1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/spinlock.h> 9 #include <linux/debugfs.h> 10 #include <linux/uaccess.h> 11 #include <linux/hardirq.h> 12 #include <linux/kmemcheck.h> 13 #include <linux/module.h> 14 #include <linux/percpu.h> 15 #include <linux/mutex.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include <asm/local.h> 24 #include "trace.h" 25 26 static void update_pages_handler(struct work_struct *work); 27 28 /* 29 * The ring buffer header is special. We must manually up keep it. 30 */ 31 int ring_buffer_print_entry_header(struct trace_seq *s) 32 { 33 int ret; 34 35 ret = trace_seq_printf(s, "# compressed entry header\n"); 36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 38 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 39 ret = trace_seq_printf(s, "\n"); 40 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return ret; 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* 119 * A fast way to enable or disable all ring buffers is to 120 * call tracing_on or tracing_off. Turning off the ring buffers 121 * prevents all ring buffers from being recorded to. 122 * Turning this switch on, makes it OK to write to the 123 * ring buffer, if the ring buffer is enabled itself. 124 * 125 * There's three layers that must be on in order to write 126 * to the ring buffer. 127 * 128 * 1) This global flag must be set. 129 * 2) The ring buffer must be enabled for recording. 130 * 3) The per cpu buffer must be enabled for recording. 131 * 132 * In case of an anomaly, this global flag has a bit set that 133 * will permantly disable all ring buffers. 134 */ 135 136 /* 137 * Global flag to disable all recording to ring buffers 138 * This has two bits: ON, DISABLED 139 * 140 * ON DISABLED 141 * ---- ---------- 142 * 0 0 : ring buffers are off 143 * 1 0 : ring buffers are on 144 * X 1 : ring buffers are permanently disabled 145 */ 146 147 enum { 148 RB_BUFFERS_ON_BIT = 0, 149 RB_BUFFERS_DISABLED_BIT = 1, 150 }; 151 152 enum { 153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 155 }; 156 157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 158 159 /* Used for individual buffers (after the counter) */ 160 #define RB_BUFFER_OFF (1 << 20) 161 162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 163 164 /** 165 * tracing_off_permanent - permanently disable ring buffers 166 * 167 * This function, once called, will disable all ring buffers 168 * permanently. 169 */ 170 void tracing_off_permanent(void) 171 { 172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 173 } 174 175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 176 #define RB_ALIGNMENT 4U 177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 179 180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 181 # define RB_FORCE_8BYTE_ALIGNMENT 0 182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 183 #else 184 # define RB_FORCE_8BYTE_ALIGNMENT 1 185 # define RB_ARCH_ALIGNMENT 8U 186 #endif 187 188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 190 191 enum { 192 RB_LEN_TIME_EXTEND = 8, 193 RB_LEN_TIME_STAMP = 16, 194 }; 195 196 #define skip_time_extend(event) \ 197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 198 199 static inline int rb_null_event(struct ring_buffer_event *event) 200 { 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 202 } 203 204 static void rb_event_set_padding(struct ring_buffer_event *event) 205 { 206 /* padding has a NULL time_delta */ 207 event->type_len = RINGBUF_TYPE_PADDING; 208 event->time_delta = 0; 209 } 210 211 static unsigned 212 rb_event_data_length(struct ring_buffer_event *event) 213 { 214 unsigned length; 215 216 if (event->type_len) 217 length = event->type_len * RB_ALIGNMENT; 218 else 219 length = event->array[0]; 220 return length + RB_EVNT_HDR_SIZE; 221 } 222 223 /* 224 * Return the length of the given event. Will return 225 * the length of the time extend if the event is a 226 * time extend. 227 */ 228 static inline unsigned 229 rb_event_length(struct ring_buffer_event *event) 230 { 231 switch (event->type_len) { 232 case RINGBUF_TYPE_PADDING: 233 if (rb_null_event(event)) 234 /* undefined */ 235 return -1; 236 return event->array[0] + RB_EVNT_HDR_SIZE; 237 238 case RINGBUF_TYPE_TIME_EXTEND: 239 return RB_LEN_TIME_EXTEND; 240 241 case RINGBUF_TYPE_TIME_STAMP: 242 return RB_LEN_TIME_STAMP; 243 244 case RINGBUF_TYPE_DATA: 245 return rb_event_data_length(event); 246 default: 247 BUG(); 248 } 249 /* not hit */ 250 return 0; 251 } 252 253 /* 254 * Return total length of time extend and data, 255 * or just the event length for all other events. 256 */ 257 static inline unsigned 258 rb_event_ts_length(struct ring_buffer_event *event) 259 { 260 unsigned len = 0; 261 262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 263 /* time extends include the data event after it */ 264 len = RB_LEN_TIME_EXTEND; 265 event = skip_time_extend(event); 266 } 267 return len + rb_event_length(event); 268 } 269 270 /** 271 * ring_buffer_event_length - return the length of the event 272 * @event: the event to get the length of 273 * 274 * Returns the size of the data load of a data event. 275 * If the event is something other than a data event, it 276 * returns the size of the event itself. With the exception 277 * of a TIME EXTEND, where it still returns the size of the 278 * data load of the data event after it. 279 */ 280 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 281 { 282 unsigned length; 283 284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 285 event = skip_time_extend(event); 286 287 length = rb_event_length(event); 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 289 return length; 290 length -= RB_EVNT_HDR_SIZE; 291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 292 length -= sizeof(event->array[0]); 293 return length; 294 } 295 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 296 297 /* inline for ring buffer fast paths */ 298 static void * 299 rb_event_data(struct ring_buffer_event *event) 300 { 301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 302 event = skip_time_extend(event); 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 304 /* If length is in len field, then array[0] has the data */ 305 if (event->type_len) 306 return (void *)&event->array[0]; 307 /* Otherwise length is in array[0] and array[1] has the data */ 308 return (void *)&event->array[1]; 309 } 310 311 /** 312 * ring_buffer_event_data - return the data of the event 313 * @event: the event to get the data from 314 */ 315 void *ring_buffer_event_data(struct ring_buffer_event *event) 316 { 317 return rb_event_data(event); 318 } 319 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 320 321 #define for_each_buffer_cpu(buffer, cpu) \ 322 for_each_cpu(cpu, buffer->cpumask) 323 324 #define TS_SHIFT 27 325 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 326 #define TS_DELTA_TEST (~TS_MASK) 327 328 /* Flag when events were overwritten */ 329 #define RB_MISSED_EVENTS (1 << 31) 330 /* Missed count stored at end */ 331 #define RB_MISSED_STORED (1 << 30) 332 333 struct buffer_data_page { 334 u64 time_stamp; /* page time stamp */ 335 local_t commit; /* write committed index */ 336 unsigned char data[]; /* data of buffer page */ 337 }; 338 339 /* 340 * Note, the buffer_page list must be first. The buffer pages 341 * are allocated in cache lines, which means that each buffer 342 * page will be at the beginning of a cache line, and thus 343 * the least significant bits will be zero. We use this to 344 * add flags in the list struct pointers, to make the ring buffer 345 * lockless. 346 */ 347 struct buffer_page { 348 struct list_head list; /* list of buffer pages */ 349 local_t write; /* index for next write */ 350 unsigned read; /* index for next read */ 351 local_t entries; /* entries on this page */ 352 unsigned long real_end; /* real end of data */ 353 struct buffer_data_page *page; /* Actual data page */ 354 }; 355 356 /* 357 * The buffer page counters, write and entries, must be reset 358 * atomically when crossing page boundaries. To synchronize this 359 * update, two counters are inserted into the number. One is 360 * the actual counter for the write position or count on the page. 361 * 362 * The other is a counter of updaters. Before an update happens 363 * the update partition of the counter is incremented. This will 364 * allow the updater to update the counter atomically. 365 * 366 * The counter is 20 bits, and the state data is 12. 367 */ 368 #define RB_WRITE_MASK 0xfffff 369 #define RB_WRITE_INTCNT (1 << 20) 370 371 static void rb_init_page(struct buffer_data_page *bpage) 372 { 373 local_set(&bpage->commit, 0); 374 } 375 376 /** 377 * ring_buffer_page_len - the size of data on the page. 378 * @page: The page to read 379 * 380 * Returns the amount of data on the page, including buffer page header. 381 */ 382 size_t ring_buffer_page_len(void *page) 383 { 384 return local_read(&((struct buffer_data_page *)page)->commit) 385 + BUF_PAGE_HDR_SIZE; 386 } 387 388 /* 389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 390 * this issue out. 391 */ 392 static void free_buffer_page(struct buffer_page *bpage) 393 { 394 free_page((unsigned long)bpage->page); 395 kfree(bpage); 396 } 397 398 /* 399 * We need to fit the time_stamp delta into 27 bits. 400 */ 401 static inline int test_time_stamp(u64 delta) 402 { 403 if (delta & TS_DELTA_TEST) 404 return 1; 405 return 0; 406 } 407 408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 409 410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 412 413 int ring_buffer_print_page_header(struct trace_seq *s) 414 { 415 struct buffer_data_page field; 416 int ret; 417 418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 419 "offset:0;\tsize:%u;\tsigned:%u;\n", 420 (unsigned int)sizeof(field.time_stamp), 421 (unsigned int)is_signed_type(u64)); 422 423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 424 "offset:%u;\tsize:%u;\tsigned:%u;\n", 425 (unsigned int)offsetof(typeof(field), commit), 426 (unsigned int)sizeof(field.commit), 427 (unsigned int)is_signed_type(long)); 428 429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 1, 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: char data;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), data), 438 (unsigned int)BUF_PAGE_SIZE, 439 (unsigned int)is_signed_type(char)); 440 441 return ret; 442 } 443 444 /* 445 * head_page == tail_page && head == tail then buffer is empty. 446 */ 447 struct ring_buffer_per_cpu { 448 int cpu; 449 atomic_t record_disabled; 450 struct ring_buffer *buffer; 451 raw_spinlock_t reader_lock; /* serialize readers */ 452 arch_spinlock_t lock; 453 struct lock_class_key lock_key; 454 unsigned int nr_pages; 455 struct list_head *pages; 456 struct buffer_page *head_page; /* read from head */ 457 struct buffer_page *tail_page; /* write to tail */ 458 struct buffer_page *commit_page; /* committed pages */ 459 struct buffer_page *reader_page; 460 unsigned long lost_events; 461 unsigned long last_overrun; 462 local_t entries_bytes; 463 local_t entries; 464 local_t overrun; 465 local_t commit_overrun; 466 local_t dropped_events; 467 local_t committing; 468 local_t commits; 469 unsigned long read; 470 unsigned long read_bytes; 471 u64 write_stamp; 472 u64 read_stamp; 473 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 474 int nr_pages_to_update; 475 struct list_head new_pages; /* new pages to add */ 476 struct work_struct update_pages_work; 477 struct completion update_done; 478 }; 479 480 struct ring_buffer { 481 unsigned flags; 482 int cpus; 483 atomic_t record_disabled; 484 atomic_t resize_disabled; 485 cpumask_var_t cpumask; 486 487 struct lock_class_key *reader_lock_key; 488 489 struct mutex mutex; 490 491 struct ring_buffer_per_cpu **buffers; 492 493 #ifdef CONFIG_HOTPLUG_CPU 494 struct notifier_block cpu_notify; 495 #endif 496 u64 (*clock)(void); 497 }; 498 499 struct ring_buffer_iter { 500 struct ring_buffer_per_cpu *cpu_buffer; 501 unsigned long head; 502 struct buffer_page *head_page; 503 struct buffer_page *cache_reader_page; 504 unsigned long cache_read; 505 u64 read_stamp; 506 }; 507 508 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 509 #define RB_WARN_ON(b, cond) \ 510 ({ \ 511 int _____ret = unlikely(cond); \ 512 if (_____ret) { \ 513 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 514 struct ring_buffer_per_cpu *__b = \ 515 (void *)b; \ 516 atomic_inc(&__b->buffer->record_disabled); \ 517 } else \ 518 atomic_inc(&b->record_disabled); \ 519 WARN_ON(1); \ 520 } \ 521 _____ret; \ 522 }) 523 524 /* Up this if you want to test the TIME_EXTENTS and normalization */ 525 #define DEBUG_SHIFT 0 526 527 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 528 { 529 /* shift to debug/test normalization and TIME_EXTENTS */ 530 return buffer->clock() << DEBUG_SHIFT; 531 } 532 533 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 534 { 535 u64 time; 536 537 preempt_disable_notrace(); 538 time = rb_time_stamp(buffer); 539 preempt_enable_no_resched_notrace(); 540 541 return time; 542 } 543 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 544 545 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 546 int cpu, u64 *ts) 547 { 548 /* Just stupid testing the normalize function and deltas */ 549 *ts >>= DEBUG_SHIFT; 550 } 551 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 552 553 /* 554 * Making the ring buffer lockless makes things tricky. 555 * Although writes only happen on the CPU that they are on, 556 * and they only need to worry about interrupts. Reads can 557 * happen on any CPU. 558 * 559 * The reader page is always off the ring buffer, but when the 560 * reader finishes with a page, it needs to swap its page with 561 * a new one from the buffer. The reader needs to take from 562 * the head (writes go to the tail). But if a writer is in overwrite 563 * mode and wraps, it must push the head page forward. 564 * 565 * Here lies the problem. 566 * 567 * The reader must be careful to replace only the head page, and 568 * not another one. As described at the top of the file in the 569 * ASCII art, the reader sets its old page to point to the next 570 * page after head. It then sets the page after head to point to 571 * the old reader page. But if the writer moves the head page 572 * during this operation, the reader could end up with the tail. 573 * 574 * We use cmpxchg to help prevent this race. We also do something 575 * special with the page before head. We set the LSB to 1. 576 * 577 * When the writer must push the page forward, it will clear the 578 * bit that points to the head page, move the head, and then set 579 * the bit that points to the new head page. 580 * 581 * We also don't want an interrupt coming in and moving the head 582 * page on another writer. Thus we use the second LSB to catch 583 * that too. Thus: 584 * 585 * head->list->prev->next bit 1 bit 0 586 * ------- ------- 587 * Normal page 0 0 588 * Points to head page 0 1 589 * New head page 1 0 590 * 591 * Note we can not trust the prev pointer of the head page, because: 592 * 593 * +----+ +-----+ +-----+ 594 * | |------>| T |---X--->| N | 595 * | |<------| | | | 596 * +----+ +-----+ +-----+ 597 * ^ ^ | 598 * | +-----+ | | 599 * +----------| R |----------+ | 600 * | |<-----------+ 601 * +-----+ 602 * 603 * Key: ---X--> HEAD flag set in pointer 604 * T Tail page 605 * R Reader page 606 * N Next page 607 * 608 * (see __rb_reserve_next() to see where this happens) 609 * 610 * What the above shows is that the reader just swapped out 611 * the reader page with a page in the buffer, but before it 612 * could make the new header point back to the new page added 613 * it was preempted by a writer. The writer moved forward onto 614 * the new page added by the reader and is about to move forward 615 * again. 