1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/ftrace_irq.h> 9 #include <linux/spinlock.h> 10 #include <linux/debugfs.h> 11 #include <linux/uaccess.h> 12 #include <linux/hardirq.h> 13 #include <linux/kmemcheck.h> 14 #include <linux/module.h> 15 #include <linux/percpu.h> 16 #include <linux/mutex.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include "trace.h" 24 25 /* 26 * The ring buffer header is special. We must manually up keep it. 27 */ 28 int ring_buffer_print_entry_header(struct trace_seq *s) 29 { 30 int ret; 31 32 ret = trace_seq_printf(s, "# compressed entry header\n"); 33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 35 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 36 ret = trace_seq_printf(s, "\n"); 37 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 38 RINGBUF_TYPE_PADDING); 39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 40 RINGBUF_TYPE_TIME_EXTEND); 41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 43 44 return ret; 45 } 46 47 /* 48 * The ring buffer is made up of a list of pages. A separate list of pages is 49 * allocated for each CPU. A writer may only write to a buffer that is 50 * associated with the CPU it is currently executing on. A reader may read 51 * from any per cpu buffer. 52 * 53 * The reader is special. For each per cpu buffer, the reader has its own 54 * reader page. When a reader has read the entire reader page, this reader 55 * page is swapped with another page in the ring buffer. 56 * 57 * Now, as long as the writer is off the reader page, the reader can do what 58 * ever it wants with that page. The writer will never write to that page 59 * again (as long as it is out of the ring buffer). 60 * 61 * Here's some silly ASCII art. 62 * 63 * +------+ 64 * |reader| RING BUFFER 65 * |page | 66 * +------+ +---+ +---+ +---+ 67 * | |-->| |-->| | 68 * +---+ +---+ +---+ 69 * ^ | 70 * | | 71 * +---------------+ 72 * 73 * 74 * +------+ 75 * |reader| RING BUFFER 76 * |page |------------------v 77 * +------+ +---+ +---+ +---+ 78 * | |-->| |-->| | 79 * +---+ +---+ +---+ 80 * ^ | 81 * | | 82 * +---------------+ 83 * 84 * 85 * +------+ 86 * |reader| RING BUFFER 87 * |page |------------------v 88 * +------+ +---+ +---+ +---+ 89 * ^ | |-->| |-->| | 90 * | +---+ +---+ +---+ 91 * | | 92 * | | 93 * +------------------------------+ 94 * 95 * 96 * +------+ 97 * |buffer| RING BUFFER 98 * |page |------------------v 99 * +------+ +---+ +---+ +---+ 100 * ^ | | | |-->| | 101 * | New +---+ +---+ +---+ 102 * | Reader------^ | 103 * | page | 104 * +------------------------------+ 105 * 106 * 107 * After we make this swap, the reader can hand this page off to the splice 108 * code and be done with it. It can even allocate a new page if it needs to 109 * and swap that into the ring buffer. 110 * 111 * We will be using cmpxchg soon to make all this lockless. 112 * 113 */ 114 115 /* 116 * A fast way to enable or disable all ring buffers is to 117 * call tracing_on or tracing_off. Turning off the ring buffers 118 * prevents all ring buffers from being recorded to. 119 * Turning this switch on, makes it OK to write to the 120 * ring buffer, if the ring buffer is enabled itself. 121 * 122 * There's three layers that must be on in order to write 123 * to the ring buffer. 124 * 125 * 1) This global flag must be set. 126 * 2) The ring buffer must be enabled for recording. 127 * 3) The per cpu buffer must be enabled for recording. 128 * 129 * In case of an anomaly, this global flag has a bit set that 130 * will permantly disable all ring buffers. 131 */ 132 133 /* 134 * Global flag to disable all recording to ring buffers 135 * This has two bits: ON, DISABLED 136 * 137 * ON DISABLED 138 * ---- ---------- 139 * 0 0 : ring buffers are off 140 * 1 0 : ring buffers are on 141 * X 1 : ring buffers are permanently disabled 142 */ 143 144 enum { 145 RB_BUFFERS_ON_BIT = 0, 146 RB_BUFFERS_DISABLED_BIT = 1, 147 }; 148 149 enum { 150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 152 }; 153 154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 155 156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 157 158 /** 159 * tracing_on - enable all tracing buffers 160 * 161 * This function enables all tracing buffers that may have been 162 * disabled with tracing_off. 163 */ 164 void tracing_on(void) 165 { 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 167 } 168 EXPORT_SYMBOL_GPL(tracing_on); 169 170 /** 171 * tracing_off - turn off all tracing buffers 172 * 173 * This function stops all tracing buffers from recording data. 174 * It does not disable any overhead the tracers themselves may 175 * be causing. This function simply causes all recording to 176 * the ring buffers to fail. 177 */ 178 void tracing_off(void) 179 { 180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 181 } 182 EXPORT_SYMBOL_GPL(tracing_off); 183 184 /** 185 * tracing_off_permanent - permanently disable ring buffers 186 * 187 * This function, once called, will disable all ring buffers 188 * permanently. 189 */ 190 void tracing_off_permanent(void) 191 { 192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 193 } 194 195 /** 196 * tracing_is_on - show state of ring buffers enabled 197 */ 198 int tracing_is_on(void) 199 { 200 return ring_buffer_flags == RB_BUFFERS_ON; 201 } 202 EXPORT_SYMBOL_GPL(tracing_is_on); 203 204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 205 #define RB_ALIGNMENT 4U 206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 208 209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 211 212 enum { 213 RB_LEN_TIME_EXTEND = 8, 214 RB_LEN_TIME_STAMP = 16, 215 }; 216 217 static inline int rb_null_event(struct ring_buffer_event *event) 218 { 219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 220 } 221 222 static void rb_event_set_padding(struct ring_buffer_event *event) 223 { 224 /* padding has a NULL time_delta */ 225 event->type_len = RINGBUF_TYPE_PADDING; 226 event->time_delta = 0; 227 } 228 229 static unsigned 230 rb_event_data_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len) 235 length = event->type_len * RB_ALIGNMENT; 236 else 237 length = event->array[0]; 238 return length + RB_EVNT_HDR_SIZE; 239 } 240 241 /* inline for ring buffer fast paths */ 242 static unsigned 243 rb_event_length(struct ring_buffer_event *event) 244 { 245 switch (event->type_len) { 246 case RINGBUF_TYPE_PADDING: 247 if (rb_null_event(event)) 248 /* undefined */ 249 return -1; 250 return event->array[0] + RB_EVNT_HDR_SIZE; 251 252 case RINGBUF_TYPE_TIME_EXTEND: 253 return RB_LEN_TIME_EXTEND; 254 255 case RINGBUF_TYPE_TIME_STAMP: 256 return RB_LEN_TIME_STAMP; 257 258 case RINGBUF_TYPE_DATA: 259 return rb_event_data_length(event); 260 default: 261 BUG(); 262 } 263 /* not hit */ 264 return 0; 265 } 266 267 /** 268 * ring_buffer_event_length - return the length of the event 269 * @event: the event to get the length of 270 */ 271 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 272 { 273 unsigned length = rb_event_length(event); 274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 275 return length; 276 length -= RB_EVNT_HDR_SIZE; 277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 278 length -= sizeof(event->array[0]); 279 return length; 280 } 281 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 282 283 /* inline for ring buffer fast paths */ 284 static void * 285 rb_event_data(struct ring_buffer_event *event) 286 { 287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 288 /* If length is in len field, then array[0] has the data */ 289 if (event->type_len) 290 return (void *)&event->array[0]; 291 /* Otherwise length is in array[0] and array[1] has the data */ 292 return (void *)&event->array[1]; 293 } 294 295 /** 296 * ring_buffer_event_data - return the data of the event 297 * @event: the event to get the data from 298 */ 299 void *ring_buffer_event_data(struct ring_buffer_event *event) 300 { 301 return rb_event_data(event); 302 } 303 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 304 305 #define for_each_buffer_cpu(buffer, cpu) \ 306 for_each_cpu(cpu, buffer->cpumask) 307 308 #define TS_SHIFT 27 309 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 310 #define TS_DELTA_TEST (~TS_MASK) 311 312 struct buffer_data_page { 313 u64 time_stamp; /* page time stamp */ 314 local_t commit; /* write committed index */ 315 unsigned char data[]; /* data of buffer page */ 316 }; 317 318 /* 319 * Note, the buffer_page list must be first. The buffer pages 320 * are allocated in cache lines, which means that each buffer 321 * page will be at the beginning of a cache line, and thus 322 * the least significant bits will be zero. We use this to 323 * add flags in the list struct pointers, to make the ring buffer 324 * lockless. 325 */ 326 struct buffer_page { 327 struct list_head list; /* list of buffer pages */ 328 local_t write; /* index for next write */ 329 unsigned read; /* index for next read */ 330 local_t entries; /* entries on this page */ 331 struct buffer_data_page *page; /* Actual data page */ 332 }; 333 334 /* 335 * The buffer page counters, write and entries, must be reset 336 * atomically when crossing page boundaries. To synchronize this 337 * update, two counters are inserted into the number. One is 338 * the actual counter for the write position or count on the page. 339 * 340 * The other is a counter of updaters. Before an update happens 341 * the update partition of the counter is incremented. This will 342 * allow the updater to update the counter atomically. 343 * 344 * The counter is 20 bits, and the state data is 12. 345 */ 346 #define RB_WRITE_MASK 0xfffff 347 #define RB_WRITE_INTCNT (1 << 20) 348 349 static void rb_init_page(struct buffer_data_page *bpage) 350 { 351 local_set(&bpage->commit, 0); 352 } 353 354 /** 355 * ring_buffer_page_len - the size of data on the page. 356 * @page: The page to read 357 * 358 * Returns the amount of data on the page, including buffer page header. 359 */ 360 size_t ring_buffer_page_len(void *page) 361 { 362 return local_read(&((struct buffer_data_page *)page)->commit) 363 + BUF_PAGE_HDR_SIZE; 364 } 365 366 /* 367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 368 * this issue out. 369 */ 370 static void free_buffer_page(struct buffer_page *bpage) 371 { 372 free_page((unsigned long)bpage->page); 373 kfree(bpage); 374 } 375 376 /* 377 * We need to fit the time_stamp delta into 27 bits. 378 */ 379 static inline int test_time_stamp(u64 delta) 380 { 381 if (delta & TS_DELTA_TEST) 382 return 1; 383 return 0; 384 } 385 386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 387 388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 390 391 /* Max number of timestamps that can fit on a page */ 392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP) 393 394 int ring_buffer_print_page_header(struct trace_seq *s) 395 { 396 struct buffer_data_page field; 397 int ret; 398 399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 400 "offset:0;\tsize:%u;\n", 401 (unsigned int)sizeof(field.time_stamp)); 402 403 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 404 "offset:%u;\tsize:%u;\n", 405 (unsigned int)offsetof(typeof(field), commit), 406 (unsigned int)sizeof(field.commit)); 407 408 ret = trace_seq_printf(s, "\tfield: char data;\t" 409 "offset:%u;\tsize:%u;\n", 410 (unsigned int)offsetof(typeof(field), data), 411 (unsigned int)BUF_PAGE_SIZE); 412 413 return ret; 414 } 415 416 /* 417 * head_page == tail_page && head == tail then buffer is empty. 418 */ 419 struct ring_buffer_per_cpu { 420 int cpu; 421 struct ring_buffer *buffer; 422 spinlock_t reader_lock; /* serialize readers */ 423 raw_spinlock_t lock; 424 struct lock_class_key lock_key; 425 struct list_head *pages; 426 struct buffer_page *head_page; /* read from head */ 427 struct buffer_page *tail_page; /* write to tail */ 428 struct buffer_page *commit_page; /* committed pages */ 429 struct buffer_page *reader_page; 430 local_t commit_overrun; 431 local_t overrun; 432 local_t entries; 433 local_t committing; 434 local_t commits; 435 unsigned long read; 436 u64 write_stamp; 437 u64 read_stamp; 438 atomic_t record_disabled; 439 }; 440 441 struct ring_buffer { 442 unsigned pages; 443 unsigned flags; 444 int cpus; 445 atomic_t record_disabled; 446 cpumask_var_t cpumask; 447 448 struct lock_class_key *reader_lock_key; 449 450 struct mutex mutex; 451 452 struct ring_buffer_per_cpu **buffers; 453 454 #ifdef CONFIG_HOTPLUG_CPU 455 struct notifier_block cpu_notify; 456 #endif 457 u64 (*clock)(void); 458 }; 459 460 struct ring_buffer_iter { 461 struct ring_buffer_per_cpu *cpu_buffer; 462 unsigned long head; 463 struct buffer_page *head_page; 464 u64 read_stamp; 465 }; 466 467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 468 #define RB_WARN_ON(b, cond) \ 469 ({ \ 470 int _____ret = unlikely(cond); \ 471 if (_____ret) { \ 472 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 473 struct ring_buffer_per_cpu *__b = \ 474 (void *)b; \ 475 atomic_inc(&__b->buffer->record_disabled); \ 476 } else \ 477 atomic_inc(&b->record_disabled); \ 478 WARN_ON(1); \ 479 } \ 480 _____ret; \ 481 }) 482 483 /* Up this if you want to test the TIME_EXTENTS and normalization */ 484 #define DEBUG_SHIFT 0 485 486 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 487 { 488 /* shift to debug/test normalization and TIME_EXTENTS */ 489 return buffer->clock() << DEBUG_SHIFT; 490 } 491 492 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 493 { 494 u64 time; 495 496 preempt_disable_notrace(); 497 time = rb_time_stamp(buffer); 498 preempt_enable_no_resched_notrace(); 499 500 return time; 501 } 502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 503 504 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 505 int cpu, u64 *ts) 506 { 507 /* Just stupid testing the normalize function and deltas */ 508 *ts >>= DEBUG_SHIFT; 509 } 510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 511 512 /* 513 * Making the ring buffer lockless makes things tricky. 