xref: /linux/kernel/trace/ring_buffer.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 static void update_pages_handler(struct work_struct *work);
27 
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33 	int ret;
34 
35 	ret = trace_seq_printf(s, "# compressed entry header\n");
36 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39 	ret = trace_seq_printf(s, "\n");
40 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			       RINGBUF_TYPE_PADDING);
42 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			       RINGBUF_TYPE_TIME_EXTEND);
44 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return ret;
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135 
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146 
147 enum {
148 	RB_BUFFERS_ON_BIT	= 0,
149 	RB_BUFFERS_DISABLED_BIT	= 1,
150 };
151 
152 enum {
153 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
154 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156 
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF		(1 << 20)
161 
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163 
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174 
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT		4U
177 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
179 
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT	0
182 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT	1
185 # define RB_ARCH_ALIGNMENT		8U
186 #endif
187 
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190 
191 enum {
192 	RB_LEN_TIME_EXTEND = 8,
193 	RB_LEN_TIME_STAMP = 16,
194 };
195 
196 #define skip_time_extend(event) \
197 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198 
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203 
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206 	/* padding has a NULL time_delta */
207 	event->type_len = RINGBUF_TYPE_PADDING;
208 	event->time_delta = 0;
209 }
210 
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214 	unsigned length;
215 
216 	if (event->type_len)
217 		length = event->type_len * RB_ALIGNMENT;
218 	else
219 		length = event->array[0];
220 	return length + RB_EVNT_HDR_SIZE;
221 }
222 
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231 	switch (event->type_len) {
232 	case RINGBUF_TYPE_PADDING:
233 		if (rb_null_event(event))
234 			/* undefined */
235 			return -1;
236 		return  event->array[0] + RB_EVNT_HDR_SIZE;
237 
238 	case RINGBUF_TYPE_TIME_EXTEND:
239 		return RB_LEN_TIME_EXTEND;
240 
241 	case RINGBUF_TYPE_TIME_STAMP:
242 		return RB_LEN_TIME_STAMP;
243 
244 	case RINGBUF_TYPE_DATA:
245 		return rb_event_data_length(event);
246 	default:
247 		BUG();
248 	}
249 	/* not hit */
250 	return 0;
251 }
252 
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260 	unsigned len = 0;
261 
262 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 		/* time extends include the data event after it */
264 		len = RB_LEN_TIME_EXTEND;
265 		event = skip_time_extend(event);
266 	}
267 	return len + rb_event_length(event);
268 }
269 
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282 	unsigned length;
283 
284 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 		event = skip_time_extend(event);
286 
287 	length = rb_event_length(event);
288 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289 		return length;
290 	length -= RB_EVNT_HDR_SIZE;
291 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293 	return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296 
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 		event = skip_time_extend(event);
303 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304 	/* If length is in len field, then array[0] has the data */
305 	if (event->type_len)
306 		return (void *)&event->array[0];
307 	/* Otherwise length is in array[0] and array[1] has the data */
308 	return (void *)&event->array[1];
309 }
310 
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317 	return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320 
321 #define for_each_buffer_cpu(buffer, cpu)		\
322 	for_each_cpu(cpu, buffer->cpumask)
323 
324 #define TS_SHIFT	27
325 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST	(~TS_MASK)
327 
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS	(1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED	(1 << 30)
332 
333 struct buffer_data_page {
334 	u64		 time_stamp;	/* page time stamp */
335 	local_t		 commit;	/* write committed index */
336 	unsigned char	 data[];	/* data of buffer page */
337 };
338 
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348 	struct list_head list;		/* list of buffer pages */
349 	local_t		 write;		/* index for next write */
350 	unsigned	 read;		/* index for next read */
351 	local_t		 entries;	/* entries on this page */
352 	unsigned long	 real_end;	/* real end of data */
353 	struct buffer_data_page *page;	/* Actual data page */
354 };
355 
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK		0xfffff
369 #define RB_WRITE_INTCNT		(1 << 20)
370 
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373 	local_set(&bpage->commit, 0);
374 }
375 
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384 	return local_read(&((struct buffer_data_page *)page)->commit)
385 		+ BUF_PAGE_HDR_SIZE;
386 }
387 
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	free_page((unsigned long)bpage->page);
395 	kfree(bpage);
396 }
397 
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403 	if (delta & TS_DELTA_TEST)
404 		return 1;
405 	return 0;
406 }
407 
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409 
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412 
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415 	struct buffer_data_page field;
416 	int ret;
417 
418 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
420 			       (unsigned int)sizeof(field.time_stamp),
421 			       (unsigned int)is_signed_type(u64));
422 
423 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
425 			       (unsigned int)offsetof(typeof(field), commit),
426 			       (unsigned int)sizeof(field.commit),
427 			       (unsigned int)is_signed_type(long));
428 
429 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       1,
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: char data;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), data),
438 			       (unsigned int)BUF_PAGE_SIZE,
439 			       (unsigned int)is_signed_type(char));
440 
441 	return ret;
442 }
443 
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448 	int				cpu;
449 	atomic_t			record_disabled;
450 	struct ring_buffer		*buffer;
451 	raw_spinlock_t			reader_lock;	/* serialize readers */
452 	arch_spinlock_t			lock;
453 	struct lock_class_key		lock_key;
454 	unsigned int			nr_pages;
455 	struct list_head		*pages;
456 	struct buffer_page		*head_page;	/* read from head */
457 	struct buffer_page		*tail_page;	/* write to tail */
458 	struct buffer_page		*commit_page;	/* committed pages */
459 	struct buffer_page		*reader_page;
460 	unsigned long			lost_events;
461 	unsigned long			last_overrun;
462 	local_t				entries_bytes;
463 	local_t				entries;
464 	local_t				overrun;
465 	local_t				commit_overrun;
466 	local_t				dropped_events;
467 	local_t				committing;
468 	local_t				commits;
469 	unsigned long			read;
470 	unsigned long			read_bytes;
471 	u64				write_stamp;
472 	u64				read_stamp;
473 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
474 	int				nr_pages_to_update;
475 	struct list_head		new_pages; /* new pages to add */
476 	struct work_struct		update_pages_work;
477 	struct completion		update_done;
478 };
479 
480 struct ring_buffer {
481 	unsigned			flags;
482 	int				cpus;
483 	atomic_t			record_disabled;
484 	atomic_t			resize_disabled;
485 	cpumask_var_t			cpumask;
486 
487 	struct lock_class_key		*reader_lock_key;
488 
489 	struct mutex			mutex;
490 
491 	struct ring_buffer_per_cpu	**buffers;
492 
493 #ifdef CONFIG_HOTPLUG_CPU
494 	struct notifier_block		cpu_notify;
495 #endif
496 	u64				(*clock)(void);
497 };
498 
499 struct ring_buffer_iter {
500 	struct ring_buffer_per_cpu	*cpu_buffer;
501 	unsigned long			head;
502 	struct buffer_page		*head_page;
503 	struct buffer_page		*cache_reader_page;
504 	unsigned long			cache_read;
505 	u64				read_stamp;
506 };
507 
508 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
509 #define RB_WARN_ON(b, cond)						\
510 	({								\
511 		int _____ret = unlikely(cond);				\
512 		if (_____ret) {						\
513 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
514 				struct ring_buffer_per_cpu *__b =	\
515 					(void *)b;			\
516 				atomic_inc(&__b->buffer->record_disabled); \
517 			} else						\
518 				atomic_inc(&b->record_disabled);	\
519 			WARN_ON(1);					\
520 		}							\
521 		_____ret;						\
522 	})
523 
524 /* Up this if you want to test the TIME_EXTENTS and normalization */
525 #define DEBUG_SHIFT 0
526 
527 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
528 {
529 	/* shift to debug/test normalization and TIME_EXTENTS */
530 	return buffer->clock() << DEBUG_SHIFT;
531 }
532 
533 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
534 {
535 	u64 time;
536 
537 	preempt_disable_notrace();
538 	time = rb_time_stamp(buffer);
539 	preempt_enable_no_resched_notrace();
540 
541 	return time;
542 }
543 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
544 
545 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
546 				      int cpu, u64 *ts)
547 {
548 	/* Just stupid testing the normalize function and deltas */
549 	*ts >>= DEBUG_SHIFT;
550 }
551 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
552 
553 /*
554  * Making the ring buffer lockless makes things tricky.
555  * Although writes only happen on the CPU that they are on,
556  * and they only need to worry about interrupts. Reads can
557  * happen on any CPU.
558  *
559  * The reader page is always off the ring buffer, but when the
560  * reader finishes with a page, it needs to swap its page with
561  * a new one from the buffer. The reader needs to take from
562  * the head (writes go to the tail). But if a writer is in overwrite
563  * mode and wraps, it must push the head page forward.
564  *
565  * Here lies the problem.
566  *
567  * The reader must be careful to replace only the head page, and
568  * not another one. As described at the top of the file in the
569  * ASCII art, the reader sets its old page to point to the next
570  * page after head. It then sets the page after head to point to
571  * the old reader page. But if the writer moves the head page
572  * during this operation, the reader could end up with the tail.
573  *
574  * We use cmpxchg to help prevent this race. We also do something
575  * special with the page before head. We set the LSB to 1.
576  *
577  * When the writer must push the page forward, it will clear the
578  * bit that points to the head page, move the head, and then set
579  * the bit that points to the new head page.
580  *
581  * We also don't want an interrupt coming in and moving the head
582  * page on another writer. Thus we use the second LSB to catch
583  * that too. Thus:
584  *
585  * head->list->prev->next        bit 1          bit 0
586  *                              -------        -------
587  * Normal page                     0              0
588  * Points to head page             0              1
589  * New head page                   1              0
590  *
591  * Note we can not trust the prev pointer of the head page, because:
592  *
593  * +----+       +-----+        +-----+
594  * |    |------>|  T  |---X--->|  N  |
595  * |    |<------|     |        |     |
596  * +----+       +-----+        +-----+
597  *   ^                           ^ |
598  *   |          +-----+          | |
599  *   +----------|  R  |----------+ |
600  *              |     |<-----------+
601  *              +-----+
602  *
603  * Key:  ---X-->  HEAD flag set in pointer
604  *         T      Tail page
605  *         R      Reader page
606  *         N      Next page
607  *
608  * (see __rb_reserve_next() to see where this happens)
609  *
610  *  What the above shows is that the reader just swapped out
611  *  the reader page with a page in the buffer, but before it
612  *  could make the new header point back to the new page added
613  *  it was preempted by a writer. The writer moved forward onto
614  *  the new page added by the reader and is about to move forward
615  *  again.
616  *
617  *  You can see, it is legitimate for the previous pointer of
618  *  the head (or any page) not to point back to itself. But only
619  *  temporarially.
620  */
621 
622 #define RB_PAGE_NORMAL		0UL
623 #define RB_PAGE_HEAD		1UL
624 #define RB_PAGE_UPDATE		2UL
625 
626 
627 #define RB_FLAG_MASK		3UL
628 
629 /* PAGE_MOVED is not part of the mask */
630 #define RB_PAGE_MOVED		4UL
631 
632 /*
633  * rb_list_head - remove any bit
634  */
635 static struct list_head *rb_list_head(struct list_head *list)
636 {
637 	unsigned long val = (unsigned long)list;
638 
639 	return (struct list_head *)(val & ~RB_FLAG_MASK);
640 }
641 
642 /*
643  * rb_is_head_page - test if the given page is the head page
644  *
645  * Because the reader may move the head_page pointer, we can
646  * not trust what the head page is (it may be pointing to
647  * the reader page). But if the next page is a header page,
648  * its flags will be non zero.
649  */
650 static inline int
651 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
652 		struct buffer_page *page, struct list_head *list)
653 {
654 	unsigned long val;
655 
656 	val = (unsigned long)list->next;
657 
658 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
659 		return RB_PAGE_MOVED;
660 
661 	return val & RB_FLAG_MASK;
662 }
663 
664 /*
665  * rb_is_reader_page
666  *
667  * The unique thing about the reader page, is that, if the
668  * writer is ever on it, the previous pointer never points
669  * back to the reader page.
670  */
671 static int rb_is_reader_page(struct buffer_page *page)
672 {
673 	struct list_head *list = page->list.prev;
674 
675 	return rb_list_head(list->next) != &page->list;
676 }
677 
678 /*
679  * rb_set_list_to_head - set a list_head to be pointing to head.
680  */
681 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
682 				struct list_head *list)
683 {
684 	unsigned long *ptr;
685 
686 	ptr = (unsigned long *)&list->next;
687 	*ptr |= RB_PAGE_HEAD;
688 	*ptr &= ~RB_PAGE_UPDATE;
689 }
690 
691 /*
692  * rb_head_page_activate - sets up head page
693  */
694 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
695 {
696 	struct buffer_page *head;
697 
698 	head = cpu_buffer->head_page;
699 	if (!head)
700 		return;
701 
702 	/*
703 	 * Set the previous list pointer to have the HEAD flag.
704 	 */
705 	rb_set_list_to_head(cpu_buffer, head->list.prev);
706 }
707 
708 static void rb_list_head_clear(struct list_head *list)
709 {
710 	unsigned long *ptr = (unsigned long *)&list->next;
711 
712 	*ptr &= ~RB_FLAG_MASK;
713 }
714 
715 /*
716  * rb_head_page_dactivate - clears head page ptr (for free list)
717  */
718 static void
719 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
720 {
721 	struct list_head *hd;
722 
723 	/* Go through the whole list and clear any pointers found. */
724 	rb_list_head_clear(cpu_buffer->pages);
725 
726 	list_for_each(hd, cpu_buffer->pages)
727 		rb_list_head_clear(hd);
728 }
729 
730 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
731 			    struct buffer_page *head,
732 			    struct buffer_page *prev,
733 			    int old_flag, int new_flag)
734 {
735 	struct list_head *list;
736 	unsigned long val = (unsigned long)&head->list;
737 	unsigned long ret;
738 
739 	list = &prev->list;
740 
741 	val &= ~RB_FLAG_MASK;
742 
743 	ret = cmpxchg((unsigned long *)&list->next,
744 		      val | old_flag, val | new_flag);
745 
746 	/* check if the reader took the page */
747 	if ((ret & ~RB_FLAG_MASK) != val)
748 		return RB_PAGE_MOVED;
749 
750 	return ret & RB_FLAG_MASK;
751 }
752 
753 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
754 				   struct buffer_page *head,
755 				   struct buffer_page *prev,
756 				   int old_flag)
757 {
758 	return rb_head_page_set(cpu_buffer, head, prev,
759 				old_flag, RB_PAGE_UPDATE);
760 }
761 
762 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
763 				 struct buffer_page *head,
764 				 struct buffer_page *prev,
765 				 int old_flag)
766 {
767 	return rb_head_page_set(cpu_buffer, head, prev,
768 				old_flag, RB_PAGE_HEAD);
769 }
770 
771 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
772 				   struct buffer_page *head,
773 				   struct buffer_page *prev,
774 				   int old_flag)
775 {
776 	return rb_head_page_set(cpu_buffer, head, prev,
777 				old_flag, RB_PAGE_NORMAL);
778 }
779 
780 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
781 			       struct buffer_page **bpage)
782 {
783 	struct list_head *p = rb_list_head((*bpage)->list.next);
784 
785 	*bpage = list_entry(p, struct buffer_page, list);
786 }
787 
788 static struct buffer_page *
789 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
790 {
791 	struct buffer_page *head;
792 	struct buffer_page *page;
793 	struct list_head *list;
794 	int i;
795 
796 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
797 		return NULL;
798 
799 	/* sanity check */
800 	list = cpu_buffer->pages;
801 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
802 		return NULL;
803 
804 	page = head = cpu_buffer->head_page;
805 	/*
806 	 * It is possible that the writer moves the header behind
807 	 * where we started, and we miss in one loop.
