1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kthread.h> /* for self test */ 15 #include <linux/kmemcheck.h> 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 struct buffer_data_page { 284 u64 time_stamp; /* page time stamp */ 285 local_t commit; /* write committed index */ 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 287 }; 288 289 /* 290 * Note, the buffer_page list must be first. The buffer pages 291 * are allocated in cache lines, which means that each buffer 292 * page will be at the beginning of a cache line, and thus 293 * the least significant bits will be zero. We use this to 294 * add flags in the list struct pointers, to make the ring buffer 295 * lockless. 296 */ 297 struct buffer_page { 298 struct list_head list; /* list of buffer pages */ 299 local_t write; /* index for next write */ 300 unsigned read; /* index for next read */ 301 local_t entries; /* entries on this page */ 302 unsigned long real_end; /* real end of data */ 303 struct buffer_data_page *page; /* Actual data page */ 304 }; 305 306 /* 307 * The buffer page counters, write and entries, must be reset 308 * atomically when crossing page boundaries. To synchronize this 309 * update, two counters are inserted into the number. One is 310 * the actual counter for the write position or count on the page. 311 * 312 * The other is a counter of updaters. Before an update happens 313 * the update partition of the counter is incremented. This will 314 * allow the updater to update the counter atomically. 315 * 316 * The counter is 20 bits, and the state data is 12. 317 */ 318 #define RB_WRITE_MASK 0xfffff 319 #define RB_WRITE_INTCNT (1 << 20) 320 321 static void rb_init_page(struct buffer_data_page *bpage) 322 { 323 local_set(&bpage->commit, 0); 324 } 325 326 /** 327 * ring_buffer_page_len - the size of data on the page. 328 * @page: The page to read 329 * 330 * Returns the amount of data on the page, including buffer page header. 331 */ 332 size_t ring_buffer_page_len(void *page) 333 { 334 return local_read(&((struct buffer_data_page *)page)->commit) 335 + BUF_PAGE_HDR_SIZE; 336 } 337 338 /* 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 340 * this issue out. 341 */ 342 static void free_buffer_page(struct buffer_page *bpage) 343 { 344 free_page((unsigned long)bpage->page); 345 kfree(bpage); 346 } 347 348 /* 349 * We need to fit the time_stamp delta into 27 bits. 350 */ 351 static inline int test_time_stamp(u64 delta) 352 { 353 if (delta & TS_DELTA_TEST) 354 return 1; 355 return 0; 356 } 357 358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 359 360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 362 363 int ring_buffer_print_page_header(struct trace_seq *s) 364 { 365 struct buffer_data_page field; 366 367 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 368 "offset:0;\tsize:%u;\tsigned:%u;\n", 369 (unsigned int)sizeof(field.time_stamp), 370 (unsigned int)is_signed_type(u64)); 371 372 trace_seq_printf(s, "\tfield: local_t commit;\t" 373 "offset:%u;\tsize:%u;\tsigned:%u;\n", 374 (unsigned int)offsetof(typeof(field), commit), 375 (unsigned int)sizeof(field.commit), 376 (unsigned int)is_signed_type(long)); 377 378 trace_seq_printf(s, "\tfield: int overwrite;\t" 379 "offset:%u;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)offsetof(typeof(field), commit), 381 1, 382 (unsigned int)is_signed_type(long)); 383 384 trace_seq_printf(s, "\tfield: char data;\t" 385 "offset:%u;\tsize:%u;\tsigned:%u;\n", 386 (unsigned int)offsetof(typeof(field), data), 387 (unsigned int)BUF_PAGE_SIZE, 388 (unsigned int)is_signed_type(char)); 389 390 return !trace_seq_has_overflowed(s); 391 } 392 393 struct rb_irq_work { 394 struct irq_work work; 395 wait_queue_head_t waiters; 396 wait_queue_head_t full_waiters; 397 bool waiters_pending; 398 bool full_waiters_pending; 399 bool wakeup_full; 400 }; 401 402 /* 403 * Structure to hold event state and handle nested events. 404 */ 405 struct rb_event_info { 406 u64 ts; 407 u64 delta; 408 unsigned long length; 409 struct buffer_page *tail_page; 410 int add_timestamp; 411 }; 412 413 /* 414 * Used for which event context the event is in. 415 * NMI = 0 416 * IRQ = 1 417 * SOFTIRQ = 2 418 * NORMAL = 3 419 * 420 * See trace_recursive_lock() comment below for more details. 421 */ 422 enum { 423 RB_CTX_NMI, 424 RB_CTX_IRQ, 425 RB_CTX_SOFTIRQ, 426 RB_CTX_NORMAL, 427 RB_CTX_MAX 428 }; 429 430 /* 431 * head_page == tail_page && head == tail then buffer is empty. 432 */ 433 struct ring_buffer_per_cpu { 434 int cpu; 435 atomic_t record_disabled; 436 struct ring_buffer *buffer; 437 raw_spinlock_t reader_lock; /* serialize readers */ 438 arch_spinlock_t lock; 439 struct lock_class_key lock_key; 440 unsigned int nr_pages; 441 unsigned int current_context; 442 struct list_head *pages; 443 struct buffer_page *head_page; /* read from head */ 444 struct buffer_page *tail_page; /* write to tail */ 445 struct buffer_page *commit_page; /* committed pages */ 446 struct buffer_page *reader_page; 447 unsigned long lost_events; 448 unsigned long last_overrun; 449 local_t entries_bytes; 450 local_t entries; 451 local_t overrun; 452 local_t commit_overrun; 453 local_t dropped_events; 454 local_t committing; 455 local_t commits; 456 unsigned long read; 457 unsigned long read_bytes; 458 u64 write_stamp; 459 u64 read_stamp; 460 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 461 int nr_pages_to_update; 462 struct list_head new_pages; /* new pages to add */ 463 struct work_struct update_pages_work; 464 struct completion update_done; 465 466 struct rb_irq_work irq_work; 467 }; 468 469 struct ring_buffer { 470 unsigned flags; 471 int cpus; 472 atomic_t record_disabled; 473 atomic_t resize_disabled; 474 cpumask_var_t cpumask; 475 476 struct lock_class_key *reader_lock_key; 477 478 struct mutex mutex; 479 480 struct ring_buffer_per_cpu **buffers; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 struct notifier_block cpu_notify; 484 #endif 485 u64 (*clock)(void); 486 487 struct rb_irq_work irq_work; 488 }; 489 490 struct ring_buffer_iter { 491 struct ring_buffer_per_cpu *cpu_buffer; 492 unsigned long head; 493 struct buffer_page *head_page; 494 struct buffer_page *cache_reader_page; 495 unsigned long cache_read; 496 u64 read_stamp; 497 }; 498 499 /* 500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 501 * 502 * Schedules a delayed work to wake up any task that is blocked on the 503 * ring buffer waiters queue. 504 */ 505 static void rb_wake_up_waiters(struct irq_work *work) 506 { 507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 508 509 wake_up_all(&rbwork->waiters); 510 if (rbwork->wakeup_full) { 511 rbwork->wakeup_full = false; 512 wake_up_all(&rbwork->full_waiters); 513 } 514 } 515 516 /** 517 * ring_buffer_wait - wait for input to the ring buffer 518 * @buffer: buffer to wait on 519 * @cpu: the cpu buffer to wait on 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 521 * 522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 523 * as data is added to any of the @buffer's cpu buffers. Otherwise 524 * it will wait for data to be added to a specific cpu buffer. 525 */ 526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 527 { 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 529 DEFINE_WAIT(wait); 530 struct rb_irq_work *work; 531 int ret = 0; 532 533 /* 534 * Depending on what the caller is waiting for, either any 535 * data in any cpu buffer, or a specific buffer, put the 536 * caller on the appropriate wait queue. 537 */ 538 if (cpu == RING_BUFFER_ALL_CPUS) { 539 work = &buffer->irq_work; 540 /* Full only makes sense on per cpu reads */ 541 full = false; 542 } else { 543 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 544 return -ENODEV; 545 cpu_buffer = buffer->buffers[cpu]; 546 work = &cpu_buffer->irq_work; 547 } 548 549 550 while (true) { 551 if (full) 552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 553 else 554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 555 556 /* 557 * The events can happen in critical sections where 558 * checking a work queue can cause deadlocks. 559 * After adding a task to the queue, this flag is set 560 * only to notify events to try to wake up the queue 561 * using irq_work. 562 * 563 * We don't clear it even if the buffer is no longer 564 * empty. The flag only causes the next event to run 565 * irq_work to do the work queue wake up. The worse 566 * that can happen if we race with !trace_empty() is that 567 * an event will cause an irq_work to try to wake up 568 * an empty queue. 569 * 570 * There's no reason to protect this flag either, as 571 * the work queue and irq_work logic will do the necessary 572 * synchronization for the wake ups. The only thing 573 * that is necessary is that the wake up happens after 574 * a task has been queued. It's OK for spurious wake ups. 575 */ 576 if (full) 577 work->full_waiters_pending = true; 578 else 579 work->waiters_pending = true; 580 581 if (signal_pending(current)) { 582 ret = -EINTR; 583 break; 584 } 585 586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 587 break; 588 589 if (cpu != RING_BUFFER_ALL_CPUS && 590 !ring_buffer_empty_cpu(buffer, cpu)) { 591 unsigned long flags; 592 bool pagebusy; 593 594 if (!full) 595 break; 596 597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 600 601 if (!pagebusy) 602 break; 603 } 604 605 schedule(); 606 } 607 608 if (full) 609 finish_wait(&work->full_waiters, &wait); 610 else 611 finish_wait(&work->waiters, &wait); 612 613 return ret; 614 } 615 616 /** 617 * ring_buffer_poll_wait - poll on buffer input 618 * @buffer: buffer to wait on 619 * @cpu: the cpu buffer to wait on 620 * @filp: the file descriptor 621 * @poll_table: The poll descriptor 622 * 623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 624 * as data is added to any of the @buffer's cpu buffers. Otherwise 625 * it will wait for data to be added to a specific cpu buffer. 626 * 627 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 628 * zero otherwise. 629 */ 630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 631 struct file *filp, poll_table *poll_table) 632 { 633 struct ring_buffer_per_cpu *cpu_buffer; 634 struct rb_irq_work *work; 635 636 if (cpu == RING_BUFFER_ALL_CPUS) 637 work = &buffer->irq_work; 638 else { 639 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 640 return -EINVAL; 641 642 cpu_buffer = buffer->buffers[cpu]; 643 work = &cpu_buffer->irq_work; 644 } 645 646 poll_wait(filp, &work->waiters, poll_table); 647 work->waiters_pending = true; 648 /* 649 * There's a tight race between setting the waiters_pending and 650 * checking if the ring buffer is empty. Once the waiters_pending bit 651 * is set, the next event will wake the task up, but we can get stuck 652 * if there's only a single event in. 653 * 654 * FIXME: Ideally, we need a memory barrier on the writer side as well, 655 * but adding a memory barrier to all events will cause too much of a 656 * performance hit in the fast path. We only need a memory barrier when 657 * the buffer goes from empty to having content. But as this race is 658 * extremely small, and it's not a problem if another event comes in, we 659 * will fix it later. 660 */ 661 smp_mb(); 662 663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 665 return POLLIN | POLLRDNORM; 666 return 0; 667 } 668 669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 670 #define RB_WARN_ON(b, cond) \ 671 ({ \ 672 int _____ret = unlikely(cond); \ 673 if (_____ret) { \ 674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 675 struct ring_buffer_per_cpu *__b = \ 676 (void *)b; \ 677 atomic_inc(&__b->buffer->record_disabled); \ 678 } else \ 679 atomic_inc(&b->record_disabled); \ 680 WARN_ON(1); \ 681 } \ 682 _____ret; \ 683 }) 684 685 /* Up this if you want to test the TIME_EXTENTS and normalization */ 686 #define DEBUG_SHIFT 0 687 688 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 689 { 690 /* shift to debug/test normalization and TIME_EXTENTS */ 691 return buffer->clock() << DEBUG_SHIFT; 692 } 693 694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 695 { 696 u64 time; 697 698 preempt_disable_notrace(); 699 time = rb_time_stamp(buffer); 700 preempt_enable_no_resched_notrace(); 701 702 return time; 703 } 704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 705 706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 707 int cpu, u64 *ts) 708 { 709 /* Just stupid testing the normalize function and deltas */ 710 *ts >>= DEBUG_SHIFT; 711 } 712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 713 714 /* 715 * Making the ring buffer lockless makes things tricky. 716 * Although writes only happen on the CPU that they are on, 717 * and they only need to worry about interrupts. Reads can 718 * happen on any CPU. 719 * 720 * The reader page is always off the ring buffer, but when the 721 * reader finishes with a page, it needs to swap its page with 722 * a new one from the buffer. The reader needs to take from 723 * the head (writes go to the tail). But if a writer is in overwrite 724 * mode and wraps, it must push the head page forward. 725 * 726 * Here lies the problem. 727 * 728 * The reader must be careful to replace only the head page, and 729 * not another one. As described at the top of the file in the 730 * ASCII art, the reader sets its old page to point to the next 731 * page after head. It then sets the page after head to point to 732 * the old reader page. But if the writer moves the head page 733 * during this operation, the reader could end up with the tail. 734 * 735 * We use cmpxchg to help prevent this race. We also do something 736 * special with the page before head. We set the LSB to 1. 737 * 738 * When the writer must push the page forward, it will clear the 739 * bit that points to the head page, move the head, and then set 740 * the bit that points to the new head page. 741 * 742 * We also don't want an interrupt coming in and moving the head 743 * page on another writer. Thus we use the second LSB to catch 744 * that too. Thus: 745 * 746 * head->list->prev->next bit 1 bit 0 747 * ------- ------- 748 * Normal page 0 0 749 * Points to head page 0 1 750 * New head page 1 0 751 * 752 * Note we can not trust the prev pointer of the head page, because: 753 * 754 * +----+ +-----+ +-----+ 755 * | |------>| T |---X--->| N | 756 * | |<------| | | | 757 * +----+ +-----+ +-----+ 758 * ^ ^ | 759 * | +-----+ | | 760 * +----------| R |----------+ | 761 * | |<-----------+ 762 * +-----+ 763 * 764 * Key: ---X--> HEAD flag set in pointer 765 * T Tail page 766 * R Reader page 767 * N Next page 768 * 769 * (see __rb_reserve_next() to see where this happens) 770 * 771 * What the above shows is that the reader just swapped out 772 * the reader page with a page in the buffer, but before it 773 * could make the new header point back to the new page added 774 * it was preempted by a writer. The writer moved forward onto 775 * the new page added by the reader and is about to move forward 776 * again. 777 * 778 * You can see, it is legitimate for the previous pointer of 779 * the head (or any page) not to point back to itself. But only 780 * temporarially. 