514 * Although writes only happen on the CPU that they are on, 515 * and they only need to worry about interrupts. Reads can 516 * happen on any CPU. 517 * 518 * The reader page is always off the ring buffer, but when the 519 * reader finishes with a page, it needs to swap its page with 520 * a new one from the buffer. The reader needs to take from 521 * the head (writes go to the tail). But if a writer is in overwrite 522 * mode and wraps, it must push the head page forward. 523 * 524 * Here lies the problem. 525 * 526 * The reader must be careful to replace only the head page, and 527 * not another one. As described at the top of the file in the 528 * ASCII art, the reader sets its old page to point to the next 529 * page after head. It then sets the page after head to point to 530 * the old reader page. But if the writer moves the head page 531 * during this operation, the reader could end up with the tail. 532 * 533 * We use cmpxchg to help prevent this race. We also do something 534 * special with the page before head. We set the LSB to 1. 535 * 536 * When the writer must push the page forward, it will clear the 537 * bit that points to the head page, move the head, and then set 538 * the bit that points to the new head page. 539 * 540 * We also don't want an interrupt coming in and moving the head 541 * page on another writer. Thus we use the second LSB to catch 542 * that too. Thus: 543 * 544 * head->list->prev->next bit 1 bit 0 545 * ------- ------- 546 * Normal page 0 0 547 * Points to head page 0 1 548 * New head page 1 0 549 * 550 * Note we can not trust the prev pointer of the head page, because: 551 * 552 * +----+ +-----+ +-----+ 553 * | |------>| T |---X--->| N | 554 * | |<------| | | | 555 * +----+ +-----+ +-----+ 556 * ^ ^ | 557 * | +-----+ | | 558 * +----------| R |----------+ | 559 * | |<-----------+ 560 * +-----+ 561 * 562 * Key: ---X--> HEAD flag set in pointer 563 * T Tail page 564 * R Reader page 565 * N Next page 566 * 567 * (see __rb_reserve_next() to see where this happens) 568 * 569 * What the above shows is that the reader just swapped out 570 * the reader page with a page in the buffer, but before it 571 * could make the new header point back to the new page added 572 * it was preempted by a writer. The writer moved forward onto 573 * the new page added by the reader and is about to move forward 574 * again. 575 * 576 * You can see, it is legitimate for the previous pointer of 577 * the head (or any page) not to point back to itself. But only 578 * temporarially. 579 */ 580 581 #define RB_PAGE_NORMAL 0UL 582 #define RB_PAGE_HEAD 1UL 583 #define RB_PAGE_UPDATE 2UL 584 585 586 #define RB_FLAG_MASK 3UL 587 588 /* PAGE_MOVED is not part of the mask */ 589 #define RB_PAGE_MOVED 4UL 590 591 /* 592 * rb_list_head - remove any bit 593 */ 594 static struct list_head *rb_list_head(struct list_head *list) 595 { 596 unsigned long val = (unsigned long)list; 597 598 return (struct list_head *)(val & ~RB_FLAG_MASK); 599 } 600 601 /* 602 * rb_is_head_page - test if the given page is the head page 603 * 604 * Because the reader may move the head_page pointer, we can 605 * not trust what the head page is (it may be pointing to 606 * the reader page). But if the next page is a header page, 607 * its flags will be non zero. 608 */ 609 static int inline 610 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 611 struct buffer_page *page, struct list_head *list) 612 { 613 unsigned long val; 614 615 val = (unsigned long)list->next; 616 617 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 618 return RB_PAGE_MOVED; 619 620 return val & RB_FLAG_MASK; 621 } 622 623 /* 624 * rb_is_reader_page 625 * 626 * The unique thing about the reader page, is that, if the 627 * writer is ever on it, the previous pointer never points 628 * back to the reader page. 629 */ 630 static int rb_is_reader_page(struct buffer_page *page) 631 { 632 struct list_head *list = page->list.prev; 633 634 return rb_list_head(list->next) != &page->list; 635 } 636 637 /* 638 * rb_set_list_to_head - set a list_head to be pointing to head. 639 */ 640 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 641 struct list_head *list) 642 { 643 unsigned long *ptr; 644 645 ptr = (unsigned long *)&list->next; 646 *ptr |= RB_PAGE_HEAD; 647 *ptr &= ~RB_PAGE_UPDATE; 648 } 649 650 /* 651 * rb_head_page_activate - sets up head page 652 */ 653 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 654 { 655 struct buffer_page *head; 656 657 head = cpu_buffer->head_page; 658 if (!head) 659 return; 660 661 /* 662 * Set the previous list pointer to have the HEAD flag. 663 */ 664 rb_set_list_to_head(cpu_buffer, head->list.prev); 665 } 666 667 static void rb_list_head_clear(struct list_head *list) 668 { 669 unsigned long *ptr = (unsigned long *)&list->next; 670 671 *ptr &= ~RB_FLAG_MASK; 672 } 673 674 /* 675 * rb_head_page_dactivate - clears head page ptr (for free list) 676 */ 677 static void 678 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 679 { 680 struct list_head *hd; 681 682 /* Go through the whole list and clear any pointers found. */ 683 rb_list_head_clear(cpu_buffer->pages); 684 685 list_for_each(hd, cpu_buffer->pages) 686 rb_list_head_clear(hd); 687 } 688 689 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 690 struct buffer_page *head, 691 struct buffer_page *prev, 692 int old_flag, int new_flag) 693 { 694 struct list_head *list; 695 unsigned long val = (unsigned long)&head->list; 696 unsigned long ret; 697 698 list = &prev->list; 699 700 val &= ~RB_FLAG_MASK; 701 702 ret = cmpxchg((unsigned long *)&list->next, 703 val | old_flag, val | new_flag); 704 705 /* check if the reader took the page */ 706 if ((ret & ~RB_FLAG_MASK) != val) 707 return RB_PAGE_MOVED; 708 709 return ret & RB_FLAG_MASK; 710 } 711 712 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 713 struct buffer_page *head, 714 struct buffer_page *prev, 715 int old_flag) 716 { 717 return rb_head_page_set(cpu_buffer, head, prev, 718 old_flag, RB_PAGE_UPDATE); 719 } 720 721 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 722 struct buffer_page *head, 723 struct buffer_page *prev, 724 int old_flag) 725 { 726 return rb_head_page_set(cpu_buffer, head, prev, 727 old_flag, RB_PAGE_HEAD); 728 } 729 730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 731 struct buffer_page *head, 732 struct buffer_page *prev, 733 int old_flag) 734 { 735 return rb_head_page_set(cpu_buffer, head, prev, 736 old_flag, RB_PAGE_NORMAL); 737 } 738 739 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 740 struct buffer_page **bpage) 741 { 742 struct list_head *p = rb_list_head((*bpage)->list.next); 743 744 *bpage = list_entry(p, struct buffer_page, list); 745 } 746 747 static struct buffer_page * 748 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 749 { 750 struct buffer_page *head; 751 struct buffer_page *page; 752 struct list_head *list; 753 int i; 754 755 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 756 return NULL; 757 758 /* sanity check */ 759 list = cpu_buffer->pages; 760 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 761 return NULL; 762 763 page = head = cpu_buffer->head_page; 764 /* 765 * It is possible that the writer moves the header behind 766 * where we started, and we miss in one loop. 767 * A second loop should grab the header, but we'll do 768 * three loops just because I'm paranoid. 769 */ 770 for (i = 0; i < 3; i++) { 771 do { 772 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 773 cpu_buffer->head_page = page; 774 return page; 775 } 776 rb_inc_page(cpu_buffer, &page); 777 } while (page != head); 778 } 779 780 RB_WARN_ON(cpu_buffer, 1); 781 782 return NULL; 783 } 784 785 static int rb_head_page_replace(struct buffer_page *old, 786 struct buffer_page *new) 787 { 788 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 789 unsigned long val; 790 unsigned long ret; 791 792 val = *ptr & ~RB_FLAG_MASK; 793 val |= RB_PAGE_HEAD; 794 795 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 796 797 return ret == val; 798 } 799 800 /* 801 * rb_tail_page_update - move the tail page forward 802 * 803 * Returns 1 if moved tail page, 0 if someone else did. 804 */ 805 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 806 struct buffer_page *tail_page, 807 struct buffer_page *next_page) 808 { 809 struct buffer_page *old_tail; 810 unsigned long old_entries; 811 unsigned long old_write; 812 int ret = 0; 813 814 /* 815 * The tail page now needs to be moved forward. 816 * 817 * We need to reset the tail page, but without messing 818 * with possible erasing of data brought in by interrupts 819 * that have moved the tail page and are currently on it. 820 * 821 * We add a counter to the write field to denote this. 822 */ 823 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 824 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 825 826 /* 827 * Just make sure we have seen our old_write and synchronize 828 * with any interrupts that come in. 829 */ 830 barrier(); 831 832 /* 833 * If the tail page is still the same as what we think 834 * it is, then it is up to us to update the tail 835 * pointer. 836 */ 837 if (tail_page == cpu_buffer->tail_page) { 838 /* Zero the write counter */ 839 unsigned long val = old_write & ~RB_WRITE_MASK; 840 unsigned long eval = old_entries & ~RB_WRITE_MASK; 841 842 /* 843 * This will only succeed if an interrupt did 844 * not come in and change it. In which case, we 845 * do not want to modify it. 846 * 847 * We add (void) to let the compiler know that we do not care 848 * about the return value of these functions. We use the 849 * cmpxchg to only update if an interrupt did not already 850 * do it for us. If the cmpxchg fails, we don't care. 851 */ 852 (void)local_cmpxchg(&next_page->write, old_write, val); 853 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 854 855 /* 856 * No need to worry about races with clearing out the commit. 857 * it only can increment when a commit takes place. But that 858 * only happens in the outer most nested commit. 859 */ 860 local_set(&next_page->page->commit, 0); 861 862 old_tail = cmpxchg(&cpu_buffer->tail_page, 863 tail_page, next_page); 864 865 if (old_tail == tail_page) 866 ret = 1; 867 } 868 869 return ret; 870 } 871 872 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 873 struct buffer_page *bpage) 874 { 875 unsigned long val = (unsigned long)bpage; 876 877 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 878 return 1; 879 880 return 0; 881 } 882 883 /** 884 * rb_check_list - make sure a pointer to a list has the last bits zero 885 */ 886 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 887 struct list_head *list) 888 { 889 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 890 return 1; 891 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 892 return 1; 893 return 0; 894 } 895 896 /** 897 * check_pages - integrity check of buffer pages 898 * @cpu_buffer: CPU buffer with pages to test 899 * 900 * As a safety measure we check to make sure the data pages have not 901 * been corrupted. 902 */ 903 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 904 { 905 struct list_head *head = cpu_buffer->pages; 906 struct buffer_page *bpage, *tmp; 907 908 rb_head_page_deactivate(cpu_buffer); 909 910 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 911 return -1; 912 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 913 return -1; 914 915 if (rb_check_list(cpu_buffer, head)) 916 return -1; 917 918 list_for_each_entry_safe(bpage, tmp, head, list) { 919 if (RB_WARN_ON(cpu_buffer, 920 bpage->list.next->prev != &bpage->list)) 921 return -1; 922 if (RB_WARN_ON(cpu_buffer, 923 bpage->list.prev->next != &bpage->list)) 924 return -1; 925 if (rb_check_list(cpu_buffer, &bpage->list)) 926 return -1; 927 } 928 929 rb_head_page_activate(cpu_buffer); 930 931 return 0; 932 } 933 934 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 935 unsigned nr_pages) 936 { 937 struct buffer_page *bpage, *tmp; 938 unsigned long addr; 939 LIST_HEAD(pages); 940 unsigned i; 941 942 WARN_ON(!nr_pages); 943 944 for (i = 0; i < nr_pages; i++) { 945 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 946 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 947 if (!bpage) 948 goto free_pages; 949 950 rb_check_bpage(cpu_buffer, bpage); 951 952 list_add(&bpage->list, &pages); 953 954 addr = __get_free_page(GFP_KERNEL); 955 if (!addr) 956 goto free_pages; 957 bpage->page = (void *)addr; 958 rb_init_page(bpage->page); 959 } 960 961 /* 962 * The ring buffer page list is a circular list that does not 963 * start and end with a list head. All page list items point to 964 * other pages. 