1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline int rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 /* 358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 359 * this issue out. 360 */ 361 static void free_buffer_page(struct buffer_page *bpage) 362 { 363 free_page((unsigned long)bpage->page); 364 kfree(bpage); 365 } 366 367 /* 368 * We need to fit the time_stamp delta into 27 bits. 369 */ 370 static inline int test_time_stamp(u64 delta) 371 { 372 if (delta & TS_DELTA_TEST) 373 return 1; 374 return 0; 375 } 376 377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 378 379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 381 382 int ring_buffer_print_page_header(struct trace_seq *s) 383 { 384 struct buffer_data_page field; 385 386 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 387 "offset:0;\tsize:%u;\tsigned:%u;\n", 388 (unsigned int)sizeof(field.time_stamp), 389 (unsigned int)is_signed_type(u64)); 390 391 trace_seq_printf(s, "\tfield: local_t commit;\t" 392 "offset:%u;\tsize:%u;\tsigned:%u;\n", 393 (unsigned int)offsetof(typeof(field), commit), 394 (unsigned int)sizeof(field.commit), 395 (unsigned int)is_signed_type(long)); 396 397 trace_seq_printf(s, "\tfield: int overwrite;\t" 398 "offset:%u;\tsize:%u;\tsigned:%u;\n", 399 (unsigned int)offsetof(typeof(field), commit), 400 1, 401 (unsigned int)is_signed_type(long)); 402 403 trace_seq_printf(s, "\tfield: char data;\t" 404 "offset:%u;\tsize:%u;\tsigned:%u;\n", 405 (unsigned int)offsetof(typeof(field), data), 406 (unsigned int)BUF_PAGE_SIZE, 407 (unsigned int)is_signed_type(char)); 408 409 return !trace_seq_has_overflowed(s); 410 } 411 412 struct rb_irq_work { 413 struct irq_work work; 414 wait_queue_head_t waiters; 415 wait_queue_head_t full_waiters; 416 long wait_index; 417 bool waiters_pending; 418 bool full_waiters_pending; 419 bool wakeup_full; 420 }; 421 422 /* 423 * Structure to hold event state and handle nested events. 424 */ 425 struct rb_event_info { 426 u64 ts; 427 u64 delta; 428 u64 before; 429 u64 after; 430 unsigned long length; 431 struct buffer_page *tail_page; 432 int add_timestamp; 433 }; 434 435 /* 436 * Used for the add_timestamp 437 * NONE 438 * EXTEND - wants a time extend 439 * ABSOLUTE - the buffer requests all events to have absolute time stamps 440 * FORCE - force a full time stamp. 441 */ 442 enum { 443 RB_ADD_STAMP_NONE = 0, 444 RB_ADD_STAMP_EXTEND = BIT(1), 445 RB_ADD_STAMP_ABSOLUTE = BIT(2), 446 RB_ADD_STAMP_FORCE = BIT(3) 447 }; 448 /* 449 * Used for which event context the event is in. 450 * TRANSITION = 0 451 * NMI = 1 452 * IRQ = 2 453 * SOFTIRQ = 3 454 * NORMAL = 4 455 * 456 * See trace_recursive_lock() comment below for more details. 457 */ 458 enum { 459 RB_CTX_TRANSITION, 460 RB_CTX_NMI, 461 RB_CTX_IRQ, 462 RB_CTX_SOFTIRQ, 463 RB_CTX_NORMAL, 464 RB_CTX_MAX 465 }; 466 467 #if BITS_PER_LONG == 32 468 #define RB_TIME_32 469 #endif 470 471 /* To test on 64 bit machines */ 472 //#define RB_TIME_32 473 474 #ifdef RB_TIME_32 475 476 struct rb_time_struct { 477 local_t cnt; 478 local_t top; 479 local_t bottom; 480 local_t msb; 481 }; 482 #else 483 #include <asm/local64.h> 484 struct rb_time_struct { 485 local64_t time; 486 }; 487 #endif 488 typedef struct rb_time_struct rb_time_t; 489 490 #define MAX_NEST 5 491 492 /* 493 * head_page == tail_page && head == tail then buffer is empty. 494 */ 495 struct ring_buffer_per_cpu { 496 int cpu; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 struct trace_buffer *buffer; 500 raw_spinlock_t reader_lock; /* serialize readers */ 501 arch_spinlock_t lock; 502 struct lock_class_key lock_key; 503 struct buffer_data_page *free_page; 504 unsigned long nr_pages; 505 unsigned int current_context; 506 struct list_head *pages; 507 struct buffer_page *head_page; /* read from head */ 508 struct buffer_page *tail_page; /* write to tail */ 509 struct buffer_page *commit_page; /* committed pages */ 510 struct buffer_page *reader_page; 511 unsigned long lost_events; 512 unsigned long last_overrun; 513 unsigned long nest; 514 local_t entries_bytes; 515 local_t entries; 516 local_t overrun; 517 local_t commit_overrun; 518 local_t dropped_events; 519 local_t committing; 520 local_t commits; 521 local_t pages_touched; 522 local_t pages_read; 523 long last_pages_touch; 524 size_t shortest_full; 525 unsigned long read; 526 unsigned long read_bytes; 527 rb_time_t write_stamp; 528 rb_time_t before_stamp; 529 u64 event_stamp[MAX_NEST]; 530 u64 read_stamp; 531 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 532 long nr_pages_to_update; 533 struct list_head new_pages; /* new pages to add */ 534 struct work_struct update_pages_work; 535 struct completion update_done; 536 537 struct rb_irq_work irq_work; 538 }; 539 540 struct trace_buffer { 541 unsigned flags; 542 int cpus; 543 atomic_t record_disabled; 544 cpumask_var_t cpumask; 545 546 struct lock_class_key *reader_lock_key; 547 548 struct mutex mutex; 549 550 struct ring_buffer_per_cpu **buffers; 551 552 struct hlist_node node; 553 u64 (*clock)(void); 554 555 struct rb_irq_work irq_work; 556 bool time_stamp_abs; 557 }; 558 559 struct ring_buffer_iter { 560 struct ring_buffer_per_cpu *cpu_buffer; 561 unsigned long head; 562 unsigned long next_event; 563 struct buffer_page *head_page; 564 struct buffer_page *cache_reader_page; 565 unsigned long cache_read; 566 u64 read_stamp; 567 u64 page_stamp; 568 struct ring_buffer_event *event; 569 int missed_events; 570 }; 571 572 #ifdef RB_TIME_32 573 574 /* 575 * On 32 bit machines, local64_t is very expensive. As the ring 576 * buffer doesn't need all the features of a true 64 bit atomic, 577 * on 32 bit, it uses these functions (64 still uses local64_t). 578 * 579 * For the ring buffer, 64 bit required operations for the time is 580 * the following: 581 * 582 * - Reads may fail if it interrupted a modification of the time stamp. 583 * It will succeed if it did not interrupt another write even if 584 * the read itself is interrupted by a write. 585 * It returns whether it was successful or not. 586 * 587 * - Writes always succeed and will overwrite other writes and writes 588 * that were done by events interrupting the current write. 589 * 590 * - A write followed by a read of the same time stamp will always succeed, 591 * but may not contain the same value. 592 * 593 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 594 * Other than that, it acts like a normal cmpxchg. 595 * 596 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 597 * (bottom being the least significant 30 bits of the 60 bit time stamp). 598 * 599 * The two most significant bits of each half holds a 2 bit counter (0-3). 600 * Each update will increment this counter by one. 601 * When reading the top and bottom, if the two counter bits match then the 602 * top and bottom together make a valid 60 bit number. 603 */ 604 #define RB_TIME_SHIFT 30 605 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 606 #define RB_TIME_MSB_SHIFT 60 607 608 static inline int rb_time_cnt(unsigned long val) 609 { 610 return (val >> RB_TIME_SHIFT) & 3; 611 } 612 613 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 614 { 615 u64 val; 616 617 val = top & RB_TIME_VAL_MASK; 618 val <<= RB_TIME_SHIFT; 619 val |= bottom & RB_TIME_VAL_MASK; 620 621 return val; 622 } 623 624 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 625 { 626 unsigned long top, bottom, msb; 627 unsigned long c; 628 629 /* 630 * If the read is interrupted by a write, then the cnt will 631 * be different. Loop until both top and bottom have been read 632 * without interruption. 633 */ 634 do { 635 c = local_read(&t->cnt); 636 top = local_read(&t->top); 637 bottom = local_read(&t->bottom); 638 msb = local_read(&t->msb); 639 } while (c != local_read(&t->cnt)); 640 641 *cnt = rb_time_cnt(top); 642 643 /* If top and bottom counts don't match, this interrupted a write */ 644 if (*cnt != rb_time_cnt(bottom)) 645 return false; 646 647 /* The shift to msb will lose its cnt bits */ 648 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 649 return true; 650 } 651 652 static bool rb_time_read(rb_time_t *t, u64 *ret) 653 { 654 unsigned long cnt; 655 656 return __rb_time_read(t, ret, &cnt); 657 } 658 659 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 660 { 661 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 662 } 663 664 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 665 unsigned long *msb) 666 { 667 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 668 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 669 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 670 } 671 672 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 673 { 674 val = rb_time_val_cnt(val, cnt); 675 local_set(t, val); 676 } 677 678 static void rb_time_set(rb_time_t *t, u64 val) 679 { 680 unsigned long cnt, top, bottom, msb; 681 682 rb_time_split(val, &top, &bottom, &msb); 683 684 /* Writes always succeed with a valid number even if it gets interrupted. */ 685 do { 686 cnt = local_inc_return(&t->cnt); 687 rb_time_val_set(&t->top, top, cnt); 688 rb_time_val_set(&t->bottom, bottom, cnt); 689 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 690 } while (cnt != local_read(&t->cnt)); 691 } 692 693 static inline bool 694 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 695 { 696 unsigned long ret; 697 698 ret = local_cmpxchg(l, expect, set); 699 return ret == expect; 700 } 701 702 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 703 { 704 unsigned long cnt, top, bottom, msb; 705 unsigned long cnt2, top2, bottom2, msb2; 706 u64 val; 707 708 /* The cmpxchg always fails if it interrupted an update */ 709 if (!__rb_time_read(t, &val, &cnt2)) 710 return false; 711 712 if (val != expect) 713 return false; 714 715 cnt = local_read(&t->cnt); 716 if ((cnt & 3) != cnt2) 717 return false; 718 719 cnt2 = cnt + 1; 720 721 rb_time_split(val, &top, &bottom, &msb); 722 top = rb_time_val_cnt(top, cnt); 723 bottom = rb_time_val_cnt(bottom, cnt); 724 725 rb_time_split(set, &top2, &bottom2, &msb2); 726 top2 = rb_time_val_cnt(top2, cnt2); 727 bottom2 = rb_time_val_cnt(bottom2, cnt2); 728 729 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 730 return false; 731 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2)) 732 return false; 733 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 734 return false; 735 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 736 return false; 737 return true; 738 } 739 740 #else /* 64 bits */ 741 742 /* local64_t always succeeds */ 743 744 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 745 { 746 *ret = local64_read(&t->time); 747 return true; 748 } 749 static void rb_time_set(rb_time_t *t, u64 val) 750 { 751 local64_set(&t->time, val); 752 } 753 754 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 755 { 756 u64 val; 757 val = local64_cmpxchg(&t->time, expect, set); 758 return val == expect; 759 } 760 #endif 761 762 /* 763 * Enable this to make sure that the event passed to 764 * ring_buffer_event_time_stamp() is not committed and also 765 * is on the buffer that it passed in. 766 */ 767 //#define RB_VERIFY_EVENT 768 #ifdef RB_VERIFY_EVENT 769 static struct list_head *rb_list_head(struct list_head *list); 770 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 771 void *event) 772 { 773 struct buffer_page *page = cpu_buffer->commit_page; 774 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 775 struct list_head *next; 776 long commit, write; 777 unsigned long addr = (unsigned long)event; 778 bool done = false; 779 int stop = 0; 780 781 /* Make sure the event exists and is not committed yet */ 782 do { 783 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 784 done = true; 785 commit = local_read(&page->page->commit); 786 write = local_read(&page->write); 787 if (addr >= (unsigned long)&page->page->data[commit] && 788 addr < (unsigned long)&page->page->data[write]) 789 return; 790 791 next = rb_list_head(page->list.next); 792 page = list_entry(next, struct buffer_page, list); 793 } while (!done); 794 WARN_ON_ONCE(1); 795 } 796 #else 797 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 798 void *event) 799 { 800 } 801 #endif 802 803 /* 804 * The absolute time stamp drops the 5 MSBs and some clocks may 805 * require them. The rb_fix_abs_ts() will take a previous full 806 * time stamp, and add the 5 MSB of that time stamp on to the 807 * saved absolute time stamp. Then they are compared in case of 808 * the unlikely event that the latest time stamp incremented 809 * the 5 MSB. 810 */ 811 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 812 { 813 if (save_ts & TS_MSB) { 814 abs |= save_ts & TS_MSB; 815 /* Check for overflow */ 816 if (unlikely(abs < save_ts)) 817 abs += 1ULL << 59; 818 } 819 return abs; 820 } 821 822 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 823 824 /** 825 * ring_buffer_event_time_stamp - return the event's current time stamp 826 * @buffer: The buffer that the event is on 827 * @event: the event to get the time stamp of 828 * 829 * Note, this must be called after @event is reserved, and before it is 830 * committed to the ring buffer. And must be called from the same 831 * context where the event was reserved (normal, softirq, irq, etc). 832 * 833 * Returns the time stamp associated with the current event. 834 * If the event has an extended time stamp, then that is used as 835 * the time stamp to return. 836 * In the highly unlikely case that the event was nested more than 837 * the max nesting, then the write_stamp of the buffer is returned, 838 * otherwise current time is returned, but that really neither of 839 * the last two cases should ever happen. 840 */ 841 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 842 struct ring_buffer_event *event) 843 { 844 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 845 unsigned int nest; 846 u64 ts; 847 848 /* If the event includes an absolute time, then just use that */ 849 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 850 ts = rb_event_time_stamp(event); 851 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 852 } 853 854 nest = local_read(&cpu_buffer->committing); 855 verify_event(cpu_buffer, event); 856 if (WARN_ON_ONCE(!nest)) 857 goto fail; 858 859 /* Read the current saved nesting level time stamp */ 860 if (likely(--nest < MAX_NEST)) 861 return cpu_buffer->event_stamp[nest]; 862 863 /* Shouldn't happen, warn if it does */ 864 WARN_ONCE(1, "nest (%d) greater than max", nest); 865 866 fail: 867 /* Can only fail on 32 bit */ 868 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 869 /* Screw it, just read the current time */ 870 ts = rb_time_stamp(cpu_buffer->buffer); 871 872 return ts; 873 } 874 875 /** 876 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 877 * @buffer: The ring_buffer to get the number of pages from 878 * @cpu: The cpu of the ring_buffer to get the number of pages from 879 * 880 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 881 */ 882 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 883 { 884 return buffer->buffers[cpu]->nr_pages; 885 } 886 887 /** 888 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 889 * @buffer: The ring_buffer to get the number of pages from 890 * @cpu: The cpu of the ring_buffer to get the number of pages from 891 * 892 * Returns the number of pages that have content in the ring buffer. 893 */ 894 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 895 { 896 size_t read; 897 size_t cnt; 898 899 read = local_read(&buffer->buffers[cpu]->pages_read); 900 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 901 /* The reader can read an empty page, but not more than that */ 902 if (cnt < read) { 903 WARN_ON_ONCE(read > cnt + 1); 904 return 0; 905 } 906 907 return cnt - read; 908 } 909 910 /* 911 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 912 * 913 * Schedules a delayed work to wake up any task that is blocked on the 914 * ring buffer waiters queue. 915 */ 916 static void rb_wake_up_waiters(struct irq_work *work) 917 { 918 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 919 920 wake_up_all(&rbwork->waiters); 921 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 922 rbwork->wakeup_full = false; 923 rbwork->full_waiters_pending = false; 924 wake_up_all(&rbwork->full_waiters); 925 } 926 } 927 928 /** 929 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 930 * @buffer: The ring buffer to wake waiters on 931 * 932 * In the case of a file that represents a ring buffer is closing, 933 * it is prudent to wake up any waiters that are on this. 934 */ 935 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 936 { 937 struct ring_buffer_per_cpu *cpu_buffer; 938 struct rb_irq_work *rbwork; 939 940 if (cpu == RING_BUFFER_ALL_CPUS) { 941 942 /* Wake up individual ones too. One level recursion */ 943 for_each_buffer_cpu(buffer, cpu) 944 ring_buffer_wake_waiters(buffer, cpu); 945 946 rbwork = &buffer->irq_work; 947 } else { 948 cpu_buffer = buffer->buffers[cpu]; 949 rbwork = &cpu_buffer->irq_work; 950 } 951 952 rbwork->wait_index++; 953 /* make sure the waiters see the new index */ 954 smp_wmb(); 955 956 rb_wake_up_waiters(&rbwork->work); 957 } 958 959 /** 960 * ring_buffer_wait - wait for input to the ring buffer 961 * @buffer: buffer to wait on 962 * @cpu: the cpu buffer to wait on 963 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 964 * 965 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 966 * as data is added to any of the @buffer's cpu buffers. Otherwise 967 * it will wait for data to be added to a specific cpu buffer. 968 */ 969 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 970 { 971 struct ring_buffer_per_cpu *cpu_buffer; 972 DEFINE_WAIT(wait); 973 struct rb_irq_work *work; 974 long wait_index; 975 int ret = 0; 976 977 /* 978 * Depending on what the caller is waiting for, either any 979 * data in any cpu buffer, or a specific buffer, put the 980 * caller on the appropriate wait queue. 981 */ 982 if (cpu == RING_BUFFER_ALL_CPUS) { 983 work = &buffer->irq_work; 984 /* Full only makes sense on per cpu reads */ 985 full = 0; 986 } else { 987 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 988 return -ENODEV; 989 cpu_buffer = buffer->buffers[cpu]; 990 work = &cpu_buffer->irq_work; 991 } 992 993 wait_index = READ_ONCE(work->wait_index); 994 995 while (true) { 996 if (full) 997 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 998 else 999 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 1000 1001 /* 1002 * The events can happen in critical sections where 1003 * checking a work queue can cause deadlocks. 1004 * After adding a task to the queue, this flag is set 1005 * only to notify events to try to wake up the queue 1006 * using irq_work. 1007 * 1008 * We don't clear it even if the buffer is no longer 1009 * empty. The flag only causes the next event to run 1010 * irq_work to do the work queue wake up. The worse 1011 * that can happen if we race with !trace_empty() is that 1012 * an event will cause an irq_work to try to wake up 1013 * an empty queue. 1014 * 1015 * There's no reason to protect this flag either, as 1016 * the work queue and irq_work logic will do the necessary 1017 * synchronization for the wake ups. The only thing 1018 * that is necessary is that the wake up happens after 1019 * a task has been queued. It's OK for spurious wake ups. 1020 */ 1021 if (full) 1022 work->full_waiters_pending = true; 1023 else 1024 work->waiters_pending = true; 1025 1026 if (signal_pending(current)) { 1027 ret = -EINTR; 1028 break; 1029 } 1030 1031 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 1032 break; 1033 1034 if (cpu != RING_BUFFER_ALL_CPUS && 1035 !ring_buffer_empty_cpu(buffer, cpu)) { 1036 unsigned long flags; 1037 bool pagebusy; 1038 size_t nr_pages; 1039 size_t dirty; 1040 1041 if (!full) 1042 break; 1043 1044 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1045 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 1046 nr_pages = cpu_buffer->nr_pages; 1047 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 1048 if (!cpu_buffer->shortest_full || 1049 cpu_buffer->shortest_full > full) 1050 cpu_buffer->shortest_full = full; 1051 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1052 if (!pagebusy && 1053 (!nr_pages || (dirty * 100) > full * nr_pages)) 1054 break; 1055 } 1056 1057 schedule(); 1058 1059 /* Make sure to see the new wait index */ 1060 smp_rmb(); 1061 if (wait_index != work->wait_index) 1062 break; 1063 } 1064 1065 if (full) 1066 finish_wait(&work->full_waiters, &wait); 1067 else 1068 finish_wait(&work->waiters, &wait); 1069 1070 return ret; 1071 } 1072 1073 /** 1074 * ring_buffer_poll_wait - poll on buffer input 1075 * @buffer: buffer to wait on 1076 * @cpu: the cpu buffer to wait on 1077 * @filp: the file descriptor 1078 * @poll_table: The poll descriptor 1079 * 1080 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1081 * as data is added to any of the @buffer's cpu buffers. Otherwise 1082 * it will wait for data to be added to a specific cpu buffer. 1083 * 1084 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1085 * zero otherwise. 