xref: /linux/kernel/trace/ring_buffer.c (revision be4ebf999a38dfe9d7d705c4913624ec816c48f2)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include "trace.h"
24 
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 	int ret;
31 
32 	ret = trace_seq_printf(s, "# compressed entry header\n");
33 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36 	ret = trace_seq_printf(s, "\n");
37 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38 			       RINGBUF_TYPE_PADDING);
39 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 			       RINGBUF_TYPE_TIME_EXTEND);
41 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 
44 	return ret;
45 }
46 
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114 
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132 
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143 
144 enum {
145 	RB_BUFFERS_ON_BIT	= 0,
146 	RB_BUFFERS_DISABLED_BIT	= 1,
147 };
148 
149 enum {
150 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
151 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153 
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169 
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183 
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194 
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200 	return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203 
204 #include "trace.h"
205 
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT		4U
208 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210 
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213 
214 enum {
215 	RB_LEN_TIME_EXTEND = 8,
216 	RB_LEN_TIME_STAMP = 16,
217 };
218 
219 static inline int rb_null_event(struct ring_buffer_event *event)
220 {
221 	return event->type_len == RINGBUF_TYPE_PADDING
222 			&& event->time_delta == 0;
223 }
224 
225 static inline int rb_discarded_event(struct ring_buffer_event *event)
226 {
227 	return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
228 }
229 
230 static void rb_event_set_padding(struct ring_buffer_event *event)
231 {
232 	event->type_len = RINGBUF_TYPE_PADDING;
233 	event->time_delta = 0;
234 }
235 
236 static unsigned
237 rb_event_data_length(struct ring_buffer_event *event)
238 {
239 	unsigned length;
240 
241 	if (event->type_len)
242 		length = event->type_len * RB_ALIGNMENT;
243 	else
244 		length = event->array[0];
245 	return length + RB_EVNT_HDR_SIZE;
246 }
247 
248 /* inline for ring buffer fast paths */
249 static unsigned
250 rb_event_length(struct ring_buffer_event *event)
251 {
252 	switch (event->type_len) {
253 	case RINGBUF_TYPE_PADDING:
254 		if (rb_null_event(event))
255 			/* undefined */
256 			return -1;
257 		return  event->array[0] + RB_EVNT_HDR_SIZE;
258 
259 	case RINGBUF_TYPE_TIME_EXTEND:
260 		return RB_LEN_TIME_EXTEND;
261 
262 	case RINGBUF_TYPE_TIME_STAMP:
263 		return RB_LEN_TIME_STAMP;
264 
265 	case RINGBUF_TYPE_DATA:
266 		return rb_event_data_length(event);
267 	default:
268 		BUG();
269 	}
270 	/* not hit */
271 	return 0;
272 }
273 
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  */
278 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279 {
280 	unsigned length = rb_event_length(event);
281 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
282 		return length;
283 	length -= RB_EVNT_HDR_SIZE;
284 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
285                 length -= sizeof(event->array[0]);
286 	return length;
287 }
288 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
289 
290 /* inline for ring buffer fast paths */
291 static void *
292 rb_event_data(struct ring_buffer_event *event)
293 {
294 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 	/* If length is in len field, then array[0] has the data */
296 	if (event->type_len)
297 		return (void *)&event->array[0];
298 	/* Otherwise length is in array[0] and array[1] has the data */
299 	return (void *)&event->array[1];
300 }
301 
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 	return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311 
312 #define for_each_buffer_cpu(buffer, cpu)		\
313 	for_each_cpu(cpu, buffer->cpumask)
314 
315 #define TS_SHIFT	27
316 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
317 #define TS_DELTA_TEST	(~TS_MASK)
318 
319 struct buffer_data_page {
320 	u64		 time_stamp;	/* page time stamp */
321 	local_t		 commit;	/* write committed index */
322 	unsigned char	 data[];	/* data of buffer page */
323 };
324 
325 struct buffer_page {
326 	struct list_head list;		/* list of buffer pages */
327 	local_t		 write;		/* index for next write */
328 	unsigned	 read;		/* index for next read */
329 	local_t		 entries;	/* entries on this page */
330 	struct buffer_data_page *page;	/* Actual data page */
331 };
332 
333 static void rb_init_page(struct buffer_data_page *bpage)
334 {
335 	local_set(&bpage->commit, 0);
336 }
337 
338 /**
339  * ring_buffer_page_len - the size of data on the page.
340  * @page: The page to read
341  *
342  * Returns the amount of data on the page, including buffer page header.
343  */
344 size_t ring_buffer_page_len(void *page)
345 {
346 	return local_read(&((struct buffer_data_page *)page)->commit)
347 		+ BUF_PAGE_HDR_SIZE;
348 }
349 
350 /*
351  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
352  * this issue out.
353  */
354 static void free_buffer_page(struct buffer_page *bpage)
355 {
356 	free_page((unsigned long)bpage->page);
357 	kfree(bpage);
358 }
359 
360 /*
361  * We need to fit the time_stamp delta into 27 bits.
362  */
363 static inline int test_time_stamp(u64 delta)
364 {
365 	if (delta & TS_DELTA_TEST)
366 		return 1;
367 	return 0;
368 }
369 
370 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
371 
372 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
373 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
374 
375 /* Max number of timestamps that can fit on a page */
376 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
377 
378 int ring_buffer_print_page_header(struct trace_seq *s)
379 {
380 	struct buffer_data_page field;
381 	int ret;
382 
383 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
384 			       "offset:0;\tsize:%u;\n",
385 			       (unsigned int)sizeof(field.time_stamp));
386 
387 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
388 			       "offset:%u;\tsize:%u;\n",
389 			       (unsigned int)offsetof(typeof(field), commit),
390 			       (unsigned int)sizeof(field.commit));
391 
392 	ret = trace_seq_printf(s, "\tfield: char data;\t"
393 			       "offset:%u;\tsize:%u;\n",
394 			       (unsigned int)offsetof(typeof(field), data),
395 			       (unsigned int)BUF_PAGE_SIZE);
396 
397 	return ret;
398 }
399 
400 /*
401  * head_page == tail_page && head == tail then buffer is empty.
402  */
403 struct ring_buffer_per_cpu {
404 	int				cpu;
405 	struct ring_buffer		*buffer;
406 	spinlock_t			reader_lock; /* serialize readers */
407 	raw_spinlock_t			lock;
408 	struct lock_class_key		lock_key;
409 	struct list_head		pages;
410 	struct buffer_page		*head_page;	/* read from head */
411 	struct buffer_page		*tail_page;	/* write to tail */
412 	struct buffer_page		*commit_page;	/* committed pages */
413 	struct buffer_page		*reader_page;
414 	unsigned long			nmi_dropped;
415 	unsigned long			commit_overrun;
416 	unsigned long			overrun;
417 	unsigned long			read;
418 	local_t				entries;
419 	local_t				committing;
420 	local_t				commits;
421 	u64				write_stamp;
422 	u64				read_stamp;
423 	atomic_t			record_disabled;
424 };
425 
426 struct ring_buffer {
427 	unsigned			pages;
428 	unsigned			flags;
429 	int				cpus;
430 	atomic_t			record_disabled;
431 	cpumask_var_t			cpumask;
432 
433 	struct lock_class_key		*reader_lock_key;
434 
435 	struct mutex			mutex;
436 
437 	struct ring_buffer_per_cpu	**buffers;
438 
439 #ifdef CONFIG_HOTPLUG_CPU
440 	struct notifier_block		cpu_notify;
441 #endif
442 	u64				(*clock)(void);
443 };
444 
445 struct ring_buffer_iter {
446 	struct ring_buffer_per_cpu	*cpu_buffer;
447 	unsigned long			head;
448 	struct buffer_page		*head_page;
449 	u64				read_stamp;
450 };
451 
452 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
453 #define RB_WARN_ON(buffer, cond)				\
454 	({							\
455 		int _____ret = unlikely(cond);			\
456 		if (_____ret) {					\
457 			atomic_inc(&buffer->record_disabled);	\
458 			WARN_ON(1);				\
459 		}						\
460 		_____ret;					\
461 	})
462 
463 /* Up this if you want to test the TIME_EXTENTS and normalization */
464 #define DEBUG_SHIFT 0
465 
466 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
467 {
468 	/* shift to debug/test normalization and TIME_EXTENTS */
469 	return buffer->clock() << DEBUG_SHIFT;
470 }
471 
472 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
473 {
474 	u64 time;
475 
476 	preempt_disable_notrace();
477 	time = rb_time_stamp(buffer, cpu);
478 	preempt_enable_no_resched_notrace();
479 
480 	return time;
481 }
482 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
483 
484 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
485 				      int cpu, u64 *ts)
486 {
487 	/* Just stupid testing the normalize function and deltas */
488 	*ts >>= DEBUG_SHIFT;
489 }
490 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
491 
492 /**
493  * check_pages - integrity check of buffer pages
494  * @cpu_buffer: CPU buffer with pages to test
495  *
496  * As a safety measure we check to make sure the data pages have not
497  * been corrupted.
498  */
499 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
500 {
501 	struct list_head *head = &cpu_buffer->pages;
502 	struct buffer_page *bpage, *tmp;
503 
504 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
505 		return -1;
506 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
507 		return -1;
508 
509 	list_for_each_entry_safe(bpage, tmp, head, list) {
510 		if (RB_WARN_ON(cpu_buffer,
511 			       bpage->list.next->prev != &bpage->list))
512 			return -1;
513 		if (RB_WARN_ON(cpu_buffer,
514 			       bpage->list.prev->next != &bpage->list))
515 			return -1;
516 	}
517 
518 	return 0;
519 }
520 
521 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
522 			     unsigned nr_pages)
523 {
524 	struct list_head *head = &cpu_buffer->pages;
525 	struct buffer_page *bpage, *tmp;
526 	unsigned long addr;
527 	LIST_HEAD(pages);
528 	unsigned i;
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
532 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
533 		if (!bpage)
534 			goto free_pages;
535 		list_add(&bpage->list, &pages);
536 
537 		addr = __get_free_page(GFP_KERNEL);
538 		if (!addr)
539 			goto free_pages;
540 		bpage->page = (void *)addr;
541 		rb_init_page(bpage->page);
542 	}
543 
544 	list_splice(&pages, head);
545 
546 	rb_check_pages(cpu_buffer);
547 
548 	return 0;
549 
550  free_pages:
551 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
552 		list_del_init(&bpage->list);
553 		free_buffer_page(bpage);
554 	}
555 	return -ENOMEM;
556 }
557 
558 static struct ring_buffer_per_cpu *
559 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
560 {
561 	struct ring_buffer_per_cpu *cpu_buffer;
562 	struct buffer_page *bpage;
563 	unsigned long addr;
564 	int ret;
565 
566 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
567 				  GFP_KERNEL, cpu_to_node(cpu));
568 	if (!cpu_buffer)
569 		return NULL;
570 
571 	cpu_buffer->cpu = cpu;
572 	cpu_buffer->buffer = buffer;
573 	spin_lock_init(&cpu_buffer->reader_lock);
574 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
575 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
576 	INIT_LIST_HEAD(&cpu_buffer->pages);
577 
578 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
579 			    GFP_KERNEL, cpu_to_node(cpu));
580 	if (!bpage)
581 		goto fail_free_buffer;
582 
583 	cpu_buffer->reader_page = bpage;
584 	addr = __get_free_page(GFP_KERNEL);
585 	if (!addr)
586 		goto fail_free_reader;
587 	bpage->page = (void *)addr;
588 	rb_init_page(bpage->page);
589 
590 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
591 
592 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
593 	if (ret < 0)
594 		goto fail_free_reader;
595 
596 	cpu_buffer->head_page
597 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
598 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
599 
600 	return cpu_buffer;
601 
602  fail_free_reader:
603 	free_buffer_page(cpu_buffer->reader_page);
604 
605  fail_free_buffer:
606 	kfree(cpu_buffer);
607 	return NULL;
608 }
609 
610 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
611 {
612 	struct list_head *head = &cpu_buffer->pages;
613 	struct buffer_page *bpage, *tmp;
614 
615 	free_buffer_page(cpu_buffer->reader_page);
616 
617 	list_for_each_entry_safe(bpage, tmp, head, list) {
618 		list_del_init(&bpage->list);
619 		free_buffer_page(bpage);
620 	}
621 	kfree(cpu_buffer);
622 }
623 
624 #ifdef CONFIG_HOTPLUG_CPU
625 static int rb_cpu_notify(struct notifier_block *self,
626 			 unsigned long action, void *hcpu);
627 #endif
628 
629 /**
630  * ring_buffer_alloc - allocate a new ring_buffer
631  * @size: the size in bytes per cpu that is needed.