965 */ 966 cpu_buffer->pages = pages.next; 967 list_del(&pages); 968 969 rb_check_pages(cpu_buffer); 970 971 return 0; 972 973 free_pages: 974 list_for_each_entry_safe(bpage, tmp, &pages, list) { 975 list_del_init(&bpage->list); 976 free_buffer_page(bpage); 977 } 978 return -ENOMEM; 979 } 980 981 static struct ring_buffer_per_cpu * 982 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 983 { 984 struct ring_buffer_per_cpu *cpu_buffer; 985 struct buffer_page *bpage; 986 unsigned long addr; 987 int ret; 988 989 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 990 GFP_KERNEL, cpu_to_node(cpu)); 991 if (!cpu_buffer) 992 return NULL; 993 994 cpu_buffer->cpu = cpu; 995 cpu_buffer->buffer = buffer; 996 spin_lock_init(&cpu_buffer->reader_lock); 997 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 998 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; 999 1000 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1001 GFP_KERNEL, cpu_to_node(cpu)); 1002 if (!bpage) 1003 goto fail_free_buffer; 1004 1005 rb_check_bpage(cpu_buffer, bpage); 1006 1007 cpu_buffer->reader_page = bpage; 1008 addr = __get_free_page(GFP_KERNEL); 1009 if (!addr) 1010 goto fail_free_reader; 1011 bpage->page = (void *)addr; 1012 rb_init_page(bpage->page); 1013 1014 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1015 1016 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1017 if (ret < 0) 1018 goto fail_free_reader; 1019 1020 cpu_buffer->head_page 1021 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1022 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1023 1024 rb_head_page_activate(cpu_buffer); 1025 1026 return cpu_buffer; 1027 1028 fail_free_reader: 1029 free_buffer_page(cpu_buffer->reader_page); 1030 1031 fail_free_buffer: 1032 kfree(cpu_buffer); 1033 return NULL; 1034 } 1035 1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1037 { 1038 struct list_head *head = cpu_buffer->pages; 1039 struct buffer_page *bpage, *tmp; 1040 1041 free_buffer_page(cpu_buffer->reader_page); 1042 1043 rb_head_page_deactivate(cpu_buffer); 1044 1045 if (head) { 1046 list_for_each_entry_safe(bpage, tmp, head, list) { 1047 list_del_init(&bpage->list); 1048 free_buffer_page(bpage); 1049 } 1050 bpage = list_entry(head, struct buffer_page, list); 1051 free_buffer_page(bpage); 1052 } 1053 1054 kfree(cpu_buffer); 1055 } 1056 1057 #ifdef CONFIG_HOTPLUG_CPU 1058 static int rb_cpu_notify(struct notifier_block *self, 1059 unsigned long action, void *hcpu); 1060 #endif 1061 1062 /** 1063 * ring_buffer_alloc - allocate a new ring_buffer 1064 * @size: the size in bytes per cpu that is needed. 1065 * @flags: attributes to set for the ring buffer. 1066 * 1067 * Currently the only flag that is available is the RB_FL_OVERWRITE 1068 * flag. This flag means that the buffer will overwrite old data 1069 * when the buffer wraps. If this flag is not set, the buffer will 1070 * drop data when the tail hits the head. 1071 */ 1072 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1073 struct lock_class_key *key) 1074 { 1075 struct ring_buffer *buffer; 1076 int bsize; 1077 int cpu; 1078 1079 /* keep it in its own cache line */ 1080 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1081 GFP_KERNEL); 1082 if (!buffer) 1083 return NULL; 1084 1085 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1086 goto fail_free_buffer; 1087 1088 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1089 buffer->flags = flags; 1090 buffer->clock = trace_clock_local; 1091 buffer->reader_lock_key = key; 1092 1093 /* need at least two pages */ 1094 if (buffer->pages < 2) 1095 buffer->pages = 2; 1096 1097 /* 1098 * In case of non-hotplug cpu, if the ring-buffer is allocated 1099 * in early initcall, it will not be notified of secondary cpus. 1100 * In that off case, we need to allocate for all possible cpus. 1101 */ 1102 #ifdef CONFIG_HOTPLUG_CPU 1103 get_online_cpus(); 1104 cpumask_copy(buffer->cpumask, cpu_online_mask); 1105 #else 1106 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1107 #endif 1108 buffer->cpus = nr_cpu_ids; 1109 1110 bsize = sizeof(void *) * nr_cpu_ids; 1111 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1112 GFP_KERNEL); 1113 if (!buffer->buffers) 1114 goto fail_free_cpumask; 1115 1116 for_each_buffer_cpu(buffer, cpu) { 1117 buffer->buffers[cpu] = 1118 rb_allocate_cpu_buffer(buffer, cpu); 1119 if (!buffer->buffers[cpu]) 1120 goto fail_free_buffers; 1121 } 1122 1123 #ifdef CONFIG_HOTPLUG_CPU 1124 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1125 buffer->cpu_notify.priority = 0; 1126 register_cpu_notifier(&buffer->cpu_notify); 1127 #endif 1128 1129 put_online_cpus(); 1130 mutex_init(&buffer->mutex); 1131 1132 return buffer; 1133 1134 fail_free_buffers: 1135 for_each_buffer_cpu(buffer, cpu) { 1136 if (buffer->buffers[cpu]) 1137 rb_free_cpu_buffer(buffer->buffers[cpu]); 1138 } 1139 kfree(buffer->buffers); 1140 1141 fail_free_cpumask: 1142 free_cpumask_var(buffer->cpumask); 1143 put_online_cpus(); 1144 1145 fail_free_buffer: 1146 kfree(buffer); 1147 return NULL; 1148 } 1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1150 1151 /** 1152 * ring_buffer_free - free a ring buffer. 1153 * @buffer: the buffer to free. 1154 */ 1155 void 1156 ring_buffer_free(struct ring_buffer *buffer) 1157 { 1158 int cpu; 1159 1160 get_online_cpus(); 1161 1162 #ifdef CONFIG_HOTPLUG_CPU 1163 unregister_cpu_notifier(&buffer->cpu_notify); 1164 #endif 1165 1166 for_each_buffer_cpu(buffer, cpu) 1167 rb_free_cpu_buffer(buffer->buffers[cpu]); 1168 1169 put_online_cpus(); 1170 1171 kfree(buffer->buffers); 1172 free_cpumask_var(buffer->cpumask); 1173 1174 kfree(buffer); 1175 } 1176 EXPORT_SYMBOL_GPL(ring_buffer_free); 1177 1178 void ring_buffer_set_clock(struct ring_buffer *buffer, 1179 u64 (*clock)(void)) 1180 { 1181 buffer->clock = clock; 1182 } 1183 1184 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1185 1186 static void 1187 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1188 { 1189 struct buffer_page *bpage; 1190 struct list_head *p; 1191 unsigned i; 1192 1193 atomic_inc(&cpu_buffer->record_disabled); 1194 synchronize_sched(); 1195 1196 spin_lock_irq(&cpu_buffer->reader_lock); 1197 rb_head_page_deactivate(cpu_buffer); 1198 1199 for (i = 0; i < nr_pages; i++) { 1200 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1201 return; 1202 p = cpu_buffer->pages->next; 1203 bpage = list_entry(p, struct buffer_page, list); 1204 list_del_init(&bpage->list); 1205 free_buffer_page(bpage); 1206 } 1207 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1208 return; 1209 1210 rb_reset_cpu(cpu_buffer); 1211 spin_unlock_irq(&cpu_buffer->reader_lock); 1212 1213 rb_check_pages(cpu_buffer); 1214 1215 atomic_dec(&cpu_buffer->record_disabled); 1216 1217 } 1218 1219 static void 1220 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1221 struct list_head *pages, unsigned nr_pages) 1222 { 1223 struct buffer_page *bpage; 1224 struct list_head *p; 1225 unsigned i; 1226 1227 atomic_inc(&cpu_buffer->record_disabled); 1228 synchronize_sched(); 1229 1230 spin_lock_irq(&cpu_buffer->reader_lock); 1231 rb_head_page_deactivate(cpu_buffer); 1232 1233 for (i = 0; i < nr_pages; i++) { 1234 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1235 return; 1236 p = pages->next; 1237 bpage = list_entry(p, struct buffer_page, list); 1238 list_del_init(&bpage->list); 1239 list_add_tail(&bpage->list, cpu_buffer->pages); 1240 } 1241 rb_reset_cpu(cpu_buffer); 1242 spin_unlock_irq(&cpu_buffer->reader_lock); 1243 1244 rb_check_pages(cpu_buffer); 1245 1246 atomic_dec(&cpu_buffer->record_disabled); 1247 } 1248 1249 /** 1250 * ring_buffer_resize - resize the ring buffer 1251 * @buffer: the buffer to resize. 1252 * @size: the new size. 1253 * 1254 * The tracer is responsible for making sure that the buffer is 1255 * not being used while changing the size. 1256 * Note: We may be able to change the above requirement by using 1257 * RCU synchronizations. 1258 * 1259 * Minimum size is 2 * BUF_PAGE_SIZE. 1260 * 1261 * Returns -1 on failure. 1262 */ 1263 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1264 { 1265 struct ring_buffer_per_cpu *cpu_buffer; 1266 unsigned nr_pages, rm_pages, new_pages; 1267 struct buffer_page *bpage, *tmp; 1268 unsigned long buffer_size; 1269 unsigned long addr; 1270 LIST_HEAD(pages); 1271 int i, cpu; 1272 1273 /* 1274 * Always succeed at resizing a non-existent buffer: 1275 */ 1276 if (!buffer) 1277 return size; 1278 1279 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1280 size *= BUF_PAGE_SIZE; 1281 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1282 1283 /* we need a minimum of two pages */ 1284 if (size < BUF_PAGE_SIZE * 2) 1285 size = BUF_PAGE_SIZE * 2; 1286 1287 if (size == buffer_size) 1288 return size; 1289 1290 mutex_lock(&buffer->mutex); 1291 get_online_cpus(); 1292 1293 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1294 1295 if (size < buffer_size) { 1296 1297 /* easy case, just free pages */ 1298 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1299 goto out_fail; 1300 1301 rm_pages = buffer->pages - nr_pages; 1302 1303 for_each_buffer_cpu(buffer, cpu) { 1304 cpu_buffer = buffer->buffers[cpu]; 1305 rb_remove_pages(cpu_buffer, rm_pages); 1306 } 1307 goto out; 1308 } 1309 1310 /* 1311 * This is a bit more difficult. We only want to add pages 1312 * when we can allocate enough for all CPUs. We do this 1313 * by allocating all the pages and storing them on a local 1314 * link list. If we succeed in our allocation, then we 1315 * add these pages to the cpu_buffers. Otherwise we just free 1316 * them all and return -ENOMEM; 1317 */ 1318 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1319 goto out_fail; 1320 1321 new_pages = nr_pages - buffer->pages; 1322 1323 for_each_buffer_cpu(buffer, cpu) { 1324 for (i = 0; i < new_pages; i++) { 1325 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1326 cache_line_size()), 1327 GFP_KERNEL, cpu_to_node(cpu)); 1328 if (!bpage) 1329 goto free_pages; 1330 list_add(&bpage->list, &pages); 1331 addr = __get_free_page(GFP_KERNEL); 1332 if (!addr) 1333 goto free_pages; 1334 bpage->page = (void *)addr; 1335 rb_init_page(bpage->page); 1336 } 1337 } 1338 1339 for_each_buffer_cpu(buffer, cpu) { 1340 cpu_buffer = buffer->buffers[cpu]; 1341 rb_insert_pages(cpu_buffer, &pages, new_pages); 1342 } 1343 1344 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1345 goto out_fail; 1346 1347 out: 1348 buffer->pages = nr_pages; 1349 put_online_cpus(); 1350 mutex_unlock(&buffer->mutex); 1351 1352 return size; 1353 1354 free_pages: 1355 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1356 list_del_init(&bpage->list); 1357 free_buffer_page(bpage); 1358 } 1359 put_online_cpus(); 1360 mutex_unlock(&buffer->mutex); 1361 return -ENOMEM; 1362 1363 /* 1364 * Something went totally wrong, and we are too paranoid 1365 * to even clean up the mess. 1366 */ 1367 out_fail: 1368 put_online_cpus(); 1369 mutex_unlock(&buffer->mutex); 1370 return -1; 1371 } 1372 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1373 1374 static inline void * 1375 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1376 { 1377 return bpage->data + index; 1378 } 1379 1380 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1381 { 1382 return bpage->page->data + index; 1383 } 1384 1385 static inline struct ring_buffer_event * 1386 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1387 { 1388 return __rb_page_index(cpu_buffer->reader_page, 1389 cpu_buffer->reader_page->read); 1390 } 1391 1392 static inline struct ring_buffer_event * 1393 rb_iter_head_event(struct ring_buffer_iter *iter) 1394 { 1395 return __rb_page_index(iter->head_page, iter->head); 1396 } 1397 1398 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1399 { 1400 return local_read(&bpage->write) & RB_WRITE_MASK; 1401 } 1402 1403 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1404 { 1405 return local_read(&bpage->page->commit); 1406 } 1407 1408 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1409 { 1410 return local_read(&bpage->entries) & RB_WRITE_MASK; 1411 } 1412 1413 /* Size is determined by what has been commited */ 1414 static inline unsigned rb_page_size(struct buffer_page *bpage) 1415 { 1416 return rb_page_commit(bpage); 1417 } 1418 1419 static inline unsigned 1420 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1421 { 1422 return rb_page_commit(cpu_buffer->commit_page); 1423 } 1424 1425 static inline unsigned 1426 rb_event_index(struct ring_buffer_event *event) 1427 { 1428 unsigned long addr = (unsigned long)event; 1429 1430 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1431 } 1432 1433 static inline int 1434 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1435 struct ring_buffer_event *event) 1436 { 1437 unsigned long addr = (unsigned long)event; 1438 unsigned long index; 1439 1440 index = rb_event_index(event); 1441 addr &= PAGE_MASK; 1442 1443 return cpu_buffer->commit_page->page == (void *)addr && 1444 rb_commit_index(cpu_buffer) == index; 1445 } 1446 1447 static void 1448 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1449 { 1450 unsigned long max_count; 1451 1452 /* 1453 * We only race with interrupts and NMIs on this CPU. 1454 * If we own the commit event, then we can commit 1455 * all others that interrupted us, since the interruptions 1456 * are in stack format (they finish before they come 1457 * back to us). This allows us to do a simple loop to 1458 * assign the commit to the tail. 1459 */ 1460 again: 1461 max_count = cpu_buffer->buffer->pages * 100; 1462 1463 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1464 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1465 return; 1466 if (RB_WARN_ON(cpu_buffer, 1467 rb_is_reader_page(cpu_buffer->tail_page))) 1468 return; 1469 local_set(&cpu_buffer->commit_page->page->commit, 1470 rb_page_write(cpu_buffer->commit_page)); 1471 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1472 cpu_buffer->write_stamp = 1473 cpu_buffer->commit_page->page->time_stamp; 1474 /* add barrier to keep gcc from optimizing too much */ 1475 barrier(); 1476 } 1477 while (rb_commit_index(cpu_buffer) != 1478 rb_page_write(cpu_buffer->commit_page)) { 1479 1480 local_set(&cpu_buffer->commit_page->page->commit, 1481 rb_page_write(cpu_buffer->commit_page)); 1482 RB_WARN_ON(cpu_buffer, 1483 local_read(&cpu_buffer->commit_page->page->commit) & 1484 ~RB_WRITE_MASK); 1485 barrier(); 1486 } 1487 1488 /* again, keep gcc from optimizing */ 1489 barrier(); 1490 1491 /* 1492 * If an interrupt came in just after the first while loop 1493 * and pushed the tail page forward, we will be left with 1494 * a dangling commit that will never go forward. 