616 * 617 * You can see, it is legitimate for the previous pointer of 618 * the head (or any page) not to point back to itself. But only 619 * temporarially. 620 */ 621 622 #define RB_PAGE_NORMAL 0UL 623 #define RB_PAGE_HEAD 1UL 624 #define RB_PAGE_UPDATE 2UL 625 626 627 #define RB_FLAG_MASK 3UL 628 629 /* PAGE_MOVED is not part of the mask */ 630 #define RB_PAGE_MOVED 4UL 631 632 /* 633 * rb_list_head - remove any bit 634 */ 635 static struct list_head *rb_list_head(struct list_head *list) 636 { 637 unsigned long val = (unsigned long)list; 638 639 return (struct list_head *)(val & ~RB_FLAG_MASK); 640 } 641 642 /* 643 * rb_is_head_page - test if the given page is the head page 644 * 645 * Because the reader may move the head_page pointer, we can 646 * not trust what the head page is (it may be pointing to 647 * the reader page). But if the next page is a header page, 648 * its flags will be non zero. 649 */ 650 static inline int 651 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 652 struct buffer_page *page, struct list_head *list) 653 { 654 unsigned long val; 655 656 val = (unsigned long)list->next; 657 658 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 659 return RB_PAGE_MOVED; 660 661 return val & RB_FLAG_MASK; 662 } 663 664 /* 665 * rb_is_reader_page 666 * 667 * The unique thing about the reader page, is that, if the 668 * writer is ever on it, the previous pointer never points 669 * back to the reader page. 670 */ 671 static int rb_is_reader_page(struct buffer_page *page) 672 { 673 struct list_head *list = page->list.prev; 674 675 return rb_list_head(list->next) != &page->list; 676 } 677 678 /* 679 * rb_set_list_to_head - set a list_head to be pointing to head. 680 */ 681 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 682 struct list_head *list) 683 { 684 unsigned long *ptr; 685 686 ptr = (unsigned long *)&list->next; 687 *ptr |= RB_PAGE_HEAD; 688 *ptr &= ~RB_PAGE_UPDATE; 689 } 690 691 /* 692 * rb_head_page_activate - sets up head page 693 */ 694 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 695 { 696 struct buffer_page *head; 697 698 head = cpu_buffer->head_page; 699 if (!head) 700 return; 701 702 /* 703 * Set the previous list pointer to have the HEAD flag. 704 */ 705 rb_set_list_to_head(cpu_buffer, head->list.prev); 706 } 707 708 static void rb_list_head_clear(struct list_head *list) 709 { 710 unsigned long *ptr = (unsigned long *)&list->next; 711 712 *ptr &= ~RB_FLAG_MASK; 713 } 714 715 /* 716 * rb_head_page_dactivate - clears head page ptr (for free list) 717 */ 718 static void 719 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 720 { 721 struct list_head *hd; 722 723 /* Go through the whole list and clear any pointers found. */ 724 rb_list_head_clear(cpu_buffer->pages); 725 726 list_for_each(hd, cpu_buffer->pages) 727 rb_list_head_clear(hd); 728 } 729 730 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 731 struct buffer_page *head, 732 struct buffer_page *prev, 733 int old_flag, int new_flag) 734 { 735 struct list_head *list; 736 unsigned long val = (unsigned long)&head->list; 737 unsigned long ret; 738 739 list = &prev->list; 740 741 val &= ~RB_FLAG_MASK; 742 743 ret = cmpxchg((unsigned long *)&list->next, 744 val | old_flag, val | new_flag); 745 746 /* check if the reader took the page */ 747 if ((ret & ~RB_FLAG_MASK) != val) 748 return RB_PAGE_MOVED; 749 750 return ret & RB_FLAG_MASK; 751 } 752 753 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 754 struct buffer_page *head, 755 struct buffer_page *prev, 756 int old_flag) 757 { 758 return rb_head_page_set(cpu_buffer, head, prev, 759 old_flag, RB_PAGE_UPDATE); 760 } 761 762 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 763 struct buffer_page *head, 764 struct buffer_page *prev, 765 int old_flag) 766 { 767 return rb_head_page_set(cpu_buffer, head, prev, 768 old_flag, RB_PAGE_HEAD); 769 } 770 771 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 772 struct buffer_page *head, 773 struct buffer_page *prev, 774 int old_flag) 775 { 776 return rb_head_page_set(cpu_buffer, head, prev, 777 old_flag, RB_PAGE_NORMAL); 778 } 779 780 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 781 struct buffer_page **bpage) 782 { 783 struct list_head *p = rb_list_head((*bpage)->list.next); 784 785 *bpage = list_entry(p, struct buffer_page, list); 786 } 787 788 static struct buffer_page * 789 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 790 { 791 struct buffer_page *head; 792 struct buffer_page *page; 793 struct list_head *list; 794 int i; 795 796 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 797 return NULL; 798 799 /* sanity check */ 800 list = cpu_buffer->pages; 801 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 802 return NULL; 803 804 page = head = cpu_buffer->head_page; 805 /* 806 * It is possible that the writer moves the header behind 807 * where we started, and we miss in one loop. 808 * A second loop should grab the header, but we'll do 809 * three loops just because I'm paranoid. 810 */ 811 for (i = 0; i < 3; i++) { 812 do { 813 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 814 cpu_buffer->head_page = page; 815 return page; 816 } 817 rb_inc_page(cpu_buffer, &page); 818 } while (page != head); 819 } 820 821 RB_WARN_ON(cpu_buffer, 1); 822 823 return NULL; 824 } 825 826 static int rb_head_page_replace(struct buffer_page *old, 827 struct buffer_page *new) 828 { 829 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 830 unsigned long val; 831 unsigned long ret; 832 833 val = *ptr & ~RB_FLAG_MASK; 834 val |= RB_PAGE_HEAD; 835 836 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 837 838 return ret == val; 839 } 840 841 /* 842 * rb_tail_page_update - move the tail page forward 843 * 844 * Returns 1 if moved tail page, 0 if someone else did. 845 */ 846 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 847 struct buffer_page *tail_page, 848 struct buffer_page *next_page) 849 { 850 struct buffer_page *old_tail; 851 unsigned long old_entries; 852 unsigned long old_write; 853 int ret = 0; 854 855 /* 856 * The tail page now needs to be moved forward. 857 * 858 * We need to reset the tail page, but without messing 859 * with possible erasing of data brought in by interrupts 860 * that have moved the tail page and are currently on it. 861 * 862 * We add a counter to the write field to denote this. 863 */ 864 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 865 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 866 867 /* 868 * Just make sure we have seen our old_write and synchronize 869 * with any interrupts that come in. 870 */ 871 barrier(); 872 873 /* 874 * If the tail page is still the same as what we think 875 * it is, then it is up to us to update the tail 876 * pointer. 877 */ 878 if (tail_page == cpu_buffer->tail_page) { 879 /* Zero the write counter */ 880 unsigned long val = old_write & ~RB_WRITE_MASK; 881 unsigned long eval = old_entries & ~RB_WRITE_MASK; 882 883 /* 884 * This will only succeed if an interrupt did 885 * not come in and change it. In which case, we 886 * do not want to modify it. 887 * 888 * We add (void) to let the compiler know that we do not care 889 * about the return value of these functions. We use the 890 * cmpxchg to only update if an interrupt did not already 891 * do it for us. If the cmpxchg fails, we don't care. 892 */ 893 (void)local_cmpxchg(&next_page->write, old_write, val); 894 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 895 896 /* 897 * No need to worry about races with clearing out the commit. 898 * it only can increment when a commit takes place. But that 899 * only happens in the outer most nested commit. 900 */ 901 local_set(&next_page->page->commit, 0); 902 903 old_tail = cmpxchg(&cpu_buffer->tail_page, 904 tail_page, next_page); 905 906 if (old_tail == tail_page) 907 ret = 1; 908 } 909 910 return ret; 911 } 912 913 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 914 struct buffer_page *bpage) 915 { 916 unsigned long val = (unsigned long)bpage; 917 918 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 919 return 1; 920 921 return 0; 922 } 923 924 /** 925 * rb_check_list - make sure a pointer to a list has the last bits zero 926 */ 927 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 928 struct list_head *list) 929 { 930 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 931 return 1; 932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 933 return 1; 934 return 0; 935 } 936 937 /** 938 * check_pages - integrity check of buffer pages 939 * @cpu_buffer: CPU buffer with pages to test 940 * 941 * As a safety measure we check to make sure the data pages have not 942 * been corrupted. 943 */ 944 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 945 { 946 struct list_head *head = cpu_buffer->pages; 947 struct buffer_page *bpage, *tmp; 948 949 /* Reset the head page if it exists */ 950 if (cpu_buffer->head_page) 951 rb_set_head_page(cpu_buffer); 952 953 rb_head_page_deactivate(cpu_buffer); 954 955 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 956 return -1; 957 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 958 return -1; 959 960 if (rb_check_list(cpu_buffer, head)) 961 return -1; 962 963 list_for_each_entry_safe(bpage, tmp, head, list) { 964 if (RB_WARN_ON(cpu_buffer, 965 bpage->list.next->prev != &bpage->list)) 966 return -1; 967 if (RB_WARN_ON(cpu_buffer, 968 bpage->list.prev->next != &bpage->list)) 969 return -1; 970 if (rb_check_list(cpu_buffer, &bpage->list)) 971 return -1; 972 } 973 974 rb_head_page_activate(cpu_buffer); 975 976 return 0; 977 } 978 979 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 980 { 981 int i; 982 struct buffer_page *bpage, *tmp; 983 984 for (i = 0; i < nr_pages; i++) { 985 struct page *page; 986 /* 987 * __GFP_NORETRY flag makes sure that the allocation fails 988 * gracefully without invoking oom-killer and the system is 989 * not destabilized. 990 */ 991 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 992 GFP_KERNEL | __GFP_NORETRY, 993 cpu_to_node(cpu)); 994 if (!bpage) 995 goto free_pages; 996 997 list_add(&bpage->list, pages); 998 999 page = alloc_pages_node(cpu_to_node(cpu), 1000 GFP_KERNEL | __GFP_NORETRY, 0); 1001 if (!page) 1002 goto free_pages; 1003 bpage->page = page_address(page); 1004 rb_init_page(bpage->page); 1005 } 1006 1007 return 0; 1008 1009 free_pages: 1010 list_for_each_entry_safe(bpage, tmp, pages, list) { 1011 list_del_init(&bpage->list); 1012 free_buffer_page(bpage); 1013 } 1014 1015 return -ENOMEM; 1016 } 1017 1018 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1019 unsigned nr_pages) 1020 { 1021 LIST_HEAD(pages); 1022 1023 WARN_ON(!nr_pages); 1024 1025 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1026 return -ENOMEM; 1027 1028 /* 1029 * The ring buffer page list is a circular list that does not 1030 * start and end with a list head. All page list items point to 1031 * other pages. 1032 */ 1033 cpu_buffer->pages = pages.next; 1034 list_del(&pages); 1035 1036 cpu_buffer->nr_pages = nr_pages; 1037 1038 rb_check_pages(cpu_buffer); 1039 1040 return 0; 1041 } 1042 1043 static struct ring_buffer_per_cpu * 1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1045 { 1046 struct ring_buffer_per_cpu *cpu_buffer; 1047 struct buffer_page *bpage; 1048 struct page *page; 1049 int ret; 1050 1051 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1052 GFP_KERNEL, cpu_to_node(cpu)); 1053 if (!cpu_buffer) 1054 return NULL; 1055 1056 cpu_buffer->cpu = cpu; 1057 cpu_buffer->buffer = buffer; 1058 raw_spin_lock_init(&cpu_buffer->reader_lock); 1059 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1060 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1061 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1062 init_completion(&cpu_buffer->update_done); 1063 1064 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1065 GFP_KERNEL, cpu_to_node(cpu)); 1066 if (!bpage) 1067 goto fail_free_buffer; 1068 1069 rb_check_bpage(cpu_buffer, bpage); 1070 1071 cpu_buffer->reader_page = bpage; 1072 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1073 if (!page) 1074 goto fail_free_reader; 1075 bpage->page = page_address(page); 1076 rb_init_page(bpage->page); 1077 1078 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1079 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1080 1081 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1082 if (ret < 0) 1083 goto fail_free_reader; 1084 1085 cpu_buffer->head_page 1086 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1087 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1088 1089 rb_head_page_activate(cpu_buffer); 1090 1091 return cpu_buffer; 1092 1093 fail_free_reader: 1094 free_buffer_page(cpu_buffer->reader_page); 1095 1096 fail_free_buffer: 1097 kfree(cpu_buffer); 1098 return NULL; 1099 } 1100 1101 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1102 { 1103 struct list_head *head = cpu_buffer->pages; 1104 struct buffer_page *bpage, *tmp; 1105 1106 free_buffer_page(cpu_buffer->reader_page); 1107 1108 rb_head_page_deactivate(cpu_buffer); 1109 1110 if (head) { 1111 list_for_each_entry_safe(bpage, tmp, head, list) { 1112 list_del_init(&bpage->list); 1113 free_buffer_page(bpage); 1114 } 1115 bpage = list_entry(head, struct buffer_page, list); 1116 free_buffer_page(bpage); 1117 } 1118 1119 kfree(cpu_buffer); 1120 } 1121 1122 #ifdef CONFIG_HOTPLUG_CPU 1123 static int rb_cpu_notify(struct notifier_block *self, 1124 unsigned long action, void *hcpu); 1125 #endif 1126 1127 /** 1128 * ring_buffer_alloc - allocate a new ring_buffer 1129 * @size: the size in bytes per cpu that is needed. 1130 * @flags: attributes to set for the ring buffer. 1131 * 1132 * Currently the only flag that is available is the RB_FL_OVERWRITE 1133 * flag. This flag means that the buffer will overwrite old data 1134 * when the buffer wraps. If this flag is not set, the buffer will 1135 * drop data when the tail hits the head. 1136 */ 1137 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1138 struct lock_class_key *key) 1139 { 1140 struct ring_buffer *buffer; 1141 int bsize; 1142 int cpu, nr_pages; 1143 1144 /* keep it in its own cache line */ 1145 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1146 GFP_KERNEL); 1147 if (!buffer) 1148 return NULL; 1149 1150 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1151 goto fail_free_buffer; 1152 1153 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1154 buffer->flags = flags; 1155 buffer->clock = trace_clock_local; 1156 buffer->reader_lock_key = key; 1157 1158 /* need at least two pages */ 1159 if (nr_pages < 2) 1160 nr_pages = 2; 1161 1162 /* 1163 * In case of non-hotplug cpu, if the ring-buffer is allocated 1164 * in early initcall, it will not be notified of secondary cpus. 1165 * In that off case, we need to allocate for all possible cpus. 1166 */ 1167 #ifdef CONFIG_HOTPLUG_CPU 1168 get_online_cpus(); 1169 cpumask_copy(buffer->cpumask, cpu_online_mask); 1170 #else 1171 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1172 #endif 1173 buffer->cpus = nr_cpu_ids; 1174 1175 bsize = sizeof(void *) * nr_cpu_ids; 1176 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1177 GFP_KERNEL); 1178 if (!buffer->buffers) 1179 goto fail_free_cpumask; 1180 1181 for_each_buffer_cpu(buffer, cpu) { 1182 buffer->buffers[cpu] = 1183 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1184 if (!buffer->buffers[cpu]) 1185 goto fail_free_buffers; 1186 } 1187 1188 #ifdef CONFIG_HOTPLUG_CPU 1189 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1190 buffer->cpu_notify.priority = 0; 1191 register_cpu_notifier(&buffer->cpu_notify); 1192 #endif 1193 1194 put_online_cpus(); 1195 mutex_init(&buffer->mutex); 1196 1197 return buffer; 1198 1199 fail_free_buffers: 1200 for_each_buffer_cpu(buffer, cpu) { 1201 if (buffer->buffers[cpu]) 1202 rb_free_cpu_buffer(buffer->buffers[cpu]); 1203 } 1204 kfree(buffer->buffers); 1205 1206 fail_free_cpumask: 1207 free_cpumask_var(buffer->cpumask); 1208 put_online_cpus(); 1209 1210 fail_free_buffer: 1211 kfree(buffer); 1212 return NULL; 1213 } 1214 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1215 1216 /** 1217 * ring_buffer_free - free a ring buffer. 