632  * @flags: attributes to set for the ring buffer.
633  *
634  * Currently the only flag that is available is the RB_FL_OVERWRITE
635  * flag. This flag means that the buffer will overwrite old data
636  * when the buffer wraps. If this flag is not set, the buffer will
637  * drop data when the tail hits the head.
638  */
639 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
640 					struct lock_class_key *key)
641 {
642 	struct ring_buffer *buffer;
643 	int bsize;
644 	int cpu;
645 
646 	/* keep it in its own cache line */
647 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
648 			 GFP_KERNEL);
649 	if (!buffer)
650 		return NULL;
651 
652 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
653 		goto fail_free_buffer;
654 
655 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
656 	buffer->flags = flags;
657 	buffer->clock = trace_clock_local;
658 	buffer->reader_lock_key = key;
659 
660 	/* need at least two pages */
661 	if (buffer->pages < 2)
662 		buffer->pages = 2;
663 
664 	/*
665 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
666 	 * in early initcall, it will not be notified of secondary cpus.
667 	 * In that off case, we need to allocate for all possible cpus.
668 	 */
669 #ifdef CONFIG_HOTPLUG_CPU
670 	get_online_cpus();
671 	cpumask_copy(buffer->cpumask, cpu_online_mask);
672 #else
673 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
674 #endif
675 	buffer->cpus = nr_cpu_ids;
676 
677 	bsize = sizeof(void *) * nr_cpu_ids;
678 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
679 				  GFP_KERNEL);
680 	if (!buffer->buffers)
681 		goto fail_free_cpumask;
682 
683 	for_each_buffer_cpu(buffer, cpu) {
684 		buffer->buffers[cpu] =
685 			rb_allocate_cpu_buffer(buffer, cpu);
686 		if (!buffer->buffers[cpu])
687 			goto fail_free_buffers;
688 	}
689 
690 #ifdef CONFIG_HOTPLUG_CPU
691 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
692 	buffer->cpu_notify.priority = 0;
693 	register_cpu_notifier(&buffer->cpu_notify);
694 #endif
695 
696 	put_online_cpus();
697 	mutex_init(&buffer->mutex);
698 
699 	return buffer;
700 
701  fail_free_buffers:
702 	for_each_buffer_cpu(buffer, cpu) {
703 		if (buffer->buffers[cpu])
704 			rb_free_cpu_buffer(buffer->buffers[cpu]);
705 	}
706 	kfree(buffer->buffers);
707 
708  fail_free_cpumask:
709 	free_cpumask_var(buffer->cpumask);
710 	put_online_cpus();
711 
712  fail_free_buffer:
713 	kfree(buffer);
714 	return NULL;
715 }
716 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
717 
718 /**
719  * ring_buffer_free - free a ring buffer.
720  * @buffer: the buffer to free.
721  */
722 void
723 ring_buffer_free(struct ring_buffer *buffer)
724 {
725 	int cpu;
726 
727 	get_online_cpus();
728 
729 #ifdef CONFIG_HOTPLUG_CPU
730 	unregister_cpu_notifier(&buffer->cpu_notify);
731 #endif
732 
733 	for_each_buffer_cpu(buffer, cpu)
734 		rb_free_cpu_buffer(buffer->buffers[cpu]);
735 
736 	put_online_cpus();
737 
738 	kfree(buffer->buffers);
739 	free_cpumask_var(buffer->cpumask);
740 
741 	kfree(buffer);
742 }
743 EXPORT_SYMBOL_GPL(ring_buffer_free);
744 
745 void ring_buffer_set_clock(struct ring_buffer *buffer,
746 			   u64 (*clock)(void))
747 {
748 	buffer->clock = clock;
749 }
750 
751 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
752 
753 static void
754 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
755 {
756 	struct buffer_page *bpage;
757 	struct list_head *p;
758 	unsigned i;
759 
760 	atomic_inc(&cpu_buffer->record_disabled);
761 	synchronize_sched();
762 
763 	for (i = 0; i < nr_pages; i++) {
764 		if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
765 			return;
766 		p = cpu_buffer->pages.next;
767 		bpage = list_entry(p, struct buffer_page, list);
768 		list_del_init(&bpage->list);
769 		free_buffer_page(bpage);
770 	}
771 	if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
772 		return;
773 
774 	rb_reset_cpu(cpu_buffer);
775 
776 	rb_check_pages(cpu_buffer);
777 
778 	atomic_dec(&cpu_buffer->record_disabled);
779 
780 }
781 
782 static void
783 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
784 		struct list_head *pages, unsigned nr_pages)
785 {
786 	struct buffer_page *bpage;
787 	struct list_head *p;
788 	unsigned i;
789 
790 	atomic_inc(&cpu_buffer->record_disabled);
791 	synchronize_sched();
792 
793 	for (i = 0; i < nr_pages; i++) {
794 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
795 			return;
796 		p = pages->next;
797 		bpage = list_entry(p, struct buffer_page, list);
798 		list_del_init(&bpage->list);
799 		list_add_tail(&bpage->list, &cpu_buffer->pages);
800 	}
801 	rb_reset_cpu(cpu_buffer);
802 
803 	rb_check_pages(cpu_buffer);
804 
805 	atomic_dec(&cpu_buffer->record_disabled);
806 }
807 
808 /**
809  * ring_buffer_resize - resize the ring buffer
810  * @buffer: the buffer to resize.
811  * @size: the new size.
812  *
813  * The tracer is responsible for making sure that the buffer is
814  * not being used while changing the size.
815  * Note: We may be able to change the above requirement by using
816  *  RCU synchronizations.
817  *
818  * Minimum size is 2 * BUF_PAGE_SIZE.
819  *
820  * Returns -1 on failure.
821  */
822 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
823 {
824 	struct ring_buffer_per_cpu *cpu_buffer;
825 	unsigned nr_pages, rm_pages, new_pages;
826 	struct buffer_page *bpage, *tmp;
827 	unsigned long buffer_size;
828 	unsigned long addr;
829 	LIST_HEAD(pages);
830 	int i, cpu;
831 
832 	/*
833 	 * Always succeed at resizing a non-existent buffer:
834 	 */
835 	if (!buffer)
836 		return size;
837 
838 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
839 	size *= BUF_PAGE_SIZE;
840 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
841 
842 	/* we need a minimum of two pages */
843 	if (size < BUF_PAGE_SIZE * 2)
844 		size = BUF_PAGE_SIZE * 2;
845 
846 	if (size == buffer_size)
847 		return size;
848 
849 	mutex_lock(&buffer->mutex);
850 	get_online_cpus();
851 
852 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
853 
854 	if (size < buffer_size) {
855 
856 		/* easy case, just free pages */
857 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
858 			goto out_fail;
859 
860 		rm_pages = buffer->pages - nr_pages;
861 
862 		for_each_buffer_cpu(buffer, cpu) {
863 			cpu_buffer = buffer->buffers[cpu];
864 			rb_remove_pages(cpu_buffer, rm_pages);
865 		}
866 		goto out;
867 	}
868 
869 	/*
870 	 * This is a bit more difficult. We only want to add pages
871 	 * when we can allocate enough for all CPUs. We do this
872 	 * by allocating all the pages and storing them on a local
873 	 * link list. If we succeed in our allocation, then we
874 	 * add these pages to the cpu_buffers. Otherwise we just free
875 	 * them all and return -ENOMEM;
876 	 */
877 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
878 		goto out_fail;
879 
880 	new_pages = nr_pages - buffer->pages;
881 
882 	for_each_buffer_cpu(buffer, cpu) {
883 		for (i = 0; i < new_pages; i++) {
884 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
885 						  cache_line_size()),
886 					    GFP_KERNEL, cpu_to_node(cpu));
887 			if (!bpage)
888 				goto free_pages;
889 			list_add(&bpage->list, &pages);
890 			addr = __get_free_page(GFP_KERNEL);
891 			if (!addr)
892 				goto free_pages;
893 			bpage->page = (void *)addr;
894 			rb_init_page(bpage->page);
895 		}
896 	}
897 
898 	for_each_buffer_cpu(buffer, cpu) {
899 		cpu_buffer = buffer->buffers[cpu];
900 		rb_insert_pages(cpu_buffer, &pages, new_pages);
901 	}
902 
903 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
904 		goto out_fail;
905 
906  out:
907 	buffer->pages = nr_pages;
908 	put_online_cpus();
909 	mutex_unlock(&buffer->mutex);
910 
911 	return size;
912 
913  free_pages:
914 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
915 		list_del_init(&bpage->list);
916 		free_buffer_page(bpage);
917 	}
918 	put_online_cpus();
919 	mutex_unlock(&buffer->mutex);
920 	return -ENOMEM;
921 
922 	/*
923 	 * Something went totally wrong, and we are too paranoid
924 	 * to even clean up the mess.
925 	 */
926  out_fail:
927 	put_online_cpus();
928 	mutex_unlock(&buffer->mutex);
929 	return -1;
930 }
931 EXPORT_SYMBOL_GPL(ring_buffer_resize);
932 
933 static inline void *
934 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
935 {
936 	return bpage->data + index;
937 }
938 
939 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
940 {
941 	return bpage->page->data + index;
942 }
943 
944 static inline struct ring_buffer_event *
945 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
946 {
947 	return __rb_page_index(cpu_buffer->reader_page,
948 			       cpu_buffer->reader_page->read);
949 }
950 
951 static inline struct ring_buffer_event *
952 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
953 {
954 	return __rb_page_index(cpu_buffer->head_page,
955 			       cpu_buffer->head_page->read);
956 }
957 
958 static inline struct ring_buffer_event *
959 rb_iter_head_event(struct ring_buffer_iter *iter)
960 {
961 	return __rb_page_index(iter->head_page, iter->head);
962 }
963 
964 static inline unsigned rb_page_write(struct buffer_page *bpage)
965 {
966 	return local_read(&bpage->write);
967 }
968 
969 static inline unsigned rb_page_commit(struct buffer_page *bpage)
970 {
971 	return local_read(&bpage->page->commit);
972 }
973 
974 /* Size is determined by what has been commited */
975 static inline unsigned rb_page_size(struct buffer_page *bpage)
976 {
977 	return rb_page_commit(bpage);
978 }
979 
980 static inline unsigned
981 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
982 {
983 	return rb_page_commit(cpu_buffer->commit_page);
984 }
985 
986 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
987 {
988 	return rb_page_commit(cpu_buffer->head_page);
989 }
990 
991 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
992 			       struct buffer_page **bpage)
993 {
994 	struct list_head *p = (*bpage)->list.next;
995 
996 	if (p == &cpu_buffer->pages)
997 		p = p->next;
998 
999 	*bpage = list_entry(p, struct buffer_page, list);
1000 }
1001 
1002 static inline unsigned
1003 rb_event_index(struct ring_buffer_event *event)
1004 {
1005 	unsigned long addr = (unsigned long)event;
1006 
1007 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1008 }
1009 
1010 static inline int
1011 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1012 		   struct ring_buffer_event *event)
1013 {
1014 	unsigned long addr = (unsigned long)event;
1015 	unsigned long index;
1016 
1017 	index = rb_event_index(event);
1018 	addr &= PAGE_MASK;
1019 
1020 	return cpu_buffer->commit_page->page == (void *)addr &&
1021 		rb_commit_index(cpu_buffer) == index;
1022 }
1023 
1024 static void
1025 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1026 {
1027 	/*
1028 	 * We only race with interrupts and NMIs on this CPU.