1495 */ 1496 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1497 goto again; 1498 } 1499 1500 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1501 { 1502 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1503 cpu_buffer->reader_page->read = 0; 1504 } 1505 1506 static void rb_inc_iter(struct ring_buffer_iter *iter) 1507 { 1508 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1509 1510 /* 1511 * The iterator could be on the reader page (it starts there). 1512 * But the head could have moved, since the reader was 1513 * found. Check for this case and assign the iterator 1514 * to the head page instead of next. 1515 */ 1516 if (iter->head_page == cpu_buffer->reader_page) 1517 iter->head_page = rb_set_head_page(cpu_buffer); 1518 else 1519 rb_inc_page(cpu_buffer, &iter->head_page); 1520 1521 iter->read_stamp = iter->head_page->page->time_stamp; 1522 iter->head = 0; 1523 } 1524 1525 /** 1526 * ring_buffer_update_event - update event type and data 1527 * @event: the even to update 1528 * @type: the type of event 1529 * @length: the size of the event field in the ring buffer 1530 * 1531 * Update the type and data fields of the event. The length 1532 * is the actual size that is written to the ring buffer, 1533 * and with this, we can determine what to place into the 1534 * data field. 1535 */ 1536 static void 1537 rb_update_event(struct ring_buffer_event *event, 1538 unsigned type, unsigned length) 1539 { 1540 event->type_len = type; 1541 1542 switch (type) { 1543 1544 case RINGBUF_TYPE_PADDING: 1545 case RINGBUF_TYPE_TIME_EXTEND: 1546 case RINGBUF_TYPE_TIME_STAMP: 1547 break; 1548 1549 case 0: 1550 length -= RB_EVNT_HDR_SIZE; 1551 if (length > RB_MAX_SMALL_DATA) 1552 event->array[0] = length; 1553 else 1554 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1555 break; 1556 default: 1557 BUG(); 1558 } 1559 } 1560 1561 /* 1562 * rb_handle_head_page - writer hit the head page 1563 * 1564 * Returns: +1 to retry page 1565 * 0 to continue 1566 * -1 on error 1567 */ 1568 static int 1569 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1570 struct buffer_page *tail_page, 1571 struct buffer_page *next_page) 1572 { 1573 struct buffer_page *new_head; 1574 int entries; 1575 int type; 1576 int ret; 1577 1578 entries = rb_page_entries(next_page); 1579 1580 /* 1581 * The hard part is here. We need to move the head 1582 * forward, and protect against both readers on 1583 * other CPUs and writers coming in via interrupts. 1584 */ 1585 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1586 RB_PAGE_HEAD); 1587 1588 /* 1589 * type can be one of four: 1590 * NORMAL - an interrupt already moved it for us 1591 * HEAD - we are the first to get here. 1592 * UPDATE - we are the interrupt interrupting 1593 * a current move. 1594 * MOVED - a reader on another CPU moved the next 1595 * pointer to its reader page. Give up 1596 * and try again. 1597 */ 1598 1599 switch (type) { 1600 case RB_PAGE_HEAD: 1601 /* 1602 * We changed the head to UPDATE, thus 1603 * it is our responsibility to update 1604 * the counters. 1605 */ 1606 local_add(entries, &cpu_buffer->overrun); 1607 1608 /* 1609 * The entries will be zeroed out when we move the 1610 * tail page. 1611 */ 1612 1613 /* still more to do */ 1614 break; 1615 1616 case RB_PAGE_UPDATE: 1617 /* 1618 * This is an interrupt that interrupt the 1619 * previous update. Still more to do. 1620 */ 1621 break; 1622 case RB_PAGE_NORMAL: 1623 /* 1624 * An interrupt came in before the update 1625 * and processed this for us. 1626 * Nothing left to do. 1627 */ 1628 return 1; 1629 case RB_PAGE_MOVED: 1630 /* 1631 * The reader is on another CPU and just did 1632 * a swap with our next_page. 1633 * Try again. 1634 */ 1635 return 1; 1636 default: 1637 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1638 return -1; 1639 } 1640 1641 /* 1642 * Now that we are here, the old head pointer is 1643 * set to UPDATE. This will keep the reader from 1644 * swapping the head page with the reader page. 1645 * The reader (on another CPU) will spin till 1646 * we are finished. 1647 * 1648 * We just need to protect against interrupts 1649 * doing the job. We will set the next pointer 1650 * to HEAD. After that, we set the old pointer 1651 * to NORMAL, but only if it was HEAD before. 1652 * otherwise we are an interrupt, and only 1653 * want the outer most commit to reset it. 1654 */ 1655 new_head = next_page; 1656 rb_inc_page(cpu_buffer, &new_head); 1657 1658 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1659 RB_PAGE_NORMAL); 1660 1661 /* 1662 * Valid returns are: 1663 * HEAD - an interrupt came in and already set it. 1664 * NORMAL - One of two things: 1665 * 1) We really set it. 1666 * 2) A bunch of interrupts came in and moved 1667 * the page forward again. 1668 */ 1669 switch (ret) { 1670 case RB_PAGE_HEAD: 1671 case RB_PAGE_NORMAL: 1672 /* OK */ 1673 break; 1674 default: 1675 RB_WARN_ON(cpu_buffer, 1); 1676 return -1; 1677 } 1678 1679 /* 1680 * It is possible that an interrupt came in, 1681 * set the head up, then more interrupts came in 1682 * and moved it again. When we get back here, 1683 * the page would have been set to NORMAL but we 1684 * just set it back to HEAD. 1685 * 1686 * How do you detect this? Well, if that happened 1687 * the tail page would have moved. 1688 */ 1689 if (ret == RB_PAGE_NORMAL) { 1690 /* 1691 * If the tail had moved passed next, then we need 1692 * to reset the pointer. 1693 */ 1694 if (cpu_buffer->tail_page != tail_page && 1695 cpu_buffer->tail_page != next_page) 1696 rb_head_page_set_normal(cpu_buffer, new_head, 1697 next_page, 1698 RB_PAGE_HEAD); 1699 } 1700 1701 /* 1702 * If this was the outer most commit (the one that 1703 * changed the original pointer from HEAD to UPDATE), 1704 * then it is up to us to reset it to NORMAL. 1705 */ 1706 if (type == RB_PAGE_HEAD) { 1707 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1708 tail_page, 1709 RB_PAGE_UPDATE); 1710 if (RB_WARN_ON(cpu_buffer, 1711 ret != RB_PAGE_UPDATE)) 1712 return -1; 1713 } 1714 1715 return 0; 1716 } 1717 1718 static unsigned rb_calculate_event_length(unsigned length) 1719 { 1720 struct ring_buffer_event event; /* Used only for sizeof array */ 1721 1722 /* zero length can cause confusions */ 1723 if (!length) 1724 length = 1; 1725 1726 if (length > RB_MAX_SMALL_DATA) 1727 length += sizeof(event.array[0]); 1728 1729 length += RB_EVNT_HDR_SIZE; 1730 length = ALIGN(length, RB_ALIGNMENT); 1731 1732 return length; 1733 } 1734 1735 static inline void 1736 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1737 struct buffer_page *tail_page, 1738 unsigned long tail, unsigned long length) 1739 { 1740 struct ring_buffer_event *event; 1741 1742 /* 1743 * Only the event that crossed the page boundary 1744 * must fill the old tail_page with padding. 1745 */ 1746 if (tail >= BUF_PAGE_SIZE) { 1747 local_sub(length, &tail_page->write); 1748 return; 1749 } 1750 1751 event = __rb_page_index(tail_page, tail); 1752 kmemcheck_annotate_bitfield(event, bitfield); 1753 1754 /* 1755 * If this event is bigger than the minimum size, then 1756 * we need to be careful that we don't subtract the 1757 * write counter enough to allow another writer to slip 1758 * in on this page. 1759 * We put in a discarded commit instead, to make sure 1760 * that this space is not used again. 1761 * 1762 * If we are less than the minimum size, we don't need to 1763 * worry about it. 1764 */ 1765 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1766 /* No room for any events */ 1767 1768 /* Mark the rest of the page with padding */ 1769 rb_event_set_padding(event); 1770 1771 /* Set the write back to the previous setting */ 1772 local_sub(length, &tail_page->write); 1773 return; 1774 } 1775 1776 /* Put in a discarded event */ 1777 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1778 event->type_len = RINGBUF_TYPE_PADDING; 1779 /* time delta must be non zero */ 1780 event->time_delta = 1; 1781 1782 /* Set write to end of buffer */ 1783 length = (tail + length) - BUF_PAGE_SIZE; 1784 local_sub(length, &tail_page->write); 1785 } 1786 1787 static struct ring_buffer_event * 1788 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1789 unsigned long length, unsigned long tail, 1790 struct buffer_page *commit_page, 1791 struct buffer_page *tail_page, u64 *ts) 1792 { 1793 struct ring_buffer *buffer = cpu_buffer->buffer; 1794 struct buffer_page *next_page; 1795 int ret; 1796 1797 next_page = tail_page; 1798 1799 rb_inc_page(cpu_buffer, &next_page); 1800 1801 /* 1802 * If for some reason, we had an interrupt storm that made 1803 * it all the way around the buffer, bail, and warn 1804 * about it. 1805 */ 1806 if (unlikely(next_page == commit_page)) { 1807 local_inc(&cpu_buffer->commit_overrun); 1808 goto out_reset; 1809 } 1810 1811 /* 1812 * This is where the fun begins! 1813 * 1814 * We are fighting against races between a reader that 1815 * could be on another CPU trying to swap its reader 1816 * page with the buffer head. 1817 * 1818 * We are also fighting against interrupts coming in and 1819 * moving the head or tail on us as well. 1820 * 1821 * If the next page is the head page then we have filled 1822 * the buffer, unless the commit page is still on the 1823 * reader page. 1824 */ 1825 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1826 1827 /* 1828 * If the commit is not on the reader page, then 1829 * move the header page. 1830 */ 1831 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1832 /* 1833 * If we are not in overwrite mode, 1834 * this is easy, just stop here. 1835 */ 1836 if (!(buffer->flags & RB_FL_OVERWRITE)) 1837 goto out_reset; 1838 1839 ret = rb_handle_head_page(cpu_buffer, 1840 tail_page, 1841 next_page); 1842 if (ret < 0) 1843 goto out_reset; 1844 if (ret) 1845 goto out_again; 1846 } else { 1847 /* 1848 * We need to be careful here too. The 1849 * commit page could still be on the reader 1850 * page. We could have a small buffer, and 1851 * have filled up the buffer with events 1852 * from interrupts and such, and wrapped. 1853 * 1854 * Note, if the tail page is also the on the 1855 * reader_page, we let it move out. 1856 */ 1857 if (unlikely((cpu_buffer->commit_page != 1858 cpu_buffer->tail_page) && 1859 (cpu_buffer->commit_page == 1860 cpu_buffer->reader_page))) { 1861 local_inc(&cpu_buffer->commit_overrun); 1862 goto out_reset; 1863 } 1864 } 1865 } 1866 1867 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1868 if (ret) { 1869 /* 1870 * Nested commits always have zero deltas, so 1871 * just reread the time stamp 1872 */ 1873 *ts = rb_time_stamp(buffer); 1874 next_page->page->time_stamp = *ts; 1875 } 1876 1877 out_again: 1878 1879 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1880 1881 /* fail and let the caller try again */ 1882 return ERR_PTR(-EAGAIN); 1883 1884 out_reset: 1885 /* reset write */ 1886 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1887 1888 return NULL; 1889 } 1890 1891 static struct ring_buffer_event * 1892 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 1893 unsigned type, unsigned long length, u64 *ts) 1894 { 1895 struct buffer_page *tail_page, *commit_page; 1896 struct ring_buffer_event *event; 1897 unsigned long tail, write; 1898 1899 commit_page = cpu_buffer->commit_page; 1900 /* we just need to protect against interrupts */ 1901 barrier(); 1902 tail_page = cpu_buffer->tail_page; 1903 write = local_add_return(length, &tail_page->write); 1904 1905 /* set write to only the index of the write */ 1906 write &= RB_WRITE_MASK; 1907 tail = write - length; 1908 1909 /* See if we shot pass the end of this buffer page */ 1910 if (write > BUF_PAGE_SIZE) 1911 return rb_move_tail(cpu_buffer, length, tail, 1912 commit_page, tail_page, ts); 1913 1914 /* We reserved something on the buffer */ 1915 1916 event = __rb_page_index(tail_page, tail); 1917 kmemcheck_annotate_bitfield(event, bitfield); 1918 rb_update_event(event, type, length); 1919 1920 /* The passed in type is zero for DATA */ 1921 if (likely(!type)) 1922 local_inc(&tail_page->entries); 1923 1924 /* 1925 * If this is the first commit on the page, then update 1926 * its timestamp. 1927 */ 1928 if (!tail) 1929 tail_page->page->time_stamp = *ts; 1930 1931 return event; 1932 } 1933 1934 static inline int 1935 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 1936 struct ring_buffer_event *event) 1937 { 1938 unsigned long new_index, old_index; 1939 struct buffer_page *bpage; 1940 unsigned long index; 1941 unsigned long addr; 1942 1943 new_index = rb_event_index(event); 1944 old_index = new_index + rb_event_length(event); 1945 addr = (unsigned long)event; 1946 addr &= PAGE_MASK; 1947 1948 bpage = cpu_buffer->tail_page; 1949 1950 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 1951 unsigned long write_mask = 1952 local_read(&bpage->write) & ~RB_WRITE_MASK; 1953 /* 1954 * This is on the tail page. It is possible that 1955 * a write could come in and move the tail page 1956 * and write to the next page. That is fine 1957 * because we just shorten what is on this page. 1958 */ 1959 old_index += write_mask; 1960 new_index += write_mask; 1961 index = local_cmpxchg(&bpage->write, old_index, new_index); 1962 if (index == old_index) 1963 return 1; 1964 } 1965 1966 /* could not discard */ 1967 return 0; 1968 } 1969 1970 static int 1971 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 1972 u64 *ts, u64 *delta) 1973 { 1974 struct ring_buffer_event *event; 1975 static int once; 1976 int ret; 1977 1978 if (unlikely(*delta > (1ULL << 59) && !once++)) { 1979 printk(KERN_WARNING "Delta way too big! %llu" 1980 " ts=%llu write stamp = %llu\n", 1981 (unsigned long long)*delta, 1982 (unsigned long long)*ts, 1983 (unsigned long long)cpu_buffer->write_stamp); 1984 WARN_ON(1); 1985 } 1986 1987 /* 1988 * The delta is too big, we to add a 1989 * new timestamp. 