1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/spinlock.h> 9 #include <linux/debugfs.h> 10 #include <linux/uaccess.h> 11 #include <linux/hardirq.h> 12 #include <linux/kmemcheck.h> 13 #include <linux/module.h> 14 #include <linux/percpu.h> 15 #include <linux/mutex.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include <asm/local.h> 24 #include "trace.h" 25 26 /* 27 * The ring buffer header is special. We must manually up keep it. 28 */ 29 int ring_buffer_print_entry_header(struct trace_seq *s) 30 { 31 int ret; 32 33 ret = trace_seq_printf(s, "# compressed entry header\n"); 34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 36 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 37 ret = trace_seq_printf(s, "\n"); 38 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 39 RINGBUF_TYPE_PADDING); 40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 41 RINGBUF_TYPE_TIME_EXTEND); 42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 44 45 return ret; 46 } 47 48 /* 49 * The ring buffer is made up of a list of pages. A separate list of pages is 50 * allocated for each CPU. A writer may only write to a buffer that is 51 * associated with the CPU it is currently executing on. A reader may read 52 * from any per cpu buffer. 53 * 54 * The reader is special. For each per cpu buffer, the reader has its own 55 * reader page. When a reader has read the entire reader page, this reader 56 * page is swapped with another page in the ring buffer. 57 * 58 * Now, as long as the writer is off the reader page, the reader can do what 59 * ever it wants with that page. The writer will never write to that page 60 * again (as long as it is out of the ring buffer). 61 * 62 * Here's some silly ASCII art. 63 * 64 * +------+ 65 * |reader| RING BUFFER 66 * |page | 67 * +------+ +---+ +---+ +---+ 68 * | |-->| |-->| | 69 * +---+ +---+ +---+ 70 * ^ | 71 * | | 72 * +---------------+ 73 * 74 * 75 * +------+ 76 * |reader| RING BUFFER 77 * |page |------------------v 78 * +------+ +---+ +---+ +---+ 79 * | |-->| |-->| | 80 * +---+ +---+ +---+ 81 * ^ | 82 * | | 83 * +---------------+ 84 * 85 * 86 * +------+ 87 * |reader| RING BUFFER 88 * |page |------------------v 89 * +------+ +---+ +---+ +---+ 90 * ^ | |-->| |-->| | 91 * | +---+ +---+ +---+ 92 * | | 93 * | | 94 * +------------------------------+ 95 * 96 * 97 * +------+ 98 * |buffer| RING BUFFER 99 * |page |------------------v 100 * +------+ +---+ +---+ +---+ 101 * ^ | | | |-->| | 102 * | New +---+ +---+ +---+ 103 * | Reader------^ | 104 * | page | 105 * +------------------------------+ 106 * 107 * 108 * After we make this swap, the reader can hand this page off to the splice 109 * code and be done with it. It can even allocate a new page if it needs to 110 * and swap that into the ring buffer. 111 * 112 * We will be using cmpxchg soon to make all this lockless. 113 * 114 */ 115 116 /* 117 * A fast way to enable or disable all ring buffers is to 118 * call tracing_on or tracing_off. Turning off the ring buffers 119 * prevents all ring buffers from being recorded to. 120 * Turning this switch on, makes it OK to write to the 121 * ring buffer, if the ring buffer is enabled itself. 122 * 123 * There's three layers that must be on in order to write 124 * to the ring buffer. 125 * 126 * 1) This global flag must be set. 127 * 2) The ring buffer must be enabled for recording. 128 * 3) The per cpu buffer must be enabled for recording. 129 * 130 * In case of an anomaly, this global flag has a bit set that 131 * will permantly disable all ring buffers. 132 */ 133 134 /* 135 * Global flag to disable all recording to ring buffers 136 * This has two bits: ON, DISABLED 137 * 138 * ON DISABLED 139 * ---- ---------- 140 * 0 0 : ring buffers are off 141 * 1 0 : ring buffers are on 142 * X 1 : ring buffers are permanently disabled 143 */ 144 145 enum { 146 RB_BUFFERS_ON_BIT = 0, 147 RB_BUFFERS_DISABLED_BIT = 1, 148 }; 149 150 enum { 151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 153 }; 154 155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 156 157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 158 159 /** 160 * tracing_on - enable all tracing buffers 161 * 162 * This function enables all tracing buffers that may have been 163 * disabled with tracing_off. 164 */ 165 void tracing_on(void) 166 { 167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 168 } 169 EXPORT_SYMBOL_GPL(tracing_on); 170 171 /** 172 * tracing_off - turn off all tracing buffers 173 * 174 * This function stops all tracing buffers from recording data. 175 * It does not disable any overhead the tracers themselves may 176 * be causing. This function simply causes all recording to 177 * the ring buffers to fail. 178 */ 179 void tracing_off(void) 180 { 181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 182 } 183 EXPORT_SYMBOL_GPL(tracing_off); 184 185 /** 186 * tracing_off_permanent - permanently disable ring buffers 187 * 188 * This function, once called, will disable all ring buffers 189 * permanently. 190 */ 191 void tracing_off_permanent(void) 192 { 193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 194 } 195 196 /** 197 * tracing_is_on - show state of ring buffers enabled 198 */ 199 int tracing_is_on(void) 200 { 201 return ring_buffer_flags == RB_BUFFERS_ON; 202 } 203 EXPORT_SYMBOL_GPL(tracing_is_on); 204 205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 206 #define RB_ALIGNMENT 4U 207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 209 210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 211 # define RB_FORCE_8BYTE_ALIGNMENT 0 212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 213 #else 214 # define RB_FORCE_8BYTE_ALIGNMENT 1 215 # define RB_ARCH_ALIGNMENT 8U 216 #endif 217 218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 220 221 enum { 222 RB_LEN_TIME_EXTEND = 8, 223 RB_LEN_TIME_STAMP = 16, 224 }; 225 226 #define skip_time_extend(event) \ 227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 228 229 static inline int rb_null_event(struct ring_buffer_event *event) 230 { 231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 232 } 233 234 static void rb_event_set_padding(struct ring_buffer_event *event) 235 { 236 /* padding has a NULL time_delta */ 237 event->type_len = RINGBUF_TYPE_PADDING; 238 event->time_delta = 0; 239 } 240 241 static unsigned 242 rb_event_data_length(struct ring_buffer_event *event) 243 { 244 unsigned length; 245 246 if (event->type_len) 247 length = event->type_len * RB_ALIGNMENT; 248 else 249 length = event->array[0]; 250 return length + RB_EVNT_HDR_SIZE; 251 } 252 253 /* 254 * Return the length of the given event. Will return 255 * the length of the time extend if the event is a 256 * time extend. 257 */ 258 static inline unsigned 259 rb_event_length(struct ring_buffer_event *event) 260 { 261 switch (event->type_len) { 262 case RINGBUF_TYPE_PADDING: 263 if (rb_null_event(event)) 264 /* undefined */ 265 return -1; 266 return event->array[0] + RB_EVNT_HDR_SIZE; 267 268 case RINGBUF_TYPE_TIME_EXTEND: 269 return RB_LEN_TIME_EXTEND; 270 271 case RINGBUF_TYPE_TIME_STAMP: 272 return RB_LEN_TIME_STAMP; 273 274 case RINGBUF_TYPE_DATA: 275 return rb_event_data_length(event); 276 default: 277 BUG(); 278 } 279 /* not hit */ 280 return 0; 281 } 282 283 /* 284 * Return total length of time extend and data, 285 * or just the event length for all other events. 286 */ 287 static inline unsigned 288 rb_event_ts_length(struct ring_buffer_event *event) 289 { 290 unsigned len = 0; 291 292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 293 /* time extends include the data event after it */ 294 len = RB_LEN_TIME_EXTEND; 295 event = skip_time_extend(event); 296 } 297 return len + rb_event_length(event); 298 } 299 300 /** 301 * ring_buffer_event_length - return the length of the event 302 * @event: the event to get the length of 303 * 304 * Returns the size of the data load of a data event. 305 * If the event is something other than a data event, it 306 * returns the size of the event itself. With the exception 307 * of a TIME EXTEND, where it still returns the size of the 308 * data load of the data event after it. 309 */ 310 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 311 { 312 unsigned length; 313 314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 315 event = skip_time_extend(event); 316 317 length = rb_event_length(event); 318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 319 return length; 320 length -= RB_EVNT_HDR_SIZE; 321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 322 length -= sizeof(event->array[0]); 323 return length; 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 326 327 /* inline for ring buffer fast paths */ 328 static void * 329 rb_event_data(struct ring_buffer_event *event) 330 { 331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 332 event = skip_time_extend(event); 333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 334 /* If length is in len field, then array[0] has the data */ 335 if (event->type_len) 336 return (void *)&event->array[0]; 337 /* Otherwise length is in array[0] and array[1] has the data */ 338 return (void *)&event->array[1]; 339 } 340 341 /** 342 * ring_buffer_event_data - return the data of the event 343 * @event: the event to get the data from 344 */ 345 void *ring_buffer_event_data(struct ring_buffer_event *event) 346 { 347 return rb_event_data(event); 348 } 349 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 350 351 #define for_each_buffer_cpu(buffer, cpu) \ 352 for_each_cpu(cpu, buffer->cpumask) 353 354 #define TS_SHIFT 27 355 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 356 #define TS_DELTA_TEST (~TS_MASK) 357 358 /* Flag when events were overwritten */ 359 #define RB_MISSED_EVENTS (1 << 31) 360 /* Missed count stored at end */ 361 #define RB_MISSED_STORED (1 << 30) 362 363 struct buffer_data_page { 364 u64 time_stamp; /* page time stamp */ 365 local_t commit; /* write committed index */ 366 unsigned char data[]; /* data of buffer page */ 367 }; 368 369 /* 370 * Note, the buffer_page list must be first. The buffer pages 371 * are allocated in cache lines, which means that each buffer 372 * page will be at the beginning of a cache line, and thus 373 * the least significant bits will be zero. We use this to 374 * add flags in the list struct pointers, to make the ring buffer 375 * lockless. 376 */ 377 struct buffer_page { 378 struct list_head list; /* list of buffer pages */ 379 local_t write; /* index for next write */ 380 unsigned read; /* index for next read */ 381 local_t entries; /* entries on this page */ 382 unsigned long real_end; /* real end of data */ 383 struct buffer_data_page *page; /* Actual data page */ 384 }; 385 386 /* 387 * The buffer page counters, write and entries, must be reset 388 * atomically when crossing page boundaries. To synchronize this 389 * update, two counters are inserted into the number. One is 390 * the actual counter for the write position or count on the page. 391 * 392 * The other is a counter of updaters. Before an update happens 393 * the update partition of the counter is incremented. This will 394 * allow the updater to update the counter atomically. 395 * 396 * The counter is 20 bits, and the state data is 12. 397 */ 398 #define RB_WRITE_MASK 0xfffff 399 #define RB_WRITE_INTCNT (1 << 20) 400 401 static void rb_init_page(struct buffer_data_page *bpage) 402 { 403 local_set(&bpage->commit, 0); 404 } 405 406 /** 407 * ring_buffer_page_len - the size of data on the page. 408 * @page: The page to read 409 * 410 * Returns the amount of data on the page, including buffer page header. 411 */ 412 size_t ring_buffer_page_len(void *page) 413 { 414 return local_read(&((struct buffer_data_page *)page)->commit) 415 + BUF_PAGE_HDR_SIZE; 416 } 417 418 /* 419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 420 * this issue out. 421 */ 422 static void free_buffer_page(struct buffer_page *bpage) 423 { 424 free_page((unsigned long)bpage->page); 425 kfree(bpage); 426 } 427 428 /* 429 * We need to fit the time_stamp delta into 27 bits. 430 */ 431 static inline int test_time_stamp(u64 delta) 432 { 433 if (delta & TS_DELTA_TEST) 434 return 1; 435 return 0; 436 } 437 438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 439 440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 442 443 int ring_buffer_print_page_header(struct trace_seq *s) 444 { 445 struct buffer_data_page field; 446 int ret; 447 448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 449 "offset:0;\tsize:%u;\tsigned:%u;\n", 450 (unsigned int)sizeof(field.time_stamp), 451 (unsigned int)is_signed_type(u64)); 452 453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 454 "offset:%u;\tsize:%u;\tsigned:%u;\n", 455 (unsigned int)offsetof(typeof(field), commit), 456 (unsigned int)sizeof(field.commit), 457 (unsigned int)is_signed_type(long)); 458 459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 460 "offset:%u;\tsize:%u;\tsigned:%u;\n", 461 (unsigned int)offsetof(typeof(field), commit), 462 1, 463 (unsigned int)is_signed_type(long)); 464 465 ret = trace_seq_printf(s, "\tfield: char data;\t" 466 "offset:%u;\tsize:%u;\tsigned:%u;\n", 467 (unsigned int)offsetof(typeof(field), data), 468 (unsigned int)BUF_PAGE_SIZE, 469 (unsigned int)is_signed_type(char)); 470 471 return ret; 472 } 473 474 /* 475 * head_page == tail_page && head == tail then buffer is empty. 