808 	 * A second loop should grab the header, but we'll do
809 	 * three loops just because I'm paranoid.
810 	 */
811 	for (i = 0; i < 3; i++) {
812 		do {
813 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
814 				cpu_buffer->head_page = page;
815 				return page;
816 			}
817 			rb_inc_page(cpu_buffer, &page);
818 		} while (page != head);
819 	}
820 
821 	RB_WARN_ON(cpu_buffer, 1);
822 
823 	return NULL;
824 }
825 
826 static int rb_head_page_replace(struct buffer_page *old,
827 				struct buffer_page *new)
828 {
829 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
830 	unsigned long val;
831 	unsigned long ret;
832 
833 	val = *ptr & ~RB_FLAG_MASK;
834 	val |= RB_PAGE_HEAD;
835 
836 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
837 
838 	return ret == val;
839 }
840 
841 /*
842  * rb_tail_page_update - move the tail page forward
843  *
844  * Returns 1 if moved tail page, 0 if someone else did.
845  */
846 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
847 			       struct buffer_page *tail_page,
848 			       struct buffer_page *next_page)
849 {
850 	struct buffer_page *old_tail;
851 	unsigned long old_entries;
852 	unsigned long old_write;
853 	int ret = 0;
854 
855 	/*
856 	 * The tail page now needs to be moved forward.
857 	 *
858 	 * We need to reset the tail page, but without messing
859 	 * with possible erasing of data brought in by interrupts
860 	 * that have moved the tail page and are currently on it.
861 	 *
862 	 * We add a counter to the write field to denote this.
863 	 */
864 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
865 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
866 
867 	/*
868 	 * Just make sure we have seen our old_write and synchronize
869 	 * with any interrupts that come in.
870 	 */
871 	barrier();
872 
873 	/*
874 	 * If the tail page is still the same as what we think
875 	 * it is, then it is up to us to update the tail
876 	 * pointer.
877 	 */
878 	if (tail_page == cpu_buffer->tail_page) {
879 		/* Zero the write counter */
880 		unsigned long val = old_write & ~RB_WRITE_MASK;
881 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
882 
883 		/*
884 		 * This will only succeed if an interrupt did
885 		 * not come in and change it. In which case, we
886 		 * do not want to modify it.
887 		 *
888 		 * We add (void) to let the compiler know that we do not care
889 		 * about the return value of these functions. We use the
890 		 * cmpxchg to only update if an interrupt did not already
891 		 * do it for us. If the cmpxchg fails, we don't care.
892 		 */
893 		(void)local_cmpxchg(&next_page->write, old_write, val);
894 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
895 
896 		/*
897 		 * No need to worry about races with clearing out the commit.
898 		 * it only can increment when a commit takes place. But that
899 		 * only happens in the outer most nested commit.
900 		 */
901 		local_set(&next_page->page->commit, 0);
902 
903 		old_tail = cmpxchg(&cpu_buffer->tail_page,
904 				   tail_page, next_page);
905 
906 		if (old_tail == tail_page)
907 			ret = 1;
908 	}
909 
910 	return ret;
911 }
912 
913 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
914 			  struct buffer_page *bpage)
915 {
916 	unsigned long val = (unsigned long)bpage;
917 
918 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
919 		return 1;
920 
921 	return 0;
922 }
923 
924 /**
925  * rb_check_list - make sure a pointer to a list has the last bits zero
926  */
927 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
928 			 struct list_head *list)
929 {
930 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
931 		return 1;
932 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
933 		return 1;
934 	return 0;
935 }
936 
937 /**
938  * check_pages - integrity check of buffer pages
939  * @cpu_buffer: CPU buffer with pages to test
940  *
941  * As a safety measure we check to make sure the data pages have not
942  * been corrupted.
943  */
944 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
945 {
946 	struct list_head *head = cpu_buffer->pages;
947 	struct buffer_page *bpage, *tmp;
948 
949 	/* Reset the head page if it exists */
950 	if (cpu_buffer->head_page)
951 		rb_set_head_page(cpu_buffer);
952 
953 	rb_head_page_deactivate(cpu_buffer);
954 
955 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
956 		return -1;
957 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
958 		return -1;
959 
960 	if (rb_check_list(cpu_buffer, head))
961 		return -1;
962 
963 	list_for_each_entry_safe(bpage, tmp, head, list) {
964 		if (RB_WARN_ON(cpu_buffer,
965 			       bpage->list.next->prev != &bpage->list))
966 			return -1;
967 		if (RB_WARN_ON(cpu_buffer,
968 			       bpage->list.prev->next != &bpage->list))
969 			return -1;
970 		if (rb_check_list(cpu_buffer, &bpage->list))
971 			return -1;
972 	}
973 
974 	rb_head_page_activate(cpu_buffer);
975 
976 	return 0;
977 }
978 
979 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
980 {
981 	int i;
982 	struct buffer_page *bpage, *tmp;
983 
984 	for (i = 0; i < nr_pages; i++) {
985 		struct page *page;
986 		/*
987 		 * __GFP_NORETRY flag makes sure that the allocation fails
988 		 * gracefully without invoking oom-killer and the system is
989 		 * not destabilized.
990 		 */
991 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
992 				    GFP_KERNEL | __GFP_NORETRY,
993 				    cpu_to_node(cpu));
994 		if (!bpage)
995 			goto free_pages;
996 
997 		list_add(&bpage->list, pages);
998 
999 		page = alloc_pages_node(cpu_to_node(cpu),
1000 					GFP_KERNEL | __GFP_NORETRY, 0);
1001 		if (!page)
1002 			goto free_pages;
1003 		bpage->page = page_address(page);
1004 		rb_init_page(bpage->page);
1005 	}
1006 
1007 	return 0;
1008 
1009 free_pages:
1010 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1011 		list_del_init(&bpage->list);
1012 		free_buffer_page(bpage);
1013 	}
1014 
1015 	return -ENOMEM;
1016 }
1017 
1018 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1019 			     unsigned nr_pages)
1020 {
1021 	LIST_HEAD(pages);
1022 
1023 	WARN_ON(!nr_pages);
1024 
1025 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1026 		return -ENOMEM;
1027 
1028 	/*
1029 	 * The ring buffer page list is a circular list that does not
1030 	 * start and end with a list head. All page list items point to
1031 	 * other pages.
1032 	 */
1033 	cpu_buffer->pages = pages.next;
1034 	list_del(&pages);
1035 
1036 	cpu_buffer->nr_pages = nr_pages;
1037 
1038 	rb_check_pages(cpu_buffer);
1039 
1040 	return 0;
1041 }
1042 
1043 static struct ring_buffer_per_cpu *
1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1045 {
1046 	struct ring_buffer_per_cpu *cpu_buffer;
1047 	struct buffer_page *bpage;
1048 	struct page *page;
1049 	int ret;
1050 
1051 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052 				  GFP_KERNEL, cpu_to_node(cpu));
1053 	if (!cpu_buffer)
1054 		return NULL;
1055 
1056 	cpu_buffer->cpu = cpu;
1057 	cpu_buffer->buffer = buffer;
1058 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1059 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1060 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1061 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1062 	init_completion(&cpu_buffer->update_done);
1063 
1064 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1065 			    GFP_KERNEL, cpu_to_node(cpu));
1066 	if (!bpage)
1067 		goto fail_free_buffer;
1068 
1069 	rb_check_bpage(cpu_buffer, bpage);
1070 
1071 	cpu_buffer->reader_page = bpage;
1072 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1073 	if (!page)
1074 		goto fail_free_reader;
1075 	bpage->page = page_address(page);
1076 	rb_init_page(bpage->page);
1077 
1078 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1079 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1080 
1081 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1082 	if (ret < 0)
1083 		goto fail_free_reader;
1084 
1085 	cpu_buffer->head_page
1086 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1087 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1088 
1089 	rb_head_page_activate(cpu_buffer);
1090 
1091 	return cpu_buffer;
1092 
1093  fail_free_reader:
1094 	free_buffer_page(cpu_buffer->reader_page);
1095 
1096  fail_free_buffer:
1097 	kfree(cpu_buffer);
1098 	return NULL;
1099 }
1100 
1101 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1102 {
1103 	struct list_head *head = cpu_buffer->pages;
1104 	struct buffer_page *bpage, *tmp;
1105 
1106 	free_buffer_page(cpu_buffer->reader_page);
1107 
1108 	rb_head_page_deactivate(cpu_buffer);
1109 
1110 	if (head) {
1111 		list_for_each_entry_safe(bpage, tmp, head, list) {
1112 			list_del_init(&bpage->list);
1113 			free_buffer_page(bpage);
1114 		}
1115 		bpage = list_entry(head, struct buffer_page, list);
1116 		free_buffer_page(bpage);
1117 	}
1118 
1119 	kfree(cpu_buffer);
1120 }
1121 
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 static int rb_cpu_notify(struct notifier_block *self,
1124 			 unsigned long action, void *hcpu);
1125 #endif
1126 
1127 /**
1128  * ring_buffer_alloc - allocate a new ring_buffer
1129  * @size: the size in bytes per cpu that is needed.
1130  * @flags: attributes to set for the ring buffer.
1131  *
1132  * Currently the only flag that is available is the RB_FL_OVERWRITE
1133  * flag. This flag means that the buffer will overwrite old data
1134  * when the buffer wraps. If this flag is not set, the buffer will
1135  * drop data when the tail hits the head.
1136  */
1137 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1138 					struct lock_class_key *key)
1139 {
1140 	struct ring_buffer *buffer;
1141 	int bsize;
1142 	int cpu, nr_pages;
1143 
1144 	/* keep it in its own cache line */
1145 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1146 			 GFP_KERNEL);
1147 	if (!buffer)
1148 		return NULL;
1149 
1150 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1151 		goto fail_free_buffer;
1152 
1153 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1154 	buffer->flags = flags;
1155 	buffer->clock = trace_clock_local;
1156 	buffer->reader_lock_key = key;
1157 
1158 	/* need at least two pages */
1159 	if (nr_pages < 2)
1160 		nr_pages = 2;
1161 
1162 	/*
1163 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1164 	 * in early initcall, it will not be notified of secondary cpus.
1165 	 * In that off case, we need to allocate for all possible cpus.
1166 	 */
1167 #ifdef CONFIG_HOTPLUG_CPU
1168 	get_online_cpus();
1169 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1170 #else
1171 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1172 #endif
1173 	buffer->cpus = nr_cpu_ids;
1174 
1175 	bsize = sizeof(void *) * nr_cpu_ids;
1176 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1177 				  GFP_KERNEL);
1178 	if (!buffer->buffers)
1179 		goto fail_free_cpumask;
1180 
1181 	for_each_buffer_cpu(buffer, cpu) {
1182 		buffer->buffers[cpu] =
1183 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1184 		if (!buffer->buffers[cpu])
1185 			goto fail_free_buffers;
1186 	}
1187 
1188 #ifdef CONFIG_HOTPLUG_CPU
1189 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1190 	buffer->cpu_notify.priority = 0;
1191 	register_cpu_notifier(&buffer->cpu_notify);
1192 #endif
1193 
1194 	put_online_cpus();
1195 	mutex_init(&buffer->mutex);
1196 
1197 	return buffer;
1198 
1199  fail_free_buffers:
1200 	for_each_buffer_cpu(buffer, cpu) {
1201 		if (buffer->buffers[cpu])
1202 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1203 	}
1204 	kfree(buffer->buffers);
1205 
1206  fail_free_cpumask:
1207 	free_cpumask_var(buffer->cpumask);
1208 	put_online_cpus();
1209 
1210  fail_free_buffer:
1211 	kfree(buffer);
1212 	return NULL;
1213 }
1214 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1215 
1216 /**
1217  * ring_buffer_free - free a ring buffer.
1218  * @buffer: the buffer to free.
1219  */
1220 void
1221 ring_buffer_free(struct ring_buffer *buffer)
1222 {
1223 	int cpu;
1224 
1225 	get_online_cpus();
1226 
1227 #ifdef CONFIG_HOTPLUG_CPU
1228 	unregister_cpu_notifier(&buffer->cpu_notify);
1229 #endif
1230 
1231 	for_each_buffer_cpu(buffer, cpu)
1232 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1233 
1234 	put_online_cpus();
1235 
1236 	kfree(buffer->buffers);
1237 	free_cpumask_var(buffer->cpumask);
1238 
1239 	kfree(buffer);
1240 }
1241 EXPORT_SYMBOL_GPL(ring_buffer_free);
1242 
1243 void ring_buffer_set_clock(struct ring_buffer *buffer,
1244 			   u64 (*clock)(void))
1245 {
1246 	buffer->clock = clock;
1247 }
1248 
1249 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1250 
1251 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1252 {
1253 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1254 }
1255 
1256 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1257 {
1258 	return local_read(&bpage->write) & RB_WRITE_MASK;
1259 }
1260 
1261 static int
1262 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1263 {
1264 	struct list_head *tail_page, *to_remove, *next_page;
1265 	struct buffer_page *to_remove_page, *tmp_iter_page;
1266 	struct buffer_page *last_page, *first_page;
1267 	unsigned int nr_removed;
1268 	unsigned long head_bit;
1269 	int page_entries;
1270 
1271 	head_bit = 0;
1272 
1273 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1274 	atomic_inc(&cpu_buffer->record_disabled);
1275 	/*
1276 	 * We don't race with the readers since we have acquired the reader
1277 	 * lock. We also don't race with writers after disabling recording.
