xref: /linux/kernel/trace/ring_buffer.c (revision c60f55fa1f82984bbb168c7721db893451f9de6c)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include "trace.h"
24 
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 	int ret;
31 
32 	ret = trace_seq_printf(s, "# compressed entry header\n");
33 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36 	ret = trace_seq_printf(s, "\n");
37 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38 			       RINGBUF_TYPE_PADDING);
39 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 			       RINGBUF_TYPE_TIME_EXTEND);
41 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 
44 	return ret;
45 }
46 
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114 
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132 
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143 
144 enum {
145 	RB_BUFFERS_ON_BIT	= 0,
146 	RB_BUFFERS_DISABLED_BIT	= 1,
147 };
148 
149 enum {
150 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
151 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153 
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169 
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183 
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194 
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200 	return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203 
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT		4U
206 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
208 
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211 
212 enum {
213 	RB_LEN_TIME_EXTEND = 8,
214 	RB_LEN_TIME_STAMP = 16,
215 };
216 
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221 
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224 	/* padding has a NULL time_delta */
225 	event->type_len = RINGBUF_TYPE_PADDING;
226 	event->time_delta = 0;
227 }
228 
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len)
235 		length = event->type_len * RB_ALIGNMENT;
236 	else
237 		length = event->array[0];
238 	return length + RB_EVNT_HDR_SIZE;
239 }
240 
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245 	switch (event->type_len) {
246 	case RINGBUF_TYPE_PADDING:
247 		if (rb_null_event(event))
248 			/* undefined */
249 			return -1;
250 		return  event->array[0] + RB_EVNT_HDR_SIZE;
251 
252 	case RINGBUF_TYPE_TIME_EXTEND:
253 		return RB_LEN_TIME_EXTEND;
254 
255 	case RINGBUF_TYPE_TIME_STAMP:
256 		return RB_LEN_TIME_STAMP;
257 
258 	case RINGBUF_TYPE_DATA:
259 		return rb_event_data_length(event);
260 	default:
261 		BUG();
262 	}
263 	/* not hit */
264 	return 0;
265 }
266 
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length = rb_event_length(event);
274 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275 		return length;
276 	length -= RB_EVNT_HDR_SIZE;
277 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279 	return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282 
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 	/* If length is in len field, then array[0] has the data */
289 	if (event->type_len)
290 		return (void *)&event->array[0];
291 	/* Otherwise length is in array[0] and array[1] has the data */
292 	return (void *)&event->array[1];
293 }
294 
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301 	return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304 
305 #define for_each_buffer_cpu(buffer, cpu)		\
306 	for_each_cpu(cpu, buffer->cpumask)
307 
308 #define TS_SHIFT	27
309 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST	(~TS_MASK)
311 
312 struct buffer_data_page {
313 	u64		 time_stamp;	/* page time stamp */
314 	local_t		 commit;	/* write committed index */
315 	unsigned char	 data[];	/* data of buffer page */
316 };
317 
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327 	struct list_head list;		/* list of buffer pages */
328 	local_t		 write;		/* index for next write */
329 	unsigned	 read;		/* index for next read */
330 	local_t		 entries;	/* entries on this page */
331 	struct buffer_data_page *page;	/* Actual data page */
332 };
333 
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK		0xfffff
347 #define RB_WRITE_INTCNT		(1 << 20)
348 
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351 	local_set(&bpage->commit, 0);
352 }
353 
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362 	return local_read(&((struct buffer_data_page *)page)->commit)
363 		+ BUF_PAGE_HDR_SIZE;
364 }
365 
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372 	free_page((unsigned long)bpage->page);
373 	kfree(bpage);
374 }
375 
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381 	if (delta & TS_DELTA_TEST)
382 		return 1;
383 	return 0;
384 }
385 
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387 
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390 
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393 
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396 	struct buffer_data_page field;
397 	int ret;
398 
399 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			       "offset:0;\tsize:%u;\n",
401 			       (unsigned int)sizeof(field.time_stamp));
402 
403 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
404 			       "offset:%u;\tsize:%u;\n",
405 			       (unsigned int)offsetof(typeof(field), commit),
406 			       (unsigned int)sizeof(field.commit));
407 
408 	ret = trace_seq_printf(s, "\tfield: char data;\t"
409 			       "offset:%u;\tsize:%u;\n",
410 			       (unsigned int)offsetof(typeof(field), data),
411 			       (unsigned int)BUF_PAGE_SIZE);
412 
413 	return ret;
414 }
415 
416 /*
417  * head_page == tail_page && head == tail then buffer is empty.
418  */
419 struct ring_buffer_per_cpu {
420 	int				cpu;
421 	struct ring_buffer		*buffer;
422 	spinlock_t			reader_lock;	/* serialize readers */
423 	raw_spinlock_t			lock;
424 	struct lock_class_key		lock_key;
425 	struct list_head		*pages;
426 	struct buffer_page		*head_page;	/* read from head */
427 	struct buffer_page		*tail_page;	/* write to tail */
428 	struct buffer_page		*commit_page;	/* committed pages */
429 	struct buffer_page		*reader_page;
430 	local_t				commit_overrun;
431 	local_t				overrun;
432 	local_t				entries;
433 	local_t				committing;
434 	local_t				commits;
435 	unsigned long			read;
436 	u64				write_stamp;
437 	u64				read_stamp;
438 	atomic_t			record_disabled;
439 };
440 
441 struct ring_buffer {
442 	unsigned			pages;
443 	unsigned			flags;
444 	int				cpus;
445 	atomic_t			record_disabled;
446 	cpumask_var_t			cpumask;
447 
448 	struct lock_class_key		*reader_lock_key;
449 
450 	struct mutex			mutex;
451 
452 	struct ring_buffer_per_cpu	**buffers;
453 
454 #ifdef CONFIG_HOTPLUG_CPU
455 	struct notifier_block		cpu_notify;
456 #endif
457 	u64				(*clock)(void);
458 };
459 
460 struct ring_buffer_iter {
461 	struct ring_buffer_per_cpu	*cpu_buffer;
462 	unsigned long			head;
463 	struct buffer_page		*head_page;
464 	u64				read_stamp;
465 };
466 
467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
468 #define RB_WARN_ON(b, cond)						\
469 	({								\
470 		int _____ret = unlikely(cond);				\
471 		if (_____ret) {						\
472 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473 				struct ring_buffer_per_cpu *__b =	\
474 					(void *)b;			\
475 				atomic_inc(&__b->buffer->record_disabled); \
476 			} else						\
477 				atomic_inc(&b->record_disabled);	\
478 			WARN_ON(1);					\
479 		}							\
480 		_____ret;						\
481 	})
482 
483 /* Up this if you want to test the TIME_EXTENTS and normalization */
484 #define DEBUG_SHIFT 0
485 
486 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
487 {
488 	/* shift to debug/test normalization and TIME_EXTENTS */
489 	return buffer->clock() << DEBUG_SHIFT;
490 }
491 
492 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
493 {
494 	u64 time;
495 
496 	preempt_disable_notrace();
497 	time = rb_time_stamp(buffer);
498 	preempt_enable_no_resched_notrace();
499 
500 	return time;
501 }
502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
503 
504 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
505 				      int cpu, u64 *ts)
506 {
507 	/* Just stupid testing the normalize function and deltas */
508 	*ts >>= DEBUG_SHIFT;
509 }
510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
511 
512 /*
513  * Making the ring buffer lockless makes things tricky.
514  * Although writes only happen on the CPU that they are on,
515  * and they only need to worry about interrupts. Reads can
516  * happen on any CPU.
517  *
518  * The reader page is always off the ring buffer, but when the
519  * reader finishes with a page, it needs to swap its page with
520  * a new one from the buffer. The reader needs to take from
521  * the head (writes go to the tail). But if a writer is in overwrite
522  * mode and wraps, it must push the head page forward.
523  *
524  * Here lies the problem.
525  *
526  * The reader must be careful to replace only the head page, and
527  * not another one. As described at the top of the file in the
528  * ASCII art, the reader sets its old page to point to the next
529  * page after head. It then sets the page after head to point to
530  * the old reader page. But if the writer moves the head page
531  * during this operation, the reader could end up with the tail.
532  *
533  * We use cmpxchg to help prevent this race. We also do something
534  * special with the page before head. We set the LSB to 1.
535  *
536  * When the writer must push the page forward, it will clear the
537  * bit that points to the head page, move the head, and then set
538  * the bit that points to the new head page.
539  *
540  * We also don't want an interrupt coming in and moving the head
541  * page on another writer. Thus we use the second LSB to catch
542  * that too. Thus:
543  *
544  * head->list->prev->next        bit 1          bit 0
545  *                              -------        -------
546  * Normal page                     0              0
547  * Points to head page             0              1
548  * New head page                   1              0
549  *
550  * Note we can not trust the prev pointer of the head page, because:
551  *
552  * +----+       +-----+        +-----+
553  * |    |------>|  T  |---X--->|  N  |
554  * |    |<------|     |        |     |
555  * +----+       +-----+        +-----+
556  *   ^                           ^ |
557  *   |          +-----+          | |
558  *   +----------|  R  |----------+ |
559  *              |     |<-----------+
560  *              +-----+
561  *
562  * Key:  ---X-->  HEAD flag set in pointer
563  *         T      Tail page
564  *         R      Reader page
565  *         N      Next page
566  *
567  * (see __rb_reserve_next() to see where this happens)
568  *
569  *  What the above shows is that the reader just swapped out
570  *  the reader page with a page in the buffer, but before it
571  *  could make the new header point back to the new page added
572  *  it was preempted by a writer. The writer moved forward onto
573  *  the new page added by the reader and is about to move forward
574  *  again.
575  *
576  *  You can see, it is legitimate for the previous pointer of
577  *  the head (or any page) not to point back to itself. But only
578  *  temporarially.
579  */
580 
581 #define RB_PAGE_NORMAL		0UL
582 #define RB_PAGE_HEAD		1UL
583 #define RB_PAGE_UPDATE		2UL
584 
585 
586 #define RB_FLAG_MASK		3UL
587 
588 /* PAGE_MOVED is not part of the mask */
589 #define RB_PAGE_MOVED		4UL
590 
591 /*
592  * rb_list_head - remove any bit
593  */
594 static struct list_head *rb_list_head(struct list_head *list)
595 {
596 	unsigned long val = (unsigned long)list;
597 
598 	return (struct list_head *)(val & ~RB_FLAG_MASK);
599 }
600 
601 /*
602  * rb_is_head_page - test if the given page is the head page
603  *
604  * Because the reader may move the head_page pointer, we can
605  * not trust what the head page is (it may be pointing to
606  * the reader page). But if the next page is a header page,
607  * its flags will be non zero.
608  */
609 static int inline
610 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
611 		struct buffer_page *page, struct list_head *list)
612 {
613 	unsigned long val;
614 
615 	val = (unsigned long)list->next;
616 
617 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
618 		return RB_PAGE_MOVED;
619 
620 	return val & RB_FLAG_MASK;
621 }
622 
623 /*
624  * rb_is_reader_page
625  *
626  * The unique thing about the reader page, is that, if the
627  * writer is ever on it, the previous pointer never points
628  * back to the reader page.
629  */
630 static int rb_is_reader_page(struct buffer_page *page)
631 {
632 	struct list_head *list = page->list.prev;
633 
634 	return rb_list_head(list->next) != &page->list;
635 }
636 
637 /*
638  * rb_set_list_to_head - set a list_head to be pointing to head.
639  */
640 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
641 				struct list_head *list)
642 {
643 	unsigned long *ptr;
644 
645 	ptr = (unsigned long *)&list->next;
646 	*ptr |= RB_PAGE_HEAD;
647 	*ptr &= ~RB_PAGE_UPDATE;
648 }
649 
650 /*
651  * rb_head_page_activate - sets up head page
652  */
653 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
654 {
655 	struct buffer_page *head;
656 
657 	head = cpu_buffer->head_page;
658 	if (!head)
659 		return;
660 
661 	/*
662 	 * Set the previous list pointer to have the HEAD flag.
663 	 */
664 	rb_set_list_to_head(cpu_buffer, head->list.prev);
665 }
666 
667 static void rb_list_head_clear(struct list_head *list)
668 {
669 	unsigned long *ptr = (unsigned long *)&list->next;
670 
671 	*ptr &= ~RB_FLAG_MASK;
672 }
673 
674 /*
675  * rb_head_page_dactivate - clears head page ptr (for free list)
676  */
677 static void
678 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
679 {
680 	struct list_head *hd;
681 
682 	/* Go through the whole list and clear any pointers found. */
683 	rb_list_head_clear(cpu_buffer->pages);
684 
685 	list_for_each(hd, cpu_buffer->pages)
686 		rb_list_head_clear(hd);
687 }
688 
689 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
690 			    struct buffer_page *head,
691 			    struct buffer_page *prev,
692 			    int old_flag, int new_flag)
693 {
694 	struct list_head *list;
695 	unsigned long val = (unsigned long)&head->list;
696 	unsigned long ret;
697 
698 	list = &prev->list;
699 
700 	val &= ~RB_FLAG_MASK;
701 
702 	ret = cmpxchg((unsigned long *)&list->next,
703 		      val | old_flag, val | new_flag);
704 
705 	/* check if the reader took the page */
706 	if ((ret & ~RB_FLAG_MASK) != val)
707 		return RB_PAGE_MOVED;
708 
709 	return ret & RB_FLAG_MASK;
710 }
711 
712 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
713 				   struct buffer_page *head,
714 				   struct buffer_page *prev,
715 				   int old_flag)
716 {
717 	return rb_head_page_set(cpu_buffer, head, prev,
718 				old_flag, RB_PAGE_UPDATE);
719 }
720 
721 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
722 				 struct buffer_page *head,
723 				 struct buffer_page *prev,
724 				 int old_flag)
725 {
726 	return rb_head_page_set(cpu_buffer, head, prev,
727 				old_flag, RB_PAGE_HEAD);
728 }
729 
730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
731 				   struct buffer_page *head,
732 				   struct buffer_page *prev,
733 				   int old_flag)
734 {
735 	return rb_head_page_set(cpu_buffer, head, prev,
736 				old_flag, RB_PAGE_NORMAL);
737 }
738 
739 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
740 			       struct buffer_page **bpage)
741 {
742 	struct list_head *p = rb_list_head((*bpage)->list.next);
743 
744 	*bpage = list_entry(p, struct buffer_page, list);
745 }
746 
747 static struct buffer_page *
748 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
749 {
750 	struct buffer_page *head;
751 	struct buffer_page *page;
752 	struct list_head *list;
753 	int i;
754 
755 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
756 		return NULL;
757 
758 	/* sanity check */
759 	list = cpu_buffer->pages;
760 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
761 		return NULL;
762 
763 	page = head = cpu_buffer->head_page;
764 	/*
765 	 * It is possible that the writer moves the header behind
766 	 * where we started, and we miss in one loop.