476 */ 477 struct ring_buffer_per_cpu { 478 int cpu; 479 atomic_t record_disabled; 480 struct ring_buffer *buffer; 481 spinlock_t reader_lock; /* serialize readers */ 482 arch_spinlock_t lock; 483 struct lock_class_key lock_key; 484 struct list_head *pages; 485 struct buffer_page *head_page; /* read from head */ 486 struct buffer_page *tail_page; /* write to tail */ 487 struct buffer_page *commit_page; /* committed pages */ 488 struct buffer_page *reader_page; 489 unsigned long lost_events; 490 unsigned long last_overrun; 491 local_t commit_overrun; 492 local_t overrun; 493 local_t entries; 494 local_t committing; 495 local_t commits; 496 unsigned long read; 497 u64 write_stamp; 498 u64 read_stamp; 499 }; 500 501 struct ring_buffer { 502 unsigned pages; 503 unsigned flags; 504 int cpus; 505 atomic_t record_disabled; 506 cpumask_var_t cpumask; 507 508 struct lock_class_key *reader_lock_key; 509 510 struct mutex mutex; 511 512 struct ring_buffer_per_cpu **buffers; 513 514 #ifdef CONFIG_HOTPLUG_CPU 515 struct notifier_block cpu_notify; 516 #endif 517 u64 (*clock)(void); 518 }; 519 520 struct ring_buffer_iter { 521 struct ring_buffer_per_cpu *cpu_buffer; 522 unsigned long head; 523 struct buffer_page *head_page; 524 struct buffer_page *cache_reader_page; 525 unsigned long cache_read; 526 u64 read_stamp; 527 }; 528 529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 530 #define RB_WARN_ON(b, cond) \ 531 ({ \ 532 int _____ret = unlikely(cond); \ 533 if (_____ret) { \ 534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 535 struct ring_buffer_per_cpu *__b = \ 536 (void *)b; \ 537 atomic_inc(&__b->buffer->record_disabled); \ 538 } else \ 539 atomic_inc(&b->record_disabled); \ 540 WARN_ON(1); \ 541 } \ 542 _____ret; \ 543 }) 544 545 /* Up this if you want to test the TIME_EXTENTS and normalization */ 546 #define DEBUG_SHIFT 0 547 548 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 549 { 550 /* shift to debug/test normalization and TIME_EXTENTS */ 551 return buffer->clock() << DEBUG_SHIFT; 552 } 553 554 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 555 { 556 u64 time; 557 558 preempt_disable_notrace(); 559 time = rb_time_stamp(buffer); 560 preempt_enable_no_resched_notrace(); 561 562 return time; 563 } 564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 565 566 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 567 int cpu, u64 *ts) 568 { 569 /* Just stupid testing the normalize function and deltas */ 570 *ts >>= DEBUG_SHIFT; 571 } 572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 573 574 /* 575 * Making the ring buffer lockless makes things tricky. 576 * Although writes only happen on the CPU that they are on, 577 * and they only need to worry about interrupts. Reads can 578 * happen on any CPU. 579 * 580 * The reader page is always off the ring buffer, but when the 581 * reader finishes with a page, it needs to swap its page with 582 * a new one from the buffer. The reader needs to take from 583 * the head (writes go to the tail). But if a writer is in overwrite 584 * mode and wraps, it must push the head page forward. 585 * 586 * Here lies the problem. 587 * 588 * The reader must be careful to replace only the head page, and 589 * not another one. As described at the top of the file in the 590 * ASCII art, the reader sets its old page to point to the next 591 * page after head. It then sets the page after head to point to 592 * the old reader page. But if the writer moves the head page 593 * during this operation, the reader could end up with the tail. 594 * 595 * We use cmpxchg to help prevent this race. We also do something 596 * special with the page before head. We set the LSB to 1. 597 * 598 * When the writer must push the page forward, it will clear the 599 * bit that points to the head page, move the head, and then set 600 * the bit that points to the new head page. 601 * 602 * We also don't want an interrupt coming in and moving the head 603 * page on another writer. Thus we use the second LSB to catch 604 * that too. Thus: 605 * 606 * head->list->prev->next bit 1 bit 0 607 * ------- ------- 608 * Normal page 0 0 609 * Points to head page 0 1 610 * New head page 1 0 611 * 612 * Note we can not trust the prev pointer of the head page, because: 613 * 614 * +----+ +-----+ +-----+ 615 * | |------>| T |---X--->| N | 616 * | |<------| | | | 617 * +----+ +-----+ +-----+ 618 * ^ ^ | 619 * | +-----+ | | 620 * +----------| R |----------+ | 621 * | |<-----------+ 622 * +-----+ 623 * 624 * Key: ---X--> HEAD flag set in pointer 625 * T Tail page 626 * R Reader page 627 * N Next page 628 * 629 * (see __rb_reserve_next() to see where this happens) 630 * 631 * What the above shows is that the reader just swapped out 632 * the reader page with a page in the buffer, but before it 633 * could make the new header point back to the new page added 634 * it was preempted by a writer. The writer moved forward onto 635 * the new page added by the reader and is about to move forward 636 * again. 637 * 638 * You can see, it is legitimate for the previous pointer of 639 * the head (or any page) not to point back to itself. But only 640 * temporarially. 641 */ 642 643 #define RB_PAGE_NORMAL 0UL 644 #define RB_PAGE_HEAD 1UL 645 #define RB_PAGE_UPDATE 2UL 646 647 648 #define RB_FLAG_MASK 3UL 649 650 /* PAGE_MOVED is not part of the mask */ 651 #define RB_PAGE_MOVED 4UL 652 653 /* 654 * rb_list_head - remove any bit 655 */ 656 static struct list_head *rb_list_head(struct list_head *list) 657 { 658 unsigned long val = (unsigned long)list; 659 660 return (struct list_head *)(val & ~RB_FLAG_MASK); 661 } 662 663 /* 664 * rb_is_head_page - test if the given page is the head page 665 * 666 * Because the reader may move the head_page pointer, we can 667 * not trust what the head page is (it may be pointing to 668 * the reader page). But if the next page is a header page, 669 * its flags will be non zero. 670 */ 671 static inline int 672 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 673 struct buffer_page *page, struct list_head *list) 674 { 675 unsigned long val; 676 677 val = (unsigned long)list->next; 678 679 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 680 return RB_PAGE_MOVED; 681 682 return val & RB_FLAG_MASK; 683 } 684 685 /* 686 * rb_is_reader_page 687 * 688 * The unique thing about the reader page, is that, if the 689 * writer is ever on it, the previous pointer never points 690 * back to the reader page. 691 */ 692 static int rb_is_reader_page(struct buffer_page *page) 693 { 694 struct list_head *list = page->list.prev; 695 696 return rb_list_head(list->next) != &page->list; 697 } 698 699 /* 700 * rb_set_list_to_head - set a list_head to be pointing to head. 701 */ 702 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 703 struct list_head *list) 704 { 705 unsigned long *ptr; 706 707 ptr = (unsigned long *)&list->next; 708 *ptr |= RB_PAGE_HEAD; 709 *ptr &= ~RB_PAGE_UPDATE; 710 } 711 712 /* 713 * rb_head_page_activate - sets up head page 714 */ 715 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 716 { 717 struct buffer_page *head; 718 719 head = cpu_buffer->head_page; 720 if (!head) 721 return; 722 723 /* 724 * Set the previous list pointer to have the HEAD flag. 725 */ 726 rb_set_list_to_head(cpu_buffer, head->list.prev); 727 } 728 729 static void rb_list_head_clear(struct list_head *list) 730 { 731 unsigned long *ptr = (unsigned long *)&list->next; 732 733 *ptr &= ~RB_FLAG_MASK; 734 } 735 736 /* 737 * rb_head_page_dactivate - clears head page ptr (for free list) 738 */ 739 static void 740 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 741 { 742 struct list_head *hd; 743 744 /* Go through the whole list and clear any pointers found. */ 745 rb_list_head_clear(cpu_buffer->pages); 746 747 list_for_each(hd, cpu_buffer->pages) 748 rb_list_head_clear(hd); 749 } 750 751 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 752 struct buffer_page *head, 753 struct buffer_page *prev, 754 int old_flag, int new_flag) 755 { 756 struct list_head *list; 757 unsigned long val = (unsigned long)&head->list; 758 unsigned long ret; 759 760 list = &prev->list; 761 762 val &= ~RB_FLAG_MASK; 763 764 ret = cmpxchg((unsigned long *)&list->next, 765 val | old_flag, val | new_flag); 766 767 /* check if the reader took the page */ 768 if ((ret & ~RB_FLAG_MASK) != val) 769 return RB_PAGE_MOVED; 770 771 return ret & RB_FLAG_MASK; 772 } 773 774 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 775 struct buffer_page *head, 776 struct buffer_page *prev, 777 int old_flag) 778 { 779 return rb_head_page_set(cpu_buffer, head, prev, 780 old_flag, RB_PAGE_UPDATE); 781 } 782 783 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 784 struct buffer_page *head, 785 struct buffer_page *prev, 786 int old_flag) 787 { 788 return rb_head_page_set(cpu_buffer, head, prev, 789 old_flag, RB_PAGE_HEAD); 790 } 791 792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 793 struct buffer_page *head, 794 struct buffer_page *prev, 795 int old_flag) 796 { 797 return rb_head_page_set(cpu_buffer, head, prev, 798 old_flag, RB_PAGE_NORMAL); 799 } 800 801 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 802 struct buffer_page **bpage) 803 { 804 struct list_head *p = rb_list_head((*bpage)->list.next); 805 806 *bpage = list_entry(p, struct buffer_page, list); 807 } 808 809 static struct buffer_page * 810 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 811 { 812 struct buffer_page *head; 813 struct buffer_page *page; 814 struct list_head *list; 815 int i; 816 817 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 818 return NULL; 819 820 /* sanity check */ 821 list = cpu_buffer->pages; 822 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 823 return NULL; 824 825 page = head = cpu_buffer->head_page; 826 /* 827 * It is possible that the writer moves the header behind 828 * where we started, and we miss in one loop. 829 * A second loop should grab the header, but we'll do 830 * three loops just because I'm paranoid. 831 */ 832 for (i = 0; i < 3; i++) { 833 do { 834 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 835 cpu_buffer->head_page = page; 836 return page; 837 } 838 rb_inc_page(cpu_buffer, &page); 839 } while (page != head); 840 } 841 842 RB_WARN_ON(cpu_buffer, 1); 843 844 return NULL; 845 } 846 847 static int rb_head_page_replace(struct buffer_page *old, 848 struct buffer_page *new) 849 { 850 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 851 unsigned long val; 852 unsigned long ret; 853 854 val = *ptr & ~RB_FLAG_MASK; 855 val |= RB_PAGE_HEAD; 856 857 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 858 859 return ret == val; 860 } 861 862 /* 863 * rb_tail_page_update - move the tail page forward 864 * 865 * Returns 1 if moved tail page, 0 if someone else did. 866 */ 867 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 868 struct buffer_page *tail_page, 869 struct buffer_page *next_page) 870 { 871 struct buffer_page *old_tail; 872 unsigned long old_entries; 873 unsigned long old_write; 874 int ret = 0; 875 876 /* 877 * The tail page now needs to be moved forward. 878 * 879 * We need to reset the tail page, but without messing 880 * with possible erasing of data brought in by interrupts 881 * that have moved the tail page and are currently on it. 882 * 883 * We add a counter to the write field to denote this. 884 */ 885 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 886 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 887 888 /* 889 * Just make sure we have seen our old_write and synchronize 890 * with any interrupts that come in. 891 */ 892 barrier(); 893 894 /* 895 * If the tail page is still the same as what we think 896 * it is, then it is up to us to update the tail 897 * pointer. 898 */ 899 if (tail_page == cpu_buffer->tail_page) { 900 /* Zero the write counter */ 901 unsigned long val = old_write & ~RB_WRITE_MASK; 902 unsigned long eval = old_entries & ~RB_WRITE_MASK; 903 904 /* 905 * This will only succeed if an interrupt did 906 * not come in and change it. In which case, we 907 * do not want to modify it. 908 * 909 * We add (void) to let the compiler know that we do not care 910 * about the return value of these functions. We use the 911 * cmpxchg to only update if an interrupt did not already 912 * do it for us. If the cmpxchg fails, we don't care. 913 */ 914 (void)local_cmpxchg(&next_page->write, old_write, val); 915 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 916 917 /* 918 * No need to worry about races with clearing out the commit. 919 * it only can increment when a commit takes place. But that 920 * only happens in the outer most nested commit. 921 */ 922 local_set(&next_page->page->commit, 0); 923 924 old_tail = cmpxchg(&cpu_buffer->tail_page, 925 tail_page, next_page); 926 927 if (old_tail == tail_page) 928 ret = 1; 929 } 930 931 return ret; 932 } 933 934 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 935 struct buffer_page *bpage) 936 { 937 unsigned long val = (unsigned long)bpage; 938 939 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 940 return 1; 941 942 return 0; 943 } 944 945 /** 946 * rb_check_list - make sure a pointer to a list has the last bits zero 947 */ 948 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 949 struct list_head *list) 950 { 951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 952 return 1; 953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 954 return 1; 955 return 0; 956 } 957 958 /** 959 * check_pages - integrity check of buffer pages 960 * @cpu_buffer: CPU buffer with pages to test 961 * 962 * As a safety measure we check to make sure the data pages have not 963 * been corrupted. 964 */ 965 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 966 { 967 struct list_head *head = cpu_buffer->pages; 968 struct buffer_page *bpage, *tmp; 969 970 rb_head_page_deactivate(cpu_buffer); 971 972 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 973 return -1; 974 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 975 return -1; 976 977 if (rb_check_list(cpu_buffer, head)) 978 return -1; 979 980 list_for_each_entry_safe(bpage, tmp, head, list) { 981 if (RB_WARN_ON(cpu_buffer, 982 bpage->list.next->prev != &bpage->list)) 983 return -1; 984 if (RB_WARN_ON(cpu_buffer, 985 bpage->list.prev->next != &bpage->list)) 986 return -1; 987 if (rb_check_list(cpu_buffer, &bpage->list)) 988 return -1; 989 } 990 991 rb_head_page_activate(cpu_buffer); 992 993 return 0; 994 } 995 996 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 997 unsigned nr_pages) 998 { 999 struct buffer_page *bpage, *tmp; 1000 unsigned long addr; 1001 LIST_HEAD(pages); 1002 unsigned i; 1003 1004 WARN_ON(!nr_pages); 1005 1006 for (i = 0; i < nr_pages; i++) { 1007 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1008 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 1009 if (!bpage) 1010 goto free_pages; 1011 1012 rb_check_bpage(cpu_buffer, bpage); 1013 1014 list_add(&bpage->list, &pages); 1015 1016 addr = __get_free_page(GFP_KERNEL); 1017 if (!addr) 1018 goto free_pages; 1019 bpage->page = (void *)addr; 1020 rb_init_page(bpage->page); 1021 } 1022 1023 /* 1024 * The ring buffer page list is a circular list that does not 1025 * start and end with a list head. All page list items point to 1026 * other pages. 