781 */ 782 783 #define RB_PAGE_NORMAL 0UL 784 #define RB_PAGE_HEAD 1UL 785 #define RB_PAGE_UPDATE 2UL 786 787 788 #define RB_FLAG_MASK 3UL 789 790 /* PAGE_MOVED is not part of the mask */ 791 #define RB_PAGE_MOVED 4UL 792 793 /* 794 * rb_list_head - remove any bit 795 */ 796 static struct list_head *rb_list_head(struct list_head *list) 797 { 798 unsigned long val = (unsigned long)list; 799 800 return (struct list_head *)(val & ~RB_FLAG_MASK); 801 } 802 803 /* 804 * rb_is_head_page - test if the given page is the head page 805 * 806 * Because the reader may move the head_page pointer, we can 807 * not trust what the head page is (it may be pointing to 808 * the reader page). But if the next page is a header page, 809 * its flags will be non zero. 810 */ 811 static inline int 812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 813 struct buffer_page *page, struct list_head *list) 814 { 815 unsigned long val; 816 817 val = (unsigned long)list->next; 818 819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 820 return RB_PAGE_MOVED; 821 822 return val & RB_FLAG_MASK; 823 } 824 825 /* 826 * rb_is_reader_page 827 * 828 * The unique thing about the reader page, is that, if the 829 * writer is ever on it, the previous pointer never points 830 * back to the reader page. 831 */ 832 static int rb_is_reader_page(struct buffer_page *page) 833 { 834 struct list_head *list = page->list.prev; 835 836 return rb_list_head(list->next) != &page->list; 837 } 838 839 /* 840 * rb_set_list_to_head - set a list_head to be pointing to head. 841 */ 842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 843 struct list_head *list) 844 { 845 unsigned long *ptr; 846 847 ptr = (unsigned long *)&list->next; 848 *ptr |= RB_PAGE_HEAD; 849 *ptr &= ~RB_PAGE_UPDATE; 850 } 851 852 /* 853 * rb_head_page_activate - sets up head page 854 */ 855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 856 { 857 struct buffer_page *head; 858 859 head = cpu_buffer->head_page; 860 if (!head) 861 return; 862 863 /* 864 * Set the previous list pointer to have the HEAD flag. 865 */ 866 rb_set_list_to_head(cpu_buffer, head->list.prev); 867 } 868 869 static void rb_list_head_clear(struct list_head *list) 870 { 871 unsigned long *ptr = (unsigned long *)&list->next; 872 873 *ptr &= ~RB_FLAG_MASK; 874 } 875 876 /* 877 * rb_head_page_dactivate - clears head page ptr (for free list) 878 */ 879 static void 880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 881 { 882 struct list_head *hd; 883 884 /* Go through the whole list and clear any pointers found. */ 885 rb_list_head_clear(cpu_buffer->pages); 886 887 list_for_each(hd, cpu_buffer->pages) 888 rb_list_head_clear(hd); 889 } 890 891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 892 struct buffer_page *head, 893 struct buffer_page *prev, 894 int old_flag, int new_flag) 895 { 896 struct list_head *list; 897 unsigned long val = (unsigned long)&head->list; 898 unsigned long ret; 899 900 list = &prev->list; 901 902 val &= ~RB_FLAG_MASK; 903 904 ret = cmpxchg((unsigned long *)&list->next, 905 val | old_flag, val | new_flag); 906 907 /* check if the reader took the page */ 908 if ((ret & ~RB_FLAG_MASK) != val) 909 return RB_PAGE_MOVED; 910 911 return ret & RB_FLAG_MASK; 912 } 913 914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 915 struct buffer_page *head, 916 struct buffer_page *prev, 917 int old_flag) 918 { 919 return rb_head_page_set(cpu_buffer, head, prev, 920 old_flag, RB_PAGE_UPDATE); 921 } 922 923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 924 struct buffer_page *head, 925 struct buffer_page *prev, 926 int old_flag) 927 { 928 return rb_head_page_set(cpu_buffer, head, prev, 929 old_flag, RB_PAGE_HEAD); 930 } 931 932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 933 struct buffer_page *head, 934 struct buffer_page *prev, 935 int old_flag) 936 { 937 return rb_head_page_set(cpu_buffer, head, prev, 938 old_flag, RB_PAGE_NORMAL); 939 } 940 941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 942 struct buffer_page **bpage) 943 { 944 struct list_head *p = rb_list_head((*bpage)->list.next); 945 946 *bpage = list_entry(p, struct buffer_page, list); 947 } 948 949 static struct buffer_page * 950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 951 { 952 struct buffer_page *head; 953 struct buffer_page *page; 954 struct list_head *list; 955 int i; 956 957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 958 return NULL; 959 960 /* sanity check */ 961 list = cpu_buffer->pages; 962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 963 return NULL; 964 965 page = head = cpu_buffer->head_page; 966 /* 967 * It is possible that the writer moves the header behind 968 * where we started, and we miss in one loop. 969 * A second loop should grab the header, but we'll do 970 * three loops just because I'm paranoid. 971 */ 972 for (i = 0; i < 3; i++) { 973 do { 974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 975 cpu_buffer->head_page = page; 976 return page; 977 } 978 rb_inc_page(cpu_buffer, &page); 979 } while (page != head); 980 } 981 982 RB_WARN_ON(cpu_buffer, 1); 983 984 return NULL; 985 } 986 987 static int rb_head_page_replace(struct buffer_page *old, 988 struct buffer_page *new) 989 { 990 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 991 unsigned long val; 992 unsigned long ret; 993 994 val = *ptr & ~RB_FLAG_MASK; 995 val |= RB_PAGE_HEAD; 996 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 998 999 return ret == val; 1000 } 1001 1002 /* 1003 * rb_tail_page_update - move the tail page forward 1004 * 1005 * Returns 1 if moved tail page, 0 if someone else did. 1006 */ 1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1008 struct buffer_page *tail_page, 1009 struct buffer_page *next_page) 1010 { 1011 struct buffer_page *old_tail; 1012 unsigned long old_entries; 1013 unsigned long old_write; 1014 int ret = 0; 1015 1016 /* 1017 * The tail page now needs to be moved forward. 1018 * 1019 * We need to reset the tail page, but without messing 1020 * with possible erasing of data brought in by interrupts 1021 * that have moved the tail page and are currently on it. 1022 * 1023 * We add a counter to the write field to denote this. 1024 */ 1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1027 1028 /* 1029 * Just make sure we have seen our old_write and synchronize 1030 * with any interrupts that come in. 1031 */ 1032 barrier(); 1033 1034 /* 1035 * If the tail page is still the same as what we think 1036 * it is, then it is up to us to update the tail 1037 * pointer. 1038 */ 1039 if (tail_page == cpu_buffer->tail_page) { 1040 /* Zero the write counter */ 1041 unsigned long val = old_write & ~RB_WRITE_MASK; 1042 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1043 1044 /* 1045 * This will only succeed if an interrupt did 1046 * not come in and change it. In which case, we 1047 * do not want to modify it. 1048 * 1049 * We add (void) to let the compiler know that we do not care 1050 * about the return value of these functions. We use the 1051 * cmpxchg to only update if an interrupt did not already 1052 * do it for us. If the cmpxchg fails, we don't care. 1053 */ 1054 (void)local_cmpxchg(&next_page->write, old_write, val); 1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1056 1057 /* 1058 * No need to worry about races with clearing out the commit. 1059 * it only can increment when a commit takes place. But that 1060 * only happens in the outer most nested commit. 1061 */ 1062 local_set(&next_page->page->commit, 0); 1063 1064 old_tail = cmpxchg(&cpu_buffer->tail_page, 1065 tail_page, next_page); 1066 1067 if (old_tail == tail_page) 1068 ret = 1; 1069 } 1070 1071 return ret; 1072 } 1073 1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1075 struct buffer_page *bpage) 1076 { 1077 unsigned long val = (unsigned long)bpage; 1078 1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1080 return 1; 1081 1082 return 0; 1083 } 1084 1085 /** 1086 * rb_check_list - make sure a pointer to a list has the last bits zero 1087 */ 1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1089 struct list_head *list) 1090 { 1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1092 return 1; 1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1094 return 1; 1095 return 0; 1096 } 1097 1098 /** 1099 * rb_check_pages - integrity check of buffer pages 1100 * @cpu_buffer: CPU buffer with pages to test 1101 * 1102 * As a safety measure we check to make sure the data pages have not 1103 * been corrupted. 1104 */ 1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1106 { 1107 struct list_head *head = cpu_buffer->pages; 1108 struct buffer_page *bpage, *tmp; 1109 1110 /* Reset the head page if it exists */ 1111 if (cpu_buffer->head_page) 1112 rb_set_head_page(cpu_buffer); 1113 1114 rb_head_page_deactivate(cpu_buffer); 1115 1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1117 return -1; 1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1119 return -1; 1120 1121 if (rb_check_list(cpu_buffer, head)) 1122 return -1; 1123 1124 list_for_each_entry_safe(bpage, tmp, head, list) { 1125 if (RB_WARN_ON(cpu_buffer, 1126 bpage->list.next->prev != &bpage->list)) 1127 return -1; 1128 if (RB_WARN_ON(cpu_buffer, 1129 bpage->list.prev->next != &bpage->list)) 1130 return -1; 1131 if (rb_check_list(cpu_buffer, &bpage->list)) 1132 return -1; 1133 } 1134 1135 rb_head_page_activate(cpu_buffer); 1136 1137 return 0; 1138 } 1139 1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1141 { 1142 int i; 1143 struct buffer_page *bpage, *tmp; 1144 1145 for (i = 0; i < nr_pages; i++) { 1146 struct page *page; 1147 /* 1148 * __GFP_NORETRY flag makes sure that the allocation fails 1149 * gracefully without invoking oom-killer and the system is 1150 * not destabilized. 1151 */ 1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1153 GFP_KERNEL | __GFP_NORETRY, 1154 cpu_to_node(cpu)); 1155 if (!bpage) 1156 goto free_pages; 1157 1158 list_add(&bpage->list, pages); 1159 1160 page = alloc_pages_node(cpu_to_node(cpu), 1161 GFP_KERNEL | __GFP_NORETRY, 0); 1162 if (!page) 1163 goto free_pages; 1164 bpage->page = page_address(page); 1165 rb_init_page(bpage->page); 1166 } 1167 1168 return 0; 1169 1170 free_pages: 1171 list_for_each_entry_safe(bpage, tmp, pages, list) { 1172 list_del_init(&bpage->list); 1173 free_buffer_page(bpage); 1174 } 1175 1176 return -ENOMEM; 1177 } 1178 1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1180 unsigned nr_pages) 1181 { 1182 LIST_HEAD(pages); 1183 1184 WARN_ON(!nr_pages); 1185 1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1187 return -ENOMEM; 1188 1189 /* 1190 * The ring buffer page list is a circular list that does not 1191 * start and end with a list head. All page list items point to 1192 * other pages. 1193 */ 1194 cpu_buffer->pages = pages.next; 1195 list_del(&pages); 1196 1197 cpu_buffer->nr_pages = nr_pages; 1198 1199 rb_check_pages(cpu_buffer); 1200 1201 return 0; 1202 } 1203 1204 static struct ring_buffer_per_cpu * 1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1206 { 1207 struct ring_buffer_per_cpu *cpu_buffer; 1208 struct buffer_page *bpage; 1209 struct page *page; 1210 int ret; 1211 1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1213 GFP_KERNEL, cpu_to_node(cpu)); 1214 if (!cpu_buffer) 1215 return NULL; 1216 1217 cpu_buffer->cpu = cpu; 1218 cpu_buffer->buffer = buffer; 1219 raw_spin_lock_init(&cpu_buffer->reader_lock); 1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1223 init_completion(&cpu_buffer->update_done); 1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1227 1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1229 GFP_KERNEL, cpu_to_node(cpu)); 1230 if (!bpage) 1231 goto fail_free_buffer; 1232 1233 rb_check_bpage(cpu_buffer, bpage); 1234 1235 cpu_buffer->reader_page = bpage; 1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1237 if (!page) 1238 goto fail_free_reader; 1239 bpage->page = page_address(page); 1240 rb_init_page(bpage->page); 1241 1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1243 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1244 1245 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1246 if (ret < 0) 1247 goto fail_free_reader; 1248 1249 cpu_buffer->head_page 1250 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1252 1253 rb_head_page_activate(cpu_buffer); 1254 1255 return cpu_buffer; 1256 1257 fail_free_reader: 1258 free_buffer_page(cpu_buffer->reader_page); 1259 1260 fail_free_buffer: 1261 kfree(cpu_buffer); 1262 return NULL; 1263 } 1264 1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1266 { 1267 struct list_head *head = cpu_buffer->pages; 1268 struct buffer_page *bpage, *tmp; 1269 1270 free_buffer_page(cpu_buffer->reader_page); 1271 1272 rb_head_page_deactivate(cpu_buffer); 1273 1274 if (head) { 1275 list_for_each_entry_safe(bpage, tmp, head, list) { 1276 list_del_init(&bpage->list); 1277 free_buffer_page(bpage); 1278 } 1279 bpage = list_entry(head, struct buffer_page, list); 1280 free_buffer_page(bpage); 1281 } 1282 1283 kfree(cpu_buffer); 1284 } 1285 1286 #ifdef CONFIG_HOTPLUG_CPU 1287 static int rb_cpu_notify(struct notifier_block *self, 1288 unsigned long action, void *hcpu); 1289 #endif 1290 1291 /** 1292 * __ring_buffer_alloc - allocate a new ring_buffer 1293 * @size: the size in bytes per cpu that is needed. 1294 * @flags: attributes to set for the ring buffer. 1295 * 1296 * Currently the only flag that is available is the RB_FL_OVERWRITE 1297 * flag. This flag means that the buffer will overwrite old data 1298 * when the buffer wraps. If this flag is not set, the buffer will 1299 * drop data when the tail hits the head. 1300 */ 1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1302 struct lock_class_key *key) 1303 { 1304 struct ring_buffer *buffer; 1305 int bsize; 1306 int cpu, nr_pages; 1307 1308 /* keep it in its own cache line */ 1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1310 GFP_KERNEL); 1311 if (!buffer) 1312 return NULL; 1313 1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1315 goto fail_free_buffer; 1316 1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1318 buffer->flags = flags; 1319 buffer->clock = trace_clock_local; 1320 buffer->reader_lock_key = key; 1321 1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1323 init_waitqueue_head(&buffer->irq_work.waiters); 1324 1325 /* need at least two pages */ 1326 if (nr_pages < 2) 1327 nr_pages = 2; 1328 1329 /* 1330 * In case of non-hotplug cpu, if the ring-buffer is allocated 1331 * in early initcall, it will not be notified of secondary cpus. 1332 * In that off case, we need to allocate for all possible cpus. 1333 */ 1334 #ifdef CONFIG_HOTPLUG_CPU 1335 cpu_notifier_register_begin(); 1336 cpumask_copy(buffer->cpumask, cpu_online_mask); 1337 #else 1338 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1339 #endif 1340 buffer->cpus = nr_cpu_ids; 1341 1342 bsize = sizeof(void *) * nr_cpu_ids; 1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1344 GFP_KERNEL); 1345 if (!buffer->buffers) 1346 goto fail_free_cpumask; 1347 1348 for_each_buffer_cpu(buffer, cpu) { 1349 buffer->buffers[cpu] = 1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1351 if (!buffer->buffers[cpu]) 1352 goto fail_free_buffers; 1353 } 1354 1355 #ifdef CONFIG_HOTPLUG_CPU 1356 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1357 buffer->cpu_notify.priority = 0; 1358 __register_cpu_notifier(&buffer->cpu_notify); 1359 cpu_notifier_register_done(); 1360 #endif 1361 1362 mutex_init(&buffer->mutex); 1363 1364 return buffer; 1365 1366 fail_free_buffers: 1367 for_each_buffer_cpu(buffer, cpu) { 1368 if (buffer->buffers[cpu]) 1369 rb_free_cpu_buffer(buffer->buffers[cpu]); 1370 } 1371 kfree(buffer->buffers); 1372 1373 fail_free_cpumask: 1374 free_cpumask_var(buffer->cpumask); 1375 #ifdef CONFIG_HOTPLUG_CPU 1376 cpu_notifier_register_done(); 1377 #endif 1378 1379 fail_free_buffer: 1380 kfree(buffer); 1381 return NULL; 1382 } 1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1384 1385 /** 1386 * ring_buffer_free - free a ring buffer. 1387 * @buffer: the buffer to free. 1388 */ 1389 void 1390 ring_buffer_free(struct ring_buffer *buffer) 1391 { 1392 int cpu; 1393 1394 #ifdef CONFIG_HOTPLUG_CPU 1395 cpu_notifier_register_begin(); 1396 __unregister_cpu_notifier(&buffer->cpu_notify); 1397 #endif 1398 1399 for_each_buffer_cpu(buffer, cpu) 1400 rb_free_cpu_buffer(buffer->buffers[cpu]); 1401 1402 #ifdef CONFIG_HOTPLUG_CPU 1403 cpu_notifier_register_done(); 1404 #endif 1405 1406 kfree(buffer->buffers); 1407 free_cpumask_var(buffer->cpumask); 1408 1409 kfree(buffer); 1410 } 1411 EXPORT_SYMBOL_GPL(ring_buffer_free); 1412 1413 void ring_buffer_set_clock(struct ring_buffer *buffer, 1414 u64 (*clock)(void)) 1415 { 1416 buffer->clock = clock; 1417 } 1418 1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1420 1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1422 { 1423 return local_read(&bpage->entries) & RB_WRITE_MASK; 1424 } 1425 1426 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1427 { 1428 return local_read(&bpage->write) & RB_WRITE_MASK; 1429 } 1430 1431 static int 1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1433 { 1434 struct list_head *tail_page, *to_remove, *next_page; 1435 struct buffer_page *to_remove_page, *tmp_iter_page; 1436 struct buffer_page *last_page, *first_page; 1437 unsigned int nr_removed; 1438 unsigned long head_bit; 1439 int page_entries; 1440 1441 head_bit = 0; 1442 1443 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1444 atomic_inc(&cpu_buffer->record_disabled); 1445 /* 1446 * We don't race with the readers since we have acquired the reader 1447 * lock. We also don't race with writers after disabling recording. 1448 * This makes it easy to figure out the first and the last page to be 1449 * removed from the list. We unlink all the pages in between including 1450 * the first and last pages. This is done in a busy loop so that we 1451 * lose the least number of traces. 1452 * The pages are freed after we restart recording and unlock readers. 1453 */ 1454 tail_page = &cpu_buffer->tail_page->list; 1455 1456 /* 1457 * tail page might be on reader page, we remove the next page 1458 * from the ring buffer 1459 */ 1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1461 tail_page = rb_list_head(tail_page->next); 1462 to_remove = tail_page; 1463 1464 /* start of pages to remove */ 1465 first_page = list_entry(rb_list_head(to_remove->next), 1466 struct buffer_page, list); 1467 1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1469 to_remove = rb_list_head(to_remove)->next; 1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1471 } 1472 1473 next_page = rb_list_head(to_remove)->next; 1474 1475 /* 1476 * Now we remove all pages between tail_page and next_page. 1477 * Make sure that we have head_bit value preserved for the 1478 * next page 1479 */ 1480 tail_page->next = (struct list_head *)((unsigned long)next_page | 1481 head_bit); 1482 next_page = rb_list_head(next_page); 1483 next_page->prev = tail_page; 1484 1485 /* make sure pages points to a valid page in the ring buffer */ 1486 cpu_buffer->pages = next_page; 1487 1488 /* update head page */ 1489 if (head_bit) 1490 cpu_buffer->head_page = list_entry(next_page, 1491 struct buffer_page, list); 1492 1493 /* 1494 * change read pointer to make sure any read iterators reset 1495 * themselves 1496 */ 1497 cpu_buffer->read = 0; 1498 1499 /* pages are removed, resume tracing and then free the pages */ 1500 atomic_dec(&cpu_buffer->record_disabled); 1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1502 1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1504 1505 /* last buffer page to remove */ 1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1507 list); 1508 tmp_iter_page = first_page; 1509 1510 do { 1511 to_remove_page = tmp_iter_page; 1512 rb_inc_page(cpu_buffer, &tmp_iter_page); 1513 1514 /* update the counters */ 1515 page_entries = rb_page_entries(to_remove_page); 1516 if (page_entries) { 1517 /* 1518 * If something was added to this page, it was full 1519 * since it is not the tail page. So we deduct the 1520 * bytes consumed in ring buffer from here. 1521 * Increment overrun to account for the lost events. 