1990 */ 1991 event = __rb_reserve_next(cpu_buffer, 1992 RINGBUF_TYPE_TIME_EXTEND, 1993 RB_LEN_TIME_EXTEND, 1994 ts); 1995 if (!event) 1996 return -EBUSY; 1997 1998 if (PTR_ERR(event) == -EAGAIN) 1999 return -EAGAIN; 2000 2001 /* Only a commited time event can update the write stamp */ 2002 if (rb_event_is_commit(cpu_buffer, event)) { 2003 /* 2004 * If this is the first on the page, then it was 2005 * updated with the page itself. Try to discard it 2006 * and if we can't just make it zero. 2007 */ 2008 if (rb_event_index(event)) { 2009 event->time_delta = *delta & TS_MASK; 2010 event->array[0] = *delta >> TS_SHIFT; 2011 } else { 2012 /* try to discard, since we do not need this */ 2013 if (!rb_try_to_discard(cpu_buffer, event)) { 2014 /* nope, just zero it */ 2015 event->time_delta = 0; 2016 event->array[0] = 0; 2017 } 2018 } 2019 cpu_buffer->write_stamp = *ts; 2020 /* let the caller know this was the commit */ 2021 ret = 1; 2022 } else { 2023 /* Try to discard the event */ 2024 if (!rb_try_to_discard(cpu_buffer, event)) { 2025 /* Darn, this is just wasted space */ 2026 event->time_delta = 0; 2027 event->array[0] = 0; 2028 } 2029 ret = 0; 2030 } 2031 2032 *delta = 0; 2033 2034 return ret; 2035 } 2036 2037 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2038 { 2039 local_inc(&cpu_buffer->committing); 2040 local_inc(&cpu_buffer->commits); 2041 } 2042 2043 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2044 { 2045 unsigned long commits; 2046 2047 if (RB_WARN_ON(cpu_buffer, 2048 !local_read(&cpu_buffer->committing))) 2049 return; 2050 2051 again: 2052 commits = local_read(&cpu_buffer->commits); 2053 /* synchronize with interrupts */ 2054 barrier(); 2055 if (local_read(&cpu_buffer->committing) == 1) 2056 rb_set_commit_to_write(cpu_buffer); 2057 2058 local_dec(&cpu_buffer->committing); 2059 2060 /* synchronize with interrupts */ 2061 barrier(); 2062 2063 /* 2064 * Need to account for interrupts coming in between the 2065 * updating of the commit page and the clearing of the 2066 * committing counter. 2067 */ 2068 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2069 !local_read(&cpu_buffer->committing)) { 2070 local_inc(&cpu_buffer->committing); 2071 goto again; 2072 } 2073 } 2074 2075 static struct ring_buffer_event * 2076 rb_reserve_next_event(struct ring_buffer *buffer, 2077 struct ring_buffer_per_cpu *cpu_buffer, 2078 unsigned long length) 2079 { 2080 struct ring_buffer_event *event; 2081 u64 ts, delta = 0; 2082 int commit = 0; 2083 int nr_loops = 0; 2084 2085 rb_start_commit(cpu_buffer); 2086 2087 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2088 /* 2089 * Due to the ability to swap a cpu buffer from a buffer 2090 * it is possible it was swapped before we committed. 2091 * (committing stops a swap). We check for it here and 2092 * if it happened, we have to fail the write. 2093 */ 2094 barrier(); 2095 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2096 local_dec(&cpu_buffer->committing); 2097 local_dec(&cpu_buffer->commits); 2098 return NULL; 2099 } 2100 #endif 2101 2102 length = rb_calculate_event_length(length); 2103 again: 2104 /* 2105 * We allow for interrupts to reenter here and do a trace. 2106 * If one does, it will cause this original code to loop 2107 * back here. Even with heavy interrupts happening, this 2108 * should only happen a few times in a row. If this happens 2109 * 1000 times in a row, there must be either an interrupt 2110 * storm or we have something buggy. 2111 * Bail! 2112 */ 2113 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2114 goto out_fail; 2115 2116 ts = rb_time_stamp(cpu_buffer->buffer); 2117 2118 /* 2119 * Only the first commit can update the timestamp. 2120 * Yes there is a race here. If an interrupt comes in 2121 * just after the conditional and it traces too, then it 2122 * will also check the deltas. More than one timestamp may 2123 * also be made. But only the entry that did the actual 2124 * commit will be something other than zero. 2125 */ 2126 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page && 2127 rb_page_write(cpu_buffer->tail_page) == 2128 rb_commit_index(cpu_buffer))) { 2129 u64 diff; 2130 2131 diff = ts - cpu_buffer->write_stamp; 2132 2133 /* make sure this diff is calculated here */ 2134 barrier(); 2135 2136 /* Did the write stamp get updated already? */ 2137 if (unlikely(ts < cpu_buffer->write_stamp)) 2138 goto get_event; 2139 2140 delta = diff; 2141 if (unlikely(test_time_stamp(delta))) { 2142 2143 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta); 2144 if (commit == -EBUSY) 2145 goto out_fail; 2146 2147 if (commit == -EAGAIN) 2148 goto again; 2149 2150 RB_WARN_ON(cpu_buffer, commit < 0); 2151 } 2152 } 2153 2154 get_event: 2155 event = __rb_reserve_next(cpu_buffer, 0, length, &ts); 2156 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2157 goto again; 2158 2159 if (!event) 2160 goto out_fail; 2161 2162 if (!rb_event_is_commit(cpu_buffer, event)) 2163 delta = 0; 2164 2165 event->time_delta = delta; 2166 2167 return event; 2168 2169 out_fail: 2170 rb_end_commit(cpu_buffer); 2171 return NULL; 2172 } 2173 2174 #ifdef CONFIG_TRACING 2175 2176 #define TRACE_RECURSIVE_DEPTH 16 2177 2178 static int trace_recursive_lock(void) 2179 { 2180 current->trace_recursion++; 2181 2182 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH)) 2183 return 0; 2184 2185 /* Disable all tracing before we do anything else */ 2186 tracing_off_permanent(); 2187 2188 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2189 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2190 current->trace_recursion, 2191 hardirq_count() >> HARDIRQ_SHIFT, 2192 softirq_count() >> SOFTIRQ_SHIFT, 2193 in_nmi()); 2194 2195 WARN_ON_ONCE(1); 2196 return -1; 2197 } 2198 2199 static void trace_recursive_unlock(void) 2200 { 2201 WARN_ON_ONCE(!current->trace_recursion); 2202 2203 current->trace_recursion--; 2204 } 2205 2206 #else 2207 2208 #define trace_recursive_lock() (0) 2209 #define trace_recursive_unlock() do { } while (0) 2210 2211 #endif 2212 2213 static DEFINE_PER_CPU(int, rb_need_resched); 2214 2215 /** 2216 * ring_buffer_lock_reserve - reserve a part of the buffer 2217 * @buffer: the ring buffer to reserve from 2218 * @length: the length of the data to reserve (excluding event header) 2219 * 2220 * Returns a reseverd event on the ring buffer to copy directly to. 2221 * The user of this interface will need to get the body to write into 2222 * and can use the ring_buffer_event_data() interface. 2223 * 2224 * The length is the length of the data needed, not the event length 2225 * which also includes the event header. 2226 * 2227 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2228 * If NULL is returned, then nothing has been allocated or locked. 2229 */ 2230 struct ring_buffer_event * 2231 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2232 { 2233 struct ring_buffer_per_cpu *cpu_buffer; 2234 struct ring_buffer_event *event; 2235 int cpu, resched; 2236 2237 if (ring_buffer_flags != RB_BUFFERS_ON) 2238 return NULL; 2239 2240 if (atomic_read(&buffer->record_disabled)) 2241 return NULL; 2242 2243 /* If we are tracing schedule, we don't want to recurse */ 2244 resched = ftrace_preempt_disable(); 2245 2246 if (trace_recursive_lock()) 2247 goto out_nocheck; 2248 2249 cpu = raw_smp_processor_id(); 2250 2251 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2252 goto out; 2253 2254 cpu_buffer = buffer->buffers[cpu]; 2255 2256 if (atomic_read(&cpu_buffer->record_disabled)) 2257 goto out; 2258 2259 if (length > BUF_MAX_DATA_SIZE) 2260 goto out; 2261 2262 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2263 if (!event) 2264 goto out; 2265 2266 /* 2267 * Need to store resched state on this cpu. 2268 * Only the first needs to. 2269 */ 2270 2271 if (preempt_count() == 1) 2272 per_cpu(rb_need_resched, cpu) = resched; 2273 2274 return event; 2275 2276 out: 2277 trace_recursive_unlock(); 2278 2279 out_nocheck: 2280 ftrace_preempt_enable(resched); 2281 return NULL; 2282 } 2283 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2284 2285 static void 2286 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2287 struct ring_buffer_event *event) 2288 { 2289 /* 2290 * The event first in the commit queue updates the 2291 * time stamp. 2292 */ 2293 if (rb_event_is_commit(cpu_buffer, event)) 2294 cpu_buffer->write_stamp += event->time_delta; 2295 } 2296 2297 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2298 struct ring_buffer_event *event) 2299 { 2300 local_inc(&cpu_buffer->entries); 2301 rb_update_write_stamp(cpu_buffer, event); 2302 rb_end_commit(cpu_buffer); 2303 } 2304 2305 /** 2306 * ring_buffer_unlock_commit - commit a reserved 2307 * @buffer: The buffer to commit to 2308 * @event: The event pointer to commit. 2309 * 2310 * This commits the data to the ring buffer, and releases any locks held. 2311 * 2312 * Must be paired with ring_buffer_lock_reserve. 2313 */ 2314 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2315 struct ring_buffer_event *event) 2316 { 2317 struct ring_buffer_per_cpu *cpu_buffer; 2318 int cpu = raw_smp_processor_id(); 2319 2320 cpu_buffer = buffer->buffers[cpu]; 2321 2322 rb_commit(cpu_buffer, event); 2323 2324 trace_recursive_unlock(); 2325 2326 /* 2327 * Only the last preempt count needs to restore preemption. 2328 */ 2329 if (preempt_count() == 1) 2330 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2331 else 2332 preempt_enable_no_resched_notrace(); 2333 2334 return 0; 2335 } 2336 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2337 2338 static inline void rb_event_discard(struct ring_buffer_event *event) 2339 { 2340 /* array[0] holds the actual length for the discarded event */ 2341 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2342 event->type_len = RINGBUF_TYPE_PADDING; 2343 /* time delta must be non zero */ 2344 if (!event->time_delta) 2345 event->time_delta = 1; 2346 } 2347 2348 /* 2349 * Decrement the entries to the page that an event is on. 2350 * The event does not even need to exist, only the pointer 2351 * to the page it is on. This may only be called before the commit 2352 * takes place. 2353 */ 2354 static inline void 2355 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2356 struct ring_buffer_event *event) 2357 { 2358 unsigned long addr = (unsigned long)event; 2359 struct buffer_page *bpage = cpu_buffer->commit_page; 2360 struct buffer_page *start; 2361 2362 addr &= PAGE_MASK; 2363 2364 /* Do the likely case first */ 2365 if (likely(bpage->page == (void *)addr)) { 2366 local_dec(&bpage->entries); 2367 return; 2368 } 2369 2370 /* 2371 * Because the commit page may be on the reader page we 2372 * start with the next page and check the end loop there. 2373 */ 2374 rb_inc_page(cpu_buffer, &bpage); 2375 start = bpage; 2376 do { 2377 if (bpage->page == (void *)addr) { 2378 local_dec(&bpage->entries); 2379 return; 2380 } 2381 rb_inc_page(cpu_buffer, &bpage); 2382 } while (bpage != start); 2383 2384 /* commit not part of this buffer?? */ 2385 RB_WARN_ON(cpu_buffer, 1); 2386 } 2387 2388 /** 2389 * ring_buffer_commit_discard - discard an event that has not been committed 2390 * @buffer: the ring buffer 2391 * @event: non committed event to discard 2392 * 2393 * Sometimes an event that is in the ring buffer needs to be ignored. 2394 * This function lets the user discard an event in the ring buffer 2395 * and then that event will not be read later. 2396 * 2397 * This function only works if it is called before the the item has been 2398 * committed. It will try to free the event from the ring buffer 2399 * if another event has not been added behind it. 2400 * 2401 * If another event has been added behind it, it will set the event 2402 * up as discarded, and perform the commit. 2403 * 2404 * If this function is called, do not call ring_buffer_unlock_commit on 2405 * the event. 2406 */ 2407 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2408 struct ring_buffer_event *event) 2409 { 2410 struct ring_buffer_per_cpu *cpu_buffer; 2411 int cpu; 2412 2413 /* The event is discarded regardless */ 2414 rb_event_discard(event); 2415 2416 cpu = smp_processor_id(); 2417 cpu_buffer = buffer->buffers[cpu]; 2418 2419 /* 2420 * This must only be called if the event has not been 2421 * committed yet. Thus we can assume that preemption 2422 * is still disabled. 2423 */ 2424 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2425 2426 rb_decrement_entry(cpu_buffer, event); 2427 if (rb_try_to_discard(cpu_buffer, event)) 2428 goto out; 2429 2430 /* 2431 * The commit is still visible by the reader, so we 2432 * must still update the timestamp. 2433 */ 2434 rb_update_write_stamp(cpu_buffer, event); 2435 out: 2436 rb_end_commit(cpu_buffer); 2437 2438 trace_recursive_unlock(); 2439 2440 /* 2441 * Only the last preempt count needs to restore preemption. 