1278 	 * This makes it easy to figure out the first and the last page to be
1279 	 * removed from the list. We unlink all the pages in between including
1280 	 * the first and last pages. This is done in a busy loop so that we
1281 	 * lose the least number of traces.
1282 	 * The pages are freed after we restart recording and unlock readers.
1283 	 */
1284 	tail_page = &cpu_buffer->tail_page->list;
1285 
1286 	/*
1287 	 * tail page might be on reader page, we remove the next page
1288 	 * from the ring buffer
1289 	 */
1290 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1291 		tail_page = rb_list_head(tail_page->next);
1292 	to_remove = tail_page;
1293 
1294 	/* start of pages to remove */
1295 	first_page = list_entry(rb_list_head(to_remove->next),
1296 				struct buffer_page, list);
1297 
1298 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1299 		to_remove = rb_list_head(to_remove)->next;
1300 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1301 	}
1302 
1303 	next_page = rb_list_head(to_remove)->next;
1304 
1305 	/*
1306 	 * Now we remove all pages between tail_page and next_page.
1307 	 * Make sure that we have head_bit value preserved for the
1308 	 * next page
1309 	 */
1310 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1311 						head_bit);
1312 	next_page = rb_list_head(next_page);
1313 	next_page->prev = tail_page;
1314 
1315 	/* make sure pages points to a valid page in the ring buffer */
1316 	cpu_buffer->pages = next_page;
1317 
1318 	/* update head page */
1319 	if (head_bit)
1320 		cpu_buffer->head_page = list_entry(next_page,
1321 						struct buffer_page, list);
1322 
1323 	/*
1324 	 * change read pointer to make sure any read iterators reset
1325 	 * themselves
1326 	 */
1327 	cpu_buffer->read = 0;
1328 
1329 	/* pages are removed, resume tracing and then free the pages */
1330 	atomic_dec(&cpu_buffer->record_disabled);
1331 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1332 
1333 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1334 
1335 	/* last buffer page to remove */
1336 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1337 				list);
1338 	tmp_iter_page = first_page;
1339 
1340 	do {
1341 		to_remove_page = tmp_iter_page;
1342 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1343 
1344 		/* update the counters */
1345 		page_entries = rb_page_entries(to_remove_page);
1346 		if (page_entries) {
1347 			/*
1348 			 * If something was added to this page, it was full
1349 			 * since it is not the tail page. So we deduct the
1350 			 * bytes consumed in ring buffer from here.
1351 			 * Increment overrun to account for the lost events.
1352 			 */
1353 			local_add(page_entries, &cpu_buffer->overrun);
1354 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1355 		}
1356 
1357 		/*
1358 		 * We have already removed references to this list item, just
1359 		 * free up the buffer_page and its page
1360 		 */
1361 		free_buffer_page(to_remove_page);
1362 		nr_removed--;
1363 
1364 	} while (to_remove_page != last_page);
1365 
1366 	RB_WARN_ON(cpu_buffer, nr_removed);
1367 
1368 	return nr_removed == 0;
1369 }
1370 
1371 static int
1372 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1373 {
1374 	struct list_head *pages = &cpu_buffer->new_pages;
1375 	int retries, success;
1376 
1377 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1378 	/*
1379 	 * We are holding the reader lock, so the reader page won't be swapped
1380 	 * in the ring buffer. Now we are racing with the writer trying to
1381 	 * move head page and the tail page.
1382 	 * We are going to adapt the reader page update process where:
1383 	 * 1. We first splice the start and end of list of new pages between
1384 	 *    the head page and its previous page.
1385 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1386 	 *    start of new pages list.
1387 	 * 3. Finally, we update the head->prev to the end of new list.
1388 	 *
1389 	 * We will try this process 10 times, to make sure that we don't keep
1390 	 * spinning.
1391 	 */
1392 	retries = 10;
1393 	success = 0;
1394 	while (retries--) {
1395 		struct list_head *head_page, *prev_page, *r;
1396 		struct list_head *last_page, *first_page;
1397 		struct list_head *head_page_with_bit;
1398 
1399 		head_page = &rb_set_head_page(cpu_buffer)->list;
1400 		if (!head_page)
1401 			break;
1402 		prev_page = head_page->prev;
1403 
1404 		first_page = pages->next;
1405 		last_page  = pages->prev;
1406 
1407 		head_page_with_bit = (struct list_head *)
1408 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1409 
1410 		last_page->next = head_page_with_bit;
1411 		first_page->prev = prev_page;
1412 
1413 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1414 
1415 		if (r == head_page_with_bit) {
1416 			/*
1417 			 * yay, we replaced the page pointer to our new list,
1418 			 * now, we just have to update to head page's prev
1419 			 * pointer to point to end of list
1420 			 */
1421 			head_page->prev = last_page;
1422 			success = 1;
1423 			break;
1424 		}
1425 	}
1426 
1427 	if (success)
1428 		INIT_LIST_HEAD(pages);
1429 	/*
1430 	 * If we weren't successful in adding in new pages, warn and stop
1431 	 * tracing
1432 	 */
1433 	RB_WARN_ON(cpu_buffer, !success);
1434 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1435 
1436 	/* free pages if they weren't inserted */
1437 	if (!success) {
1438 		struct buffer_page *bpage, *tmp;
1439 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1440 					 list) {
1441 			list_del_init(&bpage->list);
1442 			free_buffer_page(bpage);
1443 		}
1444 	}
1445 	return success;
1446 }
1447 
1448 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450 	int success;
1451 
1452 	if (cpu_buffer->nr_pages_to_update > 0)
1453 		success = rb_insert_pages(cpu_buffer);
1454 	else
1455 		success = rb_remove_pages(cpu_buffer,
1456 					-cpu_buffer->nr_pages_to_update);
1457 
1458 	if (success)
1459 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1460 }
1461 
1462 static void update_pages_handler(struct work_struct *work)
1463 {
1464 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1465 			struct ring_buffer_per_cpu, update_pages_work);
1466 	rb_update_pages(cpu_buffer);
1467 	complete(&cpu_buffer->update_done);
1468 }
1469 
1470 /**
1471  * ring_buffer_resize - resize the ring buffer
1472  * @buffer: the buffer to resize.
1473  * @size: the new size.
1474  *
1475  * Minimum size is 2 * BUF_PAGE_SIZE.
1476  *
1477  * Returns 0 on success and < 0 on failure.
1478  */
1479 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1480 			int cpu_id)
1481 {
1482 	struct ring_buffer_per_cpu *cpu_buffer;
1483 	unsigned nr_pages;
1484 	int cpu, err = 0;
1485 
1486 	/*
1487 	 * Always succeed at resizing a non-existent buffer:
1488 	 */
1489 	if (!buffer)
1490 		return size;
1491 
1492 	/* Make sure the requested buffer exists */
1493 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1494 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1495 		return size;
1496 
1497 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1498 	size *= BUF_PAGE_SIZE;
1499 
1500 	/* we need a minimum of two pages */
1501 	if (size < BUF_PAGE_SIZE * 2)
1502 		size = BUF_PAGE_SIZE * 2;
1503 
1504 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1505 
1506 	/*
1507 	 * Don't succeed if resizing is disabled, as a reader might be
1508 	 * manipulating the ring buffer and is expecting a sane state while
1509 	 * this is true.
1510 	 */
1511 	if (atomic_read(&buffer->resize_disabled))
1512 		return -EBUSY;
1513 
1514 	/* prevent another thread from changing buffer sizes */
1515 	mutex_lock(&buffer->mutex);
1516 
1517 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1518 		/* calculate the pages to update */
1519 		for_each_buffer_cpu(buffer, cpu) {
1520 			cpu_buffer = buffer->buffers[cpu];
1521 
1522 			cpu_buffer->nr_pages_to_update = nr_pages -
1523 							cpu_buffer->nr_pages;
1524 			/*
1525 			 * nothing more to do for removing pages or no update
1526 			 */
1527 			if (cpu_buffer->nr_pages_to_update <= 0)
1528 				continue;
1529 			/*
1530 			 * to add pages, make sure all new pages can be
1531 			 * allocated without receiving ENOMEM
1532 			 */
1533 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1534 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1535 						&cpu_buffer->new_pages, cpu)) {
1536 				/* not enough memory for new pages */
1537 				err = -ENOMEM;
1538 				goto out_err;
1539 			}
1540 		}
1541 
1542 		get_online_cpus();
1543 		/*
1544 		 * Fire off all the required work handlers
1545 		 * We can't schedule on offline CPUs, but it's not necessary
1546 		 * since we can change their buffer sizes without any race.
1547 		 */
1548 		for_each_buffer_cpu(buffer, cpu) {
1549 			cpu_buffer = buffer->buffers[cpu];
1550 			if (!cpu_buffer->nr_pages_to_update)
1551 				continue;
1552 
1553 			if (cpu_online(cpu))
1554 				schedule_work_on(cpu,
1555 						&cpu_buffer->update_pages_work);
1556 			else
1557 				rb_update_pages(cpu_buffer);
1558 		}
1559 
1560 		/* wait for all the updates to complete */
1561 		for_each_buffer_cpu(buffer, cpu) {
1562 			cpu_buffer = buffer->buffers[cpu];
1563 			if (!cpu_buffer->nr_pages_to_update)
1564 				continue;
1565 
1566 			if (cpu_online(cpu))
1567 				wait_for_completion(&cpu_buffer->update_done);
1568 			cpu_buffer->nr_pages_to_update = 0;
1569 		}
1570 
1571 		put_online_cpus();
1572 	} else {
1573 		/* Make sure this CPU has been intitialized */
1574 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1575 			goto out;
1576 
1577 		cpu_buffer = buffer->buffers[cpu_id];
1578 
1579 		if (nr_pages == cpu_buffer->nr_pages)
1580 			goto out;
1581 
1582 		cpu_buffer->nr_pages_to_update = nr_pages -
1583 						cpu_buffer->nr_pages;
1584 
1585 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1586 		if (cpu_buffer->nr_pages_to_update > 0 &&
1587 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1588 					    &cpu_buffer->new_pages, cpu_id)) {
1589 			err = -ENOMEM;
1590 			goto out_err;
1591 		}
1592 
1593 		get_online_cpus();
1594 
1595 		if (cpu_online(cpu_id)) {
1596 			schedule_work_on(cpu_id,
1597 					 &cpu_buffer->update_pages_work);
1598 			wait_for_completion(&cpu_buffer->update_done);
1599 		} else
1600 			rb_update_pages(cpu_buffer);
1601 
1602 		cpu_buffer->nr_pages_to_update = 0;
1603 		put_online_cpus();
1604 	}
1605 
1606  out:
1607 	/*
1608 	 * The ring buffer resize can happen with the ring buffer
1609 	 * enabled, so that the update disturbs the tracing as little
1610 	 * as possible. But if the buffer is disabled, we do not need
1611 	 * to worry about that, and we can take the time to verify
1612 	 * that the buffer is not corrupt.
1613 	 */
1614 	if (atomic_read(&buffer->record_disabled)) {
1615 		atomic_inc(&buffer->record_disabled);
1616 		/*
1617 		 * Even though the buffer was disabled, we must make sure
1618 		 * that it is truly disabled before calling rb_check_pages.
1619 		 * There could have been a race between checking
1620 		 * record_disable and incrementing it.
1621 		 */
1622 		synchronize_sched();
1623 		for_each_buffer_cpu(buffer, cpu) {
1624 			cpu_buffer = buffer->buffers[cpu];
1625 			rb_check_pages(cpu_buffer);
1626 		}
1627 		atomic_dec(&buffer->record_disabled);
1628 	}
1629 
1630 	mutex_unlock(&buffer->mutex);
1631 	return size;
1632 
1633  out_err:
1634 	for_each_buffer_cpu(buffer, cpu) {
1635 		struct buffer_page *bpage, *tmp;
1636 
1637 		cpu_buffer = buffer->buffers[cpu];
1638 		cpu_buffer->nr_pages_to_update = 0;
1639 
1640 		if (list_empty(&cpu_buffer->new_pages))
1641 			continue;
1642 
1643 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1644 					list) {
1645 			list_del_init(&bpage->list);
1646 			free_buffer_page(bpage);
1647 		}
1648 	}
1649 	mutex_unlock(&buffer->mutex);
1650 	return err;
1651 }
1652 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1653 
1654 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1655 {
1656 	mutex_lock(&buffer->mutex);
1657 	if (val)
1658 		buffer->flags |= RB_FL_OVERWRITE;
1659 	else
1660 		buffer->flags &= ~RB_FL_OVERWRITE;
1661 	mutex_unlock(&buffer->mutex);
1662 }
1663 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1664 
1665 static inline void *
1666 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1667 {
1668 	return bpage->data + index;
1669 }
1670 
1671 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1672 {
1673 	return bpage->page->data + index;
1674 }
1675 
1676 static inline struct ring_buffer_event *
1677 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1678 {
1679 	return __rb_page_index(cpu_buffer->reader_page,
1680 			       cpu_buffer->reader_page->read);
1681 }
1682 
1683 static inline struct ring_buffer_event *
1684 rb_iter_head_event(struct ring_buffer_iter *iter)
1685 {
1686 	return __rb_page_index(iter->head_page, iter->head);
1687 }
1688 
1689 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1690 {
1691 	return local_read(&bpage->page->commit);
1692 }
1693 
1694 /* Size is determined by what has been committed */
1695 static inline unsigned rb_page_size(struct buffer_page *bpage)
1696 {
1697 	return rb_page_commit(bpage);
1698 }
1699 
1700 static inline unsigned
1701 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1702 {
1703 	return rb_page_commit(cpu_buffer->commit_page);
1704 }
1705 
1706 static inline unsigned
1707 rb_event_index(struct ring_buffer_event *event)
1708 {
1709 	unsigned long addr = (unsigned long)event;
1710 
1711 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1712 }
1713 
1714 static inline int
1715 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1716 		   struct ring_buffer_event *event)
1717 {
1718 	unsigned long addr = (unsigned long)event;
1719 	unsigned long index;
1720 
1721 	index = rb_event_index(event);
1722 	addr &= PAGE_MASK;
1723 
1724 	return cpu_buffer->commit_page->page == (void *)addr &&
1725 		rb_commit_index(cpu_buffer) == index;
1726 }
1727 
1728 static void
1729 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1730 {
1731 	unsigned long max_count;
1732 
1733 	/*
1734 	 * We only race with interrupts and NMIs on this CPU.