767 	 * A second loop should grab the header, but we'll do
768 	 * three loops just because I'm paranoid.
769 	 */
770 	for (i = 0; i < 3; i++) {
771 		do {
772 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
773 				cpu_buffer->head_page = page;
774 				return page;
775 			}
776 			rb_inc_page(cpu_buffer, &page);
777 		} while (page != head);
778 	}
779 
780 	RB_WARN_ON(cpu_buffer, 1);
781 
782 	return NULL;
783 }
784 
785 static int rb_head_page_replace(struct buffer_page *old,
786 				struct buffer_page *new)
787 {
788 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
789 	unsigned long val;
790 	unsigned long ret;
791 
792 	val = *ptr & ~RB_FLAG_MASK;
793 	val |= RB_PAGE_HEAD;
794 
795 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
796 
797 	return ret == val;
798 }
799 
800 /*
801  * rb_tail_page_update - move the tail page forward
802  *
803  * Returns 1 if moved tail page, 0 if someone else did.
804  */
805 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
806 			       struct buffer_page *tail_page,
807 			       struct buffer_page *next_page)
808 {
809 	struct buffer_page *old_tail;
810 	unsigned long old_entries;
811 	unsigned long old_write;
812 	int ret = 0;
813 
814 	/*
815 	 * The tail page now needs to be moved forward.
816 	 *
817 	 * We need to reset the tail page, but without messing
818 	 * with possible erasing of data brought in by interrupts
819 	 * that have moved the tail page and are currently on it.
820 	 *
821 	 * We add a counter to the write field to denote this.
822 	 */
823 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
824 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
825 
826 	/*
827 	 * Just make sure we have seen our old_write and synchronize
828 	 * with any interrupts that come in.
829 	 */
830 	barrier();
831 
832 	/*
833 	 * If the tail page is still the same as what we think
834 	 * it is, then it is up to us to update the tail
835 	 * pointer.
836 	 */
837 	if (tail_page == cpu_buffer->tail_page) {
838 		/* Zero the write counter */
839 		unsigned long val = old_write & ~RB_WRITE_MASK;
840 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
841 
842 		/*
843 		 * This will only succeed if an interrupt did
844 		 * not come in and change it. In which case, we
845 		 * do not want to modify it.
846 		 *
847 		 * We add (void) to let the compiler know that we do not care
848 		 * about the return value of these functions. We use the
849 		 * cmpxchg to only update if an interrupt did not already
850 		 * do it for us. If the cmpxchg fails, we don't care.
851 		 */
852 		(void)local_cmpxchg(&next_page->write, old_write, val);
853 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
854 
855 		/*
856 		 * No need to worry about races with clearing out the commit.
857 		 * it only can increment when a commit takes place. But that
858 		 * only happens in the outer most nested commit.
859 		 */
860 		local_set(&next_page->page->commit, 0);
861 
862 		old_tail = cmpxchg(&cpu_buffer->tail_page,
863 				   tail_page, next_page);
864 
865 		if (old_tail == tail_page)
866 			ret = 1;
867 	}
868 
869 	return ret;
870 }
871 
872 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
873 			  struct buffer_page *bpage)
874 {
875 	unsigned long val = (unsigned long)bpage;
876 
877 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
878 		return 1;
879 
880 	return 0;
881 }
882 
883 /**
884  * rb_check_list - make sure a pointer to a list has the last bits zero
885  */
886 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
887 			 struct list_head *list)
888 {
889 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
890 		return 1;
891 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
892 		return 1;
893 	return 0;
894 }
895 
896 /**
897  * check_pages - integrity check of buffer pages
898  * @cpu_buffer: CPU buffer with pages to test
899  *
900  * As a safety measure we check to make sure the data pages have not
901  * been corrupted.
902  */
903 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905 	struct list_head *head = cpu_buffer->pages;
906 	struct buffer_page *bpage, *tmp;
907 
908 	rb_head_page_deactivate(cpu_buffer);
909 
910 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
911 		return -1;
912 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
913 		return -1;
914 
915 	if (rb_check_list(cpu_buffer, head))
916 		return -1;
917 
918 	list_for_each_entry_safe(bpage, tmp, head, list) {
919 		if (RB_WARN_ON(cpu_buffer,
920 			       bpage->list.next->prev != &bpage->list))
921 			return -1;
922 		if (RB_WARN_ON(cpu_buffer,
923 			       bpage->list.prev->next != &bpage->list))
924 			return -1;
925 		if (rb_check_list(cpu_buffer, &bpage->list))
926 			return -1;
927 	}
928 
929 	rb_head_page_activate(cpu_buffer);
930 
931 	return 0;
932 }
933 
934 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
935 			     unsigned nr_pages)
936 {
937 	struct buffer_page *bpage, *tmp;
938 	unsigned long addr;
939 	LIST_HEAD(pages);
940 	unsigned i;
941 
942 	WARN_ON(!nr_pages);
943 
944 	for (i = 0; i < nr_pages; i++) {
945 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
946 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
947 		if (!bpage)
948 			goto free_pages;
949 
950 		rb_check_bpage(cpu_buffer, bpage);
951 
952 		list_add(&bpage->list, &pages);
953 
954 		addr = __get_free_page(GFP_KERNEL);
955 		if (!addr)
956 			goto free_pages;
957 		bpage->page = (void *)addr;
958 		rb_init_page(bpage->page);
959 	}
960 
961 	/*
962 	 * The ring buffer page list is a circular list that does not
963 	 * start and end with a list head. All page list items point to
964 	 * other pages.
965 	 */
966 	cpu_buffer->pages = pages.next;
967 	list_del(&pages);
968 
969 	rb_check_pages(cpu_buffer);
970 
971 	return 0;
972 
973  free_pages:
974 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
975 		list_del_init(&bpage->list);
976 		free_buffer_page(bpage);
977 	}
978 	return -ENOMEM;
979 }
980 
981 static struct ring_buffer_per_cpu *
982 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
983 {
984 	struct ring_buffer_per_cpu *cpu_buffer;
985 	struct buffer_page *bpage;
986 	unsigned long addr;
987 	int ret;
988 
989 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
990 				  GFP_KERNEL, cpu_to_node(cpu));
991 	if (!cpu_buffer)
992 		return NULL;
993 
994 	cpu_buffer->cpu = cpu;
995 	cpu_buffer->buffer = buffer;
996 	spin_lock_init(&cpu_buffer->reader_lock);
997 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
998 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
999 
1000 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1001 			    GFP_KERNEL, cpu_to_node(cpu));
1002 	if (!bpage)
1003 		goto fail_free_buffer;
1004 
1005 	rb_check_bpage(cpu_buffer, bpage);
1006 
1007 	cpu_buffer->reader_page = bpage;
1008 	addr = __get_free_page(GFP_KERNEL);
1009 	if (!addr)
1010 		goto fail_free_reader;
1011 	bpage->page = (void *)addr;
1012 	rb_init_page(bpage->page);
1013 
1014 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1015 
1016 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1017 	if (ret < 0)
1018 		goto fail_free_reader;
1019 
1020 	cpu_buffer->head_page
1021 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1022 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1023 
1024 	rb_head_page_activate(cpu_buffer);
1025 
1026 	return cpu_buffer;
1027 
1028  fail_free_reader:
1029 	free_buffer_page(cpu_buffer->reader_page);
1030 
1031  fail_free_buffer:
1032 	kfree(cpu_buffer);
1033 	return NULL;
1034 }
1035 
1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1037 {
1038 	struct list_head *head = cpu_buffer->pages;
1039 	struct buffer_page *bpage, *tmp;
1040 
1041 	free_buffer_page(cpu_buffer->reader_page);
1042 
1043 	rb_head_page_deactivate(cpu_buffer);
1044 
1045 	if (head) {
1046 		list_for_each_entry_safe(bpage, tmp, head, list) {
1047 			list_del_init(&bpage->list);
1048 			free_buffer_page(bpage);
1049 		}
1050 		bpage = list_entry(head, struct buffer_page, list);
1051 		free_buffer_page(bpage);
1052 	}
1053 
1054 	kfree(cpu_buffer);
1055 }
1056 
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 static int rb_cpu_notify(struct notifier_block *self,
1059 			 unsigned long action, void *hcpu);
1060 #endif
1061 
1062 /**
1063  * ring_buffer_alloc - allocate a new ring_buffer
1064  * @size: the size in bytes per cpu that is needed.
1065  * @flags: attributes to set for the ring buffer.
1066  *
1067  * Currently the only flag that is available is the RB_FL_OVERWRITE
1068  * flag. This flag means that the buffer will overwrite old data
1069  * when the buffer wraps. If this flag is not set, the buffer will
1070  * drop data when the tail hits the head.
1071  */
1072 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1073 					struct lock_class_key *key)
1074 {
1075 	struct ring_buffer *buffer;
1076 	int bsize;
1077 	int cpu;
1078 
1079 	/* keep it in its own cache line */
1080 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1081 			 GFP_KERNEL);
1082 	if (!buffer)
1083 		return NULL;
1084 
1085 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1086 		goto fail_free_buffer;
1087 
1088 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1089 	buffer->flags = flags;
1090 	buffer->clock = trace_clock_local;
1091 	buffer->reader_lock_key = key;
1092 
1093 	/* need at least two pages */
1094 	if (buffer->pages < 2)
1095 		buffer->pages = 2;
1096 
1097 	/*
1098 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1099 	 * in early initcall, it will not be notified of secondary cpus.
1100 	 * In that off case, we need to allocate for all possible cpus.
1101 	 */
1102 #ifdef CONFIG_HOTPLUG_CPU
1103 	get_online_cpus();
1104 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1105 #else
1106 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1107 #endif
1108 	buffer->cpus = nr_cpu_ids;
1109 
1110 	bsize = sizeof(void *) * nr_cpu_ids;
1111 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1112 				  GFP_KERNEL);
1113 	if (!buffer->buffers)
1114 		goto fail_free_cpumask;
1115 
1116 	for_each_buffer_cpu(buffer, cpu) {
1117 		buffer->buffers[cpu] =
1118 			rb_allocate_cpu_buffer(buffer, cpu);
1119 		if (!buffer->buffers[cpu])
1120 			goto fail_free_buffers;
1121 	}
1122 
1123 #ifdef CONFIG_HOTPLUG_CPU
1124 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1125 	buffer->cpu_notify.priority = 0;
1126 	register_cpu_notifier(&buffer->cpu_notify);
1127 #endif
1128 
1129 	put_online_cpus();
1130 	mutex_init(&buffer->mutex);
1131 
1132 	return buffer;
1133 
1134  fail_free_buffers:
1135 	for_each_buffer_cpu(buffer, cpu) {
1136 		if (buffer->buffers[cpu])
1137 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1138 	}
1139 	kfree(buffer->buffers);
1140 
1141  fail_free_cpumask:
1142 	free_cpumask_var(buffer->cpumask);
1143 	put_online_cpus();
1144 
1145  fail_free_buffer:
1146 	kfree(buffer);
1147 	return NULL;
1148 }
1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1150 
1151 /**
1152  * ring_buffer_free - free a ring buffer.
1153  * @buffer: the buffer to free.