1086 */ 1087 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1088 struct file *filp, poll_table *poll_table) 1089 { 1090 struct ring_buffer_per_cpu *cpu_buffer; 1091 struct rb_irq_work *work; 1092 1093 if (cpu == RING_BUFFER_ALL_CPUS) 1094 work = &buffer->irq_work; 1095 else { 1096 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1097 return -EINVAL; 1098 1099 cpu_buffer = buffer->buffers[cpu]; 1100 work = &cpu_buffer->irq_work; 1101 } 1102 1103 poll_wait(filp, &work->waiters, poll_table); 1104 work->waiters_pending = true; 1105 /* 1106 * There's a tight race between setting the waiters_pending and 1107 * checking if the ring buffer is empty. Once the waiters_pending bit 1108 * is set, the next event will wake the task up, but we can get stuck 1109 * if there's only a single event in. 1110 * 1111 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1112 * but adding a memory barrier to all events will cause too much of a 1113 * performance hit in the fast path. We only need a memory barrier when 1114 * the buffer goes from empty to having content. But as this race is 1115 * extremely small, and it's not a problem if another event comes in, we 1116 * will fix it later. 1117 */ 1118 smp_mb(); 1119 1120 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1121 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1122 return EPOLLIN | EPOLLRDNORM; 1123 return 0; 1124 } 1125 1126 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1127 #define RB_WARN_ON(b, cond) \ 1128 ({ \ 1129 int _____ret = unlikely(cond); \ 1130 if (_____ret) { \ 1131 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1132 struct ring_buffer_per_cpu *__b = \ 1133 (void *)b; \ 1134 atomic_inc(&__b->buffer->record_disabled); \ 1135 } else \ 1136 atomic_inc(&b->record_disabled); \ 1137 WARN_ON(1); \ 1138 } \ 1139 _____ret; \ 1140 }) 1141 1142 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1143 #define DEBUG_SHIFT 0 1144 1145 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1146 { 1147 u64 ts; 1148 1149 /* Skip retpolines :-( */ 1150 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1151 ts = trace_clock_local(); 1152 else 1153 ts = buffer->clock(); 1154 1155 /* shift to debug/test normalization and TIME_EXTENTS */ 1156 return ts << DEBUG_SHIFT; 1157 } 1158 1159 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1160 { 1161 u64 time; 1162 1163 preempt_disable_notrace(); 1164 time = rb_time_stamp(buffer); 1165 preempt_enable_notrace(); 1166 1167 return time; 1168 } 1169 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1170 1171 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1172 int cpu, u64 *ts) 1173 { 1174 /* Just stupid testing the normalize function and deltas */ 1175 *ts >>= DEBUG_SHIFT; 1176 } 1177 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1178 1179 /* 1180 * Making the ring buffer lockless makes things tricky. 1181 * Although writes only happen on the CPU that they are on, 1182 * and they only need to worry about interrupts. Reads can 1183 * happen on any CPU. 1184 * 1185 * The reader page is always off the ring buffer, but when the 1186 * reader finishes with a page, it needs to swap its page with 1187 * a new one from the buffer. The reader needs to take from 1188 * the head (writes go to the tail). But if a writer is in overwrite 1189 * mode and wraps, it must push the head page forward. 1190 * 1191 * Here lies the problem. 1192 * 1193 * The reader must be careful to replace only the head page, and 1194 * not another one. As described at the top of the file in the 1195 * ASCII art, the reader sets its old page to point to the next 1196 * page after head. It then sets the page after head to point to 1197 * the old reader page. But if the writer moves the head page 1198 * during this operation, the reader could end up with the tail. 1199 * 1200 * We use cmpxchg to help prevent this race. We also do something 1201 * special with the page before head. We set the LSB to 1. 1202 * 1203 * When the writer must push the page forward, it will clear the 1204 * bit that points to the head page, move the head, and then set 1205 * the bit that points to the new head page. 1206 * 1207 * We also don't want an interrupt coming in and moving the head 1208 * page on another writer. Thus we use the second LSB to catch 1209 * that too. Thus: 1210 * 1211 * head->list->prev->next bit 1 bit 0 1212 * ------- ------- 1213 * Normal page 0 0 1214 * Points to head page 0 1 1215 * New head page 1 0 1216 * 1217 * Note we can not trust the prev pointer of the head page, because: 1218 * 1219 * +----+ +-----+ +-----+ 1220 * | |------>| T |---X--->| N | 1221 * | |<------| | | | 1222 * +----+ +-----+ +-----+ 1223 * ^ ^ | 1224 * | +-----+ | | 1225 * +----------| R |----------+ | 1226 * | |<-----------+ 1227 * +-----+ 1228 * 1229 * Key: ---X--> HEAD flag set in pointer 1230 * T Tail page 1231 * R Reader page 1232 * N Next page 1233 * 1234 * (see __rb_reserve_next() to see where this happens) 1235 * 1236 * What the above shows is that the reader just swapped out 1237 * the reader page with a page in the buffer, but before it 1238 * could make the new header point back to the new page added 1239 * it was preempted by a writer. The writer moved forward onto 1240 * the new page added by the reader and is about to move forward 1241 * again. 1242 * 1243 * You can see, it is legitimate for the previous pointer of 1244 * the head (or any page) not to point back to itself. But only 1245 * temporarily. 1246 */ 1247 1248 #define RB_PAGE_NORMAL 0UL 1249 #define RB_PAGE_HEAD 1UL 1250 #define RB_PAGE_UPDATE 2UL 1251 1252 1253 #define RB_FLAG_MASK 3UL 1254 1255 /* PAGE_MOVED is not part of the mask */ 1256 #define RB_PAGE_MOVED 4UL 1257 1258 /* 1259 * rb_list_head - remove any bit 1260 */ 1261 static struct list_head *rb_list_head(struct list_head *list) 1262 { 1263 unsigned long val = (unsigned long)list; 1264 1265 return (struct list_head *)(val & ~RB_FLAG_MASK); 1266 } 1267 1268 /* 1269 * rb_is_head_page - test if the given page is the head page 1270 * 1271 * Because the reader may move the head_page pointer, we can 1272 * not trust what the head page is (it may be pointing to 1273 * the reader page). But if the next page is a header page, 1274 * its flags will be non zero. 1275 */ 1276 static inline int 1277 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1278 { 1279 unsigned long val; 1280 1281 val = (unsigned long)list->next; 1282 1283 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1284 return RB_PAGE_MOVED; 1285 1286 return val & RB_FLAG_MASK; 1287 } 1288 1289 /* 1290 * rb_is_reader_page 1291 * 1292 * The unique thing about the reader page, is that, if the 1293 * writer is ever on it, the previous pointer never points 1294 * back to the reader page. 1295 */ 1296 static bool rb_is_reader_page(struct buffer_page *page) 1297 { 1298 struct list_head *list = page->list.prev; 1299 1300 return rb_list_head(list->next) != &page->list; 1301 } 1302 1303 /* 1304 * rb_set_list_to_head - set a list_head to be pointing to head. 1305 */ 1306 static void rb_set_list_to_head(struct list_head *list) 1307 { 1308 unsigned long *ptr; 1309 1310 ptr = (unsigned long *)&list->next; 1311 *ptr |= RB_PAGE_HEAD; 1312 *ptr &= ~RB_PAGE_UPDATE; 1313 } 1314 1315 /* 1316 * rb_head_page_activate - sets up head page 1317 */ 1318 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1319 { 1320 struct buffer_page *head; 1321 1322 head = cpu_buffer->head_page; 1323 if (!head) 1324 return; 1325 1326 /* 1327 * Set the previous list pointer to have the HEAD flag. 1328 */ 1329 rb_set_list_to_head(head->list.prev); 1330 } 1331 1332 static void rb_list_head_clear(struct list_head *list) 1333 { 1334 unsigned long *ptr = (unsigned long *)&list->next; 1335 1336 *ptr &= ~RB_FLAG_MASK; 1337 } 1338 1339 /* 1340 * rb_head_page_deactivate - clears head page ptr (for free list) 1341 */ 1342 static void 1343 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1344 { 1345 struct list_head *hd; 1346 1347 /* Go through the whole list and clear any pointers found. */ 1348 rb_list_head_clear(cpu_buffer->pages); 1349 1350 list_for_each(hd, cpu_buffer->pages) 1351 rb_list_head_clear(hd); 1352 } 1353 1354 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1355 struct buffer_page *head, 1356 struct buffer_page *prev, 1357 int old_flag, int new_flag) 1358 { 1359 struct list_head *list; 1360 unsigned long val = (unsigned long)&head->list; 1361 unsigned long ret; 1362 1363 list = &prev->list; 1364 1365 val &= ~RB_FLAG_MASK; 1366 1367 ret = cmpxchg((unsigned long *)&list->next, 1368 val | old_flag, val | new_flag); 1369 1370 /* check if the reader took the page */ 1371 if ((ret & ~RB_FLAG_MASK) != val) 1372 return RB_PAGE_MOVED; 1373 1374 return ret & RB_FLAG_MASK; 1375 } 1376 1377 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1378 struct buffer_page *head, 1379 struct buffer_page *prev, 1380 int old_flag) 1381 { 1382 return rb_head_page_set(cpu_buffer, head, prev, 1383 old_flag, RB_PAGE_UPDATE); 1384 } 1385 1386 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1387 struct buffer_page *head, 1388 struct buffer_page *prev, 1389 int old_flag) 1390 { 1391 return rb_head_page_set(cpu_buffer, head, prev, 1392 old_flag, RB_PAGE_HEAD); 1393 } 1394 1395 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1396 struct buffer_page *head, 1397 struct buffer_page *prev, 1398 int old_flag) 1399 { 1400 return rb_head_page_set(cpu_buffer, head, prev, 1401 old_flag, RB_PAGE_NORMAL); 1402 } 1403 1404 static inline void rb_inc_page(struct buffer_page **bpage) 1405 { 1406 struct list_head *p = rb_list_head((*bpage)->list.next); 1407 1408 *bpage = list_entry(p, struct buffer_page, list); 1409 } 1410 1411 static struct buffer_page * 1412 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1413 { 1414 struct buffer_page *head; 1415 struct buffer_page *page; 1416 struct list_head *list; 1417 int i; 1418 1419 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1420 return NULL; 1421 1422 /* sanity check */ 1423 list = cpu_buffer->pages; 1424 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1425 return NULL; 1426 1427 page = head = cpu_buffer->head_page; 1428 /* 1429 * It is possible that the writer moves the header behind 1430 * where we started, and we miss in one loop. 1431 * A second loop should grab the header, but we'll do 1432 * three loops just because I'm paranoid. 1433 */ 1434 for (i = 0; i < 3; i++) { 1435 do { 1436 if (rb_is_head_page(page, page->list.prev)) { 1437 cpu_buffer->head_page = page; 1438 return page; 1439 } 1440 rb_inc_page(&page); 1441 } while (page != head); 1442 } 1443 1444 RB_WARN_ON(cpu_buffer, 1); 1445 1446 return NULL; 1447 } 1448 1449 static int rb_head_page_replace(struct buffer_page *old, 1450 struct buffer_page *new) 1451 { 1452 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1453 unsigned long val; 1454 unsigned long ret; 1455 1456 val = *ptr & ~RB_FLAG_MASK; 1457 val |= RB_PAGE_HEAD; 1458 1459 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1460 1461 return ret == val; 1462 } 1463 1464 /* 1465 * rb_tail_page_update - move the tail page forward 1466 */ 1467 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1468 struct buffer_page *tail_page, 1469 struct buffer_page *next_page) 1470 { 1471 unsigned long old_entries; 1472 unsigned long old_write; 1473 1474 /* 1475 * The tail page now needs to be moved forward. 1476 * 1477 * We need to reset the tail page, but without messing 1478 * with possible erasing of data brought in by interrupts 1479 * that have moved the tail page and are currently on it. 1480 * 1481 * We add a counter to the write field to denote this. 1482 */ 1483 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1484 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1485 1486 local_inc(&cpu_buffer->pages_touched); 1487 /* 1488 * Just make sure we have seen our old_write and synchronize 1489 * with any interrupts that come in. 1490 */ 1491 barrier(); 1492 1493 /* 1494 * If the tail page is still the same as what we think 1495 * it is, then it is up to us to update the tail 1496 * pointer. 1497 */ 1498 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1499 /* Zero the write counter */ 1500 unsigned long val = old_write & ~RB_WRITE_MASK; 1501 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1502 1503 /* 1504 * This will only succeed if an interrupt did 1505 * not come in and change it. In which case, we 1506 * do not want to modify it. 1507 * 1508 * We add (void) to let the compiler know that we do not care 1509 * about the return value of these functions. We use the 1510 * cmpxchg to only update if an interrupt did not already 1511 * do it for us. If the cmpxchg fails, we don't care. 1512 */ 1513 (void)local_cmpxchg(&next_page->write, old_write, val); 1514 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1515 1516 /* 1517 * No need to worry about races with clearing out the commit. 1518 * it only can increment when a commit takes place. But that 1519 * only happens in the outer most nested commit. 1520 */ 1521 local_set(&next_page->page->commit, 0); 1522 1523 /* Again, either we update tail_page or an interrupt does */ 1524 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1525 } 1526 } 1527 1528 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1529 struct buffer_page *bpage) 1530 { 1531 unsigned long val = (unsigned long)bpage; 1532 1533 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1534 return 1; 1535 1536 return 0; 1537 } 1538 1539 /** 1540 * rb_check_list - make sure a pointer to a list has the last bits zero 1541 */ 1542 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1543 struct list_head *list) 1544 { 1545 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1546 return 1; 1547 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1548 return 1; 1549 return 0; 1550 } 1551 1552 /** 1553 * rb_check_pages - integrity check of buffer pages 1554 * @cpu_buffer: CPU buffer with pages to test 1555 * 1556 * As a safety measure we check to make sure the data pages have not 1557 * been corrupted. 1558 */ 1559 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1560 { 1561 struct list_head *head = cpu_buffer->pages; 1562 struct buffer_page *bpage, *tmp; 1563 1564 /* Reset the head page if it exists */ 1565 if (cpu_buffer->head_page) 1566 rb_set_head_page(cpu_buffer); 1567 1568 rb_head_page_deactivate(cpu_buffer); 1569 1570 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1571 return -1; 1572 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1573 return -1; 1574 1575 if (rb_check_list(cpu_buffer, head)) 1576 return -1; 1577 1578 list_for_each_entry_safe(bpage, tmp, head, list) { 1579 if (RB_WARN_ON(cpu_buffer, 1580 bpage->list.next->prev != &bpage->list)) 1581 return -1; 1582 if (RB_WARN_ON(cpu_buffer, 1583 bpage->list.prev->next != &bpage->list)) 1584 return -1; 1585 if (rb_check_list(cpu_buffer, &bpage->list)) 1586 return -1; 1587 } 1588 1589 rb_head_page_activate(cpu_buffer); 1590 1591 return 0; 1592 } 1593 1594 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1595 long nr_pages, struct list_head *pages) 1596 { 1597 struct buffer_page *bpage, *tmp; 1598 bool user_thread = current->mm != NULL; 1599 gfp_t mflags; 1600 long i; 1601 1602 /* 1603 * Check if the available memory is there first. 1604 * Note, si_mem_available() only gives us a rough estimate of available 1605 * memory. It may not be accurate. But we don't care, we just want 1606 * to prevent doing any allocation when it is obvious that it is 1607 * not going to succeed. 1608 */ 1609 i = si_mem_available(); 1610 if (i < nr_pages) 1611 return -ENOMEM; 1612 1613 /* 1614 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1615 * gracefully without invoking oom-killer and the system is not 1616 * destabilized. 1617 */ 1618 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1619 1620 /* 1621 * If a user thread allocates too much, and si_mem_available() 1622 * reports there's enough memory, even though there is not. 1623 * Make sure the OOM killer kills this thread. This can happen 1624 * even with RETRY_MAYFAIL because another task may be doing 1625 * an allocation after this task has taken all memory. 1626 * This is the task the OOM killer needs to take out during this 1627 * loop, even if it was triggered by an allocation somewhere else. 1628 */ 1629 if (user_thread) 1630 set_current_oom_origin(); 1631 for (i = 0; i < nr_pages; i++) { 1632 struct page *page; 1633 1634 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1635 mflags, cpu_to_node(cpu_buffer->cpu)); 1636 if (!bpage) 1637 goto free_pages; 1638 1639 rb_check_bpage(cpu_buffer, bpage); 1640 1641 list_add(&bpage->list, pages); 1642 1643 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1644 if (!page) 1645 goto free_pages; 1646 bpage->page = page_address(page); 1647 rb_init_page(bpage->page); 1648 1649 if (user_thread && fatal_signal_pending(current)) 1650 goto free_pages; 1651 } 1652 if (user_thread) 1653 clear_current_oom_origin(); 1654 1655 return 0; 1656 1657 free_pages: 1658 list_for_each_entry_safe(bpage, tmp, pages, list) { 1659 list_del_init(&bpage->list); 1660 free_buffer_page(bpage); 1661 } 1662 if (user_thread) 1663 clear_current_oom_origin(); 1664 1665 return -ENOMEM; 1666 } 1667 1668 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1669 unsigned long nr_pages) 1670 { 1671 LIST_HEAD(pages); 1672 1673 WARN_ON(!nr_pages); 1674 1675 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1676 return -ENOMEM; 1677 1678 /* 1679 * The ring buffer page list is a circular list that does not 1680 * start and end with a list head. All page list items point to 1681 * other pages. 1682 */ 1683 cpu_buffer->pages = pages.next; 1684 list_del(&pages); 1685 1686 cpu_buffer->nr_pages = nr_pages; 1687 1688 rb_check_pages(cpu_buffer); 1689 1690 return 0; 1691 } 1692 1693 static struct ring_buffer_per_cpu * 1694 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1695 { 1696 struct ring_buffer_per_cpu *cpu_buffer; 1697 struct buffer_page *bpage; 1698 struct page *page; 1699 int ret; 1700 1701 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1702 GFP_KERNEL, cpu_to_node(cpu)); 1703 if (!cpu_buffer) 1704 return NULL; 1705 1706 cpu_buffer->cpu = cpu; 1707 cpu_buffer->buffer = buffer; 1708 raw_spin_lock_init(&cpu_buffer->reader_lock); 1709 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1710 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1711 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1712 init_completion(&cpu_buffer->update_done); 1713 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1714 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1715 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1716 1717 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1718 GFP_KERNEL, cpu_to_node(cpu)); 1719 if (!bpage) 1720 goto fail_free_buffer; 1721 1722 rb_check_bpage(cpu_buffer, bpage); 1723 1724 cpu_buffer->reader_page = bpage; 1725 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1726 if (!page) 1727 goto fail_free_reader; 1728 bpage->page = page_address(page); 1729 rb_init_page(bpage->page); 1730 1731 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1732 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1733 1734 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1735 if (ret < 0) 1736 goto fail_free_reader; 1737 1738 cpu_buffer->head_page 1739 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1740 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1741 1742 rb_head_page_activate(cpu_buffer); 1743 1744 return cpu_buffer; 1745 1746 fail_free_reader: 1747 free_buffer_page(cpu_buffer->reader_page); 1748 1749 fail_free_buffer: 1750 kfree(cpu_buffer); 1751 return NULL; 1752 } 1753 1754 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1755 { 1756 struct list_head *head = cpu_buffer->pages; 1757 struct buffer_page *bpage, *tmp; 1758 1759 free_buffer_page(cpu_buffer->reader_page); 1760 1761 rb_head_page_deactivate(cpu_buffer); 1762 1763 if (head) { 1764 list_for_each_entry_safe(bpage, tmp, head, list) { 1765 list_del_init(&bpage->list); 1766 free_buffer_page(bpage); 1767 } 1768 bpage = list_entry(head, struct buffer_page, list); 1769 free_buffer_page(bpage); 1770 } 1771 1772 kfree(cpu_buffer); 1773 } 1774 1775 /** 1776 * __ring_buffer_alloc - allocate a new ring_buffer 1777 * @size: the size in bytes per cpu that is needed. 1778 * @flags: attributes to set for the ring buffer. 1779 * @key: ring buffer reader_lock_key. 1780 * 1781 * Currently the only flag that is available is the RB_FL_OVERWRITE 1782 * flag. This flag means that the buffer will overwrite old data 1783 * when the buffer wraps. If this flag is not set, the buffer will 1784 * drop data when the tail hits the head. 1785 */ 1786 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1787 struct lock_class_key *key) 1788 { 1789 struct trace_buffer *buffer; 1790 long nr_pages; 1791 int bsize; 1792 int cpu; 1793 int ret; 1794 1795 /* keep it in its own cache line */ 1796 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1797 GFP_KERNEL); 1798 if (!buffer) 1799 return NULL; 1800 1801 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1802 goto fail_free_buffer; 1803 1804 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1805 buffer->flags = flags; 1806 buffer->clock = trace_clock_local; 1807 buffer->reader_lock_key = key; 1808 1809 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1810 init_waitqueue_head(&buffer->irq_work.waiters); 1811 1812 /* need at least two pages */ 1813 if (nr_pages < 2) 1814 nr_pages = 2; 1815 1816 buffer->cpus = nr_cpu_ids; 1817 1818 bsize = sizeof(void *) * nr_cpu_ids; 1819 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1820 GFP_KERNEL); 1821 if (!buffer->buffers) 1822 goto fail_free_cpumask; 1823 1824 cpu = raw_smp_processor_id(); 1825 cpumask_set_cpu(cpu, buffer->cpumask); 1826 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1827 if (!buffer->buffers[cpu]) 1828 goto fail_free_buffers; 1829 1830 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1831 if (ret < 0) 1832 goto fail_free_buffers; 1833 1834 mutex_init(&buffer->mutex); 1835 1836 return buffer; 1837 1838 fail_free_buffers: 1839 for_each_buffer_cpu(buffer, cpu) { 1840 if (buffer->buffers[cpu]) 1841 rb_free_cpu_buffer(buffer->buffers[cpu]); 1842 } 1843 kfree(buffer->buffers); 1844 1845 fail_free_cpumask: 1846 free_cpumask_var(buffer->cpumask); 1847 1848 fail_free_buffer: 1849 kfree(buffer); 1850 return NULL; 1851 } 1852 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1853 1854 /** 1855 * ring_buffer_free - free a ring buffer. 