1029 	 * If we own the commit event, then we can commit
1030 	 * all others that interrupted us, since the interruptions
1031 	 * are in stack format (they finish before they come
1032 	 * back to us). This allows us to do a simple loop to
1033 	 * assign the commit to the tail.
1034 	 */
1035  again:
1036 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1037 		cpu_buffer->commit_page->page->commit =
1038 			cpu_buffer->commit_page->write;
1039 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1040 		cpu_buffer->write_stamp =
1041 			cpu_buffer->commit_page->page->time_stamp;
1042 		/* add barrier to keep gcc from optimizing too much */
1043 		barrier();
1044 	}
1045 	while (rb_commit_index(cpu_buffer) !=
1046 	       rb_page_write(cpu_buffer->commit_page)) {
1047 		cpu_buffer->commit_page->page->commit =
1048 			cpu_buffer->commit_page->write;
1049 		barrier();
1050 	}
1051 
1052 	/* again, keep gcc from optimizing */
1053 	barrier();
1054 
1055 	/*
1056 	 * If an interrupt came in just after the first while loop
1057 	 * and pushed the tail page forward, we will be left with
1058 	 * a dangling commit that will never go forward.
1059 	 */
1060 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1061 		goto again;
1062 }
1063 
1064 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1065 {
1066 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1067 	cpu_buffer->reader_page->read = 0;
1068 }
1069 
1070 static void rb_inc_iter(struct ring_buffer_iter *iter)
1071 {
1072 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1073 
1074 	/*
1075 	 * The iterator could be on the reader page (it starts there).
1076 	 * But the head could have moved, since the reader was
1077 	 * found. Check for this case and assign the iterator
1078 	 * to the head page instead of next.
1079 	 */
1080 	if (iter->head_page == cpu_buffer->reader_page)
1081 		iter->head_page = cpu_buffer->head_page;
1082 	else
1083 		rb_inc_page(cpu_buffer, &iter->head_page);
1084 
1085 	iter->read_stamp = iter->head_page->page->time_stamp;
1086 	iter->head = 0;
1087 }
1088 
1089 /**
1090  * ring_buffer_update_event - update event type and data
1091  * @event: the even to update
1092  * @type: the type of event
1093  * @length: the size of the event field in the ring buffer
1094  *
1095  * Update the type and data fields of the event. The length
1096  * is the actual size that is written to the ring buffer,
1097  * and with this, we can determine what to place into the
1098  * data field.
1099  */
1100 static void
1101 rb_update_event(struct ring_buffer_event *event,
1102 			 unsigned type, unsigned length)
1103 {
1104 	event->type_len = type;
1105 
1106 	switch (type) {
1107 
1108 	case RINGBUF_TYPE_PADDING:
1109 	case RINGBUF_TYPE_TIME_EXTEND:
1110 	case RINGBUF_TYPE_TIME_STAMP:
1111 		break;
1112 
1113 	case 0:
1114 		length -= RB_EVNT_HDR_SIZE;
1115 		if (length > RB_MAX_SMALL_DATA)
1116 			event->array[0] = length;
1117 		else
1118 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1119 		break;
1120 	default:
1121 		BUG();
1122 	}
1123 }
1124 
1125 static unsigned rb_calculate_event_length(unsigned length)
1126 {
1127 	struct ring_buffer_event event; /* Used only for sizeof array */
1128 
1129 	/* zero length can cause confusions */
1130 	if (!length)
1131 		length = 1;
1132 
1133 	if (length > RB_MAX_SMALL_DATA)
1134 		length += sizeof(event.array[0]);
1135 
1136 	length += RB_EVNT_HDR_SIZE;
1137 	length = ALIGN(length, RB_ALIGNMENT);
1138 
1139 	return length;
1140 }
1141 
1142 static inline void
1143 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1144 	      struct buffer_page *tail_page,
1145 	      unsigned long tail, unsigned long length)
1146 {
1147 	struct ring_buffer_event *event;
1148 
1149 	/*
1150 	 * Only the event that crossed the page boundary
1151 	 * must fill the old tail_page with padding.
1152 	 */
1153 	if (tail >= BUF_PAGE_SIZE) {
1154 		local_sub(length, &tail_page->write);
1155 		return;
1156 	}
1157 
1158 	event = __rb_page_index(tail_page, tail);
1159 	kmemcheck_annotate_bitfield(event, bitfield);
1160 
1161 	/*
1162 	 * If this event is bigger than the minimum size, then
1163 	 * we need to be careful that we don't subtract the
1164 	 * write counter enough to allow another writer to slip
1165 	 * in on this page.
1166 	 * We put in a discarded commit instead, to make sure
1167 	 * that this space is not used again.
1168 	 *
1169 	 * If we are less than the minimum size, we don't need to
1170 	 * worry about it.
1171 	 */
1172 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1173 		/* No room for any events */
1174 
1175 		/* Mark the rest of the page with padding */
1176 		rb_event_set_padding(event);
1177 
1178 		/* Set the write back to the previous setting */
1179 		local_sub(length, &tail_page->write);
1180 		return;
1181 	}
1182 
1183 	/* Put in a discarded event */
1184 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1185 	event->type_len = RINGBUF_TYPE_PADDING;
1186 	/* time delta must be non zero */
1187 	event->time_delta = 1;
1188 	/* Account for this as an entry */
1189 	local_inc(&tail_page->entries);
1190 	local_inc(&cpu_buffer->entries);
1191 
1192 	/* Set write to end of buffer */
1193 	length = (tail + length) - BUF_PAGE_SIZE;
1194 	local_sub(length, &tail_page->write);
1195 }
1196 
1197 static struct ring_buffer_event *
1198 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1199 	     unsigned long length, unsigned long tail,
1200 	     struct buffer_page *commit_page,
1201 	     struct buffer_page *tail_page, u64 *ts)
1202 {
1203 	struct buffer_page *next_page, *head_page, *reader_page;
1204 	struct ring_buffer *buffer = cpu_buffer->buffer;
1205 	bool lock_taken = false;
1206 	unsigned long flags;
1207 
1208 	next_page = tail_page;
1209 
1210 	local_irq_save(flags);
1211 	/*
1212 	 * Since the write to the buffer is still not
1213 	 * fully lockless, we must be careful with NMIs.
1214 	 * The locks in the writers are taken when a write
1215 	 * crosses to a new page. The locks protect against
1216 	 * races with the readers (this will soon be fixed
1217 	 * with a lockless solution).
1218 	 *
1219 	 * Because we can not protect against NMIs, and we
1220 	 * want to keep traces reentrant, we need to manage
1221 	 * what happens when we are in an NMI.
1222 	 *
1223 	 * NMIs can happen after we take the lock.
1224 	 * If we are in an NMI, only take the lock
1225 	 * if it is not already taken. Otherwise
1226 	 * simply fail.
1227 	 */
1228 	if (unlikely(in_nmi())) {
1229 		if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1230 			cpu_buffer->nmi_dropped++;
1231 			goto out_reset;
1232 		}
1233 	} else
1234 		__raw_spin_lock(&cpu_buffer->lock);
1235 
1236 	lock_taken = true;
1237 
1238 	rb_inc_page(cpu_buffer, &next_page);
1239 
1240 	head_page = cpu_buffer->head_page;
1241 	reader_page = cpu_buffer->reader_page;
1242 
1243 	/* we grabbed the lock before incrementing */
1244 	if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1245 		goto out_reset;
1246 
1247 	/*
1248 	 * If for some reason, we had an interrupt storm that made
1249 	 * it all the way around the buffer, bail, and warn
1250 	 * about it.
1251 	 */
1252 	if (unlikely(next_page == commit_page)) {
1253 		cpu_buffer->commit_overrun++;
1254 		goto out_reset;
1255 	}
1256 
1257 	if (next_page == head_page) {
1258 		if (!(buffer->flags & RB_FL_OVERWRITE))
1259 			goto out_reset;
1260 
1261 		/* tail_page has not moved yet? */
1262 		if (tail_page == cpu_buffer->tail_page) {
1263 			/* count overflows */
1264 			cpu_buffer->overrun +=
1265 				local_read(&head_page->entries);
1266 
1267 			rb_inc_page(cpu_buffer, &head_page);
1268 			cpu_buffer->head_page = head_page;
1269 			cpu_buffer->head_page->read = 0;
1270 		}
1271 	}
1272 
1273 	/*
1274 	 * If the tail page is still the same as what we think
1275 	 * it is, then it is up to us to update the tail
1276 	 * pointer.
1277 	 */
1278 	if (tail_page == cpu_buffer->tail_page) {
1279 		local_set(&next_page->write, 0);
1280 		local_set(&next_page->entries, 0);
1281 		local_set(&next_page->page->commit, 0);
1282 		cpu_buffer->tail_page = next_page;
1283 
1284 		/* reread the time stamp */
1285 		*ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1286 		cpu_buffer->tail_page->page->time_stamp = *ts;
1287 	}
1288 
1289 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1290 
1291 	__raw_spin_unlock(&cpu_buffer->lock);
1292 	local_irq_restore(flags);
1293 
1294 	/* fail and let the caller try again */
1295 	return ERR_PTR(-EAGAIN);
1296 
1297  out_reset:
1298 	/* reset write */
1299 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1300 
1301 	if (likely(lock_taken))
1302 		__raw_spin_unlock(&cpu_buffer->lock);
1303 	local_irq_restore(flags);
1304 	return NULL;
1305 }
1306 
1307 static struct ring_buffer_event *
1308 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1309 		  unsigned type, unsigned long length, u64 *ts)
1310 {
1311 	struct buffer_page *tail_page, *commit_page;
1312 	struct ring_buffer_event *event;
1313 	unsigned long tail, write;
1314 
1315 	commit_page = cpu_buffer->commit_page;
1316 	/* we just need to protect against interrupts */
1317 	barrier();
1318 	tail_page = cpu_buffer->tail_page;
1319 	write = local_add_return(length, &tail_page->write);
1320 	tail = write - length;
1321 
1322 	/* See if we shot pass the end of this buffer page */
1323 	if (write > BUF_PAGE_SIZE)
1324 		return rb_move_tail(cpu_buffer, length, tail,
1325 				    commit_page, tail_page, ts);
1326 
1327 	/* We reserved something on the buffer */
1328 
1329 	event = __rb_page_index(tail_page, tail);
1330 	kmemcheck_annotate_bitfield(event, bitfield);
1331 	rb_update_event(event, type, length);
1332 
1333 	/* The passed in type is zero for DATA */
1334 	if (likely(!type))
1335 		local_inc(&tail_page->entries);
1336 
1337 	/*
1338 	 * If this is the first commit on the page, then update
1339 	 * its timestamp.