1154  */
1155 void
1156 ring_buffer_free(struct ring_buffer *buffer)
1157 {
1158 	int cpu;
1159 
1160 	get_online_cpus();
1161 
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 	unregister_cpu_notifier(&buffer->cpu_notify);
1164 #endif
1165 
1166 	for_each_buffer_cpu(buffer, cpu)
1167 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1168 
1169 	put_online_cpus();
1170 
1171 	kfree(buffer->buffers);
1172 	free_cpumask_var(buffer->cpumask);
1173 
1174 	kfree(buffer);
1175 }
1176 EXPORT_SYMBOL_GPL(ring_buffer_free);
1177 
1178 void ring_buffer_set_clock(struct ring_buffer *buffer,
1179 			   u64 (*clock)(void))
1180 {
1181 	buffer->clock = clock;
1182 }
1183 
1184 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1185 
1186 static void
1187 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1188 {
1189 	struct buffer_page *bpage;
1190 	struct list_head *p;
1191 	unsigned i;
1192 
1193 	atomic_inc(&cpu_buffer->record_disabled);
1194 	synchronize_sched();
1195 
1196 	spin_lock_irq(&cpu_buffer->reader_lock);
1197 	rb_head_page_deactivate(cpu_buffer);
1198 
1199 	for (i = 0; i < nr_pages; i++) {
1200 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1201 			return;
1202 		p = cpu_buffer->pages->next;
1203 		bpage = list_entry(p, struct buffer_page, list);
1204 		list_del_init(&bpage->list);
1205 		free_buffer_page(bpage);
1206 	}
1207 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1208 		return;
1209 
1210 	rb_reset_cpu(cpu_buffer);
1211 	spin_unlock_irq(&cpu_buffer->reader_lock);
1212 
1213 	rb_check_pages(cpu_buffer);
1214 
1215 	atomic_dec(&cpu_buffer->record_disabled);
1216 
1217 }
1218 
1219 static void
1220 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1221 		struct list_head *pages, unsigned nr_pages)
1222 {
1223 	struct buffer_page *bpage;
1224 	struct list_head *p;
1225 	unsigned i;
1226 
1227 	atomic_inc(&cpu_buffer->record_disabled);
1228 	synchronize_sched();
1229 
1230 	spin_lock_irq(&cpu_buffer->reader_lock);
1231 	rb_head_page_deactivate(cpu_buffer);
1232 
1233 	for (i = 0; i < nr_pages; i++) {
1234 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1235 			return;
1236 		p = pages->next;
1237 		bpage = list_entry(p, struct buffer_page, list);
1238 		list_del_init(&bpage->list);
1239 		list_add_tail(&bpage->list, cpu_buffer->pages);
1240 	}
1241 	rb_reset_cpu(cpu_buffer);
1242 	spin_unlock_irq(&cpu_buffer->reader_lock);
1243 
1244 	rb_check_pages(cpu_buffer);
1245 
1246 	atomic_dec(&cpu_buffer->record_disabled);
1247 }
1248 
1249 /**
1250  * ring_buffer_resize - resize the ring buffer
1251  * @buffer: the buffer to resize.
1252  * @size: the new size.
1253  *
1254  * The tracer is responsible for making sure that the buffer is
1255  * not being used while changing the size.
1256  * Note: We may be able to change the above requirement by using
1257  *  RCU synchronizations.
1258  *
1259  * Minimum size is 2 * BUF_PAGE_SIZE.
1260  *
1261  * Returns -1 on failure.
1262  */
1263 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1264 {
1265 	struct ring_buffer_per_cpu *cpu_buffer;
1266 	unsigned nr_pages, rm_pages, new_pages;
1267 	struct buffer_page *bpage, *tmp;
1268 	unsigned long buffer_size;
1269 	unsigned long addr;
1270 	LIST_HEAD(pages);
1271 	int i, cpu;
1272 
1273 	/*
1274 	 * Always succeed at resizing a non-existent buffer:
1275 	 */
1276 	if (!buffer)
1277 		return size;
1278 
1279 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1280 	size *= BUF_PAGE_SIZE;
1281 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1282 
1283 	/* we need a minimum of two pages */
1284 	if (size < BUF_PAGE_SIZE * 2)
1285 		size = BUF_PAGE_SIZE * 2;
1286 
1287 	if (size == buffer_size)
1288 		return size;
1289 
1290 	mutex_lock(&buffer->mutex);
1291 	get_online_cpus();
1292 
1293 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1294 
1295 	if (size < buffer_size) {
1296 
1297 		/* easy case, just free pages */
1298 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1299 			goto out_fail;
1300 
1301 		rm_pages = buffer->pages - nr_pages;
1302 
1303 		for_each_buffer_cpu(buffer, cpu) {
1304 			cpu_buffer = buffer->buffers[cpu];
1305 			rb_remove_pages(cpu_buffer, rm_pages);
1306 		}
1307 		goto out;
1308 	}
1309 
1310 	/*
1311 	 * This is a bit more difficult. We only want to add pages
1312 	 * when we can allocate enough for all CPUs. We do this
1313 	 * by allocating all the pages and storing them on a local
1314 	 * link list. If we succeed in our allocation, then we
1315 	 * add these pages to the cpu_buffers. Otherwise we just free
1316 	 * them all and return -ENOMEM;
1317 	 */
1318 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1319 		goto out_fail;
1320 
1321 	new_pages = nr_pages - buffer->pages;
1322 
1323 	for_each_buffer_cpu(buffer, cpu) {
1324 		for (i = 0; i < new_pages; i++) {
1325 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1326 						  cache_line_size()),
1327 					    GFP_KERNEL, cpu_to_node(cpu));
1328 			if (!bpage)
1329 				goto free_pages;
1330 			list_add(&bpage->list, &pages);
1331 			addr = __get_free_page(GFP_KERNEL);
1332 			if (!addr)
1333 				goto free_pages;
1334 			bpage->page = (void *)addr;
1335 			rb_init_page(bpage->page);
1336 		}
1337 	}
1338 
1339 	for_each_buffer_cpu(buffer, cpu) {
1340 		cpu_buffer = buffer->buffers[cpu];
1341 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1342 	}
1343 
1344 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1345 		goto out_fail;
1346 
1347  out:
1348 	buffer->pages = nr_pages;
1349 	put_online_cpus();
1350 	mutex_unlock(&buffer->mutex);
1351 
1352 	return size;
1353 
1354  free_pages:
1355 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1356 		list_del_init(&bpage->list);
1357 		free_buffer_page(bpage);
1358 	}
1359 	put_online_cpus();
1360 	mutex_unlock(&buffer->mutex);
1361 	return -ENOMEM;
1362 
1363 	/*
1364 	 * Something went totally wrong, and we are too paranoid
1365 	 * to even clean up the mess.
1366 	 */
1367  out_fail:
1368 	put_online_cpus();
1369 	mutex_unlock(&buffer->mutex);
1370 	return -1;
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1373 
1374 static inline void *
1375 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1376 {
1377 	return bpage->data + index;
1378 }
1379 
1380 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1381 {
1382 	return bpage->page->data + index;
1383 }
1384 
1385 static inline struct ring_buffer_event *
1386 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1387 {
1388 	return __rb_page_index(cpu_buffer->reader_page,
1389 			       cpu_buffer->reader_page->read);
1390 }
1391 
1392 static inline struct ring_buffer_event *
1393 rb_iter_head_event(struct ring_buffer_iter *iter)
1394 {
1395 	return __rb_page_index(iter->head_page, iter->head);
1396 }
1397 
1398 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1399 {
1400 	return local_read(&bpage->write) & RB_WRITE_MASK;
1401 }
1402 
1403 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1404 {
1405 	return local_read(&bpage->page->commit);
1406 }
1407 
1408 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1409 {
1410 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1411 }
1412 
1413 /* Size is determined by what has been commited */
1414 static inline unsigned rb_page_size(struct buffer_page *bpage)
1415 {
1416 	return rb_page_commit(bpage);
1417 }
1418 
1419 static inline unsigned
1420 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1421 {
1422 	return rb_page_commit(cpu_buffer->commit_page);
1423 }
1424 
1425 static inline unsigned
1426 rb_event_index(struct ring_buffer_event *event)
1427 {
1428 	unsigned long addr = (unsigned long)event;
1429 
1430 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1431 }
1432 
1433 static inline int
1434 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1435 		   struct ring_buffer_event *event)
1436 {
1437 	unsigned long addr = (unsigned long)event;
1438 	unsigned long index;
1439 
1440 	index = rb_event_index(event);
1441 	addr &= PAGE_MASK;
1442 
1443 	return cpu_buffer->commit_page->page == (void *)addr &&
1444 		rb_commit_index(cpu_buffer) == index;
1445 }
1446 
1447 static void
1448 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450 	unsigned long max_count;
1451 
1452 	/*
1453 	 * We only race with interrupts and NMIs on this CPU.
1454 	 * If we own the commit event, then we can commit
1455 	 * all others that interrupted us, since the interruptions
1456 	 * are in stack format (they finish before they come
1457 	 * back to us). This allows us to do a simple loop to
1458 	 * assign the commit to the tail.
1459 	 */
1460  again:
1461 	max_count = cpu_buffer->buffer->pages * 100;
1462 
1463 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1464 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1465 			return;
1466 		if (RB_WARN_ON(cpu_buffer,
1467 			       rb_is_reader_page(cpu_buffer->tail_page)))
1468 			return;
1469 		local_set(&cpu_buffer->commit_page->page->commit,
1470 			  rb_page_write(cpu_buffer->commit_page));
1471 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1472 		cpu_buffer->write_stamp =
1473 			cpu_buffer->commit_page->page->time_stamp;
1474 		/* add barrier to keep gcc from optimizing too much */
1475 		barrier();
1476 	}
1477 	while (rb_commit_index(cpu_buffer) !=
1478 	       rb_page_write(cpu_buffer->commit_page)) {
1479 
1480 		local_set(&cpu_buffer->commit_page->page->commit,
1481 			  rb_page_write(cpu_buffer->commit_page));
1482 		RB_WARN_ON(cpu_buffer,
1483 			   local_read(&cpu_buffer->commit_page->page->commit) &
1484 			   ~RB_WRITE_MASK);
1485 		barrier();
1486 	}
1487 
1488 	/* again, keep gcc from optimizing */
1489 	barrier();
1490 
1491 	/*
1492 	 * If an interrupt came in just after the first while loop
1493 	 * and pushed the tail page forward, we will be left with
1494 	 * a dangling commit that will never go forward.
1495 	 */
1496 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1497 		goto again;
1498 }
1499 
1500 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1501 {
1502 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1503 	cpu_buffer->reader_page->read = 0;
1504 }
1505 
1506 static void rb_inc_iter(struct ring_buffer_iter *iter)
1507 {
1508 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509 
1510 	/*
1511 	 * The iterator could be on the reader page (it starts there).
1512 	 * But the head could have moved, since the reader was
1513 	 * found. Check for this case and assign the iterator
1514 	 * to the head page instead of next.
1515 	 */
1516 	if (iter->head_page == cpu_buffer->reader_page)
1517 		iter->head_page = rb_set_head_page(cpu_buffer);
1518 	else
1519 		rb_inc_page(cpu_buffer, &iter->head_page);
1520 
1521 	iter->read_stamp = iter->head_page->page->time_stamp;
1522 	iter->head = 0;
1523 }
1524 
1525 /**
1526  * ring_buffer_update_event - update event type and data
1527  * @event: the even to update
1528  * @type: the type of event
1529  * @length: the size of the event field in the ring buffer
1530  *
1531  * Update the type and data fields of the event. The length
1532  * is the actual size that is written to the ring buffer,
1533  * and with this, we can determine what to place into the
1534  * data field.
1535  */
1536 static void
1537 rb_update_event(struct ring_buffer_event *event,
1538 			 unsigned type, unsigned length)
1539 {
1540 	event->type_len = type;
1541 
1542 	switch (type) {
1543 
1544 	case RINGBUF_TYPE_PADDING:
1545 	case RINGBUF_TYPE_TIME_EXTEND:
1546 	case RINGBUF_TYPE_TIME_STAMP:
1547 		break;
1548 
1549 	case 0:
1550 		length -= RB_EVNT_HDR_SIZE;
1551 		if (length > RB_MAX_SMALL_DATA)
1552 			event->array[0] = length;
1553 		else
1554 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1555 		break;
1556 	default:
1557 		BUG();
1558 	}
1559 }
1560 
1561 /*
1562  * rb_handle_head_page - writer hit the head page
1563  *
1564  * Returns: +1 to retry page
1565  *           0 to continue
1566  *          -1 on error
1567  */
1568 static int
1569 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1570 		    struct buffer_page *tail_page,
1571 		    struct buffer_page *next_page)
1572 {
1573 	struct buffer_page *new_head;
1574 	int entries;
1575 	int type;
1576 	int ret;
1577 
1578 	entries = rb_page_entries(next_page);
1579 
1580 	/*
1581 	 * The hard part is here. We need to move the head
1582 	 * forward, and protect against both readers on
1583 	 * other CPUs and writers coming in via interrupts.
1584 	 */
1585 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1586 				       RB_PAGE_HEAD);
1587 
1588 	/*
1589 	 * type can be one of four:
1590 	 *  NORMAL - an interrupt already moved it for us
1591 	 *  HEAD   - we are the first to get here.
1592 	 *  UPDATE - we are the interrupt interrupting
1593 	 *           a current move.
1594 	 *  MOVED  - a reader on another CPU moved the next
1595 	 *           pointer to its reader page. Give up
1596 	 *           and try again.
1597 	 */
1598 
1599 	switch (type) {
1600 	case RB_PAGE_HEAD:
1601 		/*
1602 		 * We changed the head to UPDATE, thus
1603 		 * it is our responsibility to update
1604 		 * the counters.
1605 		 */
1606 		local_add(entries, &cpu_buffer->overrun);
1607 
1608 		/*
1609 		 * The entries will be zeroed out when we move the
1610 		 * tail page.
1611 		 */
1612 
1613 		/* still more to do */
1614 		break;
1615 
1616 	case RB_PAGE_UPDATE:
1617 		/*
1618 		 * This is an interrupt that interrupt the
1619 		 * previous update. Still more to do.
1620 		 */
1621 		break;
1622 	case RB_PAGE_NORMAL:
1623 		/*
1624 		 * An interrupt came in before the update
1625 		 * and processed this for us.
1626 		 * Nothing left to do.
1627 		 */
1628 		return 1;
1629 	case RB_PAGE_MOVED:
1630 		/*
1631 		 * The reader is on another CPU and just did
1632 		 * a swap with our next_page.
1633 		 * Try again.
1634 		 */
1635 		return 1;
1636 	default:
1637 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1638 		return -1;
1639 	}
1640 
1641 	/*
1642 	 * Now that we are here, the old head pointer is
1643 	 * set to UPDATE. This will keep the reader from
1644 	 * swapping the head page with the reader page.
1645 	 * The reader (on another CPU) will spin till
1646 	 * we are finished.
1647 	 *
1648 	 * We just need to protect against interrupts
1649 	 * doing the job. We will set the next pointer
1650 	 * to HEAD. After that, we set the old pointer
1651 	 * to NORMAL, but only if it was HEAD before.