1522 */ 1523 local_add(page_entries, &cpu_buffer->overrun); 1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1525 } 1526 1527 /* 1528 * We have already removed references to this list item, just 1529 * free up the buffer_page and its page 1530 */ 1531 free_buffer_page(to_remove_page); 1532 nr_removed--; 1533 1534 } while (to_remove_page != last_page); 1535 1536 RB_WARN_ON(cpu_buffer, nr_removed); 1537 1538 return nr_removed == 0; 1539 } 1540 1541 static int 1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1543 { 1544 struct list_head *pages = &cpu_buffer->new_pages; 1545 int retries, success; 1546 1547 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1548 /* 1549 * We are holding the reader lock, so the reader page won't be swapped 1550 * in the ring buffer. Now we are racing with the writer trying to 1551 * move head page and the tail page. 1552 * We are going to adapt the reader page update process where: 1553 * 1. We first splice the start and end of list of new pages between 1554 * the head page and its previous page. 1555 * 2. We cmpxchg the prev_page->next to point from head page to the 1556 * start of new pages list. 1557 * 3. Finally, we update the head->prev to the end of new list. 1558 * 1559 * We will try this process 10 times, to make sure that we don't keep 1560 * spinning. 1561 */ 1562 retries = 10; 1563 success = 0; 1564 while (retries--) { 1565 struct list_head *head_page, *prev_page, *r; 1566 struct list_head *last_page, *first_page; 1567 struct list_head *head_page_with_bit; 1568 1569 head_page = &rb_set_head_page(cpu_buffer)->list; 1570 if (!head_page) 1571 break; 1572 prev_page = head_page->prev; 1573 1574 first_page = pages->next; 1575 last_page = pages->prev; 1576 1577 head_page_with_bit = (struct list_head *) 1578 ((unsigned long)head_page | RB_PAGE_HEAD); 1579 1580 last_page->next = head_page_with_bit; 1581 first_page->prev = prev_page; 1582 1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1584 1585 if (r == head_page_with_bit) { 1586 /* 1587 * yay, we replaced the page pointer to our new list, 1588 * now, we just have to update to head page's prev 1589 * pointer to point to end of list 1590 */ 1591 head_page->prev = last_page; 1592 success = 1; 1593 break; 1594 } 1595 } 1596 1597 if (success) 1598 INIT_LIST_HEAD(pages); 1599 /* 1600 * If we weren't successful in adding in new pages, warn and stop 1601 * tracing 1602 */ 1603 RB_WARN_ON(cpu_buffer, !success); 1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1605 1606 /* free pages if they weren't inserted */ 1607 if (!success) { 1608 struct buffer_page *bpage, *tmp; 1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1610 list) { 1611 list_del_init(&bpage->list); 1612 free_buffer_page(bpage); 1613 } 1614 } 1615 return success; 1616 } 1617 1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1619 { 1620 int success; 1621 1622 if (cpu_buffer->nr_pages_to_update > 0) 1623 success = rb_insert_pages(cpu_buffer); 1624 else 1625 success = rb_remove_pages(cpu_buffer, 1626 -cpu_buffer->nr_pages_to_update); 1627 1628 if (success) 1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1630 } 1631 1632 static void update_pages_handler(struct work_struct *work) 1633 { 1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1635 struct ring_buffer_per_cpu, update_pages_work); 1636 rb_update_pages(cpu_buffer); 1637 complete(&cpu_buffer->update_done); 1638 } 1639 1640 /** 1641 * ring_buffer_resize - resize the ring buffer 1642 * @buffer: the buffer to resize. 1643 * @size: the new size. 1644 * @cpu_id: the cpu buffer to resize 1645 * 1646 * Minimum size is 2 * BUF_PAGE_SIZE. 1647 * 1648 * Returns 0 on success and < 0 on failure. 1649 */ 1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1651 int cpu_id) 1652 { 1653 struct ring_buffer_per_cpu *cpu_buffer; 1654 unsigned nr_pages; 1655 int cpu, err = 0; 1656 1657 /* 1658 * Always succeed at resizing a non-existent buffer: 1659 */ 1660 if (!buffer) 1661 return size; 1662 1663 /* Make sure the requested buffer exists */ 1664 if (cpu_id != RING_BUFFER_ALL_CPUS && 1665 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1666 return size; 1667 1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1669 size *= BUF_PAGE_SIZE; 1670 1671 /* we need a minimum of two pages */ 1672 if (size < BUF_PAGE_SIZE * 2) 1673 size = BUF_PAGE_SIZE * 2; 1674 1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1676 1677 /* 1678 * Don't succeed if resizing is disabled, as a reader might be 1679 * manipulating the ring buffer and is expecting a sane state while 1680 * this is true. 1681 */ 1682 if (atomic_read(&buffer->resize_disabled)) 1683 return -EBUSY; 1684 1685 /* prevent another thread from changing buffer sizes */ 1686 mutex_lock(&buffer->mutex); 1687 1688 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1689 /* calculate the pages to update */ 1690 for_each_buffer_cpu(buffer, cpu) { 1691 cpu_buffer = buffer->buffers[cpu]; 1692 1693 cpu_buffer->nr_pages_to_update = nr_pages - 1694 cpu_buffer->nr_pages; 1695 /* 1696 * nothing more to do for removing pages or no update 1697 */ 1698 if (cpu_buffer->nr_pages_to_update <= 0) 1699 continue; 1700 /* 1701 * to add pages, make sure all new pages can be 1702 * allocated without receiving ENOMEM 1703 */ 1704 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1706 &cpu_buffer->new_pages, cpu)) { 1707 /* not enough memory for new pages */ 1708 err = -ENOMEM; 1709 goto out_err; 1710 } 1711 } 1712 1713 get_online_cpus(); 1714 /* 1715 * Fire off all the required work handlers 1716 * We can't schedule on offline CPUs, but it's not necessary 1717 * since we can change their buffer sizes without any race. 1718 */ 1719 for_each_buffer_cpu(buffer, cpu) { 1720 cpu_buffer = buffer->buffers[cpu]; 1721 if (!cpu_buffer->nr_pages_to_update) 1722 continue; 1723 1724 /* Can't run something on an offline CPU. */ 1725 if (!cpu_online(cpu)) { 1726 rb_update_pages(cpu_buffer); 1727 cpu_buffer->nr_pages_to_update = 0; 1728 } else { 1729 schedule_work_on(cpu, 1730 &cpu_buffer->update_pages_work); 1731 } 1732 } 1733 1734 /* wait for all the updates to complete */ 1735 for_each_buffer_cpu(buffer, cpu) { 1736 cpu_buffer = buffer->buffers[cpu]; 1737 if (!cpu_buffer->nr_pages_to_update) 1738 continue; 1739 1740 if (cpu_online(cpu)) 1741 wait_for_completion(&cpu_buffer->update_done); 1742 cpu_buffer->nr_pages_to_update = 0; 1743 } 1744 1745 put_online_cpus(); 1746 } else { 1747 /* Make sure this CPU has been intitialized */ 1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1749 goto out; 1750 1751 cpu_buffer = buffer->buffers[cpu_id]; 1752 1753 if (nr_pages == cpu_buffer->nr_pages) 1754 goto out; 1755 1756 cpu_buffer->nr_pages_to_update = nr_pages - 1757 cpu_buffer->nr_pages; 1758 1759 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1760 if (cpu_buffer->nr_pages_to_update > 0 && 1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1762 &cpu_buffer->new_pages, cpu_id)) { 1763 err = -ENOMEM; 1764 goto out_err; 1765 } 1766 1767 get_online_cpus(); 1768 1769 /* Can't run something on an offline CPU. */ 1770 if (!cpu_online(cpu_id)) 1771 rb_update_pages(cpu_buffer); 1772 else { 1773 schedule_work_on(cpu_id, 1774 &cpu_buffer->update_pages_work); 1775 wait_for_completion(&cpu_buffer->update_done); 1776 } 1777 1778 cpu_buffer->nr_pages_to_update = 0; 1779 put_online_cpus(); 1780 } 1781 1782 out: 1783 /* 1784 * The ring buffer resize can happen with the ring buffer 1785 * enabled, so that the update disturbs the tracing as little 1786 * as possible. But if the buffer is disabled, we do not need 1787 * to worry about that, and we can take the time to verify 1788 * that the buffer is not corrupt. 1789 */ 1790 if (atomic_read(&buffer->record_disabled)) { 1791 atomic_inc(&buffer->record_disabled); 1792 /* 1793 * Even though the buffer was disabled, we must make sure 1794 * that it is truly disabled before calling rb_check_pages. 1795 * There could have been a race between checking 1796 * record_disable and incrementing it. 1797 */ 1798 synchronize_sched(); 1799 for_each_buffer_cpu(buffer, cpu) { 1800 cpu_buffer = buffer->buffers[cpu]; 1801 rb_check_pages(cpu_buffer); 1802 } 1803 atomic_dec(&buffer->record_disabled); 1804 } 1805 1806 mutex_unlock(&buffer->mutex); 1807 return size; 1808 1809 out_err: 1810 for_each_buffer_cpu(buffer, cpu) { 1811 struct buffer_page *bpage, *tmp; 1812 1813 cpu_buffer = buffer->buffers[cpu]; 1814 cpu_buffer->nr_pages_to_update = 0; 1815 1816 if (list_empty(&cpu_buffer->new_pages)) 1817 continue; 1818 1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1820 list) { 1821 list_del_init(&bpage->list); 1822 free_buffer_page(bpage); 1823 } 1824 } 1825 mutex_unlock(&buffer->mutex); 1826 return err; 1827 } 1828 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1829 1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1831 { 1832 mutex_lock(&buffer->mutex); 1833 if (val) 1834 buffer->flags |= RB_FL_OVERWRITE; 1835 else 1836 buffer->flags &= ~RB_FL_OVERWRITE; 1837 mutex_unlock(&buffer->mutex); 1838 } 1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1840 1841 static inline void * 1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1843 { 1844 return bpage->data + index; 1845 } 1846 1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1848 { 1849 return bpage->page->data + index; 1850 } 1851 1852 static inline struct ring_buffer_event * 1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1854 { 1855 return __rb_page_index(cpu_buffer->reader_page, 1856 cpu_buffer->reader_page->read); 1857 } 1858 1859 static inline struct ring_buffer_event * 1860 rb_iter_head_event(struct ring_buffer_iter *iter) 1861 { 1862 return __rb_page_index(iter->head_page, iter->head); 1863 } 1864 1865 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1866 { 1867 return local_read(&bpage->page->commit); 1868 } 1869 1870 /* Size is determined by what has been committed */ 1871 static inline unsigned rb_page_size(struct buffer_page *bpage) 1872 { 1873 return rb_page_commit(bpage); 1874 } 1875 1876 static inline unsigned 1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1878 { 1879 return rb_page_commit(cpu_buffer->commit_page); 1880 } 1881 1882 static inline unsigned 1883 rb_event_index(struct ring_buffer_event *event) 1884 { 1885 unsigned long addr = (unsigned long)event; 1886 1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1888 } 1889 1890 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1891 { 1892 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1893 cpu_buffer->reader_page->read = 0; 1894 } 1895 1896 static void rb_inc_iter(struct ring_buffer_iter *iter) 1897 { 1898 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1899 1900 /* 1901 * The iterator could be on the reader page (it starts there). 1902 * But the head could have moved, since the reader was 1903 * found. Check for this case and assign the iterator 1904 * to the head page instead of next. 1905 */ 1906 if (iter->head_page == cpu_buffer->reader_page) 1907 iter->head_page = rb_set_head_page(cpu_buffer); 1908 else 1909 rb_inc_page(cpu_buffer, &iter->head_page); 1910 1911 iter->read_stamp = iter->head_page->page->time_stamp; 1912 iter->head = 0; 1913 } 1914 1915 /* 1916 * rb_handle_head_page - writer hit the head page 1917 * 1918 * Returns: +1 to retry page 1919 * 0 to continue 1920 * -1 on error 1921 */ 1922 static int 1923 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1924 struct buffer_page *tail_page, 1925 struct buffer_page *next_page) 1926 { 1927 struct buffer_page *new_head; 1928 int entries; 1929 int type; 1930 int ret; 1931 1932 entries = rb_page_entries(next_page); 1933 1934 /* 1935 * The hard part is here. We need to move the head 1936 * forward, and protect against both readers on 1937 * other CPUs and writers coming in via interrupts. 1938 */ 1939 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1940 RB_PAGE_HEAD); 1941 1942 /* 1943 * type can be one of four: 1944 * NORMAL - an interrupt already moved it for us 1945 * HEAD - we are the first to get here. 1946 * UPDATE - we are the interrupt interrupting 1947 * a current move. 1948 * MOVED - a reader on another CPU moved the next 1949 * pointer to its reader page. Give up 1950 * and try again. 1951 */ 1952 1953 switch (type) { 1954 case RB_PAGE_HEAD: 1955 /* 1956 * We changed the head to UPDATE, thus 1957 * it is our responsibility to update 1958 * the counters. 1959 */ 1960 local_add(entries, &cpu_buffer->overrun); 1961 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1962 1963 /* 1964 * The entries will be zeroed out when we move the 1965 * tail page. 1966 */ 1967 1968 /* still more to do */ 1969 break; 1970 1971 case RB_PAGE_UPDATE: 1972 /* 1973 * This is an interrupt that interrupt the 1974 * previous update. Still more to do. 1975 */ 1976 break; 1977 case RB_PAGE_NORMAL: 1978 /* 1979 * An interrupt came in before the update 1980 * and processed this for us. 1981 * Nothing left to do. 1982 */ 1983 return 1; 1984 case RB_PAGE_MOVED: 1985 /* 1986 * The reader is on another CPU and just did 1987 * a swap with our next_page. 1988 * Try again. 1989 */ 1990 return 1; 1991 default: 1992 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1993 return -1; 1994 } 1995 1996 /* 1997 * Now that we are here, the old head pointer is 1998 * set to UPDATE. This will keep the reader from 1999 * swapping the head page with the reader page. 2000 * The reader (on another CPU) will spin till 2001 * we are finished. 2002 * 2003 * We just need to protect against interrupts 2004 * doing the job. We will set the next pointer 2005 * to HEAD. After that, we set the old pointer 2006 * to NORMAL, but only if it was HEAD before. 2007 * otherwise we are an interrupt, and only 2008 * want the outer most commit to reset it. 2009 */ 2010 new_head = next_page; 2011 rb_inc_page(cpu_buffer, &new_head); 2012 2013 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2014 RB_PAGE_NORMAL); 2015 2016 /* 2017 * Valid returns are: 2018 * HEAD - an interrupt came in and already set it. 2019 * NORMAL - One of two things: 2020 * 1) We really set it. 2021 * 2) A bunch of interrupts came in and moved 2022 * the page forward again. 2023 */ 2024 switch (ret) { 2025 case RB_PAGE_HEAD: 2026 case RB_PAGE_NORMAL: 2027 /* OK */ 2028 break; 2029 default: 2030 RB_WARN_ON(cpu_buffer, 1); 2031 return -1; 2032 } 2033 2034 /* 2035 * It is possible that an interrupt came in, 2036 * set the head up, then more interrupts came in 2037 * and moved it again. When we get back here, 2038 * the page would have been set to NORMAL but we 2039 * just set it back to HEAD. 2040 * 2041 * How do you detect this? Well, if that happened 2042 * the tail page would have moved. 2043 */ 2044 if (ret == RB_PAGE_NORMAL) { 2045 /* 2046 * If the tail had moved passed next, then we need 2047 * to reset the pointer. 2048 */ 2049 if (cpu_buffer->tail_page != tail_page && 2050 cpu_buffer->tail_page != next_page) 2051 rb_head_page_set_normal(cpu_buffer, new_head, 2052 next_page, 2053 RB_PAGE_HEAD); 2054 } 2055 2056 /* 2057 * If this was the outer most commit (the one that 2058 * changed the original pointer from HEAD to UPDATE), 2059 * then it is up to us to reset it to NORMAL. 2060 */ 2061 if (type == RB_PAGE_HEAD) { 2062 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2063 tail_page, 2064 RB_PAGE_UPDATE); 2065 if (RB_WARN_ON(cpu_buffer, 2066 ret != RB_PAGE_UPDATE)) 2067 return -1; 2068 } 2069 2070 return 0; 2071 } 2072 2073 static inline void 2074 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2075 unsigned long tail, struct rb_event_info *info) 2076 { 2077 struct buffer_page *tail_page = info->tail_page; 2078 struct ring_buffer_event *event; 2079 unsigned long length = info->length; 2080 2081 /* 2082 * Only the event that crossed the page boundary 2083 * must fill the old tail_page with padding. 2084 */ 2085 if (tail >= BUF_PAGE_SIZE) { 2086 /* 2087 * If the page was filled, then we still need 2088 * to update the real_end. Reset it to zero 2089 * and the reader will ignore it. 2090 */ 2091 if (tail == BUF_PAGE_SIZE) 2092 tail_page->real_end = 0; 2093 2094 local_sub(length, &tail_page->write); 2095 return; 2096 } 2097 2098 event = __rb_page_index(tail_page, tail); 2099 kmemcheck_annotate_bitfield(event, bitfield); 2100 2101 /* account for padding bytes */ 2102 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2103 2104 /* 2105 * Save the original length to the meta data. 2106 * This will be used by the reader to add lost event 2107 * counter. 