1027 */ 1028 cpu_buffer->pages = pages.next; 1029 list_del(&pages); 1030 1031 rb_check_pages(cpu_buffer); 1032 1033 return 0; 1034 1035 free_pages: 1036 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1037 list_del_init(&bpage->list); 1038 free_buffer_page(bpage); 1039 } 1040 return -ENOMEM; 1041 } 1042 1043 static struct ring_buffer_per_cpu * 1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 1045 { 1046 struct ring_buffer_per_cpu *cpu_buffer; 1047 struct buffer_page *bpage; 1048 unsigned long addr; 1049 int ret; 1050 1051 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1052 GFP_KERNEL, cpu_to_node(cpu)); 1053 if (!cpu_buffer) 1054 return NULL; 1055 1056 cpu_buffer->cpu = cpu; 1057 cpu_buffer->buffer = buffer; 1058 spin_lock_init(&cpu_buffer->reader_lock); 1059 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1060 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1061 1062 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1063 GFP_KERNEL, cpu_to_node(cpu)); 1064 if (!bpage) 1065 goto fail_free_buffer; 1066 1067 rb_check_bpage(cpu_buffer, bpage); 1068 1069 cpu_buffer->reader_page = bpage; 1070 addr = __get_free_page(GFP_KERNEL); 1071 if (!addr) 1072 goto fail_free_reader; 1073 bpage->page = (void *)addr; 1074 rb_init_page(bpage->page); 1075 1076 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1077 1078 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1079 if (ret < 0) 1080 goto fail_free_reader; 1081 1082 cpu_buffer->head_page 1083 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1084 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1085 1086 rb_head_page_activate(cpu_buffer); 1087 1088 return cpu_buffer; 1089 1090 fail_free_reader: 1091 free_buffer_page(cpu_buffer->reader_page); 1092 1093 fail_free_buffer: 1094 kfree(cpu_buffer); 1095 return NULL; 1096 } 1097 1098 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1099 { 1100 struct list_head *head = cpu_buffer->pages; 1101 struct buffer_page *bpage, *tmp; 1102 1103 free_buffer_page(cpu_buffer->reader_page); 1104 1105 rb_head_page_deactivate(cpu_buffer); 1106 1107 if (head) { 1108 list_for_each_entry_safe(bpage, tmp, head, list) { 1109 list_del_init(&bpage->list); 1110 free_buffer_page(bpage); 1111 } 1112 bpage = list_entry(head, struct buffer_page, list); 1113 free_buffer_page(bpage); 1114 } 1115 1116 kfree(cpu_buffer); 1117 } 1118 1119 #ifdef CONFIG_HOTPLUG_CPU 1120 static int rb_cpu_notify(struct notifier_block *self, 1121 unsigned long action, void *hcpu); 1122 #endif 1123 1124 /** 1125 * ring_buffer_alloc - allocate a new ring_buffer 1126 * @size: the size in bytes per cpu that is needed. 1127 * @flags: attributes to set for the ring buffer. 1128 * 1129 * Currently the only flag that is available is the RB_FL_OVERWRITE 1130 * flag. This flag means that the buffer will overwrite old data 1131 * when the buffer wraps. If this flag is not set, the buffer will 1132 * drop data when the tail hits the head. 1133 */ 1134 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1135 struct lock_class_key *key) 1136 { 1137 struct ring_buffer *buffer; 1138 int bsize; 1139 int cpu; 1140 1141 /* keep it in its own cache line */ 1142 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1143 GFP_KERNEL); 1144 if (!buffer) 1145 return NULL; 1146 1147 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1148 goto fail_free_buffer; 1149 1150 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1151 buffer->flags = flags; 1152 buffer->clock = trace_clock_local; 1153 buffer->reader_lock_key = key; 1154 1155 /* need at least two pages */ 1156 if (buffer->pages < 2) 1157 buffer->pages = 2; 1158 1159 /* 1160 * In case of non-hotplug cpu, if the ring-buffer is allocated 1161 * in early initcall, it will not be notified of secondary cpus. 1162 * In that off case, we need to allocate for all possible cpus. 1163 */ 1164 #ifdef CONFIG_HOTPLUG_CPU 1165 get_online_cpus(); 1166 cpumask_copy(buffer->cpumask, cpu_online_mask); 1167 #else 1168 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1169 #endif 1170 buffer->cpus = nr_cpu_ids; 1171 1172 bsize = sizeof(void *) * nr_cpu_ids; 1173 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1174 GFP_KERNEL); 1175 if (!buffer->buffers) 1176 goto fail_free_cpumask; 1177 1178 for_each_buffer_cpu(buffer, cpu) { 1179 buffer->buffers[cpu] = 1180 rb_allocate_cpu_buffer(buffer, cpu); 1181 if (!buffer->buffers[cpu]) 1182 goto fail_free_buffers; 1183 } 1184 1185 #ifdef CONFIG_HOTPLUG_CPU 1186 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1187 buffer->cpu_notify.priority = 0; 1188 register_cpu_notifier(&buffer->cpu_notify); 1189 #endif 1190 1191 put_online_cpus(); 1192 mutex_init(&buffer->mutex); 1193 1194 return buffer; 1195 1196 fail_free_buffers: 1197 for_each_buffer_cpu(buffer, cpu) { 1198 if (buffer->buffers[cpu]) 1199 rb_free_cpu_buffer(buffer->buffers[cpu]); 1200 } 1201 kfree(buffer->buffers); 1202 1203 fail_free_cpumask: 1204 free_cpumask_var(buffer->cpumask); 1205 put_online_cpus(); 1206 1207 fail_free_buffer: 1208 kfree(buffer); 1209 return NULL; 1210 } 1211 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1212 1213 /** 1214 * ring_buffer_free - free a ring buffer. 1215 * @buffer: the buffer to free. 1216 */ 1217 void 1218 ring_buffer_free(struct ring_buffer *buffer) 1219 { 1220 int cpu; 1221 1222 get_online_cpus(); 1223 1224 #ifdef CONFIG_HOTPLUG_CPU 1225 unregister_cpu_notifier(&buffer->cpu_notify); 1226 #endif 1227 1228 for_each_buffer_cpu(buffer, cpu) 1229 rb_free_cpu_buffer(buffer->buffers[cpu]); 1230 1231 put_online_cpus(); 1232 1233 kfree(buffer->buffers); 1234 free_cpumask_var(buffer->cpumask); 1235 1236 kfree(buffer); 1237 } 1238 EXPORT_SYMBOL_GPL(ring_buffer_free); 1239 1240 void ring_buffer_set_clock(struct ring_buffer *buffer, 1241 u64 (*clock)(void)) 1242 { 1243 buffer->clock = clock; 1244 } 1245 1246 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1247 1248 static void 1249 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1250 { 1251 struct buffer_page *bpage; 1252 struct list_head *p; 1253 unsigned i; 1254 1255 spin_lock_irq(&cpu_buffer->reader_lock); 1256 rb_head_page_deactivate(cpu_buffer); 1257 1258 for (i = 0; i < nr_pages; i++) { 1259 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1260 goto out; 1261 p = cpu_buffer->pages->next; 1262 bpage = list_entry(p, struct buffer_page, list); 1263 list_del_init(&bpage->list); 1264 free_buffer_page(bpage); 1265 } 1266 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1267 goto out; 1268 1269 rb_reset_cpu(cpu_buffer); 1270 rb_check_pages(cpu_buffer); 1271 1272 out: 1273 spin_unlock_irq(&cpu_buffer->reader_lock); 1274 } 1275 1276 static void 1277 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1278 struct list_head *pages, unsigned nr_pages) 1279 { 1280 struct buffer_page *bpage; 1281 struct list_head *p; 1282 unsigned i; 1283 1284 spin_lock_irq(&cpu_buffer->reader_lock); 1285 rb_head_page_deactivate(cpu_buffer); 1286 1287 for (i = 0; i < nr_pages; i++) { 1288 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1289 goto out; 1290 p = pages->next; 1291 bpage = list_entry(p, struct buffer_page, list); 1292 list_del_init(&bpage->list); 1293 list_add_tail(&bpage->list, cpu_buffer->pages); 1294 } 1295 rb_reset_cpu(cpu_buffer); 1296 rb_check_pages(cpu_buffer); 1297 1298 out: 1299 spin_unlock_irq(&cpu_buffer->reader_lock); 1300 } 1301 1302 /** 1303 * ring_buffer_resize - resize the ring buffer 1304 * @buffer: the buffer to resize. 1305 * @size: the new size. 1306 * 1307 * Minimum size is 2 * BUF_PAGE_SIZE. 1308 * 1309 * Returns -1 on failure. 1310 */ 1311 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1312 { 1313 struct ring_buffer_per_cpu *cpu_buffer; 1314 unsigned nr_pages, rm_pages, new_pages; 1315 struct buffer_page *bpage, *tmp; 1316 unsigned long buffer_size; 1317 unsigned long addr; 1318 LIST_HEAD(pages); 1319 int i, cpu; 1320 1321 /* 1322 * Always succeed at resizing a non-existent buffer: 1323 */ 1324 if (!buffer) 1325 return size; 1326 1327 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1328 size *= BUF_PAGE_SIZE; 1329 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1330 1331 /* we need a minimum of two pages */ 1332 if (size < BUF_PAGE_SIZE * 2) 1333 size = BUF_PAGE_SIZE * 2; 1334 1335 if (size == buffer_size) 1336 return size; 1337 1338 atomic_inc(&buffer->record_disabled); 1339 1340 /* Make sure all writers are done with this buffer. */ 1341 synchronize_sched(); 1342 1343 mutex_lock(&buffer->mutex); 1344 get_online_cpus(); 1345 1346 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1347 1348 if (size < buffer_size) { 1349 1350 /* easy case, just free pages */ 1351 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1352 goto out_fail; 1353 1354 rm_pages = buffer->pages - nr_pages; 1355 1356 for_each_buffer_cpu(buffer, cpu) { 1357 cpu_buffer = buffer->buffers[cpu]; 1358 rb_remove_pages(cpu_buffer, rm_pages); 1359 } 1360 goto out; 1361 } 1362 1363 /* 1364 * This is a bit more difficult. We only want to add pages 1365 * when we can allocate enough for all CPUs. We do this 1366 * by allocating all the pages and storing them on a local 1367 * link list. If we succeed in our allocation, then we 1368 * add these pages to the cpu_buffers. Otherwise we just free 1369 * them all and return -ENOMEM; 1370 */ 1371 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1372 goto out_fail; 1373 1374 new_pages = nr_pages - buffer->pages; 1375 1376 for_each_buffer_cpu(buffer, cpu) { 1377 for (i = 0; i < new_pages; i++) { 1378 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1379 cache_line_size()), 1380 GFP_KERNEL, cpu_to_node(cpu)); 1381 if (!bpage) 1382 goto free_pages; 1383 list_add(&bpage->list, &pages); 1384 addr = __get_free_page(GFP_KERNEL); 1385 if (!addr) 1386 goto free_pages; 1387 bpage->page = (void *)addr; 1388 rb_init_page(bpage->page); 1389 } 1390 } 1391 1392 for_each_buffer_cpu(buffer, cpu) { 1393 cpu_buffer = buffer->buffers[cpu]; 1394 rb_insert_pages(cpu_buffer, &pages, new_pages); 1395 } 1396 1397 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1398 goto out_fail; 1399 1400 out: 1401 buffer->pages = nr_pages; 1402 put_online_cpus(); 1403 mutex_unlock(&buffer->mutex); 1404 1405 atomic_dec(&buffer->record_disabled); 1406 1407 return size; 1408 1409 free_pages: 1410 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1411 list_del_init(&bpage->list); 1412 free_buffer_page(bpage); 1413 } 1414 put_online_cpus(); 1415 mutex_unlock(&buffer->mutex); 1416 atomic_dec(&buffer->record_disabled); 1417 return -ENOMEM; 1418 1419 /* 1420 * Something went totally wrong, and we are too paranoid 1421 * to even clean up the mess. 1422 */ 1423 out_fail: 1424 put_online_cpus(); 1425 mutex_unlock(&buffer->mutex); 1426 atomic_dec(&buffer->record_disabled); 1427 return -1; 1428 } 1429 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1430 1431 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1432 { 1433 mutex_lock(&buffer->mutex); 1434 if (val) 1435 buffer->flags |= RB_FL_OVERWRITE; 1436 else 1437 buffer->flags &= ~RB_FL_OVERWRITE; 1438 mutex_unlock(&buffer->mutex); 1439 } 1440 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1441 1442 static inline void * 1443 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1444 { 1445 return bpage->data + index; 1446 } 1447 1448 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1449 { 1450 return bpage->page->data + index; 1451 } 1452 1453 static inline struct ring_buffer_event * 1454 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1455 { 1456 return __rb_page_index(cpu_buffer->reader_page, 1457 cpu_buffer->reader_page->read); 1458 } 1459 1460 static inline struct ring_buffer_event * 1461 rb_iter_head_event(struct ring_buffer_iter *iter) 1462 { 1463 return __rb_page_index(iter->head_page, iter->head); 1464 } 1465 1466 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1467 { 1468 return local_read(&bpage->write) & RB_WRITE_MASK; 1469 } 1470 1471 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1472 { 1473 return local_read(&bpage->page->commit); 1474 } 1475 1476 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1477 { 1478 return local_read(&bpage->entries) & RB_WRITE_MASK; 1479 } 1480 1481 /* Size is determined by what has been commited */ 1482 static inline unsigned rb_page_size(struct buffer_page *bpage) 1483 { 1484 return rb_page_commit(bpage); 1485 } 1486 1487 static inline unsigned 1488 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1489 { 1490 return rb_page_commit(cpu_buffer->commit_page); 1491 } 1492 1493 static inline unsigned 1494 rb_event_index(struct ring_buffer_event *event) 1495 { 1496 unsigned long addr = (unsigned long)event; 1497 1498 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1499 } 1500 1501 static inline int 1502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1503 struct ring_buffer_event *event) 1504 { 1505 unsigned long addr = (unsigned long)event; 1506 unsigned long index; 1507 1508 index = rb_event_index(event); 1509 addr &= PAGE_MASK; 1510 1511 return cpu_buffer->commit_page->page == (void *)addr && 1512 rb_commit_index(cpu_buffer) == index; 1513 } 1514 1515 static void 1516 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1517 { 1518 unsigned long max_count; 1519 1520 /* 1521 * We only race with interrupts and NMIs on this CPU. 1522 * If we own the commit event, then we can commit 1523 * all others that interrupted us, since the interruptions 1524 * are in stack format (they finish before they come 1525 * back to us). This allows us to do a simple loop to 1526 * assign the commit to the tail. 1527 */ 1528 again: 1529 max_count = cpu_buffer->buffer->pages * 100; 1530 1531 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1532 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1533 return; 1534 if (RB_WARN_ON(cpu_buffer, 1535 rb_is_reader_page(cpu_buffer->tail_page))) 1536 return; 1537 local_set(&cpu_buffer->commit_page->page->commit, 1538 rb_page_write(cpu_buffer->commit_page)); 1539 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1540 cpu_buffer->write_stamp = 1541 cpu_buffer->commit_page->page->time_stamp; 1542 /* add barrier to keep gcc from optimizing too much */ 1543 barrier(); 1544 } 1545 while (rb_commit_index(cpu_buffer) != 1546 rb_page_write(cpu_buffer->commit_page)) { 1547 1548 local_set(&cpu_buffer->commit_page->page->commit, 1549 rb_page_write(cpu_buffer->commit_page)); 1550 RB_WARN_ON(cpu_buffer, 1551 local_read(&cpu_buffer->commit_page->page->commit) & 1552 ~RB_WRITE_MASK); 1553 barrier(); 1554 } 1555 1556 /* again, keep gcc from optimizing */ 1557 barrier(); 1558 1559 /* 1560 * If an interrupt came in just after the first while loop 1561 * and pushed the tail page forward, we will be left with 1562 * a dangling commit that will never go forward. 