1735 	 * If we own the commit event, then we can commit
1736 	 * all others that interrupted us, since the interruptions
1737 	 * are in stack format (they finish before they come
1738 	 * back to us). This allows us to do a simple loop to
1739 	 * assign the commit to the tail.
1740 	 */
1741  again:
1742 	max_count = cpu_buffer->nr_pages * 100;
1743 
1744 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1745 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1746 			return;
1747 		if (RB_WARN_ON(cpu_buffer,
1748 			       rb_is_reader_page(cpu_buffer->tail_page)))
1749 			return;
1750 		local_set(&cpu_buffer->commit_page->page->commit,
1751 			  rb_page_write(cpu_buffer->commit_page));
1752 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1753 		cpu_buffer->write_stamp =
1754 			cpu_buffer->commit_page->page->time_stamp;
1755 		/* add barrier to keep gcc from optimizing too much */
1756 		barrier();
1757 	}
1758 	while (rb_commit_index(cpu_buffer) !=
1759 	       rb_page_write(cpu_buffer->commit_page)) {
1760 
1761 		local_set(&cpu_buffer->commit_page->page->commit,
1762 			  rb_page_write(cpu_buffer->commit_page));
1763 		RB_WARN_ON(cpu_buffer,
1764 			   local_read(&cpu_buffer->commit_page->page->commit) &
1765 			   ~RB_WRITE_MASK);
1766 		barrier();
1767 	}
1768 
1769 	/* again, keep gcc from optimizing */
1770 	barrier();
1771 
1772 	/*
1773 	 * If an interrupt came in just after the first while loop
1774 	 * and pushed the tail page forward, we will be left with
1775 	 * a dangling commit that will never go forward.
1776 	 */
1777 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1778 		goto again;
1779 }
1780 
1781 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1782 {
1783 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1784 	cpu_buffer->reader_page->read = 0;
1785 }
1786 
1787 static void rb_inc_iter(struct ring_buffer_iter *iter)
1788 {
1789 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1790 
1791 	/*
1792 	 * The iterator could be on the reader page (it starts there).
1793 	 * But the head could have moved, since the reader was
1794 	 * found. Check for this case and assign the iterator
1795 	 * to the head page instead of next.
1796 	 */
1797 	if (iter->head_page == cpu_buffer->reader_page)
1798 		iter->head_page = rb_set_head_page(cpu_buffer);
1799 	else
1800 		rb_inc_page(cpu_buffer, &iter->head_page);
1801 
1802 	iter->read_stamp = iter->head_page->page->time_stamp;
1803 	iter->head = 0;
1804 }
1805 
1806 /* Slow path, do not inline */
1807 static noinline struct ring_buffer_event *
1808 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1809 {
1810 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1811 
1812 	/* Not the first event on the page? */
1813 	if (rb_event_index(event)) {
1814 		event->time_delta = delta & TS_MASK;
1815 		event->array[0] = delta >> TS_SHIFT;
1816 	} else {
1817 		/* nope, just zero it */
1818 		event->time_delta = 0;
1819 		event->array[0] = 0;
1820 	}
1821 
1822 	return skip_time_extend(event);
1823 }
1824 
1825 /**
1826  * rb_update_event - update event type and data
1827  * @event: the even to update
1828  * @type: the type of event
1829  * @length: the size of the event field in the ring buffer
1830  *
1831  * Update the type and data fields of the event. The length
1832  * is the actual size that is written to the ring buffer,
1833  * and with this, we can determine what to place into the
1834  * data field.
1835  */
1836 static void
1837 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1838 		struct ring_buffer_event *event, unsigned length,
1839 		int add_timestamp, u64 delta)
1840 {
1841 	/* Only a commit updates the timestamp */
1842 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1843 		delta = 0;
1844 
1845 	/*
1846 	 * If we need to add a timestamp, then we
1847 	 * add it to the start of the resevered space.
1848 	 */
1849 	if (unlikely(add_timestamp)) {
1850 		event = rb_add_time_stamp(event, delta);
1851 		length -= RB_LEN_TIME_EXTEND;
1852 		delta = 0;
1853 	}
1854 
1855 	event->time_delta = delta;
1856 	length -= RB_EVNT_HDR_SIZE;
1857 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1858 		event->type_len = 0;
1859 		event->array[0] = length;
1860 	} else
1861 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1862 }
1863 
1864 /*
1865  * rb_handle_head_page - writer hit the head page
1866  *
1867  * Returns: +1 to retry page
1868  *           0 to continue
1869  *          -1 on error
1870  */
1871 static int
1872 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1873 		    struct buffer_page *tail_page,
1874 		    struct buffer_page *next_page)
1875 {
1876 	struct buffer_page *new_head;
1877 	int entries;
1878 	int type;
1879 	int ret;
1880 
1881 	entries = rb_page_entries(next_page);
1882 
1883 	/*
1884 	 * The hard part is here. We need to move the head
1885 	 * forward, and protect against both readers on
1886 	 * other CPUs and writers coming in via interrupts.
1887 	 */
1888 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1889 				       RB_PAGE_HEAD);
1890 
1891 	/*
1892 	 * type can be one of four:
1893 	 *  NORMAL - an interrupt already moved it for us
1894 	 *  HEAD   - we are the first to get here.
1895 	 *  UPDATE - we are the interrupt interrupting
1896 	 *           a current move.
1897 	 *  MOVED  - a reader on another CPU moved the next
1898 	 *           pointer to its reader page. Give up
1899 	 *           and try again.
1900 	 */
1901 
1902 	switch (type) {
1903 	case RB_PAGE_HEAD:
1904 		/*
1905 		 * We changed the head to UPDATE, thus
1906 		 * it is our responsibility to update
1907 		 * the counters.
1908 		 */
1909 		local_add(entries, &cpu_buffer->overrun);
1910 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1911 
1912 		/*
1913 		 * The entries will be zeroed out when we move the
1914 		 * tail page.
1915 		 */
1916 
1917 		/* still more to do */
1918 		break;
1919 
1920 	case RB_PAGE_UPDATE:
1921 		/*
1922 		 * This is an interrupt that interrupt the
1923 		 * previous update. Still more to do.
1924 		 */
1925 		break;
1926 	case RB_PAGE_NORMAL:
1927 		/*
1928 		 * An interrupt came in before the update
1929 		 * and processed this for us.
1930 		 * Nothing left to do.
1931 		 */
1932 		return 1;
1933 	case RB_PAGE_MOVED:
1934 		/*
1935 		 * The reader is on another CPU and just did
1936 		 * a swap with our next_page.
1937 		 * Try again.
1938 		 */
1939 		return 1;
1940 	default:
1941 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1942 		return -1;
1943 	}
1944 
1945 	/*
1946 	 * Now that we are here, the old head pointer is
1947 	 * set to UPDATE. This will keep the reader from
1948 	 * swapping the head page with the reader page.
1949 	 * The reader (on another CPU) will spin till
1950 	 * we are finished.
1951 	 *
1952 	 * We just need to protect against interrupts
1953 	 * doing the job. We will set the next pointer
1954 	 * to HEAD. After that, we set the old pointer
1955 	 * to NORMAL, but only if it was HEAD before.
1956 	 * otherwise we are an interrupt, and only
1957 	 * want the outer most commit to reset it.
1958 	 */
1959 	new_head = next_page;
1960 	rb_inc_page(cpu_buffer, &new_head);
1961 
1962 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1963 				    RB_PAGE_NORMAL);
1964 
1965 	/*
1966 	 * Valid returns are:
1967 	 *  HEAD   - an interrupt came in and already set it.
1968 	 *  NORMAL - One of two things:
1969 	 *            1) We really set it.
1970 	 *            2) A bunch of interrupts came in and moved
1971 	 *               the page forward again.
1972 	 */
1973 	switch (ret) {
1974 	case RB_PAGE_HEAD:
1975 	case RB_PAGE_NORMAL:
1976 		/* OK */
1977 		break;
1978 	default:
1979 		RB_WARN_ON(cpu_buffer, 1);
1980 		return -1;
1981 	}
1982 
1983 	/*
1984 	 * It is possible that an interrupt came in,
1985 	 * set the head up, then more interrupts came in
1986 	 * and moved it again. When we get back here,
1987 	 * the page would have been set to NORMAL but we
1988 	 * just set it back to HEAD.
1989 	 *
1990 	 * How do you detect this? Well, if that happened
1991 	 * the tail page would have moved.
1992 	 */
1993 	if (ret == RB_PAGE_NORMAL) {
1994 		/*
1995 		 * If the tail had moved passed next, then we need
1996 		 * to reset the pointer.
1997 		 */
1998 		if (cpu_buffer->tail_page != tail_page &&
1999 		    cpu_buffer->tail_page != next_page)
2000 			rb_head_page_set_normal(cpu_buffer, new_head,
2001 						next_page,
2002 						RB_PAGE_HEAD);
2003 	}
2004 
2005 	/*
2006 	 * If this was the outer most commit (the one that
2007 	 * changed the original pointer from HEAD to UPDATE),
2008 	 * then it is up to us to reset it to NORMAL.
2009 	 */
2010 	if (type == RB_PAGE_HEAD) {
2011 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2012 					      tail_page,
2013 					      RB_PAGE_UPDATE);
2014 		if (RB_WARN_ON(cpu_buffer,
2015 			       ret != RB_PAGE_UPDATE))
2016 			return -1;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 static unsigned rb_calculate_event_length(unsigned length)
2023 {
2024 	struct ring_buffer_event event; /* Used only for sizeof array */
2025 
2026 	/* zero length can cause confusions */
2027 	if (!length)
2028 		length = 1;
2029 
2030 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2031 		length += sizeof(event.array[0]);
2032 
2033 	length += RB_EVNT_HDR_SIZE;
2034 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2035 
2036 	return length;
2037 }
2038 
2039 static inline void
2040 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2041 	      struct buffer_page *tail_page,
2042 	      unsigned long tail, unsigned long length)
2043 {
2044 	struct ring_buffer_event *event;
2045 
2046 	/*
2047 	 * Only the event that crossed the page boundary
2048 	 * must fill the old tail_page with padding.
2049 	 */
2050 	if (tail >= BUF_PAGE_SIZE) {
2051 		/*
2052 		 * If the page was filled, then we still need
2053 		 * to update the real_end. Reset it to zero
2054 		 * and the reader will ignore it.
2055 		 */
2056 		if (tail == BUF_PAGE_SIZE)
2057 			tail_page->real_end = 0;
2058 
2059 		local_sub(length, &tail_page->write);
2060 		return;
2061 	}
2062 
2063 	event = __rb_page_index(tail_page, tail);
2064 	kmemcheck_annotate_bitfield(event, bitfield);
2065 
2066 	/* account for padding bytes */
2067 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2068 
2069 	/*
2070 	 * Save the original length to the meta data.
2071 	 * This will be used by the reader to add lost event
2072 	 * counter.
2073 	 */
2074 	tail_page->real_end = tail;
2075 
2076 	/*
2077 	 * If this event is bigger than the minimum size, then
2078 	 * we need to be careful that we don't subtract the
2079 	 * write counter enough to allow another writer to slip
2080 	 * in on this page.
2081 	 * We put in a discarded commit instead, to make sure
2082 	 * that this space is not used again.
2083 	 *
2084 	 * If we are less than the minimum size, we don't need to
2085 	 * worry about it.
2086 	 */
2087 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2088 		/* No room for any events */
2089 
2090 		/* Mark the rest of the page with padding */
2091 		rb_event_set_padding(event);
2092 
2093 		/* Set the write back to the previous setting */
2094 		local_sub(length, &tail_page->write);
2095 		return;
2096 	}
2097 
2098 	/* Put in a discarded event */
2099 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2100 	event->type_len = RINGBUF_TYPE_PADDING;
2101 	/* time delta must be non zero */
2102 	event->time_delta = 1;
2103 
2104 	/* Set write to end of buffer */
2105 	length = (tail + length) - BUF_PAGE_SIZE;
2106 	local_sub(length, &tail_page->write);
2107 }
2108 
2109 /*
2110  * This is the slow path, force gcc not to inline it.
2111  */
2112 static noinline struct ring_buffer_event *
2113 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2114 	     unsigned long length, unsigned long tail,
2115 	     struct buffer_page *tail_page, u64 ts)
2116 {
2117 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2118 	struct ring_buffer *buffer = cpu_buffer->buffer;
2119 	struct buffer_page *next_page;
2120 	int ret;
2121 
2122 	next_page = tail_page;
2123 
2124 	rb_inc_page(cpu_buffer, &next_page);
2125 
2126 	/*
2127 	 * If for some reason, we had an interrupt storm that made
2128 	 * it all the way around the buffer, bail, and warn
2129 	 * about it.
2130 	 */
2131 	if (unlikely(next_page == commit_page)) {
2132 		local_inc(&cpu_buffer->commit_overrun);
2133 		goto out_reset;
2134 	}
2135 
2136 	/*
2137 	 * This is where the fun begins!
2138 	 *
2139 	 * We are fighting against races between a reader that
2140 	 * could be on another CPU trying to swap its reader
2141 	 * page with the buffer head.
2142 	 *
2143 	 * We are also fighting against interrupts coming in and
2144 	 * moving the head or tail on us as well.
2145 	 *
2146 	 * If the next page is the head page then we have filled
2147 	 * the buffer, unless the commit page is still on the
2148 	 * reader page.
2149 	 */
2150 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2151 
2152 		/*
2153 		 * If the commit is not on the reader page, then
2154 		 * move the header page.
2155 		 */
2156 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2157 			/*
2158 			 * If we are not in overwrite mode,
2159 			 * this is easy, just stop here.
2160 			 */
2161 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2162 				local_inc(&cpu_buffer->dropped_events);
2163 				goto out_reset;
2164 			}
2165 
2166 			ret = rb_handle_head_page(cpu_buffer,
2167 						  tail_page,
2168 						  next_page);
2169 			if (ret < 0)
2170 				goto out_reset;
2171 			if (ret)
2172 				goto out_again;
2173 		} else {
2174 			/*
2175 			 * We need to be careful here too. The
2176 			 * commit page could still be on the reader
2177 			 * page. We could have a small buffer, and
2178 			 * have filled up the buffer with events
2179 			 * from interrupts and such, and wrapped.
2180 			 *
2181 			 * Note, if the tail page is also the on the
2182 			 * reader_page, we let it move out.