1218 * @buffer: the buffer to free. 1219 */ 1220 void 1221 ring_buffer_free(struct ring_buffer *buffer) 1222 { 1223 int cpu; 1224 1225 get_online_cpus(); 1226 1227 #ifdef CONFIG_HOTPLUG_CPU 1228 unregister_cpu_notifier(&buffer->cpu_notify); 1229 #endif 1230 1231 for_each_buffer_cpu(buffer, cpu) 1232 rb_free_cpu_buffer(buffer->buffers[cpu]); 1233 1234 put_online_cpus(); 1235 1236 kfree(buffer->buffers); 1237 free_cpumask_var(buffer->cpumask); 1238 1239 kfree(buffer); 1240 } 1241 EXPORT_SYMBOL_GPL(ring_buffer_free); 1242 1243 void ring_buffer_set_clock(struct ring_buffer *buffer, 1244 u64 (*clock)(void)) 1245 { 1246 buffer->clock = clock; 1247 } 1248 1249 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1250 1251 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1252 { 1253 return local_read(&bpage->entries) & RB_WRITE_MASK; 1254 } 1255 1256 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1257 { 1258 return local_read(&bpage->write) & RB_WRITE_MASK; 1259 } 1260 1261 static int 1262 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1263 { 1264 struct list_head *tail_page, *to_remove, *next_page; 1265 struct buffer_page *to_remove_page, *tmp_iter_page; 1266 struct buffer_page *last_page, *first_page; 1267 unsigned int nr_removed; 1268 unsigned long head_bit; 1269 int page_entries; 1270 1271 head_bit = 0; 1272 1273 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1274 atomic_inc(&cpu_buffer->record_disabled); 1275 /* 1276 * We don't race with the readers since we have acquired the reader 1277 * lock. We also don't race with writers after disabling recording. 1278 * This makes it easy to figure out the first and the last page to be 1279 * removed from the list. We unlink all the pages in between including 1280 * the first and last pages. This is done in a busy loop so that we 1281 * lose the least number of traces. 1282 * The pages are freed after we restart recording and unlock readers. 1283 */ 1284 tail_page = &cpu_buffer->tail_page->list; 1285 1286 /* 1287 * tail page might be on reader page, we remove the next page 1288 * from the ring buffer 1289 */ 1290 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1291 tail_page = rb_list_head(tail_page->next); 1292 to_remove = tail_page; 1293 1294 /* start of pages to remove */ 1295 first_page = list_entry(rb_list_head(to_remove->next), 1296 struct buffer_page, list); 1297 1298 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1299 to_remove = rb_list_head(to_remove)->next; 1300 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1301 } 1302 1303 next_page = rb_list_head(to_remove)->next; 1304 1305 /* 1306 * Now we remove all pages between tail_page and next_page. 1307 * Make sure that we have head_bit value preserved for the 1308 * next page 1309 */ 1310 tail_page->next = (struct list_head *)((unsigned long)next_page | 1311 head_bit); 1312 next_page = rb_list_head(next_page); 1313 next_page->prev = tail_page; 1314 1315 /* make sure pages points to a valid page in the ring buffer */ 1316 cpu_buffer->pages = next_page; 1317 1318 /* update head page */ 1319 if (head_bit) 1320 cpu_buffer->head_page = list_entry(next_page, 1321 struct buffer_page, list); 1322 1323 /* 1324 * change read pointer to make sure any read iterators reset 1325 * themselves 1326 */ 1327 cpu_buffer->read = 0; 1328 1329 /* pages are removed, resume tracing and then free the pages */ 1330 atomic_dec(&cpu_buffer->record_disabled); 1331 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1332 1333 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1334 1335 /* last buffer page to remove */ 1336 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1337 list); 1338 tmp_iter_page = first_page; 1339 1340 do { 1341 to_remove_page = tmp_iter_page; 1342 rb_inc_page(cpu_buffer, &tmp_iter_page); 1343 1344 /* update the counters */ 1345 page_entries = rb_page_entries(to_remove_page); 1346 if (page_entries) { 1347 /* 1348 * If something was added to this page, it was full 1349 * since it is not the tail page. So we deduct the 1350 * bytes consumed in ring buffer from here. 1351 * Increment overrun to account for the lost events. 1352 */ 1353 local_add(page_entries, &cpu_buffer->overrun); 1354 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1355 } 1356 1357 /* 1358 * We have already removed references to this list item, just 1359 * free up the buffer_page and its page 1360 */ 1361 free_buffer_page(to_remove_page); 1362 nr_removed--; 1363 1364 } while (to_remove_page != last_page); 1365 1366 RB_WARN_ON(cpu_buffer, nr_removed); 1367 1368 return nr_removed == 0; 1369 } 1370 1371 static int 1372 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1373 { 1374 struct list_head *pages = &cpu_buffer->new_pages; 1375 int retries, success; 1376 1377 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1378 /* 1379 * We are holding the reader lock, so the reader page won't be swapped 1380 * in the ring buffer. Now we are racing with the writer trying to 1381 * move head page and the tail page. 1382 * We are going to adapt the reader page update process where: 1383 * 1. We first splice the start and end of list of new pages between 1384 * the head page and its previous page. 1385 * 2. We cmpxchg the prev_page->next to point from head page to the 1386 * start of new pages list. 1387 * 3. Finally, we update the head->prev to the end of new list. 1388 * 1389 * We will try this process 10 times, to make sure that we don't keep 1390 * spinning. 1391 */ 1392 retries = 10; 1393 success = 0; 1394 while (retries--) { 1395 struct list_head *head_page, *prev_page, *r; 1396 struct list_head *last_page, *first_page; 1397 struct list_head *head_page_with_bit; 1398 1399 head_page = &rb_set_head_page(cpu_buffer)->list; 1400 if (!head_page) 1401 break; 1402 prev_page = head_page->prev; 1403 1404 first_page = pages->next; 1405 last_page = pages->prev; 1406 1407 head_page_with_bit = (struct list_head *) 1408 ((unsigned long)head_page | RB_PAGE_HEAD); 1409 1410 last_page->next = head_page_with_bit; 1411 first_page->prev = prev_page; 1412 1413 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1414 1415 if (r == head_page_with_bit) { 1416 /* 1417 * yay, we replaced the page pointer to our new list, 1418 * now, we just have to update to head page's prev 1419 * pointer to point to end of list 1420 */ 1421 head_page->prev = last_page; 1422 success = 1; 1423 break; 1424 } 1425 } 1426 1427 if (success) 1428 INIT_LIST_HEAD(pages); 1429 /* 1430 * If we weren't successful in adding in new pages, warn and stop 1431 * tracing 1432 */ 1433 RB_WARN_ON(cpu_buffer, !success); 1434 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1435 1436 /* free pages if they weren't inserted */ 1437 if (!success) { 1438 struct buffer_page *bpage, *tmp; 1439 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1440 list) { 1441 list_del_init(&bpage->list); 1442 free_buffer_page(bpage); 1443 } 1444 } 1445 return success; 1446 } 1447 1448 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1449 { 1450 int success; 1451 1452 if (cpu_buffer->nr_pages_to_update > 0) 1453 success = rb_insert_pages(cpu_buffer); 1454 else 1455 success = rb_remove_pages(cpu_buffer, 1456 -cpu_buffer->nr_pages_to_update); 1457 1458 if (success) 1459 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1460 } 1461 1462 static void update_pages_handler(struct work_struct *work) 1463 { 1464 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1465 struct ring_buffer_per_cpu, update_pages_work); 1466 rb_update_pages(cpu_buffer); 1467 complete(&cpu_buffer->update_done); 1468 } 1469 1470 /** 1471 * ring_buffer_resize - resize the ring buffer 1472 * @buffer: the buffer to resize. 1473 * @size: the new size. 1474 * 1475 * Minimum size is 2 * BUF_PAGE_SIZE. 1476 * 1477 * Returns 0 on success and < 0 on failure. 1478 */ 1479 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1480 int cpu_id) 1481 { 1482 struct ring_buffer_per_cpu *cpu_buffer; 1483 unsigned nr_pages; 1484 int cpu, err = 0; 1485 1486 /* 1487 * Always succeed at resizing a non-existent buffer: 1488 */ 1489 if (!buffer) 1490 return size; 1491 1492 /* Make sure the requested buffer exists */ 1493 if (cpu_id != RING_BUFFER_ALL_CPUS && 1494 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1495 return size; 1496 1497 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1498 size *= BUF_PAGE_SIZE; 1499 1500 /* we need a minimum of two pages */ 1501 if (size < BUF_PAGE_SIZE * 2) 1502 size = BUF_PAGE_SIZE * 2; 1503 1504 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1505 1506 /* 1507 * Don't succeed if resizing is disabled, as a reader might be 1508 * manipulating the ring buffer and is expecting a sane state while 1509 * this is true. 1510 */ 1511 if (atomic_read(&buffer->resize_disabled)) 1512 return -EBUSY; 1513 1514 /* prevent another thread from changing buffer sizes */ 1515 mutex_lock(&buffer->mutex); 1516 1517 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1518 /* calculate the pages to update */ 1519 for_each_buffer_cpu(buffer, cpu) { 1520 cpu_buffer = buffer->buffers[cpu]; 1521 1522 cpu_buffer->nr_pages_to_update = nr_pages - 1523 cpu_buffer->nr_pages; 1524 /* 1525 * nothing more to do for removing pages or no update 1526 */ 1527 if (cpu_buffer->nr_pages_to_update <= 0) 1528 continue; 1529 /* 1530 * to add pages, make sure all new pages can be 1531 * allocated without receiving ENOMEM 1532 */ 1533 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1534 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1535 &cpu_buffer->new_pages, cpu)) { 1536 /* not enough memory for new pages */ 1537 err = -ENOMEM; 1538 goto out_err; 1539 } 1540 } 1541 1542 get_online_cpus(); 1543 /* 1544 * Fire off all the required work handlers 1545 * We can't schedule on offline CPUs, but it's not necessary 1546 * since we can change their buffer sizes without any race. 1547 */ 1548 for_each_buffer_cpu(buffer, cpu) { 1549 cpu_buffer = buffer->buffers[cpu]; 1550 if (!cpu_buffer->nr_pages_to_update) 1551 continue; 1552 1553 if (cpu_online(cpu)) 1554 schedule_work_on(cpu, 1555 &cpu_buffer->update_pages_work); 1556 else 1557 rb_update_pages(cpu_buffer); 1558 } 1559 1560 /* wait for all the updates to complete */ 1561 for_each_buffer_cpu(buffer, cpu) { 1562 cpu_buffer = buffer->buffers[cpu]; 1563 if (!cpu_buffer->nr_pages_to_update) 1564 continue; 1565 1566 if (cpu_online(cpu)) 1567 wait_for_completion(&cpu_buffer->update_done); 1568 cpu_buffer->nr_pages_to_update = 0; 1569 } 1570 1571 put_online_cpus(); 1572 } else { 1573 /* Make sure this CPU has been intitialized */ 1574 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1575 goto out; 1576 1577 cpu_buffer = buffer->buffers[cpu_id]; 1578 1579 if (nr_pages == cpu_buffer->nr_pages) 1580 goto out; 1581 1582 cpu_buffer->nr_pages_to_update = nr_pages - 1583 cpu_buffer->nr_pages; 1584 1585 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1586 if (cpu_buffer->nr_pages_to_update > 0 && 1587 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1588 &cpu_buffer->new_pages, cpu_id)) { 1589 err = -ENOMEM; 1590 goto out_err; 1591 } 1592 1593 get_online_cpus(); 1594 1595 if (cpu_online(cpu_id)) { 1596 schedule_work_on(cpu_id, 1597 &cpu_buffer->update_pages_work); 1598 wait_for_completion(&cpu_buffer->update_done); 1599 } else 1600 rb_update_pages(cpu_buffer); 1601 1602 cpu_buffer->nr_pages_to_update = 0; 1603 put_online_cpus(); 1604 } 1605 1606 out: 1607 /* 1608 * The ring buffer resize can happen with the ring buffer 1609 * enabled, so that the update disturbs the tracing as little 1610 * as possible. But if the buffer is disabled, we do not need 1611 * to worry about that, and we can take the time to verify 1612 * that the buffer is not corrupt. 1613 */ 1614 if (atomic_read(&buffer->record_disabled)) { 1615 atomic_inc(&buffer->record_disabled); 1616 /* 1617 * Even though the buffer was disabled, we must make sure 1618 * that it is truly disabled before calling rb_check_pages. 1619 * There could have been a race between checking 1620 * record_disable and incrementing it. 1621 */ 1622 synchronize_sched(); 1623 for_each_buffer_cpu(buffer, cpu) { 1624 cpu_buffer = buffer->buffers[cpu]; 1625 rb_check_pages(cpu_buffer); 1626 } 1627 atomic_dec(&buffer->record_disabled); 1628 } 1629 1630 mutex_unlock(&buffer->mutex); 1631 return size; 1632 1633 out_err: 1634 for_each_buffer_cpu(buffer, cpu) { 1635 struct buffer_page *bpage, *tmp; 1636 1637 cpu_buffer = buffer->buffers[cpu]; 1638 cpu_buffer->nr_pages_to_update = 0; 1639 1640 if (list_empty(&cpu_buffer->new_pages)) 1641 continue; 1642 1643 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1644 list) { 1645 list_del_init(&bpage->list); 1646 free_buffer_page(bpage); 1647 } 1648 } 1649 mutex_unlock(&buffer->mutex); 1650 return err; 1651 } 1652 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1653 1654 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1655 { 1656 mutex_lock(&buffer->mutex); 1657 if (val) 1658 buffer->flags |= RB_FL_OVERWRITE; 1659 else 1660 buffer->flags &= ~RB_FL_OVERWRITE; 1661 mutex_unlock(&buffer->mutex); 1662 } 1663 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1664 1665 static inline void * 1666 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1667 { 1668 return bpage->data + index; 1669 } 1670 1671 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1672 { 1673 return bpage->page->data + index; 1674 } 1675 1676 static inline struct ring_buffer_event * 1677 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1678 { 1679 return __rb_page_index(cpu_buffer->reader_page, 1680 cpu_buffer->reader_page->read); 1681 } 1682 1683 static inline struct ring_buffer_event * 1684 rb_iter_head_event(struct ring_buffer_iter *iter) 1685 { 1686 return __rb_page_index(iter->head_page, iter->head); 1687 } 1688 1689 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1690 { 1691 return local_read(&bpage->page->commit); 1692 } 1693 1694 /* Size is determined by what has been committed */ 1695 static inline unsigned rb_page_size(struct buffer_page *bpage) 1696 { 1697 return rb_page_commit(bpage); 1698 } 1699 1700 static inline unsigned 1701 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1702 { 1703 return rb_page_commit(cpu_buffer->commit_page); 1704 } 1705 1706 static inline unsigned 1707 rb_event_index(struct ring_buffer_event *event) 1708 { 1709 unsigned long addr = (unsigned long)event; 1710 1711 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1712 } 1713 1714 static inline int 1715 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1716 struct ring_buffer_event *event) 1717 { 1718 unsigned long addr = (unsigned long)event; 1719 unsigned long index; 1720 1721 index = rb_event_index(event); 1722 addr &= PAGE_MASK; 1723 1724 return cpu_buffer->commit_page->page == (void *)addr && 1725 rb_commit_index(cpu_buffer) == index; 1726 } 1727 1728 static void 1729 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1730 { 1731 unsigned long max_count; 1732 1733 /* 1734 * We only race with interrupts and NMIs on this CPU. 1735 * If we own the commit event, then we can commit 1736 * all others that interrupted us, since the interruptions 1737 * are in stack format (they finish before they come 1738 * back to us). This allows us to do a simple loop to 1739 * assign the commit to the tail. 1740 */ 1741 again: 1742 max_count = cpu_buffer->nr_pages * 100; 1743 1744 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1745 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1746 return; 1747 if (RB_WARN_ON(cpu_buffer, 1748 rb_is_reader_page(cpu_buffer->tail_page))) 1749 return; 1750 local_set(&cpu_buffer->commit_page->page->commit, 1751 rb_page_write(cpu_buffer->commit_page)); 1752 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1753 cpu_buffer->write_stamp = 1754 cpu_buffer->commit_page->page->time_stamp; 1755 /* add barrier to keep gcc from optimizing too much */ 1756 barrier(); 1757 } 1758 while (rb_commit_index(cpu_buffer) != 1759 rb_page_write(cpu_buffer->commit_page)) { 1760 1761 local_set(&cpu_buffer->commit_page->page->commit, 1762 rb_page_write(cpu_buffer->commit_page)); 1763 RB_WARN_ON(cpu_buffer, 1764 local_read(&cpu_buffer->commit_page->page->commit) & 1765 ~RB_WRITE_MASK); 1766 barrier(); 1767 } 1768 1769 /* again, keep gcc from optimizing */ 1770 barrier(); 1771 1772 /* 1773 * If an interrupt came in just after the first while loop 1774 * and pushed the tail page forward, we will be left with 1775 * a dangling commit that will never go forward. 