1340 	 */
1341 	if (!tail)
1342 		tail_page->page->time_stamp = *ts;
1343 
1344 	return event;
1345 }
1346 
1347 static inline int
1348 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1349 		  struct ring_buffer_event *event)
1350 {
1351 	unsigned long new_index, old_index;
1352 	struct buffer_page *bpage;
1353 	unsigned long index;
1354 	unsigned long addr;
1355 
1356 	new_index = rb_event_index(event);
1357 	old_index = new_index + rb_event_length(event);
1358 	addr = (unsigned long)event;
1359 	addr &= PAGE_MASK;
1360 
1361 	bpage = cpu_buffer->tail_page;
1362 
1363 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1364 		/*
1365 		 * This is on the tail page. It is possible that
1366 		 * a write could come in and move the tail page
1367 		 * and write to the next page. That is fine
1368 		 * because we just shorten what is on this page.
1369 		 */
1370 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1371 		if (index == old_index)
1372 			return 1;
1373 	}
1374 
1375 	/* could not discard */
1376 	return 0;
1377 }
1378 
1379 static int
1380 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1381 		  u64 *ts, u64 *delta)
1382 {
1383 	struct ring_buffer_event *event;
1384 	static int once;
1385 	int ret;
1386 
1387 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1388 		printk(KERN_WARNING "Delta way too big! %llu"
1389 		       " ts=%llu write stamp = %llu\n",
1390 		       (unsigned long long)*delta,
1391 		       (unsigned long long)*ts,
1392 		       (unsigned long long)cpu_buffer->write_stamp);
1393 		WARN_ON(1);
1394 	}
1395 
1396 	/*
1397 	 * The delta is too big, we to add a
1398 	 * new timestamp.
1399 	 */
1400 	event = __rb_reserve_next(cpu_buffer,
1401 				  RINGBUF_TYPE_TIME_EXTEND,
1402 				  RB_LEN_TIME_EXTEND,
1403 				  ts);
1404 	if (!event)
1405 		return -EBUSY;
1406 
1407 	if (PTR_ERR(event) == -EAGAIN)
1408 		return -EAGAIN;
1409 
1410 	/* Only a commited time event can update the write stamp */
1411 	if (rb_event_is_commit(cpu_buffer, event)) {
1412 		/*
1413 		 * If this is the first on the page, then it was
1414 		 * updated with the page itself. Try to discard it
1415 		 * and if we can't just make it zero.
1416 		 */
1417 		if (rb_event_index(event)) {
1418 			event->time_delta = *delta & TS_MASK;
1419 			event->array[0] = *delta >> TS_SHIFT;
1420 		} else {
1421 			/* try to discard, since we do not need this */
1422 			if (!rb_try_to_discard(cpu_buffer, event)) {
1423 				/* nope, just zero it */
1424 				event->time_delta = 0;
1425 				event->array[0] = 0;
1426 			}
1427 		}
1428 		cpu_buffer->write_stamp = *ts;
1429 		/* let the caller know this was the commit */
1430 		ret = 1;
1431 	} else {
1432 		/* Try to discard the event */
1433 		if (!rb_try_to_discard(cpu_buffer, event)) {
1434 			/* Darn, this is just wasted space */
1435 			event->time_delta = 0;
1436 			event->array[0] = 0;
1437 		}
1438 		ret = 0;
1439 	}
1440 
1441 	*delta = 0;
1442 
1443 	return ret;
1444 }
1445 
1446 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1447 {
1448 	local_inc(&cpu_buffer->committing);
1449 	local_inc(&cpu_buffer->commits);
1450 }
1451 
1452 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1453 {
1454 	unsigned long commits;
1455 
1456 	if (RB_WARN_ON(cpu_buffer,
1457 		       !local_read(&cpu_buffer->committing)))
1458 		return;
1459 
1460  again:
1461 	commits = local_read(&cpu_buffer->commits);
1462 	/* synchronize with interrupts */
1463 	barrier();
1464 	if (local_read(&cpu_buffer->committing) == 1)
1465 		rb_set_commit_to_write(cpu_buffer);
1466 
1467 	local_dec(&cpu_buffer->committing);
1468 
1469 	/* synchronize with interrupts */
1470 	barrier();
1471 
1472 	/*
1473 	 * Need to account for interrupts coming in between the
1474 	 * updating of the commit page and the clearing of the
1475 	 * committing counter.
1476 	 */
1477 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1478 	    !local_read(&cpu_buffer->committing)) {
1479 		local_inc(&cpu_buffer->committing);
1480 		goto again;
1481 	}
1482 }
1483 
1484 static struct ring_buffer_event *
1485 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1486 		      unsigned long length)
1487 {
1488 	struct ring_buffer_event *event;
1489 	u64 ts, delta = 0;
1490 	int commit = 0;
1491 	int nr_loops = 0;
1492 
1493 	rb_start_commit(cpu_buffer);
1494 
1495 	length = rb_calculate_event_length(length);
1496  again:
1497 	/*
1498 	 * We allow for interrupts to reenter here and do a trace.
1499 	 * If one does, it will cause this original code to loop
1500 	 * back here. Even with heavy interrupts happening, this
1501 	 * should only happen a few times in a row. If this happens
1502 	 * 1000 times in a row, there must be either an interrupt
1503 	 * storm or we have something buggy.
1504 	 * Bail!
1505 	 */
1506 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1507 		goto out_fail;
1508 
1509 	ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1510 
1511 	/*
1512 	 * Only the first commit can update the timestamp.
1513 	 * Yes there is a race here. If an interrupt comes in
1514 	 * just after the conditional and it traces too, then it
1515 	 * will also check the deltas. More than one timestamp may
1516 	 * also be made. But only the entry that did the actual
1517 	 * commit will be something other than zero.
1518 	 */
1519 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1520 		   rb_page_write(cpu_buffer->tail_page) ==
1521 		   rb_commit_index(cpu_buffer))) {
1522 		u64 diff;
1523 
1524 		diff = ts - cpu_buffer->write_stamp;
1525 
1526 		/* make sure this diff is calculated here */
1527 		barrier();
1528 
1529 		/* Did the write stamp get updated already? */
1530 		if (unlikely(ts < cpu_buffer->write_stamp))
1531 			goto get_event;
1532 
1533 		delta = diff;
1534 		if (unlikely(test_time_stamp(delta))) {
1535 
1536 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1537 			if (commit == -EBUSY)
1538 				goto out_fail;
1539 
1540 			if (commit == -EAGAIN)
1541 				goto again;
1542 
1543 			RB_WARN_ON(cpu_buffer, commit < 0);
1544 		}
1545 	}
1546 
1547  get_event:
1548 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1549 	if (unlikely(PTR_ERR(event) == -EAGAIN))
1550 		goto again;
1551 
1552 	if (!event)
1553 		goto out_fail;
1554 
1555 	if (!rb_event_is_commit(cpu_buffer, event))
1556 		delta = 0;
1557 
1558 	event->time_delta = delta;
1559 
1560 	return event;
1561 
1562  out_fail:
1563 	rb_end_commit(cpu_buffer);
1564 	return NULL;
1565 }
1566 
1567 #ifdef CONFIG_TRACING
1568 
1569 #define TRACE_RECURSIVE_DEPTH 16
1570 
1571 static int trace_recursive_lock(void)
1572 {
1573 	current->trace_recursion++;
1574 
1575 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1576 		return 0;
1577 
1578 	/* Disable all tracing before we do anything else */
1579 	tracing_off_permanent();
1580 
1581 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1582 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1583 		    current->trace_recursion,
1584 		    hardirq_count() >> HARDIRQ_SHIFT,
1585 		    softirq_count() >> SOFTIRQ_SHIFT,
1586 		    in_nmi());
1587 
1588 	WARN_ON_ONCE(1);
1589 	return -1;
1590 }
1591 
1592 static void trace_recursive_unlock(void)
1593 {
1594 	WARN_ON_ONCE(!current->trace_recursion);
1595 
1596 	current->trace_recursion--;
1597 }
1598 
1599 #else
1600 
1601 #define trace_recursive_lock()		(0)
1602 #define trace_recursive_unlock()	do { } while (0)
1603 
1604 #endif
1605 
1606 static DEFINE_PER_CPU(int, rb_need_resched);
1607 
1608 /**
1609  * ring_buffer_lock_reserve - reserve a part of the buffer
1610  * @buffer: the ring buffer to reserve from
1611  * @length: the length of the data to reserve (excluding event header)
1612  *
1613  * Returns a reseverd event on the ring buffer to copy directly to.
1614  * The user of this interface will need to get the body to write into
1615  * and can use the ring_buffer_event_data() interface.
1616  *
1617  * The length is the length of the data needed, not the event length
1618  * which also includes the event header.
1619  *
1620  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1621  * If NULL is returned, then nothing has been allocated or locked.
1622  */
1623 struct ring_buffer_event *
1624 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1625 {
1626 	struct ring_buffer_per_cpu *cpu_buffer;
1627 	struct ring_buffer_event *event;
1628 	int cpu, resched;
1629 
1630 	if (ring_buffer_flags != RB_BUFFERS_ON)
1631 		return NULL;
1632 
1633 	if (atomic_read(&buffer->record_disabled))
1634 		return NULL;
1635 
1636 	/* If we are tracing schedule, we don't want to recurse */
1637 	resched = ftrace_preempt_disable();
1638 
1639 	if (trace_recursive_lock())
1640 		goto out_nocheck;
1641 
1642 	cpu = raw_smp_processor_id();
1643 
1644 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1645 		goto out;
1646 
1647 	cpu_buffer = buffer->buffers[cpu];
1648 
1649 	if (atomic_read(&cpu_buffer->record_disabled))
1650 		goto out;
1651 
1652 	if (length > BUF_MAX_DATA_SIZE)
1653 		goto out;
1654 
1655 	event = rb_reserve_next_event(cpu_buffer, length);
1656 	if (!event)
1657 		goto out;
1658 
1659 	/*
1660 	 * Need to store resched state on this cpu.
1661 	 * Only the first needs to.
1662 	 */
1663 
1664 	if (preempt_count() == 1)
1665 		per_cpu(rb_need_resched, cpu) = resched;
1666 
1667 	return event;
1668 
1669  out:
1670 	trace_recursive_unlock();
1671 
1672  out_nocheck:
1673 	ftrace_preempt_enable(resched);
1674 	return NULL;
1675 }
1676 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1677 
1678 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1679 		      struct ring_buffer_event *event)
1680 {
1681 	local_inc(&cpu_buffer->entries);
1682 
1683 	/*
1684 	 * The event first in the commit queue updates the
1685 	 * time stamp.
1686 	 */
1687 	if (rb_event_is_commit(cpu_buffer, event))
1688 		cpu_buffer->write_stamp += event->time_delta;
1689 
1690 	rb_end_commit(cpu_buffer);
1691 }
1692 
1693 /**
1694  * ring_buffer_unlock_commit - commit a reserved
1695  * @buffer: The buffer to commit to
1696  * @event: The event pointer to commit.
1697  *
1698  * This commits the data to the ring buffer, and releases any locks held.
1699  *
1700  * Must be paired with ring_buffer_lock_reserve.
1701  */
1702 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1703 			      struct ring_buffer_event *event)
1704 {
1705 	struct ring_buffer_per_cpu *cpu_buffer;
1706 	int cpu = raw_smp_processor_id();
1707 
1708 	cpu_buffer = buffer->buffers[cpu];
1709 
1710 	rb_commit(cpu_buffer, event);
1711 
1712 	trace_recursive_unlock();
1713 
1714 	/*
1715 	 * Only the last preempt count needs to restore preemption.