2442 */ 2443 if (preempt_count() == 1) 2444 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2445 else 2446 preempt_enable_no_resched_notrace(); 2447 2448 } 2449 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2450 2451 /** 2452 * ring_buffer_write - write data to the buffer without reserving 2453 * @buffer: The ring buffer to write to. 2454 * @length: The length of the data being written (excluding the event header) 2455 * @data: The data to write to the buffer. 2456 * 2457 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2458 * one function. If you already have the data to write to the buffer, it 2459 * may be easier to simply call this function. 2460 * 2461 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2462 * and not the length of the event which would hold the header. 2463 */ 2464 int ring_buffer_write(struct ring_buffer *buffer, 2465 unsigned long length, 2466 void *data) 2467 { 2468 struct ring_buffer_per_cpu *cpu_buffer; 2469 struct ring_buffer_event *event; 2470 void *body; 2471 int ret = -EBUSY; 2472 int cpu, resched; 2473 2474 if (ring_buffer_flags != RB_BUFFERS_ON) 2475 return -EBUSY; 2476 2477 if (atomic_read(&buffer->record_disabled)) 2478 return -EBUSY; 2479 2480 resched = ftrace_preempt_disable(); 2481 2482 cpu = raw_smp_processor_id(); 2483 2484 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2485 goto out; 2486 2487 cpu_buffer = buffer->buffers[cpu]; 2488 2489 if (atomic_read(&cpu_buffer->record_disabled)) 2490 goto out; 2491 2492 if (length > BUF_MAX_DATA_SIZE) 2493 goto out; 2494 2495 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2496 if (!event) 2497 goto out; 2498 2499 body = rb_event_data(event); 2500 2501 memcpy(body, data, length); 2502 2503 rb_commit(cpu_buffer, event); 2504 2505 ret = 0; 2506 out: 2507 ftrace_preempt_enable(resched); 2508 2509 return ret; 2510 } 2511 EXPORT_SYMBOL_GPL(ring_buffer_write); 2512 2513 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2514 { 2515 struct buffer_page *reader = cpu_buffer->reader_page; 2516 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2517 struct buffer_page *commit = cpu_buffer->commit_page; 2518 2519 /* In case of error, head will be NULL */ 2520 if (unlikely(!head)) 2521 return 1; 2522 2523 return reader->read == rb_page_commit(reader) && 2524 (commit == reader || 2525 (commit == head && 2526 head->read == rb_page_commit(commit))); 2527 } 2528 2529 /** 2530 * ring_buffer_record_disable - stop all writes into the buffer 2531 * @buffer: The ring buffer to stop writes to. 2532 * 2533 * This prevents all writes to the buffer. Any attempt to write 2534 * to the buffer after this will fail and return NULL. 2535 * 2536 * The caller should call synchronize_sched() after this. 2537 */ 2538 void ring_buffer_record_disable(struct ring_buffer *buffer) 2539 { 2540 atomic_inc(&buffer->record_disabled); 2541 } 2542 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2543 2544 /** 2545 * ring_buffer_record_enable - enable writes to the buffer 2546 * @buffer: The ring buffer to enable writes 2547 * 2548 * Note, multiple disables will need the same number of enables 2549 * to truely enable the writing (much like preempt_disable). 2550 */ 2551 void ring_buffer_record_enable(struct ring_buffer *buffer) 2552 { 2553 atomic_dec(&buffer->record_disabled); 2554 } 2555 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2556 2557 /** 2558 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2559 * @buffer: The ring buffer to stop writes to. 2560 * @cpu: The CPU buffer to stop 2561 * 2562 * This prevents all writes to the buffer. Any attempt to write 2563 * to the buffer after this will fail and return NULL. 2564 * 2565 * The caller should call synchronize_sched() after this. 2566 */ 2567 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2568 { 2569 struct ring_buffer_per_cpu *cpu_buffer; 2570 2571 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2572 return; 2573 2574 cpu_buffer = buffer->buffers[cpu]; 2575 atomic_inc(&cpu_buffer->record_disabled); 2576 } 2577 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2578 2579 /** 2580 * ring_buffer_record_enable_cpu - enable writes to the buffer 2581 * @buffer: The ring buffer to enable writes 2582 * @cpu: The CPU to enable. 2583 * 2584 * Note, multiple disables will need the same number of enables 2585 * to truely enable the writing (much like preempt_disable). 2586 */ 2587 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2588 { 2589 struct ring_buffer_per_cpu *cpu_buffer; 2590 2591 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2592 return; 2593 2594 cpu_buffer = buffer->buffers[cpu]; 2595 atomic_dec(&cpu_buffer->record_disabled); 2596 } 2597 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2598 2599 /** 2600 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2601 * @buffer: The ring buffer 2602 * @cpu: The per CPU buffer to get the entries from. 2603 */ 2604 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2605 { 2606 struct ring_buffer_per_cpu *cpu_buffer; 2607 unsigned long ret; 2608 2609 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2610 return 0; 2611 2612 cpu_buffer = buffer->buffers[cpu]; 2613 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun)) 2614 - cpu_buffer->read; 2615 2616 return ret; 2617 } 2618 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2619 2620 /** 2621 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2622 * @buffer: The ring buffer 2623 * @cpu: The per CPU buffer to get the number of overruns from 2624 */ 2625 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2626 { 2627 struct ring_buffer_per_cpu *cpu_buffer; 2628 unsigned long ret; 2629 2630 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2631 return 0; 2632 2633 cpu_buffer = buffer->buffers[cpu]; 2634 ret = local_read(&cpu_buffer->overrun); 2635 2636 return ret; 2637 } 2638 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2639 2640 /** 2641 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2642 * @buffer: The ring buffer 2643 * @cpu: The per CPU buffer to get the number of overruns from 2644 */ 2645 unsigned long 2646 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2647 { 2648 struct ring_buffer_per_cpu *cpu_buffer; 2649 unsigned long ret; 2650 2651 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2652 return 0; 2653 2654 cpu_buffer = buffer->buffers[cpu]; 2655 ret = local_read(&cpu_buffer->commit_overrun); 2656 2657 return ret; 2658 } 2659 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2660 2661 /** 2662 * ring_buffer_entries - get the number of entries in a buffer 2663 * @buffer: The ring buffer 2664 * 2665 * Returns the total number of entries in the ring buffer 2666 * (all CPU entries) 2667 */ 2668 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2669 { 2670 struct ring_buffer_per_cpu *cpu_buffer; 2671 unsigned long entries = 0; 2672 int cpu; 2673 2674 /* if you care about this being correct, lock the buffer */ 2675 for_each_buffer_cpu(buffer, cpu) { 2676 cpu_buffer = buffer->buffers[cpu]; 2677 entries += (local_read(&cpu_buffer->entries) - 2678 local_read(&cpu_buffer->overrun)) - cpu_buffer->read; 2679 } 2680 2681 return entries; 2682 } 2683 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2684 2685 /** 2686 * ring_buffer_overruns - get the number of overruns in buffer 2687 * @buffer: The ring buffer 2688 * 2689 * Returns the total number of overruns in the ring buffer 2690 * (all CPU entries) 2691 */ 2692 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2693 { 2694 struct ring_buffer_per_cpu *cpu_buffer; 2695 unsigned long overruns = 0; 2696 int cpu; 2697 2698 /* if you care about this being correct, lock the buffer */ 2699 for_each_buffer_cpu(buffer, cpu) { 2700 cpu_buffer = buffer->buffers[cpu]; 2701 overruns += local_read(&cpu_buffer->overrun); 2702 } 2703 2704 return overruns; 2705 } 2706 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2707 2708 static void rb_iter_reset(struct ring_buffer_iter *iter) 2709 { 2710 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2711 2712 /* Iterator usage is expected to have record disabled */ 2713 if (list_empty(&cpu_buffer->reader_page->list)) { 2714 iter->head_page = rb_set_head_page(cpu_buffer); 2715 if (unlikely(!iter->head_page)) 2716 return; 2717 iter->head = iter->head_page->read; 2718 } else { 2719 iter->head_page = cpu_buffer->reader_page; 2720 iter->head = cpu_buffer->reader_page->read; 2721 } 2722 if (iter->head) 2723 iter->read_stamp = cpu_buffer->read_stamp; 2724 else 2725 iter->read_stamp = iter->head_page->page->time_stamp; 2726 } 2727 2728 /** 2729 * ring_buffer_iter_reset - reset an iterator 2730 * @iter: The iterator to reset 2731 * 2732 * Resets the iterator, so that it will start from the beginning 2733 * again. 2734 */ 2735 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2736 { 2737 struct ring_buffer_per_cpu *cpu_buffer; 2738 unsigned long flags; 2739 2740 if (!iter) 2741 return; 2742 2743 cpu_buffer = iter->cpu_buffer; 2744 2745 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2746 rb_iter_reset(iter); 2747 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2748 } 2749 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2750 2751 /** 2752 * ring_buffer_iter_empty - check if an iterator has no more to read 2753 * @iter: The iterator to check 2754 */ 2755 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2756 { 2757 struct ring_buffer_per_cpu *cpu_buffer; 2758 2759 cpu_buffer = iter->cpu_buffer; 2760 2761 return iter->head_page == cpu_buffer->commit_page && 2762 iter->head == rb_commit_index(cpu_buffer); 2763 } 2764 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2765 2766 static void 2767 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2768 struct ring_buffer_event *event) 2769 { 2770 u64 delta; 2771 2772 switch (event->type_len) { 2773 case RINGBUF_TYPE_PADDING: 2774 return; 2775 2776 case RINGBUF_TYPE_TIME_EXTEND: 2777 delta = event->array[0]; 2778 delta <<= TS_SHIFT; 2779 delta += event->time_delta; 2780 cpu_buffer->read_stamp += delta; 2781 return; 2782 2783 case RINGBUF_TYPE_TIME_STAMP: 2784 /* FIXME: not implemented */ 2785 return; 2786 2787 case RINGBUF_TYPE_DATA: 2788 cpu_buffer->read_stamp += event->time_delta; 2789 return; 2790 2791 default: 2792 BUG(); 2793 } 2794 return; 2795 } 2796 2797 static void 2798 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2799 struct ring_buffer_event *event) 2800 { 2801 u64 delta; 2802 2803 switch (event->type_len) { 2804 case RINGBUF_TYPE_PADDING: 2805 return; 2806 2807 case RINGBUF_TYPE_TIME_EXTEND: 2808 delta = event->array[0]; 2809 delta <<= TS_SHIFT; 2810 delta += event->time_delta; 2811 iter->read_stamp += delta; 2812 return; 2813 2814 case RINGBUF_TYPE_TIME_STAMP: 2815 /* FIXME: not implemented */ 2816 return; 2817 2818 case RINGBUF_TYPE_DATA: 2819 iter->read_stamp += event->time_delta; 2820 return; 2821 2822 default: 2823 BUG(); 2824 } 2825 return; 2826 } 2827 2828 static struct buffer_page * 2829 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2830 { 2831 struct buffer_page *reader = NULL; 2832 unsigned long flags; 2833 int nr_loops = 0; 2834 int ret; 2835 2836 local_irq_save(flags); 2837 __raw_spin_lock(&cpu_buffer->lock); 2838 2839 again: 2840 /* 2841 * This should normally only loop twice. But because the 2842 * start of the reader inserts an empty page, it causes 2843 * a case where we will loop three times. There should be no 2844 * reason to loop four times (that I know of). 2845 */ 2846 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 2847 reader = NULL; 2848 goto out; 2849 } 2850 2851 reader = cpu_buffer->reader_page; 2852 2853 /* If there's more to read, return this page */ 2854 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 2855 goto out; 2856 2857 /* Never should we have an index greater than the size */ 2858 if (RB_WARN_ON(cpu_buffer, 2859 cpu_buffer->reader_page->read > rb_page_size(reader))) 2860 goto out; 2861 2862 /* check if we caught up to the tail */ 2863 reader = NULL; 2864 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 2865 goto out; 2866 2867 /* 2868 * Reset the reader page to size zero. 2869 */ 2870 local_set(&cpu_buffer->reader_page->write, 0); 2871 local_set(&cpu_buffer->reader_page->entries, 0); 2872 local_set(&cpu_buffer->reader_page->page->commit, 0); 2873 2874 spin: 2875 /* 2876 * Splice the empty reader page into the list around the head. 2877 */ 2878 reader = rb_set_head_page(cpu_buffer); 2879 cpu_buffer->reader_page->list.next = reader->list.next; 2880 cpu_buffer->reader_page->list.prev = reader->list.prev; 2881 2882 /* 2883 * cpu_buffer->pages just needs to point to the buffer, it 2884 * has no specific buffer page to point to. Lets move it out 2885 * of our way so we don't accidently swap it. 2886 */ 2887 cpu_buffer->pages = reader->list.prev; 2888 2889 /* The reader page will be pointing to the new head */ 2890 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2891 2892 /* 2893 * Here's the tricky part. 2894 * 2895 * We need to move the pointer past the header page. 2896 * But we can only do that if a writer is not currently 2897 * moving it. The page before the header page has the 2898 * flag bit '1' set if it is pointing to the page we want. 2899 * but if the writer is in the process of moving it 2900 * than it will be '2' or already moved '0'. 2901 */ 2902 2903 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 2904 2905 /* 2906 * If we did not convert it, then we must try again. 