1652 	 * otherwise we are an interrupt, and only
1653 	 * want the outer most commit to reset it.
1654 	 */
1655 	new_head = next_page;
1656 	rb_inc_page(cpu_buffer, &new_head);
1657 
1658 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1659 				    RB_PAGE_NORMAL);
1660 
1661 	/*
1662 	 * Valid returns are:
1663 	 *  HEAD   - an interrupt came in and already set it.
1664 	 *  NORMAL - One of two things:
1665 	 *            1) We really set it.
1666 	 *            2) A bunch of interrupts came in and moved
1667 	 *               the page forward again.
1668 	 */
1669 	switch (ret) {
1670 	case RB_PAGE_HEAD:
1671 	case RB_PAGE_NORMAL:
1672 		/* OK */
1673 		break;
1674 	default:
1675 		RB_WARN_ON(cpu_buffer, 1);
1676 		return -1;
1677 	}
1678 
1679 	/*
1680 	 * It is possible that an interrupt came in,
1681 	 * set the head up, then more interrupts came in
1682 	 * and moved it again. When we get back here,
1683 	 * the page would have been set to NORMAL but we
1684 	 * just set it back to HEAD.
1685 	 *
1686 	 * How do you detect this? Well, if that happened
1687 	 * the tail page would have moved.
1688 	 */
1689 	if (ret == RB_PAGE_NORMAL) {
1690 		/*
1691 		 * If the tail had moved passed next, then we need
1692 		 * to reset the pointer.
1693 		 */
1694 		if (cpu_buffer->tail_page != tail_page &&
1695 		    cpu_buffer->tail_page != next_page)
1696 			rb_head_page_set_normal(cpu_buffer, new_head,
1697 						next_page,
1698 						RB_PAGE_HEAD);
1699 	}
1700 
1701 	/*
1702 	 * If this was the outer most commit (the one that
1703 	 * changed the original pointer from HEAD to UPDATE),
1704 	 * then it is up to us to reset it to NORMAL.
1705 	 */
1706 	if (type == RB_PAGE_HEAD) {
1707 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708 					      tail_page,
1709 					      RB_PAGE_UPDATE);
1710 		if (RB_WARN_ON(cpu_buffer,
1711 			       ret != RB_PAGE_UPDATE))
1712 			return -1;
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static unsigned rb_calculate_event_length(unsigned length)
1719 {
1720 	struct ring_buffer_event event; /* Used only for sizeof array */
1721 
1722 	/* zero length can cause confusions */
1723 	if (!length)
1724 		length = 1;
1725 
1726 	if (length > RB_MAX_SMALL_DATA)
1727 		length += sizeof(event.array[0]);
1728 
1729 	length += RB_EVNT_HDR_SIZE;
1730 	length = ALIGN(length, RB_ALIGNMENT);
1731 
1732 	return length;
1733 }
1734 
1735 static inline void
1736 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1737 	      struct buffer_page *tail_page,
1738 	      unsigned long tail, unsigned long length)
1739 {
1740 	struct ring_buffer_event *event;
1741 
1742 	/*
1743 	 * Only the event that crossed the page boundary
1744 	 * must fill the old tail_page with padding.
1745 	 */
1746 	if (tail >= BUF_PAGE_SIZE) {
1747 		local_sub(length, &tail_page->write);
1748 		return;
1749 	}
1750 
1751 	event = __rb_page_index(tail_page, tail);
1752 	kmemcheck_annotate_bitfield(event, bitfield);
1753 
1754 	/*
1755 	 * If this event is bigger than the minimum size, then
1756 	 * we need to be careful that we don't subtract the
1757 	 * write counter enough to allow another writer to slip
1758 	 * in on this page.
1759 	 * We put in a discarded commit instead, to make sure
1760 	 * that this space is not used again.
1761 	 *
1762 	 * If we are less than the minimum size, we don't need to
1763 	 * worry about it.
1764 	 */
1765 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1766 		/* No room for any events */
1767 
1768 		/* Mark the rest of the page with padding */
1769 		rb_event_set_padding(event);
1770 
1771 		/* Set the write back to the previous setting */
1772 		local_sub(length, &tail_page->write);
1773 		return;
1774 	}
1775 
1776 	/* Put in a discarded event */
1777 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1778 	event->type_len = RINGBUF_TYPE_PADDING;
1779 	/* time delta must be non zero */
1780 	event->time_delta = 1;
1781 
1782 	/* Set write to end of buffer */
1783 	length = (tail + length) - BUF_PAGE_SIZE;
1784 	local_sub(length, &tail_page->write);
1785 }
1786 
1787 static struct ring_buffer_event *
1788 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1789 	     unsigned long length, unsigned long tail,
1790 	     struct buffer_page *commit_page,
1791 	     struct buffer_page *tail_page, u64 *ts)
1792 {
1793 	struct ring_buffer *buffer = cpu_buffer->buffer;
1794 	struct buffer_page *next_page;
1795 	int ret;
1796 
1797 	next_page = tail_page;
1798 
1799 	rb_inc_page(cpu_buffer, &next_page);
1800 
1801 	/*
1802 	 * If for some reason, we had an interrupt storm that made
1803 	 * it all the way around the buffer, bail, and warn
1804 	 * about it.
1805 	 */
1806 	if (unlikely(next_page == commit_page)) {
1807 		local_inc(&cpu_buffer->commit_overrun);
1808 		goto out_reset;
1809 	}
1810 
1811 	/*
1812 	 * This is where the fun begins!
1813 	 *
1814 	 * We are fighting against races between a reader that
1815 	 * could be on another CPU trying to swap its reader
1816 	 * page with the buffer head.
1817 	 *
1818 	 * We are also fighting against interrupts coming in and
1819 	 * moving the head or tail on us as well.
1820 	 *
1821 	 * If the next page is the head page then we have filled
1822 	 * the buffer, unless the commit page is still on the
1823 	 * reader page.
1824 	 */
1825 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1826 
1827 		/*
1828 		 * If the commit is not on the reader page, then
1829 		 * move the header page.
1830 		 */
1831 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1832 			/*
1833 			 * If we are not in overwrite mode,
1834 			 * this is easy, just stop here.
1835 			 */
1836 			if (!(buffer->flags & RB_FL_OVERWRITE))
1837 				goto out_reset;
1838 
1839 			ret = rb_handle_head_page(cpu_buffer,
1840 						  tail_page,
1841 						  next_page);
1842 			if (ret < 0)
1843 				goto out_reset;
1844 			if (ret)
1845 				goto out_again;
1846 		} else {
1847 			/*
1848 			 * We need to be careful here too. The
1849 			 * commit page could still be on the reader
1850 			 * page. We could have a small buffer, and
1851 			 * have filled up the buffer with events
1852 			 * from interrupts and such, and wrapped.
1853 			 *
1854 			 * Note, if the tail page is also the on the
1855 			 * reader_page, we let it move out.
1856 			 */
1857 			if (unlikely((cpu_buffer->commit_page !=
1858 				      cpu_buffer->tail_page) &&
1859 				     (cpu_buffer->commit_page ==
1860 				      cpu_buffer->reader_page))) {
1861 				local_inc(&cpu_buffer->commit_overrun);
1862 				goto out_reset;
1863 			}
1864 		}
1865 	}
1866 
1867 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1868 	if (ret) {
1869 		/*
1870 		 * Nested commits always have zero deltas, so
1871 		 * just reread the time stamp
1872 		 */
1873 		*ts = rb_time_stamp(buffer);
1874 		next_page->page->time_stamp = *ts;
1875 	}
1876 
1877  out_again:
1878 
1879 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1880 
1881 	/* fail and let the caller try again */
1882 	return ERR_PTR(-EAGAIN);
1883 
1884  out_reset:
1885 	/* reset write */
1886 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1887 
1888 	return NULL;
1889 }
1890 
1891 static struct ring_buffer_event *
1892 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1893 		  unsigned type, unsigned long length, u64 *ts)
1894 {
1895 	struct buffer_page *tail_page, *commit_page;
1896 	struct ring_buffer_event *event;
1897 	unsigned long tail, write;
1898 
1899 	commit_page = cpu_buffer->commit_page;
1900 	/* we just need to protect against interrupts */
1901 	barrier();
1902 	tail_page = cpu_buffer->tail_page;
1903 	write = local_add_return(length, &tail_page->write);
1904 
1905 	/* set write to only the index of the write */
1906 	write &= RB_WRITE_MASK;
1907 	tail = write - length;
1908 
1909 	/* See if we shot pass the end of this buffer page */
1910 	if (write > BUF_PAGE_SIZE)
1911 		return rb_move_tail(cpu_buffer, length, tail,
1912 				    commit_page, tail_page, ts);
1913 
1914 	/* We reserved something on the buffer */
1915 
1916 	event = __rb_page_index(tail_page, tail);
1917 	kmemcheck_annotate_bitfield(event, bitfield);
1918 	rb_update_event(event, type, length);
1919 
1920 	/* The passed in type is zero for DATA */
1921 	if (likely(!type))
1922 		local_inc(&tail_page->entries);
1923 
1924 	/*
1925 	 * If this is the first commit on the page, then update
1926 	 * its timestamp.
1927 	 */
1928 	if (!tail)
1929 		tail_page->page->time_stamp = *ts;
1930 
1931 	return event;
1932 }
1933 
1934 static inline int
1935 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1936 		  struct ring_buffer_event *event)
1937 {
1938 	unsigned long new_index, old_index;
1939 	struct buffer_page *bpage;
1940 	unsigned long index;
1941 	unsigned long addr;
1942 
1943 	new_index = rb_event_index(event);
1944 	old_index = new_index + rb_event_length(event);
1945 	addr = (unsigned long)event;
1946 	addr &= PAGE_MASK;
1947 
1948 	bpage = cpu_buffer->tail_page;
1949 
1950 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1951 		unsigned long write_mask =
1952 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1953 		/*
1954 		 * This is on the tail page. It is possible that
1955 		 * a write could come in and move the tail page
1956 		 * and write to the next page. That is fine
1957 		 * because we just shorten what is on this page.
1958 		 */
1959 		old_index += write_mask;
1960 		new_index += write_mask;
1961 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1962 		if (index == old_index)
1963 			return 1;
1964 	}
1965 
1966 	/* could not discard */
1967 	return 0;
1968 }
1969 
1970 static int
1971 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1972 		  u64 *ts, u64 *delta)
1973 {
1974 	struct ring_buffer_event *event;
1975 	static int once;
1976 	int ret;
1977 
1978 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1979 		printk(KERN_WARNING "Delta way too big! %llu"
1980 		       " ts=%llu write stamp = %llu\n",
1981 		       (unsigned long long)*delta,
1982 		       (unsigned long long)*ts,
1983 		       (unsigned long long)cpu_buffer->write_stamp);
1984 		WARN_ON(1);
1985 	}
1986 
1987 	/*
1988 	 * The delta is too big, we to add a
1989 	 * new timestamp.
1990 	 */
1991 	event = __rb_reserve_next(cpu_buffer,
1992 				  RINGBUF_TYPE_TIME_EXTEND,
1993 				  RB_LEN_TIME_EXTEND,
1994 				  ts);
1995 	if (!event)
1996 		return -EBUSY;
1997 
1998 	if (PTR_ERR(event) == -EAGAIN)
1999 		return -EAGAIN;
2000 
2001 	/* Only a commited time event can update the write stamp */
2002 	if (rb_event_is_commit(cpu_buffer, event)) {
2003 		/*
2004 		 * If this is the first on the page, then it was
2005 		 * updated with the page itself. Try to discard it
2006 		 * and if we can't just make it zero.
2007 		 */
2008 		if (rb_event_index(event)) {
2009 			event->time_delta = *delta & TS_MASK;
2010 			event->array[0] = *delta >> TS_SHIFT;
2011 		} else {
2012 			/* try to discard, since we do not need this */
2013 			if (!rb_try_to_discard(cpu_buffer, event)) {
2014 				/* nope, just zero it */
2015 				event->time_delta = 0;
2016 				event->array[0] = 0;
2017 			}
2018 		}
2019 		cpu_buffer->write_stamp = *ts;
2020 		/* let the caller know this was the commit */
2021 		ret = 1;
2022 	} else {
2023 		/* Try to discard the event */
2024 		if (!rb_try_to_discard(cpu_buffer, event)) {
2025 			/* Darn, this is just wasted space */
2026 			event->time_delta = 0;
2027 			event->array[0] = 0;
2028 		}
2029 		ret = 0;
2030 	}
2031 
2032 	*delta = 0;
2033 
2034 	return ret;
2035 }
2036 
2037 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2038 {
2039 	local_inc(&cpu_buffer->committing);
2040 	local_inc(&cpu_buffer->commits);
2041 }
2042 
2043 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2044 {
2045 	unsigned long commits;
2046 
2047 	if (RB_WARN_ON(cpu_buffer,
2048 		       !local_read(&cpu_buffer->committing)))
2049 		return;
2050 
2051  again:
2052 	commits = local_read(&cpu_buffer->commits);
2053 	/* synchronize with interrupts */
2054 	barrier();
2055 	if (local_read(&cpu_buffer->committing) == 1)
2056 		rb_set_commit_to_write(cpu_buffer);
2057 
2058 	local_dec(&cpu_buffer->committing);
2059 
2060 	/* synchronize with interrupts */
2061 	barrier();
2062 
2063 	/*
2064 	 * Need to account for interrupts coming in between the
2065 	 * updating of the commit page and the clearing of the
2066 	 * committing counter.