1716 	 */
1717 	if (preempt_count() == 1)
1718 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1719 	else
1720 		preempt_enable_no_resched_notrace();
1721 
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1725 
1726 static inline void rb_event_discard(struct ring_buffer_event *event)
1727 {
1728 	/* array[0] holds the actual length for the discarded event */
1729 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1730 	event->type_len = RINGBUF_TYPE_PADDING;
1731 	/* time delta must be non zero */
1732 	if (!event->time_delta)
1733 		event->time_delta = 1;
1734 }
1735 
1736 /**
1737  * ring_buffer_event_discard - discard any event in the ring buffer
1738  * @event: the event to discard
1739  *
1740  * Sometimes a event that is in the ring buffer needs to be ignored.
1741  * This function lets the user discard an event in the ring buffer
1742  * and then that event will not be read later.
1743  *
1744  * Note, it is up to the user to be careful with this, and protect
1745  * against races. If the user discards an event that has been consumed
1746  * it is possible that it could corrupt the ring buffer.
1747  */
1748 void ring_buffer_event_discard(struct ring_buffer_event *event)
1749 {
1750 	rb_event_discard(event);
1751 }
1752 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1753 
1754 /**
1755  * ring_buffer_commit_discard - discard an event that has not been committed
1756  * @buffer: the ring buffer
1757  * @event: non committed event to discard
1758  *
1759  * This is similar to ring_buffer_event_discard but must only be
1760  * performed on an event that has not been committed yet. The difference
1761  * is that this will also try to free the event from the ring buffer
1762  * if another event has not been added behind it.
1763  *
1764  * If another event has been added behind it, it will set the event
1765  * up as discarded, and perform the commit.
1766  *
1767  * If this function is called, do not call ring_buffer_unlock_commit on
1768  * the event.
1769  */
1770 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1771 				struct ring_buffer_event *event)
1772 {
1773 	struct ring_buffer_per_cpu *cpu_buffer;
1774 	int cpu;
1775 
1776 	/* The event is discarded regardless */
1777 	rb_event_discard(event);
1778 
1779 	cpu = smp_processor_id();
1780 	cpu_buffer = buffer->buffers[cpu];
1781 
1782 	/*
1783 	 * This must only be called if the event has not been
1784 	 * committed yet. Thus we can assume that preemption
1785 	 * is still disabled.
1786 	 */
1787 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1788 
1789 	if (rb_try_to_discard(cpu_buffer, event))
1790 		goto out;
1791 
1792 	/*
1793 	 * The commit is still visible by the reader, so we
1794 	 * must increment entries.
1795 	 */
1796 	local_inc(&cpu_buffer->entries);
1797  out:
1798 	rb_end_commit(cpu_buffer);
1799 
1800 	trace_recursive_unlock();
1801 
1802 	/*
1803 	 * Only the last preempt count needs to restore preemption.
1804 	 */
1805 	if (preempt_count() == 1)
1806 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1807 	else
1808 		preempt_enable_no_resched_notrace();
1809 
1810 }
1811 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1812 
1813 /**
1814  * ring_buffer_write - write data to the buffer without reserving
1815  * @buffer: The ring buffer to write to.
1816  * @length: The length of the data being written (excluding the event header)
1817  * @data: The data to write to the buffer.
1818  *
1819  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1820  * one function. If you already have the data to write to the buffer, it
1821  * may be easier to simply call this function.
1822  *
1823  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1824  * and not the length of the event which would hold the header.
1825  */
1826 int ring_buffer_write(struct ring_buffer *buffer,
1827 			unsigned long length,
1828 			void *data)
1829 {
1830 	struct ring_buffer_per_cpu *cpu_buffer;
1831 	struct ring_buffer_event *event;
1832 	void *body;
1833 	int ret = -EBUSY;
1834 	int cpu, resched;
1835 
1836 	if (ring_buffer_flags != RB_BUFFERS_ON)
1837 		return -EBUSY;
1838 
1839 	if (atomic_read(&buffer->record_disabled))
1840 		return -EBUSY;
1841 
1842 	resched = ftrace_preempt_disable();
1843 
1844 	cpu = raw_smp_processor_id();
1845 
1846 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1847 		goto out;
1848 
1849 	cpu_buffer = buffer->buffers[cpu];
1850 
1851 	if (atomic_read(&cpu_buffer->record_disabled))
1852 		goto out;
1853 
1854 	if (length > BUF_MAX_DATA_SIZE)
1855 		goto out;
1856 
1857 	event = rb_reserve_next_event(cpu_buffer, length);
1858 	if (!event)
1859 		goto out;
1860 
1861 	body = rb_event_data(event);
1862 
1863 	memcpy(body, data, length);
1864 
1865 	rb_commit(cpu_buffer, event);
1866 
1867 	ret = 0;
1868  out:
1869 	ftrace_preempt_enable(resched);
1870 
1871 	return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(ring_buffer_write);
1874 
1875 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1876 {
1877 	struct buffer_page *reader = cpu_buffer->reader_page;
1878 	struct buffer_page *head = cpu_buffer->head_page;
1879 	struct buffer_page *commit = cpu_buffer->commit_page;
1880 
1881 	return reader->read == rb_page_commit(reader) &&
1882 		(commit == reader ||
1883 		 (commit == head &&
1884 		  head->read == rb_page_commit(commit)));
1885 }
1886 
1887 /**
1888  * ring_buffer_record_disable - stop all writes into the buffer
1889  * @buffer: The ring buffer to stop writes to.
1890  *
1891  * This prevents all writes to the buffer. Any attempt to write
1892  * to the buffer after this will fail and return NULL.
1893  *
1894  * The caller should call synchronize_sched() after this.
1895  */
1896 void ring_buffer_record_disable(struct ring_buffer *buffer)
1897 {
1898 	atomic_inc(&buffer->record_disabled);
1899 }
1900 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1901 
1902 /**
1903  * ring_buffer_record_enable - enable writes to the buffer
1904  * @buffer: The ring buffer to enable writes
1905  *
1906  * Note, multiple disables will need the same number of enables
1907  * to truely enable the writing (much like preempt_disable).
1908  */
1909 void ring_buffer_record_enable(struct ring_buffer *buffer)
1910 {
1911 	atomic_dec(&buffer->record_disabled);
1912 }
1913 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1914 
1915 /**
1916  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1917  * @buffer: The ring buffer to stop writes to.
1918  * @cpu: The CPU buffer to stop
1919  *
1920  * This prevents all writes to the buffer. Any attempt to write
1921  * to the buffer after this will fail and return NULL.
1922  *
1923  * The caller should call synchronize_sched() after this.
1924  */
1925 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1926 {
1927 	struct ring_buffer_per_cpu *cpu_buffer;
1928 
1929 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1930 		return;
1931 
1932 	cpu_buffer = buffer->buffers[cpu];
1933 	atomic_inc(&cpu_buffer->record_disabled);
1934 }
1935 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1936 
1937 /**
1938  * ring_buffer_record_enable_cpu - enable writes to the buffer
1939  * @buffer: The ring buffer to enable writes
1940  * @cpu: The CPU to enable.
1941  *
1942  * Note, multiple disables will need the same number of enables
1943  * to truely enable the writing (much like preempt_disable).
1944  */
1945 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1946 {
1947 	struct ring_buffer_per_cpu *cpu_buffer;
1948 
1949 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1950 		return;
1951 
1952 	cpu_buffer = buffer->buffers[cpu];
1953 	atomic_dec(&cpu_buffer->record_disabled);
1954 }
1955 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1956 
1957 /**
1958  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1959  * @buffer: The ring buffer
1960  * @cpu: The per CPU buffer to get the entries from.
1961  */
1962 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1963 {
1964 	struct ring_buffer_per_cpu *cpu_buffer;
1965 	unsigned long ret;
1966 
1967 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1968 		return 0;
1969 
1970 	cpu_buffer = buffer->buffers[cpu];
1971 	ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1972 		- cpu_buffer->read;
1973 
1974 	return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1977 
1978 /**
1979  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1980  * @buffer: The ring buffer
1981  * @cpu: The per CPU buffer to get the number of overruns from
1982  */
1983 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1984 {
1985 	struct ring_buffer_per_cpu *cpu_buffer;
1986 	unsigned long ret;
1987 
1988 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1989 		return 0;
1990 
1991 	cpu_buffer = buffer->buffers[cpu];
1992 	ret = cpu_buffer->overrun;
1993 
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1997 
1998 /**
1999  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
2000  * @buffer: The ring buffer
2001  * @cpu: The per CPU buffer to get the number of overruns from
2002  */
2003 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
2004 {
2005 	struct ring_buffer_per_cpu *cpu_buffer;
2006 	unsigned long ret;
2007 
2008 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2009 		return 0;
2010 
2011 	cpu_buffer = buffer->buffers[cpu];
2012 	ret = cpu_buffer->nmi_dropped;
2013 
2014 	return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2017 
2018 /**
2019  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2020  * @buffer: The ring buffer
2021  * @cpu: The per CPU buffer to get the number of overruns from
2022  */
2023 unsigned long
2024 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2025 {
2026 	struct ring_buffer_per_cpu *cpu_buffer;
2027 	unsigned long ret;
2028 
2029 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2030 		return 0;
2031 
2032 	cpu_buffer = buffer->buffers[cpu];
2033 	ret = cpu_buffer->commit_overrun;
2034 
2035 	return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2038 
2039 /**
2040  * ring_buffer_entries - get the number of entries in a buffer
2041  * @buffer: The ring buffer
2042  *
2043  * Returns the total number of entries in the ring buffer
2044  * (all CPU entries)
2045  */
2046 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2047 {
2048 	struct ring_buffer_per_cpu *cpu_buffer;
2049 	unsigned long entries = 0;
2050 	int cpu;
2051 
2052 	/* if you care about this being correct, lock the buffer */
2053 	for_each_buffer_cpu(buffer, cpu) {
2054 		cpu_buffer = buffer->buffers[cpu];
2055 		entries += (local_read(&cpu_buffer->entries) -
2056 			    cpu_buffer->overrun) - cpu_buffer->read;
2057 	}
2058 
2059 	return entries;
2060 }
2061 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2062 
2063 /**
2064  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2065  * @buffer: The ring buffer
2066  *
2067  * Returns the total number of overruns in the ring buffer
2068  * (all CPU entries)
2069  */
2070 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2071 {
2072 	struct ring_buffer_per_cpu *cpu_buffer;
2073 	unsigned long overruns = 0;
2074 	int cpu;
2075 
2076 	/* if you care about this being correct, lock the buffer */
2077 	for_each_buffer_cpu(buffer, cpu) {
2078 		cpu_buffer = buffer->buffers[cpu];
2079 		overruns += cpu_buffer->overrun;
2080 	}
2081 
2082 	return overruns;
2083 }
2084 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2085 
2086 static void rb_iter_reset(struct ring_buffer_iter *iter)
2087 {
2088 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2089 
2090 	/* Iterator usage is expected to have record disabled */
2091 	if (list_empty(&cpu_buffer->reader_page->list)) {
2092 		iter->head_page = cpu_buffer->head_page;
2093 		iter->head = cpu_buffer->head_page->read;
2094 	} else {
2095 		iter->head_page = cpu_buffer->reader_page;
2096 		iter->head = cpu_buffer->reader_page->read;
2097 	}
2098 	if (iter->head)
2099 		iter->read_stamp = cpu_buffer->read_stamp;
2100 	else
2101 		iter->read_stamp = iter->head_page->page->time_stamp;
2102 }
2103 
2104 /**
2105  * ring_buffer_iter_reset - reset an iterator
2106  * @iter: The iterator to reset
2107  *
2108  * Resets the iterator, so that it will start from the beginning
2109  * again.