1856 * @buffer: the buffer to free. 1857 */ 1858 void 1859 ring_buffer_free(struct trace_buffer *buffer) 1860 { 1861 int cpu; 1862 1863 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1864 1865 for_each_buffer_cpu(buffer, cpu) 1866 rb_free_cpu_buffer(buffer->buffers[cpu]); 1867 1868 kfree(buffer->buffers); 1869 free_cpumask_var(buffer->cpumask); 1870 1871 kfree(buffer); 1872 } 1873 EXPORT_SYMBOL_GPL(ring_buffer_free); 1874 1875 void ring_buffer_set_clock(struct trace_buffer *buffer, 1876 u64 (*clock)(void)) 1877 { 1878 buffer->clock = clock; 1879 } 1880 1881 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1882 { 1883 buffer->time_stamp_abs = abs; 1884 } 1885 1886 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1887 { 1888 return buffer->time_stamp_abs; 1889 } 1890 1891 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1892 1893 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1894 { 1895 return local_read(&bpage->entries) & RB_WRITE_MASK; 1896 } 1897 1898 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1899 { 1900 return local_read(&bpage->write) & RB_WRITE_MASK; 1901 } 1902 1903 static int 1904 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1905 { 1906 struct list_head *tail_page, *to_remove, *next_page; 1907 struct buffer_page *to_remove_page, *tmp_iter_page; 1908 struct buffer_page *last_page, *first_page; 1909 unsigned long nr_removed; 1910 unsigned long head_bit; 1911 int page_entries; 1912 1913 head_bit = 0; 1914 1915 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1916 atomic_inc(&cpu_buffer->record_disabled); 1917 /* 1918 * We don't race with the readers since we have acquired the reader 1919 * lock. We also don't race with writers after disabling recording. 1920 * This makes it easy to figure out the first and the last page to be 1921 * removed from the list. We unlink all the pages in between including 1922 * the first and last pages. This is done in a busy loop so that we 1923 * lose the least number of traces. 1924 * The pages are freed after we restart recording and unlock readers. 1925 */ 1926 tail_page = &cpu_buffer->tail_page->list; 1927 1928 /* 1929 * tail page might be on reader page, we remove the next page 1930 * from the ring buffer 1931 */ 1932 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1933 tail_page = rb_list_head(tail_page->next); 1934 to_remove = tail_page; 1935 1936 /* start of pages to remove */ 1937 first_page = list_entry(rb_list_head(to_remove->next), 1938 struct buffer_page, list); 1939 1940 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1941 to_remove = rb_list_head(to_remove)->next; 1942 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1943 } 1944 1945 next_page = rb_list_head(to_remove)->next; 1946 1947 /* 1948 * Now we remove all pages between tail_page and next_page. 1949 * Make sure that we have head_bit value preserved for the 1950 * next page 1951 */ 1952 tail_page->next = (struct list_head *)((unsigned long)next_page | 1953 head_bit); 1954 next_page = rb_list_head(next_page); 1955 next_page->prev = tail_page; 1956 1957 /* make sure pages points to a valid page in the ring buffer */ 1958 cpu_buffer->pages = next_page; 1959 1960 /* update head page */ 1961 if (head_bit) 1962 cpu_buffer->head_page = list_entry(next_page, 1963 struct buffer_page, list); 1964 1965 /* 1966 * change read pointer to make sure any read iterators reset 1967 * themselves 1968 */ 1969 cpu_buffer->read = 0; 1970 1971 /* pages are removed, resume tracing and then free the pages */ 1972 atomic_dec(&cpu_buffer->record_disabled); 1973 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1974 1975 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1976 1977 /* last buffer page to remove */ 1978 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1979 list); 1980 tmp_iter_page = first_page; 1981 1982 do { 1983 cond_resched(); 1984 1985 to_remove_page = tmp_iter_page; 1986 rb_inc_page(&tmp_iter_page); 1987 1988 /* update the counters */ 1989 page_entries = rb_page_entries(to_remove_page); 1990 if (page_entries) { 1991 /* 1992 * If something was added to this page, it was full 1993 * since it is not the tail page. So we deduct the 1994 * bytes consumed in ring buffer from here. 1995 * Increment overrun to account for the lost events. 1996 */ 1997 local_add(page_entries, &cpu_buffer->overrun); 1998 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1999 } 2000 2001 /* 2002 * We have already removed references to this list item, just 2003 * free up the buffer_page and its page 2004 */ 2005 free_buffer_page(to_remove_page); 2006 nr_removed--; 2007 2008 } while (to_remove_page != last_page); 2009 2010 RB_WARN_ON(cpu_buffer, nr_removed); 2011 2012 return nr_removed == 0; 2013 } 2014 2015 static int 2016 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2017 { 2018 struct list_head *pages = &cpu_buffer->new_pages; 2019 int retries, success; 2020 2021 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2022 /* 2023 * We are holding the reader lock, so the reader page won't be swapped 2024 * in the ring buffer. Now we are racing with the writer trying to 2025 * move head page and the tail page. 2026 * We are going to adapt the reader page update process where: 2027 * 1. We first splice the start and end of list of new pages between 2028 * the head page and its previous page. 2029 * 2. We cmpxchg the prev_page->next to point from head page to the 2030 * start of new pages list. 2031 * 3. Finally, we update the head->prev to the end of new list. 2032 * 2033 * We will try this process 10 times, to make sure that we don't keep 2034 * spinning. 2035 */ 2036 retries = 10; 2037 success = 0; 2038 while (retries--) { 2039 struct list_head *head_page, *prev_page, *r; 2040 struct list_head *last_page, *first_page; 2041 struct list_head *head_page_with_bit; 2042 2043 head_page = &rb_set_head_page(cpu_buffer)->list; 2044 if (!head_page) 2045 break; 2046 prev_page = head_page->prev; 2047 2048 first_page = pages->next; 2049 last_page = pages->prev; 2050 2051 head_page_with_bit = (struct list_head *) 2052 ((unsigned long)head_page | RB_PAGE_HEAD); 2053 2054 last_page->next = head_page_with_bit; 2055 first_page->prev = prev_page; 2056 2057 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2058 2059 if (r == head_page_with_bit) { 2060 /* 2061 * yay, we replaced the page pointer to our new list, 2062 * now, we just have to update to head page's prev 2063 * pointer to point to end of list 2064 */ 2065 head_page->prev = last_page; 2066 success = 1; 2067 break; 2068 } 2069 } 2070 2071 if (success) 2072 INIT_LIST_HEAD(pages); 2073 /* 2074 * If we weren't successful in adding in new pages, warn and stop 2075 * tracing 2076 */ 2077 RB_WARN_ON(cpu_buffer, !success); 2078 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2079 2080 /* free pages if they weren't inserted */ 2081 if (!success) { 2082 struct buffer_page *bpage, *tmp; 2083 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2084 list) { 2085 list_del_init(&bpage->list); 2086 free_buffer_page(bpage); 2087 } 2088 } 2089 return success; 2090 } 2091 2092 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2093 { 2094 int success; 2095 2096 if (cpu_buffer->nr_pages_to_update > 0) 2097 success = rb_insert_pages(cpu_buffer); 2098 else 2099 success = rb_remove_pages(cpu_buffer, 2100 -cpu_buffer->nr_pages_to_update); 2101 2102 if (success) 2103 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2104 } 2105 2106 static void update_pages_handler(struct work_struct *work) 2107 { 2108 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2109 struct ring_buffer_per_cpu, update_pages_work); 2110 rb_update_pages(cpu_buffer); 2111 complete(&cpu_buffer->update_done); 2112 } 2113 2114 /** 2115 * ring_buffer_resize - resize the ring buffer 2116 * @buffer: the buffer to resize. 2117 * @size: the new size. 2118 * @cpu_id: the cpu buffer to resize 2119 * 2120 * Minimum size is 2 * BUF_PAGE_SIZE. 2121 * 2122 * Returns 0 on success and < 0 on failure. 2123 */ 2124 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2125 int cpu_id) 2126 { 2127 struct ring_buffer_per_cpu *cpu_buffer; 2128 unsigned long nr_pages; 2129 int cpu, err; 2130 2131 /* 2132 * Always succeed at resizing a non-existent buffer: 2133 */ 2134 if (!buffer) 2135 return 0; 2136 2137 /* Make sure the requested buffer exists */ 2138 if (cpu_id != RING_BUFFER_ALL_CPUS && 2139 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2140 return 0; 2141 2142 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2143 2144 /* we need a minimum of two pages */ 2145 if (nr_pages < 2) 2146 nr_pages = 2; 2147 2148 /* prevent another thread from changing buffer sizes */ 2149 mutex_lock(&buffer->mutex); 2150 2151 2152 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2153 /* 2154 * Don't succeed if resizing is disabled, as a reader might be 2155 * manipulating the ring buffer and is expecting a sane state while 2156 * this is true. 2157 */ 2158 for_each_buffer_cpu(buffer, cpu) { 2159 cpu_buffer = buffer->buffers[cpu]; 2160 if (atomic_read(&cpu_buffer->resize_disabled)) { 2161 err = -EBUSY; 2162 goto out_err_unlock; 2163 } 2164 } 2165 2166 /* calculate the pages to update */ 2167 for_each_buffer_cpu(buffer, cpu) { 2168 cpu_buffer = buffer->buffers[cpu]; 2169 2170 cpu_buffer->nr_pages_to_update = nr_pages - 2171 cpu_buffer->nr_pages; 2172 /* 2173 * nothing more to do for removing pages or no update 2174 */ 2175 if (cpu_buffer->nr_pages_to_update <= 0) 2176 continue; 2177 /* 2178 * to add pages, make sure all new pages can be 2179 * allocated without receiving ENOMEM 2180 */ 2181 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2182 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2183 &cpu_buffer->new_pages)) { 2184 /* not enough memory for new pages */ 2185 err = -ENOMEM; 2186 goto out_err; 2187 } 2188 } 2189 2190 cpus_read_lock(); 2191 /* 2192 * Fire off all the required work handlers 2193 * We can't schedule on offline CPUs, but it's not necessary 2194 * since we can change their buffer sizes without any race. 2195 */ 2196 for_each_buffer_cpu(buffer, cpu) { 2197 cpu_buffer = buffer->buffers[cpu]; 2198 if (!cpu_buffer->nr_pages_to_update) 2199 continue; 2200 2201 /* Can't run something on an offline CPU. */ 2202 if (!cpu_online(cpu)) { 2203 rb_update_pages(cpu_buffer); 2204 cpu_buffer->nr_pages_to_update = 0; 2205 } else { 2206 schedule_work_on(cpu, 2207 &cpu_buffer->update_pages_work); 2208 } 2209 } 2210 2211 /* wait for all the updates to complete */ 2212 for_each_buffer_cpu(buffer, cpu) { 2213 cpu_buffer = buffer->buffers[cpu]; 2214 if (!cpu_buffer->nr_pages_to_update) 2215 continue; 2216 2217 if (cpu_online(cpu)) 2218 wait_for_completion(&cpu_buffer->update_done); 2219 cpu_buffer->nr_pages_to_update = 0; 2220 } 2221 2222 cpus_read_unlock(); 2223 } else { 2224 cpu_buffer = buffer->buffers[cpu_id]; 2225 2226 if (nr_pages == cpu_buffer->nr_pages) 2227 goto out; 2228 2229 /* 2230 * Don't succeed if resizing is disabled, as a reader might be 2231 * manipulating the ring buffer and is expecting a sane state while 2232 * this is true. 2233 */ 2234 if (atomic_read(&cpu_buffer->resize_disabled)) { 2235 err = -EBUSY; 2236 goto out_err_unlock; 2237 } 2238 2239 cpu_buffer->nr_pages_to_update = nr_pages - 2240 cpu_buffer->nr_pages; 2241 2242 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2243 if (cpu_buffer->nr_pages_to_update > 0 && 2244 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2245 &cpu_buffer->new_pages)) { 2246 err = -ENOMEM; 2247 goto out_err; 2248 } 2249 2250 cpus_read_lock(); 2251 2252 /* Can't run something on an offline CPU. */ 2253 if (!cpu_online(cpu_id)) 2254 rb_update_pages(cpu_buffer); 2255 else { 2256 schedule_work_on(cpu_id, 2257 &cpu_buffer->update_pages_work); 2258 wait_for_completion(&cpu_buffer->update_done); 2259 } 2260 2261 cpu_buffer->nr_pages_to_update = 0; 2262 cpus_read_unlock(); 2263 } 2264 2265 out: 2266 /* 2267 * The ring buffer resize can happen with the ring buffer 2268 * enabled, so that the update disturbs the tracing as little 2269 * as possible. But if the buffer is disabled, we do not need 2270 * to worry about that, and we can take the time to verify 2271 * that the buffer is not corrupt. 2272 */ 2273 if (atomic_read(&buffer->record_disabled)) { 2274 atomic_inc(&buffer->record_disabled); 2275 /* 2276 * Even though the buffer was disabled, we must make sure 2277 * that it is truly disabled before calling rb_check_pages. 2278 * There could have been a race between checking 2279 * record_disable and incrementing it. 2280 */ 2281 synchronize_rcu(); 2282 for_each_buffer_cpu(buffer, cpu) { 2283 cpu_buffer = buffer->buffers[cpu]; 2284 rb_check_pages(cpu_buffer); 2285 } 2286 atomic_dec(&buffer->record_disabled); 2287 } 2288 2289 mutex_unlock(&buffer->mutex); 2290 return 0; 2291 2292 out_err: 2293 for_each_buffer_cpu(buffer, cpu) { 2294 struct buffer_page *bpage, *tmp; 2295 2296 cpu_buffer = buffer->buffers[cpu]; 2297 cpu_buffer->nr_pages_to_update = 0; 2298 2299 if (list_empty(&cpu_buffer->new_pages)) 2300 continue; 2301 2302 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2303 list) { 2304 list_del_init(&bpage->list); 2305 free_buffer_page(bpage); 2306 } 2307 } 2308 out_err_unlock: 2309 mutex_unlock(&buffer->mutex); 2310 return err; 2311 } 2312 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2313 2314 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2315 { 2316 mutex_lock(&buffer->mutex); 2317 if (val) 2318 buffer->flags |= RB_FL_OVERWRITE; 2319 else 2320 buffer->flags &= ~RB_FL_OVERWRITE; 2321 mutex_unlock(&buffer->mutex); 2322 } 2323 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2324 2325 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2326 { 2327 return bpage->page->data + index; 2328 } 2329 2330 static __always_inline struct ring_buffer_event * 2331 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2332 { 2333 return __rb_page_index(cpu_buffer->reader_page, 2334 cpu_buffer->reader_page->read); 2335 } 2336 2337 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2338 { 2339 return local_read(&bpage->page->commit); 2340 } 2341 2342 static struct ring_buffer_event * 2343 rb_iter_head_event(struct ring_buffer_iter *iter) 2344 { 2345 struct ring_buffer_event *event; 2346 struct buffer_page *iter_head_page = iter->head_page; 2347 unsigned long commit; 2348 unsigned length; 2349 2350 if (iter->head != iter->next_event) 2351 return iter->event; 2352 2353 /* 2354 * When the writer goes across pages, it issues a cmpxchg which 2355 * is a mb(), which will synchronize with the rmb here. 2356 * (see rb_tail_page_update() and __rb_reserve_next()) 2357 */ 2358 commit = rb_page_commit(iter_head_page); 2359 smp_rmb(); 2360 event = __rb_page_index(iter_head_page, iter->head); 2361 length = rb_event_length(event); 2362 2363 /* 2364 * READ_ONCE() doesn't work on functions and we don't want the 2365 * compiler doing any crazy optimizations with length. 2366 */ 2367 barrier(); 2368 2369 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2370 /* Writer corrupted the read? */ 2371 goto reset; 2372 2373 memcpy(iter->event, event, length); 2374 /* 2375 * If the page stamp is still the same after this rmb() then the 2376 * event was safely copied without the writer entering the page. 2377 */ 2378 smp_rmb(); 2379 2380 /* Make sure the page didn't change since we read this */ 2381 if (iter->page_stamp != iter_head_page->page->time_stamp || 2382 commit > rb_page_commit(iter_head_page)) 2383 goto reset; 2384 2385 iter->next_event = iter->head + length; 2386 return iter->event; 2387 reset: 2388 /* Reset to the beginning */ 2389 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2390 iter->head = 0; 2391 iter->next_event = 0; 2392 iter->missed_events = 1; 2393 return NULL; 2394 } 2395 2396 /* Size is determined by what has been committed */ 2397 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2398 { 2399 return rb_page_commit(bpage); 2400 } 2401 2402 static __always_inline unsigned 2403 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2404 { 2405 return rb_page_commit(cpu_buffer->commit_page); 2406 } 2407 2408 static __always_inline unsigned 2409 rb_event_index(struct ring_buffer_event *event) 2410 { 2411 unsigned long addr = (unsigned long)event; 2412 2413 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2414 } 2415 2416 static void rb_inc_iter(struct ring_buffer_iter *iter) 2417 { 2418 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2419 2420 /* 2421 * The iterator could be on the reader page (it starts there). 2422 * But the head could have moved, since the reader was 2423 * found. Check for this case and assign the iterator 2424 * to the head page instead of next. 2425 */ 2426 if (iter->head_page == cpu_buffer->reader_page) 2427 iter->head_page = rb_set_head_page(cpu_buffer); 2428 else 2429 rb_inc_page(&iter->head_page); 2430 2431 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2432 iter->head = 0; 2433 iter->next_event = 0; 2434 } 2435 2436 /* 2437 * rb_handle_head_page - writer hit the head page 2438 * 2439 * Returns: +1 to retry page 2440 * 0 to continue 2441 * -1 on error 2442 */ 2443 static int 2444 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2445 struct buffer_page *tail_page, 2446 struct buffer_page *next_page) 2447 { 2448 struct buffer_page *new_head; 2449 int entries; 2450 int type; 2451 int ret; 2452 2453 entries = rb_page_entries(next_page); 2454 2455 /* 2456 * The hard part is here. We need to move the head 2457 * forward, and protect against both readers on 2458 * other CPUs and writers coming in via interrupts. 2459 */ 2460 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2461 RB_PAGE_HEAD); 2462 2463 /* 2464 * type can be one of four: 2465 * NORMAL - an interrupt already moved it for us 2466 * HEAD - we are the first to get here. 2467 * UPDATE - we are the interrupt interrupting 2468 * a current move. 2469 * MOVED - a reader on another CPU moved the next 2470 * pointer to its reader page. Give up 2471 * and try again. 2472 */ 2473 2474 switch (type) { 2475 case RB_PAGE_HEAD: 2476 /* 2477 * We changed the head to UPDATE, thus 2478 * it is our responsibility to update 2479 * the counters. 2480 */ 2481 local_add(entries, &cpu_buffer->overrun); 2482 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2483 2484 /* 2485 * The entries will be zeroed out when we move the 2486 * tail page. 2487 */ 2488 2489 /* still more to do */ 2490 break; 2491 2492 case RB_PAGE_UPDATE: 2493 /* 2494 * This is an interrupt that interrupt the 2495 * previous update. Still more to do. 2496 */ 2497 break; 2498 case RB_PAGE_NORMAL: 2499 /* 2500 * An interrupt came in before the update 2501 * and processed this for us. 2502 * Nothing left to do. 2503 */ 2504 return 1; 2505 case RB_PAGE_MOVED: 2506 /* 2507 * The reader is on another CPU and just did 2508 * a swap with our next_page. 2509 * Try again. 2510 */ 2511 return 1; 2512 default: 2513 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2514 return -1; 2515 } 2516 2517 /* 2518 * Now that we are here, the old head pointer is 2519 * set to UPDATE. This will keep the reader from 2520 * swapping the head page with the reader page. 2521 * The reader (on another CPU) will spin till 2522 * we are finished. 2523 * 2524 * We just need to protect against interrupts 2525 * doing the job. We will set the next pointer 2526 * to HEAD. After that, we set the old pointer 2527 * to NORMAL, but only if it was HEAD before. 2528 * otherwise we are an interrupt, and only 2529 * want the outer most commit to reset it. 2530 */ 2531 new_head = next_page; 2532 rb_inc_page(&new_head); 2533 2534 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2535 RB_PAGE_NORMAL); 2536 2537 /* 2538 * Valid returns are: 2539 * HEAD - an interrupt came in and already set it. 2540 * NORMAL - One of two things: 2541 * 1) We really set it. 2542 * 2) A bunch of interrupts came in and moved 2543 * the page forward again. 2544 */ 2545 switch (ret) { 2546 case RB_PAGE_HEAD: 2547 case RB_PAGE_NORMAL: 2548 /* OK */ 2549 break; 2550 default: 2551 RB_WARN_ON(cpu_buffer, 1); 2552 return -1; 2553 } 2554 2555 /* 2556 * It is possible that an interrupt came in, 2557 * set the head up, then more interrupts came in 2558 * and moved it again. When we get back here, 2559 * the page would have been set to NORMAL but we 2560 * just set it back to HEAD. 2561 * 2562 * How do you detect this? Well, if that happened 2563 * the tail page would have moved. 2564 */ 2565 if (ret == RB_PAGE_NORMAL) { 2566 struct buffer_page *buffer_tail_page; 2567 2568 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2569 /* 2570 * If the tail had moved passed next, then we need 2571 * to reset the pointer. 2572 */ 2573 if (buffer_tail_page != tail_page && 2574 buffer_tail_page != next_page) 2575 rb_head_page_set_normal(cpu_buffer, new_head, 2576 next_page, 2577 RB_PAGE_HEAD); 2578 } 2579 2580 /* 2581 * If this was the outer most commit (the one that 2582 * changed the original pointer from HEAD to UPDATE), 2583 * then it is up to us to reset it to NORMAL. 