2183 			 */
2184 			if (unlikely((cpu_buffer->commit_page !=
2185 				      cpu_buffer->tail_page) &&
2186 				     (cpu_buffer->commit_page ==
2187 				      cpu_buffer->reader_page))) {
2188 				local_inc(&cpu_buffer->commit_overrun);
2189 				goto out_reset;
2190 			}
2191 		}
2192 	}
2193 
2194 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2195 	if (ret) {
2196 		/*
2197 		 * Nested commits always have zero deltas, so
2198 		 * just reread the time stamp
2199 		 */
2200 		ts = rb_time_stamp(buffer);
2201 		next_page->page->time_stamp = ts;
2202 	}
2203 
2204  out_again:
2205 
2206 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2207 
2208 	/* fail and let the caller try again */
2209 	return ERR_PTR(-EAGAIN);
2210 
2211  out_reset:
2212 	/* reset write */
2213 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2214 
2215 	return NULL;
2216 }
2217 
2218 static struct ring_buffer_event *
2219 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2220 		  unsigned long length, u64 ts,
2221 		  u64 delta, int add_timestamp)
2222 {
2223 	struct buffer_page *tail_page;
2224 	struct ring_buffer_event *event;
2225 	unsigned long tail, write;
2226 
2227 	/*
2228 	 * If the time delta since the last event is too big to
2229 	 * hold in the time field of the event, then we append a
2230 	 * TIME EXTEND event ahead of the data event.
2231 	 */
2232 	if (unlikely(add_timestamp))
2233 		length += RB_LEN_TIME_EXTEND;
2234 
2235 	tail_page = cpu_buffer->tail_page;
2236 	write = local_add_return(length, &tail_page->write);
2237 
2238 	/* set write to only the index of the write */
2239 	write &= RB_WRITE_MASK;
2240 	tail = write - length;
2241 
2242 	/* See if we shot pass the end of this buffer page */
2243 	if (unlikely(write > BUF_PAGE_SIZE))
2244 		return rb_move_tail(cpu_buffer, length, tail,
2245 				    tail_page, ts);
2246 
2247 	/* We reserved something on the buffer */
2248 
2249 	event = __rb_page_index(tail_page, tail);
2250 	kmemcheck_annotate_bitfield(event, bitfield);
2251 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2252 
2253 	local_inc(&tail_page->entries);
2254 
2255 	/*
2256 	 * If this is the first commit on the page, then update
2257 	 * its timestamp.
2258 	 */
2259 	if (!tail)
2260 		tail_page->page->time_stamp = ts;
2261 
2262 	/* account for these added bytes */
2263 	local_add(length, &cpu_buffer->entries_bytes);
2264 
2265 	return event;
2266 }
2267 
2268 static inline int
2269 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2270 		  struct ring_buffer_event *event)
2271 {
2272 	unsigned long new_index, old_index;
2273 	struct buffer_page *bpage;
2274 	unsigned long index;
2275 	unsigned long addr;
2276 
2277 	new_index = rb_event_index(event);
2278 	old_index = new_index + rb_event_ts_length(event);
2279 	addr = (unsigned long)event;
2280 	addr &= PAGE_MASK;
2281 
2282 	bpage = cpu_buffer->tail_page;
2283 
2284 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2285 		unsigned long write_mask =
2286 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2287 		unsigned long event_length = rb_event_length(event);
2288 		/*
2289 		 * This is on the tail page. It is possible that
2290 		 * a write could come in and move the tail page
2291 		 * and write to the next page. That is fine
2292 		 * because we just shorten what is on this page.
2293 		 */
2294 		old_index += write_mask;
2295 		new_index += write_mask;
2296 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2297 		if (index == old_index) {
2298 			/* update counters */
2299 			local_sub(event_length, &cpu_buffer->entries_bytes);
2300 			return 1;
2301 		}
2302 	}
2303 
2304 	/* could not discard */
2305 	return 0;
2306 }
2307 
2308 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2309 {
2310 	local_inc(&cpu_buffer->committing);
2311 	local_inc(&cpu_buffer->commits);
2312 }
2313 
2314 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2315 {
2316 	unsigned long commits;
2317 
2318 	if (RB_WARN_ON(cpu_buffer,
2319 		       !local_read(&cpu_buffer->committing)))
2320 		return;
2321 
2322  again:
2323 	commits = local_read(&cpu_buffer->commits);
2324 	/* synchronize with interrupts */
2325 	barrier();
2326 	if (local_read(&cpu_buffer->committing) == 1)
2327 		rb_set_commit_to_write(cpu_buffer);
2328 
2329 	local_dec(&cpu_buffer->committing);
2330 
2331 	/* synchronize with interrupts */
2332 	barrier();
2333 
2334 	/*
2335 	 * Need to account for interrupts coming in between the
2336 	 * updating of the commit page and the clearing of the
2337 	 * committing counter.
2338 	 */
2339 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2340 	    !local_read(&cpu_buffer->committing)) {
2341 		local_inc(&cpu_buffer->committing);
2342 		goto again;
2343 	}
2344 }
2345 
2346 static struct ring_buffer_event *
2347 rb_reserve_next_event(struct ring_buffer *buffer,
2348 		      struct ring_buffer_per_cpu *cpu_buffer,
2349 		      unsigned long length)
2350 {
2351 	struct ring_buffer_event *event;
2352 	u64 ts, delta;
2353 	int nr_loops = 0;
2354 	int add_timestamp;
2355 	u64 diff;
2356 
2357 	rb_start_commit(cpu_buffer);
2358 
2359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2360 	/*
2361 	 * Due to the ability to swap a cpu buffer from a buffer
2362 	 * it is possible it was swapped before we committed.
2363 	 * (committing stops a swap). We check for it here and
2364 	 * if it happened, we have to fail the write.
2365 	 */
2366 	barrier();
2367 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2368 		local_dec(&cpu_buffer->committing);
2369 		local_dec(&cpu_buffer->commits);
2370 		return NULL;
2371 	}
2372 #endif
2373 
2374 	length = rb_calculate_event_length(length);
2375  again:
2376 	add_timestamp = 0;
2377 	delta = 0;
2378 
2379 	/*
2380 	 * We allow for interrupts to reenter here and do a trace.
2381 	 * If one does, it will cause this original code to loop
2382 	 * back here. Even with heavy interrupts happening, this
2383 	 * should only happen a few times in a row. If this happens
2384 	 * 1000 times in a row, there must be either an interrupt
2385 	 * storm or we have something buggy.
2386 	 * Bail!
2387 	 */
2388 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2389 		goto out_fail;
2390 
2391 	ts = rb_time_stamp(cpu_buffer->buffer);
2392 	diff = ts - cpu_buffer->write_stamp;
2393 
2394 	/* make sure this diff is calculated here */
2395 	barrier();
2396 
2397 	/* Did the write stamp get updated already? */
2398 	if (likely(ts >= cpu_buffer->write_stamp)) {
2399 		delta = diff;
2400 		if (unlikely(test_time_stamp(delta))) {
2401 			int local_clock_stable = 1;
2402 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2403 			local_clock_stable = sched_clock_stable;
2404 #endif
2405 			WARN_ONCE(delta > (1ULL << 59),
2406 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2407 				  (unsigned long long)delta,
2408 				  (unsigned long long)ts,
2409 				  (unsigned long long)cpu_buffer->write_stamp,
2410 				  local_clock_stable ? "" :
2411 				  "If you just came from a suspend/resume,\n"
2412 				  "please switch to the trace global clock:\n"
2413 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2414 			add_timestamp = 1;
2415 		}
2416 	}
2417 
2418 	event = __rb_reserve_next(cpu_buffer, length, ts,
2419 				  delta, add_timestamp);
2420 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2421 		goto again;
2422 
2423 	if (!event)
2424 		goto out_fail;
2425 
2426 	return event;
2427 
2428  out_fail:
2429 	rb_end_commit(cpu_buffer);
2430 	return NULL;
2431 }
2432 
2433 #ifdef CONFIG_TRACING
2434 
2435 #define TRACE_RECURSIVE_DEPTH 16
2436 
2437 /* Keep this code out of the fast path cache */
2438 static noinline void trace_recursive_fail(void)
2439 {
2440 	/* Disable all tracing before we do anything else */
2441 	tracing_off_permanent();
2442 
2443 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2444 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2445 		    trace_recursion_buffer(),
2446 		    hardirq_count() >> HARDIRQ_SHIFT,
2447 		    softirq_count() >> SOFTIRQ_SHIFT,
2448 		    in_nmi());
2449 
2450 	WARN_ON_ONCE(1);
2451 }
2452 
2453 static inline int trace_recursive_lock(void)
2454 {
2455 	trace_recursion_inc();
2456 
2457 	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2458 		return 0;
2459 
2460 	trace_recursive_fail();
2461 
2462 	return -1;
2463 }
2464 
2465 static inline void trace_recursive_unlock(void)
2466 {
2467 	WARN_ON_ONCE(!trace_recursion_buffer());
2468 
2469 	trace_recursion_dec();
2470 }
2471 
2472 #else
2473 
2474 #define trace_recursive_lock()		(0)
2475 #define trace_recursive_unlock()	do { } while (0)
2476 
2477 #endif
2478 
2479 /**
2480  * ring_buffer_lock_reserve - reserve a part of the buffer
2481  * @buffer: the ring buffer to reserve from
2482  * @length: the length of the data to reserve (excluding event header)
2483  *
2484  * Returns a reseverd event on the ring buffer to copy directly to.
2485  * The user of this interface will need to get the body to write into
2486  * and can use the ring_buffer_event_data() interface.
2487  *
2488  * The length is the length of the data needed, not the event length
2489  * which also includes the event header.
2490  *
2491  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2492  * If NULL is returned, then nothing has been allocated or locked.
2493  */
2494 struct ring_buffer_event *
2495 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2496 {
2497 	struct ring_buffer_per_cpu *cpu_buffer;
2498 	struct ring_buffer_event *event;
2499 	int cpu;
2500 
2501 	if (ring_buffer_flags != RB_BUFFERS_ON)
2502 		return NULL;
2503 
2504 	/* If we are tracing schedule, we don't want to recurse */
2505 	preempt_disable_notrace();
2506 
2507 	if (atomic_read(&buffer->record_disabled))
2508 		goto out_nocheck;
2509 
2510 	if (trace_recursive_lock())
2511 		goto out_nocheck;
2512 
2513 	cpu = raw_smp_processor_id();
2514 
2515 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2516 		goto out;
2517 
2518 	cpu_buffer = buffer->buffers[cpu];
2519 
2520 	if (atomic_read(&cpu_buffer->record_disabled))
2521 		goto out;
2522 
2523 	if (length > BUF_MAX_DATA_SIZE)
2524 		goto out;
2525 
2526 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2527 	if (!event)
2528 		goto out;
2529 
2530 	return event;
2531 
2532  out:
2533 	trace_recursive_unlock();
2534 
2535  out_nocheck:
2536 	preempt_enable_notrace();
2537 	return NULL;
2538 }
2539 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2540 
2541 static void
2542 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2543 		      struct ring_buffer_event *event)
2544 {
2545 	u64 delta;
2546 
2547 	/*
2548 	 * The event first in the commit queue updates the
2549 	 * time stamp.
2550 	 */
2551 	if (rb_event_is_commit(cpu_buffer, event)) {
2552 		/*
2553 		 * A commit event that is first on a page
2554 		 * updates the write timestamp with the page stamp
2555 		 */
2556 		if (!rb_event_index(event))
2557 			cpu_buffer->write_stamp =
2558 				cpu_buffer->commit_page->page->time_stamp;
2559 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2560 			delta = event->array[0];
2561 			delta <<= TS_SHIFT;
2562 			delta += event->time_delta;
2563 			cpu_buffer->write_stamp += delta;
2564 		} else
2565 			cpu_buffer->write_stamp += event->time_delta;
2566 	}
2567 }
2568 
2569 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2570 		      struct ring_buffer_event *event)
2571 {
2572 	local_inc(&cpu_buffer->entries);
2573 	rb_update_write_stamp(cpu_buffer, event);
2574 	rb_end_commit(cpu_buffer);
2575 }
2576 
2577 /**
2578  * ring_buffer_unlock_commit - commit a reserved
2579  * @buffer: The buffer to commit to
2580  * @event: The event pointer to commit.
2581  *
2582  * This commits the data to the ring buffer, and releases any locks held.
2583  *
2584  * Must be paired with ring_buffer_lock_reserve.
2585  */
2586 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2587 			      struct ring_buffer_event *event)
2588 {
2589 	struct ring_buffer_per_cpu *cpu_buffer;
2590 	int cpu = raw_smp_processor_id();
2591 
2592 	cpu_buffer = buffer->buffers[cpu];
2593 
2594 	rb_commit(cpu_buffer, event);
2595 
2596 	trace_recursive_unlock();
2597 
2598 	preempt_enable_notrace();
2599 
2600 	return 0;
2601 }
2602 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2603 
2604 static inline void rb_event_discard(struct ring_buffer_event *event)
2605 {
2606 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2607 		event = skip_time_extend(event);
2608 
2609 	/* array[0] holds the actual length for the discarded event */
2610 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2611 	event->type_len = RINGBUF_TYPE_PADDING;
2612 	/* time delta must be non zero */
2613 	if (!event->time_delta)
2614 		event->time_delta = 1;
2615 }
2616 
2617 /*
2618  * Decrement the entries to the page that an event is on.
2619  * The event does not even need to exist, only the pointer
2620  * to the page it is on. This may only be called before the commit
2621  * takes place.
2622  */
2623 static inline void
2624 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2625 		   struct ring_buffer_event *event)
2626 {
2627 	unsigned long addr = (unsigned long)event;
2628 	struct buffer_page *bpage = cpu_buffer->commit_page;
2629 	struct buffer_page *start;
2630 
2631 	addr &= PAGE_MASK;
2632 
2633 	/* Do the likely case first */
2634 	if (likely(bpage->page == (void *)addr)) {
2635 		local_dec(&bpage->entries);
2636 		return;
2637 	}
2638 
2639 	/*
2640 	 * Because the commit page may be on the reader page we
2641 	 * start with the next page and check the end loop there.
2642 	 */
2643 	rb_inc_page(cpu_buffer, &bpage);
2644 	start = bpage;
2645 	do {
2646 		if (bpage->page == (void *)addr) {
2647 			local_dec(&bpage->entries);
2648 			return;
2649 		}
2650 		rb_inc_page(cpu_buffer, &bpage);
2651 	} while (bpage != start);
2652 
2653 	/* commit not part of this buffer?? */
2654 	RB_WARN_ON(cpu_buffer, 1);
2655 }
2656 
2657 /**
2658  * ring_buffer_commit_discard - discard an event that has not been committed
2659  * @buffer: the ring buffer
2660  * @event: non committed event to discard
2661  *
2662  * Sometimes an event that is in the ring buffer needs to be ignored.