2907 */ 2908 if (!ret) 2909 goto spin; 2910 2911 /* 2912 * Yeah! We succeeded in replacing the page. 2913 * 2914 * Now make the new head point back to the reader page. 2915 */ 2916 reader->list.next->prev = &cpu_buffer->reader_page->list; 2917 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2918 2919 /* Finally update the reader page to the new head */ 2920 cpu_buffer->reader_page = reader; 2921 rb_reset_reader_page(cpu_buffer); 2922 2923 goto again; 2924 2925 out: 2926 __raw_spin_unlock(&cpu_buffer->lock); 2927 local_irq_restore(flags); 2928 2929 return reader; 2930 } 2931 2932 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 2933 { 2934 struct ring_buffer_event *event; 2935 struct buffer_page *reader; 2936 unsigned length; 2937 2938 reader = rb_get_reader_page(cpu_buffer); 2939 2940 /* This function should not be called when buffer is empty */ 2941 if (RB_WARN_ON(cpu_buffer, !reader)) 2942 return; 2943 2944 event = rb_reader_event(cpu_buffer); 2945 2946 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 2947 cpu_buffer->read++; 2948 2949 rb_update_read_stamp(cpu_buffer, event); 2950 2951 length = rb_event_length(event); 2952 cpu_buffer->reader_page->read += length; 2953 } 2954 2955 static void rb_advance_iter(struct ring_buffer_iter *iter) 2956 { 2957 struct ring_buffer *buffer; 2958 struct ring_buffer_per_cpu *cpu_buffer; 2959 struct ring_buffer_event *event; 2960 unsigned length; 2961 2962 cpu_buffer = iter->cpu_buffer; 2963 buffer = cpu_buffer->buffer; 2964 2965 /* 2966 * Check if we are at the end of the buffer. 2967 */ 2968 if (iter->head >= rb_page_size(iter->head_page)) { 2969 /* discarded commits can make the page empty */ 2970 if (iter->head_page == cpu_buffer->commit_page) 2971 return; 2972 rb_inc_iter(iter); 2973 return; 2974 } 2975 2976 event = rb_iter_head_event(iter); 2977 2978 length = rb_event_length(event); 2979 2980 /* 2981 * This should not be called to advance the header if we are 2982 * at the tail of the buffer. 2983 */ 2984 if (RB_WARN_ON(cpu_buffer, 2985 (iter->head_page == cpu_buffer->commit_page) && 2986 (iter->head + length > rb_commit_index(cpu_buffer)))) 2987 return; 2988 2989 rb_update_iter_read_stamp(iter, event); 2990 2991 iter->head += length; 2992 2993 /* check for end of page padding */ 2994 if ((iter->head >= rb_page_size(iter->head_page)) && 2995 (iter->head_page != cpu_buffer->commit_page)) 2996 rb_advance_iter(iter); 2997 } 2998 2999 static struct ring_buffer_event * 3000 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) 3001 { 3002 struct ring_buffer_event *event; 3003 struct buffer_page *reader; 3004 int nr_loops = 0; 3005 3006 again: 3007 /* 3008 * We repeat when a timestamp is encountered. It is possible 3009 * to get multiple timestamps from an interrupt entering just 3010 * as one timestamp is about to be written, or from discarded 3011 * commits. The most that we can have is the number on a single page. 3012 */ 3013 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3014 return NULL; 3015 3016 reader = rb_get_reader_page(cpu_buffer); 3017 if (!reader) 3018 return NULL; 3019 3020 event = rb_reader_event(cpu_buffer); 3021 3022 switch (event->type_len) { 3023 case RINGBUF_TYPE_PADDING: 3024 if (rb_null_event(event)) 3025 RB_WARN_ON(cpu_buffer, 1); 3026 /* 3027 * Because the writer could be discarding every 3028 * event it creates (which would probably be bad) 3029 * if we were to go back to "again" then we may never 3030 * catch up, and will trigger the warn on, or lock 3031 * the box. Return the padding, and we will release 3032 * the current locks, and try again. 3033 */ 3034 return event; 3035 3036 case RINGBUF_TYPE_TIME_EXTEND: 3037 /* Internal data, OK to advance */ 3038 rb_advance_reader(cpu_buffer); 3039 goto again; 3040 3041 case RINGBUF_TYPE_TIME_STAMP: 3042 /* FIXME: not implemented */ 3043 rb_advance_reader(cpu_buffer); 3044 goto again; 3045 3046 case RINGBUF_TYPE_DATA: 3047 if (ts) { 3048 *ts = cpu_buffer->read_stamp + event->time_delta; 3049 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3050 cpu_buffer->cpu, ts); 3051 } 3052 return event; 3053 3054 default: 3055 BUG(); 3056 } 3057 3058 return NULL; 3059 } 3060 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3061 3062 static struct ring_buffer_event * 3063 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3064 { 3065 struct ring_buffer *buffer; 3066 struct ring_buffer_per_cpu *cpu_buffer; 3067 struct ring_buffer_event *event; 3068 int nr_loops = 0; 3069 3070 if (ring_buffer_iter_empty(iter)) 3071 return NULL; 3072 3073 cpu_buffer = iter->cpu_buffer; 3074 buffer = cpu_buffer->buffer; 3075 3076 again: 3077 /* 3078 * We repeat when a timestamp is encountered. 3079 * We can get multiple timestamps by nested interrupts or also 3080 * if filtering is on (discarding commits). Since discarding 3081 * commits can be frequent we can get a lot of timestamps. 3082 * But we limit them by not adding timestamps if they begin 3083 * at the start of a page. 3084 */ 3085 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3086 return NULL; 3087 3088 if (rb_per_cpu_empty(cpu_buffer)) 3089 return NULL; 3090 3091 event = rb_iter_head_event(iter); 3092 3093 switch (event->type_len) { 3094 case RINGBUF_TYPE_PADDING: 3095 if (rb_null_event(event)) { 3096 rb_inc_iter(iter); 3097 goto again; 3098 } 3099 rb_advance_iter(iter); 3100 return event; 3101 3102 case RINGBUF_TYPE_TIME_EXTEND: 3103 /* Internal data, OK to advance */ 3104 rb_advance_iter(iter); 3105 goto again; 3106 3107 case RINGBUF_TYPE_TIME_STAMP: 3108 /* FIXME: not implemented */ 3109 rb_advance_iter(iter); 3110 goto again; 3111 3112 case RINGBUF_TYPE_DATA: 3113 if (ts) { 3114 *ts = iter->read_stamp + event->time_delta; 3115 ring_buffer_normalize_time_stamp(buffer, 3116 cpu_buffer->cpu, ts); 3117 } 3118 return event; 3119 3120 default: 3121 BUG(); 3122 } 3123 3124 return NULL; 3125 } 3126 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3127 3128 static inline int rb_ok_to_lock(void) 3129 { 3130 /* 3131 * If an NMI die dumps out the content of the ring buffer 3132 * do not grab locks. We also permanently disable the ring 3133 * buffer too. A one time deal is all you get from reading 3134 * the ring buffer from an NMI. 3135 */ 3136 if (likely(!in_nmi())) 3137 return 1; 3138 3139 tracing_off_permanent(); 3140 return 0; 3141 } 3142 3143 /** 3144 * ring_buffer_peek - peek at the next event to be read 3145 * @buffer: The ring buffer to read 3146 * @cpu: The cpu to peak at 3147 * @ts: The timestamp counter of this event. 3148 * 3149 * This will return the event that will be read next, but does 3150 * not consume the data. 3151 */ 3152 struct ring_buffer_event * 3153 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 3154 { 3155 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3156 struct ring_buffer_event *event; 3157 unsigned long flags; 3158 int dolock; 3159 3160 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3161 return NULL; 3162 3163 dolock = rb_ok_to_lock(); 3164 again: 3165 local_irq_save(flags); 3166 if (dolock) 3167 spin_lock(&cpu_buffer->reader_lock); 3168 event = rb_buffer_peek(cpu_buffer, ts); 3169 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3170 rb_advance_reader(cpu_buffer); 3171 if (dolock) 3172 spin_unlock(&cpu_buffer->reader_lock); 3173 local_irq_restore(flags); 3174 3175 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3176 goto again; 3177 3178 return event; 3179 } 3180 3181 /** 3182 * ring_buffer_iter_peek - peek at the next event to be read 3183 * @iter: The ring buffer iterator 3184 * @ts: The timestamp counter of this event. 3185 * 3186 * This will return the event that will be read next, but does 3187 * not increment the iterator. 3188 */ 3189 struct ring_buffer_event * 3190 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3191 { 3192 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3193 struct ring_buffer_event *event; 3194 unsigned long flags; 3195 3196 again: 3197 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3198 event = rb_iter_peek(iter, ts); 3199 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3200 3201 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3202 goto again; 3203 3204 return event; 3205 } 3206 3207 /** 3208 * ring_buffer_consume - return an event and consume it 3209 * @buffer: The ring buffer to get the next event from 3210 * 3211 * Returns the next event in the ring buffer, and that event is consumed. 3212 * Meaning, that sequential reads will keep returning a different event, 3213 * and eventually empty the ring buffer if the producer is slower. 3214 */ 3215 struct ring_buffer_event * 3216 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) 3217 { 3218 struct ring_buffer_per_cpu *cpu_buffer; 3219 struct ring_buffer_event *event = NULL; 3220 unsigned long flags; 3221 int dolock; 3222 3223 dolock = rb_ok_to_lock(); 3224 3225 again: 3226 /* might be called in atomic */ 3227 preempt_disable(); 3228 3229 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3230 goto out; 3231 3232 cpu_buffer = buffer->buffers[cpu]; 3233 local_irq_save(flags); 3234 if (dolock) 3235 spin_lock(&cpu_buffer->reader_lock); 3236 3237 event = rb_buffer_peek(cpu_buffer, ts); 3238 if (event) 3239 rb_advance_reader(cpu_buffer); 3240 3241 if (dolock) 3242 spin_unlock(&cpu_buffer->reader_lock); 3243 local_irq_restore(flags); 3244 3245 out: 3246 preempt_enable(); 3247 3248 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3249 goto again; 3250 3251 return event; 3252 } 3253 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3254 3255 /** 3256 * ring_buffer_read_start - start a non consuming read of the buffer 3257 * @buffer: The ring buffer to read from 3258 * @cpu: The cpu buffer to iterate over 3259 * 3260 * This starts up an iteration through the buffer. It also disables 3261 * the recording to the buffer until the reading is finished. 3262 * This prevents the reading from being corrupted. This is not 3263 * a consuming read, so a producer is not expected. 3264 * 3265 * Must be paired with ring_buffer_finish. 3266 */ 3267 struct ring_buffer_iter * 3268 ring_buffer_read_start(struct ring_buffer *buffer, int cpu) 3269 { 3270 struct ring_buffer_per_cpu *cpu_buffer; 3271 struct ring_buffer_iter *iter; 3272 unsigned long flags; 3273 3274 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3275 return NULL; 3276 3277 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3278 if (!iter) 3279 return NULL; 3280 3281 cpu_buffer = buffer->buffers[cpu]; 3282 3283 iter->cpu_buffer = cpu_buffer; 3284 3285 atomic_inc(&cpu_buffer->record_disabled); 3286 synchronize_sched(); 3287 3288 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3289 __raw_spin_lock(&cpu_buffer->lock); 3290 rb_iter_reset(iter); 3291 __raw_spin_unlock(&cpu_buffer->lock); 3292 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3293 3294 return iter; 3295 } 3296 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3297 3298 /** 3299 * ring_buffer_finish - finish reading the iterator of the buffer 3300 * @iter: The iterator retrieved by ring_buffer_start 3301 * 3302 * This re-enables the recording to the buffer, and frees the 3303 * iterator. 3304 */ 3305 void 3306 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3307 { 3308 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3309 3310 atomic_dec(&cpu_buffer->record_disabled); 3311 kfree(iter); 3312 } 3313 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3314 3315 /** 3316 * ring_buffer_read - read the next item in the ring buffer by the iterator 3317 * @iter: The ring buffer iterator 3318 * @ts: The time stamp of the event read. 3319 * 3320 * This reads the next event in the ring buffer and increments the iterator. 3321 */ 3322 struct ring_buffer_event * 3323 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3324 { 3325 struct ring_buffer_event *event; 3326 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3327 unsigned long flags; 3328 3329 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3330 again: 3331 event = rb_iter_peek(iter, ts); 3332 if (!event) 3333 goto out; 3334 3335 if (event->type_len == RINGBUF_TYPE_PADDING) 3336 goto again; 3337 3338 rb_advance_iter(iter); 3339 out: 3340 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3341 3342 return event; 3343 } 3344 EXPORT_SYMBOL_GPL(ring_buffer_read); 3345 3346 /** 3347 * ring_buffer_size - return the size of the ring buffer (in bytes) 3348 * @buffer: The ring buffer. 3349 */ 3350 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3351 { 3352 return BUF_PAGE_SIZE * buffer->pages; 3353 } 3354 EXPORT_SYMBOL_GPL(ring_buffer_size); 3355 3356 static void 3357 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3358 { 3359 rb_head_page_deactivate(cpu_buffer); 3360 3361 cpu_buffer->head_page 3362 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3363 local_set(&cpu_buffer->head_page->write, 0); 3364 local_set(&cpu_buffer->head_page->entries, 0); 3365 local_set(&cpu_buffer->head_page->page->commit, 0); 3366 3367 cpu_buffer->head_page->read = 0; 3368 3369 cpu_buffer->tail_page = cpu_buffer->head_page; 3370 cpu_buffer->commit_page = cpu_buffer->head_page; 3371 3372 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3373 local_set(&cpu_buffer->reader_page->write, 0); 3374 local_set(&cpu_buffer->reader_page->entries, 0); 3375 local_set(&cpu_buffer->reader_page->page->commit, 0); 3376 cpu_buffer->reader_page->read = 0; 3377 3378 local_set(&cpu_buffer->commit_overrun, 0); 3379 local_set(&cpu_buffer->overrun, 0); 3380 local_set(&cpu_buffer->entries, 0); 3381 local_set(&cpu_buffer->committing, 0); 3382 local_set(&cpu_buffer->commits, 0); 3383 cpu_buffer->read = 0; 3384 3385 cpu_buffer->write_stamp = 0; 3386 cpu_buffer->read_stamp = 0; 3387 3388 rb_head_page_activate(cpu_buffer); 3389 } 3390 3391 /** 3392 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3393 * @buffer: The ring buffer to reset a per cpu buffer of 3394 * @cpu: The CPU buffer to be reset 3395 */ 3396 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3397 { 3398 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3399 unsigned long flags; 3400 3401 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3402 return; 3403 3404 atomic_inc(&cpu_buffer->record_disabled); 3405 3406 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3407 3408 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3409 goto out; 3410 3411 __raw_spin_lock(&cpu_buffer->lock); 3412 3413 rb_reset_cpu(cpu_buffer); 3414 3415 __raw_spin_unlock(&cpu_buffer->lock); 3416 3417 out: 3418 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3419 3420 atomic_dec(&cpu_buffer->record_disabled); 3421 } 3422 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3423 3424 /** 3425 * ring_buffer_reset - reset a ring buffer 3426 * @buffer: The ring buffer to reset all cpu buffers 3427 */ 3428 void ring_buffer_reset(struct ring_buffer *buffer) 3429 { 3430 int cpu; 3431 3432 for_each_buffer_cpu(buffer, cpu) 3433 ring_buffer_reset_cpu(buffer, cpu); 3434 } 3435 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3436 3437 /** 3438 * rind_buffer_empty - is the ring buffer empty? 