2584 */ 2585 if (type == RB_PAGE_HEAD) { 2586 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2587 tail_page, 2588 RB_PAGE_UPDATE); 2589 if (RB_WARN_ON(cpu_buffer, 2590 ret != RB_PAGE_UPDATE)) 2591 return -1; 2592 } 2593 2594 return 0; 2595 } 2596 2597 static inline void 2598 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2599 unsigned long tail, struct rb_event_info *info) 2600 { 2601 struct buffer_page *tail_page = info->tail_page; 2602 struct ring_buffer_event *event; 2603 unsigned long length = info->length; 2604 2605 /* 2606 * Only the event that crossed the page boundary 2607 * must fill the old tail_page with padding. 2608 */ 2609 if (tail >= BUF_PAGE_SIZE) { 2610 /* 2611 * If the page was filled, then we still need 2612 * to update the real_end. Reset it to zero 2613 * and the reader will ignore it. 2614 */ 2615 if (tail == BUF_PAGE_SIZE) 2616 tail_page->real_end = 0; 2617 2618 local_sub(length, &tail_page->write); 2619 return; 2620 } 2621 2622 event = __rb_page_index(tail_page, tail); 2623 2624 /* account for padding bytes */ 2625 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2626 2627 /* 2628 * Save the original length to the meta data. 2629 * This will be used by the reader to add lost event 2630 * counter. 2631 */ 2632 tail_page->real_end = tail; 2633 2634 /* 2635 * If this event is bigger than the minimum size, then 2636 * we need to be careful that we don't subtract the 2637 * write counter enough to allow another writer to slip 2638 * in on this page. 2639 * We put in a discarded commit instead, to make sure 2640 * that this space is not used again. 2641 * 2642 * If we are less than the minimum size, we don't need to 2643 * worry about it. 2644 */ 2645 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2646 /* No room for any events */ 2647 2648 /* Mark the rest of the page with padding */ 2649 rb_event_set_padding(event); 2650 2651 /* Make sure the padding is visible before the write update */ 2652 smp_wmb(); 2653 2654 /* Set the write back to the previous setting */ 2655 local_sub(length, &tail_page->write); 2656 return; 2657 } 2658 2659 /* Put in a discarded event */ 2660 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2661 event->type_len = RINGBUF_TYPE_PADDING; 2662 /* time delta must be non zero */ 2663 event->time_delta = 1; 2664 2665 /* Make sure the padding is visible before the tail_page->write update */ 2666 smp_wmb(); 2667 2668 /* Set write to end of buffer */ 2669 length = (tail + length) - BUF_PAGE_SIZE; 2670 local_sub(length, &tail_page->write); 2671 } 2672 2673 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2674 2675 /* 2676 * This is the slow path, force gcc not to inline it. 2677 */ 2678 static noinline struct ring_buffer_event * 2679 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2680 unsigned long tail, struct rb_event_info *info) 2681 { 2682 struct buffer_page *tail_page = info->tail_page; 2683 struct buffer_page *commit_page = cpu_buffer->commit_page; 2684 struct trace_buffer *buffer = cpu_buffer->buffer; 2685 struct buffer_page *next_page; 2686 int ret; 2687 2688 next_page = tail_page; 2689 2690 rb_inc_page(&next_page); 2691 2692 /* 2693 * If for some reason, we had an interrupt storm that made 2694 * it all the way around the buffer, bail, and warn 2695 * about it. 2696 */ 2697 if (unlikely(next_page == commit_page)) { 2698 local_inc(&cpu_buffer->commit_overrun); 2699 goto out_reset; 2700 } 2701 2702 /* 2703 * This is where the fun begins! 2704 * 2705 * We are fighting against races between a reader that 2706 * could be on another CPU trying to swap its reader 2707 * page with the buffer head. 2708 * 2709 * We are also fighting against interrupts coming in and 2710 * moving the head or tail on us as well. 2711 * 2712 * If the next page is the head page then we have filled 2713 * the buffer, unless the commit page is still on the 2714 * reader page. 2715 */ 2716 if (rb_is_head_page(next_page, &tail_page->list)) { 2717 2718 /* 2719 * If the commit is not on the reader page, then 2720 * move the header page. 2721 */ 2722 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2723 /* 2724 * If we are not in overwrite mode, 2725 * this is easy, just stop here. 2726 */ 2727 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2728 local_inc(&cpu_buffer->dropped_events); 2729 goto out_reset; 2730 } 2731 2732 ret = rb_handle_head_page(cpu_buffer, 2733 tail_page, 2734 next_page); 2735 if (ret < 0) 2736 goto out_reset; 2737 if (ret) 2738 goto out_again; 2739 } else { 2740 /* 2741 * We need to be careful here too. The 2742 * commit page could still be on the reader 2743 * page. We could have a small buffer, and 2744 * have filled up the buffer with events 2745 * from interrupts and such, and wrapped. 2746 * 2747 * Note, if the tail page is also on the 2748 * reader_page, we let it move out. 2749 */ 2750 if (unlikely((cpu_buffer->commit_page != 2751 cpu_buffer->tail_page) && 2752 (cpu_buffer->commit_page == 2753 cpu_buffer->reader_page))) { 2754 local_inc(&cpu_buffer->commit_overrun); 2755 goto out_reset; 2756 } 2757 } 2758 } 2759 2760 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2761 2762 out_again: 2763 2764 rb_reset_tail(cpu_buffer, tail, info); 2765 2766 /* Commit what we have for now. */ 2767 rb_end_commit(cpu_buffer); 2768 /* rb_end_commit() decs committing */ 2769 local_inc(&cpu_buffer->committing); 2770 2771 /* fail and let the caller try again */ 2772 return ERR_PTR(-EAGAIN); 2773 2774 out_reset: 2775 /* reset write */ 2776 rb_reset_tail(cpu_buffer, tail, info); 2777 2778 return NULL; 2779 } 2780 2781 /* Slow path */ 2782 static struct ring_buffer_event * 2783 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2784 { 2785 if (abs) 2786 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2787 else 2788 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2789 2790 /* Not the first event on the page, or not delta? */ 2791 if (abs || rb_event_index(event)) { 2792 event->time_delta = delta & TS_MASK; 2793 event->array[0] = delta >> TS_SHIFT; 2794 } else { 2795 /* nope, just zero it */ 2796 event->time_delta = 0; 2797 event->array[0] = 0; 2798 } 2799 2800 return skip_time_extend(event); 2801 } 2802 2803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2804 static inline bool sched_clock_stable(void) 2805 { 2806 return true; 2807 } 2808 #endif 2809 2810 static void 2811 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2812 struct rb_event_info *info) 2813 { 2814 u64 write_stamp; 2815 2816 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2817 (unsigned long long)info->delta, 2818 (unsigned long long)info->ts, 2819 (unsigned long long)info->before, 2820 (unsigned long long)info->after, 2821 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2822 sched_clock_stable() ? "" : 2823 "If you just came from a suspend/resume,\n" 2824 "please switch to the trace global clock:\n" 2825 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2826 "or add trace_clock=global to the kernel command line\n"); 2827 } 2828 2829 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2830 struct ring_buffer_event **event, 2831 struct rb_event_info *info, 2832 u64 *delta, 2833 unsigned int *length) 2834 { 2835 bool abs = info->add_timestamp & 2836 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2837 2838 if (unlikely(info->delta > (1ULL << 59))) { 2839 /* 2840 * Some timers can use more than 59 bits, and when a timestamp 2841 * is added to the buffer, it will lose those bits. 2842 */ 2843 if (abs && (info->ts & TS_MSB)) { 2844 info->delta &= ABS_TS_MASK; 2845 2846 /* did the clock go backwards */ 2847 } else if (info->before == info->after && info->before > info->ts) { 2848 /* not interrupted */ 2849 static int once; 2850 2851 /* 2852 * This is possible with a recalibrating of the TSC. 2853 * Do not produce a call stack, but just report it. 2854 */ 2855 if (!once) { 2856 once++; 2857 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2858 info->before, info->ts); 2859 } 2860 } else 2861 rb_check_timestamp(cpu_buffer, info); 2862 if (!abs) 2863 info->delta = 0; 2864 } 2865 *event = rb_add_time_stamp(*event, info->delta, abs); 2866 *length -= RB_LEN_TIME_EXTEND; 2867 *delta = 0; 2868 } 2869 2870 /** 2871 * rb_update_event - update event type and data 2872 * @cpu_buffer: The per cpu buffer of the @event 2873 * @event: the event to update 2874 * @info: The info to update the @event with (contains length and delta) 2875 * 2876 * Update the type and data fields of the @event. The length 2877 * is the actual size that is written to the ring buffer, 2878 * and with this, we can determine what to place into the 2879 * data field. 2880 */ 2881 static void 2882 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2883 struct ring_buffer_event *event, 2884 struct rb_event_info *info) 2885 { 2886 unsigned length = info->length; 2887 u64 delta = info->delta; 2888 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2889 2890 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2891 cpu_buffer->event_stamp[nest] = info->ts; 2892 2893 /* 2894 * If we need to add a timestamp, then we 2895 * add it to the start of the reserved space. 2896 */ 2897 if (unlikely(info->add_timestamp)) 2898 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2899 2900 event->time_delta = delta; 2901 length -= RB_EVNT_HDR_SIZE; 2902 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2903 event->type_len = 0; 2904 event->array[0] = length; 2905 } else 2906 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2907 } 2908 2909 static unsigned rb_calculate_event_length(unsigned length) 2910 { 2911 struct ring_buffer_event event; /* Used only for sizeof array */ 2912 2913 /* zero length can cause confusions */ 2914 if (!length) 2915 length++; 2916 2917 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2918 length += sizeof(event.array[0]); 2919 2920 length += RB_EVNT_HDR_SIZE; 2921 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2922 2923 /* 2924 * In case the time delta is larger than the 27 bits for it 2925 * in the header, we need to add a timestamp. If another 2926 * event comes in when trying to discard this one to increase 2927 * the length, then the timestamp will be added in the allocated 2928 * space of this event. If length is bigger than the size needed 2929 * for the TIME_EXTEND, then padding has to be used. The events 2930 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2931 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2932 * As length is a multiple of 4, we only need to worry if it 2933 * is 12 (RB_LEN_TIME_EXTEND + 4). 2934 */ 2935 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2936 length += RB_ALIGNMENT; 2937 2938 return length; 2939 } 2940 2941 static u64 rb_time_delta(struct ring_buffer_event *event) 2942 { 2943 switch (event->type_len) { 2944 case RINGBUF_TYPE_PADDING: 2945 return 0; 2946 2947 case RINGBUF_TYPE_TIME_EXTEND: 2948 return rb_event_time_stamp(event); 2949 2950 case RINGBUF_TYPE_TIME_STAMP: 2951 return 0; 2952 2953 case RINGBUF_TYPE_DATA: 2954 return event->time_delta; 2955 default: 2956 return 0; 2957 } 2958 } 2959 2960 static inline int 2961 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2962 struct ring_buffer_event *event) 2963 { 2964 unsigned long new_index, old_index; 2965 struct buffer_page *bpage; 2966 unsigned long index; 2967 unsigned long addr; 2968 u64 write_stamp; 2969 u64 delta; 2970 2971 new_index = rb_event_index(event); 2972 old_index = new_index + rb_event_ts_length(event); 2973 addr = (unsigned long)event; 2974 addr &= PAGE_MASK; 2975 2976 bpage = READ_ONCE(cpu_buffer->tail_page); 2977 2978 delta = rb_time_delta(event); 2979 2980 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 2981 return 0; 2982 2983 /* Make sure the write stamp is read before testing the location */ 2984 barrier(); 2985 2986 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2987 unsigned long write_mask = 2988 local_read(&bpage->write) & ~RB_WRITE_MASK; 2989 unsigned long event_length = rb_event_length(event); 2990 2991 /* Something came in, can't discard */ 2992 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 2993 write_stamp, write_stamp - delta)) 2994 return 0; 2995 2996 /* 2997 * It's possible that the event time delta is zero 2998 * (has the same time stamp as the previous event) 2999 * in which case write_stamp and before_stamp could 3000 * be the same. In such a case, force before_stamp 3001 * to be different than write_stamp. It doesn't 3002 * matter what it is, as long as its different. 3003 */ 3004 if (!delta) 3005 rb_time_set(&cpu_buffer->before_stamp, 0); 3006 3007 /* 3008 * If an event were to come in now, it would see that the 3009 * write_stamp and the before_stamp are different, and assume 3010 * that this event just added itself before updating 3011 * the write stamp. The interrupting event will fix the 3012 * write stamp for us, and use the before stamp as its delta. 3013 */ 3014 3015 /* 3016 * This is on the tail page. It is possible that 3017 * a write could come in and move the tail page 3018 * and write to the next page. That is fine 3019 * because we just shorten what is on this page. 3020 */ 3021 old_index += write_mask; 3022 new_index += write_mask; 3023 index = local_cmpxchg(&bpage->write, old_index, new_index); 3024 if (index == old_index) { 3025 /* update counters */ 3026 local_sub(event_length, &cpu_buffer->entries_bytes); 3027 return 1; 3028 } 3029 } 3030 3031 /* could not discard */ 3032 return 0; 3033 } 3034 3035 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3036 { 3037 local_inc(&cpu_buffer->committing); 3038 local_inc(&cpu_buffer->commits); 3039 } 3040 3041 static __always_inline void 3042 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3043 { 3044 unsigned long max_count; 3045 3046 /* 3047 * We only race with interrupts and NMIs on this CPU. 3048 * If we own the commit event, then we can commit 3049 * all others that interrupted us, since the interruptions 3050 * are in stack format (they finish before they come 3051 * back to us). This allows us to do a simple loop to 3052 * assign the commit to the tail. 3053 */ 3054 again: 3055 max_count = cpu_buffer->nr_pages * 100; 3056 3057 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3058 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3059 return; 3060 if (RB_WARN_ON(cpu_buffer, 3061 rb_is_reader_page(cpu_buffer->tail_page))) 3062 return; 3063 local_set(&cpu_buffer->commit_page->page->commit, 3064 rb_page_write(cpu_buffer->commit_page)); 3065 rb_inc_page(&cpu_buffer->commit_page); 3066 /* add barrier to keep gcc from optimizing too much */ 3067 barrier(); 3068 } 3069 while (rb_commit_index(cpu_buffer) != 3070 rb_page_write(cpu_buffer->commit_page)) { 3071 3072 local_set(&cpu_buffer->commit_page->page->commit, 3073 rb_page_write(cpu_buffer->commit_page)); 3074 RB_WARN_ON(cpu_buffer, 3075 local_read(&cpu_buffer->commit_page->page->commit) & 3076 ~RB_WRITE_MASK); 3077 barrier(); 3078 } 3079 3080 /* again, keep gcc from optimizing */ 3081 barrier(); 3082 3083 /* 3084 * If an interrupt came in just after the first while loop 3085 * and pushed the tail page forward, we will be left with 3086 * a dangling commit that will never go forward. 3087 */ 3088 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3089 goto again; 3090 } 3091 3092 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3093 { 3094 unsigned long commits; 3095 3096 if (RB_WARN_ON(cpu_buffer, 3097 !local_read(&cpu_buffer->committing))) 3098 return; 3099 3100 again: 3101 commits = local_read(&cpu_buffer->commits); 3102 /* synchronize with interrupts */ 3103 barrier(); 3104 if (local_read(&cpu_buffer->committing) == 1) 3105 rb_set_commit_to_write(cpu_buffer); 3106 3107 local_dec(&cpu_buffer->committing); 3108 3109 /* synchronize with interrupts */ 3110 barrier(); 3111 3112 /* 3113 * Need to account for interrupts coming in between the 3114 * updating of the commit page and the clearing of the 3115 * committing counter. 3116 */ 3117 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3118 !local_read(&cpu_buffer->committing)) { 3119 local_inc(&cpu_buffer->committing); 3120 goto again; 3121 } 3122 } 3123 3124 static inline void rb_event_discard(struct ring_buffer_event *event) 3125 { 3126 if (extended_time(event)) 3127 event = skip_time_extend(event); 3128 3129 /* array[0] holds the actual length for the discarded event */ 3130 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3131 event->type_len = RINGBUF_TYPE_PADDING; 3132 /* time delta must be non zero */ 3133 if (!event->time_delta) 3134 event->time_delta = 1; 3135 } 3136 3137 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 3138 struct ring_buffer_event *event) 3139 { 3140 local_inc(&cpu_buffer->entries); 3141 rb_end_commit(cpu_buffer); 3142 } 3143 3144 static __always_inline void 3145 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3146 { 3147 size_t nr_pages; 3148 size_t dirty; 3149 size_t full; 3150 3151 if (buffer->irq_work.waiters_pending) { 3152 buffer->irq_work.waiters_pending = false; 3153 /* irq_work_queue() supplies it's own memory barriers */ 3154 irq_work_queue(&buffer->irq_work.work); 3155 } 3156 3157 if (cpu_buffer->irq_work.waiters_pending) { 3158 cpu_buffer->irq_work.waiters_pending = false; 3159 /* irq_work_queue() supplies it's own memory barriers */ 3160 irq_work_queue(&cpu_buffer->irq_work.work); 3161 } 3162 3163 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3164 return; 3165 3166 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3167 return; 3168 3169 if (!cpu_buffer->irq_work.full_waiters_pending) 3170 return; 3171 3172 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3173 3174 full = cpu_buffer->shortest_full; 3175 nr_pages = cpu_buffer->nr_pages; 3176 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 3177 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 3178 return; 3179 3180 cpu_buffer->irq_work.wakeup_full = true; 3181 cpu_buffer->irq_work.full_waiters_pending = false; 3182 /* irq_work_queue() supplies it's own memory barriers */ 3183 irq_work_queue(&cpu_buffer->irq_work.work); 3184 } 3185 3186 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3187 # define do_ring_buffer_record_recursion() \ 3188 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3189 #else 3190 # define do_ring_buffer_record_recursion() do { } while (0) 3191 #endif 3192 3193 /* 3194 * The lock and unlock are done within a preempt disable section. 3195 * The current_context per_cpu variable can only be modified 3196 * by the current task between lock and unlock. But it can 3197 * be modified more than once via an interrupt. To pass this 3198 * information from the lock to the unlock without having to 3199 * access the 'in_interrupt()' functions again (which do show 3200 * a bit of overhead in something as critical as function tracing, 3201 * we use a bitmask trick. 3202 * 3203 * bit 1 = NMI context 3204 * bit 2 = IRQ context 3205 * bit 3 = SoftIRQ context 3206 * bit 4 = normal context. 3207 * 3208 * This works because this is the order of contexts that can 3209 * preempt other contexts. A SoftIRQ never preempts an IRQ 3210 * context. 3211 * 3212 * When the context is determined, the corresponding bit is 3213 * checked and set (if it was set, then a recursion of that context 3214 * happened). 3215 * 3216 * On unlock, we need to clear this bit. To do so, just subtract 3217 * 1 from the current_context and AND it to itself. 3218 * 3219 * (binary) 3220 * 101 - 1 = 100 3221 * 101 & 100 = 100 (clearing bit zero) 3222 * 3223 * 1010 - 1 = 1001 3224 * 1010 & 1001 = 1000 (clearing bit 1) 3225 * 3226 * The least significant bit can be cleared this way, and it 3227 * just so happens that it is the same bit corresponding to 3228 * the current context. 3229 * 3230 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3231 * is set when a recursion is detected at the current context, and if 3232 * the TRANSITION bit is already set, it will fail the recursion. 3233 * This is needed because there's a lag between the changing of 3234 * interrupt context and updating the preempt count. In this case, 3235 * a false positive will be found. To handle this, one extra recursion 3236 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3237 * bit is already set, then it is considered a recursion and the function 3238 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3239 * 3240 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3241 * to be cleared. Even if it wasn't the context that set it. That is, 3242 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3243 * is called before preempt_count() is updated, since the check will 3244 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3245 * NMI then comes in, it will set the NMI bit, but when the NMI code 3246 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3247 * and leave the NMI bit set. But this is fine, because the interrupt 3248 * code that set the TRANSITION bit will then clear the NMI bit when it 3249 * calls trace_recursive_unlock(). If another NMI comes in, it will 3250 * set the TRANSITION bit and continue. 3251 * 3252 * Note: The TRANSITION bit only handles a single transition between context. 3253 */ 3254 3255 static __always_inline int 3256 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3257 { 3258 unsigned int val = cpu_buffer->current_context; 3259 int bit = interrupt_context_level(); 3260 3261 bit = RB_CTX_NORMAL - bit; 3262 3263 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3264 /* 3265 * It is possible that this was called by transitioning 3266 * between interrupt context, and preempt_count() has not 3267 * been updated yet. In this case, use the TRANSITION bit. 3268 */ 3269 bit = RB_CTX_TRANSITION; 3270 if (val & (1 << (bit + cpu_buffer->nest))) { 3271 do_ring_buffer_record_recursion(); 3272 return 1; 3273 } 3274 } 3275 3276 val |= (1 << (bit + cpu_buffer->nest)); 3277 cpu_buffer->current_context = val; 3278 3279 return 0; 3280 } 3281 3282 static __always_inline void 3283 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3284 { 3285 cpu_buffer->current_context &= 3286 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3287 } 3288 3289 /* The recursive locking above uses 5 bits */ 3290 #define NESTED_BITS 5 3291 3292 /** 3293 * ring_buffer_nest_start - Allow to trace while nested 3294 * @buffer: The ring buffer to modify 3295 * 3296 * The ring buffer has a safety mechanism to prevent recursion. 