2108 */ 2109 tail_page->real_end = tail; 2110 2111 /* 2112 * If this event is bigger than the minimum size, then 2113 * we need to be careful that we don't subtract the 2114 * write counter enough to allow another writer to slip 2115 * in on this page. 2116 * We put in a discarded commit instead, to make sure 2117 * that this space is not used again. 2118 * 2119 * If we are less than the minimum size, we don't need to 2120 * worry about it. 2121 */ 2122 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2123 /* No room for any events */ 2124 2125 /* Mark the rest of the page with padding */ 2126 rb_event_set_padding(event); 2127 2128 /* Set the write back to the previous setting */ 2129 local_sub(length, &tail_page->write); 2130 return; 2131 } 2132 2133 /* Put in a discarded event */ 2134 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2135 event->type_len = RINGBUF_TYPE_PADDING; 2136 /* time delta must be non zero */ 2137 event->time_delta = 1; 2138 2139 /* Set write to end of buffer */ 2140 length = (tail + length) - BUF_PAGE_SIZE; 2141 local_sub(length, &tail_page->write); 2142 } 2143 2144 /* 2145 * This is the slow path, force gcc not to inline it. 2146 */ 2147 static noinline struct ring_buffer_event * 2148 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2149 unsigned long tail, struct rb_event_info *info) 2150 { 2151 struct buffer_page *tail_page = info->tail_page; 2152 struct buffer_page *commit_page = cpu_buffer->commit_page; 2153 struct ring_buffer *buffer = cpu_buffer->buffer; 2154 struct buffer_page *next_page; 2155 int ret; 2156 u64 ts; 2157 2158 next_page = tail_page; 2159 2160 rb_inc_page(cpu_buffer, &next_page); 2161 2162 /* 2163 * If for some reason, we had an interrupt storm that made 2164 * it all the way around the buffer, bail, and warn 2165 * about it. 2166 */ 2167 if (unlikely(next_page == commit_page)) { 2168 local_inc(&cpu_buffer->commit_overrun); 2169 goto out_reset; 2170 } 2171 2172 /* 2173 * This is where the fun begins! 2174 * 2175 * We are fighting against races between a reader that 2176 * could be on another CPU trying to swap its reader 2177 * page with the buffer head. 2178 * 2179 * We are also fighting against interrupts coming in and 2180 * moving the head or tail on us as well. 2181 * 2182 * If the next page is the head page then we have filled 2183 * the buffer, unless the commit page is still on the 2184 * reader page. 2185 */ 2186 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2187 2188 /* 2189 * If the commit is not on the reader page, then 2190 * move the header page. 2191 */ 2192 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2193 /* 2194 * If we are not in overwrite mode, 2195 * this is easy, just stop here. 2196 */ 2197 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2198 local_inc(&cpu_buffer->dropped_events); 2199 goto out_reset; 2200 } 2201 2202 ret = rb_handle_head_page(cpu_buffer, 2203 tail_page, 2204 next_page); 2205 if (ret < 0) 2206 goto out_reset; 2207 if (ret) 2208 goto out_again; 2209 } else { 2210 /* 2211 * We need to be careful here too. The 2212 * commit page could still be on the reader 2213 * page. We could have a small buffer, and 2214 * have filled up the buffer with events 2215 * from interrupts and such, and wrapped. 2216 * 2217 * Note, if the tail page is also the on the 2218 * reader_page, we let it move out. 2219 */ 2220 if (unlikely((cpu_buffer->commit_page != 2221 cpu_buffer->tail_page) && 2222 (cpu_buffer->commit_page == 2223 cpu_buffer->reader_page))) { 2224 local_inc(&cpu_buffer->commit_overrun); 2225 goto out_reset; 2226 } 2227 } 2228 } 2229 2230 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2231 if (ret) { 2232 /* 2233 * Nested commits always have zero deltas, so 2234 * just reread the time stamp 2235 */ 2236 ts = rb_time_stamp(buffer); 2237 next_page->page->time_stamp = ts; 2238 } 2239 2240 out_again: 2241 2242 rb_reset_tail(cpu_buffer, tail, info); 2243 2244 /* fail and let the caller try again */ 2245 return ERR_PTR(-EAGAIN); 2246 2247 out_reset: 2248 /* reset write */ 2249 rb_reset_tail(cpu_buffer, tail, info); 2250 2251 return NULL; 2252 } 2253 2254 /* Slow path, do not inline */ 2255 static noinline struct ring_buffer_event * 2256 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2257 { 2258 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2259 2260 /* Not the first event on the page? */ 2261 if (rb_event_index(event)) { 2262 event->time_delta = delta & TS_MASK; 2263 event->array[0] = delta >> TS_SHIFT; 2264 } else { 2265 /* nope, just zero it */ 2266 event->time_delta = 0; 2267 event->array[0] = 0; 2268 } 2269 2270 return skip_time_extend(event); 2271 } 2272 2273 static inline int rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2274 struct ring_buffer_event *event); 2275 2276 /** 2277 * rb_update_event - update event type and data 2278 * @event: the event to update 2279 * @type: the type of event 2280 * @length: the size of the event field in the ring buffer 2281 * 2282 * Update the type and data fields of the event. The length 2283 * is the actual size that is written to the ring buffer, 2284 * and with this, we can determine what to place into the 2285 * data field. 2286 */ 2287 static void 2288 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2289 struct ring_buffer_event *event, 2290 struct rb_event_info *info) 2291 { 2292 unsigned length = info->length; 2293 u64 delta = info->delta; 2294 2295 /* Only a commit updates the timestamp */ 2296 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2297 delta = 0; 2298 2299 /* 2300 * If we need to add a timestamp, then we 2301 * add it to the start of the resevered space. 2302 */ 2303 if (unlikely(info->add_timestamp)) { 2304 event = rb_add_time_stamp(event, delta); 2305 length -= RB_LEN_TIME_EXTEND; 2306 delta = 0; 2307 } 2308 2309 event->time_delta = delta; 2310 length -= RB_EVNT_HDR_SIZE; 2311 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2312 event->type_len = 0; 2313 event->array[0] = length; 2314 } else 2315 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2316 } 2317 2318 static unsigned rb_calculate_event_length(unsigned length) 2319 { 2320 struct ring_buffer_event event; /* Used only for sizeof array */ 2321 2322 /* zero length can cause confusions */ 2323 if (!length) 2324 length++; 2325 2326 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2327 length += sizeof(event.array[0]); 2328 2329 length += RB_EVNT_HDR_SIZE; 2330 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2331 2332 /* 2333 * In case the time delta is larger than the 27 bits for it 2334 * in the header, we need to add a timestamp. If another 2335 * event comes in when trying to discard this one to increase 2336 * the length, then the timestamp will be added in the allocated 2337 * space of this event. If length is bigger than the size needed 2338 * for the TIME_EXTEND, then padding has to be used. The events 2339 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2340 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2341 * As length is a multiple of 4, we only need to worry if it 2342 * is 12 (RB_LEN_TIME_EXTEND + 4). 2343 */ 2344 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2345 length += RB_ALIGNMENT; 2346 2347 return length; 2348 } 2349 2350 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2351 static inline bool sched_clock_stable(void) 2352 { 2353 return true; 2354 } 2355 #endif 2356 2357 static inline int 2358 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2359 struct ring_buffer_event *event) 2360 { 2361 unsigned long new_index, old_index; 2362 struct buffer_page *bpage; 2363 unsigned long index; 2364 unsigned long addr; 2365 2366 new_index = rb_event_index(event); 2367 old_index = new_index + rb_event_ts_length(event); 2368 addr = (unsigned long)event; 2369 addr &= PAGE_MASK; 2370 2371 bpage = cpu_buffer->tail_page; 2372 2373 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2374 unsigned long write_mask = 2375 local_read(&bpage->write) & ~RB_WRITE_MASK; 2376 unsigned long event_length = rb_event_length(event); 2377 /* 2378 * This is on the tail page. It is possible that 2379 * a write could come in and move the tail page 2380 * and write to the next page. That is fine 2381 * because we just shorten what is on this page. 2382 */ 2383 old_index += write_mask; 2384 new_index += write_mask; 2385 index = local_cmpxchg(&bpage->write, old_index, new_index); 2386 if (index == old_index) { 2387 /* update counters */ 2388 local_sub(event_length, &cpu_buffer->entries_bytes); 2389 return 1; 2390 } 2391 } 2392 2393 /* could not discard */ 2394 return 0; 2395 } 2396 2397 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2398 { 2399 local_inc(&cpu_buffer->committing); 2400 local_inc(&cpu_buffer->commits); 2401 } 2402 2403 static void 2404 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2405 { 2406 unsigned long max_count; 2407 2408 /* 2409 * We only race with interrupts and NMIs on this CPU. 2410 * If we own the commit event, then we can commit 2411 * all others that interrupted us, since the interruptions 2412 * are in stack format (they finish before they come 2413 * back to us). This allows us to do a simple loop to 2414 * assign the commit to the tail. 2415 */ 2416 again: 2417 max_count = cpu_buffer->nr_pages * 100; 2418 2419 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 2420 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2421 return; 2422 if (RB_WARN_ON(cpu_buffer, 2423 rb_is_reader_page(cpu_buffer->tail_page))) 2424 return; 2425 local_set(&cpu_buffer->commit_page->page->commit, 2426 rb_page_write(cpu_buffer->commit_page)); 2427 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2428 cpu_buffer->write_stamp = 2429 cpu_buffer->commit_page->page->time_stamp; 2430 /* add barrier to keep gcc from optimizing too much */ 2431 barrier(); 2432 } 2433 while (rb_commit_index(cpu_buffer) != 2434 rb_page_write(cpu_buffer->commit_page)) { 2435 2436 local_set(&cpu_buffer->commit_page->page->commit, 2437 rb_page_write(cpu_buffer->commit_page)); 2438 RB_WARN_ON(cpu_buffer, 2439 local_read(&cpu_buffer->commit_page->page->commit) & 2440 ~RB_WRITE_MASK); 2441 barrier(); 2442 } 2443 2444 /* again, keep gcc from optimizing */ 2445 barrier(); 2446 2447 /* 2448 * If an interrupt came in just after the first while loop 2449 * and pushed the tail page forward, we will be left with 2450 * a dangling commit that will never go forward. 2451 */ 2452 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 2453 goto again; 2454 } 2455 2456 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2457 { 2458 unsigned long commits; 2459 2460 if (RB_WARN_ON(cpu_buffer, 2461 !local_read(&cpu_buffer->committing))) 2462 return; 2463 2464 again: 2465 commits = local_read(&cpu_buffer->commits); 2466 /* synchronize with interrupts */ 2467 barrier(); 2468 if (local_read(&cpu_buffer->committing) == 1) 2469 rb_set_commit_to_write(cpu_buffer); 2470 2471 local_dec(&cpu_buffer->committing); 2472 2473 /* synchronize with interrupts */ 2474 barrier(); 2475 2476 /* 2477 * Need to account for interrupts coming in between the 2478 * updating of the commit page and the clearing of the 2479 * committing counter. 2480 */ 2481 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2482 !local_read(&cpu_buffer->committing)) { 2483 local_inc(&cpu_buffer->committing); 2484 goto again; 2485 } 2486 } 2487 2488 static inline void rb_event_discard(struct ring_buffer_event *event) 2489 { 2490 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2491 event = skip_time_extend(event); 2492 2493 /* array[0] holds the actual length for the discarded event */ 2494 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2495 event->type_len = RINGBUF_TYPE_PADDING; 2496 /* time delta must be non zero */ 2497 if (!event->time_delta) 2498 event->time_delta = 1; 2499 } 2500 2501 static inline int 2502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2503 struct ring_buffer_event *event) 2504 { 2505 unsigned long addr = (unsigned long)event; 2506 unsigned long index; 2507 2508 index = rb_event_index(event); 2509 addr &= PAGE_MASK; 2510 2511 return cpu_buffer->commit_page->page == (void *)addr && 2512 rb_commit_index(cpu_buffer) == index; 2513 } 2514 2515 static void 2516 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2517 struct ring_buffer_event *event) 2518 { 2519 u64 delta; 2520 2521 /* 2522 * The event first in the commit queue updates the 2523 * time stamp. 2524 */ 2525 if (rb_event_is_commit(cpu_buffer, event)) { 2526 /* 2527 * A commit event that is first on a page 2528 * updates the write timestamp with the page stamp 2529 */ 2530 if (!rb_event_index(event)) 2531 cpu_buffer->write_stamp = 2532 cpu_buffer->commit_page->page->time_stamp; 2533 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2534 delta = event->array[0]; 2535 delta <<= TS_SHIFT; 2536 delta += event->time_delta; 2537 cpu_buffer->write_stamp += delta; 2538 } else 2539 cpu_buffer->write_stamp += event->time_delta; 2540 } 2541 } 2542 2543 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2544 struct ring_buffer_event *event) 2545 { 2546 local_inc(&cpu_buffer->entries); 2547 rb_update_write_stamp(cpu_buffer, event); 2548 rb_end_commit(cpu_buffer); 2549 } 2550 2551 static __always_inline void 2552 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2553 { 2554 bool pagebusy; 2555 2556 if (buffer->irq_work.waiters_pending) { 2557 buffer->irq_work.waiters_pending = false; 2558 /* irq_work_queue() supplies it's own memory barriers */ 2559 irq_work_queue(&buffer->irq_work.work); 2560 } 2561 2562 if (cpu_buffer->irq_work.waiters_pending) { 2563 cpu_buffer->irq_work.waiters_pending = false; 2564 /* irq_work_queue() supplies it's own memory barriers */ 2565 irq_work_queue(&cpu_buffer->irq_work.work); 2566 } 2567 2568 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2569 2570 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2571 cpu_buffer->irq_work.wakeup_full = true; 2572 cpu_buffer->irq_work.full_waiters_pending = false; 2573 /* irq_work_queue() supplies it's own memory barriers */ 2574 irq_work_queue(&cpu_buffer->irq_work.work); 2575 } 2576 } 2577 2578 /* 2579 * The lock and unlock are done within a preempt disable section. 2580 * The current_context per_cpu variable can only be modified 2581 * by the current task between lock and unlock. But it can 2582 * be modified more than once via an interrupt. To pass this 2583 * information from the lock to the unlock without having to 2584 * access the 'in_interrupt()' functions again (which do show 2585 * a bit of overhead in something as critical as function tracing, 2586 * we use a bitmask trick. 2587 * 2588 * bit 0 = NMI context 2589 * bit 1 = IRQ context 2590 * bit 2 = SoftIRQ context 2591 * bit 3 = normal context. 2592 * 2593 * This works because this is the order of contexts that can 2594 * preempt other contexts. A SoftIRQ never preempts an IRQ 2595 * context. 2596 * 2597 * When the context is determined, the corresponding bit is 2598 * checked and set (if it was set, then a recursion of that context 2599 * happened). 2600 * 2601 * On unlock, we need to clear this bit. To do so, just subtract 2602 * 1 from the current_context and AND it to itself. 2603 * 2604 * (binary) 2605 * 101 - 1 = 100 2606 * 101 & 100 = 100 (clearing bit zero) 2607 * 2608 * 1010 - 1 = 1001 2609 * 1010 & 1001 = 1000 (clearing bit 1) 2610 * 2611 * The least significant bit can be cleared this way, and it 2612 * just so happens that it is the same bit corresponding to 2613 * the current context. 2614 */ 2615 2616 static __always_inline int 2617 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2618 { 2619 unsigned int val = cpu_buffer->current_context; 2620 int bit; 2621 2622 if (in_interrupt()) { 2623 if (in_nmi()) 2624 bit = RB_CTX_NMI; 2625 else if (in_irq()) 2626 bit = RB_CTX_IRQ; 2627 else 2628 bit = RB_CTX_SOFTIRQ; 2629 } else 2630 bit = RB_CTX_NORMAL; 2631 2632 if (unlikely(val & (1 << bit))) 2633 return 1; 2634 2635 val |= (1 << bit); 2636 cpu_buffer->current_context = val; 2637 2638 return 0; 2639 } 2640 2641 static __always_inline void 2642 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2643 { 2644 cpu_buffer->current_context &= cpu_buffer->current_context - 1; 2645 } 2646 2647 /** 2648 * ring_buffer_unlock_commit - commit a reserved 2649 * @buffer: The buffer to commit to 2650 * @event: The event pointer to commit. 2651 * 2652 * This commits the data to the ring buffer, and releases any locks held. 2653 * 2654 * Must be paired with ring_buffer_lock_reserve. 2655 */ 2656 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2657 struct ring_buffer_event *event) 2658 { 2659 struct ring_buffer_per_cpu *cpu_buffer; 2660 int cpu = raw_smp_processor_id(); 2661 2662 cpu_buffer = buffer->buffers[cpu]; 2663 2664 rb_commit(cpu_buffer, event); 2665 2666 rb_wakeups(buffer, cpu_buffer); 2667 2668 trace_recursive_unlock(cpu_buffer); 2669 2670 preempt_enable_notrace(); 2671 2672 return 0; 2673 } 2674 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2675 2676 static noinline void 2677 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2678 struct rb_event_info *info) 2679 { 2680 WARN_ONCE(info->delta > (1ULL << 59), 2681 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2682 (unsigned long long)info->delta, 2683 (unsigned long long)info->ts, 2684 (unsigned long long)cpu_buffer->write_stamp, 2685 sched_clock_stable() ? "" : 2686 "If you just came from a suspend/resume,\n" 2687 "please switch to the trace global clock:\n" 2688 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2689 info->add_timestamp = 1; 2690 } 2691 2692 static struct ring_buffer_event * 2693 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2694 struct rb_event_info *info) 2695 { 2696 struct ring_buffer_event *event; 2697 struct buffer_page *tail_page; 2698 unsigned long tail, write; 2699 2700 /* 2701 * If the time delta since the last event is too big to 2702 * hold in the time field of the event, then we append a 2703 * TIME EXTEND event ahead of the data event. 