1776 */ 1777 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1778 goto again; 1779 } 1780 1781 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1782 { 1783 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1784 cpu_buffer->reader_page->read = 0; 1785 } 1786 1787 static void rb_inc_iter(struct ring_buffer_iter *iter) 1788 { 1789 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1790 1791 /* 1792 * The iterator could be on the reader page (it starts there). 1793 * But the head could have moved, since the reader was 1794 * found. Check for this case and assign the iterator 1795 * to the head page instead of next. 1796 */ 1797 if (iter->head_page == cpu_buffer->reader_page) 1798 iter->head_page = rb_set_head_page(cpu_buffer); 1799 else 1800 rb_inc_page(cpu_buffer, &iter->head_page); 1801 1802 iter->read_stamp = iter->head_page->page->time_stamp; 1803 iter->head = 0; 1804 } 1805 1806 /* Slow path, do not inline */ 1807 static noinline struct ring_buffer_event * 1808 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1809 { 1810 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1811 1812 /* Not the first event on the page? */ 1813 if (rb_event_index(event)) { 1814 event->time_delta = delta & TS_MASK; 1815 event->array[0] = delta >> TS_SHIFT; 1816 } else { 1817 /* nope, just zero it */ 1818 event->time_delta = 0; 1819 event->array[0] = 0; 1820 } 1821 1822 return skip_time_extend(event); 1823 } 1824 1825 /** 1826 * rb_update_event - update event type and data 1827 * @event: the even to update 1828 * @type: the type of event 1829 * @length: the size of the event field in the ring buffer 1830 * 1831 * Update the type and data fields of the event. The length 1832 * is the actual size that is written to the ring buffer, 1833 * and with this, we can determine what to place into the 1834 * data field. 1835 */ 1836 static void 1837 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1838 struct ring_buffer_event *event, unsigned length, 1839 int add_timestamp, u64 delta) 1840 { 1841 /* Only a commit updates the timestamp */ 1842 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1843 delta = 0; 1844 1845 /* 1846 * If we need to add a timestamp, then we 1847 * add it to the start of the resevered space. 1848 */ 1849 if (unlikely(add_timestamp)) { 1850 event = rb_add_time_stamp(event, delta); 1851 length -= RB_LEN_TIME_EXTEND; 1852 delta = 0; 1853 } 1854 1855 event->time_delta = delta; 1856 length -= RB_EVNT_HDR_SIZE; 1857 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 1858 event->type_len = 0; 1859 event->array[0] = length; 1860 } else 1861 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1862 } 1863 1864 /* 1865 * rb_handle_head_page - writer hit the head page 1866 * 1867 * Returns: +1 to retry page 1868 * 0 to continue 1869 * -1 on error 1870 */ 1871 static int 1872 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1873 struct buffer_page *tail_page, 1874 struct buffer_page *next_page) 1875 { 1876 struct buffer_page *new_head; 1877 int entries; 1878 int type; 1879 int ret; 1880 1881 entries = rb_page_entries(next_page); 1882 1883 /* 1884 * The hard part is here. We need to move the head 1885 * forward, and protect against both readers on 1886 * other CPUs and writers coming in via interrupts. 1887 */ 1888 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1889 RB_PAGE_HEAD); 1890 1891 /* 1892 * type can be one of four: 1893 * NORMAL - an interrupt already moved it for us 1894 * HEAD - we are the first to get here. 1895 * UPDATE - we are the interrupt interrupting 1896 * a current move. 1897 * MOVED - a reader on another CPU moved the next 1898 * pointer to its reader page. Give up 1899 * and try again. 1900 */ 1901 1902 switch (type) { 1903 case RB_PAGE_HEAD: 1904 /* 1905 * We changed the head to UPDATE, thus 1906 * it is our responsibility to update 1907 * the counters. 1908 */ 1909 local_add(entries, &cpu_buffer->overrun); 1910 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1911 1912 /* 1913 * The entries will be zeroed out when we move the 1914 * tail page. 1915 */ 1916 1917 /* still more to do */ 1918 break; 1919 1920 case RB_PAGE_UPDATE: 1921 /* 1922 * This is an interrupt that interrupt the 1923 * previous update. Still more to do. 1924 */ 1925 break; 1926 case RB_PAGE_NORMAL: 1927 /* 1928 * An interrupt came in before the update 1929 * and processed this for us. 1930 * Nothing left to do. 1931 */ 1932 return 1; 1933 case RB_PAGE_MOVED: 1934 /* 1935 * The reader is on another CPU and just did 1936 * a swap with our next_page. 1937 * Try again. 1938 */ 1939 return 1; 1940 default: 1941 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1942 return -1; 1943 } 1944 1945 /* 1946 * Now that we are here, the old head pointer is 1947 * set to UPDATE. This will keep the reader from 1948 * swapping the head page with the reader page. 1949 * The reader (on another CPU) will spin till 1950 * we are finished. 1951 * 1952 * We just need to protect against interrupts 1953 * doing the job. We will set the next pointer 1954 * to HEAD. After that, we set the old pointer 1955 * to NORMAL, but only if it was HEAD before. 1956 * otherwise we are an interrupt, and only 1957 * want the outer most commit to reset it. 1958 */ 1959 new_head = next_page; 1960 rb_inc_page(cpu_buffer, &new_head); 1961 1962 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1963 RB_PAGE_NORMAL); 1964 1965 /* 1966 * Valid returns are: 1967 * HEAD - an interrupt came in and already set it. 1968 * NORMAL - One of two things: 1969 * 1) We really set it. 1970 * 2) A bunch of interrupts came in and moved 1971 * the page forward again. 1972 */ 1973 switch (ret) { 1974 case RB_PAGE_HEAD: 1975 case RB_PAGE_NORMAL: 1976 /* OK */ 1977 break; 1978 default: 1979 RB_WARN_ON(cpu_buffer, 1); 1980 return -1; 1981 } 1982 1983 /* 1984 * It is possible that an interrupt came in, 1985 * set the head up, then more interrupts came in 1986 * and moved it again. When we get back here, 1987 * the page would have been set to NORMAL but we 1988 * just set it back to HEAD. 1989 * 1990 * How do you detect this? Well, if that happened 1991 * the tail page would have moved. 1992 */ 1993 if (ret == RB_PAGE_NORMAL) { 1994 /* 1995 * If the tail had moved passed next, then we need 1996 * to reset the pointer. 1997 */ 1998 if (cpu_buffer->tail_page != tail_page && 1999 cpu_buffer->tail_page != next_page) 2000 rb_head_page_set_normal(cpu_buffer, new_head, 2001 next_page, 2002 RB_PAGE_HEAD); 2003 } 2004 2005 /* 2006 * If this was the outer most commit (the one that 2007 * changed the original pointer from HEAD to UPDATE), 2008 * then it is up to us to reset it to NORMAL. 2009 */ 2010 if (type == RB_PAGE_HEAD) { 2011 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2012 tail_page, 2013 RB_PAGE_UPDATE); 2014 if (RB_WARN_ON(cpu_buffer, 2015 ret != RB_PAGE_UPDATE)) 2016 return -1; 2017 } 2018 2019 return 0; 2020 } 2021 2022 static unsigned rb_calculate_event_length(unsigned length) 2023 { 2024 struct ring_buffer_event event; /* Used only for sizeof array */ 2025 2026 /* zero length can cause confusions */ 2027 if (!length) 2028 length = 1; 2029 2030 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2031 length += sizeof(event.array[0]); 2032 2033 length += RB_EVNT_HDR_SIZE; 2034 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2035 2036 return length; 2037 } 2038 2039 static inline void 2040 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2041 struct buffer_page *tail_page, 2042 unsigned long tail, unsigned long length) 2043 { 2044 struct ring_buffer_event *event; 2045 2046 /* 2047 * Only the event that crossed the page boundary 2048 * must fill the old tail_page with padding. 2049 */ 2050 if (tail >= BUF_PAGE_SIZE) { 2051 /* 2052 * If the page was filled, then we still need 2053 * to update the real_end. Reset it to zero 2054 * and the reader will ignore it. 2055 */ 2056 if (tail == BUF_PAGE_SIZE) 2057 tail_page->real_end = 0; 2058 2059 local_sub(length, &tail_page->write); 2060 return; 2061 } 2062 2063 event = __rb_page_index(tail_page, tail); 2064 kmemcheck_annotate_bitfield(event, bitfield); 2065 2066 /* account for padding bytes */ 2067 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2068 2069 /* 2070 * Save the original length to the meta data. 2071 * This will be used by the reader to add lost event 2072 * counter. 2073 */ 2074 tail_page->real_end = tail; 2075 2076 /* 2077 * If this event is bigger than the minimum size, then 2078 * we need to be careful that we don't subtract the 2079 * write counter enough to allow another writer to slip 2080 * in on this page. 2081 * We put in a discarded commit instead, to make sure 2082 * that this space is not used again. 2083 * 2084 * If we are less than the minimum size, we don't need to 2085 * worry about it. 2086 */ 2087 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2088 /* No room for any events */ 2089 2090 /* Mark the rest of the page with padding */ 2091 rb_event_set_padding(event); 2092 2093 /* Set the write back to the previous setting */ 2094 local_sub(length, &tail_page->write); 2095 return; 2096 } 2097 2098 /* Put in a discarded event */ 2099 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2100 event->type_len = RINGBUF_TYPE_PADDING; 2101 /* time delta must be non zero */ 2102 event->time_delta = 1; 2103 2104 /* Set write to end of buffer */ 2105 length = (tail + length) - BUF_PAGE_SIZE; 2106 local_sub(length, &tail_page->write); 2107 } 2108 2109 /* 2110 * This is the slow path, force gcc not to inline it. 2111 */ 2112 static noinline struct ring_buffer_event * 2113 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2114 unsigned long length, unsigned long tail, 2115 struct buffer_page *tail_page, u64 ts) 2116 { 2117 struct buffer_page *commit_page = cpu_buffer->commit_page; 2118 struct ring_buffer *buffer = cpu_buffer->buffer; 2119 struct buffer_page *next_page; 2120 int ret; 2121 2122 next_page = tail_page; 2123 2124 rb_inc_page(cpu_buffer, &next_page); 2125 2126 /* 2127 * If for some reason, we had an interrupt storm that made 2128 * it all the way around the buffer, bail, and warn 2129 * about it. 2130 */ 2131 if (unlikely(next_page == commit_page)) { 2132 local_inc(&cpu_buffer->commit_overrun); 2133 goto out_reset; 2134 } 2135 2136 /* 2137 * This is where the fun begins! 2138 * 2139 * We are fighting against races between a reader that 2140 * could be on another CPU trying to swap its reader 2141 * page with the buffer head. 2142 * 2143 * We are also fighting against interrupts coming in and 2144 * moving the head or tail on us as well. 2145 * 2146 * If the next page is the head page then we have filled 2147 * the buffer, unless the commit page is still on the 2148 * reader page. 2149 */ 2150 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2151 2152 /* 2153 * If the commit is not on the reader page, then 2154 * move the header page. 2155 */ 2156 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2157 /* 2158 * If we are not in overwrite mode, 2159 * this is easy, just stop here. 2160 */ 2161 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2162 local_inc(&cpu_buffer->dropped_events); 2163 goto out_reset; 2164 } 2165 2166 ret = rb_handle_head_page(cpu_buffer, 2167 tail_page, 2168 next_page); 2169 if (ret < 0) 2170 goto out_reset; 2171 if (ret) 2172 goto out_again; 2173 } else { 2174 /* 2175 * We need to be careful here too. The 2176 * commit page could still be on the reader 2177 * page. We could have a small buffer, and 2178 * have filled up the buffer with events 2179 * from interrupts and such, and wrapped. 2180 * 2181 * Note, if the tail page is also the on the 2182 * reader_page, we let it move out. 2183 */ 2184 if (unlikely((cpu_buffer->commit_page != 2185 cpu_buffer->tail_page) && 2186 (cpu_buffer->commit_page == 2187 cpu_buffer->reader_page))) { 2188 local_inc(&cpu_buffer->commit_overrun); 2189 goto out_reset; 2190 } 2191 } 2192 } 2193 2194 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2195 if (ret) { 2196 /* 2197 * Nested commits always have zero deltas, so 2198 * just reread the time stamp 2199 */ 2200 ts = rb_time_stamp(buffer); 2201 next_page->page->time_stamp = ts; 2202 } 2203 2204 out_again: 2205 2206 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2207 2208 /* fail and let the caller try again */ 2209 return ERR_PTR(-EAGAIN); 2210 2211 out_reset: 2212 /* reset write */ 2213 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2214 2215 return NULL; 2216 } 2217 2218 static struct ring_buffer_event * 2219 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2220 unsigned long length, u64 ts, 2221 u64 delta, int add_timestamp) 2222 { 2223 struct buffer_page *tail_page; 2224 struct ring_buffer_event *event; 2225 unsigned long tail, write; 2226 2227 /* 2228 * If the time delta since the last event is too big to 2229 * hold in the time field of the event, then we append a 2230 * TIME EXTEND event ahead of the data event. 2231 */ 2232 if (unlikely(add_timestamp)) 2233 length += RB_LEN_TIME_EXTEND; 2234 2235 tail_page = cpu_buffer->tail_page; 2236 write = local_add_return(length, &tail_page->write); 2237 2238 /* set write to only the index of the write */ 2239 write &= RB_WRITE_MASK; 2240 tail = write - length; 2241 2242 /* See if we shot pass the end of this buffer page */ 2243 if (unlikely(write > BUF_PAGE_SIZE)) 2244 return rb_move_tail(cpu_buffer, length, tail, 2245 tail_page, ts); 2246 2247 /* We reserved something on the buffer */ 2248 2249 event = __rb_page_index(tail_page, tail); 2250 kmemcheck_annotate_bitfield(event, bitfield); 2251 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2252 2253 local_inc(&tail_page->entries); 2254 2255 /* 2256 * If this is the first commit on the page, then update 2257 * its timestamp. 