3297 * But there may be a case where a trace needs to be done while 3298 * tracing something else. In this case, calling this function 3299 * will allow this function to nest within a currently active 3300 * ring_buffer_lock_reserve(). 3301 * 3302 * Call this function before calling another ring_buffer_lock_reserve() and 3303 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3304 */ 3305 void ring_buffer_nest_start(struct trace_buffer *buffer) 3306 { 3307 struct ring_buffer_per_cpu *cpu_buffer; 3308 int cpu; 3309 3310 /* Enabled by ring_buffer_nest_end() */ 3311 preempt_disable_notrace(); 3312 cpu = raw_smp_processor_id(); 3313 cpu_buffer = buffer->buffers[cpu]; 3314 /* This is the shift value for the above recursive locking */ 3315 cpu_buffer->nest += NESTED_BITS; 3316 } 3317 3318 /** 3319 * ring_buffer_nest_end - Allow to trace while nested 3320 * @buffer: The ring buffer to modify 3321 * 3322 * Must be called after ring_buffer_nest_start() and after the 3323 * ring_buffer_unlock_commit(). 3324 */ 3325 void ring_buffer_nest_end(struct trace_buffer *buffer) 3326 { 3327 struct ring_buffer_per_cpu *cpu_buffer; 3328 int cpu; 3329 3330 /* disabled by ring_buffer_nest_start() */ 3331 cpu = raw_smp_processor_id(); 3332 cpu_buffer = buffer->buffers[cpu]; 3333 /* This is the shift value for the above recursive locking */ 3334 cpu_buffer->nest -= NESTED_BITS; 3335 preempt_enable_notrace(); 3336 } 3337 3338 /** 3339 * ring_buffer_unlock_commit - commit a reserved 3340 * @buffer: The buffer to commit to 3341 * @event: The event pointer to commit. 3342 * 3343 * This commits the data to the ring buffer, and releases any locks held. 3344 * 3345 * Must be paired with ring_buffer_lock_reserve. 3346 */ 3347 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3348 struct ring_buffer_event *event) 3349 { 3350 struct ring_buffer_per_cpu *cpu_buffer; 3351 int cpu = raw_smp_processor_id(); 3352 3353 cpu_buffer = buffer->buffers[cpu]; 3354 3355 rb_commit(cpu_buffer, event); 3356 3357 rb_wakeups(buffer, cpu_buffer); 3358 3359 trace_recursive_unlock(cpu_buffer); 3360 3361 preempt_enable_notrace(); 3362 3363 return 0; 3364 } 3365 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3366 3367 /* Special value to validate all deltas on a page. */ 3368 #define CHECK_FULL_PAGE 1L 3369 3370 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3371 static void dump_buffer_page(struct buffer_data_page *bpage, 3372 struct rb_event_info *info, 3373 unsigned long tail) 3374 { 3375 struct ring_buffer_event *event; 3376 u64 ts, delta; 3377 int e; 3378 3379 ts = bpage->time_stamp; 3380 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3381 3382 for (e = 0; e < tail; e += rb_event_length(event)) { 3383 3384 event = (struct ring_buffer_event *)(bpage->data + e); 3385 3386 switch (event->type_len) { 3387 3388 case RINGBUF_TYPE_TIME_EXTEND: 3389 delta = rb_event_time_stamp(event); 3390 ts += delta; 3391 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3392 break; 3393 3394 case RINGBUF_TYPE_TIME_STAMP: 3395 delta = rb_event_time_stamp(event); 3396 ts = rb_fix_abs_ts(delta, ts); 3397 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3398 break; 3399 3400 case RINGBUF_TYPE_PADDING: 3401 ts += event->time_delta; 3402 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3403 break; 3404 3405 case RINGBUF_TYPE_DATA: 3406 ts += event->time_delta; 3407 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3408 break; 3409 3410 default: 3411 break; 3412 } 3413 } 3414 } 3415 3416 static DEFINE_PER_CPU(atomic_t, checking); 3417 static atomic_t ts_dump; 3418 3419 /* 3420 * Check if the current event time stamp matches the deltas on 3421 * the buffer page. 3422 */ 3423 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3424 struct rb_event_info *info, 3425 unsigned long tail) 3426 { 3427 struct ring_buffer_event *event; 3428 struct buffer_data_page *bpage; 3429 u64 ts, delta; 3430 bool full = false; 3431 int e; 3432 3433 bpage = info->tail_page->page; 3434 3435 if (tail == CHECK_FULL_PAGE) { 3436 full = true; 3437 tail = local_read(&bpage->commit); 3438 } else if (info->add_timestamp & 3439 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3440 /* Ignore events with absolute time stamps */ 3441 return; 3442 } 3443 3444 /* 3445 * Do not check the first event (skip possible extends too). 3446 * Also do not check if previous events have not been committed. 3447 */ 3448 if (tail <= 8 || tail > local_read(&bpage->commit)) 3449 return; 3450 3451 /* 3452 * If this interrupted another event, 3453 */ 3454 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3455 goto out; 3456 3457 ts = bpage->time_stamp; 3458 3459 for (e = 0; e < tail; e += rb_event_length(event)) { 3460 3461 event = (struct ring_buffer_event *)(bpage->data + e); 3462 3463 switch (event->type_len) { 3464 3465 case RINGBUF_TYPE_TIME_EXTEND: 3466 delta = rb_event_time_stamp(event); 3467 ts += delta; 3468 break; 3469 3470 case RINGBUF_TYPE_TIME_STAMP: 3471 delta = rb_event_time_stamp(event); 3472 ts = rb_fix_abs_ts(delta, ts); 3473 break; 3474 3475 case RINGBUF_TYPE_PADDING: 3476 if (event->time_delta == 1) 3477 break; 3478 fallthrough; 3479 case RINGBUF_TYPE_DATA: 3480 ts += event->time_delta; 3481 break; 3482 3483 default: 3484 RB_WARN_ON(cpu_buffer, 1); 3485 } 3486 } 3487 if ((full && ts > info->ts) || 3488 (!full && ts + info->delta != info->ts)) { 3489 /* If another report is happening, ignore this one */ 3490 if (atomic_inc_return(&ts_dump) != 1) { 3491 atomic_dec(&ts_dump); 3492 goto out; 3493 } 3494 atomic_inc(&cpu_buffer->record_disabled); 3495 /* There's some cases in boot up that this can happen */ 3496 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3497 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3498 cpu_buffer->cpu, 3499 ts + info->delta, info->ts, info->delta, 3500 info->before, info->after, 3501 full ? " (full)" : ""); 3502 dump_buffer_page(bpage, info, tail); 3503 atomic_dec(&ts_dump); 3504 /* Do not re-enable checking */ 3505 return; 3506 } 3507 out: 3508 atomic_dec(this_cpu_ptr(&checking)); 3509 } 3510 #else 3511 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3512 struct rb_event_info *info, 3513 unsigned long tail) 3514 { 3515 } 3516 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3517 3518 static struct ring_buffer_event * 3519 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3520 struct rb_event_info *info) 3521 { 3522 struct ring_buffer_event *event; 3523 struct buffer_page *tail_page; 3524 unsigned long tail, write, w; 3525 bool a_ok; 3526 bool b_ok; 3527 3528 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3529 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3530 3531 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3532 barrier(); 3533 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3534 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3535 barrier(); 3536 info->ts = rb_time_stamp(cpu_buffer->buffer); 3537 3538 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3539 info->delta = info->ts; 3540 } else { 3541 /* 3542 * If interrupting an event time update, we may need an 3543 * absolute timestamp. 3544 * Don't bother if this is the start of a new page (w == 0). 3545 */ 3546 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3547 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3548 info->length += RB_LEN_TIME_EXTEND; 3549 } else { 3550 info->delta = info->ts - info->after; 3551 if (unlikely(test_time_stamp(info->delta))) { 3552 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3553 info->length += RB_LEN_TIME_EXTEND; 3554 } 3555 } 3556 } 3557 3558 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3559 3560 /*C*/ write = local_add_return(info->length, &tail_page->write); 3561 3562 /* set write to only the index of the write */ 3563 write &= RB_WRITE_MASK; 3564 3565 tail = write - info->length; 3566 3567 /* See if we shot pass the end of this buffer page */ 3568 if (unlikely(write > BUF_PAGE_SIZE)) { 3569 /* before and after may now different, fix it up*/ 3570 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3571 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3572 if (a_ok && b_ok && info->before != info->after) 3573 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3574 info->before, info->after); 3575 if (a_ok && b_ok) 3576 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3577 return rb_move_tail(cpu_buffer, tail, info); 3578 } 3579 3580 if (likely(tail == w)) { 3581 u64 save_before; 3582 bool s_ok; 3583 3584 /* Nothing interrupted us between A and C */ 3585 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3586 barrier(); 3587 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3588 RB_WARN_ON(cpu_buffer, !s_ok); 3589 if (likely(!(info->add_timestamp & 3590 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3591 /* This did not interrupt any time update */ 3592 info->delta = info->ts - info->after; 3593 else 3594 /* Just use full timestamp for interrupting event */ 3595 info->delta = info->ts; 3596 barrier(); 3597 check_buffer(cpu_buffer, info, tail); 3598 if (unlikely(info->ts != save_before)) { 3599 /* SLOW PATH - Interrupted between C and E */ 3600 3601 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3602 RB_WARN_ON(cpu_buffer, !a_ok); 3603 3604 /* Write stamp must only go forward */ 3605 if (save_before > info->after) { 3606 /* 3607 * We do not care about the result, only that 3608 * it gets updated atomically. 3609 */ 3610 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3611 info->after, save_before); 3612 } 3613 } 3614 } else { 3615 u64 ts; 3616 /* SLOW PATH - Interrupted between A and C */ 3617 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3618 /* Was interrupted before here, write_stamp must be valid */ 3619 RB_WARN_ON(cpu_buffer, !a_ok); 3620 ts = rb_time_stamp(cpu_buffer->buffer); 3621 barrier(); 3622 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3623 info->after < ts && 3624 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3625 info->after, ts)) { 3626 /* Nothing came after this event between C and E */ 3627 info->delta = ts - info->after; 3628 } else { 3629 /* 3630 * Interrupted between C and E: 3631 * Lost the previous events time stamp. Just set the 3632 * delta to zero, and this will be the same time as 3633 * the event this event interrupted. And the events that 3634 * came after this will still be correct (as they would 3635 * have built their delta on the previous event. 3636 */ 3637 info->delta = 0; 3638 } 3639 info->ts = ts; 3640 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3641 } 3642 3643 /* 3644 * If this is the first commit on the page, then it has the same 3645 * timestamp as the page itself. 3646 */ 3647 if (unlikely(!tail && !(info->add_timestamp & 3648 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3649 info->delta = 0; 3650 3651 /* We reserved something on the buffer */ 3652 3653 event = __rb_page_index(tail_page, tail); 3654 rb_update_event(cpu_buffer, event, info); 3655 3656 local_inc(&tail_page->entries); 3657 3658 /* 3659 * If this is the first commit on the page, then update 3660 * its timestamp. 3661 */ 3662 if (unlikely(!tail)) 3663 tail_page->page->time_stamp = info->ts; 3664 3665 /* account for these added bytes */ 3666 local_add(info->length, &cpu_buffer->entries_bytes); 3667 3668 return event; 3669 } 3670 3671 static __always_inline struct ring_buffer_event * 3672 rb_reserve_next_event(struct trace_buffer *buffer, 3673 struct ring_buffer_per_cpu *cpu_buffer, 3674 unsigned long length) 3675 { 3676 struct ring_buffer_event *event; 3677 struct rb_event_info info; 3678 int nr_loops = 0; 3679 int add_ts_default; 3680 3681 rb_start_commit(cpu_buffer); 3682 /* The commit page can not change after this */ 3683 3684 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3685 /* 3686 * Due to the ability to swap a cpu buffer from a buffer 3687 * it is possible it was swapped before we committed. 3688 * (committing stops a swap). We check for it here and 3689 * if it happened, we have to fail the write. 3690 */ 3691 barrier(); 3692 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3693 local_dec(&cpu_buffer->committing); 3694 local_dec(&cpu_buffer->commits); 3695 return NULL; 3696 } 3697 #endif 3698 3699 info.length = rb_calculate_event_length(length); 3700 3701 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3702 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3703 info.length += RB_LEN_TIME_EXTEND; 3704 } else { 3705 add_ts_default = RB_ADD_STAMP_NONE; 3706 } 3707 3708 again: 3709 info.add_timestamp = add_ts_default; 3710 info.delta = 0; 3711 3712 /* 3713 * We allow for interrupts to reenter here and do a trace. 3714 * If one does, it will cause this original code to loop 3715 * back here. Even with heavy interrupts happening, this 3716 * should only happen a few times in a row. If this happens 3717 * 1000 times in a row, there must be either an interrupt 3718 * storm or we have something buggy. 3719 * Bail! 3720 */ 3721 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3722 goto out_fail; 3723 3724 event = __rb_reserve_next(cpu_buffer, &info); 3725 3726 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3727 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3728 info.length -= RB_LEN_TIME_EXTEND; 3729 goto again; 3730 } 3731 3732 if (likely(event)) 3733 return event; 3734 out_fail: 3735 rb_end_commit(cpu_buffer); 3736 return NULL; 3737 } 3738 3739 /** 3740 * ring_buffer_lock_reserve - reserve a part of the buffer 3741 * @buffer: the ring buffer to reserve from 3742 * @length: the length of the data to reserve (excluding event header) 3743 * 3744 * Returns a reserved event on the ring buffer to copy directly to. 3745 * The user of this interface will need to get the body to write into 3746 * and can use the ring_buffer_event_data() interface. 3747 * 3748 * The length is the length of the data needed, not the event length 3749 * which also includes the event header. 3750 * 3751 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3752 * If NULL is returned, then nothing has been allocated or locked. 3753 */ 3754 struct ring_buffer_event * 3755 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3756 { 3757 struct ring_buffer_per_cpu *cpu_buffer; 3758 struct ring_buffer_event *event; 3759 int cpu; 3760 3761 /* If we are tracing schedule, we don't want to recurse */ 3762 preempt_disable_notrace(); 3763 3764 if (unlikely(atomic_read(&buffer->record_disabled))) 3765 goto out; 3766 3767 cpu = raw_smp_processor_id(); 3768 3769 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3770 goto out; 3771 3772 cpu_buffer = buffer->buffers[cpu]; 3773 3774 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3775 goto out; 3776 3777 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3778 goto out; 3779 3780 if (unlikely(trace_recursive_lock(cpu_buffer))) 3781 goto out; 3782 3783 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3784 if (!event) 3785 goto out_unlock; 3786 3787 return event; 3788 3789 out_unlock: 3790 trace_recursive_unlock(cpu_buffer); 3791 out: 3792 preempt_enable_notrace(); 3793 return NULL; 3794 } 3795 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3796 3797 /* 3798 * Decrement the entries to the page that an event is on. 3799 * The event does not even need to exist, only the pointer 3800 * to the page it is on. This may only be called before the commit 3801 * takes place. 3802 */ 3803 static inline void 3804 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3805 struct ring_buffer_event *event) 3806 { 3807 unsigned long addr = (unsigned long)event; 3808 struct buffer_page *bpage = cpu_buffer->commit_page; 3809 struct buffer_page *start; 3810 3811 addr &= PAGE_MASK; 3812 3813 /* Do the likely case first */ 3814 if (likely(bpage->page == (void *)addr)) { 3815 local_dec(&bpage->entries); 3816 return; 3817 } 3818 3819 /* 3820 * Because the commit page may be on the reader page we 3821 * start with the next page and check the end loop there. 3822 */ 3823 rb_inc_page(&bpage); 3824 start = bpage; 3825 do { 3826 if (bpage->page == (void *)addr) { 3827 local_dec(&bpage->entries); 3828 return; 3829 } 3830 rb_inc_page(&bpage); 3831 } while (bpage != start); 3832 3833 /* commit not part of this buffer?? */ 3834 RB_WARN_ON(cpu_buffer, 1); 3835 } 3836 3837 /** 3838 * ring_buffer_discard_commit - discard an event that has not been committed 3839 * @buffer: the ring buffer 3840 * @event: non committed event to discard 3841 * 3842 * Sometimes an event that is in the ring buffer needs to be ignored. 3843 * This function lets the user discard an event in the ring buffer 3844 * and then that event will not be read later. 3845 * 3846 * This function only works if it is called before the item has been 3847 * committed. It will try to free the event from the ring buffer 3848 * if another event has not been added behind it. 3849 * 3850 * If another event has been added behind it, it will set the event 3851 * up as discarded, and perform the commit. 3852 * 3853 * If this function is called, do not call ring_buffer_unlock_commit on 3854 * the event. 3855 */ 3856 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3857 struct ring_buffer_event *event) 3858 { 3859 struct ring_buffer_per_cpu *cpu_buffer; 3860 int cpu; 3861 3862 /* The event is discarded regardless */ 3863 rb_event_discard(event); 3864 3865 cpu = smp_processor_id(); 3866 cpu_buffer = buffer->buffers[cpu]; 3867 3868 /* 3869 * This must only be called if the event has not been 3870 * committed yet. Thus we can assume that preemption 3871 * is still disabled. 3872 */ 3873 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3874 3875 rb_decrement_entry(cpu_buffer, event); 3876 if (rb_try_to_discard(cpu_buffer, event)) 3877 goto out; 3878 3879 out: 3880 rb_end_commit(cpu_buffer); 3881 3882 trace_recursive_unlock(cpu_buffer); 3883 3884 preempt_enable_notrace(); 3885 3886 } 3887 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3888 3889 /** 3890 * ring_buffer_write - write data to the buffer without reserving 3891 * @buffer: The ring buffer to write to. 3892 * @length: The length of the data being written (excluding the event header) 3893 * @data: The data to write to the buffer. 3894 * 3895 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3896 * one function. If you already have the data to write to the buffer, it 3897 * may be easier to simply call this function. 3898 * 3899 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3900 * and not the length of the event which would hold the header. 3901 */ 3902 int ring_buffer_write(struct trace_buffer *buffer, 3903 unsigned long length, 3904 void *data) 3905 { 3906 struct ring_buffer_per_cpu *cpu_buffer; 3907 struct ring_buffer_event *event; 3908 void *body; 3909 int ret = -EBUSY; 3910 int cpu; 3911 3912 preempt_disable_notrace(); 3913 3914 if (atomic_read(&buffer->record_disabled)) 3915 goto out; 3916 3917 cpu = raw_smp_processor_id(); 3918 3919 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3920 goto out; 3921 3922 cpu_buffer = buffer->buffers[cpu]; 3923 3924 if (atomic_read(&cpu_buffer->record_disabled)) 3925 goto out; 3926 3927 if (length > BUF_MAX_DATA_SIZE) 3928 goto out; 3929 3930 if (unlikely(trace_recursive_lock(cpu_buffer))) 3931 goto out; 3932 3933 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3934 if (!event) 3935 goto out_unlock; 3936 3937 body = rb_event_data(event); 3938 3939 memcpy(body, data, length); 3940 3941 rb_commit(cpu_buffer, event); 3942 3943 rb_wakeups(buffer, cpu_buffer); 3944 3945 ret = 0; 3946 3947 out_unlock: 3948 trace_recursive_unlock(cpu_buffer); 3949 3950 out: 3951 preempt_enable_notrace(); 3952 3953 return ret; 3954 } 3955 EXPORT_SYMBOL_GPL(ring_buffer_write); 3956 3957 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3958 { 3959 struct buffer_page *reader = cpu_buffer->reader_page; 3960 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3961 struct buffer_page *commit = cpu_buffer->commit_page; 3962 3963 /* In case of error, head will be NULL */ 3964 if (unlikely(!head)) 3965 return true; 3966 3967 /* Reader should exhaust content in reader page */ 3968 if (reader->read != rb_page_commit(reader)) 3969 return false; 3970 3971 /* 3972 * If writers are committing on the reader page, knowing all 3973 * committed content has been read, the ring buffer is empty. 3974 */ 3975 if (commit == reader) 3976 return true; 3977 3978 /* 3979 * If writers are committing on a page other than reader page 3980 * and head page, there should always be content to read. 3981 */ 3982 if (commit != head) 3983 return false; 3984 3985 /* 3986 * Writers are committing on the head page, we just need 3987 * to care about there're committed data, and the reader will 3988 * swap reader page with head page when it is to read data. 3989 */ 3990 return rb_page_commit(commit) == 0; 3991 } 3992 3993 /** 3994 * ring_buffer_record_disable - stop all writes into the buffer 3995 * @buffer: The ring buffer to stop writes to. 3996 * 3997 * This prevents all writes to the buffer. Any attempt to write 3998 * to the buffer after this will fail and return NULL. 3999 * 4000 * The caller should call synchronize_rcu() after this. 4001 */ 4002 void ring_buffer_record_disable(struct trace_buffer *buffer) 4003 { 4004 atomic_inc(&buffer->record_disabled); 4005 } 4006 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4007 4008 /** 4009 * ring_buffer_record_enable - enable writes to the buffer 4010 * @buffer: The ring buffer to enable writes 4011 * 4012 * Note, multiple disables will need the same number of enables 4013 * to truly enable the writing (much like preempt_disable). 