2704 */ 2705 if (unlikely(info->add_timestamp)) 2706 info->length += RB_LEN_TIME_EXTEND; 2707 2708 tail_page = info->tail_page = cpu_buffer->tail_page; 2709 write = local_add_return(info->length, &tail_page->write); 2710 2711 /* set write to only the index of the write */ 2712 write &= RB_WRITE_MASK; 2713 tail = write - info->length; 2714 2715 /* 2716 * If this is the first commit on the page, then it has the same 2717 * timestamp as the page itself. 2718 */ 2719 if (!tail) 2720 info->delta = 0; 2721 2722 /* See if we shot pass the end of this buffer page */ 2723 if (unlikely(write > BUF_PAGE_SIZE)) 2724 return rb_move_tail(cpu_buffer, tail, info); 2725 2726 /* We reserved something on the buffer */ 2727 2728 event = __rb_page_index(tail_page, tail); 2729 kmemcheck_annotate_bitfield(event, bitfield); 2730 rb_update_event(cpu_buffer, event, info); 2731 2732 local_inc(&tail_page->entries); 2733 2734 /* 2735 * If this is the first commit on the page, then update 2736 * its timestamp. 2737 */ 2738 if (!tail) 2739 tail_page->page->time_stamp = info->ts; 2740 2741 /* account for these added bytes */ 2742 local_add(info->length, &cpu_buffer->entries_bytes); 2743 2744 return event; 2745 } 2746 2747 static struct ring_buffer_event * 2748 rb_reserve_next_event(struct ring_buffer *buffer, 2749 struct ring_buffer_per_cpu *cpu_buffer, 2750 unsigned long length) 2751 { 2752 struct ring_buffer_event *event; 2753 struct rb_event_info info; 2754 int nr_loops = 0; 2755 u64 diff; 2756 2757 rb_start_commit(cpu_buffer); 2758 2759 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2760 /* 2761 * Due to the ability to swap a cpu buffer from a buffer 2762 * it is possible it was swapped before we committed. 2763 * (committing stops a swap). We check for it here and 2764 * if it happened, we have to fail the write. 2765 */ 2766 barrier(); 2767 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2768 local_dec(&cpu_buffer->committing); 2769 local_dec(&cpu_buffer->commits); 2770 return NULL; 2771 } 2772 #endif 2773 2774 info.length = rb_calculate_event_length(length); 2775 again: 2776 info.add_timestamp = 0; 2777 info.delta = 0; 2778 2779 /* 2780 * We allow for interrupts to reenter here and do a trace. 2781 * If one does, it will cause this original code to loop 2782 * back here. Even with heavy interrupts happening, this 2783 * should only happen a few times in a row. If this happens 2784 * 1000 times in a row, there must be either an interrupt 2785 * storm or we have something buggy. 2786 * Bail! 2787 */ 2788 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2789 goto out_fail; 2790 2791 info.ts = rb_time_stamp(cpu_buffer->buffer); 2792 diff = info.ts - cpu_buffer->write_stamp; 2793 2794 /* make sure this diff is calculated here */ 2795 barrier(); 2796 2797 /* Did the write stamp get updated already? */ 2798 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2799 info.delta = diff; 2800 if (unlikely(test_time_stamp(info.delta))) 2801 rb_handle_timestamp(cpu_buffer, &info); 2802 } 2803 2804 event = __rb_reserve_next(cpu_buffer, &info); 2805 2806 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2807 goto again; 2808 2809 if (!event) 2810 goto out_fail; 2811 2812 return event; 2813 2814 out_fail: 2815 rb_end_commit(cpu_buffer); 2816 return NULL; 2817 } 2818 2819 /** 2820 * ring_buffer_lock_reserve - reserve a part of the buffer 2821 * @buffer: the ring buffer to reserve from 2822 * @length: the length of the data to reserve (excluding event header) 2823 * 2824 * Returns a reseverd event on the ring buffer to copy directly to. 2825 * The user of this interface will need to get the body to write into 2826 * and can use the ring_buffer_event_data() interface. 2827 * 2828 * The length is the length of the data needed, not the event length 2829 * which also includes the event header. 2830 * 2831 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2832 * If NULL is returned, then nothing has been allocated or locked. 2833 */ 2834 struct ring_buffer_event * 2835 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2836 { 2837 struct ring_buffer_per_cpu *cpu_buffer; 2838 struct ring_buffer_event *event; 2839 int cpu; 2840 2841 /* If we are tracing schedule, we don't want to recurse */ 2842 preempt_disable_notrace(); 2843 2844 if (unlikely(atomic_read(&buffer->record_disabled))) 2845 goto out; 2846 2847 cpu = raw_smp_processor_id(); 2848 2849 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2850 goto out; 2851 2852 cpu_buffer = buffer->buffers[cpu]; 2853 2854 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2855 goto out; 2856 2857 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2858 goto out; 2859 2860 if (unlikely(trace_recursive_lock(cpu_buffer))) 2861 goto out; 2862 2863 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2864 if (!event) 2865 goto out_unlock; 2866 2867 return event; 2868 2869 out_unlock: 2870 trace_recursive_unlock(cpu_buffer); 2871 out: 2872 preempt_enable_notrace(); 2873 return NULL; 2874 } 2875 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2876 2877 /* 2878 * Decrement the entries to the page that an event is on. 2879 * The event does not even need to exist, only the pointer 2880 * to the page it is on. This may only be called before the commit 2881 * takes place. 2882 */ 2883 static inline void 2884 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2885 struct ring_buffer_event *event) 2886 { 2887 unsigned long addr = (unsigned long)event; 2888 struct buffer_page *bpage = cpu_buffer->commit_page; 2889 struct buffer_page *start; 2890 2891 addr &= PAGE_MASK; 2892 2893 /* Do the likely case first */ 2894 if (likely(bpage->page == (void *)addr)) { 2895 local_dec(&bpage->entries); 2896 return; 2897 } 2898 2899 /* 2900 * Because the commit page may be on the reader page we 2901 * start with the next page and check the end loop there. 2902 */ 2903 rb_inc_page(cpu_buffer, &bpage); 2904 start = bpage; 2905 do { 2906 if (bpage->page == (void *)addr) { 2907 local_dec(&bpage->entries); 2908 return; 2909 } 2910 rb_inc_page(cpu_buffer, &bpage); 2911 } while (bpage != start); 2912 2913 /* commit not part of this buffer?? */ 2914 RB_WARN_ON(cpu_buffer, 1); 2915 } 2916 2917 /** 2918 * ring_buffer_commit_discard - discard an event that has not been committed 2919 * @buffer: the ring buffer 2920 * @event: non committed event to discard 2921 * 2922 * Sometimes an event that is in the ring buffer needs to be ignored. 2923 * This function lets the user discard an event in the ring buffer 2924 * and then that event will not be read later. 2925 * 2926 * This function only works if it is called before the the item has been 2927 * committed. It will try to free the event from the ring buffer 2928 * if another event has not been added behind it. 2929 * 2930 * If another event has been added behind it, it will set the event 2931 * up as discarded, and perform the commit. 2932 * 2933 * If this function is called, do not call ring_buffer_unlock_commit on 2934 * the event. 2935 */ 2936 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2937 struct ring_buffer_event *event) 2938 { 2939 struct ring_buffer_per_cpu *cpu_buffer; 2940 int cpu; 2941 2942 /* The event is discarded regardless */ 2943 rb_event_discard(event); 2944 2945 cpu = smp_processor_id(); 2946 cpu_buffer = buffer->buffers[cpu]; 2947 2948 /* 2949 * This must only be called if the event has not been 2950 * committed yet. Thus we can assume that preemption 2951 * is still disabled. 2952 */ 2953 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2954 2955 rb_decrement_entry(cpu_buffer, event); 2956 if (rb_try_to_discard(cpu_buffer, event)) 2957 goto out; 2958 2959 /* 2960 * The commit is still visible by the reader, so we 2961 * must still update the timestamp. 2962 */ 2963 rb_update_write_stamp(cpu_buffer, event); 2964 out: 2965 rb_end_commit(cpu_buffer); 2966 2967 trace_recursive_unlock(cpu_buffer); 2968 2969 preempt_enable_notrace(); 2970 2971 } 2972 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2973 2974 /** 2975 * ring_buffer_write - write data to the buffer without reserving 2976 * @buffer: The ring buffer to write to. 2977 * @length: The length of the data being written (excluding the event header) 2978 * @data: The data to write to the buffer. 2979 * 2980 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2981 * one function. If you already have the data to write to the buffer, it 2982 * may be easier to simply call this function. 2983 * 2984 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2985 * and not the length of the event which would hold the header. 2986 */ 2987 int ring_buffer_write(struct ring_buffer *buffer, 2988 unsigned long length, 2989 void *data) 2990 { 2991 struct ring_buffer_per_cpu *cpu_buffer; 2992 struct ring_buffer_event *event; 2993 void *body; 2994 int ret = -EBUSY; 2995 int cpu; 2996 2997 preempt_disable_notrace(); 2998 2999 if (atomic_read(&buffer->record_disabled)) 3000 goto out; 3001 3002 cpu = raw_smp_processor_id(); 3003 3004 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3005 goto out; 3006 3007 cpu_buffer = buffer->buffers[cpu]; 3008 3009 if (atomic_read(&cpu_buffer->record_disabled)) 3010 goto out; 3011 3012 if (length > BUF_MAX_DATA_SIZE) 3013 goto out; 3014 3015 if (unlikely(trace_recursive_lock(cpu_buffer))) 3016 goto out; 3017 3018 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3019 if (!event) 3020 goto out_unlock; 3021 3022 body = rb_event_data(event); 3023 3024 memcpy(body, data, length); 3025 3026 rb_commit(cpu_buffer, event); 3027 3028 rb_wakeups(buffer, cpu_buffer); 3029 3030 ret = 0; 3031 3032 out_unlock: 3033 trace_recursive_unlock(cpu_buffer); 3034 3035 out: 3036 preempt_enable_notrace(); 3037 3038 return ret; 3039 } 3040 EXPORT_SYMBOL_GPL(ring_buffer_write); 3041 3042 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3043 { 3044 struct buffer_page *reader = cpu_buffer->reader_page; 3045 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3046 struct buffer_page *commit = cpu_buffer->commit_page; 3047 3048 /* In case of error, head will be NULL */ 3049 if (unlikely(!head)) 3050 return 1; 3051 3052 return reader->read == rb_page_commit(reader) && 3053 (commit == reader || 3054 (commit == head && 3055 head->read == rb_page_commit(commit))); 3056 } 3057 3058 /** 3059 * ring_buffer_record_disable - stop all writes into the buffer 3060 * @buffer: The ring buffer to stop writes to. 3061 * 3062 * This prevents all writes to the buffer. Any attempt to write 3063 * to the buffer after this will fail and return NULL. 3064 * 3065 * The caller should call synchronize_sched() after this. 3066 */ 3067 void ring_buffer_record_disable(struct ring_buffer *buffer) 3068 { 3069 atomic_inc(&buffer->record_disabled); 3070 } 3071 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3072 3073 /** 3074 * ring_buffer_record_enable - enable writes to the buffer 3075 * @buffer: The ring buffer to enable writes 3076 * 3077 * Note, multiple disables will need the same number of enables 3078 * to truly enable the writing (much like preempt_disable). 3079 */ 3080 void ring_buffer_record_enable(struct ring_buffer *buffer) 3081 { 3082 atomic_dec(&buffer->record_disabled); 3083 } 3084 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3085 3086 /** 3087 * ring_buffer_record_off - stop all writes into the buffer 3088 * @buffer: The ring buffer to stop writes to. 3089 * 3090 * This prevents all writes to the buffer. Any attempt to write 3091 * to the buffer after this will fail and return NULL. 3092 * 3093 * This is different than ring_buffer_record_disable() as 3094 * it works like an on/off switch, where as the disable() version 3095 * must be paired with a enable(). 3096 */ 3097 void ring_buffer_record_off(struct ring_buffer *buffer) 3098 { 3099 unsigned int rd; 3100 unsigned int new_rd; 3101 3102 do { 3103 rd = atomic_read(&buffer->record_disabled); 3104 new_rd = rd | RB_BUFFER_OFF; 3105 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3106 } 3107 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3108 3109 /** 3110 * ring_buffer_record_on - restart writes into the buffer 3111 * @buffer: The ring buffer to start writes to. 3112 * 3113 * This enables all writes to the buffer that was disabled by 3114 * ring_buffer_record_off(). 3115 * 3116 * This is different than ring_buffer_record_enable() as 3117 * it works like an on/off switch, where as the enable() version 3118 * must be paired with a disable(). 3119 */ 3120 void ring_buffer_record_on(struct ring_buffer *buffer) 3121 { 3122 unsigned int rd; 3123 unsigned int new_rd; 3124 3125 do { 3126 rd = atomic_read(&buffer->record_disabled); 3127 new_rd = rd & ~RB_BUFFER_OFF; 3128 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3129 } 3130 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3131 3132 /** 3133 * ring_buffer_record_is_on - return true if the ring buffer can write 3134 * @buffer: The ring buffer to see if write is enabled 3135 * 3136 * Returns true if the ring buffer is in a state that it accepts writes. 3137 */ 3138 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3139 { 3140 return !atomic_read(&buffer->record_disabled); 3141 } 3142 3143 /** 3144 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3145 * @buffer: The ring buffer to stop writes to. 3146 * @cpu: The CPU buffer to stop 3147 * 3148 * This prevents all writes to the buffer. Any attempt to write 3149 * to the buffer after this will fail and return NULL. 3150 * 3151 * The caller should call synchronize_sched() after this. 3152 */ 3153 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3154 { 3155 struct ring_buffer_per_cpu *cpu_buffer; 3156 3157 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3158 return; 3159 3160 cpu_buffer = buffer->buffers[cpu]; 3161 atomic_inc(&cpu_buffer->record_disabled); 3162 } 3163 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3164 3165 /** 3166 * ring_buffer_record_enable_cpu - enable writes to the buffer 3167 * @buffer: The ring buffer to enable writes 3168 * @cpu: The CPU to enable. 3169 * 3170 * Note, multiple disables will need the same number of enables 3171 * to truly enable the writing (much like preempt_disable). 3172 */ 3173 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3174 { 3175 struct ring_buffer_per_cpu *cpu_buffer; 3176 3177 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3178 return; 3179 3180 cpu_buffer = buffer->buffers[cpu]; 3181 atomic_dec(&cpu_buffer->record_disabled); 3182 } 3183 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3184 3185 /* 3186 * The total entries in the ring buffer is the running counter 3187 * of entries entered into the ring buffer, minus the sum of 3188 * the entries read from the ring buffer and the number of 3189 * entries that were overwritten. 3190 */ 3191 static inline unsigned long 3192 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3193 { 3194 return local_read(&cpu_buffer->entries) - 3195 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3196 } 3197 3198 /** 3199 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3200 * @buffer: The ring buffer 3201 * @cpu: The per CPU buffer to read from. 3202 */ 3203 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3204 { 3205 unsigned long flags; 3206 struct ring_buffer_per_cpu *cpu_buffer; 3207 struct buffer_page *bpage; 3208 u64 ret = 0; 3209 3210 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3211 return 0; 3212 3213 cpu_buffer = buffer->buffers[cpu]; 3214 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3215 /* 3216 * if the tail is on reader_page, oldest time stamp is on the reader 3217 * page 3218 */ 3219 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3220 bpage = cpu_buffer->reader_page; 3221 else 3222 bpage = rb_set_head_page(cpu_buffer); 3223 if (bpage) 3224 ret = bpage->page->time_stamp; 3225 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3226 3227 return ret; 3228 } 3229 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3230 3231 /** 3232 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3233 * @buffer: The ring buffer 3234 * @cpu: The per CPU buffer to read from. 3235 */ 3236 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3237 { 3238 struct ring_buffer_per_cpu *cpu_buffer; 3239 unsigned long ret; 3240 3241 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3242 return 0; 3243 3244 cpu_buffer = buffer->buffers[cpu]; 3245 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3246 3247 return ret; 3248 } 3249 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3250 3251 /** 3252 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3253 * @buffer: The ring buffer 3254 * @cpu: The per CPU buffer to get the entries from. 3255 */ 3256 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3257 { 3258 struct ring_buffer_per_cpu *cpu_buffer; 3259 3260 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3261 return 0; 3262 3263 cpu_buffer = buffer->buffers[cpu]; 3264 3265 return rb_num_of_entries(cpu_buffer); 3266 } 3267 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3268 3269 /** 3270 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3271 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3272 * @buffer: The ring buffer 3273 * @cpu: The per CPU buffer to get the number of overruns from 3274 */ 3275 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3276 { 3277 struct ring_buffer_per_cpu *cpu_buffer; 3278 unsigned long ret; 3279 3280 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3281 return 0; 3282 3283 cpu_buffer = buffer->buffers[cpu]; 3284 ret = local_read(&cpu_buffer->overrun); 3285 3286 return ret; 3287 } 3288 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3289 3290 /** 3291 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3292 * commits failing due to the buffer wrapping around while there are uncommitted 3293 * events, such as during an interrupt storm. 