2067 	 */
2068 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2069 	    !local_read(&cpu_buffer->committing)) {
2070 		local_inc(&cpu_buffer->committing);
2071 		goto again;
2072 	}
2073 }
2074 
2075 static struct ring_buffer_event *
2076 rb_reserve_next_event(struct ring_buffer *buffer,
2077 		      struct ring_buffer_per_cpu *cpu_buffer,
2078 		      unsigned long length)
2079 {
2080 	struct ring_buffer_event *event;
2081 	u64 ts, delta = 0;
2082 	int commit = 0;
2083 	int nr_loops = 0;
2084 
2085 	rb_start_commit(cpu_buffer);
2086 
2087 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2088 	/*
2089 	 * Due to the ability to swap a cpu buffer from a buffer
2090 	 * it is possible it was swapped before we committed.
2091 	 * (committing stops a swap). We check for it here and
2092 	 * if it happened, we have to fail the write.
2093 	 */
2094 	barrier();
2095 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2096 		local_dec(&cpu_buffer->committing);
2097 		local_dec(&cpu_buffer->commits);
2098 		return NULL;
2099 	}
2100 #endif
2101 
2102 	length = rb_calculate_event_length(length);
2103  again:
2104 	/*
2105 	 * We allow for interrupts to reenter here and do a trace.
2106 	 * If one does, it will cause this original code to loop
2107 	 * back here. Even with heavy interrupts happening, this
2108 	 * should only happen a few times in a row. If this happens
2109 	 * 1000 times in a row, there must be either an interrupt
2110 	 * storm or we have something buggy.
2111 	 * Bail!
2112 	 */
2113 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2114 		goto out_fail;
2115 
2116 	ts = rb_time_stamp(cpu_buffer->buffer);
2117 
2118 	/*
2119 	 * Only the first commit can update the timestamp.
2120 	 * Yes there is a race here. If an interrupt comes in
2121 	 * just after the conditional and it traces too, then it
2122 	 * will also check the deltas. More than one timestamp may
2123 	 * also be made. But only the entry that did the actual
2124 	 * commit will be something other than zero.
2125 	 */
2126 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2127 		   rb_page_write(cpu_buffer->tail_page) ==
2128 		   rb_commit_index(cpu_buffer))) {
2129 		u64 diff;
2130 
2131 		diff = ts - cpu_buffer->write_stamp;
2132 
2133 		/* make sure this diff is calculated here */
2134 		barrier();
2135 
2136 		/* Did the write stamp get updated already? */
2137 		if (unlikely(ts < cpu_buffer->write_stamp))
2138 			goto get_event;
2139 
2140 		delta = diff;
2141 		if (unlikely(test_time_stamp(delta))) {
2142 
2143 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2144 			if (commit == -EBUSY)
2145 				goto out_fail;
2146 
2147 			if (commit == -EAGAIN)
2148 				goto again;
2149 
2150 			RB_WARN_ON(cpu_buffer, commit < 0);
2151 		}
2152 	}
2153 
2154  get_event:
2155 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2156 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2157 		goto again;
2158 
2159 	if (!event)
2160 		goto out_fail;
2161 
2162 	if (!rb_event_is_commit(cpu_buffer, event))
2163 		delta = 0;
2164 
2165 	event->time_delta = delta;
2166 
2167 	return event;
2168 
2169  out_fail:
2170 	rb_end_commit(cpu_buffer);
2171 	return NULL;
2172 }
2173 
2174 #ifdef CONFIG_TRACING
2175 
2176 #define TRACE_RECURSIVE_DEPTH 16
2177 
2178 static int trace_recursive_lock(void)
2179 {
2180 	current->trace_recursion++;
2181 
2182 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2183 		return 0;
2184 
2185 	/* Disable all tracing before we do anything else */
2186 	tracing_off_permanent();
2187 
2188 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2189 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2190 		    current->trace_recursion,
2191 		    hardirq_count() >> HARDIRQ_SHIFT,
2192 		    softirq_count() >> SOFTIRQ_SHIFT,
2193 		    in_nmi());
2194 
2195 	WARN_ON_ONCE(1);
2196 	return -1;
2197 }
2198 
2199 static void trace_recursive_unlock(void)
2200 {
2201 	WARN_ON_ONCE(!current->trace_recursion);
2202 
2203 	current->trace_recursion--;
2204 }
2205 
2206 #else
2207 
2208 #define trace_recursive_lock()		(0)
2209 #define trace_recursive_unlock()	do { } while (0)
2210 
2211 #endif
2212 
2213 static DEFINE_PER_CPU(int, rb_need_resched);
2214 
2215 /**
2216  * ring_buffer_lock_reserve - reserve a part of the buffer
2217  * @buffer: the ring buffer to reserve from
2218  * @length: the length of the data to reserve (excluding event header)
2219  *
2220  * Returns a reseverd event on the ring buffer to copy directly to.
2221  * The user of this interface will need to get the body to write into
2222  * and can use the ring_buffer_event_data() interface.
2223  *
2224  * The length is the length of the data needed, not the event length
2225  * which also includes the event header.
2226  *
2227  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2228  * If NULL is returned, then nothing has been allocated or locked.
2229  */
2230 struct ring_buffer_event *
2231 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2232 {
2233 	struct ring_buffer_per_cpu *cpu_buffer;
2234 	struct ring_buffer_event *event;
2235 	int cpu, resched;
2236 
2237 	if (ring_buffer_flags != RB_BUFFERS_ON)
2238 		return NULL;
2239 
2240 	if (atomic_read(&buffer->record_disabled))
2241 		return NULL;
2242 
2243 	/* If we are tracing schedule, we don't want to recurse */
2244 	resched = ftrace_preempt_disable();
2245 
2246 	if (trace_recursive_lock())
2247 		goto out_nocheck;
2248 
2249 	cpu = raw_smp_processor_id();
2250 
2251 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2252 		goto out;
2253 
2254 	cpu_buffer = buffer->buffers[cpu];
2255 
2256 	if (atomic_read(&cpu_buffer->record_disabled))
2257 		goto out;
2258 
2259 	if (length > BUF_MAX_DATA_SIZE)
2260 		goto out;
2261 
2262 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2263 	if (!event)
2264 		goto out;
2265 
2266 	/*
2267 	 * Need to store resched state on this cpu.
2268 	 * Only the first needs to.
2269 	 */
2270 
2271 	if (preempt_count() == 1)
2272 		per_cpu(rb_need_resched, cpu) = resched;
2273 
2274 	return event;
2275 
2276  out:
2277 	trace_recursive_unlock();
2278 
2279  out_nocheck:
2280 	ftrace_preempt_enable(resched);
2281 	return NULL;
2282 }
2283 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2284 
2285 static void
2286 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2287 		      struct ring_buffer_event *event)
2288 {
2289 	/*
2290 	 * The event first in the commit queue updates the
2291 	 * time stamp.
2292 	 */
2293 	if (rb_event_is_commit(cpu_buffer, event))
2294 		cpu_buffer->write_stamp += event->time_delta;
2295 }
2296 
2297 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2298 		      struct ring_buffer_event *event)
2299 {
2300 	local_inc(&cpu_buffer->entries);
2301 	rb_update_write_stamp(cpu_buffer, event);
2302 	rb_end_commit(cpu_buffer);
2303 }
2304 
2305 /**
2306  * ring_buffer_unlock_commit - commit a reserved
2307  * @buffer: The buffer to commit to
2308  * @event: The event pointer to commit.
2309  *
2310  * This commits the data to the ring buffer, and releases any locks held.
2311  *
2312  * Must be paired with ring_buffer_lock_reserve.
2313  */
2314 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2315 			      struct ring_buffer_event *event)
2316 {
2317 	struct ring_buffer_per_cpu *cpu_buffer;
2318 	int cpu = raw_smp_processor_id();
2319 
2320 	cpu_buffer = buffer->buffers[cpu];
2321 
2322 	rb_commit(cpu_buffer, event);
2323 
2324 	trace_recursive_unlock();
2325 
2326 	/*
2327 	 * Only the last preempt count needs to restore preemption.
2328 	 */
2329 	if (preempt_count() == 1)
2330 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2331 	else
2332 		preempt_enable_no_resched_notrace();
2333 
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2337 
2338 static inline void rb_event_discard(struct ring_buffer_event *event)
2339 {
2340 	/* array[0] holds the actual length for the discarded event */
2341 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2342 	event->type_len = RINGBUF_TYPE_PADDING;
2343 	/* time delta must be non zero */
2344 	if (!event->time_delta)
2345 		event->time_delta = 1;
2346 }
2347 
2348 /*
2349  * Decrement the entries to the page that an event is on.
2350  * The event does not even need to exist, only the pointer
2351  * to the page it is on. This may only be called before the commit
2352  * takes place.
2353  */
2354 static inline void
2355 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2356 		   struct ring_buffer_event *event)
2357 {
2358 	unsigned long addr = (unsigned long)event;
2359 	struct buffer_page *bpage = cpu_buffer->commit_page;
2360 	struct buffer_page *start;
2361 
2362 	addr &= PAGE_MASK;
2363 
2364 	/* Do the likely case first */
2365 	if (likely(bpage->page == (void *)addr)) {
2366 		local_dec(&bpage->entries);
2367 		return;
2368 	}
2369 
2370 	/*
2371 	 * Because the commit page may be on the reader page we
2372 	 * start with the next page and check the end loop there.
2373 	 */
2374 	rb_inc_page(cpu_buffer, &bpage);
2375 	start = bpage;
2376 	do {
2377 		if (bpage->page == (void *)addr) {
2378 			local_dec(&bpage->entries);
2379 			return;
2380 		}
2381 		rb_inc_page(cpu_buffer, &bpage);
2382 	} while (bpage != start);
2383 
2384 	/* commit not part of this buffer?? */
2385 	RB_WARN_ON(cpu_buffer, 1);
2386 }
2387 
2388 /**
2389  * ring_buffer_commit_discard - discard an event that has not been committed
2390  * @buffer: the ring buffer
2391  * @event: non committed event to discard
2392  *
2393  * Sometimes an event that is in the ring buffer needs to be ignored.
2394  * This function lets the user discard an event in the ring buffer
2395  * and then that event will not be read later.
2396  *
2397  * This function only works if it is called before the the item has been
2398  * committed. It will try to free the event from the ring buffer
2399  * if another event has not been added behind it.
2400  *
2401  * If another event has been added behind it, it will set the event
2402  * up as discarded, and perform the commit.
2403  *
2404  * If this function is called, do not call ring_buffer_unlock_commit on
2405  * the event.
2406  */
2407 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2408 				struct ring_buffer_event *event)
2409 {
2410 	struct ring_buffer_per_cpu *cpu_buffer;
2411 	int cpu;
2412 
2413 	/* The event is discarded regardless */
2414 	rb_event_discard(event);
2415 
2416 	cpu = smp_processor_id();
2417 	cpu_buffer = buffer->buffers[cpu];
2418 
2419 	/*
2420 	 * This must only be called if the event has not been
2421 	 * committed yet. Thus we can assume that preemption
2422 	 * is still disabled.
2423 	 */
2424 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2425 
2426 	rb_decrement_entry(cpu_buffer, event);
2427 	if (rb_try_to_discard(cpu_buffer, event))
2428 		goto out;
2429 
2430 	/*
2431 	 * The commit is still visible by the reader, so we
2432 	 * must still update the timestamp.
2433 	 */
2434 	rb_update_write_stamp(cpu_buffer, event);
2435  out:
2436 	rb_end_commit(cpu_buffer);
2437 
2438 	trace_recursive_unlock();
2439 
2440 	/*
2441 	 * Only the last preempt count needs to restore preemption.
2442 	 */
2443 	if (preempt_count() == 1)
2444 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2445 	else
2446 		preempt_enable_no_resched_notrace();
2447 
2448 }
2449 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2450 
2451 /**
2452  * ring_buffer_write - write data to the buffer without reserving
2453  * @buffer: The ring buffer to write to.
2454  * @length: The length of the data being written (excluding the event header)
2455  * @data: The data to write to the buffer.
2456  *
2457  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2458  * one function. If you already have the data to write to the buffer, it
2459  * may be easier to simply call this function.
2460  *
2461  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2462  * and not the length of the event which would hold the header.
2463  */
2464 int ring_buffer_write(struct ring_buffer *buffer,
2465 			unsigned long length,
2466 			void *data)
2467 {
2468 	struct ring_buffer_per_cpu *cpu_buffer;
2469 	struct ring_buffer_event *event;
2470 	void *body;
2471 	int ret = -EBUSY;
2472 	int cpu, resched;
2473 
2474 	if (ring_buffer_flags != RB_BUFFERS_ON)
2475 		return -EBUSY;
2476 
2477 	if (atomic_read(&buffer->record_disabled))
2478 		return -EBUSY;
2479 
2480 	resched = ftrace_preempt_disable();
2481 
2482 	cpu = raw_smp_processor_id();
2483 
2484 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2485 		goto out;
2486 
2487 	cpu_buffer = buffer->buffers[cpu];
2488 
2489 	if (atomic_read(&cpu_buffer->record_disabled))
2490 		goto out;
2491 
2492 	if (length > BUF_MAX_DATA_SIZE)
2493 		goto out;
2494 
2495 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2496 	if (!event)
2497 		goto out;
2498 
2499 	body = rb_event_data(event);
2500 
2501 	memcpy(body, data, length);
2502 
2503 	rb_commit(cpu_buffer, event);
2504 
2505 	ret = 0;
2506  out:
2507 	ftrace_preempt_enable(resched);
2508 
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(ring_buffer_write);
2512 
2513 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2514 {
2515 	struct buffer_page *reader = cpu_buffer->reader_page;
2516 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2517 	struct buffer_page *commit = cpu_buffer->commit_page;
2518 
2519 	/* In case of error, head will be NULL */
2520 	if (unlikely(!head))
2521 		return 1;
2522 
2523 	return reader->read == rb_page_commit(reader) &&
2524 		(commit == reader ||
2525 		 (commit == head &&
2526 		  head->read == rb_page_commit(commit)));
2527 }
2528 
2529 /**
2530  * ring_buffer_record_disable - stop all writes into the buffer
2531  * @buffer: The ring buffer to stop writes to.