2258 */ 2259 if (!tail) 2260 tail_page->page->time_stamp = ts; 2261 2262 /* account for these added bytes */ 2263 local_add(length, &cpu_buffer->entries_bytes); 2264 2265 return event; 2266 } 2267 2268 static inline int 2269 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2270 struct ring_buffer_event *event) 2271 { 2272 unsigned long new_index, old_index; 2273 struct buffer_page *bpage; 2274 unsigned long index; 2275 unsigned long addr; 2276 2277 new_index = rb_event_index(event); 2278 old_index = new_index + rb_event_ts_length(event); 2279 addr = (unsigned long)event; 2280 addr &= PAGE_MASK; 2281 2282 bpage = cpu_buffer->tail_page; 2283 2284 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2285 unsigned long write_mask = 2286 local_read(&bpage->write) & ~RB_WRITE_MASK; 2287 unsigned long event_length = rb_event_length(event); 2288 /* 2289 * This is on the tail page. It is possible that 2290 * a write could come in and move the tail page 2291 * and write to the next page. That is fine 2292 * because we just shorten what is on this page. 2293 */ 2294 old_index += write_mask; 2295 new_index += write_mask; 2296 index = local_cmpxchg(&bpage->write, old_index, new_index); 2297 if (index == old_index) { 2298 /* update counters */ 2299 local_sub(event_length, &cpu_buffer->entries_bytes); 2300 return 1; 2301 } 2302 } 2303 2304 /* could not discard */ 2305 return 0; 2306 } 2307 2308 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2309 { 2310 local_inc(&cpu_buffer->committing); 2311 local_inc(&cpu_buffer->commits); 2312 } 2313 2314 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2315 { 2316 unsigned long commits; 2317 2318 if (RB_WARN_ON(cpu_buffer, 2319 !local_read(&cpu_buffer->committing))) 2320 return; 2321 2322 again: 2323 commits = local_read(&cpu_buffer->commits); 2324 /* synchronize with interrupts */ 2325 barrier(); 2326 if (local_read(&cpu_buffer->committing) == 1) 2327 rb_set_commit_to_write(cpu_buffer); 2328 2329 local_dec(&cpu_buffer->committing); 2330 2331 /* synchronize with interrupts */ 2332 barrier(); 2333 2334 /* 2335 * Need to account for interrupts coming in between the 2336 * updating of the commit page and the clearing of the 2337 * committing counter. 2338 */ 2339 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2340 !local_read(&cpu_buffer->committing)) { 2341 local_inc(&cpu_buffer->committing); 2342 goto again; 2343 } 2344 } 2345 2346 static struct ring_buffer_event * 2347 rb_reserve_next_event(struct ring_buffer *buffer, 2348 struct ring_buffer_per_cpu *cpu_buffer, 2349 unsigned long length) 2350 { 2351 struct ring_buffer_event *event; 2352 u64 ts, delta; 2353 int nr_loops = 0; 2354 int add_timestamp; 2355 u64 diff; 2356 2357 rb_start_commit(cpu_buffer); 2358 2359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2360 /* 2361 * Due to the ability to swap a cpu buffer from a buffer 2362 * it is possible it was swapped before we committed. 2363 * (committing stops a swap). We check for it here and 2364 * if it happened, we have to fail the write. 2365 */ 2366 barrier(); 2367 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2368 local_dec(&cpu_buffer->committing); 2369 local_dec(&cpu_buffer->commits); 2370 return NULL; 2371 } 2372 #endif 2373 2374 length = rb_calculate_event_length(length); 2375 again: 2376 add_timestamp = 0; 2377 delta = 0; 2378 2379 /* 2380 * We allow for interrupts to reenter here and do a trace. 2381 * If one does, it will cause this original code to loop 2382 * back here. Even with heavy interrupts happening, this 2383 * should only happen a few times in a row. If this happens 2384 * 1000 times in a row, there must be either an interrupt 2385 * storm or we have something buggy. 2386 * Bail! 2387 */ 2388 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2389 goto out_fail; 2390 2391 ts = rb_time_stamp(cpu_buffer->buffer); 2392 diff = ts - cpu_buffer->write_stamp; 2393 2394 /* make sure this diff is calculated here */ 2395 barrier(); 2396 2397 /* Did the write stamp get updated already? */ 2398 if (likely(ts >= cpu_buffer->write_stamp)) { 2399 delta = diff; 2400 if (unlikely(test_time_stamp(delta))) { 2401 int local_clock_stable = 1; 2402 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2403 local_clock_stable = sched_clock_stable; 2404 #endif 2405 WARN_ONCE(delta > (1ULL << 59), 2406 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2407 (unsigned long long)delta, 2408 (unsigned long long)ts, 2409 (unsigned long long)cpu_buffer->write_stamp, 2410 local_clock_stable ? "" : 2411 "If you just came from a suspend/resume,\n" 2412 "please switch to the trace global clock:\n" 2413 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2414 add_timestamp = 1; 2415 } 2416 } 2417 2418 event = __rb_reserve_next(cpu_buffer, length, ts, 2419 delta, add_timestamp); 2420 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2421 goto again; 2422 2423 if (!event) 2424 goto out_fail; 2425 2426 return event; 2427 2428 out_fail: 2429 rb_end_commit(cpu_buffer); 2430 return NULL; 2431 } 2432 2433 #ifdef CONFIG_TRACING 2434 2435 #define TRACE_RECURSIVE_DEPTH 16 2436 2437 /* Keep this code out of the fast path cache */ 2438 static noinline void trace_recursive_fail(void) 2439 { 2440 /* Disable all tracing before we do anything else */ 2441 tracing_off_permanent(); 2442 2443 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2444 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2445 trace_recursion_buffer(), 2446 hardirq_count() >> HARDIRQ_SHIFT, 2447 softirq_count() >> SOFTIRQ_SHIFT, 2448 in_nmi()); 2449 2450 WARN_ON_ONCE(1); 2451 } 2452 2453 static inline int trace_recursive_lock(void) 2454 { 2455 trace_recursion_inc(); 2456 2457 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH)) 2458 return 0; 2459 2460 trace_recursive_fail(); 2461 2462 return -1; 2463 } 2464 2465 static inline void trace_recursive_unlock(void) 2466 { 2467 WARN_ON_ONCE(!trace_recursion_buffer()); 2468 2469 trace_recursion_dec(); 2470 } 2471 2472 #else 2473 2474 #define trace_recursive_lock() (0) 2475 #define trace_recursive_unlock() do { } while (0) 2476 2477 #endif 2478 2479 /** 2480 * ring_buffer_lock_reserve - reserve a part of the buffer 2481 * @buffer: the ring buffer to reserve from 2482 * @length: the length of the data to reserve (excluding event header) 2483 * 2484 * Returns a reseverd event on the ring buffer to copy directly to. 2485 * The user of this interface will need to get the body to write into 2486 * and can use the ring_buffer_event_data() interface. 2487 * 2488 * The length is the length of the data needed, not the event length 2489 * which also includes the event header. 2490 * 2491 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2492 * If NULL is returned, then nothing has been allocated or locked. 2493 */ 2494 struct ring_buffer_event * 2495 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2496 { 2497 struct ring_buffer_per_cpu *cpu_buffer; 2498 struct ring_buffer_event *event; 2499 int cpu; 2500 2501 if (ring_buffer_flags != RB_BUFFERS_ON) 2502 return NULL; 2503 2504 /* If we are tracing schedule, we don't want to recurse */ 2505 preempt_disable_notrace(); 2506 2507 if (atomic_read(&buffer->record_disabled)) 2508 goto out_nocheck; 2509 2510 if (trace_recursive_lock()) 2511 goto out_nocheck; 2512 2513 cpu = raw_smp_processor_id(); 2514 2515 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2516 goto out; 2517 2518 cpu_buffer = buffer->buffers[cpu]; 2519 2520 if (atomic_read(&cpu_buffer->record_disabled)) 2521 goto out; 2522 2523 if (length > BUF_MAX_DATA_SIZE) 2524 goto out; 2525 2526 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2527 if (!event) 2528 goto out; 2529 2530 return event; 2531 2532 out: 2533 trace_recursive_unlock(); 2534 2535 out_nocheck: 2536 preempt_enable_notrace(); 2537 return NULL; 2538 } 2539 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2540 2541 static void 2542 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2543 struct ring_buffer_event *event) 2544 { 2545 u64 delta; 2546 2547 /* 2548 * The event first in the commit queue updates the 2549 * time stamp. 2550 */ 2551 if (rb_event_is_commit(cpu_buffer, event)) { 2552 /* 2553 * A commit event that is first on a page 2554 * updates the write timestamp with the page stamp 2555 */ 2556 if (!rb_event_index(event)) 2557 cpu_buffer->write_stamp = 2558 cpu_buffer->commit_page->page->time_stamp; 2559 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2560 delta = event->array[0]; 2561 delta <<= TS_SHIFT; 2562 delta += event->time_delta; 2563 cpu_buffer->write_stamp += delta; 2564 } else 2565 cpu_buffer->write_stamp += event->time_delta; 2566 } 2567 } 2568 2569 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2570 struct ring_buffer_event *event) 2571 { 2572 local_inc(&cpu_buffer->entries); 2573 rb_update_write_stamp(cpu_buffer, event); 2574 rb_end_commit(cpu_buffer); 2575 } 2576 2577 /** 2578 * ring_buffer_unlock_commit - commit a reserved 2579 * @buffer: The buffer to commit to 2580 * @event: The event pointer to commit. 2581 * 2582 * This commits the data to the ring buffer, and releases any locks held. 2583 * 2584 * Must be paired with ring_buffer_lock_reserve. 2585 */ 2586 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2587 struct ring_buffer_event *event) 2588 { 2589 struct ring_buffer_per_cpu *cpu_buffer; 2590 int cpu = raw_smp_processor_id(); 2591 2592 cpu_buffer = buffer->buffers[cpu]; 2593 2594 rb_commit(cpu_buffer, event); 2595 2596 trace_recursive_unlock(); 2597 2598 preempt_enable_notrace(); 2599 2600 return 0; 2601 } 2602 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2603 2604 static inline void rb_event_discard(struct ring_buffer_event *event) 2605 { 2606 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2607 event = skip_time_extend(event); 2608 2609 /* array[0] holds the actual length for the discarded event */ 2610 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2611 event->type_len = RINGBUF_TYPE_PADDING; 2612 /* time delta must be non zero */ 2613 if (!event->time_delta) 2614 event->time_delta = 1; 2615 } 2616 2617 /* 2618 * Decrement the entries to the page that an event is on. 2619 * The event does not even need to exist, only the pointer 2620 * to the page it is on. This may only be called before the commit 2621 * takes place. 2622 */ 2623 static inline void 2624 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2625 struct ring_buffer_event *event) 2626 { 2627 unsigned long addr = (unsigned long)event; 2628 struct buffer_page *bpage = cpu_buffer->commit_page; 2629 struct buffer_page *start; 2630 2631 addr &= PAGE_MASK; 2632 2633 /* Do the likely case first */ 2634 if (likely(bpage->page == (void *)addr)) { 2635 local_dec(&bpage->entries); 2636 return; 2637 } 2638 2639 /* 2640 * Because the commit page may be on the reader page we 2641 * start with the next page and check the end loop there. 2642 */ 2643 rb_inc_page(cpu_buffer, &bpage); 2644 start = bpage; 2645 do { 2646 if (bpage->page == (void *)addr) { 2647 local_dec(&bpage->entries); 2648 return; 2649 } 2650 rb_inc_page(cpu_buffer, &bpage); 2651 } while (bpage != start); 2652 2653 /* commit not part of this buffer?? */ 2654 RB_WARN_ON(cpu_buffer, 1); 2655 } 2656 2657 /** 2658 * ring_buffer_commit_discard - discard an event that has not been committed 2659 * @buffer: the ring buffer 2660 * @event: non committed event to discard 2661 * 2662 * Sometimes an event that is in the ring buffer needs to be ignored. 2663 * This function lets the user discard an event in the ring buffer 2664 * and then that event will not be read later. 2665 * 2666 * This function only works if it is called before the the item has been 2667 * committed. It will try to free the event from the ring buffer 2668 * if another event has not been added behind it. 2669 * 2670 * If another event has been added behind it, it will set the event 2671 * up as discarded, and perform the commit. 2672 * 2673 * If this function is called, do not call ring_buffer_unlock_commit on 2674 * the event. 2675 */ 2676 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2677 struct ring_buffer_event *event) 2678 { 2679 struct ring_buffer_per_cpu *cpu_buffer; 2680 int cpu; 2681 2682 /* The event is discarded regardless */ 2683 rb_event_discard(event); 2684 2685 cpu = smp_processor_id(); 2686 cpu_buffer = buffer->buffers[cpu]; 2687 2688 /* 2689 * This must only be called if the event has not been 2690 * committed yet. Thus we can assume that preemption 2691 * is still disabled. 2692 */ 2693 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2694 2695 rb_decrement_entry(cpu_buffer, event); 2696 if (rb_try_to_discard(cpu_buffer, event)) 2697 goto out; 2698 2699 /* 2700 * The commit is still visible by the reader, so we 2701 * must still update the timestamp. 2702 */ 2703 rb_update_write_stamp(cpu_buffer, event); 2704 out: 2705 rb_end_commit(cpu_buffer); 2706 2707 trace_recursive_unlock(); 2708 2709 preempt_enable_notrace(); 2710 2711 } 2712 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2713 2714 /** 2715 * ring_buffer_write - write data to the buffer without reserving 2716 * @buffer: The ring buffer to write to. 2717 * @length: The length of the data being written (excluding the event header) 2718 * @data: The data to write to the buffer. 2719 * 2720 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2721 * one function. If you already have the data to write to the buffer, it 2722 * may be easier to simply call this function. 2723 * 2724 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2725 * and not the length of the event which would hold the header. 2726 */ 2727 int ring_buffer_write(struct ring_buffer *buffer, 2728 unsigned long length, 2729 void *data) 2730 { 2731 struct ring_buffer_per_cpu *cpu_buffer; 2732 struct ring_buffer_event *event; 2733 void *body; 2734 int ret = -EBUSY; 2735 int cpu; 2736 2737 if (ring_buffer_flags != RB_BUFFERS_ON) 2738 return -EBUSY; 2739 2740 preempt_disable_notrace(); 2741 2742 if (atomic_read(&buffer->record_disabled)) 2743 goto out; 2744 2745 cpu = raw_smp_processor_id(); 2746 2747 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2748 goto out; 2749 2750 cpu_buffer = buffer->buffers[cpu]; 2751 2752 if (atomic_read(&cpu_buffer->record_disabled)) 2753 goto out; 2754 2755 if (length > BUF_MAX_DATA_SIZE) 2756 goto out; 2757 2758 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2759 if (!event) 2760 goto out; 2761 2762 body = rb_event_data(event); 2763 2764 memcpy(body, data, length); 2765 2766 rb_commit(cpu_buffer, event); 2767 2768 ret = 0; 2769 out: 2770 preempt_enable_notrace(); 2771 2772 return ret; 2773 } 2774 EXPORT_SYMBOL_GPL(ring_buffer_write); 2775 2776 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2777 { 2778 struct buffer_page *reader = cpu_buffer->reader_page; 2779 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2780 struct buffer_page *commit = cpu_buffer->commit_page; 2781 2782 /* In case of error, head will be NULL */ 2783 if (unlikely(!head)) 2784 return 1; 2785 2786 return reader->read == rb_page_commit(reader) && 2787 (commit == reader || 2788 (commit == head && 2789 head->read == rb_page_commit(commit))); 2790 } 2791 2792 /** 2793 * ring_buffer_record_disable - stop all writes into the buffer 2794 * @buffer: The ring buffer to stop writes to. 2795 * 2796 * This prevents all writes to the buffer. Any attempt to write 2797 * to the buffer after this will fail and return NULL. 2798 * 2799 * The caller should call synchronize_sched() after this. 2800 */ 2801 void ring_buffer_record_disable(struct ring_buffer *buffer) 2802 { 2803 atomic_inc(&buffer->record_disabled); 2804 } 2805 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2806 2807 /** 2808 * ring_buffer_record_enable - enable writes to the buffer 2809 * @buffer: The ring buffer to enable writes 2810 * 2811 * Note, multiple disables will need the same number of enables 2812 * to truly enable the writing (much like preempt_disable). 2813 */ 2814 void ring_buffer_record_enable(struct ring_buffer *buffer) 2815 { 2816 atomic_dec(&buffer->record_disabled); 2817 } 2818 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2819 2820 /** 2821 * ring_buffer_record_off - stop all writes into the buffer 2822 * @buffer: The ring buffer to stop writes to. 2823 * 2824 * This prevents all writes to the buffer. Any attempt to write 2825 * to the buffer after this will fail and return NULL. 2826 * 2827 * This is different than ring_buffer_record_disable() as 2828 * it works like an on/off switch, where as the disable() version 2829 * must be paired with a enable(). 