3294 * @buffer: The ring buffer 3295 * @cpu: The per CPU buffer to get the number of overruns from 3296 */ 3297 unsigned long 3298 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3299 { 3300 struct ring_buffer_per_cpu *cpu_buffer; 3301 unsigned long ret; 3302 3303 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3304 return 0; 3305 3306 cpu_buffer = buffer->buffers[cpu]; 3307 ret = local_read(&cpu_buffer->commit_overrun); 3308 3309 return ret; 3310 } 3311 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3312 3313 /** 3314 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3315 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3316 * @buffer: The ring buffer 3317 * @cpu: The per CPU buffer to get the number of overruns from 3318 */ 3319 unsigned long 3320 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3321 { 3322 struct ring_buffer_per_cpu *cpu_buffer; 3323 unsigned long ret; 3324 3325 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3326 return 0; 3327 3328 cpu_buffer = buffer->buffers[cpu]; 3329 ret = local_read(&cpu_buffer->dropped_events); 3330 3331 return ret; 3332 } 3333 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3334 3335 /** 3336 * ring_buffer_read_events_cpu - get the number of events successfully read 3337 * @buffer: The ring buffer 3338 * @cpu: The per CPU buffer to get the number of events read 3339 */ 3340 unsigned long 3341 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3342 { 3343 struct ring_buffer_per_cpu *cpu_buffer; 3344 3345 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3346 return 0; 3347 3348 cpu_buffer = buffer->buffers[cpu]; 3349 return cpu_buffer->read; 3350 } 3351 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3352 3353 /** 3354 * ring_buffer_entries - get the number of entries in a buffer 3355 * @buffer: The ring buffer 3356 * 3357 * Returns the total number of entries in the ring buffer 3358 * (all CPU entries) 3359 */ 3360 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3361 { 3362 struct ring_buffer_per_cpu *cpu_buffer; 3363 unsigned long entries = 0; 3364 int cpu; 3365 3366 /* if you care about this being correct, lock the buffer */ 3367 for_each_buffer_cpu(buffer, cpu) { 3368 cpu_buffer = buffer->buffers[cpu]; 3369 entries += rb_num_of_entries(cpu_buffer); 3370 } 3371 3372 return entries; 3373 } 3374 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3375 3376 /** 3377 * ring_buffer_overruns - get the number of overruns in buffer 3378 * @buffer: The ring buffer 3379 * 3380 * Returns the total number of overruns in the ring buffer 3381 * (all CPU entries) 3382 */ 3383 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3384 { 3385 struct ring_buffer_per_cpu *cpu_buffer; 3386 unsigned long overruns = 0; 3387 int cpu; 3388 3389 /* if you care about this being correct, lock the buffer */ 3390 for_each_buffer_cpu(buffer, cpu) { 3391 cpu_buffer = buffer->buffers[cpu]; 3392 overruns += local_read(&cpu_buffer->overrun); 3393 } 3394 3395 return overruns; 3396 } 3397 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3398 3399 static void rb_iter_reset(struct ring_buffer_iter *iter) 3400 { 3401 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3402 3403 /* Iterator usage is expected to have record disabled */ 3404 iter->head_page = cpu_buffer->reader_page; 3405 iter->head = cpu_buffer->reader_page->read; 3406 3407 iter->cache_reader_page = iter->head_page; 3408 iter->cache_read = cpu_buffer->read; 3409 3410 if (iter->head) 3411 iter->read_stamp = cpu_buffer->read_stamp; 3412 else 3413 iter->read_stamp = iter->head_page->page->time_stamp; 3414 } 3415 3416 /** 3417 * ring_buffer_iter_reset - reset an iterator 3418 * @iter: The iterator to reset 3419 * 3420 * Resets the iterator, so that it will start from the beginning 3421 * again. 3422 */ 3423 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3424 { 3425 struct ring_buffer_per_cpu *cpu_buffer; 3426 unsigned long flags; 3427 3428 if (!iter) 3429 return; 3430 3431 cpu_buffer = iter->cpu_buffer; 3432 3433 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3434 rb_iter_reset(iter); 3435 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3436 } 3437 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3438 3439 /** 3440 * ring_buffer_iter_empty - check if an iterator has no more to read 3441 * @iter: The iterator to check 3442 */ 3443 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3444 { 3445 struct ring_buffer_per_cpu *cpu_buffer; 3446 3447 cpu_buffer = iter->cpu_buffer; 3448 3449 return iter->head_page == cpu_buffer->commit_page && 3450 iter->head == rb_commit_index(cpu_buffer); 3451 } 3452 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3453 3454 static void 3455 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3456 struct ring_buffer_event *event) 3457 { 3458 u64 delta; 3459 3460 switch (event->type_len) { 3461 case RINGBUF_TYPE_PADDING: 3462 return; 3463 3464 case RINGBUF_TYPE_TIME_EXTEND: 3465 delta = event->array[0]; 3466 delta <<= TS_SHIFT; 3467 delta += event->time_delta; 3468 cpu_buffer->read_stamp += delta; 3469 return; 3470 3471 case RINGBUF_TYPE_TIME_STAMP: 3472 /* FIXME: not implemented */ 3473 return; 3474 3475 case RINGBUF_TYPE_DATA: 3476 cpu_buffer->read_stamp += event->time_delta; 3477 return; 3478 3479 default: 3480 BUG(); 3481 } 3482 return; 3483 } 3484 3485 static void 3486 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3487 struct ring_buffer_event *event) 3488 { 3489 u64 delta; 3490 3491 switch (event->type_len) { 3492 case RINGBUF_TYPE_PADDING: 3493 return; 3494 3495 case RINGBUF_TYPE_TIME_EXTEND: 3496 delta = event->array[0]; 3497 delta <<= TS_SHIFT; 3498 delta += event->time_delta; 3499 iter->read_stamp += delta; 3500 return; 3501 3502 case RINGBUF_TYPE_TIME_STAMP: 3503 /* FIXME: not implemented */ 3504 return; 3505 3506 case RINGBUF_TYPE_DATA: 3507 iter->read_stamp += event->time_delta; 3508 return; 3509 3510 default: 3511 BUG(); 3512 } 3513 return; 3514 } 3515 3516 static struct buffer_page * 3517 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3518 { 3519 struct buffer_page *reader = NULL; 3520 unsigned long overwrite; 3521 unsigned long flags; 3522 int nr_loops = 0; 3523 int ret; 3524 3525 local_irq_save(flags); 3526 arch_spin_lock(&cpu_buffer->lock); 3527 3528 again: 3529 /* 3530 * This should normally only loop twice. But because the 3531 * start of the reader inserts an empty page, it causes 3532 * a case where we will loop three times. There should be no 3533 * reason to loop four times (that I know of). 3534 */ 3535 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3536 reader = NULL; 3537 goto out; 3538 } 3539 3540 reader = cpu_buffer->reader_page; 3541 3542 /* If there's more to read, return this page */ 3543 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3544 goto out; 3545 3546 /* Never should we have an index greater than the size */ 3547 if (RB_WARN_ON(cpu_buffer, 3548 cpu_buffer->reader_page->read > rb_page_size(reader))) 3549 goto out; 3550 3551 /* check if we caught up to the tail */ 3552 reader = NULL; 3553 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3554 goto out; 3555 3556 /* Don't bother swapping if the ring buffer is empty */ 3557 if (rb_num_of_entries(cpu_buffer) == 0) 3558 goto out; 3559 3560 /* 3561 * Reset the reader page to size zero. 3562 */ 3563 local_set(&cpu_buffer->reader_page->write, 0); 3564 local_set(&cpu_buffer->reader_page->entries, 0); 3565 local_set(&cpu_buffer->reader_page->page->commit, 0); 3566 cpu_buffer->reader_page->real_end = 0; 3567 3568 spin: 3569 /* 3570 * Splice the empty reader page into the list around the head. 3571 */ 3572 reader = rb_set_head_page(cpu_buffer); 3573 if (!reader) 3574 goto out; 3575 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3576 cpu_buffer->reader_page->list.prev = reader->list.prev; 3577 3578 /* 3579 * cpu_buffer->pages just needs to point to the buffer, it 3580 * has no specific buffer page to point to. Lets move it out 3581 * of our way so we don't accidentally swap it. 3582 */ 3583 cpu_buffer->pages = reader->list.prev; 3584 3585 /* The reader page will be pointing to the new head */ 3586 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3587 3588 /* 3589 * We want to make sure we read the overruns after we set up our 3590 * pointers to the next object. The writer side does a 3591 * cmpxchg to cross pages which acts as the mb on the writer 3592 * side. Note, the reader will constantly fail the swap 3593 * while the writer is updating the pointers, so this 3594 * guarantees that the overwrite recorded here is the one we 3595 * want to compare with the last_overrun. 3596 */ 3597 smp_mb(); 3598 overwrite = local_read(&(cpu_buffer->overrun)); 3599 3600 /* 3601 * Here's the tricky part. 3602 * 3603 * We need to move the pointer past the header page. 3604 * But we can only do that if a writer is not currently 3605 * moving it. The page before the header page has the 3606 * flag bit '1' set if it is pointing to the page we want. 3607 * but if the writer is in the process of moving it 3608 * than it will be '2' or already moved '0'. 3609 */ 3610 3611 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3612 3613 /* 3614 * If we did not convert it, then we must try again. 3615 */ 3616 if (!ret) 3617 goto spin; 3618 3619 /* 3620 * Yeah! We succeeded in replacing the page. 3621 * 3622 * Now make the new head point back to the reader page. 3623 */ 3624 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3625 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3626 3627 /* Finally update the reader page to the new head */ 3628 cpu_buffer->reader_page = reader; 3629 rb_reset_reader_page(cpu_buffer); 3630 3631 if (overwrite != cpu_buffer->last_overrun) { 3632 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3633 cpu_buffer->last_overrun = overwrite; 3634 } 3635 3636 goto again; 3637 3638 out: 3639 arch_spin_unlock(&cpu_buffer->lock); 3640 local_irq_restore(flags); 3641 3642 return reader; 3643 } 3644 3645 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3646 { 3647 struct ring_buffer_event *event; 3648 struct buffer_page *reader; 3649 unsigned length; 3650 3651 reader = rb_get_reader_page(cpu_buffer); 3652 3653 /* This function should not be called when buffer is empty */ 3654 if (RB_WARN_ON(cpu_buffer, !reader)) 3655 return; 3656 3657 event = rb_reader_event(cpu_buffer); 3658 3659 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3660 cpu_buffer->read++; 3661 3662 rb_update_read_stamp(cpu_buffer, event); 3663 3664 length = rb_event_length(event); 3665 cpu_buffer->reader_page->read += length; 3666 } 3667 3668 static void rb_advance_iter(struct ring_buffer_iter *iter) 3669 { 3670 struct ring_buffer_per_cpu *cpu_buffer; 3671 struct ring_buffer_event *event; 3672 unsigned length; 3673 3674 cpu_buffer = iter->cpu_buffer; 3675 3676 /* 3677 * Check if we are at the end of the buffer. 3678 */ 3679 if (iter->head >= rb_page_size(iter->head_page)) { 3680 /* discarded commits can make the page empty */ 3681 if (iter->head_page == cpu_buffer->commit_page) 3682 return; 3683 rb_inc_iter(iter); 3684 return; 3685 } 3686 3687 event = rb_iter_head_event(iter); 3688 3689 length = rb_event_length(event); 3690 3691 /* 3692 * This should not be called to advance the header if we are 3693 * at the tail of the buffer. 3694 */ 3695 if (RB_WARN_ON(cpu_buffer, 3696 (iter->head_page == cpu_buffer->commit_page) && 3697 (iter->head + length > rb_commit_index(cpu_buffer)))) 3698 return; 3699 3700 rb_update_iter_read_stamp(iter, event); 3701 3702 iter->head += length; 3703 3704 /* check for end of page padding */ 3705 if ((iter->head >= rb_page_size(iter->head_page)) && 3706 (iter->head_page != cpu_buffer->commit_page)) 3707 rb_inc_iter(iter); 3708 } 3709 3710 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3711 { 3712 return cpu_buffer->lost_events; 3713 } 3714 3715 static struct ring_buffer_event * 3716 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3717 unsigned long *lost_events) 3718 { 3719 struct ring_buffer_event *event; 3720 struct buffer_page *reader; 3721 int nr_loops = 0; 3722 3723 again: 3724 /* 3725 * We repeat when a time extend is encountered. 3726 * Since the time extend is always attached to a data event, 3727 * we should never loop more than once. 3728 * (We never hit the following condition more than twice). 3729 */ 3730 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3731 return NULL; 3732 3733 reader = rb_get_reader_page(cpu_buffer); 3734 if (!reader) 3735 return NULL; 3736 3737 event = rb_reader_event(cpu_buffer); 3738 3739 switch (event->type_len) { 3740 case RINGBUF_TYPE_PADDING: 3741 if (rb_null_event(event)) 3742 RB_WARN_ON(cpu_buffer, 1); 3743 /* 3744 * Because the writer could be discarding every 3745 * event it creates (which would probably be bad) 3746 * if we were to go back to "again" then we may never 3747 * catch up, and will trigger the warn on, or lock 3748 * the box. Return the padding, and we will release 3749 * the current locks, and try again. 3750 */ 3751 return event; 3752 3753 case RINGBUF_TYPE_TIME_EXTEND: 3754 /* Internal data, OK to advance */ 3755 rb_advance_reader(cpu_buffer); 3756 goto again; 3757 3758 case RINGBUF_TYPE_TIME_STAMP: 3759 /* FIXME: not implemented */ 3760 rb_advance_reader(cpu_buffer); 3761 goto again; 3762 3763 case RINGBUF_TYPE_DATA: 3764 if (ts) { 3765 *ts = cpu_buffer->read_stamp + event->time_delta; 3766 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3767 cpu_buffer->cpu, ts); 3768 } 3769 if (lost_events) 3770 *lost_events = rb_lost_events(cpu_buffer); 3771 return event; 3772 3773 default: 3774 BUG(); 3775 } 3776 3777 return NULL; 3778 } 3779 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3780 3781 static struct ring_buffer_event * 3782 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3783 { 3784 struct ring_buffer *buffer; 3785 struct ring_buffer_per_cpu *cpu_buffer; 3786 struct ring_buffer_event *event; 3787 int nr_loops = 0; 3788 3789 cpu_buffer = iter->cpu_buffer; 3790 buffer = cpu_buffer->buffer; 3791 3792 /* 3793 * Check if someone performed a consuming read to 3794 * the buffer. A consuming read invalidates the iterator 3795 * and we need to reset the iterator in this case. 3796 */ 3797 if (unlikely(iter->cache_read != cpu_buffer->read || 3798 iter->cache_reader_page != cpu_buffer->reader_page)) 3799 rb_iter_reset(iter); 3800 3801 again: 3802 if (ring_buffer_iter_empty(iter)) 3803 return NULL; 3804 3805 /* 3806 * We repeat when a time extend is encountered or we hit 3807 * the end of the page. Since the time extend is always attached 3808 * to a data event, we should never loop more than three times. 3809 * Once for going to next page, once on time extend, and 3810 * finally once to get the event. 3811 * (We never hit the following condition more than thrice). 3812 */ 3813 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3814 return NULL; 3815 3816 if (rb_per_cpu_empty(cpu_buffer)) 3817 return NULL; 3818 3819 if (iter->head >= rb_page_size(iter->head_page)) { 3820 rb_inc_iter(iter); 3821 goto again; 3822 } 3823 3824 event = rb_iter_head_event(iter); 3825 3826 switch (event->type_len) { 3827 case RINGBUF_TYPE_PADDING: 3828 if (rb_null_event(event)) { 3829 rb_inc_iter(iter); 3830 goto again; 3831 } 3832 rb_advance_iter(iter); 3833 return event; 3834 3835 case RINGBUF_TYPE_TIME_EXTEND: 3836 /* Internal data, OK to advance */ 3837 rb_advance_iter(iter); 3838 goto again; 3839 3840 case RINGBUF_TYPE_TIME_STAMP: 3841 /* FIXME: not implemented */ 3842 rb_advance_iter(iter); 3843 goto again; 3844 3845 case RINGBUF_TYPE_DATA: 3846 if (ts) { 3847 *ts = iter->read_stamp + event->time_delta; 3848 ring_buffer_normalize_time_stamp(buffer, 3849 cpu_buffer->cpu, ts); 3850 } 3851 return event; 3852 3853 default: 3854 BUG(); 3855 } 3856 3857 return NULL; 3858 } 3859 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3860 3861 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3862 { 3863 if (likely(!in_nmi())) { 3864 raw_spin_lock(&cpu_buffer->reader_lock); 3865 return true; 3866 } 3867 3868 /* 3869 * If an NMI die dumps out the content of the ring buffer 3870 * trylock must be used to prevent a deadlock if the NMI 3871 * preempted a task that holds the ring buffer locks. If 3872 * we get the lock then all is fine, if not, then continue 3873 * to do the read, but this can corrupt the ring buffer, 3874 * so it must be permanently disabled from future writes. 