2663  * This function lets the user discard an event in the ring buffer
2664  * and then that event will not be read later.
2665  *
2666  * This function only works if it is called before the the item has been
2667  * committed. It will try to free the event from the ring buffer
2668  * if another event has not been added behind it.
2669  *
2670  * If another event has been added behind it, it will set the event
2671  * up as discarded, and perform the commit.
2672  *
2673  * If this function is called, do not call ring_buffer_unlock_commit on
2674  * the event.
2675  */
2676 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2677 				struct ring_buffer_event *event)
2678 {
2679 	struct ring_buffer_per_cpu *cpu_buffer;
2680 	int cpu;
2681 
2682 	/* The event is discarded regardless */
2683 	rb_event_discard(event);
2684 
2685 	cpu = smp_processor_id();
2686 	cpu_buffer = buffer->buffers[cpu];
2687 
2688 	/*
2689 	 * This must only be called if the event has not been
2690 	 * committed yet. Thus we can assume that preemption
2691 	 * is still disabled.
2692 	 */
2693 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2694 
2695 	rb_decrement_entry(cpu_buffer, event);
2696 	if (rb_try_to_discard(cpu_buffer, event))
2697 		goto out;
2698 
2699 	/*
2700 	 * The commit is still visible by the reader, so we
2701 	 * must still update the timestamp.
2702 	 */
2703 	rb_update_write_stamp(cpu_buffer, event);
2704  out:
2705 	rb_end_commit(cpu_buffer);
2706 
2707 	trace_recursive_unlock();
2708 
2709 	preempt_enable_notrace();
2710 
2711 }
2712 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2713 
2714 /**
2715  * ring_buffer_write - write data to the buffer without reserving
2716  * @buffer: The ring buffer to write to.
2717  * @length: The length of the data being written (excluding the event header)
2718  * @data: The data to write to the buffer.
2719  *
2720  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2721  * one function. If you already have the data to write to the buffer, it
2722  * may be easier to simply call this function.
2723  *
2724  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2725  * and not the length of the event which would hold the header.
2726  */
2727 int ring_buffer_write(struct ring_buffer *buffer,
2728 		      unsigned long length,
2729 		      void *data)
2730 {
2731 	struct ring_buffer_per_cpu *cpu_buffer;
2732 	struct ring_buffer_event *event;
2733 	void *body;
2734 	int ret = -EBUSY;
2735 	int cpu;
2736 
2737 	if (ring_buffer_flags != RB_BUFFERS_ON)
2738 		return -EBUSY;
2739 
2740 	preempt_disable_notrace();
2741 
2742 	if (atomic_read(&buffer->record_disabled))
2743 		goto out;
2744 
2745 	cpu = raw_smp_processor_id();
2746 
2747 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2748 		goto out;
2749 
2750 	cpu_buffer = buffer->buffers[cpu];
2751 
2752 	if (atomic_read(&cpu_buffer->record_disabled))
2753 		goto out;
2754 
2755 	if (length > BUF_MAX_DATA_SIZE)
2756 		goto out;
2757 
2758 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2759 	if (!event)
2760 		goto out;
2761 
2762 	body = rb_event_data(event);
2763 
2764 	memcpy(body, data, length);
2765 
2766 	rb_commit(cpu_buffer, event);
2767 
2768 	ret = 0;
2769  out:
2770 	preempt_enable_notrace();
2771 
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(ring_buffer_write);
2775 
2776 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2777 {
2778 	struct buffer_page *reader = cpu_buffer->reader_page;
2779 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2780 	struct buffer_page *commit = cpu_buffer->commit_page;
2781 
2782 	/* In case of error, head will be NULL */
2783 	if (unlikely(!head))
2784 		return 1;
2785 
2786 	return reader->read == rb_page_commit(reader) &&
2787 		(commit == reader ||
2788 		 (commit == head &&
2789 		  head->read == rb_page_commit(commit)));
2790 }
2791 
2792 /**
2793  * ring_buffer_record_disable - stop all writes into the buffer
2794  * @buffer: The ring buffer to stop writes to.
2795  *
2796  * This prevents all writes to the buffer. Any attempt to write
2797  * to the buffer after this will fail and return NULL.
2798  *
2799  * The caller should call synchronize_sched() after this.
2800  */
2801 void ring_buffer_record_disable(struct ring_buffer *buffer)
2802 {
2803 	atomic_inc(&buffer->record_disabled);
2804 }
2805 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2806 
2807 /**
2808  * ring_buffer_record_enable - enable writes to the buffer
2809  * @buffer: The ring buffer to enable writes
2810  *
2811  * Note, multiple disables will need the same number of enables
2812  * to truly enable the writing (much like preempt_disable).
2813  */
2814 void ring_buffer_record_enable(struct ring_buffer *buffer)
2815 {
2816 	atomic_dec(&buffer->record_disabled);
2817 }
2818 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2819 
2820 /**
2821  * ring_buffer_record_off - stop all writes into the buffer
2822  * @buffer: The ring buffer to stop writes to.
2823  *
2824  * This prevents all writes to the buffer. Any attempt to write
2825  * to the buffer after this will fail and return NULL.
2826  *
2827  * This is different than ring_buffer_record_disable() as
2828  * it works like an on/off switch, where as the disable() version
2829  * must be paired with a enable().
2830  */
2831 void ring_buffer_record_off(struct ring_buffer *buffer)
2832 {
2833 	unsigned int rd;
2834 	unsigned int new_rd;
2835 
2836 	do {
2837 		rd = atomic_read(&buffer->record_disabled);
2838 		new_rd = rd | RB_BUFFER_OFF;
2839 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2840 }
2841 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2842 
2843 /**
2844  * ring_buffer_record_on - restart writes into the buffer
2845  * @buffer: The ring buffer to start writes to.
2846  *
2847  * This enables all writes to the buffer that was disabled by
2848  * ring_buffer_record_off().
2849  *
2850  * This is different than ring_buffer_record_enable() as
2851  * it works like an on/off switch, where as the enable() version
2852  * must be paired with a disable().
2853  */
2854 void ring_buffer_record_on(struct ring_buffer *buffer)
2855 {
2856 	unsigned int rd;
2857 	unsigned int new_rd;
2858 
2859 	do {
2860 		rd = atomic_read(&buffer->record_disabled);
2861 		new_rd = rd & ~RB_BUFFER_OFF;
2862 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2863 }
2864 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2865 
2866 /**
2867  * ring_buffer_record_is_on - return true if the ring buffer can write
2868  * @buffer: The ring buffer to see if write is enabled
2869  *
2870  * Returns true if the ring buffer is in a state that it accepts writes.
2871  */
2872 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2873 {
2874 	return !atomic_read(&buffer->record_disabled);
2875 }
2876 
2877 /**
2878  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2879  * @buffer: The ring buffer to stop writes to.
2880  * @cpu: The CPU buffer to stop
2881  *
2882  * This prevents all writes to the buffer. Any attempt to write
2883  * to the buffer after this will fail and return NULL.
2884  *
2885  * The caller should call synchronize_sched() after this.
2886  */
2887 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2888 {
2889 	struct ring_buffer_per_cpu *cpu_buffer;
2890 
2891 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2892 		return;
2893 
2894 	cpu_buffer = buffer->buffers[cpu];
2895 	atomic_inc(&cpu_buffer->record_disabled);
2896 }
2897 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2898 
2899 /**
2900  * ring_buffer_record_enable_cpu - enable writes to the buffer
2901  * @buffer: The ring buffer to enable writes
2902  * @cpu: The CPU to enable.
2903  *
2904  * Note, multiple disables will need the same number of enables
2905  * to truly enable the writing (much like preempt_disable).
2906  */
2907 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2908 {
2909 	struct ring_buffer_per_cpu *cpu_buffer;
2910 
2911 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2912 		return;
2913 
2914 	cpu_buffer = buffer->buffers[cpu];
2915 	atomic_dec(&cpu_buffer->record_disabled);
2916 }
2917 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2918 
2919 /*
2920  * The total entries in the ring buffer is the running counter
2921  * of entries entered into the ring buffer, minus the sum of
2922  * the entries read from the ring buffer and the number of
2923  * entries that were overwritten.
2924  */
2925 static inline unsigned long
2926 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2927 {
2928 	return local_read(&cpu_buffer->entries) -
2929 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2930 }
2931 
2932 /**
2933  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2934  * @buffer: The ring buffer
2935  * @cpu: The per CPU buffer to read from.
2936  */
2937 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2938 {
2939 	unsigned long flags;
2940 	struct ring_buffer_per_cpu *cpu_buffer;
2941 	struct buffer_page *bpage;
2942 	u64 ret = 0;
2943 
2944 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2945 		return 0;
2946 
2947 	cpu_buffer = buffer->buffers[cpu];
2948 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2949 	/*
2950 	 * if the tail is on reader_page, oldest time stamp is on the reader
2951 	 * page
2952 	 */
2953 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2954 		bpage = cpu_buffer->reader_page;
2955 	else
2956 		bpage = rb_set_head_page(cpu_buffer);
2957 	if (bpage)
2958 		ret = bpage->page->time_stamp;
2959 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2960 
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2964 
2965 /**
2966  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2967  * @buffer: The ring buffer
2968  * @cpu: The per CPU buffer to read from.
2969  */
2970 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2971 {
2972 	struct ring_buffer_per_cpu *cpu_buffer;
2973 	unsigned long ret;
2974 
2975 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2976 		return 0;
2977 
2978 	cpu_buffer = buffer->buffers[cpu];
2979 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2980 
2981 	return ret;
2982 }
2983 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2984 
2985 /**
2986  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2987  * @buffer: The ring buffer
2988  * @cpu: The per CPU buffer to get the entries from.
2989  */
2990 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2991 {
2992 	struct ring_buffer_per_cpu *cpu_buffer;
2993 
2994 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2995 		return 0;
2996 
2997 	cpu_buffer = buffer->buffers[cpu];
2998 
2999 	return rb_num_of_entries(cpu_buffer);
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3002 
3003 /**
3004  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3005  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3006  * @buffer: The ring buffer
3007  * @cpu: The per CPU buffer to get the number of overruns from
3008  */
3009 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3010 {
3011 	struct ring_buffer_per_cpu *cpu_buffer;
3012 	unsigned long ret;
3013 
3014 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015 		return 0;
3016 
3017 	cpu_buffer = buffer->buffers[cpu];
3018 	ret = local_read(&cpu_buffer->overrun);
3019 
3020 	return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3023 
3024 /**
3025  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3026  * commits failing due to the buffer wrapping around while there are uncommitted
3027  * events, such as during an interrupt storm.
3028  * @buffer: The ring buffer
3029  * @cpu: The per CPU buffer to get the number of overruns from
3030  */
3031 unsigned long
3032 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3033 {
3034 	struct ring_buffer_per_cpu *cpu_buffer;
3035 	unsigned long ret;
3036 
3037 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3038 		return 0;
3039 
3040 	cpu_buffer = buffer->buffers[cpu];
3041 	ret = local_read(&cpu_buffer->commit_overrun);
3042 
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3046 
3047 /**
3048  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3049  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3050  * @buffer: The ring buffer
3051  * @cpu: The per CPU buffer to get the number of overruns from
3052  */
3053 unsigned long
3054 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3055 {
3056 	struct ring_buffer_per_cpu *cpu_buffer;
3057 	unsigned long ret;
3058 
3059 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3060 		return 0;
3061 
3062 	cpu_buffer = buffer->buffers[cpu];
3063 	ret = local_read(&cpu_buffer->dropped_events);
3064 
3065 	return ret;
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3068 
3069 /**
3070  * ring_buffer_entries - get the number of entries in a buffer
3071  * @buffer: The ring buffer
3072  *
3073  * Returns the total number of entries in the ring buffer
3074  * (all CPU entries)
3075  */
3076 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3077 {
3078 	struct ring_buffer_per_cpu *cpu_buffer;
3079 	unsigned long entries = 0;
3080 	int cpu;
3081 
3082 	/* if you care about this being correct, lock the buffer */
3083 	for_each_buffer_cpu(buffer, cpu) {
3084 		cpu_buffer = buffer->buffers[cpu];
3085 		entries += rb_num_of_entries(cpu_buffer);
3086 	}
3087 
3088 	return entries;
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3091 
3092 /**
3093  * ring_buffer_overruns - get the number of overruns in buffer
3094  * @buffer: The ring buffer
3095  *
3096  * Returns the total number of overruns in the ring buffer
3097  * (all CPU entries)
3098  */
3099 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3100 {
3101 	struct ring_buffer_per_cpu *cpu_buffer;
3102 	unsigned long overruns = 0;
3103 	int cpu;
3104 
3105 	/* if you care about this being correct, lock the buffer */
3106 	for_each_buffer_cpu(buffer, cpu) {
3107 		cpu_buffer = buffer->buffers[cpu];
3108 		overruns += local_read(&cpu_buffer->overrun);
3109 	}
3110 
3111 	return overruns;
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3114 
3115 static void rb_iter_reset(struct ring_buffer_iter *iter)
3116 {
3117 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3118 
3119 	/* Iterator usage is expected to have record disabled */
3120 	if (list_empty(&cpu_buffer->reader_page->list)) {
3121 		iter->head_page = rb_set_head_page(cpu_buffer);
3122 		if (unlikely(!iter->head_page))
3123 			return;
3124 		iter->head = iter->head_page->read;
3125 	} else {
3126 		iter->head_page = cpu_buffer->reader_page;
3127 		iter->head = cpu_buffer->reader_page->read;
3128 	}
3129 	if (iter->head)
3130 		iter->read_stamp = cpu_buffer->read_stamp;
3131 	else
3132 		iter->read_stamp = iter->head_page->page->time_stamp;
3133 	iter->cache_reader_page = cpu_buffer->reader_page;
3134 	iter->cache_read = cpu_buffer->read;
3135 }
3136 
3137 /**
3138  * ring_buffer_iter_reset - reset an iterator
3139  * @iter: The iterator to reset
3140  *
3141  * Resets the iterator, so that it will start from the beginning
3142  * again.