2830 */ 2831 void ring_buffer_record_off(struct ring_buffer *buffer) 2832 { 2833 unsigned int rd; 2834 unsigned int new_rd; 2835 2836 do { 2837 rd = atomic_read(&buffer->record_disabled); 2838 new_rd = rd | RB_BUFFER_OFF; 2839 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2840 } 2841 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 2842 2843 /** 2844 * ring_buffer_record_on - restart writes into the buffer 2845 * @buffer: The ring buffer to start writes to. 2846 * 2847 * This enables all writes to the buffer that was disabled by 2848 * ring_buffer_record_off(). 2849 * 2850 * This is different than ring_buffer_record_enable() as 2851 * it works like an on/off switch, where as the enable() version 2852 * must be paired with a disable(). 2853 */ 2854 void ring_buffer_record_on(struct ring_buffer *buffer) 2855 { 2856 unsigned int rd; 2857 unsigned int new_rd; 2858 2859 do { 2860 rd = atomic_read(&buffer->record_disabled); 2861 new_rd = rd & ~RB_BUFFER_OFF; 2862 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2863 } 2864 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 2865 2866 /** 2867 * ring_buffer_record_is_on - return true if the ring buffer can write 2868 * @buffer: The ring buffer to see if write is enabled 2869 * 2870 * Returns true if the ring buffer is in a state that it accepts writes. 2871 */ 2872 int ring_buffer_record_is_on(struct ring_buffer *buffer) 2873 { 2874 return !atomic_read(&buffer->record_disabled); 2875 } 2876 2877 /** 2878 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2879 * @buffer: The ring buffer to stop writes to. 2880 * @cpu: The CPU buffer to stop 2881 * 2882 * This prevents all writes to the buffer. Any attempt to write 2883 * to the buffer after this will fail and return NULL. 2884 * 2885 * The caller should call synchronize_sched() after this. 2886 */ 2887 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2888 { 2889 struct ring_buffer_per_cpu *cpu_buffer; 2890 2891 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2892 return; 2893 2894 cpu_buffer = buffer->buffers[cpu]; 2895 atomic_inc(&cpu_buffer->record_disabled); 2896 } 2897 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2898 2899 /** 2900 * ring_buffer_record_enable_cpu - enable writes to the buffer 2901 * @buffer: The ring buffer to enable writes 2902 * @cpu: The CPU to enable. 2903 * 2904 * Note, multiple disables will need the same number of enables 2905 * to truly enable the writing (much like preempt_disable). 2906 */ 2907 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2908 { 2909 struct ring_buffer_per_cpu *cpu_buffer; 2910 2911 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2912 return; 2913 2914 cpu_buffer = buffer->buffers[cpu]; 2915 atomic_dec(&cpu_buffer->record_disabled); 2916 } 2917 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2918 2919 /* 2920 * The total entries in the ring buffer is the running counter 2921 * of entries entered into the ring buffer, minus the sum of 2922 * the entries read from the ring buffer and the number of 2923 * entries that were overwritten. 2924 */ 2925 static inline unsigned long 2926 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 2927 { 2928 return local_read(&cpu_buffer->entries) - 2929 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 2930 } 2931 2932 /** 2933 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 2934 * @buffer: The ring buffer 2935 * @cpu: The per CPU buffer to read from. 2936 */ 2937 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 2938 { 2939 unsigned long flags; 2940 struct ring_buffer_per_cpu *cpu_buffer; 2941 struct buffer_page *bpage; 2942 u64 ret = 0; 2943 2944 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2945 return 0; 2946 2947 cpu_buffer = buffer->buffers[cpu]; 2948 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2949 /* 2950 * if the tail is on reader_page, oldest time stamp is on the reader 2951 * page 2952 */ 2953 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2954 bpage = cpu_buffer->reader_page; 2955 else 2956 bpage = rb_set_head_page(cpu_buffer); 2957 if (bpage) 2958 ret = bpage->page->time_stamp; 2959 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2960 2961 return ret; 2962 } 2963 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 2964 2965 /** 2966 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 2967 * @buffer: The ring buffer 2968 * @cpu: The per CPU buffer to read from. 2969 */ 2970 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 2971 { 2972 struct ring_buffer_per_cpu *cpu_buffer; 2973 unsigned long ret; 2974 2975 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2976 return 0; 2977 2978 cpu_buffer = buffer->buffers[cpu]; 2979 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 2980 2981 return ret; 2982 } 2983 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 2984 2985 /** 2986 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2987 * @buffer: The ring buffer 2988 * @cpu: The per CPU buffer to get the entries from. 2989 */ 2990 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2991 { 2992 struct ring_buffer_per_cpu *cpu_buffer; 2993 2994 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2995 return 0; 2996 2997 cpu_buffer = buffer->buffers[cpu]; 2998 2999 return rb_num_of_entries(cpu_buffer); 3000 } 3001 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3002 3003 /** 3004 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3005 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3006 * @buffer: The ring buffer 3007 * @cpu: The per CPU buffer to get the number of overruns from 3008 */ 3009 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3010 { 3011 struct ring_buffer_per_cpu *cpu_buffer; 3012 unsigned long ret; 3013 3014 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3015 return 0; 3016 3017 cpu_buffer = buffer->buffers[cpu]; 3018 ret = local_read(&cpu_buffer->overrun); 3019 3020 return ret; 3021 } 3022 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3023 3024 /** 3025 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3026 * commits failing due to the buffer wrapping around while there are uncommitted 3027 * events, such as during an interrupt storm. 3028 * @buffer: The ring buffer 3029 * @cpu: The per CPU buffer to get the number of overruns from 3030 */ 3031 unsigned long 3032 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3033 { 3034 struct ring_buffer_per_cpu *cpu_buffer; 3035 unsigned long ret; 3036 3037 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3038 return 0; 3039 3040 cpu_buffer = buffer->buffers[cpu]; 3041 ret = local_read(&cpu_buffer->commit_overrun); 3042 3043 return ret; 3044 } 3045 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3046 3047 /** 3048 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3049 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3050 * @buffer: The ring buffer 3051 * @cpu: The per CPU buffer to get the number of overruns from 3052 */ 3053 unsigned long 3054 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3055 { 3056 struct ring_buffer_per_cpu *cpu_buffer; 3057 unsigned long ret; 3058 3059 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3060 return 0; 3061 3062 cpu_buffer = buffer->buffers[cpu]; 3063 ret = local_read(&cpu_buffer->dropped_events); 3064 3065 return ret; 3066 } 3067 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3068 3069 /** 3070 * ring_buffer_entries - get the number of entries in a buffer 3071 * @buffer: The ring buffer 3072 * 3073 * Returns the total number of entries in the ring buffer 3074 * (all CPU entries) 3075 */ 3076 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3077 { 3078 struct ring_buffer_per_cpu *cpu_buffer; 3079 unsigned long entries = 0; 3080 int cpu; 3081 3082 /* if you care about this being correct, lock the buffer */ 3083 for_each_buffer_cpu(buffer, cpu) { 3084 cpu_buffer = buffer->buffers[cpu]; 3085 entries += rb_num_of_entries(cpu_buffer); 3086 } 3087 3088 return entries; 3089 } 3090 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3091 3092 /** 3093 * ring_buffer_overruns - get the number of overruns in buffer 3094 * @buffer: The ring buffer 3095 * 3096 * Returns the total number of overruns in the ring buffer 3097 * (all CPU entries) 3098 */ 3099 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3100 { 3101 struct ring_buffer_per_cpu *cpu_buffer; 3102 unsigned long overruns = 0; 3103 int cpu; 3104 3105 /* if you care about this being correct, lock the buffer */ 3106 for_each_buffer_cpu(buffer, cpu) { 3107 cpu_buffer = buffer->buffers[cpu]; 3108 overruns += local_read(&cpu_buffer->overrun); 3109 } 3110 3111 return overruns; 3112 } 3113 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3114 3115 static void rb_iter_reset(struct ring_buffer_iter *iter) 3116 { 3117 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3118 3119 /* Iterator usage is expected to have record disabled */ 3120 if (list_empty(&cpu_buffer->reader_page->list)) { 3121 iter->head_page = rb_set_head_page(cpu_buffer); 3122 if (unlikely(!iter->head_page)) 3123 return; 3124 iter->head = iter->head_page->read; 3125 } else { 3126 iter->head_page = cpu_buffer->reader_page; 3127 iter->head = cpu_buffer->reader_page->read; 3128 } 3129 if (iter->head) 3130 iter->read_stamp = cpu_buffer->read_stamp; 3131 else 3132 iter->read_stamp = iter->head_page->page->time_stamp; 3133 iter->cache_reader_page = cpu_buffer->reader_page; 3134 iter->cache_read = cpu_buffer->read; 3135 } 3136 3137 /** 3138 * ring_buffer_iter_reset - reset an iterator 3139 * @iter: The iterator to reset 3140 * 3141 * Resets the iterator, so that it will start from the beginning 3142 * again. 3143 */ 3144 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3145 { 3146 struct ring_buffer_per_cpu *cpu_buffer; 3147 unsigned long flags; 3148 3149 if (!iter) 3150 return; 3151 3152 cpu_buffer = iter->cpu_buffer; 3153 3154 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3155 rb_iter_reset(iter); 3156 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3157 } 3158 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3159 3160 /** 3161 * ring_buffer_iter_empty - check if an iterator has no more to read 3162 * @iter: The iterator to check 3163 */ 3164 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3165 { 3166 struct ring_buffer_per_cpu *cpu_buffer; 3167 3168 cpu_buffer = iter->cpu_buffer; 3169 3170 return iter->head_page == cpu_buffer->commit_page && 3171 iter->head == rb_commit_index(cpu_buffer); 3172 } 3173 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3174 3175 static void 3176 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3177 struct ring_buffer_event *event) 3178 { 3179 u64 delta; 3180 3181 switch (event->type_len) { 3182 case RINGBUF_TYPE_PADDING: 3183 return; 3184 3185 case RINGBUF_TYPE_TIME_EXTEND: 3186 delta = event->array[0]; 3187 delta <<= TS_SHIFT; 3188 delta += event->time_delta; 3189 cpu_buffer->read_stamp += delta; 3190 return; 3191 3192 case RINGBUF_TYPE_TIME_STAMP: 3193 /* FIXME: not implemented */ 3194 return; 3195 3196 case RINGBUF_TYPE_DATA: 3197 cpu_buffer->read_stamp += event->time_delta; 3198 return; 3199 3200 default: 3201 BUG(); 3202 } 3203 return; 3204 } 3205 3206 static void 3207 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3208 struct ring_buffer_event *event) 3209 { 3210 u64 delta; 3211 3212 switch (event->type_len) { 3213 case RINGBUF_TYPE_PADDING: 3214 return; 3215 3216 case RINGBUF_TYPE_TIME_EXTEND: 3217 delta = event->array[0]; 3218 delta <<= TS_SHIFT; 3219 delta += event->time_delta; 3220 iter->read_stamp += delta; 3221 return; 3222 3223 case RINGBUF_TYPE_TIME_STAMP: 3224 /* FIXME: not implemented */ 3225 return; 3226 3227 case RINGBUF_TYPE_DATA: 3228 iter->read_stamp += event->time_delta; 3229 return; 3230 3231 default: 3232 BUG(); 3233 } 3234 return; 3235 } 3236 3237 static struct buffer_page * 3238 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3239 { 3240 struct buffer_page *reader = NULL; 3241 unsigned long overwrite; 3242 unsigned long flags; 3243 int nr_loops = 0; 3244 int ret; 3245 3246 local_irq_save(flags); 3247 arch_spin_lock(&cpu_buffer->lock); 3248 3249 again: 3250 /* 3251 * This should normally only loop twice. But because the 3252 * start of the reader inserts an empty page, it causes 3253 * a case where we will loop three times. There should be no 3254 * reason to loop four times (that I know of). 3255 */ 3256 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3257 reader = NULL; 3258 goto out; 3259 } 3260 3261 reader = cpu_buffer->reader_page; 3262 3263 /* If there's more to read, return this page */ 3264 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3265 goto out; 3266 3267 /* Never should we have an index greater than the size */ 3268 if (RB_WARN_ON(cpu_buffer, 3269 cpu_buffer->reader_page->read > rb_page_size(reader))) 3270 goto out; 3271 3272 /* check if we caught up to the tail */ 3273 reader = NULL; 3274 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3275 goto out; 3276 3277 /* Don't bother swapping if the ring buffer is empty */ 3278 if (rb_num_of_entries(cpu_buffer) == 0) 3279 goto out; 3280 3281 /* 3282 * Reset the reader page to size zero. 3283 */ 3284 local_set(&cpu_buffer->reader_page->write, 0); 3285 local_set(&cpu_buffer->reader_page->entries, 0); 3286 local_set(&cpu_buffer->reader_page->page->commit, 0); 3287 cpu_buffer->reader_page->real_end = 0; 3288 3289 spin: 3290 /* 3291 * Splice the empty reader page into the list around the head. 3292 */ 3293 reader = rb_set_head_page(cpu_buffer); 3294 if (!reader) 3295 goto out; 3296 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3297 cpu_buffer->reader_page->list.prev = reader->list.prev; 3298 3299 /* 3300 * cpu_buffer->pages just needs to point to the buffer, it 3301 * has no specific buffer page to point to. Lets move it out 3302 * of our way so we don't accidentally swap it. 3303 */ 3304 cpu_buffer->pages = reader->list.prev; 3305 3306 /* The reader page will be pointing to the new head */ 3307 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3308 3309 /* 3310 * We want to make sure we read the overruns after we set up our 3311 * pointers to the next object. The writer side does a 3312 * cmpxchg to cross pages which acts as the mb on the writer 3313 * side. Note, the reader will constantly fail the swap 3314 * while the writer is updating the pointers, so this 3315 * guarantees that the overwrite recorded here is the one we 3316 * want to compare with the last_overrun. 3317 */ 3318 smp_mb(); 3319 overwrite = local_read(&(cpu_buffer->overrun)); 3320 3321 /* 3322 * Here's the tricky part. 3323 * 3324 * We need to move the pointer past the header page. 3325 * But we can only do that if a writer is not currently 3326 * moving it. The page before the header page has the 3327 * flag bit '1' set if it is pointing to the page we want. 3328 * but if the writer is in the process of moving it 3329 * than it will be '2' or already moved '0'. 3330 */ 3331 3332 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3333 3334 /* 3335 * If we did not convert it, then we must try again. 