = buffer->buffers[cpu];
4281 		local_irq_save(flags);
4282 		dolock = rb_reader_lock(cpu_buffer);
4283 		ret = rb_per_cpu_empty(cpu_buffer);
4284 		rb_reader_unlock(cpu_buffer, dolock);
4285 		local_irq_restore(flags);
4286 
4287 		if (!ret)
4288 			return 0;
4289 	}
4290 
4291 	return 1;
4292 }
4293 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4294 
4295 /**
4296  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4297  * @buffer: The ring buffer
4298  * @cpu: The CPU buffer to test
4299  */
4300 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4301 {
4302 	struct ring_buffer_per_cpu *cpu_buffer;
4303 	unsigned long flags;
4304 	bool dolock;
4305 	int ret;
4306 
4307 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4308 		return 1;
4309 
4310 	cpu_buffer = buffer->buffers[cpu];
4311 	local_irq_save(flags);
4312 	dolock = rb_reader_lock(cpu_buffer);
4313 	ret = rb_per_cpu_empty(cpu_buffer);
4314 	rb_reader_unlock(cpu_buffer, dolock);
4315 	local_irq_restore(flags);
4316 
4317 	return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4320 
4321 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4322 /**
4323  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4324  * @buffer_a: One buffer to swap with
4325  * @buffer_b: The other buffer to swap with
4326  *
4327  * This function is useful for tracers that want to take a "snapshot"
4328  * of a CPU buffer and has another back up buffer lying around.
4329  * it is expected that the tracer handles the cpu buffer not being
4330  * used at the moment.
4331  */
4332 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4333 			 struct ring_buffer *buffer_b, int cpu)
4334 {
4335 	struct ring_buffer_per_cpu *cpu_buffer_a;
4336 	struct ring_buffer_per_cpu *cpu_buffer_b;
4337 	int ret = -EINVAL;
4338 
4339 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4340 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4341 		goto out;
4342 
4343 	cpu_buffer_a = buffer_a->buffers[cpu];
4344 	cpu_buffer_b = buffer_b->buffers[cpu];
4345 
4346 	/* At least make sure the two buffers are somewhat the same */
4347 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4348 		goto out;
4349 
4350 	ret = -EAGAIN;
4351 
4352 	if (atomic_read(&buffer_a->record_disabled))
4353 		goto out;
4354 
4355 	if (atomic_read(&buffer_b->record_disabled))
4356 		goto out;
4357 
4358 	if (atomic_read(&cpu_buffer_a->record_disabled))
4359 		goto out;
4360 
4361 	if (atomic_read(&cpu_buffer_b->record_disabled))
4362 		goto out;
4363 
4364 	/*
4365 	 * We can't do a synchronize_sched here because this
4366 	 * function can be called in atomic context.
4367 	 * Normally this will be called from the same CPU as cpu.
4368 	 * If not it's up to the caller to protect this.
4369 	 */
4370 	atomic_inc(&cpu_buffer_a->record_disabled);
4371 	atomic_inc(&cpu_buffer_b->record_disabled);
4372 
4373 	ret = -EBUSY;
4374 	if (local_read(&cpu_buffer_a->committing))
4375 		goto out_dec;
4376 	if (local_read(&cpu_buffer_b->committing))
4377 		goto out_dec;
4378 
4379 	buffer_a->buffers[cpu] = cpu_buffer_b;
4380 	buffer_b->buffers[cpu] = cpu_buffer_a;
4381 
4382 	cpu_buffer_b->buffer = buffer_a;
4383 	cpu_buffer_a->buffer = buffer_b;
4384 
4385 	ret = 0;
4386 
4387 out_dec:
4388 	atomic_dec(&cpu_buffer_a->record_disabled);
4389 	atomic_dec(&cpu_buffer_b->record_disabled);
4390 out:
4391 	return ret;
4392 }
4393 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4394 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4395 
4396 /**
4397  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4398  * @buffer: the buffer to allocate for.
4399  * @cpu: the cpu buffer to allocate.
4400  *
4401  * This function is used in conjunction with ring_buffer_read_page.