1563 */ 1564 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1565 goto again; 1566 } 1567 1568 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1569 { 1570 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1571 cpu_buffer->reader_page->read = 0; 1572 } 1573 1574 static void rb_inc_iter(struct ring_buffer_iter *iter) 1575 { 1576 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1577 1578 /* 1579 * The iterator could be on the reader page (it starts there). 1580 * But the head could have moved, since the reader was 1581 * found. Check for this case and assign the iterator 1582 * to the head page instead of next. 1583 */ 1584 if (iter->head_page == cpu_buffer->reader_page) 1585 iter->head_page = rb_set_head_page(cpu_buffer); 1586 else 1587 rb_inc_page(cpu_buffer, &iter->head_page); 1588 1589 iter->read_stamp = iter->head_page->page->time_stamp; 1590 iter->head = 0; 1591 } 1592 1593 /* Slow path, do not inline */ 1594 static noinline struct ring_buffer_event * 1595 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1596 { 1597 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1598 1599 /* Not the first event on the page? */ 1600 if (rb_event_index(event)) { 1601 event->time_delta = delta & TS_MASK; 1602 event->array[0] = delta >> TS_SHIFT; 1603 } else { 1604 /* nope, just zero it */ 1605 event->time_delta = 0; 1606 event->array[0] = 0; 1607 } 1608 1609 return skip_time_extend(event); 1610 } 1611 1612 /** 1613 * ring_buffer_update_event - update event type and data 1614 * @event: the even to update 1615 * @type: the type of event 1616 * @length: the size of the event field in the ring buffer 1617 * 1618 * Update the type and data fields of the event. The length 1619 * is the actual size that is written to the ring buffer, 1620 * and with this, we can determine what to place into the 1621 * data field. 1622 */ 1623 static void 1624 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1625 struct ring_buffer_event *event, unsigned length, 1626 int add_timestamp, u64 delta) 1627 { 1628 /* Only a commit updates the timestamp */ 1629 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1630 delta = 0; 1631 1632 /* 1633 * If we need to add a timestamp, then we 1634 * add it to the start of the resevered space. 1635 */ 1636 if (unlikely(add_timestamp)) { 1637 event = rb_add_time_stamp(event, delta); 1638 length -= RB_LEN_TIME_EXTEND; 1639 delta = 0; 1640 } 1641 1642 event->time_delta = delta; 1643 length -= RB_EVNT_HDR_SIZE; 1644 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 1645 event->type_len = 0; 1646 event->array[0] = length; 1647 } else 1648 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1649 } 1650 1651 /* 1652 * rb_handle_head_page - writer hit the head page 1653 * 1654 * Returns: +1 to retry page 1655 * 0 to continue 1656 * -1 on error 1657 */ 1658 static int 1659 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1660 struct buffer_page *tail_page, 1661 struct buffer_page *next_page) 1662 { 1663 struct buffer_page *new_head; 1664 int entries; 1665 int type; 1666 int ret; 1667 1668 entries = rb_page_entries(next_page); 1669 1670 /* 1671 * The hard part is here. We need to move the head 1672 * forward, and protect against both readers on 1673 * other CPUs and writers coming in via interrupts. 1674 */ 1675 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1676 RB_PAGE_HEAD); 1677 1678 /* 1679 * type can be one of four: 1680 * NORMAL - an interrupt already moved it for us 1681 * HEAD - we are the first to get here. 1682 * UPDATE - we are the interrupt interrupting 1683 * a current move. 1684 * MOVED - a reader on another CPU moved the next 1685 * pointer to its reader page. Give up 1686 * and try again. 1687 */ 1688 1689 switch (type) { 1690 case RB_PAGE_HEAD: 1691 /* 1692 * We changed the head to UPDATE, thus 1693 * it is our responsibility to update 1694 * the counters. 1695 */ 1696 local_add(entries, &cpu_buffer->overrun); 1697 1698 /* 1699 * The entries will be zeroed out when we move the 1700 * tail page. 1701 */ 1702 1703 /* still more to do */ 1704 break; 1705 1706 case RB_PAGE_UPDATE: 1707 /* 1708 * This is an interrupt that interrupt the 1709 * previous update. Still more to do. 1710 */ 1711 break; 1712 case RB_PAGE_NORMAL: 1713 /* 1714 * An interrupt came in before the update 1715 * and processed this for us. 1716 * Nothing left to do. 1717 */ 1718 return 1; 1719 case RB_PAGE_MOVED: 1720 /* 1721 * The reader is on another CPU and just did 1722 * a swap with our next_page. 1723 * Try again. 1724 */ 1725 return 1; 1726 default: 1727 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1728 return -1; 1729 } 1730 1731 /* 1732 * Now that we are here, the old head pointer is 1733 * set to UPDATE. This will keep the reader from 1734 * swapping the head page with the reader page. 1735 * The reader (on another CPU) will spin till 1736 * we are finished. 1737 * 1738 * We just need to protect against interrupts 1739 * doing the job. We will set the next pointer 1740 * to HEAD. After that, we set the old pointer 1741 * to NORMAL, but only if it was HEAD before. 1742 * otherwise we are an interrupt, and only 1743 * want the outer most commit to reset it. 1744 */ 1745 new_head = next_page; 1746 rb_inc_page(cpu_buffer, &new_head); 1747 1748 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1749 RB_PAGE_NORMAL); 1750 1751 /* 1752 * Valid returns are: 1753 * HEAD - an interrupt came in and already set it. 1754 * NORMAL - One of two things: 1755 * 1) We really set it. 1756 * 2) A bunch of interrupts came in and moved 1757 * the page forward again. 1758 */ 1759 switch (ret) { 1760 case RB_PAGE_HEAD: 1761 case RB_PAGE_NORMAL: 1762 /* OK */ 1763 break; 1764 default: 1765 RB_WARN_ON(cpu_buffer, 1); 1766 return -1; 1767 } 1768 1769 /* 1770 * It is possible that an interrupt came in, 1771 * set the head up, then more interrupts came in 1772 * and moved it again. When we get back here, 1773 * the page would have been set to NORMAL but we 1774 * just set it back to HEAD. 1775 * 1776 * How do you detect this? Well, if that happened 1777 * the tail page would have moved. 1778 */ 1779 if (ret == RB_PAGE_NORMAL) { 1780 /* 1781 * If the tail had moved passed next, then we need 1782 * to reset the pointer. 1783 */ 1784 if (cpu_buffer->tail_page != tail_page && 1785 cpu_buffer->tail_page != next_page) 1786 rb_head_page_set_normal(cpu_buffer, new_head, 1787 next_page, 1788 RB_PAGE_HEAD); 1789 } 1790 1791 /* 1792 * If this was the outer most commit (the one that 1793 * changed the original pointer from HEAD to UPDATE), 1794 * then it is up to us to reset it to NORMAL. 1795 */ 1796 if (type == RB_PAGE_HEAD) { 1797 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1798 tail_page, 1799 RB_PAGE_UPDATE); 1800 if (RB_WARN_ON(cpu_buffer, 1801 ret != RB_PAGE_UPDATE)) 1802 return -1; 1803 } 1804 1805 return 0; 1806 } 1807 1808 static unsigned rb_calculate_event_length(unsigned length) 1809 { 1810 struct ring_buffer_event event; /* Used only for sizeof array */ 1811 1812 /* zero length can cause confusions */ 1813 if (!length) 1814 length = 1; 1815 1816 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 1817 length += sizeof(event.array[0]); 1818 1819 length += RB_EVNT_HDR_SIZE; 1820 length = ALIGN(length, RB_ARCH_ALIGNMENT); 1821 1822 return length; 1823 } 1824 1825 static inline void 1826 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1827 struct buffer_page *tail_page, 1828 unsigned long tail, unsigned long length) 1829 { 1830 struct ring_buffer_event *event; 1831 1832 /* 1833 * Only the event that crossed the page boundary 1834 * must fill the old tail_page with padding. 1835 */ 1836 if (tail >= BUF_PAGE_SIZE) { 1837 /* 1838 * If the page was filled, then we still need 1839 * to update the real_end. Reset it to zero 1840 * and the reader will ignore it. 1841 */ 1842 if (tail == BUF_PAGE_SIZE) 1843 tail_page->real_end = 0; 1844 1845 local_sub(length, &tail_page->write); 1846 return; 1847 } 1848 1849 event = __rb_page_index(tail_page, tail); 1850 kmemcheck_annotate_bitfield(event, bitfield); 1851 1852 /* 1853 * Save the original length to the meta data. 1854 * This will be used by the reader to add lost event 1855 * counter. 1856 */ 1857 tail_page->real_end = tail; 1858 1859 /* 1860 * If this event is bigger than the minimum size, then 1861 * we need to be careful that we don't subtract the 1862 * write counter enough to allow another writer to slip 1863 * in on this page. 1864 * We put in a discarded commit instead, to make sure 1865 * that this space is not used again. 1866 * 1867 * If we are less than the minimum size, we don't need to 1868 * worry about it. 1869 */ 1870 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1871 /* No room for any events */ 1872 1873 /* Mark the rest of the page with padding */ 1874 rb_event_set_padding(event); 1875 1876 /* Set the write back to the previous setting */ 1877 local_sub(length, &tail_page->write); 1878 return; 1879 } 1880 1881 /* Put in a discarded event */ 1882 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1883 event->type_len = RINGBUF_TYPE_PADDING; 1884 /* time delta must be non zero */ 1885 event->time_delta = 1; 1886 1887 /* Set write to end of buffer */ 1888 length = (tail + length) - BUF_PAGE_SIZE; 1889 local_sub(length, &tail_page->write); 1890 } 1891 1892 /* 1893 * This is the slow path, force gcc not to inline it. 1894 */ 1895 static noinline struct ring_buffer_event * 1896 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1897 unsigned long length, unsigned long tail, 1898 struct buffer_page *tail_page, u64 ts) 1899 { 1900 struct buffer_page *commit_page = cpu_buffer->commit_page; 1901 struct ring_buffer *buffer = cpu_buffer->buffer; 1902 struct buffer_page *next_page; 1903 int ret; 1904 1905 next_page = tail_page; 1906 1907 rb_inc_page(cpu_buffer, &next_page); 1908 1909 /* 1910 * If for some reason, we had an interrupt storm that made 1911 * it all the way around the buffer, bail, and warn 1912 * about it. 1913 */ 1914 if (unlikely(next_page == commit_page)) { 1915 local_inc(&cpu_buffer->commit_overrun); 1916 goto out_reset; 1917 } 1918 1919 /* 1920 * This is where the fun begins! 1921 * 1922 * We are fighting against races between a reader that 1923 * could be on another CPU trying to swap its reader 1924 * page with the buffer head. 1925 * 1926 * We are also fighting against interrupts coming in and 1927 * moving the head or tail on us as well. 1928 * 1929 * If the next page is the head page then we have filled 1930 * the buffer, unless the commit page is still on the 1931 * reader page. 1932 */ 1933 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1934 1935 /* 1936 * If the commit is not on the reader page, then 1937 * move the header page. 1938 */ 1939 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1940 /* 1941 * If we are not in overwrite mode, 1942 * this is easy, just stop here. 1943 */ 1944 if (!(buffer->flags & RB_FL_OVERWRITE)) 1945 goto out_reset; 1946 1947 ret = rb_handle_head_page(cpu_buffer, 1948 tail_page, 1949 next_page); 1950 if (ret < 0) 1951 goto out_reset; 1952 if (ret) 1953 goto out_again; 1954 } else { 1955 /* 1956 * We need to be careful here too. The 1957 * commit page could still be on the reader 1958 * page. We could have a small buffer, and 1959 * have filled up the buffer with events 1960 * from interrupts and such, and wrapped. 1961 * 1962 * Note, if the tail page is also the on the 1963 * reader_page, we let it move out. 1964 */ 1965 if (unlikely((cpu_buffer->commit_page != 1966 cpu_buffer->tail_page) && 1967 (cpu_buffer->commit_page == 1968 cpu_buffer->reader_page))) { 1969 local_inc(&cpu_buffer->commit_overrun); 1970 goto out_reset; 1971 } 1972 } 1973 } 1974 1975 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1976 if (ret) { 1977 /* 1978 * Nested commits always have zero deltas, so 1979 * just reread the time stamp 1980 */ 1981 ts = rb_time_stamp(buffer); 1982 next_page->page->time_stamp = ts; 1983 } 1984 1985 out_again: 1986 1987 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1988 1989 /* fail and let the caller try again */ 1990 return ERR_PTR(-EAGAIN); 1991 1992 out_reset: 1993 /* reset write */ 1994 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1995 1996 return NULL; 1997 } 1998 1999 static struct ring_buffer_event * 2000 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2001 unsigned long length, u64 ts, 2002 u64 delta, int add_timestamp) 2003 { 2004 struct buffer_page *tail_page; 2005 struct ring_buffer_event *event; 2006 unsigned long tail, write; 2007 2008 /* 2009 * If the time delta since the last event is too big to 2010 * hold in the time field of the event, then we append a 2011 * TIME EXTEND event ahead of the data event. 2012 */ 2013 if (unlikely(add_timestamp)) 2014 length += RB_LEN_TIME_EXTEND; 2015 2016 tail_page = cpu_buffer->tail_page; 2017 write = local_add_return(length, &tail_page->write); 2018 2019 /* set write to only the index of the write */ 2020 write &= RB_WRITE_MASK; 2021 tail = write - length; 2022 2023 /* See if we shot pass the end of this buffer page */ 2024 if (unlikely(write > BUF_PAGE_SIZE)) 2025 return rb_move_tail(cpu_buffer, length, tail, 2026 tail_page, ts); 2027 2028 /* We reserved something on the buffer */ 2029 2030 event = __rb_page_index(tail_page, tail); 2031 kmemcheck_annotate_bitfield(event, bitfield); 2032 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2033 2034 local_inc(&tail_page->entries); 2035 2036 /* 2037 * If this is the first commit on the page, then update 2038 * its timestamp. 