2532  *
2533  * This prevents all writes to the buffer. Any attempt to write
2534  * to the buffer after this will fail and return NULL.
2535  *
2536  * The caller should call synchronize_sched() after this.
2537  */
2538 void ring_buffer_record_disable(struct ring_buffer *buffer)
2539 {
2540 	atomic_inc(&buffer->record_disabled);
2541 }
2542 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2543 
2544 /**
2545  * ring_buffer_record_enable - enable writes to the buffer
2546  * @buffer: The ring buffer to enable writes
2547  *
2548  * Note, multiple disables will need the same number of enables
2549  * to truely enable the writing (much like preempt_disable).
2550  */
2551 void ring_buffer_record_enable(struct ring_buffer *buffer)
2552 {
2553 	atomic_dec(&buffer->record_disabled);
2554 }
2555 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2556 
2557 /**
2558  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2559  * @buffer: The ring buffer to stop writes to.
2560  * @cpu: The CPU buffer to stop
2561  *
2562  * This prevents all writes to the buffer. Any attempt to write
2563  * to the buffer after this will fail and return NULL.
2564  *
2565  * The caller should call synchronize_sched() after this.
2566  */
2567 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2568 {
2569 	struct ring_buffer_per_cpu *cpu_buffer;
2570 
2571 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2572 		return;
2573 
2574 	cpu_buffer = buffer->buffers[cpu];
2575 	atomic_inc(&cpu_buffer->record_disabled);
2576 }
2577 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2578 
2579 /**
2580  * ring_buffer_record_enable_cpu - enable writes to the buffer
2581  * @buffer: The ring buffer to enable writes
2582  * @cpu: The CPU to enable.
2583  *
2584  * Note, multiple disables will need the same number of enables
2585  * to truely enable the writing (much like preempt_disable).
2586  */
2587 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2588 {
2589 	struct ring_buffer_per_cpu *cpu_buffer;
2590 
2591 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2592 		return;
2593 
2594 	cpu_buffer = buffer->buffers[cpu];
2595 	atomic_dec(&cpu_buffer->record_disabled);
2596 }
2597 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2598 
2599 /**
2600  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2601  * @buffer: The ring buffer
2602  * @cpu: The per CPU buffer to get the entries from.
2603  */
2604 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2605 {
2606 	struct ring_buffer_per_cpu *cpu_buffer;
2607 	unsigned long ret;
2608 
2609 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2610 		return 0;
2611 
2612 	cpu_buffer = buffer->buffers[cpu];
2613 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2614 		- cpu_buffer->read;
2615 
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2619 
2620 /**
2621  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2622  * @buffer: The ring buffer
2623  * @cpu: The per CPU buffer to get the number of overruns from
2624  */
2625 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2626 {
2627 	struct ring_buffer_per_cpu *cpu_buffer;
2628 	unsigned long ret;
2629 
2630 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2631 		return 0;
2632 
2633 	cpu_buffer = buffer->buffers[cpu];
2634 	ret = local_read(&cpu_buffer->overrun);
2635 
2636 	return ret;
2637 }
2638 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2639 
2640 /**
2641  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2642  * @buffer: The ring buffer
2643  * @cpu: The per CPU buffer to get the number of overruns from
2644  */
2645 unsigned long
2646 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2647 {
2648 	struct ring_buffer_per_cpu *cpu_buffer;
2649 	unsigned long ret;
2650 
2651 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2652 		return 0;
2653 
2654 	cpu_buffer = buffer->buffers[cpu];
2655 	ret = local_read(&cpu_buffer->commit_overrun);
2656 
2657 	return ret;
2658 }
2659 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2660 
2661 /**
2662  * ring_buffer_entries - get the number of entries in a buffer
2663  * @buffer: The ring buffer
2664  *
2665  * Returns the total number of entries in the ring buffer
2666  * (all CPU entries)
2667  */
2668 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2669 {
2670 	struct ring_buffer_per_cpu *cpu_buffer;
2671 	unsigned long entries = 0;
2672 	int cpu;
2673 
2674 	/* if you care about this being correct, lock the buffer */
2675 	for_each_buffer_cpu(buffer, cpu) {
2676 		cpu_buffer = buffer->buffers[cpu];
2677 		entries += (local_read(&cpu_buffer->entries) -
2678 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2679 	}
2680 
2681 	return entries;
2682 }
2683 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2684 
2685 /**
2686  * ring_buffer_overruns - get the number of overruns in buffer
2687  * @buffer: The ring buffer
2688  *
2689  * Returns the total number of overruns in the ring buffer
2690  * (all CPU entries)
2691  */
2692 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2693 {
2694 	struct ring_buffer_per_cpu *cpu_buffer;
2695 	unsigned long overruns = 0;
2696 	int cpu;
2697 
2698 	/* if you care about this being correct, lock the buffer */
2699 	for_each_buffer_cpu(buffer, cpu) {
2700 		cpu_buffer = buffer->buffers[cpu];
2701 		overruns += local_read(&cpu_buffer->overrun);
2702 	}
2703 
2704 	return overruns;
2705 }
2706 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2707 
2708 static void rb_iter_reset(struct ring_buffer_iter *iter)
2709 {
2710 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2711 
2712 	/* Iterator usage is expected to have record disabled */
2713 	if (list_empty(&cpu_buffer->reader_page->list)) {
2714 		iter->head_page = rb_set_head_page(cpu_buffer);
2715 		if (unlikely(!iter->head_page))
2716 			return;
2717 		iter->head = iter->head_page->read;
2718 	} else {
2719 		iter->head_page = cpu_buffer->reader_page;
2720 		iter->head = cpu_buffer->reader_page->read;
2721 	}
2722 	if (iter->head)
2723 		iter->read_stamp = cpu_buffer->read_stamp;
2724 	else
2725 		iter->read_stamp = iter->head_page->page->time_stamp;
2726 }
2727 
2728 /**
2729  * ring_buffer_iter_reset - reset an iterator
2730  * @iter: The iterator to reset
2731  *
2732  * Resets the iterator, so that it will start from the beginning
2733  * again.
2734  */
2735 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2736 {
2737 	struct ring_buffer_per_cpu *cpu_buffer;
2738 	unsigned long flags;
2739 
2740 	if (!iter)
2741 		return;
2742 
2743 	cpu_buffer = iter->cpu_buffer;
2744 
2745 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2746 	rb_iter_reset(iter);
2747 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2748 }
2749 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2750 
2751 /**
2752  * ring_buffer_iter_empty - check if an iterator has no more to read
2753  * @iter: The iterator to check
2754  */
2755 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2756 {
2757 	struct ring_buffer_per_cpu *cpu_buffer;
2758 
2759 	cpu_buffer = iter->cpu_buffer;
2760 
2761 	return iter->head_page == cpu_buffer->commit_page &&
2762 		iter->head == rb_commit_index(cpu_buffer);
2763 }
2764 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2765 
2766 static void
2767 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2768 		     struct ring_buffer_event *event)
2769 {
2770 	u64 delta;
2771 
2772 	switch (event->type_len) {
2773 	case RINGBUF_TYPE_PADDING:
2774 		return;
2775 
2776 	case RINGBUF_TYPE_TIME_EXTEND:
2777 		delta = event->array[0];
2778 		delta <<= TS_SHIFT;
2779 		delta += event->time_delta;
2780 		cpu_buffer->read_stamp += delta;
2781 		return;
2782 
2783 	case RINGBUF_TYPE_TIME_STAMP:
2784 		/* FIXME: not implemented */
2785 		return;
2786 
2787 	case RINGBUF_TYPE_DATA:
2788 		cpu_buffer->read_stamp += event->time_delta;
2789 		return;
2790 
2791 	default:
2792 		BUG();
2793 	}
2794 	return;
2795 }
2796 
2797 static void
2798 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2799 			  struct ring_buffer_event *event)
2800 {
2801 	u64 delta;
2802 
2803 	switch (event->type_len) {
2804 	case RINGBUF_TYPE_PADDING:
2805 		return;
2806 
2807 	case RINGBUF_TYPE_TIME_EXTEND:
2808 		delta = event->array[0];
2809 		delta <<= TS_SHIFT;
2810 		delta += event->time_delta;
2811 		iter->read_stamp += delta;
2812 		return;
2813 
2814 	case RINGBUF_TYPE_TIME_STAMP:
2815 		/* FIXME: not implemented */
2816 		return;
2817 
2818 	case RINGBUF_TYPE_DATA:
2819 		iter->read_stamp += event->time_delta;
2820 		return;
2821 
2822 	default:
2823 		BUG();
2824 	}
2825 	return;
2826 }
2827 
2828 static struct buffer_page *
2829 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2830 {
2831 	struct buffer_page *reader = NULL;
2832 	unsigned long flags;
2833 	int nr_loops = 0;
2834 	int ret;
2835 
2836 	local_irq_save(flags);
2837 	__raw_spin_lock(&cpu_buffer->lock);
2838 
2839  again:
2840 	/*
2841 	 * This should normally only loop twice. But because the
2842 	 * start of the reader inserts an empty page, it causes
2843 	 * a case where we will loop three times. There should be no
2844 	 * reason to loop four times (that I know of).
2845 	 */
2846 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2847 		reader = NULL;
2848 		goto out;
2849 	}
2850 
2851 	reader = cpu_buffer->reader_page;
2852 
2853 	/* If there's more to read, return this page */
2854 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2855 		goto out;
2856 
2857 	/* Never should we have an index greater than the size */
2858 	if (RB_WARN_ON(cpu_buffer,
2859 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2860 		goto out;
2861 
2862 	/* check if we caught up to the tail */
2863 	reader = NULL;
2864 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2865 		goto out;
2866 
2867 	/*
2868 	 * Reset the reader page to size zero.
2869 	 */
2870 	local_set(&cpu_buffer->reader_page->write, 0);
2871 	local_set(&cpu_buffer->reader_page->entries, 0);
2872 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2873 
2874  spin:
2875 	/*
2876 	 * Splice the empty reader page into the list around the head.
2877 	 */
2878 	reader = rb_set_head_page(cpu_buffer);
2879 	cpu_buffer->reader_page->list.next = reader->list.next;
2880 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2881 
2882 	/*
2883 	 * cpu_buffer->pages just needs to point to the buffer, it
2884 	 *  has no specific buffer page to point to. Lets move it out
2885 	 *  of our way so we don't accidently swap it.
2886 	 */
2887 	cpu_buffer->pages = reader->list.prev;
2888 
2889 	/* The reader page will be pointing to the new head */
2890 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2891 
2892 	/*
2893 	 * Here's the tricky part.
2894 	 *
2895 	 * We need to move the pointer past the header page.
2896 	 * But we can only do that if a writer is not currently
2897 	 * moving it. The page before the header page has the
2898 	 * flag bit '1' set if it is pointing to the page we want.
2899 	 * but if the writer is in the process of moving it
2900 	 * than it will be '2' or already moved '0'.
2901 	 */
2902 
2903 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2904 
2905 	/*
2906 	 * If we did not convert it, then we must try again.
2907 	 */
2908 	if (!ret)
2909 		goto spin;
2910 
2911 	/*
2912 	 * Yeah! We succeeded in replacing the page.
2913 	 *
2914 	 * Now make the new head point back to the reader page.
2915 	 */
2916 	reader->list.next->prev = &cpu_buffer->reader_page->list;
2917 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2918 
2919 	/* Finally update the reader page to the new head */
2920 	cpu_buffer->reader_page = reader;
2921 	rb_reset_reader_page(cpu_buffer);
2922 
2923 	goto again;
2924 
2925  out:
2926 	__raw_spin_unlock(&cpu_buffer->lock);
2927 	local_irq_restore(flags);
2928 
2929 	return reader;
2930 }
2931 
2932 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2933 {
2934 	struct ring_buffer_event *event;
2935 	struct buffer_page *reader;
2936 	unsigned length;
2937 
2938 	reader = rb_get_reader_page(cpu_buffer);
2939 
2940 	/* This function should not be called when buffer is empty */
2941 	if (RB_WARN_ON(cpu_buffer, !reader))
2942 		return;
2943 
2944 	event = rb_reader_event(cpu_buffer);
2945 
2946 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2947 		cpu_buffer->read++;
2948 
2949 	rb_update_read_stamp(cpu_buffer, event);
2950 
2951 	length = rb_event_length(event);
2952 	cpu_buffer->reader_page->read += length;
2953 }
2954 
2955 static void rb_advance_iter(struct ring_buffer_iter *iter)
2956 {
2957 	struct ring_buffer *buffer;
2958 	struct ring_buffer_per_cpu *cpu_buffer;
2959 	struct ring_buffer_event *event;
2960 	unsigned length;
2961 
2962 	cpu_buffer = iter->cpu_buffer;
2963 	buffer = cpu_buffer->buffer;
2964 
2965 	/*
2966 	 * Check if we are at the end of the buffer.
2967 	 */
2968 	if (iter->head >= rb_page_size(iter->head_page)) {
2969 		/* discarded commits can make the page empty */
2970 		if (iter->head_page == cpu_buffer->commit_page)
2971 			return;
2972 		rb_inc_iter(iter);
2973 		return;
2974 	}
2975 
2976 	event = rb_iter_head_event(iter);
2977 
2978 	length = rb_event_length(event);
2979 
2980 	/*
2981 	 * This should not be called to advance the header if we are
2982 	 * at the tail of the buffer.