4014 */ 4015 void ring_buffer_record_enable(struct trace_buffer *buffer) 4016 { 4017 atomic_dec(&buffer->record_disabled); 4018 } 4019 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4020 4021 /** 4022 * ring_buffer_record_off - stop all writes into the buffer 4023 * @buffer: The ring buffer to stop writes to. 4024 * 4025 * This prevents all writes to the buffer. Any attempt to write 4026 * to the buffer after this will fail and return NULL. 4027 * 4028 * This is different than ring_buffer_record_disable() as 4029 * it works like an on/off switch, where as the disable() version 4030 * must be paired with a enable(). 4031 */ 4032 void ring_buffer_record_off(struct trace_buffer *buffer) 4033 { 4034 unsigned int rd; 4035 unsigned int new_rd; 4036 4037 do { 4038 rd = atomic_read(&buffer->record_disabled); 4039 new_rd = rd | RB_BUFFER_OFF; 4040 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 4041 } 4042 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4043 4044 /** 4045 * ring_buffer_record_on - restart writes into the buffer 4046 * @buffer: The ring buffer to start writes to. 4047 * 4048 * This enables all writes to the buffer that was disabled by 4049 * ring_buffer_record_off(). 4050 * 4051 * This is different than ring_buffer_record_enable() as 4052 * it works like an on/off switch, where as the enable() version 4053 * must be paired with a disable(). 4054 */ 4055 void ring_buffer_record_on(struct trace_buffer *buffer) 4056 { 4057 unsigned int rd; 4058 unsigned int new_rd; 4059 4060 do { 4061 rd = atomic_read(&buffer->record_disabled); 4062 new_rd = rd & ~RB_BUFFER_OFF; 4063 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 4064 } 4065 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4066 4067 /** 4068 * ring_buffer_record_is_on - return true if the ring buffer can write 4069 * @buffer: The ring buffer to see if write is enabled 4070 * 4071 * Returns true if the ring buffer is in a state that it accepts writes. 4072 */ 4073 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4074 { 4075 return !atomic_read(&buffer->record_disabled); 4076 } 4077 4078 /** 4079 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4080 * @buffer: The ring buffer to see if write is set enabled 4081 * 4082 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4083 * Note that this does NOT mean it is in a writable state. 4084 * 4085 * It may return true when the ring buffer has been disabled by 4086 * ring_buffer_record_disable(), as that is a temporary disabling of 4087 * the ring buffer. 4088 */ 4089 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4090 { 4091 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4092 } 4093 4094 /** 4095 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4096 * @buffer: The ring buffer to stop writes to. 4097 * @cpu: The CPU buffer to stop 4098 * 4099 * This prevents all writes to the buffer. Any attempt to write 4100 * to the buffer after this will fail and return NULL. 4101 * 4102 * The caller should call synchronize_rcu() after this. 4103 */ 4104 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4105 { 4106 struct ring_buffer_per_cpu *cpu_buffer; 4107 4108 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4109 return; 4110 4111 cpu_buffer = buffer->buffers[cpu]; 4112 atomic_inc(&cpu_buffer->record_disabled); 4113 } 4114 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4115 4116 /** 4117 * ring_buffer_record_enable_cpu - enable writes to the buffer 4118 * @buffer: The ring buffer to enable writes 4119 * @cpu: The CPU to enable. 4120 * 4121 * Note, multiple disables will need the same number of enables 4122 * to truly enable the writing (much like preempt_disable). 4123 */ 4124 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4125 { 4126 struct ring_buffer_per_cpu *cpu_buffer; 4127 4128 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4129 return; 4130 4131 cpu_buffer = buffer->buffers[cpu]; 4132 atomic_dec(&cpu_buffer->record_disabled); 4133 } 4134 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4135 4136 /* 4137 * The total entries in the ring buffer is the running counter 4138 * of entries entered into the ring buffer, minus the sum of 4139 * the entries read from the ring buffer and the number of 4140 * entries that were overwritten. 4141 */ 4142 static inline unsigned long 4143 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4144 { 4145 return local_read(&cpu_buffer->entries) - 4146 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4147 } 4148 4149 /** 4150 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4151 * @buffer: The ring buffer 4152 * @cpu: The per CPU buffer to read from. 4153 */ 4154 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4155 { 4156 unsigned long flags; 4157 struct ring_buffer_per_cpu *cpu_buffer; 4158 struct buffer_page *bpage; 4159 u64 ret = 0; 4160 4161 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4162 return 0; 4163 4164 cpu_buffer = buffer->buffers[cpu]; 4165 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4166 /* 4167 * if the tail is on reader_page, oldest time stamp is on the reader 4168 * page 4169 */ 4170 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4171 bpage = cpu_buffer->reader_page; 4172 else 4173 bpage = rb_set_head_page(cpu_buffer); 4174 if (bpage) 4175 ret = bpage->page->time_stamp; 4176 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4177 4178 return ret; 4179 } 4180 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4181 4182 /** 4183 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 4184 * @buffer: The ring buffer 4185 * @cpu: The per CPU buffer to read from. 4186 */ 4187 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4188 { 4189 struct ring_buffer_per_cpu *cpu_buffer; 4190 unsigned long ret; 4191 4192 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4193 return 0; 4194 4195 cpu_buffer = buffer->buffers[cpu]; 4196 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4197 4198 return ret; 4199 } 4200 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4201 4202 /** 4203 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4204 * @buffer: The ring buffer 4205 * @cpu: The per CPU buffer to get the entries from. 4206 */ 4207 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4208 { 4209 struct ring_buffer_per_cpu *cpu_buffer; 4210 4211 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4212 return 0; 4213 4214 cpu_buffer = buffer->buffers[cpu]; 4215 4216 return rb_num_of_entries(cpu_buffer); 4217 } 4218 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4219 4220 /** 4221 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4222 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4223 * @buffer: The ring buffer 4224 * @cpu: The per CPU buffer to get the number of overruns from 4225 */ 4226 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4227 { 4228 struct ring_buffer_per_cpu *cpu_buffer; 4229 unsigned long ret; 4230 4231 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4232 return 0; 4233 4234 cpu_buffer = buffer->buffers[cpu]; 4235 ret = local_read(&cpu_buffer->overrun); 4236 4237 return ret; 4238 } 4239 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4240 4241 /** 4242 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4243 * commits failing due to the buffer wrapping around while there are uncommitted 4244 * events, such as during an interrupt storm. 4245 * @buffer: The ring buffer 4246 * @cpu: The per CPU buffer to get the number of overruns from 4247 */ 4248 unsigned long 4249 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4250 { 4251 struct ring_buffer_per_cpu *cpu_buffer; 4252 unsigned long ret; 4253 4254 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4255 return 0; 4256 4257 cpu_buffer = buffer->buffers[cpu]; 4258 ret = local_read(&cpu_buffer->commit_overrun); 4259 4260 return ret; 4261 } 4262 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4263 4264 /** 4265 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4266 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4267 * @buffer: The ring buffer 4268 * @cpu: The per CPU buffer to get the number of overruns from 4269 */ 4270 unsigned long 4271 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4272 { 4273 struct ring_buffer_per_cpu *cpu_buffer; 4274 unsigned long ret; 4275 4276 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4277 return 0; 4278 4279 cpu_buffer = buffer->buffers[cpu]; 4280 ret = local_read(&cpu_buffer->dropped_events); 4281 4282 return ret; 4283 } 4284 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4285 4286 /** 4287 * ring_buffer_read_events_cpu - get the number of events successfully read 4288 * @buffer: The ring buffer 4289 * @cpu: The per CPU buffer to get the number of events read 4290 */ 4291 unsigned long 4292 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4293 { 4294 struct ring_buffer_per_cpu *cpu_buffer; 4295 4296 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4297 return 0; 4298 4299 cpu_buffer = buffer->buffers[cpu]; 4300 return cpu_buffer->read; 4301 } 4302 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4303 4304 /** 4305 * ring_buffer_entries - get the number of entries in a buffer 4306 * @buffer: The ring buffer 4307 * 4308 * Returns the total number of entries in the ring buffer 4309 * (all CPU entries) 4310 */ 4311 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4312 { 4313 struct ring_buffer_per_cpu *cpu_buffer; 4314 unsigned long entries = 0; 4315 int cpu; 4316 4317 /* if you care about this being correct, lock the buffer */ 4318 for_each_buffer_cpu(buffer, cpu) { 4319 cpu_buffer = buffer->buffers[cpu]; 4320 entries += rb_num_of_entries(cpu_buffer); 4321 } 4322 4323 return entries; 4324 } 4325 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4326 4327 /** 4328 * ring_buffer_overruns - get the number of overruns in buffer 4329 * @buffer: The ring buffer 4330 * 4331 * Returns the total number of overruns in the ring buffer 4332 * (all CPU entries) 4333 */ 4334 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4335 { 4336 struct ring_buffer_per_cpu *cpu_buffer; 4337 unsigned long overruns = 0; 4338 int cpu; 4339 4340 /* if you care about this being correct, lock the buffer */ 4341 for_each_buffer_cpu(buffer, cpu) { 4342 cpu_buffer = buffer->buffers[cpu]; 4343 overruns += local_read(&cpu_buffer->overrun); 4344 } 4345 4346 return overruns; 4347 } 4348 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4349 4350 static void rb_iter_reset(struct ring_buffer_iter *iter) 4351 { 4352 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4353 4354 /* Iterator usage is expected to have record disabled */ 4355 iter->head_page = cpu_buffer->reader_page; 4356 iter->head = cpu_buffer->reader_page->read; 4357 iter->next_event = iter->head; 4358 4359 iter->cache_reader_page = iter->head_page; 4360 iter->cache_read = cpu_buffer->read; 4361 4362 if (iter->head) { 4363 iter->read_stamp = cpu_buffer->read_stamp; 4364 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4365 } else { 4366 iter->read_stamp = iter->head_page->page->time_stamp; 4367 iter->page_stamp = iter->read_stamp; 4368 } 4369 } 4370 4371 /** 4372 * ring_buffer_iter_reset - reset an iterator 4373 * @iter: The iterator to reset 4374 * 4375 * Resets the iterator, so that it will start from the beginning 4376 * again. 4377 */ 4378 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4379 { 4380 struct ring_buffer_per_cpu *cpu_buffer; 4381 unsigned long flags; 4382 4383 if (!iter) 4384 return; 4385 4386 cpu_buffer = iter->cpu_buffer; 4387 4388 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4389 rb_iter_reset(iter); 4390 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4391 } 4392 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4393 4394 /** 4395 * ring_buffer_iter_empty - check if an iterator has no more to read 4396 * @iter: The iterator to check 4397 */ 4398 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4399 { 4400 struct ring_buffer_per_cpu *cpu_buffer; 4401 struct buffer_page *reader; 4402 struct buffer_page *head_page; 4403 struct buffer_page *commit_page; 4404 struct buffer_page *curr_commit_page; 4405 unsigned commit; 4406 u64 curr_commit_ts; 4407 u64 commit_ts; 4408 4409 cpu_buffer = iter->cpu_buffer; 4410 reader = cpu_buffer->reader_page; 4411 head_page = cpu_buffer->head_page; 4412 commit_page = cpu_buffer->commit_page; 4413 commit_ts = commit_page->page->time_stamp; 4414 4415 /* 4416 * When the writer goes across pages, it issues a cmpxchg which 4417 * is a mb(), which will synchronize with the rmb here. 4418 * (see rb_tail_page_update()) 4419 */ 4420 smp_rmb(); 4421 commit = rb_page_commit(commit_page); 4422 /* We want to make sure that the commit page doesn't change */ 4423 smp_rmb(); 4424 4425 /* Make sure commit page didn't change */ 4426 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4427 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4428 4429 /* If the commit page changed, then there's more data */ 4430 if (curr_commit_page != commit_page || 4431 curr_commit_ts != commit_ts) 4432 return 0; 4433 4434 /* Still racy, as it may return a false positive, but that's OK */ 4435 return ((iter->head_page == commit_page && iter->head >= commit) || 4436 (iter->head_page == reader && commit_page == head_page && 4437 head_page->read == commit && 4438 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4439 } 4440 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4441 4442 static void 4443 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4444 struct ring_buffer_event *event) 4445 { 4446 u64 delta; 4447 4448 switch (event->type_len) { 4449 case RINGBUF_TYPE_PADDING: 4450 return; 4451 4452 case RINGBUF_TYPE_TIME_EXTEND: 4453 delta = rb_event_time_stamp(event); 4454 cpu_buffer->read_stamp += delta; 4455 return; 4456 4457 case RINGBUF_TYPE_TIME_STAMP: 4458 delta = rb_event_time_stamp(event); 4459 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4460 cpu_buffer->read_stamp = delta; 4461 return; 4462 4463 case RINGBUF_TYPE_DATA: 4464 cpu_buffer->read_stamp += event->time_delta; 4465 return; 4466 4467 default: 4468 RB_WARN_ON(cpu_buffer, 1); 4469 } 4470 return; 4471 } 4472 4473 static void 4474 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4475 struct ring_buffer_event *event) 4476 { 4477 u64 delta; 4478 4479 switch (event->type_len) { 4480 case RINGBUF_TYPE_PADDING: 4481 return; 4482 4483 case RINGBUF_TYPE_TIME_EXTEND: 4484 delta = rb_event_time_stamp(event); 4485 iter->read_stamp += delta; 4486 return; 4487 4488 case RINGBUF_TYPE_TIME_STAMP: 4489 delta = rb_event_time_stamp(event); 4490 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4491 iter->read_stamp = delta; 4492 return; 4493 4494 case RINGBUF_TYPE_DATA: 4495 iter->read_stamp += event->time_delta; 4496 return; 4497 4498 default: 4499 RB_WARN_ON(iter->cpu_buffer, 1); 4500 } 4501 return; 4502 } 4503 4504 static struct buffer_page * 4505 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4506 { 4507 struct buffer_page *reader = NULL; 4508 unsigned long overwrite; 4509 unsigned long flags; 4510 int nr_loops = 0; 4511 int ret; 4512 4513 local_irq_save(flags); 4514 arch_spin_lock(&cpu_buffer->lock); 4515 4516 again: 4517 /* 4518 * This should normally only loop twice. But because the 4519 * start of the reader inserts an empty page, it causes 4520 * a case where we will loop three times. There should be no 4521 * reason to loop four times (that I know of). 4522 */ 4523 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4524 reader = NULL; 4525 goto out; 4526 } 4527 4528 reader = cpu_buffer->reader_page; 4529 4530 /* If there's more to read, return this page */ 4531 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4532 goto out; 4533 4534 /* Never should we have an index greater than the size */ 4535 if (RB_WARN_ON(cpu_buffer, 4536 cpu_buffer->reader_page->read > rb_page_size(reader))) 4537 goto out; 4538 4539 /* check if we caught up to the tail */ 4540 reader = NULL; 4541 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4542 goto out; 4543 4544 /* Don't bother swapping if the ring buffer is empty */ 4545 if (rb_num_of_entries(cpu_buffer) == 0) 4546 goto out; 4547 4548 /* 4549 * Reset the reader page to size zero. 4550 */ 4551 local_set(&cpu_buffer->reader_page->write, 0); 4552 local_set(&cpu_buffer->reader_page->entries, 0); 4553 local_set(&cpu_buffer->reader_page->page->commit, 0); 4554 cpu_buffer->reader_page->real_end = 0; 4555 4556 spin: 4557 /* 4558 * Splice the empty reader page into the list around the head. 4559 */ 4560 reader = rb_set_head_page(cpu_buffer); 4561 if (!reader) 4562 goto out; 4563 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4564 cpu_buffer->reader_page->list.prev = reader->list.prev; 4565 4566 /* 4567 * cpu_buffer->pages just needs to point to the buffer, it 4568 * has no specific buffer page to point to. Lets move it out 4569 * of our way so we don't accidentally swap it. 4570 */ 4571 cpu_buffer->pages = reader->list.prev; 4572 4573 /* The reader page will be pointing to the new head */ 4574 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4575 4576 /* 4577 * We want to make sure we read the overruns after we set up our 4578 * pointers to the next object. The writer side does a 4579 * cmpxchg to cross pages which acts as the mb on the writer 4580 * side. Note, the reader will constantly fail the swap 4581 * while the writer is updating the pointers, so this 4582 * guarantees that the overwrite recorded here is the one we 4583 * want to compare with the last_overrun. 4584 */ 4585 smp_mb(); 4586 overwrite = local_read(&(cpu_buffer->overrun)); 4587 4588 /* 4589 * Here's the tricky part. 4590 * 4591 * We need to move the pointer past the header page. 4592 * But we can only do that if a writer is not currently 4593 * moving it. The page before the header page has the 4594 * flag bit '1' set if it is pointing to the page we want. 4595 * but if the writer is in the process of moving it 4596 * than it will be '2' or already moved '0'. 4597 */ 4598 4599 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4600 4601 /* 4602 * If we did not convert it, then we must try again. 4603 */ 4604 if (!ret) 4605 goto spin; 4606 4607 /* 4608 * Yay! We succeeded in replacing the page. 4609 * 4610 * Now make the new head point back to the reader page. 4611 */ 4612 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4613 rb_inc_page(&cpu_buffer->head_page); 4614 4615 local_inc(&cpu_buffer->pages_read); 4616 4617 /* Finally update the reader page to the new head */ 4618 cpu_buffer->reader_page = reader; 4619 cpu_buffer->reader_page->read = 0; 4620 4621 if (overwrite != cpu_buffer->last_overrun) { 4622 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4623 cpu_buffer->last_overrun = overwrite; 4624 } 4625 4626 goto again; 4627 4628 out: 4629 /* Update the read_stamp on the first event */ 4630 if (reader && reader->read == 0) 4631 cpu_buffer->read_stamp = reader->page->time_stamp; 4632 4633 arch_spin_unlock(&cpu_buffer->lock); 4634 local_irq_restore(flags); 4635 4636 /* 4637 * The writer has preempt disable, wait for it. But not forever 4638 * Although, 1 second is pretty much "forever" 4639 */ 4640 #define USECS_WAIT 1000000 4641 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4642 /* If the write is past the end of page, a writer is still updating it */ 4643 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4644 break; 4645 4646 udelay(1); 4647 4648 /* Get the latest version of the reader write value */ 4649 smp_rmb(); 4650 } 4651 4652 /* The writer is not moving forward? Something is wrong */ 4653 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4654 reader = NULL; 4655 4656 /* 4657 * Make sure we see any padding after the write update 4658 * (see rb_reset_tail()) 4659 */ 4660 smp_rmb(); 4661 4662 4663 return reader; 4664 } 4665 4666 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4667 { 4668 struct ring_buffer_event *event; 4669 struct buffer_page *reader; 4670 unsigned length; 4671 4672 reader = rb_get_reader_page(cpu_buffer); 4673 4674 /* This function should not be called when buffer is empty */ 4675 if (RB_WARN_ON(cpu_buffer, !reader)) 4676 return; 4677 4678 event = rb_reader_event(cpu_buffer); 4679 4680 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4681 cpu_buffer->read++; 4682 4683 rb_update_read_stamp(cpu_buffer, event); 4684 4685 length = rb_event_length(event); 4686 cpu_buffer->reader_page->read += length; 4687 } 4688 4689 static void rb_advance_iter(struct ring_buffer_iter *iter) 4690 { 4691 struct ring_buffer_per_cpu *cpu_buffer; 4692 4693 cpu_buffer = iter->cpu_buffer; 4694 4695 /* If head == next_event then we need to jump to the next event */ 4696 if (iter->head == iter->next_event) { 4697 /* If the event gets overwritten again, there's nothing to do */ 4698 if (rb_iter_head_event(iter) == NULL) 4699 return; 4700 } 4701 4702 iter->head = iter->next_event; 4703 4704 /* 4705 * Check if we are at the end of the buffer. 