3875 * Reading from NMI is a oneshot deal. 3876 */ 3877 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3878 return true; 3879 3880 /* Continue without locking, but disable the ring buffer */ 3881 atomic_inc(&cpu_buffer->record_disabled); 3882 return false; 3883 } 3884 3885 static inline void 3886 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3887 { 3888 if (likely(locked)) 3889 raw_spin_unlock(&cpu_buffer->reader_lock); 3890 return; 3891 } 3892 3893 /** 3894 * ring_buffer_peek - peek at the next event to be read 3895 * @buffer: The ring buffer to read 3896 * @cpu: The cpu to peak at 3897 * @ts: The timestamp counter of this event. 3898 * @lost_events: a variable to store if events were lost (may be NULL) 3899 * 3900 * This will return the event that will be read next, but does 3901 * not consume the data. 3902 */ 3903 struct ring_buffer_event * 3904 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3905 unsigned long *lost_events) 3906 { 3907 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3908 struct ring_buffer_event *event; 3909 unsigned long flags; 3910 bool dolock; 3911 3912 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3913 return NULL; 3914 3915 again: 3916 local_irq_save(flags); 3917 dolock = rb_reader_lock(cpu_buffer); 3918 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3919 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3920 rb_advance_reader(cpu_buffer); 3921 rb_reader_unlock(cpu_buffer, dolock); 3922 local_irq_restore(flags); 3923 3924 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3925 goto again; 3926 3927 return event; 3928 } 3929 3930 /** 3931 * ring_buffer_iter_peek - peek at the next event to be read 3932 * @iter: The ring buffer iterator 3933 * @ts: The timestamp counter of this event. 3934 * 3935 * This will return the event that will be read next, but does 3936 * not increment the iterator. 3937 */ 3938 struct ring_buffer_event * 3939 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3940 { 3941 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3942 struct ring_buffer_event *event; 3943 unsigned long flags; 3944 3945 again: 3946 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3947 event = rb_iter_peek(iter, ts); 3948 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3949 3950 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3951 goto again; 3952 3953 return event; 3954 } 3955 3956 /** 3957 * ring_buffer_consume - return an event and consume it 3958 * @buffer: The ring buffer to get the next event from 3959 * @cpu: the cpu to read the buffer from 3960 * @ts: a variable to store the timestamp (may be NULL) 3961 * @lost_events: a variable to store if events were lost (may be NULL) 3962 * 3963 * Returns the next event in the ring buffer, and that event is consumed. 3964 * Meaning, that sequential reads will keep returning a different event, 3965 * and eventually empty the ring buffer if the producer is slower. 3966 */ 3967 struct ring_buffer_event * 3968 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3969 unsigned long *lost_events) 3970 { 3971 struct ring_buffer_per_cpu *cpu_buffer; 3972 struct ring_buffer_event *event = NULL; 3973 unsigned long flags; 3974 bool dolock; 3975 3976 again: 3977 /* might be called in atomic */ 3978 preempt_disable(); 3979 3980 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3981 goto out; 3982 3983 cpu_buffer = buffer->buffers[cpu]; 3984 local_irq_save(flags); 3985 dolock = rb_reader_lock(cpu_buffer); 3986 3987 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3988 if (event) { 3989 cpu_buffer->lost_events = 0; 3990 rb_advance_reader(cpu_buffer); 3991 } 3992 3993 rb_reader_unlock(cpu_buffer, dolock); 3994 local_irq_restore(flags); 3995 3996 out: 3997 preempt_enable(); 3998 3999 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4000 goto again; 4001 4002 return event; 4003 } 4004 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4005 4006 /** 4007 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4008 * @buffer: The ring buffer to read from 4009 * @cpu: The cpu buffer to iterate over 4010 * 4011 * This performs the initial preparations necessary to iterate 4012 * through the buffer. Memory is allocated, buffer recording 4013 * is disabled, and the iterator pointer is returned to the caller. 4014 * 4015 * Disabling buffer recordng prevents the reading from being 4016 * corrupted. This is not a consuming read, so a producer is not 4017 * expected. 4018 * 4019 * After a sequence of ring_buffer_read_prepare calls, the user is 4020 * expected to make at least one call to ring_buffer_read_prepare_sync. 4021 * Afterwards, ring_buffer_read_start is invoked to get things going 4022 * for real. 4023 * 4024 * This overall must be paired with ring_buffer_read_finish. 4025 */ 4026 struct ring_buffer_iter * 4027 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4028 { 4029 struct ring_buffer_per_cpu *cpu_buffer; 4030 struct ring_buffer_iter *iter; 4031 4032 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4033 return NULL; 4034 4035 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4036 if (!iter) 4037 return NULL; 4038 4039 cpu_buffer = buffer->buffers[cpu]; 4040 4041 iter->cpu_buffer = cpu_buffer; 4042 4043 atomic_inc(&buffer->resize_disabled); 4044 atomic_inc(&cpu_buffer->record_disabled); 4045 4046 return iter; 4047 } 4048 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4049 4050 /** 4051 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4052 * 4053 * All previously invoked ring_buffer_read_prepare calls to prepare 4054 * iterators will be synchronized. Afterwards, read_buffer_read_start 4055 * calls on those iterators are allowed. 4056 */ 4057 void 4058 ring_buffer_read_prepare_sync(void) 4059 { 4060 synchronize_sched(); 4061 } 4062 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4063 4064 /** 4065 * ring_buffer_read_start - start a non consuming read of the buffer 4066 * @iter: The iterator returned by ring_buffer_read_prepare 4067 * 4068 * This finalizes the startup of an iteration through the buffer. 4069 * The iterator comes from a call to ring_buffer_read_prepare and 4070 * an intervening ring_buffer_read_prepare_sync must have been 4071 * performed. 4072 * 4073 * Must be paired with ring_buffer_read_finish. 4074 */ 4075 void 4076 ring_buffer_read_start(struct ring_buffer_iter *iter) 4077 { 4078 struct ring_buffer_per_cpu *cpu_buffer; 4079 unsigned long flags; 4080 4081 if (!iter) 4082 return; 4083 4084 cpu_buffer = iter->cpu_buffer; 4085 4086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4087 arch_spin_lock(&cpu_buffer->lock); 4088 rb_iter_reset(iter); 4089 arch_spin_unlock(&cpu_buffer->lock); 4090 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4091 } 4092 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4093 4094 /** 4095 * ring_buffer_read_finish - finish reading the iterator of the buffer 4096 * @iter: The iterator retrieved by ring_buffer_start 4097 * 4098 * This re-enables the recording to the buffer, and frees the 4099 * iterator. 4100 */ 4101 void 4102 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4103 { 4104 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4105 unsigned long flags; 4106 4107 /* 4108 * Ring buffer is disabled from recording, here's a good place 4109 * to check the integrity of the ring buffer. 4110 * Must prevent readers from trying to read, as the check 4111 * clears the HEAD page and readers require it. 4112 */ 4113 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4114 rb_check_pages(cpu_buffer); 4115 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4116 4117 atomic_dec(&cpu_buffer->record_disabled); 4118 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4119 kfree(iter); 4120 } 4121 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4122 4123 /** 4124 * ring_buffer_read - read the next item in the ring buffer by the iterator 4125 * @iter: The ring buffer iterator 4126 * @ts: The time stamp of the event read. 4127 * 4128 * This reads the next event in the ring buffer and increments the iterator. 4129 */ 4130 struct ring_buffer_event * 4131 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4132 { 4133 struct ring_buffer_event *event; 4134 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4135 unsigned long flags; 4136 4137 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4138 again: 4139 event = rb_iter_peek(iter, ts); 4140 if (!event) 4141 goto out; 4142 4143 if (event->type_len == RINGBUF_TYPE_PADDING) 4144 goto again; 4145 4146 rb_advance_iter(iter); 4147 out: 4148 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4149 4150 return event; 4151 } 4152 EXPORT_SYMBOL_GPL(ring_buffer_read); 4153 4154 /** 4155 * ring_buffer_size - return the size of the ring buffer (in bytes) 4156 * @buffer: The ring buffer. 4157 */ 4158 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4159 { 4160 /* 4161 * Earlier, this method returned 4162 * BUF_PAGE_SIZE * buffer->nr_pages 4163 * Since the nr_pages field is now removed, we have converted this to 4164 * return the per cpu buffer value. 4165 */ 4166 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4167 return 0; 4168 4169 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4170 } 4171 EXPORT_SYMBOL_GPL(ring_buffer_size); 4172 4173 static void 4174 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4175 { 4176 rb_head_page_deactivate(cpu_buffer); 4177 4178 cpu_buffer->head_page 4179 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4180 local_set(&cpu_buffer->head_page->write, 0); 4181 local_set(&cpu_buffer->head_page->entries, 0); 4182 local_set(&cpu_buffer->head_page->page->commit, 0); 4183 4184 cpu_buffer->head_page->read = 0; 4185 4186 cpu_buffer->tail_page = cpu_buffer->head_page; 4187 cpu_buffer->commit_page = cpu_buffer->head_page; 4188 4189 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4190 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4191 local_set(&cpu_buffer->reader_page->write, 0); 4192 local_set(&cpu_buffer->reader_page->entries, 0); 4193 local_set(&cpu_buffer->reader_page->page->commit, 0); 4194 cpu_buffer->reader_page->read = 0; 4195 4196 local_set(&cpu_buffer->entries_bytes, 0); 4197 local_set(&cpu_buffer->overrun, 0); 4198 local_set(&cpu_buffer->commit_overrun, 0); 4199 local_set(&cpu_buffer->dropped_events, 0); 4200 local_set(&cpu_buffer->entries, 0); 4201 local_set(&cpu_buffer->committing, 0); 4202 local_set(&cpu_buffer->commits, 0); 4203 cpu_buffer->read = 0; 4204 cpu_buffer->read_bytes = 0; 4205 4206 cpu_buffer->write_stamp = 0; 4207 cpu_buffer->read_stamp = 0; 4208 4209 cpu_buffer->lost_events = 0; 4210 cpu_buffer->last_overrun = 0; 4211 4212 rb_head_page_activate(cpu_buffer); 4213 } 4214 4215 /** 4216 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4217 * @buffer: The ring buffer to reset a per cpu buffer of 4218 * @cpu: The CPU buffer to be reset 4219 */ 4220 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4221 { 4222 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4223 unsigned long flags; 4224 4225 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4226 return; 4227 4228 atomic_inc(&buffer->resize_disabled); 4229 atomic_inc(&cpu_buffer->record_disabled); 4230 4231 /* Make sure all commits have finished */ 4232 synchronize_sched(); 4233 4234 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4235 4236 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4237 goto out; 4238 4239 arch_spin_lock(&cpu_buffer->lock); 4240 4241 rb_reset_cpu(cpu_buffer); 4242 4243 arch_spin_unlock(&cpu_buffer->lock); 4244 4245 out: 4246 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4247 4248 atomic_dec(&cpu_buffer->record_disabled); 4249 atomic_dec(&buffer->resize_disabled); 4250 } 4251 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4252 4253 /** 4254 * ring_buffer_reset - reset a ring buffer 4255 * @buffer: The ring buffer to reset all cpu buffers 4256 */ 4257 void ring_buffer_reset(struct ring_buffer *buffer) 4258 { 4259 int cpu; 4260 4261 for_each_buffer_cpu(buffer, cpu) 4262 ring_buffer_reset_cpu(buffer, cpu); 4263 } 4264 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4265 4266 /** 4267 * rind_buffer_empty - is the ring buffer empty? 4268 * @buffer: The ring buffer to test 4269 */ 4270 int ring_buffer_empty(struct ring_buffer *buffer) 4271 { 4272 struct ring_buffer_per_cpu *cpu_buffer; 4273 unsigned long flags; 4274 bool dolock; 4275 int cpu; 4276 int ret; 4277 4278 /* yes this is racy, but if you don't like the race, lock the buffer */ 4279 for_each_buffer_cpu(buffer, cpu) { 4280 cpu_buffer = buffer->buffers[cpu]; 4281 local_irq_save(flags); 4282 dolock = rb_reader_lock(cpu_buffer); 4283 ret = rb_per_cpu_empty(cpu_buffer); 4284 rb_reader_unlock(cpu_buffer, dolock); 4285 local_irq_restore(flags); 4286 4287 if (!ret) 4288 return 0; 4289 } 4290 4291 return 1; 4292 } 4293 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4294 4295 /** 4296 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4297 * @buffer: The ring buffer 4298 * @cpu: The CPU buffer to test 4299 */ 4300 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4301 { 4302 struct ring_buffer_per_cpu *cpu_buffer; 4303 unsigned long flags; 4304 bool dolock; 4305 int ret; 4306 4307 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4308 return 1; 4309 4310 cpu_buffer = buffer->buffers[cpu]; 4311 local_irq_save(flags); 4312 dolock = rb_reader_lock(cpu_buffer); 4313 ret = rb_per_cpu_empty(cpu_buffer); 4314 rb_reader_unlock(cpu_buffer, dolock); 4315 local_irq_restore(flags); 4316 4317 return ret; 4318 } 4319 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4320 4321 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4322 /** 4323 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4324 * @buffer_a: One buffer to swap with 4325 * @buffer_b: The other buffer to swap with 4326 * 4327 * This function is useful for tracers that want to take a "snapshot" 4328 * of a CPU buffer and has another back up buffer lying around. 4329 * it is expected that the tracer handles the cpu buffer not being 4330 * used at the moment. 4331 */ 4332 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4333 struct ring_buffer *buffer_b, int cpu) 4334 { 4335 struct ring_buffer_per_cpu *cpu_buffer_a; 4336 struct ring_buffer_per_cpu *cpu_buffer_b; 4337 int ret = -EINVAL; 4338 4339 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4340 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4341 goto out; 4342 4343 cpu_buffer_a = buffer_a->buffers[cpu]; 4344 cpu_buffer_b = buffer_b->buffers[cpu]; 4345 4346 /* At least make sure the two buffers are somewhat the same */ 4347 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4348 goto out; 4349 4350 ret = -EAGAIN; 4351 4352 if (atomic_read(&buffer_a->record_disabled)) 4353 goto out; 4354 4355 if (atomic_read(&buffer_b->record_disabled)) 4356 goto out; 4357 4358 if (atomic_read(&cpu_buffer_a->record_disabled)) 4359 goto out; 4360 4361 if (atomic_read(&cpu_buffer_b->record_disabled)) 4362 goto out; 4363 4364 /* 4365 * We can't do a synchronize_sched here because this 4366 * function can be called in atomic context. 4367 * Normally this will be called from the same CPU as cpu. 4368 * If not it's up to the caller to protect this. 4369 */ 4370 atomic_inc(&cpu_buffer_a->record_disabled); 4371 atomic_inc(&cpu_buffer_b->record_disabled); 4372 4373 ret = -EBUSY; 4374 if (local_read(&cpu_buffer_a->committing)) 4375 goto out_dec; 4376 if (local_read(&cpu_buffer_b->committing)) 4377 goto out_dec; 4378 4379 buffer_a->buffers[cpu] = cpu_buffer_b; 4380 buffer_b->buffers[cpu] = cpu_buffer_a; 4381 4382 cpu_buffer_b->buffer = buffer_a; 4383 cpu_buffer_a->buffer = buffer_b; 4384 4385 ret = 0; 4386 4387 out_dec: 4388 atomic_dec(&cpu_buffer_a->record_disabled); 4389 atomic_dec(&cpu_buffer_b->record_disabled); 4390 out: 4391 return ret; 4392 } 4393 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4394 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4395 4396 /** 4397 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4398 * @buffer: the buffer to allocate for. 4399 * @cpu: the cpu buffer to allocate. 4400 * 4401 * This function is used in conjunction with ring_buffer_read_page. 4402 * When reading a full page from the ring buffer, these functions 4403 * can be used to speed up the process. The calling function should 4404 * allocate a few pages first with this function. Then when it 4405 * needs to get pages from the ring buffer, it passes the result 4406 * of this function into ring_buffer_read_page, which will swap 4407 * the page that was allocated, with the read page of the buffer. 4408 * 4409 * Returns: 4410 * The page allocated, or NULL on error. 