3336 */ 3337 if (!ret) 3338 goto spin; 3339 3340 /* 3341 * Yeah! We succeeded in replacing the page. 3342 * 3343 * Now make the new head point back to the reader page. 3344 */ 3345 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3346 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3347 3348 /* Finally update the reader page to the new head */ 3349 cpu_buffer->reader_page = reader; 3350 rb_reset_reader_page(cpu_buffer); 3351 3352 if (overwrite != cpu_buffer->last_overrun) { 3353 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3354 cpu_buffer->last_overrun = overwrite; 3355 } 3356 3357 goto again; 3358 3359 out: 3360 arch_spin_unlock(&cpu_buffer->lock); 3361 local_irq_restore(flags); 3362 3363 return reader; 3364 } 3365 3366 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3367 { 3368 struct ring_buffer_event *event; 3369 struct buffer_page *reader; 3370 unsigned length; 3371 3372 reader = rb_get_reader_page(cpu_buffer); 3373 3374 /* This function should not be called when buffer is empty */ 3375 if (RB_WARN_ON(cpu_buffer, !reader)) 3376 return; 3377 3378 event = rb_reader_event(cpu_buffer); 3379 3380 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3381 cpu_buffer->read++; 3382 3383 rb_update_read_stamp(cpu_buffer, event); 3384 3385 length = rb_event_length(event); 3386 cpu_buffer->reader_page->read += length; 3387 } 3388 3389 static void rb_advance_iter(struct ring_buffer_iter *iter) 3390 { 3391 struct ring_buffer_per_cpu *cpu_buffer; 3392 struct ring_buffer_event *event; 3393 unsigned length; 3394 3395 cpu_buffer = iter->cpu_buffer; 3396 3397 /* 3398 * Check if we are at the end of the buffer. 3399 */ 3400 if (iter->head >= rb_page_size(iter->head_page)) { 3401 /* discarded commits can make the page empty */ 3402 if (iter->head_page == cpu_buffer->commit_page) 3403 return; 3404 rb_inc_iter(iter); 3405 return; 3406 } 3407 3408 event = rb_iter_head_event(iter); 3409 3410 length = rb_event_length(event); 3411 3412 /* 3413 * This should not be called to advance the header if we are 3414 * at the tail of the buffer. 3415 */ 3416 if (RB_WARN_ON(cpu_buffer, 3417 (iter->head_page == cpu_buffer->commit_page) && 3418 (iter->head + length > rb_commit_index(cpu_buffer)))) 3419 return; 3420 3421 rb_update_iter_read_stamp(iter, event); 3422 3423 iter->head += length; 3424 3425 /* check for end of page padding */ 3426 if ((iter->head >= rb_page_size(iter->head_page)) && 3427 (iter->head_page != cpu_buffer->commit_page)) 3428 rb_advance_iter(iter); 3429 } 3430 3431 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3432 { 3433 return cpu_buffer->lost_events; 3434 } 3435 3436 static struct ring_buffer_event * 3437 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3438 unsigned long *lost_events) 3439 { 3440 struct ring_buffer_event *event; 3441 struct buffer_page *reader; 3442 int nr_loops = 0; 3443 3444 again: 3445 /* 3446 * We repeat when a time extend is encountered. 3447 * Since the time extend is always attached to a data event, 3448 * we should never loop more than once. 3449 * (We never hit the following condition more than twice). 3450 */ 3451 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3452 return NULL; 3453 3454 reader = rb_get_reader_page(cpu_buffer); 3455 if (!reader) 3456 return NULL; 3457 3458 event = rb_reader_event(cpu_buffer); 3459 3460 switch (event->type_len) { 3461 case RINGBUF_TYPE_PADDING: 3462 if (rb_null_event(event)) 3463 RB_WARN_ON(cpu_buffer, 1); 3464 /* 3465 * Because the writer could be discarding every 3466 * event it creates (which would probably be bad) 3467 * if we were to go back to "again" then we may never 3468 * catch up, and will trigger the warn on, or lock 3469 * the box. Return the padding, and we will release 3470 * the current locks, and try again. 3471 */ 3472 return event; 3473 3474 case RINGBUF_TYPE_TIME_EXTEND: 3475 /* Internal data, OK to advance */ 3476 rb_advance_reader(cpu_buffer); 3477 goto again; 3478 3479 case RINGBUF_TYPE_TIME_STAMP: 3480 /* FIXME: not implemented */ 3481 rb_advance_reader(cpu_buffer); 3482 goto again; 3483 3484 case RINGBUF_TYPE_DATA: 3485 if (ts) { 3486 *ts = cpu_buffer->read_stamp + event->time_delta; 3487 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3488 cpu_buffer->cpu, ts); 3489 } 3490 if (lost_events) 3491 *lost_events = rb_lost_events(cpu_buffer); 3492 return event; 3493 3494 default: 3495 BUG(); 3496 } 3497 3498 return NULL; 3499 } 3500 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3501 3502 static struct ring_buffer_event * 3503 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3504 { 3505 struct ring_buffer *buffer; 3506 struct ring_buffer_per_cpu *cpu_buffer; 3507 struct ring_buffer_event *event; 3508 int nr_loops = 0; 3509 3510 cpu_buffer = iter->cpu_buffer; 3511 buffer = cpu_buffer->buffer; 3512 3513 /* 3514 * Check if someone performed a consuming read to 3515 * the buffer. A consuming read invalidates the iterator 3516 * and we need to reset the iterator in this case. 3517 */ 3518 if (unlikely(iter->cache_read != cpu_buffer->read || 3519 iter->cache_reader_page != cpu_buffer->reader_page)) 3520 rb_iter_reset(iter); 3521 3522 again: 3523 if (ring_buffer_iter_empty(iter)) 3524 return NULL; 3525 3526 /* 3527 * We repeat when a time extend is encountered. 3528 * Since the time extend is always attached to a data event, 3529 * we should never loop more than once. 3530 * (We never hit the following condition more than twice). 3531 */ 3532 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3533 return NULL; 3534 3535 if (rb_per_cpu_empty(cpu_buffer)) 3536 return NULL; 3537 3538 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3539 rb_inc_iter(iter); 3540 goto again; 3541 } 3542 3543 event = rb_iter_head_event(iter); 3544 3545 switch (event->type_len) { 3546 case RINGBUF_TYPE_PADDING: 3547 if (rb_null_event(event)) { 3548 rb_inc_iter(iter); 3549 goto again; 3550 } 3551 rb_advance_iter(iter); 3552 return event; 3553 3554 case RINGBUF_TYPE_TIME_EXTEND: 3555 /* Internal data, OK to advance */ 3556 rb_advance_iter(iter); 3557 goto again; 3558 3559 case RINGBUF_TYPE_TIME_STAMP: 3560 /* FIXME: not implemented */ 3561 rb_advance_iter(iter); 3562 goto again; 3563 3564 case RINGBUF_TYPE_DATA: 3565 if (ts) { 3566 *ts = iter->read_stamp + event->time_delta; 3567 ring_buffer_normalize_time_stamp(buffer, 3568 cpu_buffer->cpu, ts); 3569 } 3570 return event; 3571 3572 default: 3573 BUG(); 3574 } 3575 3576 return NULL; 3577 } 3578 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3579 3580 static inline int rb_ok_to_lock(void) 3581 { 3582 /* 3583 * If an NMI die dumps out the content of the ring buffer 3584 * do not grab locks. We also permanently disable the ring 3585 * buffer too. A one time deal is all you get from reading 3586 * the ring buffer from an NMI. 3587 */ 3588 if (likely(!in_nmi())) 3589 return 1; 3590 3591 tracing_off_permanent(); 3592 return 0; 3593 } 3594 3595 /** 3596 * ring_buffer_peek - peek at the next event to be read 3597 * @buffer: The ring buffer to read 3598 * @cpu: The cpu to peak at 3599 * @ts: The timestamp counter of this event. 3600 * @lost_events: a variable to store if events were lost (may be NULL) 3601 * 3602 * This will return the event that will be read next, but does 3603 * not consume the data. 3604 */ 3605 struct ring_buffer_event * 3606 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3607 unsigned long *lost_events) 3608 { 3609 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3610 struct ring_buffer_event *event; 3611 unsigned long flags; 3612 int dolock; 3613 3614 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3615 return NULL; 3616 3617 dolock = rb_ok_to_lock(); 3618 again: 3619 local_irq_save(flags); 3620 if (dolock) 3621 raw_spin_lock(&cpu_buffer->reader_lock); 3622 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3623 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3624 rb_advance_reader(cpu_buffer); 3625 if (dolock) 3626 raw_spin_unlock(&cpu_buffer->reader_lock); 3627 local_irq_restore(flags); 3628 3629 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3630 goto again; 3631 3632 return event; 3633 } 3634 3635 /** 3636 * ring_buffer_iter_peek - peek at the next event to be read 3637 * @iter: The ring buffer iterator 3638 * @ts: The timestamp counter of this event. 3639 * 3640 * This will return the event that will be read next, but does 3641 * not increment the iterator. 3642 */ 3643 struct ring_buffer_event * 3644 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3645 { 3646 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3647 struct ring_buffer_event *event; 3648 unsigned long flags; 3649 3650 again: 3651 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3652 event = rb_iter_peek(iter, ts); 3653 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3654 3655 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3656 goto again; 3657 3658 return event; 3659 } 3660 3661 /** 3662 * ring_buffer_consume - return an event and consume it 3663 * @buffer: The ring buffer to get the next event from 3664 * @cpu: the cpu to read the buffer from 3665 * @ts: a variable to store the timestamp (may be NULL) 3666 * @lost_events: a variable to store if events were lost (may be NULL) 3667 * 3668 * Returns the next event in the ring buffer, and that event is consumed. 3669 * Meaning, that sequential reads will keep returning a different event, 3670 * and eventually empty the ring buffer if the producer is slower. 3671 */ 3672 struct ring_buffer_event * 3673 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3674 unsigned long *lost_events) 3675 { 3676 struct ring_buffer_per_cpu *cpu_buffer; 3677 struct ring_buffer_event *event = NULL; 3678 unsigned long flags; 3679 int dolock; 3680 3681 dolock = rb_ok_to_lock(); 3682 3683 again: 3684 /* might be called in atomic */ 3685 preempt_disable(); 3686 3687 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3688 goto out; 3689 3690 cpu_buffer = buffer->buffers[cpu]; 3691 local_irq_save(flags); 3692 if (dolock) 3693 raw_spin_lock(&cpu_buffer->reader_lock); 3694 3695 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3696 if (event) { 3697 cpu_buffer->lost_events = 0; 3698 rb_advance_reader(cpu_buffer); 3699 } 3700 3701 if (dolock) 3702 raw_spin_unlock(&cpu_buffer->reader_lock); 3703 local_irq_restore(flags); 3704 3705 out: 3706 preempt_enable(); 3707 3708 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3709 goto again; 3710 3711 return event; 3712 } 3713 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3714 3715 /** 3716 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3717 * @buffer: The ring buffer to read from 3718 * @cpu: The cpu buffer to iterate over 3719 * 3720 * This performs the initial preparations necessary to iterate 3721 * through the buffer. Memory is allocated, buffer recording 3722 * is disabled, and the iterator pointer is returned to the caller. 3723 * 3724 * Disabling buffer recordng prevents the reading from being 3725 * corrupted. This is not a consuming read, so a producer is not 3726 * expected. 3727 * 3728 * After a sequence of ring_buffer_read_prepare calls, the user is 3729 * expected to make at least one call to ring_buffer_prepare_sync. 3730 * Afterwards, ring_buffer_read_start is invoked to get things going 3731 * for real. 3732 * 3733 * This overall must be paired with ring_buffer_finish. 3734 */ 3735 struct ring_buffer_iter * 3736 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3737 { 3738 struct ring_buffer_per_cpu *cpu_buffer; 3739 struct ring_buffer_iter *iter; 3740 3741 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3742 return NULL; 3743 3744 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3745 if (!iter) 3746 return NULL; 3747 3748 cpu_buffer = buffer->buffers[cpu]; 3749 3750 iter->cpu_buffer = cpu_buffer; 3751 3752 atomic_inc(&buffer->resize_disabled); 3753 atomic_inc(&cpu_buffer->record_disabled); 3754 3755 return iter; 3756 } 3757 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3758 3759 /** 3760 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3761 * 3762 * All previously invoked ring_buffer_read_prepare calls to prepare 3763 * iterators will be synchronized. Afterwards, read_buffer_read_start 3764 * calls on those iterators are allowed. 3765 */ 3766 void 3767 ring_buffer_read_prepare_sync(void) 3768 { 3769 synchronize_sched(); 3770 } 3771 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3772 3773 /** 3774 * ring_buffer_read_start - start a non consuming read of the buffer 3775 * @iter: The iterator returned by ring_buffer_read_prepare 3776 * 3777 * This finalizes the startup of an iteration through the buffer. 3778 * The iterator comes from a call to ring_buffer_read_prepare and 3779 * an intervening ring_buffer_read_prepare_sync must have been 3780 * performed. 3781 * 3782 * Must be paired with ring_buffer_finish. 3783 */ 3784 void 3785 ring_buffer_read_start(struct ring_buffer_iter *iter) 3786 { 3787 struct ring_buffer_per_cpu *cpu_buffer; 3788 unsigned long flags; 3789 3790 if (!iter) 3791 return; 3792 3793 cpu_buffer = iter->cpu_buffer; 3794 3795 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3796 arch_spin_lock(&cpu_buffer->lock); 3797 rb_iter_reset(iter); 3798 arch_spin_unlock(&cpu_buffer->lock); 3799 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3800 } 3801 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3802 3803 /** 3804 * ring_buffer_finish - finish reading the iterator of the buffer 3805 * @iter: The iterator retrieved by ring_buffer_start 3806 * 3807 * This re-enables the recording to the buffer, and frees the 3808 * iterator. 3809 */ 3810 void 3811 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3812 { 3813 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3814 unsigned long flags; 3815 3816 /* 3817 * Ring buffer is disabled from recording, here's a good place 3818 * to check the integrity of the ring buffer. 3819 * Must prevent readers from trying to read, as the check 3820 * clears the HEAD page and readers require it. 3821 */ 3822 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3823 rb_check_pages(cpu_buffer); 3824 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3825 3826 atomic_dec(&cpu_buffer->record_disabled); 3827 atomic_dec(&cpu_buffer->buffer->resize_disabled); 3828 kfree(iter); 3829 } 3830 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3831 3832 /** 3833 * ring_buffer_read - read the next item in the ring buffer by the iterator 3834 * @iter: The ring buffer iterator 3835 * @ts: The time stamp of the event read. 3836 * 3837 * This reads the next event in the ring buffer and increments the iterator. 3838 */ 3839 struct ring_buffer_event * 3840 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3841 { 3842 struct ring_buffer_event *event; 3843 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3844 unsigned long flags; 3845 3846 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3847 again: 3848 event = rb_iter_peek(iter, ts); 3849 if (!event) 3850 goto out; 3851 3852 if (event->type_len == RINGBUF_TYPE_PADDING) 3853 goto again; 3854 3855 rb_advance_iter(iter); 3856 out: 3857 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3858 3859 return event; 3860 } 3861 EXPORT_SYMBOL_GPL(ring_buffer_read); 3862 3863 /** 3864 * ring_buffer_size - return the size of the ring buffer (in bytes) 3865 * @buffer: The ring buffer. 3866 */ 3867 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 3868 { 3869 /* 3870 * Earlier, this method returned 3871 * BUF_PAGE_SIZE * buffer->nr_pages 3872 * Since the nr_pages field is now removed, we have converted this to 3873 * return the per cpu buffer value. 