4402  * When reading a full page from the ring buffer, these functions
4403  * can be used to speed up the process. The calling function should
4404  * allocate a few pages first with this function. Then when it
4405  * needs to get pages from the ring buffer, it passes the result
4406  * of this function into ring_buffer_read_page, which will swap
4407  * the page that was allocated, with the read page of the buffer.
4408  *
4409  * Returns:
4410  *  The page allocated, or NULL on error.
4411  */
4412 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4413 {
4414 	struct buffer_data_page *bpage;
4415 	struct page *page;
4416 
4417 	page = alloc_pages_node(cpu_to_node(cpu),
4418 				GFP_KERNEL | __GFP_NORETRY, 0);
4419 	if (!page)
4420 		return NULL;
4421 
4422 	bpage = page_address(page);
4423 
4424 	rb_init_page(bpage);
4425 
4426 	return bpage;
4427 }
4428 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4429 
4430 /**
4431  * ring_buffer_free_read_page - free an allocated read page
4432  * @buffer: the buffer the page was allocate for
4433  * @data: the page to free
4434  *
4435  * Free a page allocated from ring_buffer_alloc_read_page.
4436  */
4437 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4438 {
4439 	free_page((unsigned long)data);
4440 }
4441 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4442 
4443 /**
4444  * ring_buffer_read_page - extract a page from the ring buffer
4445  * @buffer: buffer to extract from
4446  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4447  * @len: amount to extract
4448  * @cpu: the cpu of the buffer to extract
4449  * @full: should the extraction only happen when the page is full.
4450  *
4451  * This function will pull out a page from the ring buffer and consume it.
4452  * @data_page must be the address of the variable that was returned
4453  * from ring_buffer_alloc_read_page. This is because the page might be used
4454  * to swap with a page in the ring buffer.
4455  *
4456  * for example:
4457  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4458  *	if (!rpage)
4459  *		return error;
4460  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4461  *	if (ret >= 0)
4462  *		process_page(rpage, ret);
4463  *
4464  * When @full is set, the function will not return true unless
4465  * the writer is off the reader page.
4466  *
4467  * Note: it is up to the calling functions to handle sleeps and wakeups.
4468  *  The ring buffer can be used anywhere in the kernel and can not
4469  *  blindly call wake_up. The layer that uses the ring buffer must be
4470  *  responsible for that.
4471  *
4472  * Returns:
4473  *  >=0 if data has been transferred, returns the offset of consumed data.
4474  *  <0 if no data has been transferred.
4475  */
4476 int ring_buffer_read_page(struct ring_buffer *buffer,
4477 			  void **data_page, size_t len, int cpu, int full)
4478 {
4479 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4480 	struct ring_buffer_event *event;
4481 	struct buffer_data_page *bpage;
4482 	struct buffer_page *reader;
4483 	unsigned long missed_events;
4484 	unsigned long flags;
4485 	unsigned int commit;
4486 	unsigned int read;
4487 	u64 save_timestamp;
4488 	int ret = -1;
4489 
4490 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4491 		goto out;
4492 
4493 	/*
4494 	 * If len is not big enough to hold the page header, then
4495 	 * we can not copy anything.
4496 	 */
4497 	if (len <= BUF_PAGE_HDR_SIZE)
4498 		goto out;
4499 
4500 	len -= BUF_PAGE_HDR_SIZE;
4501 
4502 	if (!data_page)
4503 		goto out;
4504 
4505 	bpage = *data_page;
4506 	if (!bpage)
4507 		goto out;
4508 
4509 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4510 
4511 	reader = rb_get_reader_page(cpu_buffer);
4512 	if (!reader)
4513 		goto out_unlock;
4514 
4515 	event = rb_reader_event(cpu_buffer);
4516 
4517 	read = reader->read;
4518 	commit = rb_page_commit(reader);
4519 
4520 	/* Check if any events were dropped */
4521 	missed_events = cpu_buffer->lost_events;
4522 
4523 	/*
4524 	 * If this page has been partially read or
4525 	 * if len is not big enough to read the rest of the page or
4526 	 * a writer is still on the page, then
4527 	 * we must copy the data from the page to the buffer.