4411 */ 4412 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4413 { 4414 struct buffer_data_page *bpage; 4415 struct page *page; 4416 4417 page = alloc_pages_node(cpu_to_node(cpu), 4418 GFP_KERNEL | __GFP_NORETRY, 0); 4419 if (!page) 4420 return NULL; 4421 4422 bpage = page_address(page); 4423 4424 rb_init_page(bpage); 4425 4426 return bpage; 4427 } 4428 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4429 4430 /** 4431 * ring_buffer_free_read_page - free an allocated read page 4432 * @buffer: the buffer the page was allocate for 4433 * @data: the page to free 4434 * 4435 * Free a page allocated from ring_buffer_alloc_read_page. 4436 */ 4437 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4438 { 4439 free_page((unsigned long)data); 4440 } 4441 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4442 4443 /** 4444 * ring_buffer_read_page - extract a page from the ring buffer 4445 * @buffer: buffer to extract from 4446 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4447 * @len: amount to extract 4448 * @cpu: the cpu of the buffer to extract 4449 * @full: should the extraction only happen when the page is full. 4450 * 4451 * This function will pull out a page from the ring buffer and consume it. 4452 * @data_page must be the address of the variable that was returned 4453 * from ring_buffer_alloc_read_page. This is because the page might be used 4454 * to swap with a page in the ring buffer. 4455 * 4456 * for example: 4457 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4458 * if (!rpage) 4459 * return error; 4460 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4461 * if (ret >= 0) 4462 * process_page(rpage, ret); 4463 * 4464 * When @full is set, the function will not return true unless 4465 * the writer is off the reader page. 4466 * 4467 * Note: it is up to the calling functions to handle sleeps and wakeups. 4468 * The ring buffer can be used anywhere in the kernel and can not 4469 * blindly call wake_up. The layer that uses the ring buffer must be 4470 * responsible for that. 4471 * 4472 * Returns: 4473 * >=0 if data has been transferred, returns the offset of consumed data. 4474 * <0 if no data has been transferred. 4475 */ 4476 int ring_buffer_read_page(struct ring_buffer *buffer, 4477 void **data_page, size_t len, int cpu, int full) 4478 { 4479 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4480 struct ring_buffer_event *event; 4481 struct buffer_data_page *bpage; 4482 struct buffer_page *reader; 4483 unsigned long missed_events; 4484 unsigned long flags; 4485 unsigned int commit; 4486 unsigned int read; 4487 u64 save_timestamp; 4488 int ret = -1; 4489 4490 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4491 goto out; 4492 4493 /* 4494 * If len is not big enough to hold the page header, then 4495 * we can not copy anything. 4496 */ 4497 if (len <= BUF_PAGE_HDR_SIZE) 4498 goto out; 4499 4500 len -= BUF_PAGE_HDR_SIZE; 4501 4502 if (!data_page) 4503 goto out; 4504 4505 bpage = *data_page; 4506 if (!bpage) 4507 goto out; 4508 4509 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4510 4511 reader = rb_get_reader_page(cpu_buffer); 4512 if (!reader) 4513 goto out_unlock; 4514 4515 event = rb_reader_event(cpu_buffer); 4516 4517 read = reader->read; 4518 commit = rb_page_commit(reader); 4519 4520 /* Check if any events were dropped */ 4521 missed_events = cpu_buffer->lost_events; 4522 4523 /* 4524 * If this page has been partially read or 4525 * if len is not big enough to read the rest of the page or 4526 * a writer is still on the page, then 4527 * we must copy the data from the page to the buffer. 4528 * Otherwise, we can simply swap the page with the one passed in. 4529 */ 4530 if (read || (len < (commit - read)) || 4531 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4532 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4533 unsigned int rpos = read; 4534 unsigned int pos = 0; 4535 unsigned int size; 4536 4537 if (full) 4538 goto out_unlock; 4539 4540 if (len > (commit - read)) 4541 len = (commit - read); 4542 4543 /* Always keep the time extend and data together */ 4544 size = rb_event_ts_length(event); 4545 4546 if (len < size) 4547 goto out_unlock; 4548 4549 /* save the current timestamp, since the user will need it */ 4550 save_timestamp = cpu_buffer->read_stamp; 4551 4552 /* Need to copy one event at a time */ 4553 do { 4554 /* We need the size of one event, because 4555 * rb_advance_reader only advances by one event, 4556 * whereas rb_event_ts_length may include the size of 4557 * one or two events. 4558 * We have already ensured there's enough space if this 4559 * is a time extend. */ 4560 size = rb_event_length(event); 4561 memcpy(bpage->data + pos, rpage->data + rpos, size); 4562 4563 len -= size; 4564 4565 rb_advance_reader(cpu_buffer); 4566 rpos = reader->read; 4567 pos += size; 4568 4569 if (rpos >= commit) 4570 break; 4571 4572 event = rb_reader_event(cpu_buffer); 4573 /* Always keep the time extend and data together */ 4574 size = rb_event_ts_length(event); 4575 } while (len >= size); 4576 4577 /* update bpage */ 4578 local_set(&bpage->commit, pos); 4579 bpage->time_stamp = save_timestamp; 4580 4581 /* we copied everything to the beginning */ 4582 read = 0; 4583 } else { 4584 /* update the entry counter */ 4585 cpu_buffer->read += rb_page_entries(reader); 4586 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4587 4588 /* swap the pages */ 4589 rb_init_page(bpage); 4590 bpage = reader->page; 4591 reader->page = *data_page; 4592 local_set(&reader->write, 0); 4593 local_set(&reader->entries, 0); 4594 reader->read = 0; 4595 *data_page = bpage; 4596 4597 /* 4598 * Use the real_end for the data size, 4599 * This gives us a chance to store the lost events 4600 * on the page. 4601 */ 4602 if (reader->real_end) 4603 local_set(&bpage->commit, reader->real_end); 4604 } 4605 ret = read; 4606 4607 cpu_buffer->lost_events = 0; 4608 4609 commit = local_read(&bpage->commit); 4610 /* 4611 * Set a flag in the commit field if we lost events 4612 */ 4613 if (missed_events) { 4614 /* If there is room at the end of the page to save the 4615 * missed events, then record it there. 4616 */ 4617 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4618 memcpy(&bpage->data[commit], &missed_events, 4619 sizeof(missed_events)); 4620 local_add(RB_MISSED_STORED, &bpage->commit); 4621 commit += sizeof(missed_events); 4622 } 4623 local_add(RB_MISSED_EVENTS, &bpage->commit); 4624 } 4625 4626 /* 4627 * This page may be off to user land. Zero it out here. 4628 */ 4629 if (commit < BUF_PAGE_SIZE) 4630 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4631 4632 out_unlock: 4633 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4634 4635 out: 4636 return ret; 4637 } 4638 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4639 4640 #ifdef CONFIG_HOTPLUG_CPU 4641 static int rb_cpu_notify(struct notifier_block *self, 4642 unsigned long action, void *hcpu) 4643 { 4644 struct ring_buffer *buffer = 4645 container_of(self, struct ring_buffer, cpu_notify); 4646 long cpu = (long)hcpu; 4647 int cpu_i, nr_pages_same; 4648 unsigned int nr_pages; 4649 4650 switch (action) { 4651 case CPU_UP_PREPARE: 4652 case CPU_UP_PREPARE_FROZEN: 4653 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4654 return NOTIFY_OK; 4655 4656 nr_pages = 0; 4657 nr_pages_same = 1; 4658 /* check if all cpu sizes are same */ 4659 for_each_buffer_cpu(buffer, cpu_i) { 4660 /* fill in the size from first enabled cpu */ 4661 if (nr_pages == 0) 4662 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4663 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4664 nr_pages_same = 0; 4665 break; 4666 } 4667 } 4668 /* allocate minimum pages, user can later expand it */ 4669 if (!nr_pages_same) 4670 nr_pages = 2; 4671 buffer->buffers[cpu] = 4672 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4673 if (!buffer->buffers[cpu]) { 4674 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4675 cpu); 4676 return NOTIFY_OK; 4677 } 4678 smp_wmb(); 4679 cpumask_set_cpu(cpu, buffer->cpumask); 4680 break; 4681 case CPU_DOWN_PREPARE: 4682 case CPU_DOWN_PREPARE_FROZEN: 4683 /* 4684 * Do nothing. 4685 * If we were to free the buffer, then the user would 4686 * lose any trace that was in the buffer. 4687 */ 4688 break; 4689 default: 4690 break; 4691 } 4692 return NOTIFY_OK; 4693 } 4694 #endif 4695 4696 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4697 /* 4698 * This is a basic integrity check of the ring buffer. 4699 * Late in the boot cycle this test will run when configured in. 4700 * It will kick off a thread per CPU that will go into a loop 4701 * writing to the per cpu ring buffer various sizes of data. 4702 * Some of the data will be large items, some small. 4703 * 4704 * Another thread is created that goes into a spin, sending out 4705 * IPIs to the other CPUs to also write into the ring buffer. 4706 * this is to test the nesting ability of the buffer. 4707 * 4708 * Basic stats are recorded and reported. If something in the 4709 * ring buffer should happen that's not expected, a big warning 4710 * is displayed and all ring buffers are disabled. 4711 */ 4712 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4713 4714 struct rb_test_data { 4715 struct ring_buffer *buffer; 4716 unsigned long events; 4717 unsigned long bytes_written; 4718 unsigned long bytes_alloc; 4719 unsigned long bytes_dropped; 4720 unsigned long events_nested; 4721 unsigned long bytes_written_nested; 4722 unsigned long bytes_alloc_nested; 4723 unsigned long bytes_dropped_nested; 4724 int min_size_nested; 4725 int max_size_nested; 4726 int max_size; 4727 int min_size; 4728 int cpu; 4729 int cnt; 4730 }; 4731 4732 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4733 4734 /* 1 meg per cpu */ 4735 #define RB_TEST_BUFFER_SIZE 1048576 4736 4737 static char rb_string[] __initdata = 4738 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4739 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4740 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4741 4742 static bool rb_test_started __initdata; 4743 4744 struct rb_item { 4745 int size; 4746 char str[]; 4747 }; 4748 4749 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4750 { 4751 struct ring_buffer_event *event; 4752 struct rb_item *item; 4753 bool started; 4754 int event_len; 4755 int size; 4756 int len; 4757 int cnt; 4758 4759 /* Have nested writes different that what is written */ 4760 cnt = data->cnt + (nested ? 27 : 0); 4761 4762 /* Multiply cnt by ~e, to make some unique increment */ 4763 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4764 4765 len = size + sizeof(struct rb_item); 4766 4767 started = rb_test_started; 4768 /* read rb_test_started before checking buffer enabled */ 4769 smp_rmb(); 4770 4771 event = ring_buffer_lock_reserve(data->buffer, len); 4772 if (!event) { 4773 /* Ignore dropped events before test starts. */ 4774 if (started) { 4775 if (nested) 4776 data->bytes_dropped += len; 4777 else 4778 data->bytes_dropped_nested += len; 4779 } 4780 return len; 4781 } 4782 4783 event_len = ring_buffer_event_length(event); 4784 4785 if (RB_WARN_ON(data->buffer, event_len < len)) 4786 goto out; 4787 4788 item = ring_buffer_event_data(event); 4789 item->size = size; 4790 memcpy(item->str, rb_string, size); 4791 4792 if (nested) { 4793 data->bytes_alloc_nested += event_len; 4794 data->bytes_written_nested += len; 4795 data->events_nested++; 4796 if (!data->min_size_nested || len < data->min_size_nested) 4797 data->min_size_nested = len; 4798 if (len > data->max_size_nested) 4799 data->max_size_nested = len; 4800 } else { 4801 data->bytes_alloc += event_len; 4802 data->bytes_written += len; 4803 data->events++; 4804 if (!data->min_size || len < data->min_size) 4805 data->max_size = len; 4806 if (len > data->max_size) 4807 data->max_size = len; 4808 } 4809 4810 out: 4811 ring_buffer_unlock_commit(data->buffer, event); 4812 4813 return 0; 4814 } 4815 4816 static __init int rb_test(void *arg) 4817 { 4818 struct rb_test_data *data = arg; 4819 4820 while (!kthread_should_stop()) { 4821 rb_write_something(data, false); 4822 data->cnt++; 4823 4824 set_current_state(TASK_INTERRUPTIBLE); 4825 /* Now sleep between a min of 100-300us and a max of 1ms */ 4826 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4827 } 4828 4829 return 0; 4830 } 4831 4832 static __init void rb_ipi(void *ignore) 4833 { 4834 struct rb_test_data *data; 4835 int cpu = smp_processor_id(); 4836 4837 data = &rb_data[cpu]; 4838 rb_write_something(data, true); 4839 } 4840 4841 static __init int rb_hammer_test(void *arg) 4842 { 4843 while (!kthread_should_stop()) { 4844 4845 /* Send an IPI to all cpus to write data! */ 4846 smp_call_function(rb_ipi, NULL, 1); 4847 /* No sleep, but for non preempt, let others run */ 4848 schedule(); 4849 } 4850 4851 return 0; 4852 } 4853 4854 static __init int test_ringbuffer(void) 4855 { 4856 struct task_struct *rb_hammer; 4857 struct ring_buffer *buffer; 4858 int cpu; 4859 int ret = 0; 4860 4861 pr_info("Running ring buffer tests...\n"); 4862 4863 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4864 if (WARN_ON(!buffer)) 4865 return 0; 4866 4867 /* Disable buffer so that threads can't write to it yet */ 4868 ring_buffer_record_off(buffer); 4869 4870 for_each_online_cpu(cpu) { 4871 rb_data[cpu].buffer = buffer; 4872 rb_data[cpu].cpu = cpu; 4873 rb_data[cpu].cnt = cpu; 4874 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4875 "rbtester/%d", cpu); 4876 if (WARN_ON(!rb_threads[cpu])) { 4877 pr_cont("FAILED\n"); 4878 ret = -1; 4879 goto out_free; 4880 } 4881 4882 kthread_bind(rb_threads[cpu], cpu); 4883 wake_up_process(rb_threads[cpu]); 4884 } 4885 4886 /* Now create the rb hammer! */ 4887 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4888 if (WARN_ON(!rb_hammer)) { 4889 pr_cont("FAILED\n"); 4890 ret = -1; 4891 goto out_free; 4892 } 4893 4894 ring_buffer_record_on(buffer); 4895 /* 4896 * Show buffer is enabled before setting rb_test_started. 4897 * Yes there's a small race window where events could be 4898 * dropped and the thread wont catch it. But when a ring 4899 * buffer gets enabled, there will always be some kind of 4900 * delay before other CPUs see it. Thus, we don't care about 4901 * those dropped events. We care about events dropped after 4902 * the threads see that the buffer is active. 4903 */ 4904 smp_wmb(); 4905 rb_test_started = true; 4906 4907 set_current_state(TASK_INTERRUPTIBLE); 4908 /* Just run for 10 seconds */; 4909 schedule_timeout(10 * HZ); 4910 4911 kthread_stop(rb_hammer); 4912 4913 out_free: 4914 for_each_online_cpu(cpu) { 4915 if (!rb_threads[cpu]) 4916 break; 4917 kthread_stop(rb_threads[cpu]); 4918 } 4919 if (ret) { 4920 ring_buffer_free(buffer); 4921 return ret; 4922 } 4923 4924 /* Report! */ 4925 pr_info("finished\n"); 4926 for_each_online_cpu(cpu) { 4927 struct ring_buffer_event *event; 4928 struct rb_test_data *data = &rb_data[cpu]; 4929 struct rb_item *item; 4930 unsigned long total_events; 4931 unsigned long total_dropped; 4932 unsigned long total_written; 4933 unsigned long total_alloc; 4934 unsigned long total_read = 0; 4935 unsigned long total_size = 0; 4936 unsigned long total_len = 0; 4937 unsigned long total_lost = 0; 4938 unsigned long lost; 4939 int big_event_size; 4940 int small_event_size; 4941 4942 ret = -1; 4943 4944 total_events = data->events + data->events_nested; 4945 total_written = data->bytes_written + data->bytes_written_nested; 4946 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4947 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4948 4949 big_event_size = data->max_size + data->max_size_nested; 4950 small_event_size = data->min_size + data->min_size_nested; 4951 4952 pr_info("CPU %d:\n", cpu); 4953 pr_info(" events: %ld\n", total_events); 4954 pr_info(" dropped bytes: %ld\n", total_dropped); 4955 pr_info(" alloced bytes: %ld\n", total_alloc); 4956 pr_info(" written bytes: %ld\n", total_written); 4957 pr_info(" biggest event: %d\n", big_event_size); 4958 pr_info(" smallest event: %d\n", small_event_size); 4959 4960 if (RB_WARN_ON(buffer, total_dropped)) 4961 break; 4962 4963 ret = 0; 4964 4965 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4966 total_lost += lost; 4967 item = ring_buffer_event_data(event); 4968 total_len += ring_buffer_event_length(event); 4969 total_size += item->size + sizeof(struct rb_item); 4970 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4971 pr_info("FAILED!\n"); 4972 pr_info("buffer had: %.*s\n", item->size, item->str); 4973 pr_info("expected: %.*s\n", item->size, rb_string); 4974 RB_WARN_ON(buffer, 1); 4975 ret = -1; 4976 break; 4977 } 4978 total_read++; 4979 } 4980 if (ret) 4981 break; 4982 4983 ret = -1; 4984 4985 pr_info(" read events: %ld\n", total_read); 4986 pr_info(" lost events: %ld\n", total_lost); 4987 pr_info(" total events: %ld\n", total_lost + total_read); 4988 pr_info(" recorded len bytes: %ld\n", total_len); 4989 pr_info(" recorded size bytes: %ld\n", total_size); 4990 if (total_lost) 4991 pr_info(" With dropped events, record len and size may not match\n" 4992 " alloced and written from above\n"); 4993 if (!total_lost) { 4994 if (RB_WARN_ON(buffer, total_len != total_alloc || 4995 total_size != total_written)) 4996 break; 4997 } 4998 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4999 break; 5000 5001 ret = 0; 5002 } 5003 if (!ret) 5004 pr_info("Ring buffer PASSED!\n"); 5005 5006 ring_buffer_free(buffer); 5007 return 0; 5008 } 5009 5010 late_initcall(test_ringbuffer); 5011 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5012