2039 */ 2040 if (!tail) 2041 tail_page->page->time_stamp = ts; 2042 2043 return event; 2044 } 2045 2046 static inline int 2047 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2048 struct ring_buffer_event *event) 2049 { 2050 unsigned long new_index, old_index; 2051 struct buffer_page *bpage; 2052 unsigned long index; 2053 unsigned long addr; 2054 2055 new_index = rb_event_index(event); 2056 old_index = new_index + rb_event_ts_length(event); 2057 addr = (unsigned long)event; 2058 addr &= PAGE_MASK; 2059 2060 bpage = cpu_buffer->tail_page; 2061 2062 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2063 unsigned long write_mask = 2064 local_read(&bpage->write) & ~RB_WRITE_MASK; 2065 /* 2066 * This is on the tail page. It is possible that 2067 * a write could come in and move the tail page 2068 * and write to the next page. That is fine 2069 * because we just shorten what is on this page. 2070 */ 2071 old_index += write_mask; 2072 new_index += write_mask; 2073 index = local_cmpxchg(&bpage->write, old_index, new_index); 2074 if (index == old_index) 2075 return 1; 2076 } 2077 2078 /* could not discard */ 2079 return 0; 2080 } 2081 2082 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2083 { 2084 local_inc(&cpu_buffer->committing); 2085 local_inc(&cpu_buffer->commits); 2086 } 2087 2088 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2089 { 2090 unsigned long commits; 2091 2092 if (RB_WARN_ON(cpu_buffer, 2093 !local_read(&cpu_buffer->committing))) 2094 return; 2095 2096 again: 2097 commits = local_read(&cpu_buffer->commits); 2098 /* synchronize with interrupts */ 2099 barrier(); 2100 if (local_read(&cpu_buffer->committing) == 1) 2101 rb_set_commit_to_write(cpu_buffer); 2102 2103 local_dec(&cpu_buffer->committing); 2104 2105 /* synchronize with interrupts */ 2106 barrier(); 2107 2108 /* 2109 * Need to account for interrupts coming in between the 2110 * updating of the commit page and the clearing of the 2111 * committing counter. 2112 */ 2113 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2114 !local_read(&cpu_buffer->committing)) { 2115 local_inc(&cpu_buffer->committing); 2116 goto again; 2117 } 2118 } 2119 2120 static struct ring_buffer_event * 2121 rb_reserve_next_event(struct ring_buffer *buffer, 2122 struct ring_buffer_per_cpu *cpu_buffer, 2123 unsigned long length) 2124 { 2125 struct ring_buffer_event *event; 2126 u64 ts, delta; 2127 int nr_loops = 0; 2128 int add_timestamp; 2129 u64 diff; 2130 2131 rb_start_commit(cpu_buffer); 2132 2133 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2134 /* 2135 * Due to the ability to swap a cpu buffer from a buffer 2136 * it is possible it was swapped before we committed. 2137 * (committing stops a swap). We check for it here and 2138 * if it happened, we have to fail the write. 2139 */ 2140 barrier(); 2141 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2142 local_dec(&cpu_buffer->committing); 2143 local_dec(&cpu_buffer->commits); 2144 return NULL; 2145 } 2146 #endif 2147 2148 length = rb_calculate_event_length(length); 2149 again: 2150 add_timestamp = 0; 2151 delta = 0; 2152 2153 /* 2154 * We allow for interrupts to reenter here and do a trace. 2155 * If one does, it will cause this original code to loop 2156 * back here. Even with heavy interrupts happening, this 2157 * should only happen a few times in a row. If this happens 2158 * 1000 times in a row, there must be either an interrupt 2159 * storm or we have something buggy. 2160 * Bail! 2161 */ 2162 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2163 goto out_fail; 2164 2165 ts = rb_time_stamp(cpu_buffer->buffer); 2166 diff = ts - cpu_buffer->write_stamp; 2167 2168 /* make sure this diff is calculated here */ 2169 barrier(); 2170 2171 /* Did the write stamp get updated already? */ 2172 if (likely(ts >= cpu_buffer->write_stamp)) { 2173 delta = diff; 2174 if (unlikely(test_time_stamp(delta))) { 2175 int local_clock_stable = 1; 2176 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2177 local_clock_stable = sched_clock_stable; 2178 #endif 2179 WARN_ONCE(delta > (1ULL << 59), 2180 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2181 (unsigned long long)delta, 2182 (unsigned long long)ts, 2183 (unsigned long long)cpu_buffer->write_stamp, 2184 local_clock_stable ? "" : 2185 "If you just came from a suspend/resume,\n" 2186 "please switch to the trace global clock:\n" 2187 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2188 add_timestamp = 1; 2189 } 2190 } 2191 2192 event = __rb_reserve_next(cpu_buffer, length, ts, 2193 delta, add_timestamp); 2194 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2195 goto again; 2196 2197 if (!event) 2198 goto out_fail; 2199 2200 return event; 2201 2202 out_fail: 2203 rb_end_commit(cpu_buffer); 2204 return NULL; 2205 } 2206 2207 #ifdef CONFIG_TRACING 2208 2209 #define TRACE_RECURSIVE_DEPTH 16 2210 2211 /* Keep this code out of the fast path cache */ 2212 static noinline void trace_recursive_fail(void) 2213 { 2214 /* Disable all tracing before we do anything else */ 2215 tracing_off_permanent(); 2216 2217 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2218 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2219 current->trace_recursion, 2220 hardirq_count() >> HARDIRQ_SHIFT, 2221 softirq_count() >> SOFTIRQ_SHIFT, 2222 in_nmi()); 2223 2224 WARN_ON_ONCE(1); 2225 } 2226 2227 static inline int trace_recursive_lock(void) 2228 { 2229 current->trace_recursion++; 2230 2231 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH)) 2232 return 0; 2233 2234 trace_recursive_fail(); 2235 2236 return -1; 2237 } 2238 2239 static inline void trace_recursive_unlock(void) 2240 { 2241 WARN_ON_ONCE(!current->trace_recursion); 2242 2243 current->trace_recursion--; 2244 } 2245 2246 #else 2247 2248 #define trace_recursive_lock() (0) 2249 #define trace_recursive_unlock() do { } while (0) 2250 2251 #endif 2252 2253 /** 2254 * ring_buffer_lock_reserve - reserve a part of the buffer 2255 * @buffer: the ring buffer to reserve from 2256 * @length: the length of the data to reserve (excluding event header) 2257 * 2258 * Returns a reseverd event on the ring buffer to copy directly to. 2259 * The user of this interface will need to get the body to write into 2260 * and can use the ring_buffer_event_data() interface. 2261 * 2262 * The length is the length of the data needed, not the event length 2263 * which also includes the event header. 2264 * 2265 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2266 * If NULL is returned, then nothing has been allocated or locked. 2267 */ 2268 struct ring_buffer_event * 2269 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2270 { 2271 struct ring_buffer_per_cpu *cpu_buffer; 2272 struct ring_buffer_event *event; 2273 int cpu; 2274 2275 if (ring_buffer_flags != RB_BUFFERS_ON) 2276 return NULL; 2277 2278 /* If we are tracing schedule, we don't want to recurse */ 2279 preempt_disable_notrace(); 2280 2281 if (atomic_read(&buffer->record_disabled)) 2282 goto out_nocheck; 2283 2284 if (trace_recursive_lock()) 2285 goto out_nocheck; 2286 2287 cpu = raw_smp_processor_id(); 2288 2289 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2290 goto out; 2291 2292 cpu_buffer = buffer->buffers[cpu]; 2293 2294 if (atomic_read(&cpu_buffer->record_disabled)) 2295 goto out; 2296 2297 if (length > BUF_MAX_DATA_SIZE) 2298 goto out; 2299 2300 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2301 if (!event) 2302 goto out; 2303 2304 return event; 2305 2306 out: 2307 trace_recursive_unlock(); 2308 2309 out_nocheck: 2310 preempt_enable_notrace(); 2311 return NULL; 2312 } 2313 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2314 2315 static void 2316 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2317 struct ring_buffer_event *event) 2318 { 2319 u64 delta; 2320 2321 /* 2322 * The event first in the commit queue updates the 2323 * time stamp. 2324 */ 2325 if (rb_event_is_commit(cpu_buffer, event)) { 2326 /* 2327 * A commit event that is first on a page 2328 * updates the write timestamp with the page stamp 2329 */ 2330 if (!rb_event_index(event)) 2331 cpu_buffer->write_stamp = 2332 cpu_buffer->commit_page->page->time_stamp; 2333 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2334 delta = event->array[0]; 2335 delta <<= TS_SHIFT; 2336 delta += event->time_delta; 2337 cpu_buffer->write_stamp += delta; 2338 } else 2339 cpu_buffer->write_stamp += event->time_delta; 2340 } 2341 } 2342 2343 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2344 struct ring_buffer_event *event) 2345 { 2346 local_inc(&cpu_buffer->entries); 2347 rb_update_write_stamp(cpu_buffer, event); 2348 rb_end_commit(cpu_buffer); 2349 } 2350 2351 /** 2352 * ring_buffer_unlock_commit - commit a reserved 2353 * @buffer: The buffer to commit to 2354 * @event: The event pointer to commit. 2355 * 2356 * This commits the data to the ring buffer, and releases any locks held. 2357 * 2358 * Must be paired with ring_buffer_lock_reserve. 2359 */ 2360 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2361 struct ring_buffer_event *event) 2362 { 2363 struct ring_buffer_per_cpu *cpu_buffer; 2364 int cpu = raw_smp_processor_id(); 2365 2366 cpu_buffer = buffer->buffers[cpu]; 2367 2368 rb_commit(cpu_buffer, event); 2369 2370 trace_recursive_unlock(); 2371 2372 preempt_enable_notrace(); 2373 2374 return 0; 2375 } 2376 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2377 2378 static inline void rb_event_discard(struct ring_buffer_event *event) 2379 { 2380 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2381 event = skip_time_extend(event); 2382 2383 /* array[0] holds the actual length for the discarded event */ 2384 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2385 event->type_len = RINGBUF_TYPE_PADDING; 2386 /* time delta must be non zero */ 2387 if (!event->time_delta) 2388 event->time_delta = 1; 2389 } 2390 2391 /* 2392 * Decrement the entries to the page that an event is on. 2393 * The event does not even need to exist, only the pointer 2394 * to the page it is on. This may only be called before the commit 2395 * takes place. 2396 */ 2397 static inline void 2398 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2399 struct ring_buffer_event *event) 2400 { 2401 unsigned long addr = (unsigned long)event; 2402 struct buffer_page *bpage = cpu_buffer->commit_page; 2403 struct buffer_page *start; 2404 2405 addr &= PAGE_MASK; 2406 2407 /* Do the likely case first */ 2408 if (likely(bpage->page == (void *)addr)) { 2409 local_dec(&bpage->entries); 2410 return; 2411 } 2412 2413 /* 2414 * Because the commit page may be on the reader page we 2415 * start with the next page and check the end loop there. 2416 */ 2417 rb_inc_page(cpu_buffer, &bpage); 2418 start = bpage; 2419 do { 2420 if (bpage->page == (void *)addr) { 2421 local_dec(&bpage->entries); 2422 return; 2423 } 2424 rb_inc_page(cpu_buffer, &bpage); 2425 } while (bpage != start); 2426 2427 /* commit not part of this buffer?? */ 2428 RB_WARN_ON(cpu_buffer, 1); 2429 } 2430 2431 /** 2432 * ring_buffer_commit_discard - discard an event that has not been committed 2433 * @buffer: the ring buffer 2434 * @event: non committed event to discard 2435 * 2436 * Sometimes an event that is in the ring buffer needs to be ignored. 2437 * This function lets the user discard an event in the ring buffer 2438 * and then that event will not be read later. 2439 * 2440 * This function only works if it is called before the the item has been 2441 * committed. It will try to free the event from the ring buffer 2442 * if another event has not been added behind it. 2443 * 2444 * If another event has been added behind it, it will set the event 2445 * up as discarded, and perform the commit. 2446 * 2447 * If this function is called, do not call ring_buffer_unlock_commit on 2448 * the event. 2449 */ 2450 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2451 struct ring_buffer_event *event) 2452 { 2453 struct ring_buffer_per_cpu *cpu_buffer; 2454 int cpu; 2455 2456 /* The event is discarded regardless */ 2457 rb_event_discard(event); 2458 2459 cpu = smp_processor_id(); 2460 cpu_buffer = buffer->buffers[cpu]; 2461 2462 /* 2463 * This must only be called if the event has not been 2464 * committed yet. Thus we can assume that preemption 2465 * is still disabled. 2466 */ 2467 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2468 2469 rb_decrement_entry(cpu_buffer, event); 2470 if (rb_try_to_discard(cpu_buffer, event)) 2471 goto out; 2472 2473 /* 2474 * The commit is still visible by the reader, so we 2475 * must still update the timestamp. 2476 */ 2477 rb_update_write_stamp(cpu_buffer, event); 2478 out: 2479 rb_end_commit(cpu_buffer); 2480 2481 trace_recursive_unlock(); 2482 2483 preempt_enable_notrace(); 2484 2485 } 2486 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2487 2488 /** 2489 * ring_buffer_write - write data to the buffer without reserving 2490 * @buffer: The ring buffer to write to. 2491 * @length: The length of the data being written (excluding the event header) 2492 * @data: The data to write to the buffer. 2493 * 2494 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2495 * one function. If you already have the data to write to the buffer, it 2496 * may be easier to simply call this function. 2497 * 2498 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2499 * and not the length of the event which would hold the header. 2500 */ 2501 int ring_buffer_write(struct ring_buffer *buffer, 2502 unsigned long length, 2503 void *data) 2504 { 2505 struct ring_buffer_per_cpu *cpu_buffer; 2506 struct ring_buffer_event *event; 2507 void *body; 2508 int ret = -EBUSY; 2509 int cpu; 2510 2511 if (ring_buffer_flags != RB_BUFFERS_ON) 2512 return -EBUSY; 2513 2514 preempt_disable_notrace(); 2515 2516 if (atomic_read(&buffer->record_disabled)) 2517 goto out; 2518 2519 cpu = raw_smp_processor_id(); 2520 2521 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2522 goto out; 2523 2524 cpu_buffer = buffer->buffers[cpu]; 2525 2526 if (atomic_read(&cpu_buffer->record_disabled)) 2527 goto out; 2528 2529 if (length > BUF_MAX_DATA_SIZE) 2530 goto out; 2531 2532 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2533 if (!event) 2534 goto out; 2535 2536 body = rb_event_data(event); 2537 2538 memcpy(body, data, length); 2539 2540 rb_commit(cpu_buffer, event); 2541 2542 ret = 0; 2543 out: 2544 preempt_enable_notrace(); 2545 2546 return ret; 2547 } 2548 EXPORT_SYMBOL_GPL(ring_buffer_write); 2549 2550 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2551 { 2552 struct buffer_page *reader = cpu_buffer->reader_page; 2553 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2554 struct buffer_page *commit = cpu_buffer->commit_page; 2555 2556 /* In case of error, head will be NULL */ 2557 if (unlikely(!head)) 2558 return 1; 2559 2560 return reader->read == rb_page_commit(reader) && 2561 (commit == reader || 2562 (commit == head && 2563 head->read == rb_page_commit(commit))); 2564 } 2565 2566 /** 2567 * ring_buffer_record_disable - stop all writes into the buffer 2568 * @buffer: The ring buffer to stop writes to. 2569 * 2570 * This prevents all writes to the buffer. Any attempt to write 2571 * to the buffer after this will fail and return NULL. 2572 * 2573 * The caller should call synchronize_sched() after this. 2574 */ 2575 void ring_buffer_record_disable(struct ring_buffer *buffer) 2576 { 2577 atomic_inc(&buffer->record_disabled); 2578 } 2579 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2580 2581 /** 2582 * ring_buffer_record_enable - enable writes to the buffer 2583 * @buffer: The ring buffer to enable writes 2584 * 2585 * Note, multiple disables will need the same number of enables 2586 * to truly enable the writing (much like preempt_disable). 