3439 * @buffer: The ring buffer to test 3440 */ 3441 int ring_buffer_empty(struct ring_buffer *buffer) 3442 { 3443 struct ring_buffer_per_cpu *cpu_buffer; 3444 unsigned long flags; 3445 int dolock; 3446 int cpu; 3447 int ret; 3448 3449 dolock = rb_ok_to_lock(); 3450 3451 /* yes this is racy, but if you don't like the race, lock the buffer */ 3452 for_each_buffer_cpu(buffer, cpu) { 3453 cpu_buffer = buffer->buffers[cpu]; 3454 local_irq_save(flags); 3455 if (dolock) 3456 spin_lock(&cpu_buffer->reader_lock); 3457 ret = rb_per_cpu_empty(cpu_buffer); 3458 if (dolock) 3459 spin_unlock(&cpu_buffer->reader_lock); 3460 local_irq_restore(flags); 3461 3462 if (!ret) 3463 return 0; 3464 } 3465 3466 return 1; 3467 } 3468 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3469 3470 /** 3471 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3472 * @buffer: The ring buffer 3473 * @cpu: The CPU buffer to test 3474 */ 3475 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3476 { 3477 struct ring_buffer_per_cpu *cpu_buffer; 3478 unsigned long flags; 3479 int dolock; 3480 int ret; 3481 3482 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3483 return 1; 3484 3485 dolock = rb_ok_to_lock(); 3486 3487 cpu_buffer = buffer->buffers[cpu]; 3488 local_irq_save(flags); 3489 if (dolock) 3490 spin_lock(&cpu_buffer->reader_lock); 3491 ret = rb_per_cpu_empty(cpu_buffer); 3492 if (dolock) 3493 spin_unlock(&cpu_buffer->reader_lock); 3494 local_irq_restore(flags); 3495 3496 return ret; 3497 } 3498 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3499 3500 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3501 /** 3502 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3503 * @buffer_a: One buffer to swap with 3504 * @buffer_b: The other buffer to swap with 3505 * 3506 * This function is useful for tracers that want to take a "snapshot" 3507 * of a CPU buffer and has another back up buffer lying around. 3508 * it is expected that the tracer handles the cpu buffer not being 3509 * used at the moment. 3510 */ 3511 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3512 struct ring_buffer *buffer_b, int cpu) 3513 { 3514 struct ring_buffer_per_cpu *cpu_buffer_a; 3515 struct ring_buffer_per_cpu *cpu_buffer_b; 3516 int ret = -EINVAL; 3517 3518 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3519 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3520 goto out; 3521 3522 /* At least make sure the two buffers are somewhat the same */ 3523 if (buffer_a->pages != buffer_b->pages) 3524 goto out; 3525 3526 ret = -EAGAIN; 3527 3528 if (ring_buffer_flags != RB_BUFFERS_ON) 3529 goto out; 3530 3531 if (atomic_read(&buffer_a->record_disabled)) 3532 goto out; 3533 3534 if (atomic_read(&buffer_b->record_disabled)) 3535 goto out; 3536 3537 cpu_buffer_a = buffer_a->buffers[cpu]; 3538 cpu_buffer_b = buffer_b->buffers[cpu]; 3539 3540 if (atomic_read(&cpu_buffer_a->record_disabled)) 3541 goto out; 3542 3543 if (atomic_read(&cpu_buffer_b->record_disabled)) 3544 goto out; 3545 3546 /* 3547 * We can't do a synchronize_sched here because this 3548 * function can be called in atomic context. 3549 * Normally this will be called from the same CPU as cpu. 3550 * If not it's up to the caller to protect this. 3551 */ 3552 atomic_inc(&cpu_buffer_a->record_disabled); 3553 atomic_inc(&cpu_buffer_b->record_disabled); 3554 3555 ret = -EBUSY; 3556 if (local_read(&cpu_buffer_a->committing)) 3557 goto out_dec; 3558 if (local_read(&cpu_buffer_b->committing)) 3559 goto out_dec; 3560 3561 buffer_a->buffers[cpu] = cpu_buffer_b; 3562 buffer_b->buffers[cpu] = cpu_buffer_a; 3563 3564 cpu_buffer_b->buffer = buffer_a; 3565 cpu_buffer_a->buffer = buffer_b; 3566 3567 ret = 0; 3568 3569 out_dec: 3570 atomic_dec(&cpu_buffer_a->record_disabled); 3571 atomic_dec(&cpu_buffer_b->record_disabled); 3572 out: 3573 return ret; 3574 } 3575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3577 3578 /** 3579 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3580 * @buffer: the buffer to allocate for. 3581 * 3582 * This function is used in conjunction with ring_buffer_read_page. 3583 * When reading a full page from the ring buffer, these functions 3584 * can be used to speed up the process. The calling function should 3585 * allocate a few pages first with this function. Then when it 3586 * needs to get pages from the ring buffer, it passes the result 3587 * of this function into ring_buffer_read_page, which will swap 3588 * the page that was allocated, with the read page of the buffer. 3589 * 3590 * Returns: 3591 * The page allocated, or NULL on error. 3592 */ 3593 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer) 3594 { 3595 struct buffer_data_page *bpage; 3596 unsigned long addr; 3597 3598 addr = __get_free_page(GFP_KERNEL); 3599 if (!addr) 3600 return NULL; 3601 3602 bpage = (void *)addr; 3603 3604 rb_init_page(bpage); 3605 3606 return bpage; 3607 } 3608 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3609 3610 /** 3611 * ring_buffer_free_read_page - free an allocated read page 3612 * @buffer: the buffer the page was allocate for 3613 * @data: the page to free 3614 * 3615 * Free a page allocated from ring_buffer_alloc_read_page. 3616 */ 3617 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3618 { 3619 free_page((unsigned long)data); 3620 } 3621 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3622 3623 /** 3624 * ring_buffer_read_page - extract a page from the ring buffer 3625 * @buffer: buffer to extract from 3626 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3627 * @len: amount to extract 3628 * @cpu: the cpu of the buffer to extract 3629 * @full: should the extraction only happen when the page is full. 3630 * 3631 * This function will pull out a page from the ring buffer and consume it. 3632 * @data_page must be the address of the variable that was returned 3633 * from ring_buffer_alloc_read_page. This is because the page might be used 3634 * to swap with a page in the ring buffer. 3635 * 3636 * for example: 3637 * rpage = ring_buffer_alloc_read_page(buffer); 3638 * if (!rpage) 3639 * return error; 3640 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3641 * if (ret >= 0) 3642 * process_page(rpage, ret); 3643 * 3644 * When @full is set, the function will not return true unless 3645 * the writer is off the reader page. 3646 * 3647 * Note: it is up to the calling functions to handle sleeps and wakeups. 3648 * The ring buffer can be used anywhere in the kernel and can not 3649 * blindly call wake_up. The layer that uses the ring buffer must be 3650 * responsible for that. 3651 * 3652 * Returns: 3653 * >=0 if data has been transferred, returns the offset of consumed data. 3654 * <0 if no data has been transferred. 3655 */ 3656 int ring_buffer_read_page(struct ring_buffer *buffer, 3657 void **data_page, size_t len, int cpu, int full) 3658 { 3659 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3660 struct ring_buffer_event *event; 3661 struct buffer_data_page *bpage; 3662 struct buffer_page *reader; 3663 unsigned long flags; 3664 unsigned int commit; 3665 unsigned int read; 3666 u64 save_timestamp; 3667 int ret = -1; 3668 3669 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3670 goto out; 3671 3672 /* 3673 * If len is not big enough to hold the page header, then 3674 * we can not copy anything. 3675 */ 3676 if (len <= BUF_PAGE_HDR_SIZE) 3677 goto out; 3678 3679 len -= BUF_PAGE_HDR_SIZE; 3680 3681 if (!data_page) 3682 goto out; 3683 3684 bpage = *data_page; 3685 if (!bpage) 3686 goto out; 3687 3688 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3689 3690 reader = rb_get_reader_page(cpu_buffer); 3691 if (!reader) 3692 goto out_unlock; 3693 3694 event = rb_reader_event(cpu_buffer); 3695 3696 read = reader->read; 3697 commit = rb_page_commit(reader); 3698 3699 /* 3700 * If this page has been partially read or 3701 * if len is not big enough to read the rest of the page or 3702 * a writer is still on the page, then 3703 * we must copy the data from the page to the buffer. 3704 * Otherwise, we can simply swap the page with the one passed in. 3705 */ 3706 if (read || (len < (commit - read)) || 3707 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3708 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3709 unsigned int rpos = read; 3710 unsigned int pos = 0; 3711 unsigned int size; 3712 3713 if (full) 3714 goto out_unlock; 3715 3716 if (len > (commit - read)) 3717 len = (commit - read); 3718 3719 size = rb_event_length(event); 3720 3721 if (len < size) 3722 goto out_unlock; 3723 3724 /* save the current timestamp, since the user will need it */ 3725 save_timestamp = cpu_buffer->read_stamp; 3726 3727 /* Need to copy one event at a time */ 3728 do { 3729 memcpy(bpage->data + pos, rpage->data + rpos, size); 3730 3731 len -= size; 3732 3733 rb_advance_reader(cpu_buffer); 3734 rpos = reader->read; 3735 pos += size; 3736 3737 event = rb_reader_event(cpu_buffer); 3738 size = rb_event_length(event); 3739 } while (len > size); 3740 3741 /* update bpage */ 3742 local_set(&bpage->commit, pos); 3743 bpage->time_stamp = save_timestamp; 3744 3745 /* we copied everything to the beginning */ 3746 read = 0; 3747 } else { 3748 /* update the entry counter */ 3749 cpu_buffer->read += rb_page_entries(reader); 3750 3751 /* swap the pages */ 3752 rb_init_page(bpage); 3753 bpage = reader->page; 3754 reader->page = *data_page; 3755 local_set(&reader->write, 0); 3756 local_set(&reader->entries, 0); 3757 reader->read = 0; 3758 *data_page = bpage; 3759 } 3760 ret = read; 3761 3762 out_unlock: 3763 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3764 3765 out: 3766 return ret; 3767 } 3768 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 3769 3770 #ifdef CONFIG_TRACING 3771 static ssize_t 3772 rb_simple_read(struct file *filp, char __user *ubuf, 3773 size_t cnt, loff_t *ppos) 3774 { 3775 unsigned long *p = filp->private_data; 3776 char buf[64]; 3777 int r; 3778 3779 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 3780 r = sprintf(buf, "permanently disabled\n"); 3781 else 3782 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 3783 3784 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 3785 } 3786 3787 static ssize_t 3788 rb_simple_write(struct file *filp, const char __user *ubuf, 3789 size_t cnt, loff_t *ppos) 3790 { 3791 unsigned long *p = filp->private_data; 3792 char buf[64]; 3793 unsigned long val; 3794 int ret; 3795 3796 if (cnt >= sizeof(buf)) 3797 return -EINVAL; 3798 3799 if (copy_from_user(&buf, ubuf, cnt)) 3800 return -EFAULT; 3801 3802 buf[cnt] = 0; 3803 3804 ret = strict_strtoul(buf, 10, &val); 3805 if (ret < 0) 3806 return ret; 3807 3808 if (val) 3809 set_bit(RB_BUFFERS_ON_BIT, p); 3810 else 3811 clear_bit(RB_BUFFERS_ON_BIT, p); 3812 3813 (*ppos)++; 3814 3815 return cnt; 3816 } 3817 3818 static const struct file_operations rb_simple_fops = { 3819 .open = tracing_open_generic, 3820 .read = rb_simple_read, 3821 .write = rb_simple_write, 3822 }; 3823 3824 3825 static __init int rb_init_debugfs(void) 3826 { 3827 struct dentry *d_tracer; 3828 3829 d_tracer = tracing_init_dentry(); 3830 3831 trace_create_file("tracing_on", 0644, d_tracer, 3832 &ring_buffer_flags, &rb_simple_fops); 3833 3834 return 0; 3835 } 3836 3837 fs_initcall(rb_init_debugfs); 3838 #endif 3839 3840 #ifdef CONFIG_HOTPLUG_CPU 3841 static int rb_cpu_notify(struct notifier_block *self, 3842 unsigned long action, void *hcpu) 3843 { 3844 struct ring_buffer *buffer = 3845 container_of(self, struct ring_buffer, cpu_notify); 3846 long cpu = (long)hcpu; 3847 3848 switch (action) { 3849 case CPU_UP_PREPARE: 3850 case CPU_UP_PREPARE_FROZEN: 3851 if (cpumask_test_cpu(cpu, buffer->cpumask)) 3852 return NOTIFY_OK; 3853 3854 buffer->buffers[cpu] = 3855 rb_allocate_cpu_buffer(buffer, cpu); 3856 if (!buffer->buffers[cpu]) { 3857 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 3858 cpu); 3859 return NOTIFY_OK; 3860 } 3861 smp_wmb(); 3862 cpumask_set_cpu(cpu, buffer->cpumask); 3863 break; 3864 case CPU_DOWN_PREPARE: 3865 case CPU_DOWN_PREPARE_FROZEN: 3866 /* 3867 * Do nothing. 3868 * If we were to free the buffer, then the user would 3869 * lose any trace that was in the buffer. 3870 */ 3871 break; 3872 default: 3873 break; 3874 } 3875 return NOTIFY_OK; 3876 } 3877 #endif 3878