2110  */
2111 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2112 {
2113 	struct ring_buffer_per_cpu *cpu_buffer;
2114 	unsigned long flags;
2115 
2116 	if (!iter)
2117 		return;
2118 
2119 	cpu_buffer = iter->cpu_buffer;
2120 
2121 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2122 	rb_iter_reset(iter);
2123 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2124 }
2125 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2126 
2127 /**
2128  * ring_buffer_iter_empty - check if an iterator has no more to read
2129  * @iter: The iterator to check
2130  */
2131 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2132 {
2133 	struct ring_buffer_per_cpu *cpu_buffer;
2134 
2135 	cpu_buffer = iter->cpu_buffer;
2136 
2137 	return iter->head_page == cpu_buffer->commit_page &&
2138 		iter->head == rb_commit_index(cpu_buffer);
2139 }
2140 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2141 
2142 static void
2143 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2144 		     struct ring_buffer_event *event)
2145 {
2146 	u64 delta;
2147 
2148 	switch (event->type_len) {
2149 	case RINGBUF_TYPE_PADDING:
2150 		return;
2151 
2152 	case RINGBUF_TYPE_TIME_EXTEND:
2153 		delta = event->array[0];
2154 		delta <<= TS_SHIFT;
2155 		delta += event->time_delta;
2156 		cpu_buffer->read_stamp += delta;
2157 		return;
2158 
2159 	case RINGBUF_TYPE_TIME_STAMP:
2160 		/* FIXME: not implemented */
2161 		return;
2162 
2163 	case RINGBUF_TYPE_DATA:
2164 		cpu_buffer->read_stamp += event->time_delta;
2165 		return;
2166 
2167 	default:
2168 		BUG();
2169 	}
2170 	return;
2171 }
2172 
2173 static void
2174 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2175 			  struct ring_buffer_event *event)
2176 {
2177 	u64 delta;
2178 
2179 	switch (event->type_len) {
2180 	case RINGBUF_TYPE_PADDING:
2181 		return;
2182 
2183 	case RINGBUF_TYPE_TIME_EXTEND:
2184 		delta = event->array[0];
2185 		delta <<= TS_SHIFT;
2186 		delta += event->time_delta;
2187 		iter->read_stamp += delta;
2188 		return;
2189 
2190 	case RINGBUF_TYPE_TIME_STAMP:
2191 		/* FIXME: not implemented */
2192 		return;
2193 
2194 	case RINGBUF_TYPE_DATA:
2195 		iter->read_stamp += event->time_delta;
2196 		return;
2197 
2198 	default:
2199 		BUG();
2200 	}
2201 	return;
2202 }
2203 
2204 static struct buffer_page *
2205 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2206 {
2207 	struct buffer_page *reader = NULL;
2208 	unsigned long flags;
2209 	int nr_loops = 0;
2210 
2211 	local_irq_save(flags);
2212 	__raw_spin_lock(&cpu_buffer->lock);
2213 
2214  again:
2215 	/*
2216 	 * This should normally only loop twice. But because the
2217 	 * start of the reader inserts an empty page, it causes
2218 	 * a case where we will loop three times. There should be no
2219 	 * reason to loop four times (that I know of).
2220 	 */
2221 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2222 		reader = NULL;
2223 		goto out;
2224 	}
2225 
2226 	reader = cpu_buffer->reader_page;
2227 
2228 	/* If there's more to read, return this page */
2229 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2230 		goto out;
2231 
2232 	/* Never should we have an index greater than the size */
2233 	if (RB_WARN_ON(cpu_buffer,
2234 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2235 		goto out;
2236 
2237 	/* check if we caught up to the tail */
2238 	reader = NULL;
2239 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2240 		goto out;
2241 
2242 	/*
2243 	 * Splice the empty reader page into the list around the head.
2244 	 * Reset the reader page to size zero.
2245 	 */
2246 
2247 	reader = cpu_buffer->head_page;
2248 	cpu_buffer->reader_page->list.next = reader->list.next;
2249 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2250 
2251 	local_set(&cpu_buffer->reader_page->write, 0);
2252 	local_set(&cpu_buffer->reader_page->entries, 0);
2253 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2254 
2255 	/* Make the reader page now replace the head */
2256 	reader->list.prev->next = &cpu_buffer->reader_page->list;
2257 	reader->list.next->prev = &cpu_buffer->reader_page->list;
2258 
2259 	/*
2260 	 * If the tail is on the reader, then we must set the head
2261 	 * to the inserted page, otherwise we set it one before.
2262 	 */
2263 	cpu_buffer->head_page = cpu_buffer->reader_page;
2264 
2265 	if (cpu_buffer->commit_page != reader)
2266 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2267 
2268 	/* Finally update the reader page to the new head */
2269 	cpu_buffer->reader_page = reader;
2270 	rb_reset_reader_page(cpu_buffer);
2271 
2272 	goto again;
2273 
2274  out:
2275 	__raw_spin_unlock(&cpu_buffer->lock);
2276 	local_irq_restore(flags);
2277 
2278 	return reader;
2279 }
2280 
2281 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2282 {
2283 	struct ring_buffer_event *event;
2284 	struct buffer_page *reader;
2285 	unsigned length;
2286 
2287 	reader = rb_get_reader_page(cpu_buffer);
2288 
2289 	/* This function should not be called when buffer is empty */
2290 	if (RB_WARN_ON(cpu_buffer, !reader))
2291 		return;
2292 
2293 	event = rb_reader_event(cpu_buffer);
2294 
2295 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2296 			|| rb_discarded_event(event))
2297 		cpu_buffer->read++;
2298 
2299 	rb_update_read_stamp(cpu_buffer, event);
2300 
2301 	length = rb_event_length(event);
2302 	cpu_buffer->reader_page->read += length;
2303 }
2304 
2305 static void rb_advance_iter(struct ring_buffer_iter *iter)
2306 {
2307 	struct ring_buffer *buffer;
2308 	struct ring_buffer_per_cpu *cpu_buffer;
2309 	struct ring_buffer_event *event;
2310 	unsigned length;
2311 
2312 	cpu_buffer = iter->cpu_buffer;
2313 	buffer = cpu_buffer->buffer;
2314 
2315 	/*
2316 	 * Check if we are at the end of the buffer.
2317 	 */
2318 	if (iter->head >= rb_page_size(iter->head_page)) {
2319 		/* discarded commits can make the page empty */
2320 		if (iter->head_page == cpu_buffer->commit_page)
2321 			return;
2322 		rb_inc_iter(iter);
2323 		return;
2324 	}
2325 
2326 	event = rb_iter_head_event(iter);
2327 
2328 	length = rb_event_length(event);
2329 
2330 	/*
2331 	 * This should not be called to advance the header if we are
2332 	 * at the tail of the buffer.
2333 	 */
2334 	if (RB_WARN_ON(cpu_buffer,
2335 		       (iter->head_page == cpu_buffer->commit_page) &&
2336 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2337 		return;
2338 
2339 	rb_update_iter_read_stamp(iter, event);
2340 
2341 	iter->head += length;
2342 
2343 	/* check for end of page padding */
2344 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2345 	    (iter->head_page != cpu_buffer->commit_page))
2346 		rb_advance_iter(iter);
2347 }
2348 
2349 static struct ring_buffer_event *
2350 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2351 {
2352 	struct ring_buffer_per_cpu *cpu_buffer;
2353 	struct ring_buffer_event *event;
2354 	struct buffer_page *reader;
2355 	int nr_loops = 0;
2356 
2357 	cpu_buffer = buffer->buffers[cpu];
2358 
2359  again:
2360 	/*
2361 	 * We repeat when a timestamp is encountered. It is possible
2362 	 * to get multiple timestamps from an interrupt entering just
2363 	 * as one timestamp is about to be written, or from discarded
2364 	 * commits. The most that we can have is the number on a single page.
2365 	 */
2366 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2367 		return NULL;
2368 
2369 	reader = rb_get_reader_page(cpu_buffer);
2370 	if (!reader)
2371 		return NULL;
2372 
2373 	event = rb_reader_event(cpu_buffer);
2374 
2375 	switch (event->type_len) {
2376 	case RINGBUF_TYPE_PADDING:
2377 		if (rb_null_event(event))
2378 			RB_WARN_ON(cpu_buffer, 1);
2379 		/*
2380 		 * Because the writer could be discarding every
2381 		 * event it creates (which would probably be bad)
2382 		 * if we were to go back to "again" then we may never
2383 		 * catch up, and will trigger the warn on, or lock
2384 		 * the box. Return the padding, and we will release
2385 		 * the current locks, and try again.
2386 		 */
2387 		return event;
2388 
2389 	case RINGBUF_TYPE_TIME_EXTEND:
2390 		/* Internal data, OK to advance */
2391 		rb_advance_reader(cpu_buffer);
2392 		goto again;
2393 
2394 	case RINGBUF_TYPE_TIME_STAMP:
2395 		/* FIXME: not implemented */
2396 		rb_advance_reader(cpu_buffer);
2397 		goto again;
2398 
2399 	case RINGBUF_TYPE_DATA:
2400 		if (ts) {
2401 			*ts = cpu_buffer->read_stamp + event->time_delta;
2402 			ring_buffer_normalize_time_stamp(buffer,
2403 							 cpu_buffer->cpu, ts);
2404 		}
2405 		return event;
2406 
2407 	default:
2408 		BUG();
2409 	}
2410 
2411 	return NULL;
2412 }
2413 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2414 
2415 static struct ring_buffer_event *
2416 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2417 {
2418 	struct ring_buffer *buffer;
2419 	struct ring_buffer_per_cpu *cpu_buffer;
2420 	struct ring_buffer_event *event;
2421 	int nr_loops = 0;
2422 
2423 	if (ring_buffer_iter_empty(iter))
2424 		return NULL;
2425 
2426 	cpu_buffer = iter->cpu_buffer;
2427 	buffer = cpu_buffer->buffer;
2428 
2429  again:
2430 	/*
2431 	 * We repeat when a timestamp is encountered.
2432 	 * We can get multiple timestamps by nested interrupts or also
2433 	 * if filtering is on (discarding commits). Since discarding
2434 	 * commits can be frequent we can get a lot of timestamps.
2435 	 * But we limit them by not adding timestamps if they begin
2436 	 * at the start of a page.
2437 	 */
2438 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2439 		return NULL;
2440 
2441 	if (rb_per_cpu_empty(cpu_buffer))
2442 		return NULL;
2443 
2444 	event = rb_iter_head_event(iter);
2445 
2446 	switch (event->type_len) {
2447 	case RINGBUF_TYPE_PADDING:
2448 		if (rb_null_event(event)) {
2449 			rb_inc_iter(iter);
2450 			goto again;
2451 		}
2452 		rb_advance_iter(iter);
2453 		return event;
2454 
2455 	case RINGBUF_TYPE_TIME_EXTEND:
2456 		/* Internal data, OK to advance */
2457 		rb_advance_iter(iter);
2458 		goto again;
2459 
2460 	case RINGBUF_TYPE_TIME_STAMP:
2461 		/* FIXME: not implemented */
2462 		rb_advance_iter(iter);
2463 		goto again;
2464 
2465 	case RINGBUF_TYPE_DATA:
2466 		if (ts) {
2467 			*ts = iter->read_stamp + event->time_delta;
2468 			ring_buffer_normalize_time_stamp(buffer,
2469 							 cpu_buffer->cpu, ts);
2470 		}
2471 		return event;
2472 
2473 	default:
2474 		BUG();
2475 	}
2476 
2477 	return NULL;
2478 }
2479 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2480 
2481 static inline int rb_ok_to_lock(void)
2482 {
2483 	/*
2484 	 * If an NMI die dumps out the content of the ring buffer
2485 	 * do not grab locks. We also permanently disable the ring
2486 	 * buffer too. A one time deal is all you get from reading
2487 	 * the ring buffer from an NMI.