2587 */ 2588 void ring_buffer_record_enable(struct ring_buffer *buffer) 2589 { 2590 atomic_dec(&buffer->record_disabled); 2591 } 2592 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2593 2594 /** 2595 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2596 * @buffer: The ring buffer to stop writes to. 2597 * @cpu: The CPU buffer to stop 2598 * 2599 * This prevents all writes to the buffer. Any attempt to write 2600 * to the buffer after this will fail and return NULL. 2601 * 2602 * The caller should call synchronize_sched() after this. 2603 */ 2604 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2605 { 2606 struct ring_buffer_per_cpu *cpu_buffer; 2607 2608 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2609 return; 2610 2611 cpu_buffer = buffer->buffers[cpu]; 2612 atomic_inc(&cpu_buffer->record_disabled); 2613 } 2614 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2615 2616 /** 2617 * ring_buffer_record_enable_cpu - enable writes to the buffer 2618 * @buffer: The ring buffer to enable writes 2619 * @cpu: The CPU to enable. 2620 * 2621 * Note, multiple disables will need the same number of enables 2622 * to truly enable the writing (much like preempt_disable). 2623 */ 2624 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2625 { 2626 struct ring_buffer_per_cpu *cpu_buffer; 2627 2628 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2629 return; 2630 2631 cpu_buffer = buffer->buffers[cpu]; 2632 atomic_dec(&cpu_buffer->record_disabled); 2633 } 2634 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2635 2636 /* 2637 * The total entries in the ring buffer is the running counter 2638 * of entries entered into the ring buffer, minus the sum of 2639 * the entries read from the ring buffer and the number of 2640 * entries that were overwritten. 2641 */ 2642 static inline unsigned long 2643 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 2644 { 2645 return local_read(&cpu_buffer->entries) - 2646 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 2647 } 2648 2649 /** 2650 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2651 * @buffer: The ring buffer 2652 * @cpu: The per CPU buffer to get the entries from. 2653 */ 2654 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2655 { 2656 struct ring_buffer_per_cpu *cpu_buffer; 2657 2658 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2659 return 0; 2660 2661 cpu_buffer = buffer->buffers[cpu]; 2662 2663 return rb_num_of_entries(cpu_buffer); 2664 } 2665 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2666 2667 /** 2668 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2669 * @buffer: The ring buffer 2670 * @cpu: The per CPU buffer to get the number of overruns from 2671 */ 2672 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2673 { 2674 struct ring_buffer_per_cpu *cpu_buffer; 2675 unsigned long ret; 2676 2677 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2678 return 0; 2679 2680 cpu_buffer = buffer->buffers[cpu]; 2681 ret = local_read(&cpu_buffer->overrun); 2682 2683 return ret; 2684 } 2685 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2686 2687 /** 2688 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2689 * @buffer: The ring buffer 2690 * @cpu: The per CPU buffer to get the number of overruns from 2691 */ 2692 unsigned long 2693 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2694 { 2695 struct ring_buffer_per_cpu *cpu_buffer; 2696 unsigned long ret; 2697 2698 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2699 return 0; 2700 2701 cpu_buffer = buffer->buffers[cpu]; 2702 ret = local_read(&cpu_buffer->commit_overrun); 2703 2704 return ret; 2705 } 2706 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2707 2708 /** 2709 * ring_buffer_entries - get the number of entries in a buffer 2710 * @buffer: The ring buffer 2711 * 2712 * Returns the total number of entries in the ring buffer 2713 * (all CPU entries) 2714 */ 2715 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2716 { 2717 struct ring_buffer_per_cpu *cpu_buffer; 2718 unsigned long entries = 0; 2719 int cpu; 2720 2721 /* if you care about this being correct, lock the buffer */ 2722 for_each_buffer_cpu(buffer, cpu) { 2723 cpu_buffer = buffer->buffers[cpu]; 2724 entries += rb_num_of_entries(cpu_buffer); 2725 } 2726 2727 return entries; 2728 } 2729 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2730 2731 /** 2732 * ring_buffer_overruns - get the number of overruns in buffer 2733 * @buffer: The ring buffer 2734 * 2735 * Returns the total number of overruns in the ring buffer 2736 * (all CPU entries) 2737 */ 2738 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2739 { 2740 struct ring_buffer_per_cpu *cpu_buffer; 2741 unsigned long overruns = 0; 2742 int cpu; 2743 2744 /* if you care about this being correct, lock the buffer */ 2745 for_each_buffer_cpu(buffer, cpu) { 2746 cpu_buffer = buffer->buffers[cpu]; 2747 overruns += local_read(&cpu_buffer->overrun); 2748 } 2749 2750 return overruns; 2751 } 2752 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2753 2754 static void rb_iter_reset(struct ring_buffer_iter *iter) 2755 { 2756 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2757 2758 /* Iterator usage is expected to have record disabled */ 2759 if (list_empty(&cpu_buffer->reader_page->list)) { 2760 iter->head_page = rb_set_head_page(cpu_buffer); 2761 if (unlikely(!iter->head_page)) 2762 return; 2763 iter->head = iter->head_page->read; 2764 } else { 2765 iter->head_page = cpu_buffer->reader_page; 2766 iter->head = cpu_buffer->reader_page->read; 2767 } 2768 if (iter->head) 2769 iter->read_stamp = cpu_buffer->read_stamp; 2770 else 2771 iter->read_stamp = iter->head_page->page->time_stamp; 2772 iter->cache_reader_page = cpu_buffer->reader_page; 2773 iter->cache_read = cpu_buffer->read; 2774 } 2775 2776 /** 2777 * ring_buffer_iter_reset - reset an iterator 2778 * @iter: The iterator to reset 2779 * 2780 * Resets the iterator, so that it will start from the beginning 2781 * again. 2782 */ 2783 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2784 { 2785 struct ring_buffer_per_cpu *cpu_buffer; 2786 unsigned long flags; 2787 2788 if (!iter) 2789 return; 2790 2791 cpu_buffer = iter->cpu_buffer; 2792 2793 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2794 rb_iter_reset(iter); 2795 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2796 } 2797 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2798 2799 /** 2800 * ring_buffer_iter_empty - check if an iterator has no more to read 2801 * @iter: The iterator to check 2802 */ 2803 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2804 { 2805 struct ring_buffer_per_cpu *cpu_buffer; 2806 2807 cpu_buffer = iter->cpu_buffer; 2808 2809 return iter->head_page == cpu_buffer->commit_page && 2810 iter->head == rb_commit_index(cpu_buffer); 2811 } 2812 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2813 2814 static void 2815 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2816 struct ring_buffer_event *event) 2817 { 2818 u64 delta; 2819 2820 switch (event->type_len) { 2821 case RINGBUF_TYPE_PADDING: 2822 return; 2823 2824 case RINGBUF_TYPE_TIME_EXTEND: 2825 delta = event->array[0]; 2826 delta <<= TS_SHIFT; 2827 delta += event->time_delta; 2828 cpu_buffer->read_stamp += delta; 2829 return; 2830 2831 case RINGBUF_TYPE_TIME_STAMP: 2832 /* FIXME: not implemented */ 2833 return; 2834 2835 case RINGBUF_TYPE_DATA: 2836 cpu_buffer->read_stamp += event->time_delta; 2837 return; 2838 2839 default: 2840 BUG(); 2841 } 2842 return; 2843 } 2844 2845 static void 2846 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2847 struct ring_buffer_event *event) 2848 { 2849 u64 delta; 2850 2851 switch (event->type_len) { 2852 case RINGBUF_TYPE_PADDING: 2853 return; 2854 2855 case RINGBUF_TYPE_TIME_EXTEND: 2856 delta = event->array[0]; 2857 delta <<= TS_SHIFT; 2858 delta += event->time_delta; 2859 iter->read_stamp += delta; 2860 return; 2861 2862 case RINGBUF_TYPE_TIME_STAMP: 2863 /* FIXME: not implemented */ 2864 return; 2865 2866 case RINGBUF_TYPE_DATA: 2867 iter->read_stamp += event->time_delta; 2868 return; 2869 2870 default: 2871 BUG(); 2872 } 2873 return; 2874 } 2875 2876 static struct buffer_page * 2877 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2878 { 2879 struct buffer_page *reader = NULL; 2880 unsigned long overwrite; 2881 unsigned long flags; 2882 int nr_loops = 0; 2883 int ret; 2884 2885 local_irq_save(flags); 2886 arch_spin_lock(&cpu_buffer->lock); 2887 2888 again: 2889 /* 2890 * This should normally only loop twice. But because the 2891 * start of the reader inserts an empty page, it causes 2892 * a case where we will loop three times. There should be no 2893 * reason to loop four times (that I know of). 2894 */ 2895 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 2896 reader = NULL; 2897 goto out; 2898 } 2899 2900 reader = cpu_buffer->reader_page; 2901 2902 /* If there's more to read, return this page */ 2903 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 2904 goto out; 2905 2906 /* Never should we have an index greater than the size */ 2907 if (RB_WARN_ON(cpu_buffer, 2908 cpu_buffer->reader_page->read > rb_page_size(reader))) 2909 goto out; 2910 2911 /* check if we caught up to the tail */ 2912 reader = NULL; 2913 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 2914 goto out; 2915 2916 /* 2917 * Reset the reader page to size zero. 2918 */ 2919 local_set(&cpu_buffer->reader_page->write, 0); 2920 local_set(&cpu_buffer->reader_page->entries, 0); 2921 local_set(&cpu_buffer->reader_page->page->commit, 0); 2922 cpu_buffer->reader_page->real_end = 0; 2923 2924 spin: 2925 /* 2926 * Splice the empty reader page into the list around the head. 2927 */ 2928 reader = rb_set_head_page(cpu_buffer); 2929 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 2930 cpu_buffer->reader_page->list.prev = reader->list.prev; 2931 2932 /* 2933 * cpu_buffer->pages just needs to point to the buffer, it 2934 * has no specific buffer page to point to. Lets move it out 2935 * of our way so we don't accidently swap it. 2936 */ 2937 cpu_buffer->pages = reader->list.prev; 2938 2939 /* The reader page will be pointing to the new head */ 2940 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2941 2942 /* 2943 * We want to make sure we read the overruns after we set up our 2944 * pointers to the next object. The writer side does a 2945 * cmpxchg to cross pages which acts as the mb on the writer 2946 * side. Note, the reader will constantly fail the swap 2947 * while the writer is updating the pointers, so this 2948 * guarantees that the overwrite recorded here is the one we 2949 * want to compare with the last_overrun. 2950 */ 2951 smp_mb(); 2952 overwrite = local_read(&(cpu_buffer->overrun)); 2953 2954 /* 2955 * Here's the tricky part. 2956 * 2957 * We need to move the pointer past the header page. 2958 * But we can only do that if a writer is not currently 2959 * moving it. The page before the header page has the 2960 * flag bit '1' set if it is pointing to the page we want. 2961 * but if the writer is in the process of moving it 2962 * than it will be '2' or already moved '0'. 2963 */ 2964 2965 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 2966 2967 /* 2968 * If we did not convert it, then we must try again. 2969 */ 2970 if (!ret) 2971 goto spin; 2972 2973 /* 2974 * Yeah! We succeeded in replacing the page. 2975 * 2976 * Now make the new head point back to the reader page. 2977 */ 2978 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 2979 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2980 2981 /* Finally update the reader page to the new head */ 2982 cpu_buffer->reader_page = reader; 2983 rb_reset_reader_page(cpu_buffer); 2984 2985 if (overwrite != cpu_buffer->last_overrun) { 2986 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 2987 cpu_buffer->last_overrun = overwrite; 2988 } 2989 2990 goto again; 2991 2992 out: 2993 arch_spin_unlock(&cpu_buffer->lock); 2994 local_irq_restore(flags); 2995 2996 return reader; 2997 } 2998 2999 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3000 { 3001 struct ring_buffer_event *event; 3002 struct buffer_page *reader; 3003 unsigned length; 3004 3005 reader = rb_get_reader_page(cpu_buffer); 3006 3007 /* This function should not be called when buffer is empty */ 3008 if (RB_WARN_ON(cpu_buffer, !reader)) 3009 return; 3010 3011 event = rb_reader_event(cpu_buffer); 3012 3013 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3014 cpu_buffer->read++; 3015 3016 rb_update_read_stamp(cpu_buffer, event); 3017 3018 length = rb_event_length(event); 3019 cpu_buffer->reader_page->read += length; 3020 } 3021 3022 static void rb_advance_iter(struct ring_buffer_iter *iter) 3023 { 3024 struct ring_buffer_per_cpu *cpu_buffer; 3025 struct ring_buffer_event *event; 3026 unsigned length; 3027 3028 cpu_buffer = iter->cpu_buffer; 3029 3030 /* 3031 * Check if we are at the end of the buffer. 3032 */ 3033 if (iter->head >= rb_page_size(iter->head_page)) { 3034 /* discarded commits can make the page empty */ 3035 if (iter->head_page == cpu_buffer->commit_page) 3036 return; 3037 rb_inc_iter(iter); 3038 return; 3039 } 3040 3041 event = rb_iter_head_event(iter); 3042 3043 length = rb_event_length(event); 3044 3045 /* 3046 * This should not be called to advance the header if we are 3047 * at the tail of the buffer. 3048 */ 3049 if (RB_WARN_ON(cpu_buffer, 3050 (iter->head_page == cpu_buffer->commit_page) && 3051 (iter->head + length > rb_commit_index(cpu_buffer)))) 3052 return; 3053 3054 rb_update_iter_read_stamp(iter, event); 3055 3056 iter->head += length; 3057 3058 /* check for end of page padding */ 3059 if ((iter->head >= rb_page_size(iter->head_page)) && 3060 (iter->head_page != cpu_buffer->commit_page)) 3061 rb_advance_iter(iter); 3062 } 3063 3064 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3065 { 3066 return cpu_buffer->lost_events; 3067 } 3068 3069 static struct ring_buffer_event * 3070 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3071 unsigned long *lost_events) 3072 { 3073 struct ring_buffer_event *event; 3074 struct buffer_page *reader; 3075 int nr_loops = 0; 3076 3077 again: 3078 /* 3079 * We repeat when a time extend is encountered. 