2983 	 */
2984 	if (RB_WARN_ON(cpu_buffer,
2985 		       (iter->head_page == cpu_buffer->commit_page) &&
2986 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2987 		return;
2988 
2989 	rb_update_iter_read_stamp(iter, event);
2990 
2991 	iter->head += length;
2992 
2993 	/* check for end of page padding */
2994 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2995 	    (iter->head_page != cpu_buffer->commit_page))
2996 		rb_advance_iter(iter);
2997 }
2998 
2999 static struct ring_buffer_event *
3000 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3001 {
3002 	struct ring_buffer_event *event;
3003 	struct buffer_page *reader;
3004 	int nr_loops = 0;
3005 
3006  again:
3007 	/*
3008 	 * We repeat when a timestamp is encountered. It is possible
3009 	 * to get multiple timestamps from an interrupt entering just
3010 	 * as one timestamp is about to be written, or from discarded
3011 	 * commits. The most that we can have is the number on a single page.
3012 	 */
3013 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3014 		return NULL;
3015 
3016 	reader = rb_get_reader_page(cpu_buffer);
3017 	if (!reader)
3018 		return NULL;
3019 
3020 	event = rb_reader_event(cpu_buffer);
3021 
3022 	switch (event->type_len) {
3023 	case RINGBUF_TYPE_PADDING:
3024 		if (rb_null_event(event))
3025 			RB_WARN_ON(cpu_buffer, 1);
3026 		/*
3027 		 * Because the writer could be discarding every
3028 		 * event it creates (which would probably be bad)
3029 		 * if we were to go back to "again" then we may never
3030 		 * catch up, and will trigger the warn on, or lock
3031 		 * the box. Return the padding, and we will release
3032 		 * the current locks, and try again.
3033 		 */
3034 		return event;
3035 
3036 	case RINGBUF_TYPE_TIME_EXTEND:
3037 		/* Internal data, OK to advance */
3038 		rb_advance_reader(cpu_buffer);
3039 		goto again;
3040 
3041 	case RINGBUF_TYPE_TIME_STAMP:
3042 		/* FIXME: not implemented */
3043 		rb_advance_reader(cpu_buffer);
3044 		goto again;
3045 
3046 	case RINGBUF_TYPE_DATA:
3047 		if (ts) {
3048 			*ts = cpu_buffer->read_stamp + event->time_delta;
3049 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3050 							 cpu_buffer->cpu, ts);
3051 		}
3052 		return event;
3053 
3054 	default:
3055 		BUG();
3056 	}
3057 
3058 	return NULL;
3059 }
3060 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3061 
3062 static struct ring_buffer_event *
3063 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3064 {
3065 	struct ring_buffer *buffer;
3066 	struct ring_buffer_per_cpu *cpu_buffer;
3067 	struct ring_buffer_event *event;
3068 	int nr_loops = 0;
3069 
3070 	if (ring_buffer_iter_empty(iter))
3071 		return NULL;
3072 
3073 	cpu_buffer = iter->cpu_buffer;
3074 	buffer = cpu_buffer->buffer;
3075 
3076  again:
3077 	/*
3078 	 * We repeat when a timestamp is encountered.
3079 	 * We can get multiple timestamps by nested interrupts or also
3080 	 * if filtering is on (discarding commits). Since discarding
3081 	 * commits can be frequent we can get a lot of timestamps.
3082 	 * But we limit them by not adding timestamps if they begin
3083 	 * at the start of a page.
3084 	 */
3085 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3086 		return NULL;
3087 
3088 	if (rb_per_cpu_empty(cpu_buffer))
3089 		return NULL;
3090 
3091 	event = rb_iter_head_event(iter);
3092 
3093 	switch (event->type_len) {
3094 	case RINGBUF_TYPE_PADDING:
3095 		if (rb_null_event(event)) {
3096 			rb_inc_iter(iter);
3097 			goto again;
3098 		}
3099 		rb_advance_iter(iter);
3100 		return event;
3101 
3102 	case RINGBUF_TYPE_TIME_EXTEND:
3103 		/* Internal data, OK to advance */
3104 		rb_advance_iter(iter);
3105 		goto again;
3106 
3107 	case RINGBUF_TYPE_TIME_STAMP:
3108 		/* FIXME: not implemented */
3109 		rb_advance_iter(iter);
3110 		goto again;
3111 
3112 	case RINGBUF_TYPE_DATA:
3113 		if (ts) {
3114 			*ts = iter->read_stamp + event->time_delta;
3115 			ring_buffer_normalize_time_stamp(buffer,
3116 							 cpu_buffer->cpu, ts);
3117 		}
3118 		return event;
3119 
3120 	default:
3121 		BUG();
3122 	}
3123 
3124 	return NULL;
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3127 
3128 static inline int rb_ok_to_lock(void)
3129 {
3130 	/*
3131 	 * If an NMI die dumps out the content of the ring buffer
3132 	 * do not grab locks. We also permanently disable the ring
3133 	 * buffer too. A one time deal is all you get from reading
3134 	 * the ring buffer from an NMI.
3135 	 */
3136 	if (likely(!in_nmi()))
3137 		return 1;
3138 
3139 	tracing_off_permanent();
3140 	return 0;
3141 }
3142 
3143 /**
3144  * ring_buffer_peek - peek at the next event to be read
3145  * @buffer: The ring buffer to read
3146  * @cpu: The cpu to peak at
3147  * @ts: The timestamp counter of this event.
3148  *
3149  * This will return the event that will be read next, but does
3150  * not consume the data.
3151  */
3152 struct ring_buffer_event *
3153 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3154 {
3155 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3156 	struct ring_buffer_event *event;
3157 	unsigned long flags;
3158 	int dolock;
3159 
3160 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3161 		return NULL;
3162 
3163 	dolock = rb_ok_to_lock();
3164  again:
3165 	local_irq_save(flags);
3166 	if (dolock)
3167 		spin_lock(&cpu_buffer->reader_lock);
3168 	event = rb_buffer_peek(cpu_buffer, ts);
3169 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3170 		rb_advance_reader(cpu_buffer);
3171 	if (dolock)
3172 		spin_unlock(&cpu_buffer->reader_lock);
3173 	local_irq_restore(flags);
3174 
3175 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3176 		goto again;
3177 
3178 	return event;
3179 }
3180 
3181 /**
3182  * ring_buffer_iter_peek - peek at the next event to be read
3183  * @iter: The ring buffer iterator
3184  * @ts: The timestamp counter of this event.
3185  *
3186  * This will return the event that will be read next, but does
3187  * not increment the iterator.
3188  */
3189 struct ring_buffer_event *
3190 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3191 {
3192 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3193 	struct ring_buffer_event *event;
3194 	unsigned long flags;
3195 
3196  again:
3197 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3198 	event = rb_iter_peek(iter, ts);
3199 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3200 
3201 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3202 		goto again;
3203 
3204 	return event;
3205 }
3206 
3207 /**
3208  * ring_buffer_consume - return an event and consume it
3209  * @buffer: The ring buffer to get the next event from
3210  *
3211  * Returns the next event in the ring buffer, and that event is consumed.
3212  * Meaning, that sequential reads will keep returning a different event,
3213  * and eventually empty the ring buffer if the producer is slower.
3214  */
3215 struct ring_buffer_event *
3216 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3217 {
3218 	struct ring_buffer_per_cpu *cpu_buffer;
3219 	struct ring_buffer_event *event = NULL;
3220 	unsigned long flags;
3221 	int dolock;
3222 
3223 	dolock = rb_ok_to_lock();
3224 
3225  again:
3226 	/* might be called in atomic */
3227 	preempt_disable();
3228 
3229 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3230 		goto out;
3231 
3232 	cpu_buffer = buffer->buffers[cpu];
3233 	local_irq_save(flags);
3234 	if (dolock)
3235 		spin_lock(&cpu_buffer->reader_lock);
3236 
3237 	event = rb_buffer_peek(cpu_buffer, ts);
3238 	if (event)
3239 		rb_advance_reader(cpu_buffer);
3240 
3241 	if (dolock)
3242 		spin_unlock(&cpu_buffer->reader_lock);
3243 	local_irq_restore(flags);
3244 
3245  out:
3246 	preempt_enable();
3247 
3248 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3249 		goto again;
3250 
3251 	return event;
3252 }
3253 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3254 
3255 /**
3256  * ring_buffer_read_start - start a non consuming read of the buffer
3257  * @buffer: The ring buffer to read from
3258  * @cpu: The cpu buffer to iterate over
3259  *
3260  * This starts up an iteration through the buffer. It also disables
3261  * the recording to the buffer until the reading is finished.
3262  * This prevents the reading from being corrupted. This is not
3263  * a consuming read, so a producer is not expected.
3264  *
3265  * Must be paired with ring_buffer_finish.
3266  */
3267 struct ring_buffer_iter *
3268 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3269 {
3270 	struct ring_buffer_per_cpu *cpu_buffer;
3271 	struct ring_buffer_iter *iter;
3272 	unsigned long flags;
3273 
3274 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3275 		return NULL;
3276 
3277 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3278 	if (!iter)
3279 		return NULL;
3280 
3281 	cpu_buffer = buffer->buffers[cpu];
3282 
3283 	iter->cpu_buffer = cpu_buffer;
3284 
3285 	atomic_inc(&cpu_buffer->record_disabled);
3286 	synchronize_sched();
3287 
3288 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3289 	__raw_spin_lock(&cpu_buffer->lock);
3290 	rb_iter_reset(iter);
3291 	__raw_spin_unlock(&cpu_buffer->lock);
3292 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3293 
3294 	return iter;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3297 
3298 /**
3299  * ring_buffer_finish - finish reading the iterator of the buffer
3300  * @iter: The iterator retrieved by ring_buffer_start
3301  *
3302  * This re-enables the recording to the buffer, and frees the
3303  * iterator.
3304  */
3305 void
3306 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3307 {
3308 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3309 
3310 	atomic_dec(&cpu_buffer->record_disabled);
3311 	kfree(iter);
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3314 
3315 /**
3316  * ring_buffer_read - read the next item in the ring buffer by the iterator
3317  * @iter: The ring buffer iterator
3318  * @ts: The time stamp of the event read.
3319  *
3320  * This reads the next event in the ring buffer and increments the iterator.
3321  */
3322 struct ring_buffer_event *
3323 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3324 {
3325 	struct ring_buffer_event *event;
3326 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3327 	unsigned long flags;
3328 
3329 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3330  again:
3331 	event = rb_iter_peek(iter, ts);
3332 	if (!event)
3333 		goto out;
3334 
3335 	if (event->type_len == RINGBUF_TYPE_PADDING)
3336 		goto again;
3337 
3338 	rb_advance_iter(iter);
3339  out:
3340 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3341 
3342 	return event;
3343 }
3344 EXPORT_SYMBOL_GPL(ring_buffer_read);
3345 
3346 /**
3347  * ring_buffer_size - return the size of the ring buffer (in bytes)
3348  * @buffer: The ring buffer.
3349  */
3350 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3351 {
3352 	return BUF_PAGE_SIZE * buffer->pages;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_size);
3355 
3356 static void
3357 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3358 {
3359 	rb_head_page_deactivate(cpu_buffer);
3360 
3361 	cpu_buffer->head_page
3362 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3363 	local_set(&cpu_buffer->head_page->write, 0);
3364 	local_set(&cpu_buffer->head_page->entries, 0);
3365 	local_set(&cpu_buffer->head_page->page->commit, 0);
3366 
3367 	cpu_buffer->head_page->read = 0;
3368 
3369 	cpu_buffer->tail_page = cpu_buffer->head_page;
3370 	cpu_buffer->commit_page = cpu_buffer->head_page;
3371 
3372 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3373 	local_set(&cpu_buffer->reader_page->write, 0);
3374 	local_set(&cpu_buffer->reader_page->entries, 0);
3375 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3376 	cpu_buffer->reader_page->read = 0;
3377 
3378 	local_set(&cpu_buffer->commit_overrun, 0);
3379 	local_set(&cpu_buffer->overrun, 0);
3380 	local_set(&cpu_buffer->entries, 0);
3381 	local_set(&cpu_buffer->committing, 0);
3382 	local_set(&cpu_buffer->commits, 0);
3383 	cpu_buffer->read = 0;
3384 
3385 	cpu_buffer->write_stamp = 0;
3386 	cpu_buffer->read_stamp = 0;
3387 
3388 	rb_head_page_activate(cpu_buffer);
3389 }
3390 
3391 /**
3392  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3393  * @buffer: The ring buffer to reset a per cpu buffer of
3394  * @cpu: The CPU buffer to be reset
3395  */
3396 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3397 {
3398 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3399 	unsigned long flags;
3400 
3401 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3402 		return;
3403 
3404 	atomic_inc(&cpu_buffer->record_disabled);
3405 
3406 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3407 
3408 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3409 		goto out;
3410 
3411 	__raw_spin_lock(&cpu_buffer->lock);
3412 
3413 	rb_reset_cpu(cpu_buffer);
3414 
3415 	__raw_spin_unlock(&cpu_buffer->lock);
3416 
3417  out:
3418 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3419 
3420 	atomic_dec(&cpu_buffer->record_disabled);
3421 }
3422 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3423 
3424 /**
3425  * ring_buffer_reset - reset a ring buffer
3426  * @buffer: The ring buffer to reset all cpu buffers
3427  */
3428 void ring_buffer_reset(struct ring_buffer *buffer)
3429 {
3430 	int cpu;
3431 
3432 	for_each_buffer_cpu(buffer, cpu)
3433 		ring_buffer_reset_cpu(buffer, cpu);
3434 }
3435 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3436 
3437 /**
3438  * rind_buffer_empty - is the ring buffer empty?