4528 	 * Otherwise, we can simply swap the page with the one passed in.
4529 	 */
4530 	if (read || (len < (commit - read)) ||
4531 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4532 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4533 		unsigned int rpos = read;
4534 		unsigned int pos = 0;
4535 		unsigned int size;
4536 
4537 		if (full)
4538 			goto out_unlock;
4539 
4540 		if (len > (commit - read))
4541 			len = (commit - read);
4542 
4543 		/* Always keep the time extend and data together */
4544 		size = rb_event_ts_length(event);
4545 
4546 		if (len < size)
4547 			goto out_unlock;
4548 
4549 		/* save the current timestamp, since the user will need it */
4550 		save_timestamp = cpu_buffer->read_stamp;
4551 
4552 		/* Need to copy one event at a time */
4553 		do {
4554 			/* We need the size of one event, because
4555 			 * rb_advance_reader only advances by one event,
4556 			 * whereas rb_event_ts_length may include the size of
4557 			 * one or two events.
4558 			 * We have already ensured there's enough space if this
4559 			 * is a time extend. */
4560 			size = rb_event_length(event);
4561 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4562 
4563 			len -= size;
4564 
4565 			rb_advance_reader(cpu_buffer);
4566 			rpos = reader->read;
4567 			pos += size;
4568 
4569 			if (rpos >= commit)
4570 				break;
4571 
4572 			event = rb_reader_event(cpu_buffer);
4573 			/* Always keep the time extend and data together */
4574 			size = rb_event_ts_length(event);
4575 		} while (len >= size);
4576 
4577 		/* update bpage */
4578 		local_set(&bpage->commit, pos);
4579 		bpage->time_stamp = save_timestamp;
4580 
4581 		/* we copied everything to the beginning */
4582 		read = 0;
4583 	} else {
4584 		/* update the entry counter */
4585 		cpu_buffer->read += rb_page_entries(reader);
4586 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4587 
4588 		/* swap the pages */
4589 		rb_init_page(bpage);
4590 		bpage = reader->page;
4591 		reader->page = *data_page;
4592 		local_set(&reader->write, 0);
4593 		local_set(&reader->entries, 0);
4594 		reader->read = 0;
4595 		*data_page = bpage;
4596 
4597 		/*
4598 		 * Use the real_end for the data size,
4599 		 * This gives us a chance to store the lost events
4600 		 * on the page.
4601 		 */
4602 		if (reader->real_end)
4603 			local_set(&bpage->commit, reader->real_end);
4604 	}
4605 	ret = read;
4606 
4607 	cpu_buffer->lost_events = 0;
4608 
4609 	commit = local_read(&bpage->commit);
4610 	/*
4611 	 * Set a flag in the commit field if we lost events
4612 	 */
4613 	if (missed_events) {
4614 		/* If there is room at the end of the page to save the
4615 		 * missed events, then record it there.
4616 		 */
4617 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4618 			memcpy(&bpage->data[commit], &missed_events,
4619 			       sizeof(missed_events));
4620 			local_add(RB_MISSED_STORED, &bpage->commit);
4621 			commit += sizeof(missed_events);
4622 		}
4623 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4624 	}
4625 
4626 	/*
4627 	 * This page may be off to user land. Zero it out here.