2488 	 */
2489 	if (likely(!in_nmi()))
2490 		return 1;
2491 
2492 	tracing_off_permanent();
2493 	return 0;
2494 }
2495 
2496 /**
2497  * ring_buffer_peek - peek at the next event to be read
2498  * @buffer: The ring buffer to read
2499  * @cpu: The cpu to peak at
2500  * @ts: The timestamp counter of this event.
2501  *
2502  * This will return the event that will be read next, but does
2503  * not consume the data.
2504  */
2505 struct ring_buffer_event *
2506 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2507 {
2508 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2509 	struct ring_buffer_event *event;
2510 	unsigned long flags;
2511 	int dolock;
2512 
2513 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2514 		return NULL;
2515 
2516 	dolock = rb_ok_to_lock();
2517  again:
2518 	local_irq_save(flags);
2519 	if (dolock)
2520 		spin_lock(&cpu_buffer->reader_lock);
2521 	event = rb_buffer_peek(buffer, cpu, ts);
2522 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
2523 		rb_advance_reader(cpu_buffer);
2524 	if (dolock)
2525 		spin_unlock(&cpu_buffer->reader_lock);
2526 	local_irq_restore(flags);
2527 
2528 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2529 		cpu_relax();
2530 		goto again;
2531 	}
2532 
2533 	return event;
2534 }
2535 
2536 /**
2537  * ring_buffer_iter_peek - peek at the next event to be read
2538  * @iter: The ring buffer iterator
2539  * @ts: The timestamp counter of this event.
2540  *
2541  * This will return the event that will be read next, but does
2542  * not increment the iterator.
2543  */
2544 struct ring_buffer_event *
2545 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2546 {
2547 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2548 	struct ring_buffer_event *event;
2549 	unsigned long flags;
2550 
2551  again:
2552 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2553 	event = rb_iter_peek(iter, ts);
2554 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2555 
2556 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2557 		cpu_relax();
2558 		goto again;
2559 	}
2560 
2561 	return event;
2562 }
2563 
2564 /**
2565  * ring_buffer_consume - return an event and consume it
2566  * @buffer: The ring buffer to get the next event from
2567  *
2568  * Returns the next event in the ring buffer, and that event is consumed.
2569  * Meaning, that sequential reads will keep returning a different event,
2570  * and eventually empty the ring buffer if the producer is slower.
2571  */
2572 struct ring_buffer_event *
2573 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2574 {
2575 	struct ring_buffer_per_cpu *cpu_buffer;
2576 	struct ring_buffer_event *event = NULL;
2577 	unsigned long flags;
2578 	int dolock;
2579 
2580 	dolock = rb_ok_to_lock();
2581 
2582  again:
2583 	/* might be called in atomic */
2584 	preempt_disable();
2585 
2586 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2587 		goto out;
2588 
2589 	cpu_buffer = buffer->buffers[cpu];
2590 	local_irq_save(flags);
2591 	if (dolock)
2592 		spin_lock(&cpu_buffer->reader_lock);
2593 
2594 	event = rb_buffer_peek(buffer, cpu, ts);
2595 	if (event)
2596 		rb_advance_reader(cpu_buffer);
2597 
2598 	if (dolock)
2599 		spin_unlock(&cpu_buffer->reader_lock);
2600 	local_irq_restore(flags);
2601 
2602  out:
2603 	preempt_enable();
2604 
2605 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2606 		cpu_relax();
2607 		goto again;
2608 	}
2609 
2610 	return event;
2611 }
2612 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2613 
2614 /**
2615  * ring_buffer_read_start - start a non consuming read of the buffer
2616  * @buffer: The ring buffer to read from
2617  * @cpu: The cpu buffer to iterate over
2618  *
2619  * This starts up an iteration through the buffer. It also disables
2620  * the recording to the buffer until the reading is finished.
2621  * This prevents the reading from being corrupted. This is not
2622  * a consuming read, so a producer is not expected.
2623  *
2624  * Must be paired with ring_buffer_finish.
2625  */
2626 struct ring_buffer_iter *
2627 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2628 {
2629 	struct ring_buffer_per_cpu *cpu_buffer;
2630 	struct ring_buffer_iter *iter;
2631 	unsigned long flags;
2632 
2633 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2634 		return NULL;
2635 
2636 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2637 	if (!iter)
2638 		return NULL;
2639 
2640 	cpu_buffer = buffer->buffers[cpu];
2641 
2642 	iter->cpu_buffer = cpu_buffer;
2643 
2644 	atomic_inc(&cpu_buffer->record_disabled);
2645 	synchronize_sched();
2646 
2647 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2648 	__raw_spin_lock(&cpu_buffer->lock);
2649 	rb_iter_reset(iter);
2650 	__raw_spin_unlock(&cpu_buffer->lock);
2651 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2652 
2653 	return iter;
2654 }
2655 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2656 
2657 /**
2658  * ring_buffer_finish - finish reading the iterator of the buffer
2659  * @iter: The iterator retrieved by ring_buffer_start
2660  *
2661  * This re-enables the recording to the buffer, and frees the
2662  * iterator.
2663  */
2664 void
2665 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2666 {
2667 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2668 
2669 	atomic_dec(&cpu_buffer->record_disabled);
2670 	kfree(iter);
2671 }
2672 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2673 
2674 /**
2675  * ring_buffer_read - read the next item in the ring buffer by the iterator
2676  * @iter: The ring buffer iterator
2677  * @ts: The time stamp of the event read.
2678  *
2679  * This reads the next event in the ring buffer and increments the iterator.
2680  */
2681 struct ring_buffer_event *
2682 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2683 {
2684 	struct ring_buffer_event *event;
2685 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2686 	unsigned long flags;
2687 
2688  again:
2689 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2690 	event = rb_iter_peek(iter, ts);
2691 	if (!event)
2692 		goto out;
2693 
2694 	rb_advance_iter(iter);
2695  out:
2696 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2697 
2698 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2699 		cpu_relax();
2700 		goto again;
2701 	}
2702 
2703 	return event;
2704 }
2705 EXPORT_SYMBOL_GPL(ring_buffer_read);
2706 
2707 /**
2708  * ring_buffer_size - return the size of the ring buffer (in bytes)
2709  * @buffer: The ring buffer.
2710  */
2711 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2712 {
2713 	return BUF_PAGE_SIZE * buffer->pages;
2714 }
2715 EXPORT_SYMBOL_GPL(ring_buffer_size);
2716 
2717 static void
2718 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2719 {
2720 	cpu_buffer->head_page
2721 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2722 	local_set(&cpu_buffer->head_page->write, 0);
2723 	local_set(&cpu_buffer->head_page->entries, 0);
2724 	local_set(&cpu_buffer->head_page->page->commit, 0);
2725 
2726 	cpu_buffer->head_page->read = 0;
2727 
2728 	cpu_buffer->tail_page = cpu_buffer->head_page;
2729 	cpu_buffer->commit_page = cpu_buffer->head_page;
2730 
2731 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2732 	local_set(&cpu_buffer->reader_page->write, 0);
2733 	local_set(&cpu_buffer->reader_page->entries, 0);
2734 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2735 	cpu_buffer->reader_page->read = 0;
2736 
2737 	cpu_buffer->nmi_dropped = 0;
2738 	cpu_buffer->commit_overrun = 0;
2739 	cpu_buffer->overrun = 0;
2740 	cpu_buffer->read = 0;
2741 	local_set(&cpu_buffer->entries, 0);
2742 	local_set(&cpu_buffer->committing, 0);
2743 	local_set(&cpu_buffer->commits, 0);
2744 
2745 	cpu_buffer->write_stamp = 0;
2746 	cpu_buffer->read_stamp = 0;
2747 }
2748 
2749 /**
2750  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2751  * @buffer: The ring buffer to reset a per cpu buffer of
2752  * @cpu: The CPU buffer to be reset
2753  */
2754 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2755 {
2756 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2757 	unsigned long flags;
2758 
2759 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2760 		return;
2761 
2762 	atomic_inc(&cpu_buffer->record_disabled);
2763 
2764 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2765 
2766 	__raw_spin_lock(&cpu_buffer->lock);
2767 
2768 	rb_reset_cpu(cpu_buffer);
2769 
2770 	__raw_spin_unlock(&cpu_buffer->lock);
2771 
2772 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2773 
2774 	atomic_dec(&cpu_buffer->record_disabled);
2775 }
2776 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2777 
2778 /**
2779  * ring_buffer_reset - reset a ring buffer
2780  * @buffer: The ring buffer to reset all cpu buffers
2781  */
2782 void ring_buffer_reset(struct ring_buffer *buffer)
2783 {
2784 	int cpu;
2785 
2786 	for_each_buffer_cpu(buffer, cpu)
2787 		ring_buffer_reset_cpu(buffer, cpu);
2788 }
2789 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2790 
2791 /**
2792  * rind_buffer_empty - is the ring buffer empty?
2793  * @buffer: The ring buffer to test
2794  */
2795 int ring_buffer_empty(struct ring_buffer *buffer)
2796 {
2797 	struct ring_buffer_per_cpu *cpu_buffer;
2798 	unsigned long flags;
2799 	int dolock;
2800 	int cpu;
2801 	int ret;
2802 
2803 	dolock = rb_ok_to_lock();
2804 
2805 	/* yes this is racy, but if you don't like the race, lock the buffer */
2806 	for_each_buffer_cpu(buffer, cpu) {
2807 		cpu_buffer = buffer->buffers[cpu];
2808 		local_irq_save(flags);
2809 		if (dolock)
2810 			spin_lock(&cpu_buffer->reader_lock);
2811 		ret = rb_per_cpu_empty(cpu_buffer);
2812 		if (dolock)
2813 			spin_unlock(&cpu_buffer->reader_lock);
2814 		local_irq_restore(flags);
2815 
2816 		if (!ret)
2817 			return 0;
2818 	}
2819 
2820 	return 1;
2821 }
2822 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2823 
2824 /**
2825  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2826  * @buffer: The ring buffer
2827  * @cpu: The CPU buffer to test
2828  */
2829 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2830 {
2831 	struct ring_buffer_per_cpu *cpu_buffer;
2832 	unsigned long flags;
2833 	int dolock;
2834 	int ret;
2835 
2836 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2837 		return 1;
2838 
2839 	dolock = rb_ok_to_lock();
2840 
2841 	cpu_buffer = buffer->buffers[cpu];
2842 	local_irq_save(flags);
2843 	if (dolock)
2844 		spin_lock(&cpu_buffer->reader_lock);
2845 	ret = rb_per_cpu_empty(cpu_buffer);
2846 	if (dolock)
2847 		spin_unlock(&cpu_buffer->reader_lock);
2848 	local_irq_restore(flags);
2849 
2850 	return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2853 
2854 /**
2855  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2856  * @buffer_a: One buffer to swap with
2857  * @buffer_b: The other buffer to swap with
2858  *
2859  * This function is useful for tracers that want to take a "snapshot"
2860  * of a CPU buffer and has another back up buffer lying around.