3439  * @buffer: The ring buffer to test
3440  */
3441 int ring_buffer_empty(struct ring_buffer *buffer)
3442 {
3443 	struct ring_buffer_per_cpu *cpu_buffer;
3444 	unsigned long flags;
3445 	int dolock;
3446 	int cpu;
3447 	int ret;
3448 
3449 	dolock = rb_ok_to_lock();
3450 
3451 	/* yes this is racy, but if you don't like the race, lock the buffer */
3452 	for_each_buffer_cpu(buffer, cpu) {
3453 		cpu_buffer = buffer->buffers[cpu];
3454 		local_irq_save(flags);
3455 		if (dolock)
3456 			spin_lock(&cpu_buffer->reader_lock);
3457 		ret = rb_per_cpu_empty(cpu_buffer);
3458 		if (dolock)
3459 			spin_unlock(&cpu_buffer->reader_lock);
3460 		local_irq_restore(flags);
3461 
3462 		if (!ret)
3463 			return 0;
3464 	}
3465 
3466 	return 1;
3467 }
3468 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3469 
3470 /**
3471  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3472  * @buffer: The ring buffer
3473  * @cpu: The CPU buffer to test
3474  */
3475 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3476 {
3477 	struct ring_buffer_per_cpu *cpu_buffer;
3478 	unsigned long flags;
3479 	int dolock;
3480 	int ret;
3481 
3482 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3483 		return 1;
3484 
3485 	dolock = rb_ok_to_lock();
3486 
3487 	cpu_buffer = buffer->buffers[cpu];
3488 	local_irq_save(flags);
3489 	if (dolock)
3490 		spin_lock(&cpu_buffer->reader_lock);
3491 	ret = rb_per_cpu_empty(cpu_buffer);
3492 	if (dolock)
3493 		spin_unlock(&cpu_buffer->reader_lock);
3494 	local_irq_restore(flags);
3495 
3496 	return ret;
3497 }
3498 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3499 
3500 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3501 /**
3502  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3503  * @buffer_a: One buffer to swap with
3504  * @buffer_b: The other buffer to swap with
3505  *
3506  * This function is useful for tracers that want to take a "snapshot"
3507  * of a CPU buffer and has another back up buffer lying around.
3508  * it is expected that the tracer handles the cpu buffer not being
3509  * used at the moment.
3510  */
3511 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3512 			 struct ring_buffer *buffer_b, int cpu)
3513 {
3514 	struct ring_buffer_per_cpu *cpu_buffer_a;
3515 	struct ring_buffer_per_cpu *cpu_buffer_b;
3516 	int ret = -EINVAL;
3517 
3518 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3519 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3520 		goto out;
3521 
3522 	/* At least make sure the two buffers are somewhat the same */
3523 	if (buffer_a->pages != buffer_b->pages)
3524 		goto out;
3525 
3526 	ret = -EAGAIN;
3527 
3528 	if (ring_buffer_flags != RB_BUFFERS_ON)
3529 		goto out;
3530 
3531 	if (atomic_read(&buffer_a->record_disabled))
3532 		goto out;
3533 
3534 	if (atomic_read(&buffer_b->record_disabled))
3535 		goto out;
3536 
3537 	cpu_buffer_a = buffer_a->buffers[cpu];
3538 	cpu_buffer_b = buffer_b->buffers[cpu];
3539 
3540 	if (atomic_read(&cpu_buffer_a->record_disabled))
3541 		goto out;
3542 
3543 	if (atomic_read(&cpu_buffer_b->record_disabled))
3544 		goto out;
3545 
3546 	/*
3547 	 * We can't do a synchronize_sched here because this
3548 	 * function can be called in atomic context.
3549 	 * Normally this will be called from the same CPU as cpu.
3550 	 * If not it's up to the caller to protect this.
3551 	 */
3552 	atomic_inc(&cpu_buffer_a->record_disabled);
3553 	atomic_inc(&cpu_buffer_b->record_disabled);
3554 
3555 	ret = -EBUSY;
3556 	if (local_read(&cpu_buffer_a->committing))
3557 		goto out_dec;
3558 	if (local_read(&cpu_buffer_b->committing))
3559 		goto out_dec;
3560 
3561 	buffer_a->buffers[cpu] = cpu_buffer_b;
3562 	buffer_b->buffers[cpu] = cpu_buffer_a;
3563 
3564 	cpu_buffer_b->buffer = buffer_a;
3565 	cpu_buffer_a->buffer = buffer_b;
3566 
3567 	ret = 0;
3568 
3569 out_dec:
3570 	atomic_dec(&cpu_buffer_a->record_disabled);
3571 	atomic_dec(&cpu_buffer_b->record_disabled);
3572 out:
3573 	return ret;
3574 }
3575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3577 
3578 /**
3579  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3580  * @buffer: the buffer to allocate for.
3581  *
3582  * This function is used in conjunction with ring_buffer_read_page.
3583  * When reading a full page from the ring buffer, these functions
3584  * can be used to speed up the process. The calling function should
3585  * allocate a few pages first with this function. Then when it
3586  * needs to get pages from the ring buffer, it passes the result
3587  * of this function into ring_buffer_read_page, which will swap
3588  * the page that was allocated, with the read page of the buffer.
3589  *
3590  * Returns:
3591  *  The page allocated, or NULL on error.
3592  */
3593 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3594 {
3595 	struct buffer_data_page *bpage;
3596 	unsigned long addr;
3597 
3598 	addr = __get_free_page(GFP_KERNEL);
3599 	if (!addr)
3600 		return NULL;
3601 
3602 	bpage = (void *)addr;
3603 
3604 	rb_init_page(bpage);
3605 
3606 	return bpage;
3607 }
3608 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3609 
3610 /**
3611  * ring_buffer_free_read_page - free an allocated read page
3612  * @buffer: the buffer the page was allocate for
3613  * @data: the page to free
3614  *
3615  * Free a page allocated from ring_buffer_alloc_read_page.
3616  */
3617 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3618 {
3619 	free_page((unsigned long)data);
3620 }
3621 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3622 
3623 /**
3624  * ring_buffer_read_page - extract a page from the ring buffer
3625  * @buffer: buffer to extract from
3626  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3627  * @len: amount to extract
3628  * @cpu: the cpu of the buffer to extract
3629  * @full: should the extraction only happen when the page is full.
3630  *
3631  * This function will pull out a page from the ring buffer and consume it.
3632  * @data_page must be the address of the variable that was returned
3633  * from ring_buffer_alloc_read_page. This is because the page might be used
3634  * to swap with a page in the ring buffer.
3635  *
3636  * for example:
3637  *	rpage = ring_buffer_alloc_read_page(buffer);
3638  *	if (!rpage)
3639  *		return error;
3640  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3641  *	if (ret >= 0)
3642  *		process_page(rpage, ret);
3643  *
3644  * When @full is set, the function will not return true unless
3645  * the writer is off the reader page.
3646  *
3647  * Note: it is up to the calling functions to handle sleeps and wakeups.
3648  *  The ring buffer can be used anywhere in the kernel and can not
3649  *  blindly call wake_up. The layer that uses the ring buffer must be
3650  *  responsible for that.
3651  *
3652  * Returns:
3653  *  >=0 if data has been transferred, returns the offset of consumed data.
3654  *  <0 if no data has been transferred.
3655  */
3656 int ring_buffer_read_page(struct ring_buffer *buffer,
3657 			  void **data_page, size_t len, int cpu, int full)
3658 {
3659 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3660 	struct ring_buffer_event *event;
3661 	struct buffer_data_page *bpage;
3662 	struct buffer_page *reader;
3663 	unsigned long flags;
3664 	unsigned int commit;
3665 	unsigned int read;
3666 	u64 save_timestamp;
3667 	int ret = -1;
3668 
3669 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3670 		goto out;
3671 
3672 	/*
3673 	 * If len is not big enough to hold the page header, then
3674 	 * we can not copy anything.
3675 	 */
3676 	if (len <= BUF_PAGE_HDR_SIZE)
3677 		goto out;
3678 
3679 	len -= BUF_PAGE_HDR_SIZE;
3680 
3681 	if (!data_page)
3682 		goto out;
3683 
3684 	bpage = *data_page;
3685 	if (!bpage)
3686 		goto out;
3687 
3688 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3689 
3690 	reader = rb_get_reader_page(cpu_buffer);
3691 	if (!reader)
3692 		goto out_unlock;
3693 
3694 	event = rb_reader_event(cpu_buffer);
3695 
3696 	read = reader->read;
3697 	commit = rb_page_commit(reader);
3698 
3699 	/*
3700 	 * If this page has been partially read or
3701 	 * if len is not big enough to read the rest of the page or
3702 	 * a writer is still on the page, then
3703 	 * we must copy the data from the page to the buffer.
3704 	 * Otherwise, we can simply swap the page with the one passed in.
3705 	 */
3706 	if (read || (len < (commit - read)) ||
3707 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3708 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3709 		unsigned int rpos = read;
3710 		unsigned int pos = 0;
3711 		unsigned int size;
3712 
3713 		if (full)
3714 			goto out_unlock;
3715 
3716 		if (len > (commit - read))
3717 			len = (commit - read);
3718 
3719 		size = rb_event_length(event);
3720 
3721 		if (len < size)
3722 			goto out_unlock;
3723 
3724 		/* save the current timestamp, since the user will need it */
3725 		save_timestamp = cpu_buffer->read_stamp;
3726 
3727 		/* Need to copy one event at a time */
3728 		do {
3729 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3730 
3731 			len -= size;
3732 
3733 			rb_advance_reader(cpu_buffer);
3734 			rpos = reader->read;
3735 			pos += size;
3736 
3737 			event = rb_reader_event(cpu_buffer);
3738 			size = rb_event_length(event);
3739 		} while (len > size);
3740 
3741 		/* update bpage */
3742 		local_set(&bpage->commit, pos);
3743 		bpage->time_stamp = save_timestamp;
3744 
3745 		/* we copied everything to the beginning */
3746 		read = 0;
3747 	} else {
3748 		/* update the entry counter */
3749 		cpu_buffer->read += rb_page_entries(reader);
3750 
3751 		/* swap the pages */
3752 		rb_init_page(bpage);
3753 		bpage = reader->page;
3754 		reader->page = *data_page;
3755 		local_set(&reader->write, 0);
3756 		local_set(&reader->entries, 0);
3757 		reader->read = 0;
3758 		*data_page = bpage;
3759 	}
3760 	ret = read;
3761 
3762  out_unlock:
3763 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3764 
3765  out:
3766 	return ret;
3767 }
3768 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3769 
3770 #ifdef CONFIG_TRACING
3771 static ssize_t
3772 rb_simple_read(struct file *filp, char __user *ubuf,
3773 	       size_t cnt, loff_t *ppos)
3774 {
3775 	unsigned long *p = filp->private_data;
3776 	char buf[64];
3777 	int r;
3778 
3779 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3780 		r = sprintf(buf, "permanently disabled\n");
3781 	else
3782 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3783 
3784 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3785 }
3786 
3787 static ssize_t
3788 rb_simple_write(struct file *filp, const char __user *ubuf,
3789 		size_t cnt, loff_t *ppos)
3790 {
3791 	unsigned long *p = filp->private_data;
3792 	char buf[64];
3793 	unsigned long val;
3794 	int ret;
3795 
3796 	if (cnt >= sizeof(buf))
3797 		return -EINVAL;
3798 
3799 	if (copy_from_user(&buf, ubuf, cnt))
3800 		return -EFAULT;
3801 
3802 	buf[cnt] = 0;
3803 
3804 	ret = strict_strtoul(buf, 10, &val);
3805 	if (ret < 0)
3806 		return ret;
3807 
3808 	if (val)
3809 		set_bit(RB_BUFFERS_ON_BIT, p);
3810 	else
3811 		clear_bit(RB_BUFFERS_ON_BIT, p);
3812 
3813 	(*ppos)++;
3814 
3815 	return cnt;
3816 }
3817 
3818 static const struct file_operations rb_simple_fops = {
3819 	.open		= tracing_open_generic,
3820 	.read		= rb_simple_read,
3821 	.write		= rb_simple_write,
3822 };
3823 
3824 
3825 static __init int rb_init_debugfs(void)
3826 {
3827 	struct dentry *d_tracer;
3828 
3829 	d_tracer = tracing_init_dentry();
3830 
3831 	trace_create_file("tracing_on", 0644, d_tracer,
3832 			    &ring_buffer_flags, &rb_simple_fops);
3833 
3834 	return 0;
3835 }
3836 
3837 fs_initcall(rb_init_debugfs);
3838 #endif
3839 
3840 #ifdef CONFIG_HOTPLUG_CPU
3841 static int rb_cpu_notify(struct notifier_block *self,
3842 			 unsigned long action, void *hcpu)
3843 {
3844 	struct ring_buffer *buffer =
3845 		container_of(self, struct ring_buffer, cpu_notify);
3846 	long cpu = (long)hcpu;
3847 
3848 	switch (action) {
3849 	case CPU_UP_PREPARE:
3850 	case CPU_UP_PREPARE_FROZEN:
3851 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3852 			return NOTIFY_OK;
3853 
3854 		buffer->buffers[cpu] =
3855 			rb_allocate_cpu_buffer(buffer, cpu);
3856 		if (!buffer->buffers[cpu]) {
3857 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3858 			     cpu);
3859 			return NOTIFY_OK;
3860 		}
3861 		smp_wmb();
3862 		cpumask_set_cpu(cpu, buffer->cpumask);
3863 		break;
3864 	case CPU_DOWN_PREPARE:
3865 	case CPU_DOWN_PREPARE_FROZEN:
3866 		/*
3867 		 * Do nothing.
3868 		 *  If we were to free the buffer, then the user would
3869 		 *  lose any trace that was in the buffer.
3870 		 */
3871 		break;
3872 	default:
3873 		break;
3874 	}
3875 	return NOTIFY_OK;
3876 }
3877 #endif
3878