4628 	 */
4629 	if (commit < BUF_PAGE_SIZE)
4630 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4631 
4632  out_unlock:
4633 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4634 
4635  out:
4636 	return ret;
4637 }
4638 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4639 
4640 #ifdef CONFIG_HOTPLUG_CPU
4641 static int rb_cpu_notify(struct notifier_block *self,
4642 			 unsigned long action, void *hcpu)
4643 {
4644 	struct ring_buffer *buffer =
4645 		container_of(self, struct ring_buffer, cpu_notify);
4646 	long cpu = (long)hcpu;
4647 	int cpu_i, nr_pages_same;
4648 	unsigned int nr_pages;
4649 
4650 	switch (action) {
4651 	case CPU_UP_PREPARE:
4652 	case CPU_UP_PREPARE_FROZEN:
4653 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4654 			return NOTIFY_OK;
4655 
4656 		nr_pages = 0;
4657 		nr_pages_same = 1;
4658 		/* check if all cpu sizes are same */
4659 		for_each_buffer_cpu(buffer, cpu_i) {
4660 			/* fill in the size from first enabled cpu */
4661 			if (nr_pages == 0)
4662 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4663 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4664 				nr_pages_same = 0;
4665 				break;
4666 			}
4667 		}
4668 		/* allocate minimum pages, user can later expand it */
4669 		if (!nr_pages_same)
4670 			nr_pages = 2;
4671 		buffer->buffers[cpu] =
4672 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4673 		if (!buffer->buffers[cpu]) {
4674 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4675 			     cpu);
4676 			return NOTIFY_OK;
4677 		}
4678 		smp_wmb();
4679 		cpumask_set_cpu(cpu, buffer->cpumask);
4680 		break;
4681 	case CPU_DOWN_PREPARE:
4682 	case CPU_DOWN_PREPARE_FROZEN:
4683 		/*
4684 		 * Do nothing.
4685 		 *  If we were to free the buffer, then the user would
4686 		 *  lose any trace that was in the buffer.
4687 		 */
4688 		break;
4689 	default:
4690 		break;
4691 	}
4692 	return NOTIFY_OK;
4693 }
4694 #endif
4695 
4696 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4697 /*
4698  * This is a basic integrity check of the ring buffer.
4699  * Late in the boot cycle this test will run when configured in.
4700  * It will kick off a thread per CPU that will go into a loop
4701  * writing to the per cpu ring buffer various sizes of data.
4702  * Some of the data will be large items, some small.
4703  *
4704  * Another thread is created that goes into a spin, sending out
4705  * IPIs to the other CPUs to also write into the ring buffer.
4706  * this is to test the nesting ability of the buffer.
4707  *
4708  * Basic stats are recorded and reported. If something in the
4709  * ring buffer should happen that's not expected, a big warning
4710  * is displayed and all ring buffers are disabled.
4711  */
4712 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4713 
4714 struct rb_test_data {
4715 	struct ring_buffer	*buffer;
4716 	unsigned long		events;
4717 	unsigned long		bytes_written;
4718 	unsigned long		bytes_alloc;
4719 	unsigned long		bytes_dropped;
4720 	unsigned long		events_nested;
4721 	unsigned long		bytes_written_nested;
4722 	unsigned long		bytes_alloc_nested;
4723 	unsigned long		bytes_dropped_nested;
4724 	int			min_size_nested;
4725 	int			max_size_nested;
4726 	int			max_size;
4727 	int			min_size;
4728 	int			cpu;
4729 	int			cnt;
4730 };
4731 
4732 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4733 
4734 /* 1 meg per cpu */
4735 #define RB_TEST_BUFFER_SIZE	1048576
4736 
4737 static char rb_string[] __initdata =
4738 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4739 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4740 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4741 
4742 static bool rb_test_started __initdata;
4743 
4744 struct rb_item {
4745 	int size;
4746 	char str[];
4747 };
4748 
4749 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4750 {
4751 	struct ring_buffer_event *event;