4706 */ 4707 if (iter->next_event >= rb_page_size(iter->head_page)) { 4708 /* discarded commits can make the page empty */ 4709 if (iter->head_page == cpu_buffer->commit_page) 4710 return; 4711 rb_inc_iter(iter); 4712 return; 4713 } 4714 4715 rb_update_iter_read_stamp(iter, iter->event); 4716 } 4717 4718 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4719 { 4720 return cpu_buffer->lost_events; 4721 } 4722 4723 static struct ring_buffer_event * 4724 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4725 unsigned long *lost_events) 4726 { 4727 struct ring_buffer_event *event; 4728 struct buffer_page *reader; 4729 int nr_loops = 0; 4730 4731 if (ts) 4732 *ts = 0; 4733 again: 4734 /* 4735 * We repeat when a time extend is encountered. 4736 * Since the time extend is always attached to a data event, 4737 * we should never loop more than once. 4738 * (We never hit the following condition more than twice). 4739 */ 4740 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4741 return NULL; 4742 4743 reader = rb_get_reader_page(cpu_buffer); 4744 if (!reader) 4745 return NULL; 4746 4747 event = rb_reader_event(cpu_buffer); 4748 4749 switch (event->type_len) { 4750 case RINGBUF_TYPE_PADDING: 4751 if (rb_null_event(event)) 4752 RB_WARN_ON(cpu_buffer, 1); 4753 /* 4754 * Because the writer could be discarding every 4755 * event it creates (which would probably be bad) 4756 * if we were to go back to "again" then we may never 4757 * catch up, and will trigger the warn on, or lock 4758 * the box. Return the padding, and we will release 4759 * the current locks, and try again. 4760 */ 4761 return event; 4762 4763 case RINGBUF_TYPE_TIME_EXTEND: 4764 /* Internal data, OK to advance */ 4765 rb_advance_reader(cpu_buffer); 4766 goto again; 4767 4768 case RINGBUF_TYPE_TIME_STAMP: 4769 if (ts) { 4770 *ts = rb_event_time_stamp(event); 4771 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4772 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4773 cpu_buffer->cpu, ts); 4774 } 4775 /* Internal data, OK to advance */ 4776 rb_advance_reader(cpu_buffer); 4777 goto again; 4778 4779 case RINGBUF_TYPE_DATA: 4780 if (ts && !(*ts)) { 4781 *ts = cpu_buffer->read_stamp + event->time_delta; 4782 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4783 cpu_buffer->cpu, ts); 4784 } 4785 if (lost_events) 4786 *lost_events = rb_lost_events(cpu_buffer); 4787 return event; 4788 4789 default: 4790 RB_WARN_ON(cpu_buffer, 1); 4791 } 4792 4793 return NULL; 4794 } 4795 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4796 4797 static struct ring_buffer_event * 4798 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4799 { 4800 struct trace_buffer *buffer; 4801 struct ring_buffer_per_cpu *cpu_buffer; 4802 struct ring_buffer_event *event; 4803 int nr_loops = 0; 4804 4805 if (ts) 4806 *ts = 0; 4807 4808 cpu_buffer = iter->cpu_buffer; 4809 buffer = cpu_buffer->buffer; 4810 4811 /* 4812 * Check if someone performed a consuming read to 4813 * the buffer. A consuming read invalidates the iterator 4814 * and we need to reset the iterator in this case. 4815 */ 4816 if (unlikely(iter->cache_read != cpu_buffer->read || 4817 iter->cache_reader_page != cpu_buffer->reader_page)) 4818 rb_iter_reset(iter); 4819 4820 again: 4821 if (ring_buffer_iter_empty(iter)) 4822 return NULL; 4823 4824 /* 4825 * As the writer can mess with what the iterator is trying 4826 * to read, just give up if we fail to get an event after 4827 * three tries. The iterator is not as reliable when reading 4828 * the ring buffer with an active write as the consumer is. 4829 * Do not warn if the three failures is reached. 4830 */ 4831 if (++nr_loops > 3) 4832 return NULL; 4833 4834 if (rb_per_cpu_empty(cpu_buffer)) 4835 return NULL; 4836 4837 if (iter->head >= rb_page_size(iter->head_page)) { 4838 rb_inc_iter(iter); 4839 goto again; 4840 } 4841 4842 event = rb_iter_head_event(iter); 4843 if (!event) 4844 goto again; 4845 4846 switch (event->type_len) { 4847 case RINGBUF_TYPE_PADDING: 4848 if (rb_null_event(event)) { 4849 rb_inc_iter(iter); 4850 goto again; 4851 } 4852 rb_advance_iter(iter); 4853 return event; 4854 4855 case RINGBUF_TYPE_TIME_EXTEND: 4856 /* Internal data, OK to advance */ 4857 rb_advance_iter(iter); 4858 goto again; 4859 4860 case RINGBUF_TYPE_TIME_STAMP: 4861 if (ts) { 4862 *ts = rb_event_time_stamp(event); 4863 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4864 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4865 cpu_buffer->cpu, ts); 4866 } 4867 /* Internal data, OK to advance */ 4868 rb_advance_iter(iter); 4869 goto again; 4870 4871 case RINGBUF_TYPE_DATA: 4872 if (ts && !(*ts)) { 4873 *ts = iter->read_stamp + event->time_delta; 4874 ring_buffer_normalize_time_stamp(buffer, 4875 cpu_buffer->cpu, ts); 4876 } 4877 return event; 4878 4879 default: 4880 RB_WARN_ON(cpu_buffer, 1); 4881 } 4882 4883 return NULL; 4884 } 4885 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4886 4887 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4888 { 4889 if (likely(!in_nmi())) { 4890 raw_spin_lock(&cpu_buffer->reader_lock); 4891 return true; 4892 } 4893 4894 /* 4895 * If an NMI die dumps out the content of the ring buffer 4896 * trylock must be used to prevent a deadlock if the NMI 4897 * preempted a task that holds the ring buffer locks. If 4898 * we get the lock then all is fine, if not, then continue 4899 * to do the read, but this can corrupt the ring buffer, 4900 * so it must be permanently disabled from future writes. 4901 * Reading from NMI is a oneshot deal. 4902 */ 4903 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4904 return true; 4905 4906 /* Continue without locking, but disable the ring buffer */ 4907 atomic_inc(&cpu_buffer->record_disabled); 4908 return false; 4909 } 4910 4911 static inline void 4912 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4913 { 4914 if (likely(locked)) 4915 raw_spin_unlock(&cpu_buffer->reader_lock); 4916 return; 4917 } 4918 4919 /** 4920 * ring_buffer_peek - peek at the next event to be read 4921 * @buffer: The ring buffer to read 4922 * @cpu: The cpu to peak at 4923 * @ts: The timestamp counter of this event. 4924 * @lost_events: a variable to store if events were lost (may be NULL) 4925 * 4926 * This will return the event that will be read next, but does 4927 * not consume the data. 4928 */ 4929 struct ring_buffer_event * 4930 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4931 unsigned long *lost_events) 4932 { 4933 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4934 struct ring_buffer_event *event; 4935 unsigned long flags; 4936 bool dolock; 4937 4938 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4939 return NULL; 4940 4941 again: 4942 local_irq_save(flags); 4943 dolock = rb_reader_lock(cpu_buffer); 4944 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4945 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4946 rb_advance_reader(cpu_buffer); 4947 rb_reader_unlock(cpu_buffer, dolock); 4948 local_irq_restore(flags); 4949 4950 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4951 goto again; 4952 4953 return event; 4954 } 4955 4956 /** ring_buffer_iter_dropped - report if there are dropped events 4957 * @iter: The ring buffer iterator 4958 * 4959 * Returns true if there was dropped events since the last peek. 4960 */ 4961 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4962 { 4963 bool ret = iter->missed_events != 0; 4964 4965 iter->missed_events = 0; 4966 return ret; 4967 } 4968 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4969 4970 /** 4971 * ring_buffer_iter_peek - peek at the next event to be read 4972 * @iter: The ring buffer iterator 4973 * @ts: The timestamp counter of this event. 4974 * 4975 * This will return the event that will be read next, but does 4976 * not increment the iterator. 4977 */ 4978 struct ring_buffer_event * 4979 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4980 { 4981 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4982 struct ring_buffer_event *event; 4983 unsigned long flags; 4984 4985 again: 4986 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4987 event = rb_iter_peek(iter, ts); 4988 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4989 4990 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4991 goto again; 4992 4993 return event; 4994 } 4995 4996 /** 4997 * ring_buffer_consume - return an event and consume it 4998 * @buffer: The ring buffer to get the next event from 4999 * @cpu: the cpu to read the buffer from 5000 * @ts: a variable to store the timestamp (may be NULL) 5001 * @lost_events: a variable to store if events were lost (may be NULL) 5002 * 5003 * Returns the next event in the ring buffer, and that event is consumed. 5004 * Meaning, that sequential reads will keep returning a different event, 5005 * and eventually empty the ring buffer if the producer is slower. 5006 */ 5007 struct ring_buffer_event * 5008 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5009 unsigned long *lost_events) 5010 { 5011 struct ring_buffer_per_cpu *cpu_buffer; 5012 struct ring_buffer_event *event = NULL; 5013 unsigned long flags; 5014 bool dolock; 5015 5016 again: 5017 /* might be called in atomic */ 5018 preempt_disable(); 5019 5020 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5021 goto out; 5022 5023 cpu_buffer = buffer->buffers[cpu]; 5024 local_irq_save(flags); 5025 dolock = rb_reader_lock(cpu_buffer); 5026 5027 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5028 if (event) { 5029 cpu_buffer->lost_events = 0; 5030 rb_advance_reader(cpu_buffer); 5031 } 5032 5033 rb_reader_unlock(cpu_buffer, dolock); 5034 local_irq_restore(flags); 5035 5036 out: 5037 preempt_enable(); 5038 5039 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5040 goto again; 5041 5042 return event; 5043 } 5044 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5045 5046 /** 5047 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5048 * @buffer: The ring buffer to read from 5049 * @cpu: The cpu buffer to iterate over 5050 * @flags: gfp flags to use for memory allocation 5051 * 5052 * This performs the initial preparations necessary to iterate 5053 * through the buffer. Memory is allocated, buffer recording 5054 * is disabled, and the iterator pointer is returned to the caller. 5055 * 5056 * Disabling buffer recording prevents the reading from being 5057 * corrupted. This is not a consuming read, so a producer is not 5058 * expected. 5059 * 5060 * After a sequence of ring_buffer_read_prepare calls, the user is 5061 * expected to make at least one call to ring_buffer_read_prepare_sync. 5062 * Afterwards, ring_buffer_read_start is invoked to get things going 5063 * for real. 5064 * 5065 * This overall must be paired with ring_buffer_read_finish. 5066 */ 5067 struct ring_buffer_iter * 5068 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5069 { 5070 struct ring_buffer_per_cpu *cpu_buffer; 5071 struct ring_buffer_iter *iter; 5072 5073 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5074 return NULL; 5075 5076 iter = kzalloc(sizeof(*iter), flags); 5077 if (!iter) 5078 return NULL; 5079 5080 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 5081 if (!iter->event) { 5082 kfree(iter); 5083 return NULL; 5084 } 5085 5086 cpu_buffer = buffer->buffers[cpu]; 5087 5088 iter->cpu_buffer = cpu_buffer; 5089 5090 atomic_inc(&cpu_buffer->resize_disabled); 5091 5092 return iter; 5093 } 5094 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5095 5096 /** 5097 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5098 * 5099 * All previously invoked ring_buffer_read_prepare calls to prepare 5100 * iterators will be synchronized. Afterwards, read_buffer_read_start 5101 * calls on those iterators are allowed. 5102 */ 5103 void 5104 ring_buffer_read_prepare_sync(void) 5105 { 5106 synchronize_rcu(); 5107 } 5108 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5109 5110 /** 5111 * ring_buffer_read_start - start a non consuming read of the buffer 5112 * @iter: The iterator returned by ring_buffer_read_prepare 5113 * 5114 * This finalizes the startup of an iteration through the buffer. 5115 * The iterator comes from a call to ring_buffer_read_prepare and 5116 * an intervening ring_buffer_read_prepare_sync must have been 5117 * performed. 5118 * 5119 * Must be paired with ring_buffer_read_finish. 5120 */ 5121 void 5122 ring_buffer_read_start(struct ring_buffer_iter *iter) 5123 { 5124 struct ring_buffer_per_cpu *cpu_buffer; 5125 unsigned long flags; 5126 5127 if (!iter) 5128 return; 5129 5130 cpu_buffer = iter->cpu_buffer; 5131 5132 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5133 arch_spin_lock(&cpu_buffer->lock); 5134 rb_iter_reset(iter); 5135 arch_spin_unlock(&cpu_buffer->lock); 5136 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5137 } 5138 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5139 5140 /** 5141 * ring_buffer_read_finish - finish reading the iterator of the buffer 5142 * @iter: The iterator retrieved by ring_buffer_start 5143 * 5144 * This re-enables the recording to the buffer, and frees the 5145 * iterator. 5146 */ 5147 void 5148 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5149 { 5150 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5151 unsigned long flags; 5152 5153 /* 5154 * Ring buffer is disabled from recording, here's a good place 5155 * to check the integrity of the ring buffer. 5156 * Must prevent readers from trying to read, as the check 5157 * clears the HEAD page and readers require it. 5158 */ 5159 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5160 rb_check_pages(cpu_buffer); 5161 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5162 5163 atomic_dec(&cpu_buffer->resize_disabled); 5164 kfree(iter->event); 5165 kfree(iter); 5166 } 5167 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5168 5169 /** 5170 * ring_buffer_iter_advance - advance the iterator to the next location 5171 * @iter: The ring buffer iterator 5172 * 5173 * Move the location of the iterator such that the next read will 5174 * be the next location of the iterator. 5175 */ 5176 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5177 { 5178 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5179 unsigned long flags; 5180 5181 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5182 5183 rb_advance_iter(iter); 5184 5185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5186 } 5187 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5188 5189 /** 5190 * ring_buffer_size - return the size of the ring buffer (in bytes) 5191 * @buffer: The ring buffer. 5192 * @cpu: The CPU to get ring buffer size from. 5193 */ 5194 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5195 { 5196 /* 5197 * Earlier, this method returned 5198 * BUF_PAGE_SIZE * buffer->nr_pages 5199 * Since the nr_pages field is now removed, we have converted this to 5200 * return the per cpu buffer value. 5201 */ 5202 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5203 return 0; 5204 5205 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5206 } 5207 EXPORT_SYMBOL_GPL(ring_buffer_size); 5208 5209 static void 5210 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5211 { 5212 rb_head_page_deactivate(cpu_buffer); 5213 5214 cpu_buffer->head_page 5215 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5216 local_set(&cpu_buffer->head_page->write, 0); 5217 local_set(&cpu_buffer->head_page->entries, 0); 5218 local_set(&cpu_buffer->head_page->page->commit, 0); 5219 5220 cpu_buffer->head_page->read = 0; 5221 5222 cpu_buffer->tail_page = cpu_buffer->head_page; 5223 cpu_buffer->commit_page = cpu_buffer->head_page; 5224 5225 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5226 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5227 local_set(&cpu_buffer->reader_page->write, 0); 5228 local_set(&cpu_buffer->reader_page->entries, 0); 5229 local_set(&cpu_buffer->reader_page->page->commit, 0); 5230 cpu_buffer->reader_page->read = 0; 5231 5232 local_set(&cpu_buffer->entries_bytes, 0); 5233 local_set(&cpu_buffer->overrun, 0); 5234 local_set(&cpu_buffer->commit_overrun, 0); 5235 local_set(&cpu_buffer->dropped_events, 0); 5236 local_set(&cpu_buffer->entries, 0); 5237 local_set(&cpu_buffer->committing, 0); 5238 local_set(&cpu_buffer->commits, 0); 5239 local_set(&cpu_buffer->pages_touched, 0); 5240 local_set(&cpu_buffer->pages_read, 0); 5241 cpu_buffer->last_pages_touch = 0; 5242 cpu_buffer->shortest_full = 0; 5243 cpu_buffer->read = 0; 5244 cpu_buffer->read_bytes = 0; 5245 5246 rb_time_set(&cpu_buffer->write_stamp, 0); 5247 rb_time_set(&cpu_buffer->before_stamp, 0); 5248 5249 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5250 5251 cpu_buffer->lost_events = 0; 5252 cpu_buffer->last_overrun = 0; 5253 5254 rb_head_page_activate(cpu_buffer); 5255 } 5256 5257 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5258 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5259 { 5260 unsigned long flags; 5261 5262 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5263 5264 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5265 goto out; 5266 5267 arch_spin_lock(&cpu_buffer->lock); 5268 5269 rb_reset_cpu(cpu_buffer); 5270 5271 arch_spin_unlock(&cpu_buffer->lock); 5272 5273 out: 5274 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5275 } 5276 5277 /** 5278 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5279 * @buffer: The ring buffer to reset a per cpu buffer of 5280 * @cpu: The CPU buffer to be reset 5281 */ 5282 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5283 { 5284 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5285 5286 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5287 return; 5288 5289 /* prevent another thread from changing buffer sizes */ 5290 mutex_lock(&buffer->mutex); 5291 5292 atomic_inc(&cpu_buffer->resize_disabled); 5293 atomic_inc(&cpu_buffer->record_disabled); 5294 5295 /* Make sure all commits have finished */ 5296 synchronize_rcu(); 5297 5298 reset_disabled_cpu_buffer(cpu_buffer); 5299 5300 atomic_dec(&cpu_buffer->record_disabled); 5301 atomic_dec(&cpu_buffer->resize_disabled); 5302 5303 mutex_unlock(&buffer->mutex); 5304 } 5305 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5306 5307 /** 5308 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5309 * @buffer: The ring buffer to reset a per cpu buffer of 5310 * @cpu: The CPU buffer to be reset 5311 */ 5312 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5313 { 5314 struct ring_buffer_per_cpu *cpu_buffer; 5315 int cpu; 5316 5317 /* prevent another thread from changing buffer sizes */ 5318 mutex_lock(&buffer->mutex); 5319 5320 for_each_online_buffer_cpu(buffer, cpu) { 5321 cpu_buffer = buffer->buffers[cpu]; 5322 5323 atomic_inc(&cpu_buffer->resize_disabled); 5324 atomic_inc(&cpu_buffer->record_disabled); 5325 } 5326 5327 /* Make sure all commits have finished */ 5328 synchronize_rcu(); 5329 5330 for_each_online_buffer_cpu(buffer, cpu) { 5331 cpu_buffer = buffer->buffers[cpu]; 5332 5333 reset_disabled_cpu_buffer(cpu_buffer); 5334 5335 atomic_dec(&cpu_buffer->record_disabled); 5336 atomic_dec(&cpu_buffer->resize_disabled); 5337 } 5338 5339 mutex_unlock(&buffer->mutex); 5340 } 5341 5342 /** 5343 * ring_buffer_reset - reset a ring buffer 5344 * @buffer: The ring buffer to reset all cpu buffers 5345 */ 5346 void ring_buffer_reset(struct trace_buffer *buffer) 5347 { 5348 struct ring_buffer_per_cpu *cpu_buffer; 5349 int cpu; 5350 5351 /* prevent another thread from changing buffer sizes */ 5352 mutex_lock(&buffer->mutex); 5353 5354 for_each_buffer_cpu(buffer, cpu) { 5355 cpu_buffer = buffer->buffers[cpu]; 5356 5357 atomic_inc(&cpu_buffer->resize_disabled); 5358 atomic_inc(&cpu_buffer->record_disabled); 5359 } 5360 5361 /* Make sure all commits have finished */ 5362 synchronize_rcu(); 5363 5364 for_each_buffer_cpu(buffer, cpu) { 5365 cpu_buffer = buffer->buffers[cpu]; 5366 5367 reset_disabled_cpu_buffer(cpu_buffer); 5368 5369 atomic_dec(&cpu_buffer->record_disabled); 5370 atomic_dec(&cpu_buffer->resize_disabled); 5371 } 5372 5373 mutex_unlock(&buffer->mutex); 5374 } 5375 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5376 5377 /** 5378 * ring_buffer_empty - is the ring buffer empty? 5379 * @buffer: The ring buffer to test 5380 */ 5381 bool ring_buffer_empty(struct trace_buffer *buffer) 5382 { 5383 struct ring_buffer_per_cpu *cpu_buffer; 5384 unsigned long flags; 5385 bool dolock; 5386 int cpu; 5387 int ret; 5388 5389 /* yes this is racy, but if you don't like the race, lock the buffer */ 5390 for_each_buffer_cpu(buffer, cpu) { 5391 cpu_buffer = buffer->buffers[cpu]; 5392 local_irq_save(flags); 5393 dolock = rb_reader_lock(cpu_buffer); 5394 ret = rb_per_cpu_empty(cpu_buffer); 5395 rb_reader_unlock(cpu_buffer, dolock); 5396 local_irq_restore(flags); 5397 5398 if (!ret) 5399 return false; 5400 } 5401 5402 return true; 5403 } 5404 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5405 5406 /** 5407 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5408 * @buffer: The ring buffer 5409 * @cpu: The CPU buffer to test 5410 */ 5411 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5412 { 5413 struct ring_buffer_per_cpu *cpu_buffer; 5414 unsigned long flags; 5415 bool dolock; 5416 int ret; 5417 5418 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5419 return true; 5420 5421 cpu_buffer = buffer->buffers[cpu]; 5422 local_irq_save(flags); 5423 dolock = rb_reader_lock(cpu_buffer); 5424 ret = rb_per_cpu_empty(cpu_buffer); 5425 rb_reader_unlock(cpu_buffer, dolock); 5426 local_irq_restore(flags); 5427 5428 return ret; 5429 } 5430 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5431 5432 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5433 /** 5434 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5435 * @buffer_a: One buffer to swap with 5436 * @buffer_b: The other buffer to swap with 5437 * @cpu: the CPU of the buffers to swap 5438 * 5439 * This function is useful for tracers that want to take a "snapshot" 5440 * of a CPU buffer and has another back up buffer lying around. 