3080 * Since the time extend is always attached to a data event, 3081 * we should never loop more than once. 3082 * (We never hit the following condition more than twice). 3083 */ 3084 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3085 return NULL; 3086 3087 reader = rb_get_reader_page(cpu_buffer); 3088 if (!reader) 3089 return NULL; 3090 3091 event = rb_reader_event(cpu_buffer); 3092 3093 switch (event->type_len) { 3094 case RINGBUF_TYPE_PADDING: 3095 if (rb_null_event(event)) 3096 RB_WARN_ON(cpu_buffer, 1); 3097 /* 3098 * Because the writer could be discarding every 3099 * event it creates (which would probably be bad) 3100 * if we were to go back to "again" then we may never 3101 * catch up, and will trigger the warn on, or lock 3102 * the box. Return the padding, and we will release 3103 * the current locks, and try again. 3104 */ 3105 return event; 3106 3107 case RINGBUF_TYPE_TIME_EXTEND: 3108 /* Internal data, OK to advance */ 3109 rb_advance_reader(cpu_buffer); 3110 goto again; 3111 3112 case RINGBUF_TYPE_TIME_STAMP: 3113 /* FIXME: not implemented */ 3114 rb_advance_reader(cpu_buffer); 3115 goto again; 3116 3117 case RINGBUF_TYPE_DATA: 3118 if (ts) { 3119 *ts = cpu_buffer->read_stamp + event->time_delta; 3120 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3121 cpu_buffer->cpu, ts); 3122 } 3123 if (lost_events) 3124 *lost_events = rb_lost_events(cpu_buffer); 3125 return event; 3126 3127 default: 3128 BUG(); 3129 } 3130 3131 return NULL; 3132 } 3133 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3134 3135 static struct ring_buffer_event * 3136 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3137 { 3138 struct ring_buffer *buffer; 3139 struct ring_buffer_per_cpu *cpu_buffer; 3140 struct ring_buffer_event *event; 3141 int nr_loops = 0; 3142 3143 cpu_buffer = iter->cpu_buffer; 3144 buffer = cpu_buffer->buffer; 3145 3146 /* 3147 * Check if someone performed a consuming read to 3148 * the buffer. A consuming read invalidates the iterator 3149 * and we need to reset the iterator in this case. 3150 */ 3151 if (unlikely(iter->cache_read != cpu_buffer->read || 3152 iter->cache_reader_page != cpu_buffer->reader_page)) 3153 rb_iter_reset(iter); 3154 3155 again: 3156 if (ring_buffer_iter_empty(iter)) 3157 return NULL; 3158 3159 /* 3160 * We repeat when a time extend is encountered. 3161 * Since the time extend is always attached to a data event, 3162 * we should never loop more than once. 3163 * (We never hit the following condition more than twice). 3164 */ 3165 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3166 return NULL; 3167 3168 if (rb_per_cpu_empty(cpu_buffer)) 3169 return NULL; 3170 3171 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3172 rb_inc_iter(iter); 3173 goto again; 3174 } 3175 3176 event = rb_iter_head_event(iter); 3177 3178 switch (event->type_len) { 3179 case RINGBUF_TYPE_PADDING: 3180 if (rb_null_event(event)) { 3181 rb_inc_iter(iter); 3182 goto again; 3183 } 3184 rb_advance_iter(iter); 3185 return event; 3186 3187 case RINGBUF_TYPE_TIME_EXTEND: 3188 /* Internal data, OK to advance */ 3189 rb_advance_iter(iter); 3190 goto again; 3191 3192 case RINGBUF_TYPE_TIME_STAMP: 3193 /* FIXME: not implemented */ 3194 rb_advance_iter(iter); 3195 goto again; 3196 3197 case RINGBUF_TYPE_DATA: 3198 if (ts) { 3199 *ts = iter->read_stamp + event->time_delta; 3200 ring_buffer_normalize_time_stamp(buffer, 3201 cpu_buffer->cpu, ts); 3202 } 3203 return event; 3204 3205 default: 3206 BUG(); 3207 } 3208 3209 return NULL; 3210 } 3211 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3212 3213 static inline int rb_ok_to_lock(void) 3214 { 3215 /* 3216 * If an NMI die dumps out the content of the ring buffer 3217 * do not grab locks. We also permanently disable the ring 3218 * buffer too. A one time deal is all you get from reading 3219 * the ring buffer from an NMI. 3220 */ 3221 if (likely(!in_nmi())) 3222 return 1; 3223 3224 tracing_off_permanent(); 3225 return 0; 3226 } 3227 3228 /** 3229 * ring_buffer_peek - peek at the next event to be read 3230 * @buffer: The ring buffer to read 3231 * @cpu: The cpu to peak at 3232 * @ts: The timestamp counter of this event. 3233 * @lost_events: a variable to store if events were lost (may be NULL) 3234 * 3235 * This will return the event that will be read next, but does 3236 * not consume the data. 3237 */ 3238 struct ring_buffer_event * 3239 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3240 unsigned long *lost_events) 3241 { 3242 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3243 struct ring_buffer_event *event; 3244 unsigned long flags; 3245 int dolock; 3246 3247 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3248 return NULL; 3249 3250 dolock = rb_ok_to_lock(); 3251 again: 3252 local_irq_save(flags); 3253 if (dolock) 3254 spin_lock(&cpu_buffer->reader_lock); 3255 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3256 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3257 rb_advance_reader(cpu_buffer); 3258 if (dolock) 3259 spin_unlock(&cpu_buffer->reader_lock); 3260 local_irq_restore(flags); 3261 3262 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3263 goto again; 3264 3265 return event; 3266 } 3267 3268 /** 3269 * ring_buffer_iter_peek - peek at the next event to be read 3270 * @iter: The ring buffer iterator 3271 * @ts: The timestamp counter of this event. 3272 * 3273 * This will return the event that will be read next, but does 3274 * not increment the iterator. 3275 */ 3276 struct ring_buffer_event * 3277 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3278 { 3279 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3280 struct ring_buffer_event *event; 3281 unsigned long flags; 3282 3283 again: 3284 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3285 event = rb_iter_peek(iter, ts); 3286 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3287 3288 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3289 goto again; 3290 3291 return event; 3292 } 3293 3294 /** 3295 * ring_buffer_consume - return an event and consume it 3296 * @buffer: The ring buffer to get the next event from 3297 * @cpu: the cpu to read the buffer from 3298 * @ts: a variable to store the timestamp (may be NULL) 3299 * @lost_events: a variable to store if events were lost (may be NULL) 3300 * 3301 * Returns the next event in the ring buffer, and that event is consumed. 3302 * Meaning, that sequential reads will keep returning a different event, 3303 * and eventually empty the ring buffer if the producer is slower. 3304 */ 3305 struct ring_buffer_event * 3306 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3307 unsigned long *lost_events) 3308 { 3309 struct ring_buffer_per_cpu *cpu_buffer; 3310 struct ring_buffer_event *event = NULL; 3311 unsigned long flags; 3312 int dolock; 3313 3314 dolock = rb_ok_to_lock(); 3315 3316 again: 3317 /* might be called in atomic */ 3318 preempt_disable(); 3319 3320 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3321 goto out; 3322 3323 cpu_buffer = buffer->buffers[cpu]; 3324 local_irq_save(flags); 3325 if (dolock) 3326 spin_lock(&cpu_buffer->reader_lock); 3327 3328 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3329 if (event) { 3330 cpu_buffer->lost_events = 0; 3331 rb_advance_reader(cpu_buffer); 3332 } 3333 3334 if (dolock) 3335 spin_unlock(&cpu_buffer->reader_lock); 3336 local_irq_restore(flags); 3337 3338 out: 3339 preempt_enable(); 3340 3341 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3342 goto again; 3343 3344 return event; 3345 } 3346 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3347 3348 /** 3349 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3350 * @buffer: The ring buffer to read from 3351 * @cpu: The cpu buffer to iterate over 3352 * 3353 * This performs the initial preparations necessary to iterate 3354 * through the buffer. Memory is allocated, buffer recording 3355 * is disabled, and the iterator pointer is returned to the caller. 3356 * 3357 * Disabling buffer recordng prevents the reading from being 3358 * corrupted. This is not a consuming read, so a producer is not 3359 * expected. 3360 * 3361 * After a sequence of ring_buffer_read_prepare calls, the user is 3362 * expected to make at least one call to ring_buffer_prepare_sync. 3363 * Afterwards, ring_buffer_read_start is invoked to get things going 3364 * for real. 3365 * 3366 * This overall must be paired with ring_buffer_finish. 3367 */ 3368 struct ring_buffer_iter * 3369 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3370 { 3371 struct ring_buffer_per_cpu *cpu_buffer; 3372 struct ring_buffer_iter *iter; 3373 3374 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3375 return NULL; 3376 3377 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3378 if (!iter) 3379 return NULL; 3380 3381 cpu_buffer = buffer->buffers[cpu]; 3382 3383 iter->cpu_buffer = cpu_buffer; 3384 3385 atomic_inc(&cpu_buffer->record_disabled); 3386 3387 return iter; 3388 } 3389 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3390 3391 /** 3392 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3393 * 3394 * All previously invoked ring_buffer_read_prepare calls to prepare 3395 * iterators will be synchronized. Afterwards, read_buffer_read_start 3396 * calls on those iterators are allowed. 3397 */ 3398 void 3399 ring_buffer_read_prepare_sync(void) 3400 { 3401 synchronize_sched(); 3402 } 3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3404 3405 /** 3406 * ring_buffer_read_start - start a non consuming read of the buffer 3407 * @iter: The iterator returned by ring_buffer_read_prepare 3408 * 3409 * This finalizes the startup of an iteration through the buffer. 3410 * The iterator comes from a call to ring_buffer_read_prepare and 3411 * an intervening ring_buffer_read_prepare_sync must have been 3412 * performed. 3413 * 3414 * Must be paired with ring_buffer_finish. 3415 */ 3416 void 3417 ring_buffer_read_start(struct ring_buffer_iter *iter) 3418 { 3419 struct ring_buffer_per_cpu *cpu_buffer; 3420 unsigned long flags; 3421 3422 if (!iter) 3423 return; 3424 3425 cpu_buffer = iter->cpu_buffer; 3426 3427 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3428 arch_spin_lock(&cpu_buffer->lock); 3429 rb_iter_reset(iter); 3430 arch_spin_unlock(&cpu_buffer->lock); 3431 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3432 } 3433 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3434 3435 /** 3436 * ring_buffer_finish - finish reading the iterator of the buffer 3437 * @iter: The iterator retrieved by ring_buffer_start 3438 * 3439 * This re-enables the recording to the buffer, and frees the 3440 * iterator. 3441 */ 3442 void 3443 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3444 { 3445 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3446 3447 atomic_dec(&cpu_buffer->record_disabled); 3448 kfree(iter); 3449 } 3450 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3451 3452 /** 3453 * ring_buffer_read - read the next item in the ring buffer by the iterator 3454 * @iter: The ring buffer iterator 3455 * @ts: The time stamp of the event read. 3456 * 3457 * This reads the next event in the ring buffer and increments the iterator. 3458 */ 3459 struct ring_buffer_event * 3460 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3461 { 3462 struct ring_buffer_event *event; 3463 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3464 unsigned long flags; 3465 3466 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3467 again: 3468 event = rb_iter_peek(iter, ts); 3469 if (!event) 3470 goto out; 3471 3472 if (event->type_len == RINGBUF_TYPE_PADDING) 3473 goto again; 3474 3475 rb_advance_iter(iter); 3476 out: 3477 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3478 3479 return event; 3480 } 3481 EXPORT_SYMBOL_GPL(ring_buffer_read); 3482 3483 /** 3484 * ring_buffer_size - return the size of the ring buffer (in bytes) 3485 * @buffer: The ring buffer. 3486 */ 3487 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3488 { 3489 return BUF_PAGE_SIZE * buffer->pages; 3490 } 3491 EXPORT_SYMBOL_GPL(ring_buffer_size); 3492 3493 static void 3494 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3495 { 3496 rb_head_page_deactivate(cpu_buffer); 3497 3498 cpu_buffer->head_page 3499 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3500 local_set(&cpu_buffer->head_page->write, 0); 3501 local_set(&cpu_buffer->head_page->entries, 0); 3502 local_set(&cpu_buffer->head_page->page->commit, 0); 3503 3504 cpu_buffer->head_page->read = 0; 3505 3506 cpu_buffer->tail_page = cpu_buffer->head_page; 3507 cpu_buffer->commit_page = cpu_buffer->head_page; 3508 3509 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3510 local_set(&cpu_buffer->reader_page->write, 0); 3511 local_set(&cpu_buffer->reader_page->entries, 0); 3512 local_set(&cpu_buffer->reader_page->page->commit, 0); 3513 cpu_buffer->reader_page->read = 0; 3514 3515 local_set(&cpu_buffer->commit_overrun, 0); 3516 local_set(&cpu_buffer->overrun, 0); 3517 local_set(&cpu_buffer->entries, 0); 3518 local_set(&cpu_buffer->committing, 0); 3519 local_set(&cpu_buffer->commits, 0); 3520 cpu_buffer->read = 0; 3521 3522 cpu_buffer->write_stamp = 0; 3523 cpu_buffer->read_stamp = 0; 3524 3525 cpu_buffer->lost_events = 0; 3526 cpu_buffer->last_overrun = 0; 3527 3528 rb_head_page_activate(cpu_buffer); 3529 } 3530 3531 /** 3532 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3533 * @buffer: The ring buffer to reset a per cpu buffer of 3534 * @cpu: The CPU buffer to be reset 3535 */ 3536 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3537 { 3538 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3539 unsigned long flags; 3540 3541 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3542 return; 3543 3544 atomic_inc(&cpu_buffer->record_disabled); 3545 3546 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3547 3548 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3549 goto out; 3550 3551 arch_spin_lock(&cpu_buffer->lock); 3552 3553 rb_reset_cpu(cpu_buffer); 3554 3555 arch_spin_unlock(&cpu_buffer->lock); 3556 3557 out: 3558 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3559 3560 atomic_dec(&cpu_buffer->record_disabled); 3561 } 3562 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3563 3564 /** 3565 * ring_buffer_reset - reset a ring buffer 3566 * @buffer: The ring buffer to reset all cpu buffers 3567 */ 3568 void ring_buffer_reset(struct ring_buffer *buffer) 3569 { 3570 int cpu; 3571 3572 for_each_buffer_cpu(buffer, cpu) 3573 ring_buffer_reset_cpu(buffer, cpu); 3574 } 3575 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3576 3577 /** 3578 * rind_buffer_empty - is the ring buffer empty? 