4752 	struct rb_item *item;
4753 	bool started;
4754 	int event_len;
4755 	int size;
4756 	int len;
4757 	int cnt;
4758 
4759 	/* Have nested writes different that what is written */
4760 	cnt = data->cnt + (nested ? 27 : 0);
4761 
4762 	/* Multiply cnt by ~e, to make some unique increment */
4763 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4764 
4765 	len = size + sizeof(struct rb_item);
4766 
4767 	started = rb_test_started;
4768 	/* read rb_test_started before checking buffer enabled */
4769 	smp_rmb();
4770 
4771 	event = ring_buffer_lock_reserve(data->buffer, len);
4772 	if (!event) {
4773 		/* Ignore dropped events before test starts. */
4774 		if (started) {
4775 			if (nested)
4776 				data->bytes_dropped += len;
4777 			else
4778 				data->bytes_dropped_nested += len;
4779 		}
4780 		return len;
4781 	}
4782 
4783 	event_len = ring_buffer_event_length(event);
4784 
4785 	if (RB_WARN_ON(data->buffer, event_len < len))
4786 		goto out;
4787 
4788 	item = ring_buffer_event_data(event);
4789 	item->size = size;
4790 	memcpy(item->str, rb_string, size);
4791 
4792 	if (nested) {
4793 		data->bytes_alloc_nested += event_len;
4794 		data->bytes_written_nested += len;
4795 		data->events_nested++;
4796 		if (!data->min_size_nested || len < data->min_size_nested)
4797 			data->min_size_nested = len;
4798 		if (len > data->max_size_nested)
4799 			data->max_size_nested = len;
4800 	} else {
4801 		data->bytes_alloc += event_len;
4802 		data->bytes_written += len;
4803 		data->events++;
4804 		if (!data->min_size || len < data->min_size)
4805 			data->max_size = len;
4806 		if (len > data->max_size)
4807 			data->max_size = len;
4808 	}
4809 
4810  out:
4811 	ring_buffer_unlock_commit(data->buffer, event);
4812 
4813 	return 0;
4814 }
4815 
4816 static __init int rb_test(void *arg)
4817 {
4818 	struct rb_test_data *data = arg;
4819 
4820 	while (!kthread_should_stop()) {
4821 		rb_write_something(data, false);
4822 		data->cnt++;
4823 
4824 		set_current_state(TASK_INTERRUPTIBLE);
4825 		/* Now sleep between a min of 100-300us and a max of 1ms */
4826 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4827 	}
4828 
4829 	return 0;
4830 }
4831 
4832 static __init void rb_ipi(void *ignore)
4833 {
4834 	struct rb_test_data *data;
4835 	int cpu = smp_processor_id();
4836 
4837 	data = &rb_data[cpu];
4838 	rb_write_something(data, true);
4839 }
4840 
4841 static __init int rb_hammer_test(void *arg)
4842 {
4843 	while (!kthread_should_stop()) {
4844 
4845 		/* Send an IPI to all cpus to write data! */
4846 		smp_call_function(rb_ipi, NULL, 1);
4847 		/* No sleep, but for non preempt, let others run */
4848 		schedule();
4849 	}
4850 
4851 	return 0;
4852 }
4853 
4854 static __init int test_ringbuffer(void)
4855 {
4856 	struct task_struct *rb_hammer;
4857 	struct ring_buffer *buffer;
4858 	int cpu;
4859 	int ret = 0;
4860 
4861 	pr_info("Running ring buffer tests...\n");
4862 
4863 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4864 	if (WARN_ON(!buffer))
4865 		return 0;
4866 
4867 	/* Disable buffer so that threads can't write to it yet */
4868 	ring_buffer_record_off(buffer);
4869 
4870 	for_each_online_cpu(cpu) {
4871 		rb_data[cpu].buffer = buffer;
4872 		rb_data[cpu].cpu = cpu;
4873 		rb_data[cpu].cnt = cpu;
4874 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4875 						 "rbtester/%d", cpu);
4876 		if (WARN_ON(!rb_threads[cpu])) {
4877 			pr_cont("FAILED\n");
4878 			ret = -1;
4879 			goto out_free;
4880 		}
4881 
4882 		kthread_bind(rb_threads[cpu], cpu);
4883  		wake_up_process(rb_threads[cpu]);
4884 	}
4885 
4886 	/* Now create the rb hammer! */
4887 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4888 	if (WARN_ON(!rb_hammer)) {
4889 		pr_cont("FAILED\n");
4890 		ret = -1;
4891 		goto out_free;
4892 	}
4893 
4894 	ring_buffer_record_on(buffer);
4895 	/*
4896 	 * Show buffer is enabled before setting rb_test_started.