3143  */
3144 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3145 {
3146 	struct ring_buffer_per_cpu *cpu_buffer;
3147 	unsigned long flags;
3148 
3149 	if (!iter)
3150 		return;
3151 
3152 	cpu_buffer = iter->cpu_buffer;
3153 
3154 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3155 	rb_iter_reset(iter);
3156 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3157 }
3158 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3159 
3160 /**
3161  * ring_buffer_iter_empty - check if an iterator has no more to read
3162  * @iter: The iterator to check
3163  */
3164 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3165 {
3166 	struct ring_buffer_per_cpu *cpu_buffer;
3167 
3168 	cpu_buffer = iter->cpu_buffer;
3169 
3170 	return iter->head_page == cpu_buffer->commit_page &&
3171 		iter->head == rb_commit_index(cpu_buffer);
3172 }
3173 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3174 
3175 static void
3176 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3177 		     struct ring_buffer_event *event)
3178 {
3179 	u64 delta;
3180 
3181 	switch (event->type_len) {
3182 	case RINGBUF_TYPE_PADDING:
3183 		return;
3184 
3185 	case RINGBUF_TYPE_TIME_EXTEND:
3186 		delta = event->array[0];
3187 		delta <<= TS_SHIFT;
3188 		delta += event->time_delta;
3189 		cpu_buffer->read_stamp += delta;
3190 		return;
3191 
3192 	case RINGBUF_TYPE_TIME_STAMP:
3193 		/* FIXME: not implemented */
3194 		return;
3195 
3196 	case RINGBUF_TYPE_DATA:
3197 		cpu_buffer->read_stamp += event->time_delta;
3198 		return;
3199 
3200 	default:
3201 		BUG();
3202 	}
3203 	return;
3204 }
3205 
3206 static void
3207 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3208 			  struct ring_buffer_event *event)
3209 {
3210 	u64 delta;
3211 
3212 	switch (event->type_len) {
3213 	case RINGBUF_TYPE_PADDING:
3214 		return;
3215 
3216 	case RINGBUF_TYPE_TIME_EXTEND:
3217 		delta = event->array[0];
3218 		delta <<= TS_SHIFT;
3219 		delta += event->time_delta;
3220 		iter->read_stamp += delta;
3221 		return;
3222 
3223 	case RINGBUF_TYPE_TIME_STAMP:
3224 		/* FIXME: not implemented */
3225 		return;
3226 
3227 	case RINGBUF_TYPE_DATA:
3228 		iter->read_stamp += event->time_delta;
3229 		return;
3230 
3231 	default:
3232 		BUG();
3233 	}
3234 	return;
3235 }
3236 
3237 static struct buffer_page *
3238 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3239 {
3240 	struct buffer_page *reader = NULL;
3241 	unsigned long overwrite;
3242 	unsigned long flags;
3243 	int nr_loops = 0;
3244 	int ret;
3245 
3246 	local_irq_save(flags);
3247 	arch_spin_lock(&cpu_buffer->lock);
3248 
3249  again:
3250 	/*
3251 	 * This should normally only loop twice. But because the
3252 	 * start of the reader inserts an empty page, it causes
3253 	 * a case where we will loop three times. There should be no
3254 	 * reason to loop four times (that I know of).
3255 	 */
3256 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3257 		reader = NULL;
3258 		goto out;
3259 	}
3260 
3261 	reader = cpu_buffer->reader_page;
3262 
3263 	/* If there's more to read, return this page */
3264 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3265 		goto out;
3266 
3267 	/* Never should we have an index greater than the size */
3268 	if (RB_WARN_ON(cpu_buffer,
3269 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3270 		goto out;
3271 
3272 	/* check if we caught up to the tail */
3273 	reader = NULL;
3274 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3275 		goto out;
3276 
3277 	/* Don't bother swapping if the ring buffer is empty */
3278 	if (rb_num_of_entries(cpu_buffer) == 0)
3279 		goto out;
3280 
3281 	/*
3282 	 * Reset the reader page to size zero.
3283 	 */
3284 	local_set(&cpu_buffer->reader_page->write, 0);
3285 	local_set(&cpu_buffer->reader_page->entries, 0);
3286 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3287 	cpu_buffer->reader_page->real_end = 0;
3288 
3289  spin:
3290 	/*
3291 	 * Splice the empty reader page into the list around the head.
3292 	 */
3293 	reader = rb_set_head_page(cpu_buffer);
3294 	if (!reader)
3295 		goto out;
3296 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3297 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3298 
3299 	/*
3300 	 * cpu_buffer->pages just needs to point to the buffer, it
3301 	 *  has no specific buffer page to point to. Lets move it out
3302 	 *  of our way so we don't accidentally swap it.
3303 	 */
3304 	cpu_buffer->pages = reader->list.prev;
3305 
3306 	/* The reader page will be pointing to the new head */
3307 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3308 
3309 	/*
3310 	 * We want to make sure we read the overruns after we set up our
3311 	 * pointers to the next object. The writer side does a
3312 	 * cmpxchg to cross pages which acts as the mb on the writer
3313 	 * side. Note, the reader will constantly fail the swap
3314 	 * while the writer is updating the pointers, so this
3315 	 * guarantees that the overwrite recorded here is the one we
3316 	 * want to compare with the last_overrun.
3317 	 */
3318 	smp_mb();
3319 	overwrite = local_read(&(cpu_buffer->overrun));
3320 
3321 	/*
3322 	 * Here's the tricky part.
3323 	 *
3324 	 * We need to move the pointer past the header page.
3325 	 * But we can only do that if a writer is not currently
3326 	 * moving it. The page before the header page has the
3327 	 * flag bit '1' set if it is pointing to the page we want.
3328 	 * but if the writer is in the process of moving it
3329 	 * than it will be '2' or already moved '0'.
3330 	 */
3331 
3332 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3333 
3334 	/*
3335 	 * If we did not convert it, then we must try again.
3336 	 */
3337 	if (!ret)
3338 		goto spin;
3339 
3340 	/*
3341 	 * Yeah! We succeeded in replacing the page.
3342 	 *
3343 	 * Now make the new head point back to the reader page.
3344 	 */
3345 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3346 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3347 
3348 	/* Finally update the reader page to the new head */
3349 	cpu_buffer->reader_page = reader;
3350 	rb_reset_reader_page(cpu_buffer);
3351 
3352 	if (overwrite != cpu_buffer->last_overrun) {
3353 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3354 		cpu_buffer->last_overrun = overwrite;
3355 	}
3356 
3357 	goto again;
3358 
3359  out:
3360 	arch_spin_unlock(&cpu_buffer->lock);
3361 	local_irq_restore(flags);
3362 
3363 	return reader;
3364 }
3365 
3366 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3367 {
3368 	struct ring_buffer_event *event;
3369 	struct buffer_page *reader;
3370 	unsigned length;
3371 
3372 	reader = rb_get_reader_page(cpu_buffer);
3373 
3374 	/* This function should not be called when buffer is empty */
3375 	if (RB_WARN_ON(cpu_buffer, !reader))
3376 		return;
3377 
3378 	event = rb_reader_event(cpu_buffer);
3379 
3380 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3381 		cpu_buffer->read++;
3382 
3383 	rb_update_read_stamp(cpu_buffer, event);
3384 
3385 	length = rb_event_length(event);
3386 	cpu_buffer->reader_page->read += length;
3387 }
3388 
3389 static void rb_advance_iter(struct ring_buffer_iter *iter)
3390 {
3391 	struct ring_buffer_per_cpu *cpu_buffer;
3392 	struct ring_buffer_event *event;
3393 	unsigned length;
3394 
3395 	cpu_buffer = iter->cpu_buffer;
3396 
3397 	/*
3398 	 * Check if we are at the end of the buffer.
3399 	 */
3400 	if (iter->head >= rb_page_size(iter->head_page)) {
3401 		/* discarded commits can make the page empty */
3402 		if (iter->head_page == cpu_buffer->commit_page)
3403 			return;
3404 		rb_inc_iter(iter);
3405 		return;
3406 	}
3407 
3408 	event = rb_iter_head_event(iter);
3409 
3410 	length = rb_event_length(event);
3411 
3412 	/*
3413 	 * This should not be called to advance the header if we are
3414 	 * at the tail of the buffer.
3415 	 */
3416 	if (RB_WARN_ON(cpu_buffer,
3417 		       (iter->head_page == cpu_buffer->commit_page) &&
3418 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3419 		return;
3420 
3421 	rb_update_iter_read_stamp(iter, event);
3422 
3423 	iter->head += length;
3424 
3425 	/* check for end of page padding */
3426 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3427 	    (iter->head_page != cpu_buffer->commit_page))
3428 		rb_advance_iter(iter);
3429 }
3430 
3431 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3432 {
3433 	return cpu_buffer->lost_events;
3434 }
3435 
3436 static struct ring_buffer_event *
3437 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3438 	       unsigned long *lost_events)
3439 {
3440 	struct ring_buffer_event *event;
3441 	struct buffer_page *reader;
3442 	int nr_loops = 0;
3443 
3444  again:
3445 	/*
3446 	 * We repeat when a time extend is encountered.
3447 	 * Since the time extend is always attached to a data event,
3448 	 * we should never loop more than once.
3449 	 * (We never hit the following condition more than twice).
3450 	 */
3451 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3452 		return NULL;
3453 
3454 	reader = rb_get_reader_page(cpu_buffer);
3455 	if (!reader)
3456 		return NULL;
3457 
3458 	event = rb_reader_event(cpu_buffer);
3459 
3460 	switch (event->type_len) {
3461 	case RINGBUF_TYPE_PADDING:
3462 		if (rb_null_event(event))
3463 			RB_WARN_ON(cpu_buffer, 1);
3464 		/*
3465 		 * Because the writer could be discarding every
3466 		 * event it creates (which would probably be bad)
3467 		 * if we were to go back to "again" then we may never
3468 		 * catch up, and will trigger the warn on, or lock
3469 		 * the box. Return the padding, and we will release
3470 		 * the current locks, and try again.
3471 		 */
3472 		return event;
3473 
3474 	case RINGBUF_TYPE_TIME_EXTEND:
3475 		/* Internal data, OK to advance */
3476 		rb_advance_reader(cpu_buffer);
3477 		goto again;
3478 
3479 	case RINGBUF_TYPE_TIME_STAMP:
3480 		/* FIXME: not implemented */
3481 		rb_advance_reader(cpu_buffer);
3482 		goto again;
3483 
3484 	case RINGBUF_TYPE_DATA:
3485 		if (ts) {
3486 			*ts = cpu_buffer->read_stamp + event->time_delta;
3487 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3488 							 cpu_buffer->cpu, ts);
3489 		}
3490 		if (lost_events)
3491 			*lost_events = rb_lost_events(cpu_buffer);
3492 		return event;
3493 
3494 	default:
3495 		BUG();
3496 	}
3497 
3498 	return NULL;
3499 }
3500 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3501 
3502 static struct ring_buffer_event *
3503 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3504 {
3505 	struct ring_buffer *buffer;
3506 	struct ring_buffer_per_cpu *cpu_buffer;
3507 	struct ring_buffer_event *event;
3508 	int nr_loops = 0;
3509 
3510 	cpu_buffer = iter->cpu_buffer;
3511 	buffer = cpu_buffer->buffer;
3512 
3513 	/*
3514 	 * Check if someone performed a consuming read to
3515 	 * the buffer. A consuming read invalidates the iterator
3516 	 * and we need to reset the iterator in this case.
3517 	 */
3518 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3519 		     iter->cache_reader_page != cpu_buffer->reader_page))
3520 		rb_iter_reset(iter);
3521 
3522  again:
3523 	if (ring_buffer_iter_empty(iter))
3524 		return NULL;
3525 
3526 	/*
3527 	 * We repeat when a time extend is encountered.
3528 	 * Since the time extend is always attached to a data event,
3529 	 * we should never loop more than once.
3530 	 * (We never hit the following condition more than twice).
3531 	 */
3532 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3533 		return NULL;
3534 
3535 	if (rb_per_cpu_empty(cpu_buffer))
3536 		return NULL;
3537 
3538 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3539 		rb_inc_iter(iter);
3540 		goto again;
3541 	}
3542 
3543 	event = rb_iter_head_event(iter);
3544 
3545 	switch (event->type_len) {
3546 	case RINGBUF_TYPE_PADDING:
3547 		if (rb_null_event(event)) {
3548 			rb_inc_iter(iter);
3549 			goto again;
3550 		}
3551 		rb_advance_iter(iter);
3552 		return event;
3553 
3554 	case RINGBUF_TYPE_TIME_EXTEND:
3555 		/* Internal data, OK to advance */
3556 		rb_advance_iter(iter);
3557 		goto again;
3558 
3559 	case RINGBUF_TYPE_TIME_STAMP:
3560 		/* FIXME: not implemented */
3561 		rb_advance_iter(iter);
3562 		goto again;
3563 
3564 	case RINGBUF_TYPE_DATA:
3565 		if (ts) {
3566 			*ts = iter->read_stamp + event->time_delta;
3567 			ring_buffer_normalize_time_stamp(buffer,
3568 							 cpu_buffer->cpu, ts);
3569 		}
3570 		return event;
3571 
3572 	default:
3573 		BUG();
3574 	}
3575 
3576 	return NULL;
3577 }
3578 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3579 
3580 static inline int rb_ok_to_lock(void)
3581 {
3582 	/*
3583 	 * If an NMI die dumps out the content of the ring buffer
3584 	 * do not grab locks. We also permanently disable the ring
3585 	 * buffer too. A one time deal is all you get from reading
3586 	 * the ring buffer from an NMI.
3587 	 */
3588 	if (likely(!in_nmi()))
3589 		return 1;
3590 
3591 	tracing_off_permanent();
3592 	return 0;
3593 }
3594 
3595 /**
3596  * ring_buffer_peek - peek at the next event to be read
3597  * @buffer: The ring buffer to read
3598  * @cpu: The cpu to peak at
3599  * @ts: The timestamp counter of this event.
3600  * @lost_events: a variable to store if events were lost (may be NULL)
3601  *
3602  * This will return the event that will be read next, but does
3603  * not consume the data.
3604  */
3605 struct ring_buffer_event *
3606 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3607 		 unsigned long *lost_events)
3608 {
3609 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3610 	struct ring_buffer_event *event;
3611 	unsigned long flags;
3612 	int dolock;
3613 
3614 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3615 		return NULL;
3616 
3617 	dolock = rb_ok_to_lock();
3618  again:
3619 	local_irq_save(flags);
3620 	if (dolock)
3621 		raw_spin_lock(&cpu_buffer->reader_lock);
3622 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3623 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3624 		rb_advance_reader(cpu_buffer);
3625 	if (dolock)
3626 		raw_spin_unlock(&cpu_buffer->reader_lock);
3627 	local_irq_restore(flags);
3628 
3629 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3630 		goto again;
3631 
3632 	return event;
3633 }
3634 
3635 /**
3636  * ring_buffer_iter_peek - peek at the next event to be read
3637  * @iter: The ring buffer iterator
3638  * @ts: The timestamp counter of this event.