5441 * it is expected that the tracer handles the cpu buffer not being 5442 * used at the moment. 5443 */ 5444 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5445 struct trace_buffer *buffer_b, int cpu) 5446 { 5447 struct ring_buffer_per_cpu *cpu_buffer_a; 5448 struct ring_buffer_per_cpu *cpu_buffer_b; 5449 int ret = -EINVAL; 5450 5451 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5452 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5453 goto out; 5454 5455 cpu_buffer_a = buffer_a->buffers[cpu]; 5456 cpu_buffer_b = buffer_b->buffers[cpu]; 5457 5458 /* At least make sure the two buffers are somewhat the same */ 5459 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5460 goto out; 5461 5462 ret = -EAGAIN; 5463 5464 if (atomic_read(&buffer_a->record_disabled)) 5465 goto out; 5466 5467 if (atomic_read(&buffer_b->record_disabled)) 5468 goto out; 5469 5470 if (atomic_read(&cpu_buffer_a->record_disabled)) 5471 goto out; 5472 5473 if (atomic_read(&cpu_buffer_b->record_disabled)) 5474 goto out; 5475 5476 /* 5477 * We can't do a synchronize_rcu here because this 5478 * function can be called in atomic context. 5479 * Normally this will be called from the same CPU as cpu. 5480 * If not it's up to the caller to protect this. 5481 */ 5482 atomic_inc(&cpu_buffer_a->record_disabled); 5483 atomic_inc(&cpu_buffer_b->record_disabled); 5484 5485 ret = -EBUSY; 5486 if (local_read(&cpu_buffer_a->committing)) 5487 goto out_dec; 5488 if (local_read(&cpu_buffer_b->committing)) 5489 goto out_dec; 5490 5491 buffer_a->buffers[cpu] = cpu_buffer_b; 5492 buffer_b->buffers[cpu] = cpu_buffer_a; 5493 5494 cpu_buffer_b->buffer = buffer_a; 5495 cpu_buffer_a->buffer = buffer_b; 5496 5497 ret = 0; 5498 5499 out_dec: 5500 atomic_dec(&cpu_buffer_a->record_disabled); 5501 atomic_dec(&cpu_buffer_b->record_disabled); 5502 out: 5503 return ret; 5504 } 5505 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5506 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5507 5508 /** 5509 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5510 * @buffer: the buffer to allocate for. 5511 * @cpu: the cpu buffer to allocate. 5512 * 5513 * This function is used in conjunction with ring_buffer_read_page. 5514 * When reading a full page from the ring buffer, these functions 5515 * can be used to speed up the process. The calling function should 5516 * allocate a few pages first with this function. Then when it 5517 * needs to get pages from the ring buffer, it passes the result 5518 * of this function into ring_buffer_read_page, which will swap 5519 * the page that was allocated, with the read page of the buffer. 5520 * 5521 * Returns: 5522 * The page allocated, or ERR_PTR 5523 */ 5524 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5525 { 5526 struct ring_buffer_per_cpu *cpu_buffer; 5527 struct buffer_data_page *bpage = NULL; 5528 unsigned long flags; 5529 struct page *page; 5530 5531 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5532 return ERR_PTR(-ENODEV); 5533 5534 cpu_buffer = buffer->buffers[cpu]; 5535 local_irq_save(flags); 5536 arch_spin_lock(&cpu_buffer->lock); 5537 5538 if (cpu_buffer->free_page) { 5539 bpage = cpu_buffer->free_page; 5540 cpu_buffer->free_page = NULL; 5541 } 5542 5543 arch_spin_unlock(&cpu_buffer->lock); 5544 local_irq_restore(flags); 5545 5546 if (bpage) 5547 goto out; 5548 5549 page = alloc_pages_node(cpu_to_node(cpu), 5550 GFP_KERNEL | __GFP_NORETRY, 0); 5551 if (!page) 5552 return ERR_PTR(-ENOMEM); 5553 5554 bpage = page_address(page); 5555 5556 out: 5557 rb_init_page(bpage); 5558 5559 return bpage; 5560 } 5561 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5562 5563 /** 5564 * ring_buffer_free_read_page - free an allocated read page 5565 * @buffer: the buffer the page was allocate for 5566 * @cpu: the cpu buffer the page came from 5567 * @data: the page to free 5568 * 5569 * Free a page allocated from ring_buffer_alloc_read_page. 5570 */ 5571 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5572 { 5573 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5574 struct buffer_data_page *bpage = data; 5575 struct page *page = virt_to_page(bpage); 5576 unsigned long flags; 5577 5578 /* If the page is still in use someplace else, we can't reuse it */ 5579 if (page_ref_count(page) > 1) 5580 goto out; 5581 5582 local_irq_save(flags); 5583 arch_spin_lock(&cpu_buffer->lock); 5584 5585 if (!cpu_buffer->free_page) { 5586 cpu_buffer->free_page = bpage; 5587 bpage = NULL; 5588 } 5589 5590 arch_spin_unlock(&cpu_buffer->lock); 5591 local_irq_restore(flags); 5592 5593 out: 5594 free_page((unsigned long)bpage); 5595 } 5596 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5597 5598 /** 5599 * ring_buffer_read_page - extract a page from the ring buffer 5600 * @buffer: buffer to extract from 5601 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5602 * @len: amount to extract 5603 * @cpu: the cpu of the buffer to extract 5604 * @full: should the extraction only happen when the page is full. 5605 * 5606 * This function will pull out a page from the ring buffer and consume it. 5607 * @data_page must be the address of the variable that was returned 5608 * from ring_buffer_alloc_read_page. This is because the page might be used 5609 * to swap with a page in the ring buffer. 5610 * 5611 * for example: 5612 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5613 * if (IS_ERR(rpage)) 5614 * return PTR_ERR(rpage); 5615 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5616 * if (ret >= 0) 5617 * process_page(rpage, ret); 5618 * 5619 * When @full is set, the function will not return true unless 5620 * the writer is off the reader page. 5621 * 5622 * Note: it is up to the calling functions to handle sleeps and wakeups. 5623 * The ring buffer can be used anywhere in the kernel and can not 5624 * blindly call wake_up. The layer that uses the ring buffer must be 5625 * responsible for that. 5626 * 5627 * Returns: 5628 * >=0 if data has been transferred, returns the offset of consumed data. 5629 * <0 if no data has been transferred. 5630 */ 5631 int ring_buffer_read_page(struct trace_buffer *buffer, 5632 void **data_page, size_t len, int cpu, int full) 5633 { 5634 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5635 struct ring_buffer_event *event; 5636 struct buffer_data_page *bpage; 5637 struct buffer_page *reader; 5638 unsigned long missed_events; 5639 unsigned long flags; 5640 unsigned int commit; 5641 unsigned int read; 5642 u64 save_timestamp; 5643 int ret = -1; 5644 5645 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5646 goto out; 5647 5648 /* 5649 * If len is not big enough to hold the page header, then 5650 * we can not copy anything. 5651 */ 5652 if (len <= BUF_PAGE_HDR_SIZE) 5653 goto out; 5654 5655 len -= BUF_PAGE_HDR_SIZE; 5656 5657 if (!data_page) 5658 goto out; 5659 5660 bpage = *data_page; 5661 if (!bpage) 5662 goto out; 5663 5664 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5665 5666 reader = rb_get_reader_page(cpu_buffer); 5667 if (!reader) 5668 goto out_unlock; 5669 5670 event = rb_reader_event(cpu_buffer); 5671 5672 read = reader->read; 5673 commit = rb_page_commit(reader); 5674 5675 /* Check if any events were dropped */ 5676 missed_events = cpu_buffer->lost_events; 5677 5678 /* 5679 * If this page has been partially read or 5680 * if len is not big enough to read the rest of the page or 5681 * a writer is still on the page, then 5682 * we must copy the data from the page to the buffer. 5683 * Otherwise, we can simply swap the page with the one passed in. 5684 */ 5685 if (read || (len < (commit - read)) || 5686 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5687 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5688 unsigned int rpos = read; 5689 unsigned int pos = 0; 5690 unsigned int size; 5691 5692 /* 5693 * If a full page is expected, this can still be returned 5694 * if there's been a previous partial read and the 5695 * rest of the page can be read and the commit page is off 5696 * the reader page. 5697 */ 5698 if (full && 5699 (!read || (len < (commit - read)) || 5700 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5701 goto out_unlock; 5702 5703 if (len > (commit - read)) 5704 len = (commit - read); 5705 5706 /* Always keep the time extend and data together */ 5707 size = rb_event_ts_length(event); 5708 5709 if (len < size) 5710 goto out_unlock; 5711 5712 /* save the current timestamp, since the user will need it */ 5713 save_timestamp = cpu_buffer->read_stamp; 5714 5715 /* Need to copy one event at a time */ 5716 do { 5717 /* We need the size of one event, because 5718 * rb_advance_reader only advances by one event, 5719 * whereas rb_event_ts_length may include the size of 5720 * one or two events. 5721 * We have already ensured there's enough space if this 5722 * is a time extend. */ 5723 size = rb_event_length(event); 5724 memcpy(bpage->data + pos, rpage->data + rpos, size); 5725 5726 len -= size; 5727 5728 rb_advance_reader(cpu_buffer); 5729 rpos = reader->read; 5730 pos += size; 5731 5732 if (rpos >= commit) 5733 break; 5734 5735 event = rb_reader_event(cpu_buffer); 5736 /* Always keep the time extend and data together */ 5737 size = rb_event_ts_length(event); 5738 } while (len >= size); 5739 5740 /* update bpage */ 5741 local_set(&bpage->commit, pos); 5742 bpage->time_stamp = save_timestamp; 5743 5744 /* we copied everything to the beginning */ 5745 read = 0; 5746 } else { 5747 /* update the entry counter */ 5748 cpu_buffer->read += rb_page_entries(reader); 5749 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5750 5751 /* swap the pages */ 5752 rb_init_page(bpage); 5753 bpage = reader->page; 5754 reader->page = *data_page; 5755 local_set(&reader->write, 0); 5756 local_set(&reader->entries, 0); 5757 reader->read = 0; 5758 *data_page = bpage; 5759 5760 /* 5761 * Use the real_end for the data size, 5762 * This gives us a chance to store the lost events 5763 * on the page. 5764 */ 5765 if (reader->real_end) 5766 local_set(&bpage->commit, reader->real_end); 5767 } 5768 ret = read; 5769 5770 cpu_buffer->lost_events = 0; 5771 5772 commit = local_read(&bpage->commit); 5773 /* 5774 * Set a flag in the commit field if we lost events 5775 */ 5776 if (missed_events) { 5777 /* If there is room at the end of the page to save the 5778 * missed events, then record it there. 5779 */ 5780 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5781 memcpy(&bpage->data[commit], &missed_events, 5782 sizeof(missed_events)); 5783 local_add(RB_MISSED_STORED, &bpage->commit); 5784 commit += sizeof(missed_events); 5785 } 5786 local_add(RB_MISSED_EVENTS, &bpage->commit); 5787 } 5788 5789 /* 5790 * This page may be off to user land. Zero it out here. 5791 */ 5792 if (commit < BUF_PAGE_SIZE) 5793 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5794 5795 out_unlock: 5796 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5797 5798 out: 5799 return ret; 5800 } 5801 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5802 5803 /* 5804 * We only allocate new buffers, never free them if the CPU goes down. 5805 * If we were to free the buffer, then the user would lose any trace that was in 5806 * the buffer. 5807 */ 5808 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5809 { 5810 struct trace_buffer *buffer; 5811 long nr_pages_same; 5812 int cpu_i; 5813 unsigned long nr_pages; 5814 5815 buffer = container_of(node, struct trace_buffer, node); 5816 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5817 return 0; 5818 5819 nr_pages = 0; 5820 nr_pages_same = 1; 5821 /* check if all cpu sizes are same */ 5822 for_each_buffer_cpu(buffer, cpu_i) { 5823 /* fill in the size from first enabled cpu */ 5824 if (nr_pages == 0) 5825 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5826 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5827 nr_pages_same = 0; 5828 break; 5829 } 5830 } 5831 /* allocate minimum pages, user can later expand it */ 5832 if (!nr_pages_same) 5833 nr_pages = 2; 5834 buffer->buffers[cpu] = 5835 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5836 if (!buffer->buffers[cpu]) { 5837 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5838 cpu); 5839 return -ENOMEM; 5840 } 5841 smp_wmb(); 5842 cpumask_set_cpu(cpu, buffer->cpumask); 5843 return 0; 5844 } 5845 5846 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5847 /* 5848 * This is a basic integrity check of the ring buffer. 5849 * Late in the boot cycle this test will run when configured in. 5850 * It will kick off a thread per CPU that will go into a loop 5851 * writing to the per cpu ring buffer various sizes of data. 5852 * Some of the data will be large items, some small. 5853 * 5854 * Another thread is created that goes into a spin, sending out 5855 * IPIs to the other CPUs to also write into the ring buffer. 5856 * this is to test the nesting ability of the buffer. 5857 * 5858 * Basic stats are recorded and reported. If something in the 5859 * ring buffer should happen that's not expected, a big warning 5860 * is displayed and all ring buffers are disabled. 5861 */ 5862 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5863 5864 struct rb_test_data { 5865 struct trace_buffer *buffer; 5866 unsigned long events; 5867 unsigned long bytes_written; 5868 unsigned long bytes_alloc; 5869 unsigned long bytes_dropped; 5870 unsigned long events_nested; 5871 unsigned long bytes_written_nested; 5872 unsigned long bytes_alloc_nested; 5873 unsigned long bytes_dropped_nested; 5874 int min_size_nested; 5875 int max_size_nested; 5876 int max_size; 5877 int min_size; 5878 int cpu; 5879 int cnt; 5880 }; 5881 5882 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5883 5884 /* 1 meg per cpu */ 5885 #define RB_TEST_BUFFER_SIZE 1048576 5886 5887 static char rb_string[] __initdata = 5888 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5889 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5890 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5891 5892 static bool rb_test_started __initdata; 5893 5894 struct rb_item { 5895 int size; 5896 char str[]; 5897 }; 5898 5899 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5900 { 5901 struct ring_buffer_event *event; 5902 struct rb_item *item; 5903 bool started; 5904 int event_len; 5905 int size; 5906 int len; 5907 int cnt; 5908 5909 /* Have nested writes different that what is written */ 5910 cnt = data->cnt + (nested ? 27 : 0); 5911 5912 /* Multiply cnt by ~e, to make some unique increment */ 5913 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5914 5915 len = size + sizeof(struct rb_item); 5916 5917 started = rb_test_started; 5918 /* read rb_test_started before checking buffer enabled */ 5919 smp_rmb(); 5920 5921 event = ring_buffer_lock_reserve(data->buffer, len); 5922 if (!event) { 5923 /* Ignore dropped events before test starts. */ 5924 if (started) { 5925 if (nested) 5926 data->bytes_dropped += len; 5927 else 5928 data->bytes_dropped_nested += len; 5929 } 5930 return len; 5931 } 5932 5933 event_len = ring_buffer_event_length(event); 5934 5935 if (RB_WARN_ON(data->buffer, event_len < len)) 5936 goto out; 5937 5938 item = ring_buffer_event_data(event); 5939 item->size = size; 5940 memcpy(item->str, rb_string, size); 5941 5942 if (nested) { 5943 data->bytes_alloc_nested += event_len; 5944 data->bytes_written_nested += len; 5945 data->events_nested++; 5946 if (!data->min_size_nested || len < data->min_size_nested) 5947 data->min_size_nested = len; 5948 if (len > data->max_size_nested) 5949 data->max_size_nested = len; 5950 } else { 5951 data->bytes_alloc += event_len; 5952 data->bytes_written += len; 5953 data->events++; 5954 if (!data->min_size || len < data->min_size) 5955 data->max_size = len; 5956 if (len > data->max_size) 5957 data->max_size = len; 5958 } 5959 5960 out: 5961 ring_buffer_unlock_commit(data->buffer, event); 5962 5963 return 0; 5964 } 5965 5966 static __init int rb_test(void *arg) 5967 { 5968 struct rb_test_data *data = arg; 5969 5970 while (!kthread_should_stop()) { 5971 rb_write_something(data, false); 5972 data->cnt++; 5973 5974 set_current_state(TASK_INTERRUPTIBLE); 5975 /* Now sleep between a min of 100-300us and a max of 1ms */ 5976 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5977 } 5978 5979 return 0; 5980 } 5981 5982 static __init void rb_ipi(void *ignore) 5983 { 5984 struct rb_test_data *data; 5985 int cpu = smp_processor_id(); 5986 5987 data = &rb_data[cpu]; 5988 rb_write_something(data, true); 5989 } 5990 5991 static __init int rb_hammer_test(void *arg) 5992 { 5993 while (!kthread_should_stop()) { 5994 5995 /* Send an IPI to all cpus to write data! */ 5996 smp_call_function(rb_ipi, NULL, 1); 5997 /* No sleep, but for non preempt, let others run */ 5998 schedule(); 5999 } 6000 6001 return 0; 6002 } 6003 6004 static __init int test_ringbuffer(void) 6005 { 6006 struct task_struct *rb_hammer; 6007 struct trace_buffer *buffer; 6008 int cpu; 6009 int ret = 0; 6010 6011 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6012 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6013 return 0; 6014 } 6015 6016 pr_info("Running ring buffer tests...\n"); 6017 6018 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6019 if (WARN_ON(!buffer)) 6020 return 0; 6021 6022 /* Disable buffer so that threads can't write to it yet */ 6023 ring_buffer_record_off(buffer); 6024 6025 for_each_online_cpu(cpu) { 6026 rb_data[cpu].buffer = buffer; 6027 rb_data[cpu].cpu = cpu; 6028 rb_data[cpu].cnt = cpu; 6029 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6030 cpu, "rbtester/%u"); 6031 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6032 pr_cont("FAILED\n"); 6033 ret = PTR_ERR(rb_threads[cpu]); 6034 goto out_free; 6035 } 6036 } 6037 6038 /* Now create the rb hammer! */ 6039 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6040 if (WARN_ON(IS_ERR(rb_hammer))) { 6041 pr_cont("FAILED\n"); 6042 ret = PTR_ERR(rb_hammer); 6043 goto out_free; 6044 } 6045 6046 ring_buffer_record_on(buffer); 6047 /* 6048 * Show buffer is enabled before setting rb_test_started. 6049 * Yes there's a small race window where events could be 6050 * dropped and the thread wont catch it. But when a ring 6051 * buffer gets enabled, there will always be some kind of 6052 * delay before other CPUs see it. Thus, we don't care about 6053 * those dropped events. We care about events dropped after 6054 * the threads see that the buffer is active. 6055 */ 6056 smp_wmb(); 6057 rb_test_started = true; 6058 6059 set_current_state(TASK_INTERRUPTIBLE); 6060 /* Just run for 10 seconds */; 6061 schedule_timeout(10 * HZ); 6062 6063 kthread_stop(rb_hammer); 6064 6065 out_free: 6066 for_each_online_cpu(cpu) { 6067 if (!rb_threads[cpu]) 6068 break; 6069 kthread_stop(rb_threads[cpu]); 6070 } 6071 if (ret) { 6072 ring_buffer_free(buffer); 6073 return ret; 6074 } 6075 6076 /* Report! */ 6077 pr_info("finished\n"); 6078 for_each_online_cpu(cpu) { 6079 struct ring_buffer_event *event; 6080 struct rb_test_data *data = &rb_data[cpu]; 6081 struct rb_item *item; 6082 unsigned long total_events; 6083 unsigned long total_dropped; 6084 unsigned long total_written; 6085 unsigned long total_alloc; 6086 unsigned long total_read = 0; 6087 unsigned long total_size = 0; 6088 unsigned long total_len = 0; 6089 unsigned long total_lost = 0; 6090 unsigned long lost; 6091 int big_event_size; 6092 int small_event_size; 6093 6094 ret = -1; 6095 6096 total_events = data->events + data->events_nested; 6097 total_written = data->bytes_written + data->bytes_written_nested; 6098 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6099 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6100 6101 big_event_size = data->max_size + data->max_size_nested; 6102 small_event_size = data->min_size + data->min_size_nested; 6103 6104 pr_info("CPU %d:\n", cpu); 6105 pr_info(" events: %ld\n", total_events); 6106 pr_info(" dropped bytes: %ld\n", total_dropped); 6107 pr_info(" alloced bytes: %ld\n", total_alloc); 6108 pr_info(" written bytes: %ld\n", total_written); 6109 pr_info(" biggest event: %d\n", big_event_size); 6110 pr_info(" smallest event: %d\n", small_event_size); 6111 6112 if (RB_WARN_ON(buffer, total_dropped)) 6113 break; 6114 6115 ret = 0; 6116 6117 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6118 total_lost += lost; 6119 item = ring_buffer_event_data(event); 6120 total_len += ring_buffer_event_length(event); 6121 total_size += item->size + sizeof(struct rb_item); 6122 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6123 pr_info("FAILED!\n"); 6124 pr_info("buffer had: %.*s\n", item->size, item->str); 6125 pr_info("expected: %.*s\n", item->size, rb_string); 6126 RB_WARN_ON(buffer, 1); 6127 ret = -1; 6128 break; 6129 } 6130 total_read++; 6131 } 6132 if (ret) 6133 break; 6134 6135 ret = -1; 6136 6137 pr_info(" read events: %ld\n", total_read); 6138 pr_info(" lost events: %ld\n", total_lost); 6139 pr_info(" total events: %ld\n", total_lost + total_read); 6140 pr_info(" recorded len bytes: %ld\n", total_len); 6141 pr_info(" recorded size bytes: %ld\n", total_size); 6142 if (total_lost) { 6143 pr_info(" With dropped events, record len and size may not match\n" 6144 " alloced and written from above\n"); 6145 } else { 6146 if (RB_WARN_ON(buffer, total_len != total_alloc || 6147 total_size != total_written)) 6148 break; 6149 } 6150 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6151 break; 6152 6153 ret = 0; 6154 } 6155 if (!ret) 6156 pr_info("Ring buffer PASSED!\n"); 6157 6158 ring_buffer_free(buffer); 6159 return 0; 6160 } 6161 6162 late_initcall(test_ringbuffer); 6163 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6164