4897 	 * Yes there's a small race window where events could be
4898 	 * dropped and the thread wont catch it. But when a ring
4899 	 * buffer gets enabled, there will always be some kind of
4900 	 * delay before other CPUs see it. Thus, we don't care about
4901 	 * those dropped events. We care about events dropped after
4902 	 * the threads see that the buffer is active.
4903 	 */
4904 	smp_wmb();
4905 	rb_test_started = true;
4906 
4907 	set_current_state(TASK_INTERRUPTIBLE);
4908 	/* Just run for 10 seconds */;
4909 	schedule_timeout(10 * HZ);
4910 
4911 	kthread_stop(rb_hammer);
4912 
4913  out_free:
4914 	for_each_online_cpu(cpu) {
4915 		if (!rb_threads[cpu])
4916 			break;
4917 		kthread_stop(rb_threads[cpu]);
4918 	}
4919 	if (ret) {
4920 		ring_buffer_free(buffer);
4921 		return ret;
4922 	}
4923 
4924 	/* Report! */
4925 	pr_info("finished\n");
4926 	for_each_online_cpu(cpu) {
4927 		struct ring_buffer_event *event;
4928 		struct rb_test_data *data = &rb_data[cpu];
4929 		struct rb_item *item;
4930 		unsigned long total_events;
4931 		unsigned long total_dropped;
4932 		unsigned long total_written;
4933 		unsigned long total_alloc;
4934 		unsigned long total_read = 0;
4935 		unsigned long total_size = 0;
4936 		unsigned long total_len = 0;
4937 		unsigned long total_lost = 0;
4938 		unsigned long lost;
4939 		int big_event_size;
4940 		int small_event_size;
4941 
4942 		ret = -1;
4943 
4944 		total_events = data->events + data->events_nested;
4945 		total_written = data->bytes_written + data->bytes_written_nested;
4946 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4947 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4948 
4949 		big_event_size = data->max_size + data->max_size_nested;
4950 		small_event_size = data->min_size + data->min_size_nested;
4951 
4952 		pr_info("CPU %d:\n", cpu);
4953 		pr_info("              events:    %ld\n", total_events);
4954 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4955 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4956 		pr_info("       written bytes:    %ld\n", total_written);
4957 		pr_info("       biggest event:    %d\n", big_event_size);
4958 		pr_info("      smallest event:    %d\n", small_event_size);
4959 
4960 		if (RB_WARN_ON(buffer, total_dropped))
4961 			break;
4962 
4963 		ret = 0;
4964 
4965 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4966 			total_lost += lost;
4967 			item = ring_buffer_event_data(event);
4968 			total_len += ring_buffer_event_length(event);
4969 			total_size += item->size + sizeof(struct rb_item);
4970 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4971 				pr_info("FAILED!\n");
4972 				pr_info("buffer had: %.*s\n", item->size, item->str);
4973 				pr_info("expected:   %.*s\n", item->size, rb_string);
4974 				RB_WARN_ON(buffer, 1);
4975 				ret = -1;
4976 				break;
4977 			}
4978 			total_read++;
4979 		}
4980 		if (ret)
4981 			break;
4982 
4983 		ret = -1;
4984 
4985 		pr_info("         read events:   %ld\n", total_read);
4986 		pr_info("         lost events:   %ld\n", total_lost);
4987 		pr_info("        total events:   %ld\n", total_lost + total_read);
4988 		pr_info("  recorded len bytes:   %ld\n", total_len);
4989 		pr_info(" recorded size bytes:   %ld\n", total_size);
4990 		if (total_lost)
4991 			pr_info(" With dropped events, record len and size may not match\n"
4992 				" alloced and written from above\n");
4993 		if (!total_lost) {
4994 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4995 				       total_size != total_written))
4996 				break;
4997 		}
4998 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4999 			break;
5000 
5001 		ret = 0;
5002 	}
5003 	if (!ret)
5004 		pr_info("Ring buffer PASSED!\n");
5005 
5006 	ring_buffer_free(buffer);
5007 	return 0;
5008 }
5009 
5010 late_initcall(test_ringbuffer);
5011 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5012