3579 * @buffer: The ring buffer to test 3580 */ 3581 int ring_buffer_empty(struct ring_buffer *buffer) 3582 { 3583 struct ring_buffer_per_cpu *cpu_buffer; 3584 unsigned long flags; 3585 int dolock; 3586 int cpu; 3587 int ret; 3588 3589 dolock = rb_ok_to_lock(); 3590 3591 /* yes this is racy, but if you don't like the race, lock the buffer */ 3592 for_each_buffer_cpu(buffer, cpu) { 3593 cpu_buffer = buffer->buffers[cpu]; 3594 local_irq_save(flags); 3595 if (dolock) 3596 spin_lock(&cpu_buffer->reader_lock); 3597 ret = rb_per_cpu_empty(cpu_buffer); 3598 if (dolock) 3599 spin_unlock(&cpu_buffer->reader_lock); 3600 local_irq_restore(flags); 3601 3602 if (!ret) 3603 return 0; 3604 } 3605 3606 return 1; 3607 } 3608 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3609 3610 /** 3611 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3612 * @buffer: The ring buffer 3613 * @cpu: The CPU buffer to test 3614 */ 3615 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3616 { 3617 struct ring_buffer_per_cpu *cpu_buffer; 3618 unsigned long flags; 3619 int dolock; 3620 int ret; 3621 3622 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3623 return 1; 3624 3625 dolock = rb_ok_to_lock(); 3626 3627 cpu_buffer = buffer->buffers[cpu]; 3628 local_irq_save(flags); 3629 if (dolock) 3630 spin_lock(&cpu_buffer->reader_lock); 3631 ret = rb_per_cpu_empty(cpu_buffer); 3632 if (dolock) 3633 spin_unlock(&cpu_buffer->reader_lock); 3634 local_irq_restore(flags); 3635 3636 return ret; 3637 } 3638 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3639 3640 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3641 /** 3642 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3643 * @buffer_a: One buffer to swap with 3644 * @buffer_b: The other buffer to swap with 3645 * 3646 * This function is useful for tracers that want to take a "snapshot" 3647 * of a CPU buffer and has another back up buffer lying around. 3648 * it is expected that the tracer handles the cpu buffer not being 3649 * used at the moment. 3650 */ 3651 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3652 struct ring_buffer *buffer_b, int cpu) 3653 { 3654 struct ring_buffer_per_cpu *cpu_buffer_a; 3655 struct ring_buffer_per_cpu *cpu_buffer_b; 3656 int ret = -EINVAL; 3657 3658 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3659 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3660 goto out; 3661 3662 /* At least make sure the two buffers are somewhat the same */ 3663 if (buffer_a->pages != buffer_b->pages) 3664 goto out; 3665 3666 ret = -EAGAIN; 3667 3668 if (ring_buffer_flags != RB_BUFFERS_ON) 3669 goto out; 3670 3671 if (atomic_read(&buffer_a->record_disabled)) 3672 goto out; 3673 3674 if (atomic_read(&buffer_b->record_disabled)) 3675 goto out; 3676 3677 cpu_buffer_a = buffer_a->buffers[cpu]; 3678 cpu_buffer_b = buffer_b->buffers[cpu]; 3679 3680 if (atomic_read(&cpu_buffer_a->record_disabled)) 3681 goto out; 3682 3683 if (atomic_read(&cpu_buffer_b->record_disabled)) 3684 goto out; 3685 3686 /* 3687 * We can't do a synchronize_sched here because this 3688 * function can be called in atomic context. 3689 * Normally this will be called from the same CPU as cpu. 3690 * If not it's up to the caller to protect this. 3691 */ 3692 atomic_inc(&cpu_buffer_a->record_disabled); 3693 atomic_inc(&cpu_buffer_b->record_disabled); 3694 3695 ret = -EBUSY; 3696 if (local_read(&cpu_buffer_a->committing)) 3697 goto out_dec; 3698 if (local_read(&cpu_buffer_b->committing)) 3699 goto out_dec; 3700 3701 buffer_a->buffers[cpu] = cpu_buffer_b; 3702 buffer_b->buffers[cpu] = cpu_buffer_a; 3703 3704 cpu_buffer_b->buffer = buffer_a; 3705 cpu_buffer_a->buffer = buffer_b; 3706 3707 ret = 0; 3708 3709 out_dec: 3710 atomic_dec(&cpu_buffer_a->record_disabled); 3711 atomic_dec(&cpu_buffer_b->record_disabled); 3712 out: 3713 return ret; 3714 } 3715 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3716 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3717 3718 /** 3719 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3720 * @buffer: the buffer to allocate for. 3721 * 3722 * This function is used in conjunction with ring_buffer_read_page. 3723 * When reading a full page from the ring buffer, these functions 3724 * can be used to speed up the process. The calling function should 3725 * allocate a few pages first with this function. Then when it 3726 * needs to get pages from the ring buffer, it passes the result 3727 * of this function into ring_buffer_read_page, which will swap 3728 * the page that was allocated, with the read page of the buffer. 3729 * 3730 * Returns: 3731 * The page allocated, or NULL on error. 3732 */ 3733 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer) 3734 { 3735 struct buffer_data_page *bpage; 3736 unsigned long addr; 3737 3738 addr = __get_free_page(GFP_KERNEL); 3739 if (!addr) 3740 return NULL; 3741 3742 bpage = (void *)addr; 3743 3744 rb_init_page(bpage); 3745 3746 return bpage; 3747 } 3748 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3749 3750 /** 3751 * ring_buffer_free_read_page - free an allocated read page 3752 * @buffer: the buffer the page was allocate for 3753 * @data: the page to free 3754 * 3755 * Free a page allocated from ring_buffer_alloc_read_page. 3756 */ 3757 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3758 { 3759 free_page((unsigned long)data); 3760 } 3761 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3762 3763 /** 3764 * ring_buffer_read_page - extract a page from the ring buffer 3765 * @buffer: buffer to extract from 3766 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3767 * @len: amount to extract 3768 * @cpu: the cpu of the buffer to extract 3769 * @full: should the extraction only happen when the page is full. 3770 * 3771 * This function will pull out a page from the ring buffer and consume it. 3772 * @data_page must be the address of the variable that was returned 3773 * from ring_buffer_alloc_read_page. This is because the page might be used 3774 * to swap with a page in the ring buffer. 3775 * 3776 * for example: 3777 * rpage = ring_buffer_alloc_read_page(buffer); 3778 * if (!rpage) 3779 * return error; 3780 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3781 * if (ret >= 0) 3782 * process_page(rpage, ret); 3783 * 3784 * When @full is set, the function will not return true unless 3785 * the writer is off the reader page. 3786 * 3787 * Note: it is up to the calling functions to handle sleeps and wakeups. 3788 * The ring buffer can be used anywhere in the kernel and can not 3789 * blindly call wake_up. The layer that uses the ring buffer must be 3790 * responsible for that. 3791 * 3792 * Returns: 3793 * >=0 if data has been transferred, returns the offset of consumed data. 3794 * <0 if no data has been transferred. 3795 */ 3796 int ring_buffer_read_page(struct ring_buffer *buffer, 3797 void **data_page, size_t len, int cpu, int full) 3798 { 3799 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3800 struct ring_buffer_event *event; 3801 struct buffer_data_page *bpage; 3802 struct buffer_page *reader; 3803 unsigned long missed_events; 3804 unsigned long flags; 3805 unsigned int commit; 3806 unsigned int read; 3807 u64 save_timestamp; 3808 int ret = -1; 3809 3810 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3811 goto out; 3812 3813 /* 3814 * If len is not big enough to hold the page header, then 3815 * we can not copy anything. 3816 */ 3817 if (len <= BUF_PAGE_HDR_SIZE) 3818 goto out; 3819 3820 len -= BUF_PAGE_HDR_SIZE; 3821 3822 if (!data_page) 3823 goto out; 3824 3825 bpage = *data_page; 3826 if (!bpage) 3827 goto out; 3828 3829 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3830 3831 reader = rb_get_reader_page(cpu_buffer); 3832 if (!reader) 3833 goto out_unlock; 3834 3835 event = rb_reader_event(cpu_buffer); 3836 3837 read = reader->read; 3838 commit = rb_page_commit(reader); 3839 3840 /* Check if any events were dropped */ 3841 missed_events = cpu_buffer->lost_events; 3842 3843 /* 3844 * If this page has been partially read or 3845 * if len is not big enough to read the rest of the page or 3846 * a writer is still on the page, then 3847 * we must copy the data from the page to the buffer. 3848 * Otherwise, we can simply swap the page with the one passed in. 3849 */ 3850 if (read || (len < (commit - read)) || 3851 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3852 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3853 unsigned int rpos = read; 3854 unsigned int pos = 0; 3855 unsigned int size; 3856 3857 if (full) 3858 goto out_unlock; 3859 3860 if (len > (commit - read)) 3861 len = (commit - read); 3862 3863 /* Always keep the time extend and data together */ 3864 size = rb_event_ts_length(event); 3865 3866 if (len < size) 3867 goto out_unlock; 3868 3869 /* save the current timestamp, since the user will need it */ 3870 save_timestamp = cpu_buffer->read_stamp; 3871 3872 /* Need to copy one event at a time */ 3873 do { 3874 /* We need the size of one event, because 3875 * rb_advance_reader only advances by one event, 3876 * whereas rb_event_ts_length may include the size of 3877 * one or two events. 3878 * We have already ensured there's enough space if this 3879 * is a time extend. */ 3880 size = rb_event_length(event); 3881 memcpy(bpage->data + pos, rpage->data + rpos, size); 3882 3883 len -= size; 3884 3885 rb_advance_reader(cpu_buffer); 3886 rpos = reader->read; 3887 pos += size; 3888 3889 if (rpos >= commit) 3890 break; 3891 3892 event = rb_reader_event(cpu_buffer); 3893 /* Always keep the time extend and data together */ 3894 size = rb_event_ts_length(event); 3895 } while (len >= size); 3896 3897 /* update bpage */ 3898 local_set(&bpage->commit, pos); 3899 bpage->time_stamp = save_timestamp; 3900 3901 /* we copied everything to the beginning */ 3902 read = 0; 3903 } else { 3904 /* update the entry counter */ 3905 cpu_buffer->read += rb_page_entries(reader); 3906 3907 /* swap the pages */ 3908 rb_init_page(bpage); 3909 bpage = reader->page; 3910 reader->page = *data_page; 3911 local_set(&reader->write, 0); 3912 local_set(&reader->entries, 0); 3913 reader->read = 0; 3914 *data_page = bpage; 3915 3916 /* 3917 * Use the real_end for the data size, 3918 * This gives us a chance to store the lost events 3919 * on the page. 3920 */ 3921 if (reader->real_end) 3922 local_set(&bpage->commit, reader->real_end); 3923 } 3924 ret = read; 3925 3926 cpu_buffer->lost_events = 0; 3927 3928 commit = local_read(&bpage->commit); 3929 /* 3930 * Set a flag in the commit field if we lost events 3931 */ 3932 if (missed_events) { 3933 /* If there is room at the end of the page to save the 3934 * missed events, then record it there. 3935 */ 3936 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 3937 memcpy(&bpage->data[commit], &missed_events, 3938 sizeof(missed_events)); 3939 local_add(RB_MISSED_STORED, &bpage->commit); 3940 commit += sizeof(missed_events); 3941 } 3942 local_add(RB_MISSED_EVENTS, &bpage->commit); 3943 } 3944 3945 /* 3946 * This page may be off to user land. Zero it out here. 3947 */ 3948 if (commit < BUF_PAGE_SIZE) 3949 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 3950 3951 out_unlock: 3952 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3953 3954 out: 3955 return ret; 3956 } 3957 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 3958 3959 #ifdef CONFIG_TRACING 3960 static ssize_t 3961 rb_simple_read(struct file *filp, char __user *ubuf, 3962 size_t cnt, loff_t *ppos) 3963 { 3964 unsigned long *p = filp->private_data; 3965 char buf[64]; 3966 int r; 3967 3968 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 3969 r = sprintf(buf, "permanently disabled\n"); 3970 else 3971 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 3972 3973 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 3974 } 3975 3976 static ssize_t 3977 rb_simple_write(struct file *filp, const char __user *ubuf, 3978 size_t cnt, loff_t *ppos) 3979 { 3980 unsigned long *p = filp->private_data; 3981 char buf[64]; 3982 unsigned long val; 3983 int ret; 3984 3985 if (cnt >= sizeof(buf)) 3986 return -EINVAL; 3987 3988 if (copy_from_user(&buf, ubuf, cnt)) 3989 return -EFAULT; 3990 3991 buf[cnt] = 0; 3992 3993 ret = strict_strtoul(buf, 10, &val); 3994 if (ret < 0) 3995 return ret; 3996 3997 if (val) 3998 set_bit(RB_BUFFERS_ON_BIT, p); 3999 else 4000 clear_bit(RB_BUFFERS_ON_BIT, p); 4001 4002 (*ppos)++; 4003 4004 return cnt; 4005 } 4006 4007 static const struct file_operations rb_simple_fops = { 4008 .open = tracing_open_generic, 4009 .read = rb_simple_read, 4010 .write = rb_simple_write, 4011 .llseek = default_llseek, 4012 }; 4013 4014 4015 static __init int rb_init_debugfs(void) 4016 { 4017 struct dentry *d_tracer; 4018 4019 d_tracer = tracing_init_dentry(); 4020 4021 trace_create_file("tracing_on", 0644, d_tracer, 4022 &ring_buffer_flags, &rb_simple_fops); 4023 4024 return 0; 4025 } 4026 4027 fs_initcall(rb_init_debugfs); 4028 #endif 4029 4030 #ifdef CONFIG_HOTPLUG_CPU 4031 static int rb_cpu_notify(struct notifier_block *self, 4032 unsigned long action, void *hcpu) 4033 { 4034 struct ring_buffer *buffer = 4035 container_of(self, struct ring_buffer, cpu_notify); 4036 long cpu = (long)hcpu; 4037 4038 switch (action) { 4039 case CPU_UP_PREPARE: 4040 case CPU_UP_PREPARE_FROZEN: 4041 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4042 return NOTIFY_OK; 4043 4044 buffer->buffers[cpu] = 4045 rb_allocate_cpu_buffer(buffer, cpu); 4046 if (!buffer->buffers[cpu]) { 4047 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4048 cpu); 4049 return NOTIFY_OK; 4050 } 4051 smp_wmb(); 4052 cpumask_set_cpu(cpu, buffer->cpumask); 4053 break; 4054 case CPU_DOWN_PREPARE: 4055 case CPU_DOWN_PREPARE_FROZEN: 4056 /* 4057 * Do nothing. 4058 * If we were to free the buffer, then the user would 4059 * lose any trace that was in the buffer. 4060 */ 4061 break; 4062 default: 4063 break; 4064 } 4065 return NOTIFY_OK; 4066 } 4067 #endif 4068