3874 */ 3875 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3876 return 0; 3877 3878 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 3879 } 3880 EXPORT_SYMBOL_GPL(ring_buffer_size); 3881 3882 static void 3883 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3884 { 3885 rb_head_page_deactivate(cpu_buffer); 3886 3887 cpu_buffer->head_page 3888 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3889 local_set(&cpu_buffer->head_page->write, 0); 3890 local_set(&cpu_buffer->head_page->entries, 0); 3891 local_set(&cpu_buffer->head_page->page->commit, 0); 3892 3893 cpu_buffer->head_page->read = 0; 3894 3895 cpu_buffer->tail_page = cpu_buffer->head_page; 3896 cpu_buffer->commit_page = cpu_buffer->head_page; 3897 3898 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3899 INIT_LIST_HEAD(&cpu_buffer->new_pages); 3900 local_set(&cpu_buffer->reader_page->write, 0); 3901 local_set(&cpu_buffer->reader_page->entries, 0); 3902 local_set(&cpu_buffer->reader_page->page->commit, 0); 3903 cpu_buffer->reader_page->read = 0; 3904 3905 local_set(&cpu_buffer->entries_bytes, 0); 3906 local_set(&cpu_buffer->overrun, 0); 3907 local_set(&cpu_buffer->commit_overrun, 0); 3908 local_set(&cpu_buffer->dropped_events, 0); 3909 local_set(&cpu_buffer->entries, 0); 3910 local_set(&cpu_buffer->committing, 0); 3911 local_set(&cpu_buffer->commits, 0); 3912 cpu_buffer->read = 0; 3913 cpu_buffer->read_bytes = 0; 3914 3915 cpu_buffer->write_stamp = 0; 3916 cpu_buffer->read_stamp = 0; 3917 3918 cpu_buffer->lost_events = 0; 3919 cpu_buffer->last_overrun = 0; 3920 3921 rb_head_page_activate(cpu_buffer); 3922 } 3923 3924 /** 3925 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3926 * @buffer: The ring buffer to reset a per cpu buffer of 3927 * @cpu: The CPU buffer to be reset 3928 */ 3929 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3930 { 3931 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3932 unsigned long flags; 3933 3934 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3935 return; 3936 3937 atomic_inc(&buffer->resize_disabled); 3938 atomic_inc(&cpu_buffer->record_disabled); 3939 3940 /* Make sure all commits have finished */ 3941 synchronize_sched(); 3942 3943 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3944 3945 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3946 goto out; 3947 3948 arch_spin_lock(&cpu_buffer->lock); 3949 3950 rb_reset_cpu(cpu_buffer); 3951 3952 arch_spin_unlock(&cpu_buffer->lock); 3953 3954 out: 3955 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3956 3957 atomic_dec(&cpu_buffer->record_disabled); 3958 atomic_dec(&buffer->resize_disabled); 3959 } 3960 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3961 3962 /** 3963 * ring_buffer_reset - reset a ring buffer 3964 * @buffer: The ring buffer to reset all cpu buffers 3965 */ 3966 void ring_buffer_reset(struct ring_buffer *buffer) 3967 { 3968 int cpu; 3969 3970 for_each_buffer_cpu(buffer, cpu) 3971 ring_buffer_reset_cpu(buffer, cpu); 3972 } 3973 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3974 3975 /** 3976 * rind_buffer_empty - is the ring buffer empty? 3977 * @buffer: The ring buffer to test 3978 */ 3979 int ring_buffer_empty(struct ring_buffer *buffer) 3980 { 3981 struct ring_buffer_per_cpu *cpu_buffer; 3982 unsigned long flags; 3983 int dolock; 3984 int cpu; 3985 int ret; 3986 3987 dolock = rb_ok_to_lock(); 3988 3989 /* yes this is racy, but if you don't like the race, lock the buffer */ 3990 for_each_buffer_cpu(buffer, cpu) { 3991 cpu_buffer = buffer->buffers[cpu]; 3992 local_irq_save(flags); 3993 if (dolock) 3994 raw_spin_lock(&cpu_buffer->reader_lock); 3995 ret = rb_per_cpu_empty(cpu_buffer); 3996 if (dolock) 3997 raw_spin_unlock(&cpu_buffer->reader_lock); 3998 local_irq_restore(flags); 3999 4000 if (!ret) 4001 return 0; 4002 } 4003 4004 return 1; 4005 } 4006 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4007 4008 /** 4009 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4010 * @buffer: The ring buffer 4011 * @cpu: The CPU buffer to test 4012 */ 4013 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4014 { 4015 struct ring_buffer_per_cpu *cpu_buffer; 4016 unsigned long flags; 4017 int dolock; 4018 int ret; 4019 4020 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4021 return 1; 4022 4023 dolock = rb_ok_to_lock(); 4024 4025 cpu_buffer = buffer->buffers[cpu]; 4026 local_irq_save(flags); 4027 if (dolock) 4028 raw_spin_lock(&cpu_buffer->reader_lock); 4029 ret = rb_per_cpu_empty(cpu_buffer); 4030 if (dolock) 4031 raw_spin_unlock(&cpu_buffer->reader_lock); 4032 local_irq_restore(flags); 4033 4034 return ret; 4035 } 4036 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4037 4038 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4039 /** 4040 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4041 * @buffer_a: One buffer to swap with 4042 * @buffer_b: The other buffer to swap with 4043 * 4044 * This function is useful for tracers that want to take a "snapshot" 4045 * of a CPU buffer and has another back up buffer lying around. 4046 * it is expected that the tracer handles the cpu buffer not being 4047 * used at the moment. 4048 */ 4049 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4050 struct ring_buffer *buffer_b, int cpu) 4051 { 4052 struct ring_buffer_per_cpu *cpu_buffer_a; 4053 struct ring_buffer_per_cpu *cpu_buffer_b; 4054 int ret = -EINVAL; 4055 4056 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4057 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4058 goto out; 4059 4060 cpu_buffer_a = buffer_a->buffers[cpu]; 4061 cpu_buffer_b = buffer_b->buffers[cpu]; 4062 4063 /* At least make sure the two buffers are somewhat the same */ 4064 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4065 goto out; 4066 4067 ret = -EAGAIN; 4068 4069 if (ring_buffer_flags != RB_BUFFERS_ON) 4070 goto out; 4071 4072 if (atomic_read(&buffer_a->record_disabled)) 4073 goto out; 4074 4075 if (atomic_read(&buffer_b->record_disabled)) 4076 goto out; 4077 4078 if (atomic_read(&cpu_buffer_a->record_disabled)) 4079 goto out; 4080 4081 if (atomic_read(&cpu_buffer_b->record_disabled)) 4082 goto out; 4083 4084 /* 4085 * We can't do a synchronize_sched here because this 4086 * function can be called in atomic context. 4087 * Normally this will be called from the same CPU as cpu. 4088 * If not it's up to the caller to protect this. 4089 */ 4090 atomic_inc(&cpu_buffer_a->record_disabled); 4091 atomic_inc(&cpu_buffer_b->record_disabled); 4092 4093 ret = -EBUSY; 4094 if (local_read(&cpu_buffer_a->committing)) 4095 goto out_dec; 4096 if (local_read(&cpu_buffer_b->committing)) 4097 goto out_dec; 4098 4099 buffer_a->buffers[cpu] = cpu_buffer_b; 4100 buffer_b->buffers[cpu] = cpu_buffer_a; 4101 4102 cpu_buffer_b->buffer = buffer_a; 4103 cpu_buffer_a->buffer = buffer_b; 4104 4105 ret = 0; 4106 4107 out_dec: 4108 atomic_dec(&cpu_buffer_a->record_disabled); 4109 atomic_dec(&cpu_buffer_b->record_disabled); 4110 out: 4111 return ret; 4112 } 4113 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4114 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4115 4116 /** 4117 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4118 * @buffer: the buffer to allocate for. 4119 * 4120 * This function is used in conjunction with ring_buffer_read_page. 4121 * When reading a full page from the ring buffer, these functions 4122 * can be used to speed up the process. The calling function should 4123 * allocate a few pages first with this function. Then when it 4124 * needs to get pages from the ring buffer, it passes the result 4125 * of this function into ring_buffer_read_page, which will swap 4126 * the page that was allocated, with the read page of the buffer. 4127 * 4128 * Returns: 4129 * The page allocated, or NULL on error. 4130 */ 4131 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4132 { 4133 struct buffer_data_page *bpage; 4134 struct page *page; 4135 4136 page = alloc_pages_node(cpu_to_node(cpu), 4137 GFP_KERNEL | __GFP_NORETRY, 0); 4138 if (!page) 4139 return NULL; 4140 4141 bpage = page_address(page); 4142 4143 rb_init_page(bpage); 4144 4145 return bpage; 4146 } 4147 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4148 4149 /** 4150 * ring_buffer_free_read_page - free an allocated read page 4151 * @buffer: the buffer the page was allocate for 4152 * @data: the page to free 4153 * 4154 * Free a page allocated from ring_buffer_alloc_read_page. 4155 */ 4156 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4157 { 4158 free_page((unsigned long)data); 4159 } 4160 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4161 4162 /** 4163 * ring_buffer_read_page - extract a page from the ring buffer 4164 * @buffer: buffer to extract from 4165 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4166 * @len: amount to extract 4167 * @cpu: the cpu of the buffer to extract 4168 * @full: should the extraction only happen when the page is full. 4169 * 4170 * This function will pull out a page from the ring buffer and consume it. 4171 * @data_page must be the address of the variable that was returned 4172 * from ring_buffer_alloc_read_page. This is because the page might be used 4173 * to swap with a page in the ring buffer. 4174 * 4175 * for example: 4176 * rpage = ring_buffer_alloc_read_page(buffer); 4177 * if (!rpage) 4178 * return error; 4179 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4180 * if (ret >= 0) 4181 * process_page(rpage, ret); 4182 * 4183 * When @full is set, the function will not return true unless 4184 * the writer is off the reader page. 4185 * 4186 * Note: it is up to the calling functions to handle sleeps and wakeups. 4187 * The ring buffer can be used anywhere in the kernel and can not 4188 * blindly call wake_up. The layer that uses the ring buffer must be 4189 * responsible for that. 4190 * 4191 * Returns: 4192 * >=0 if data has been transferred, returns the offset of consumed data. 4193 * <0 if no data has been transferred. 4194 */ 4195 int ring_buffer_read_page(struct ring_buffer *buffer, 4196 void **data_page, size_t len, int cpu, int full) 4197 { 4198 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4199 struct ring_buffer_event *event; 4200 struct buffer_data_page *bpage; 4201 struct buffer_page *reader; 4202 unsigned long missed_events; 4203 unsigned long flags; 4204 unsigned int commit; 4205 unsigned int read; 4206 u64 save_timestamp; 4207 int ret = -1; 4208 4209 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4210 goto out; 4211 4212 /* 4213 * If len is not big enough to hold the page header, then 4214 * we can not copy anything. 4215 */ 4216 if (len <= BUF_PAGE_HDR_SIZE) 4217 goto out; 4218 4219 len -= BUF_PAGE_HDR_SIZE; 4220 4221 if (!data_page) 4222 goto out; 4223 4224 bpage = *data_page; 4225 if (!bpage) 4226 goto out; 4227 4228 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4229 4230 reader = rb_get_reader_page(cpu_buffer); 4231 if (!reader) 4232 goto out_unlock; 4233 4234 event = rb_reader_event(cpu_buffer); 4235 4236 read = reader->read; 4237 commit = rb_page_commit(reader); 4238 4239 /* Check if any events were dropped */ 4240 missed_events = cpu_buffer->lost_events; 4241 4242 /* 4243 * If this page has been partially read or 4244 * if len is not big enough to read the rest of the page or 4245 * a writer is still on the page, then 4246 * we must copy the data from the page to the buffer. 4247 * Otherwise, we can simply swap the page with the one passed in. 4248 */ 4249 if (read || (len < (commit - read)) || 4250 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4251 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4252 unsigned int rpos = read; 4253 unsigned int pos = 0; 4254 unsigned int size; 4255 4256 if (full) 4257 goto out_unlock; 4258 4259 if (len > (commit - read)) 4260 len = (commit - read); 4261 4262 /* Always keep the time extend and data together */ 4263 size = rb_event_ts_length(event); 4264 4265 if (len < size) 4266 goto out_unlock; 4267 4268 /* save the current timestamp, since the user will need it */ 4269 save_timestamp = cpu_buffer->read_stamp; 4270 4271 /* Need to copy one event at a time */ 4272 do { 4273 /* We need the size of one event, because 4274 * rb_advance_reader only advances by one event, 4275 * whereas rb_event_ts_length may include the size of 4276 * one or two events. 4277 * We have already ensured there's enough space if this 4278 * is a time extend. */ 4279 size = rb_event_length(event); 4280 memcpy(bpage->data + pos, rpage->data + rpos, size); 4281 4282 len -= size; 4283 4284 rb_advance_reader(cpu_buffer); 4285 rpos = reader->read; 4286 pos += size; 4287 4288 if (rpos >= commit) 4289 break; 4290 4291 event = rb_reader_event(cpu_buffer); 4292 /* Always keep the time extend and data together */ 4293 size = rb_event_ts_length(event); 4294 } while (len >= size); 4295 4296 /* update bpage */ 4297 local_set(&bpage->commit, pos); 4298 bpage->time_stamp = save_timestamp; 4299 4300 /* we copied everything to the beginning */ 4301 read = 0; 4302 } else { 4303 /* update the entry counter */ 4304 cpu_buffer->read += rb_page_entries(reader); 4305 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4306 4307 /* swap the pages */ 4308 rb_init_page(bpage); 4309 bpage = reader->page; 4310 reader->page = *data_page; 4311 local_set(&reader->write, 0); 4312 local_set(&reader->entries, 0); 4313 reader->read = 0; 4314 *data_page = bpage; 4315 4316 /* 4317 * Use the real_end for the data size, 4318 * This gives us a chance to store the lost events 4319 * on the page. 4320 */ 4321 if (reader->real_end) 4322 local_set(&bpage->commit, reader->real_end); 4323 } 4324 ret = read; 4325 4326 cpu_buffer->lost_events = 0; 4327 4328 commit = local_read(&bpage->commit); 4329 /* 4330 * Set a flag in the commit field if we lost events 4331 */ 4332 if (missed_events) { 4333 /* If there is room at the end of the page to save the 4334 * missed events, then record it there. 4335 */ 4336 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4337 memcpy(&bpage->data[commit], &missed_events, 4338 sizeof(missed_events)); 4339 local_add(RB_MISSED_STORED, &bpage->commit); 4340 commit += sizeof(missed_events); 4341 } 4342 local_add(RB_MISSED_EVENTS, &bpage->commit); 4343 } 4344 4345 /* 4346 * This page may be off to user land. Zero it out here. 4347 */ 4348 if (commit < BUF_PAGE_SIZE) 4349 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4350 4351 out_unlock: 4352 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4353 4354 out: 4355 return ret; 4356 } 4357 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4358 4359 #ifdef CONFIG_HOTPLUG_CPU 4360 static int rb_cpu_notify(struct notifier_block *self, 4361 unsigned long action, void *hcpu) 4362 { 4363 struct ring_buffer *buffer = 4364 container_of(self, struct ring_buffer, cpu_notify); 4365 long cpu = (long)hcpu; 4366 int cpu_i, nr_pages_same; 4367 unsigned int nr_pages; 4368 4369 switch (action) { 4370 case CPU_UP_PREPARE: 4371 case CPU_UP_PREPARE_FROZEN: 4372 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4373 return NOTIFY_OK; 4374 4375 nr_pages = 0; 4376 nr_pages_same = 1; 4377 /* check if all cpu sizes are same */ 4378 for_each_buffer_cpu(buffer, cpu_i) { 4379 /* fill in the size from first enabled cpu */ 4380 if (nr_pages == 0) 4381 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4382 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4383 nr_pages_same = 0; 4384 break; 4385 } 4386 } 4387 /* allocate minimum pages, user can later expand it */ 4388 if (!nr_pages_same) 4389 nr_pages = 2; 4390 buffer->buffers[cpu] = 4391 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4392 if (!buffer->buffers[cpu]) { 4393 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4394 cpu); 4395 return NOTIFY_OK; 4396 } 4397 smp_wmb(); 4398 cpumask_set_cpu(cpu, buffer->cpumask); 4399 break; 4400 case CPU_DOWN_PREPARE: 4401 case CPU_DOWN_PREPARE_FROZEN: 4402 /* 4403 * Do nothing. 4404 * If we were to free the buffer, then the user would 4405 * lose any trace that was in the buffer. 4406 */ 4407 break; 4408 default: 4409 break; 4410 } 4411 return NOTIFY_OK; 4412 } 4413 #endif 4414