2861  * it is expected that the tracer handles the cpu buffer not being
2862  * used at the moment.
2863  */
2864 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2865 			 struct ring_buffer *buffer_b, int cpu)
2866 {
2867 	struct ring_buffer_per_cpu *cpu_buffer_a;
2868 	struct ring_buffer_per_cpu *cpu_buffer_b;
2869 	int ret = -EINVAL;
2870 
2871 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2872 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
2873 		goto out;
2874 
2875 	/* At least make sure the two buffers are somewhat the same */
2876 	if (buffer_a->pages != buffer_b->pages)
2877 		goto out;
2878 
2879 	ret = -EAGAIN;
2880 
2881 	if (ring_buffer_flags != RB_BUFFERS_ON)
2882 		goto out;
2883 
2884 	if (atomic_read(&buffer_a->record_disabled))
2885 		goto out;
2886 
2887 	if (atomic_read(&buffer_b->record_disabled))
2888 		goto out;
2889 
2890 	cpu_buffer_a = buffer_a->buffers[cpu];
2891 	cpu_buffer_b = buffer_b->buffers[cpu];
2892 
2893 	if (atomic_read(&cpu_buffer_a->record_disabled))
2894 		goto out;
2895 
2896 	if (atomic_read(&cpu_buffer_b->record_disabled))
2897 		goto out;
2898 
2899 	/*
2900 	 * We can't do a synchronize_sched here because this
2901 	 * function can be called in atomic context.
2902 	 * Normally this will be called from the same CPU as cpu.
2903 	 * If not it's up to the caller to protect this.
2904 	 */
2905 	atomic_inc(&cpu_buffer_a->record_disabled);
2906 	atomic_inc(&cpu_buffer_b->record_disabled);
2907 
2908 	buffer_a->buffers[cpu] = cpu_buffer_b;
2909 	buffer_b->buffers[cpu] = cpu_buffer_a;
2910 
2911 	cpu_buffer_b->buffer = buffer_a;
2912 	cpu_buffer_a->buffer = buffer_b;
2913 
2914 	atomic_dec(&cpu_buffer_a->record_disabled);
2915 	atomic_dec(&cpu_buffer_b->record_disabled);
2916 
2917 	ret = 0;
2918 out:
2919 	return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2922 
2923 /**
2924  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2925  * @buffer: the buffer to allocate for.
2926  *
2927  * This function is used in conjunction with ring_buffer_read_page.
2928  * When reading a full page from the ring buffer, these functions
2929  * can be used to speed up the process. The calling function should
2930  * allocate a few pages first with this function. Then when it
2931  * needs to get pages from the ring buffer, it passes the result
2932  * of this function into ring_buffer_read_page, which will swap
2933  * the page that was allocated, with the read page of the buffer.
2934  *
2935  * Returns:
2936  *  The page allocated, or NULL on error.
2937  */
2938 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2939 {
2940 	struct buffer_data_page *bpage;
2941 	unsigned long addr;
2942 
2943 	addr = __get_free_page(GFP_KERNEL);
2944 	if (!addr)
2945 		return NULL;
2946 
2947 	bpage = (void *)addr;
2948 
2949 	rb_init_page(bpage);
2950 
2951 	return bpage;
2952 }
2953 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2954 
2955 /**
2956  * ring_buffer_free_read_page - free an allocated read page
2957  * @buffer: the buffer the page was allocate for
2958  * @data: the page to free
2959  *
2960  * Free a page allocated from ring_buffer_alloc_read_page.
2961  */
2962 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2963 {
2964 	free_page((unsigned long)data);
2965 }
2966 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2967 
2968 /**
2969  * ring_buffer_read_page - extract a page from the ring buffer
2970  * @buffer: buffer to extract from
2971  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2972  * @len: amount to extract
2973  * @cpu: the cpu of the buffer to extract
2974  * @full: should the extraction only happen when the page is full.
2975  *
2976  * This function will pull out a page from the ring buffer and consume it.
2977  * @data_page must be the address of the variable that was returned
2978  * from ring_buffer_alloc_read_page. This is because the page might be used
2979  * to swap with a page in the ring buffer.
2980  *
2981  * for example:
2982  *	rpage = ring_buffer_alloc_read_page(buffer);
2983  *	if (!rpage)
2984  *		return error;
2985  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2986  *	if (ret >= 0)
2987  *		process_page(rpage, ret);
2988  *
2989  * When @full is set, the function will not return true unless
2990  * the writer is off the reader page.
2991  *
2992  * Note: it is up to the calling functions to handle sleeps and wakeups.
2993  *  The ring buffer can be used anywhere in the kernel and can not
2994  *  blindly call wake_up. The layer that uses the ring buffer must be
2995  *  responsible for that.
2996  *
2997  * Returns:
2998  *  >=0 if data has been transferred, returns the offset of consumed data.
2999  *  <0 if no data has been transferred.
3000  */
3001 int ring_buffer_read_page(struct ring_buffer *buffer,
3002 			  void **data_page, size_t len, int cpu, int full)
3003 {
3004 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3005 	struct ring_buffer_event *event;
3006 	struct buffer_data_page *bpage;
3007 	struct buffer_page *reader;
3008 	unsigned long flags;
3009 	unsigned int commit;
3010 	unsigned int read;
3011 	u64 save_timestamp;
3012 	int ret = -1;
3013 
3014 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015 		goto out;
3016 
3017 	/*
3018 	 * If len is not big enough to hold the page header, then
3019 	 * we can not copy anything.
3020 	 */
3021 	if (len <= BUF_PAGE_HDR_SIZE)
3022 		goto out;
3023 
3024 	len -= BUF_PAGE_HDR_SIZE;
3025 
3026 	if (!data_page)
3027 		goto out;
3028 
3029 	bpage = *data_page;
3030 	if (!bpage)
3031 		goto out;
3032 
3033 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3034 
3035 	reader = rb_get_reader_page(cpu_buffer);
3036 	if (!reader)
3037 		goto out_unlock;
3038 
3039 	event = rb_reader_event(cpu_buffer);
3040 
3041 	read = reader->read;
3042 	commit = rb_page_commit(reader);
3043 
3044 	/*
3045 	 * If this page has been partially read or
3046 	 * if len is not big enough to read the rest of the page or
3047 	 * a writer is still on the page, then
3048 	 * we must copy the data from the page to the buffer.
3049 	 * Otherwise, we can simply swap the page with the one passed in.
3050 	 */
3051 	if (read || (len < (commit - read)) ||
3052 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3053 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3054 		unsigned int rpos = read;
3055 		unsigned int pos = 0;
3056 		unsigned int size;
3057 
3058 		if (full)
3059 			goto out_unlock;
3060 
3061 		if (len > (commit - read))
3062 			len = (commit - read);
3063 
3064 		size = rb_event_length(event);
3065 
3066 		if (len < size)
3067 			goto out_unlock;
3068 
3069 		/* save the current timestamp, since the user will need it */
3070 		save_timestamp = cpu_buffer->read_stamp;
3071 
3072 		/* Need to copy one event at a time */
3073 		do {
3074 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3075 
3076 			len -= size;
3077 
3078 			rb_advance_reader(cpu_buffer);
3079 			rpos = reader->read;
3080 			pos += size;
3081 
3082 			event = rb_reader_event(cpu_buffer);
3083 			size = rb_event_length(event);
3084 		} while (len > size);
3085 
3086 		/* update bpage */
3087 		local_set(&bpage->commit, pos);
3088 		bpage->time_stamp = save_timestamp;
3089 
3090 		/* we copied everything to the beginning */
3091 		read = 0;
3092 	} else {
3093 		/* update the entry counter */
3094 		cpu_buffer->read += local_read(&reader->entries);
3095 
3096 		/* swap the pages */
3097 		rb_init_page(bpage);
3098 		bpage = reader->page;
3099 		reader->page = *data_page;
3100 		local_set(&reader->write, 0);
3101 		local_set(&reader->entries, 0);
3102 		reader->read = 0;
3103 		*data_page = bpage;
3104 	}
3105 	ret = read;
3106 
3107  out_unlock:
3108 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3109 
3110  out:
3111 	return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3114 
3115 #ifdef CONFIG_TRACING
3116 static ssize_t
3117 rb_simple_read(struct file *filp, char __user *ubuf,
3118 	       size_t cnt, loff_t *ppos)
3119 {
3120 	unsigned long *p = filp->private_data;
3121 	char buf[64];
3122 	int r;
3123 
3124 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3125 		r = sprintf(buf, "permanently disabled\n");
3126 	else
3127 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3128 
3129 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3130 }
3131 
3132 static ssize_t
3133 rb_simple_write(struct file *filp, const char __user *ubuf,
3134 		size_t cnt, loff_t *ppos)
3135 {
3136 	unsigned long *p = filp->private_data;
3137 	char buf[64];
3138 	unsigned long val;
3139 	int ret;
3140 
3141 	if (cnt >= sizeof(buf))
3142 		return -EINVAL;
3143 
3144 	if (copy_from_user(&buf, ubuf, cnt))
3145 		return -EFAULT;
3146 
3147 	buf[cnt] = 0;
3148 
3149 	ret = strict_strtoul(buf, 10, &val);
3150 	if (ret < 0)
3151 		return ret;
3152 
3153 	if (val)
3154 		set_bit(RB_BUFFERS_ON_BIT, p);
3155 	else
3156 		clear_bit(RB_BUFFERS_ON_BIT, p);
3157 
3158 	(*ppos)++;
3159 
3160 	return cnt;
3161 }
3162 
3163 static const struct file_operations rb_simple_fops = {
3164 	.open		= tracing_open_generic,
3165 	.read		= rb_simple_read,
3166 	.write		= rb_simple_write,
3167 };
3168 
3169 
3170 static __init int rb_init_debugfs(void)
3171 {
3172 	struct dentry *d_tracer;
3173 
3174 	d_tracer = tracing_init_dentry();
3175 
3176 	trace_create_file("tracing_on", 0644, d_tracer,
3177 			    &ring_buffer_flags, &rb_simple_fops);
3178 
3179 	return 0;
3180 }
3181 
3182 fs_initcall(rb_init_debugfs);
3183 #endif
3184 
3185 #ifdef CONFIG_HOTPLUG_CPU
3186 static int rb_cpu_notify(struct notifier_block *self,
3187 			 unsigned long action, void *hcpu)
3188 {
3189 	struct ring_buffer *buffer =
3190 		container_of(self, struct ring_buffer, cpu_notify);
3191 	long cpu = (long)hcpu;
3192 
3193 	switch (action) {
3194 	case CPU_UP_PREPARE:
3195 	case CPU_UP_PREPARE_FROZEN:
3196 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3197 			return NOTIFY_OK;
3198 
3199 		buffer->buffers[cpu] =
3200 			rb_allocate_cpu_buffer(buffer, cpu);
3201 		if (!buffer->buffers[cpu]) {
3202 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3203 			     cpu);
3204 			return NOTIFY_OK;
3205 		}
3206 		smp_wmb();
3207 		cpumask_set_cpu(cpu, buffer->cpumask);
3208 		break;
3209 	case CPU_DOWN_PREPARE:
3210 	case CPU_DOWN_PREPARE_FROZEN:
3211 		/*
3212 		 * Do nothing.
3213 		 *  If we were to free the buffer, then the user would
3214 		 *  lose any trace that was in the buffer.
3215 		 */
3216 		break;
3217 	default:
3218 		break;
3219 	}
3220 	return NOTIFY_OK;
3221 }
3222 #endif
3223