3639  *
3640  * This will return the event that will be read next, but does
3641  * not increment the iterator.
3642  */
3643 struct ring_buffer_event *
3644 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3645 {
3646 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3647 	struct ring_buffer_event *event;
3648 	unsigned long flags;
3649 
3650  again:
3651 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3652 	event = rb_iter_peek(iter, ts);
3653 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3654 
3655 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3656 		goto again;
3657 
3658 	return event;
3659 }
3660 
3661 /**
3662  * ring_buffer_consume - return an event and consume it
3663  * @buffer: The ring buffer to get the next event from
3664  * @cpu: the cpu to read the buffer from
3665  * @ts: a variable to store the timestamp (may be NULL)
3666  * @lost_events: a variable to store if events were lost (may be NULL)
3667  *
3668  * Returns the next event in the ring buffer, and that event is consumed.
3669  * Meaning, that sequential reads will keep returning a different event,
3670  * and eventually empty the ring buffer if the producer is slower.
3671  */
3672 struct ring_buffer_event *
3673 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3674 		    unsigned long *lost_events)
3675 {
3676 	struct ring_buffer_per_cpu *cpu_buffer;
3677 	struct ring_buffer_event *event = NULL;
3678 	unsigned long flags;
3679 	int dolock;
3680 
3681 	dolock = rb_ok_to_lock();
3682 
3683  again:
3684 	/* might be called in atomic */
3685 	preempt_disable();
3686 
3687 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3688 		goto out;
3689 
3690 	cpu_buffer = buffer->buffers[cpu];
3691 	local_irq_save(flags);
3692 	if (dolock)
3693 		raw_spin_lock(&cpu_buffer->reader_lock);
3694 
3695 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3696 	if (event) {
3697 		cpu_buffer->lost_events = 0;
3698 		rb_advance_reader(cpu_buffer);
3699 	}
3700 
3701 	if (dolock)
3702 		raw_spin_unlock(&cpu_buffer->reader_lock);
3703 	local_irq_restore(flags);
3704 
3705  out:
3706 	preempt_enable();
3707 
3708 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3709 		goto again;
3710 
3711 	return event;
3712 }
3713 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3714 
3715 /**
3716  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3717  * @buffer: The ring buffer to read from
3718  * @cpu: The cpu buffer to iterate over
3719  *
3720  * This performs the initial preparations necessary to iterate
3721  * through the buffer.  Memory is allocated, buffer recording
3722  * is disabled, and the iterator pointer is returned to the caller.
3723  *
3724  * Disabling buffer recordng prevents the reading from being
3725  * corrupted. This is not a consuming read, so a producer is not
3726  * expected.
3727  *
3728  * After a sequence of ring_buffer_read_prepare calls, the user is
3729  * expected to make at least one call to ring_buffer_prepare_sync.
3730  * Afterwards, ring_buffer_read_start is invoked to get things going
3731  * for real.
3732  *
3733  * This overall must be paired with ring_buffer_finish.
3734  */
3735 struct ring_buffer_iter *
3736 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3737 {
3738 	struct ring_buffer_per_cpu *cpu_buffer;
3739 	struct ring_buffer_iter *iter;
3740 
3741 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742 		return NULL;
3743 
3744 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3745 	if (!iter)
3746 		return NULL;
3747 
3748 	cpu_buffer = buffer->buffers[cpu];
3749 
3750 	iter->cpu_buffer = cpu_buffer;
3751 
3752 	atomic_inc(&buffer->resize_disabled);
3753 	atomic_inc(&cpu_buffer->record_disabled);
3754 
3755 	return iter;
3756 }
3757 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3758 
3759 /**
3760  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3761  *
3762  * All previously invoked ring_buffer_read_prepare calls to prepare
3763  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3764  * calls on those iterators are allowed.
3765  */
3766 void
3767 ring_buffer_read_prepare_sync(void)
3768 {
3769 	synchronize_sched();
3770 }
3771 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3772 
3773 /**
3774  * ring_buffer_read_start - start a non consuming read of the buffer
3775  * @iter: The iterator returned by ring_buffer_read_prepare
3776  *
3777  * This finalizes the startup of an iteration through the buffer.
3778  * The iterator comes from a call to ring_buffer_read_prepare and
3779  * an intervening ring_buffer_read_prepare_sync must have been
3780  * performed.
3781  *
3782  * Must be paired with ring_buffer_finish.
3783  */
3784 void
3785 ring_buffer_read_start(struct ring_buffer_iter *iter)
3786 {
3787 	struct ring_buffer_per_cpu *cpu_buffer;
3788 	unsigned long flags;
3789 
3790 	if (!iter)
3791 		return;
3792 
3793 	cpu_buffer = iter->cpu_buffer;
3794 
3795 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3796 	arch_spin_lock(&cpu_buffer->lock);
3797 	rb_iter_reset(iter);
3798 	arch_spin_unlock(&cpu_buffer->lock);
3799 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3800 }
3801 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3802 
3803 /**
3804  * ring_buffer_finish - finish reading the iterator of the buffer
3805  * @iter: The iterator retrieved by ring_buffer_start
3806  *
3807  * This re-enables the recording to the buffer, and frees the
3808  * iterator.
3809  */
3810 void
3811 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3812 {
3813 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3814 	unsigned long flags;
3815 
3816 	/*
3817 	 * Ring buffer is disabled from recording, here's a good place
3818 	 * to check the integrity of the ring buffer.
3819 	 * Must prevent readers from trying to read, as the check
3820 	 * clears the HEAD page and readers require it.
3821 	 */
3822 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3823 	rb_check_pages(cpu_buffer);
3824 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3825 
3826 	atomic_dec(&cpu_buffer->record_disabled);
3827 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3828 	kfree(iter);
3829 }
3830 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3831 
3832 /**
3833  * ring_buffer_read - read the next item in the ring buffer by the iterator
3834  * @iter: The ring buffer iterator
3835  * @ts: The time stamp of the event read.
3836  *
3837  * This reads the next event in the ring buffer and increments the iterator.
3838  */
3839 struct ring_buffer_event *
3840 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3841 {
3842 	struct ring_buffer_event *event;
3843 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3844 	unsigned long flags;
3845 
3846 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3847  again:
3848 	event = rb_iter_peek(iter, ts);
3849 	if (!event)
3850 		goto out;
3851 
3852 	if (event->type_len == RINGBUF_TYPE_PADDING)
3853 		goto again;
3854 
3855 	rb_advance_iter(iter);
3856  out:
3857 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3858 
3859 	return event;
3860 }
3861 EXPORT_SYMBOL_GPL(ring_buffer_read);
3862 
3863 /**
3864  * ring_buffer_size - return the size of the ring buffer (in bytes)
3865  * @buffer: The ring buffer.
3866  */
3867 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3868 {
3869 	/*
3870 	 * Earlier, this method returned
3871 	 *	BUF_PAGE_SIZE * buffer->nr_pages
3872 	 * Since the nr_pages field is now removed, we have converted this to
3873 	 * return the per cpu buffer value.
3874 	 */
3875 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3876 		return 0;
3877 
3878 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3879 }
3880 EXPORT_SYMBOL_GPL(ring_buffer_size);
3881 
3882 static void
3883 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3884 {
3885 	rb_head_page_deactivate(cpu_buffer);
3886 
3887 	cpu_buffer->head_page
3888 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3889 	local_set(&cpu_buffer->head_page->write, 0);
3890 	local_set(&cpu_buffer->head_page->entries, 0);
3891 	local_set(&cpu_buffer->head_page->page->commit, 0);
3892 
3893 	cpu_buffer->head_page->read = 0;
3894 
3895 	cpu_buffer->tail_page = cpu_buffer->head_page;
3896 	cpu_buffer->commit_page = cpu_buffer->head_page;
3897 
3898 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3899 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3900 	local_set(&cpu_buffer->reader_page->write, 0);
3901 	local_set(&cpu_buffer->reader_page->entries, 0);
3902 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3903 	cpu_buffer->reader_page->read = 0;
3904 
3905 	local_set(&cpu_buffer->entries_bytes, 0);
3906 	local_set(&cpu_buffer->overrun, 0);
3907 	local_set(&cpu_buffer->commit_overrun, 0);
3908 	local_set(&cpu_buffer->dropped_events, 0);
3909 	local_set(&cpu_buffer->entries, 0);
3910 	local_set(&cpu_buffer->committing, 0);
3911 	local_set(&cpu_buffer->commits, 0);
3912 	cpu_buffer->read = 0;
3913 	cpu_buffer->read_bytes = 0;
3914 
3915 	cpu_buffer->write_stamp = 0;
3916 	cpu_buffer->read_stamp = 0;
3917 
3918 	cpu_buffer->lost_events = 0;
3919 	cpu_buffer->last_overrun = 0;
3920 
3921 	rb_head_page_activate(cpu_buffer);
3922 }
3923 
3924 /**
3925  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3926  * @buffer: The ring buffer to reset a per cpu buffer of
3927  * @cpu: The CPU buffer to be reset
3928  */
3929 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3930 {
3931 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3932 	unsigned long flags;
3933 
3934 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3935 		return;
3936 
3937 	atomic_inc(&buffer->resize_disabled);
3938 	atomic_inc(&cpu_buffer->record_disabled);
3939 
3940 	/* Make sure all commits have finished */
3941 	synchronize_sched();
3942 
3943 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3944 
3945 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3946 		goto out;
3947 
3948 	arch_spin_lock(&cpu_buffer->lock);
3949 
3950 	rb_reset_cpu(cpu_buffer);
3951 
3952 	arch_spin_unlock(&cpu_buffer->lock);
3953 
3954  out:
3955 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3956 
3957 	atomic_dec(&cpu_buffer->record_disabled);
3958 	atomic_dec(&buffer->resize_disabled);
3959 }
3960 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3961 
3962 /**
3963  * ring_buffer_reset - reset a ring buffer
3964  * @buffer: The ring buffer to reset all cpu buffers
3965  */
3966 void ring_buffer_reset(struct ring_buffer *buffer)
3967 {
3968 	int cpu;
3969 
3970 	for_each_buffer_cpu(buffer, cpu)
3971 		ring_buffer_reset_cpu(buffer, cpu);
3972 }
3973 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3974 
3975 /**
3976  * rind_buffer_empty - is the ring buffer empty?
3977  * @buffer: The ring buffer to test
3978  */
3979 int ring_buffer_empty(struct ring_buffer *buffer)
3980 {
3981 	struct ring_buffer_per_cpu *cpu_buffer;
3982 	unsigned long flags;
3983 	int dolock;
3984 	int cpu;
3985 	int ret;
3986 
3987 	dolock = rb_ok_to_lock();
3988 
3989 	/* yes this is racy, but if you don't like the race, lock the buffer */
3990 	for_each_buffer_cpu(buffer, cpu) {
3991 		cpu_buffer = buffer->buffers[cpu];
3992 		local_irq_save(flags);
3993 		if (dolock)
3994 			raw_spin_lock(&cpu_buffer->reader_lock);
3995 		ret = rb_per_cpu_empty(cpu_buffer);
3996 		if (dolock)
3997 			raw_spin_unlock(&cpu_buffer->reader_lock);
3998 		local_irq_restore(flags);
3999 
4000 		if (!ret)
4001 			return 0;
4002 	}
4003 
4004 	return 1;
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4007 
4008 /**
4009  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4010  * @buffer: The ring buffer
4011  * @cpu: The CPU buffer to test
4012  */
4013 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4014 {
4015 	struct ring_buffer_per_cpu *cpu_buffer;
4016 	unsigned long flags;
4017 	int dolock;
4018 	int ret;
4019 
4020 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4021 		return 1;
4022 
4023 	dolock = rb_ok_to_lock();
4024 
4025 	cpu_buffer = buffer->buffers[cpu];
4026 	local_irq_save(flags);
4027 	if (dolock)
4028 		raw_spin_lock(&cpu_buffer->reader_lock);
4029 	ret = rb_per_cpu_empty(cpu_buffer);
4030 	if (dolock)
4031 		raw_spin_unlock(&cpu_buffer->reader_lock);
4032 	local_irq_restore(flags);
4033 
4034 	return ret;
4035 }
4036 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4037 
4038 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4039 /**
4040  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4041  * @buffer_a: One buffer to swap with
4042  * @buffer_b: The other buffer to swap with
4043  *
4044  * This function is useful for tracers that want to take a "snapshot"
4045  * of a CPU buffer and has another back up buffer lying around.
4046  * it is expected that the tracer handles the cpu buffer not being
4047  * used at the moment.
4048  */
4049 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4050 			 struct ring_buffer *buffer_b, int cpu)
4051 {
4052 	struct ring_buffer_per_cpu *cpu_buffer_a;
4053 	struct ring_buffer_per_cpu *cpu_buffer_b;
4054 	int ret = -EINVAL;
4055 
4056 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4057 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4058 		goto out;
4059 
4060 	cpu_buffer_a = buffer_a->buffers[cpu];
4061 	cpu_buffer_b = buffer_b->buffers[cpu];
4062 
4063 	/* At least make sure the two buffers are somewhat the same */
4064 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4065 		goto out;
4066 
4067 	ret = -EAGAIN;
4068 
4069 	if (ring_buffer_flags != RB_BUFFERS_ON)
4070 		goto out;
4071 
4072 	if (atomic_read(&buffer_a->record_disabled))
4073 		goto out;
4074 
4075 	if (atomic_read(&buffer_b->record_disabled))
4076 		goto out;
4077 
4078 	if (atomic_read(&cpu_buffer_a->record_disabled))
4079 		goto out;
4080 
4081 	if (atomic_read(&cpu_buffer_b->record_disabled))
4082 		goto out;
4083 
4084 	/*
4085 	 * We can't do a synchronize_sched here because this
4086 	 * function can be called in atomic context.
4087 	 * Normally this will be called from the same CPU as cpu.
4088 	 * If not it's up to the caller to protect this.
4089 	 */
4090 	atomic_inc(&cpu_buffer_a->record_disabled);
4091 	atomic_inc(&cpu_buffer_b->record_disabled);
4092 
4093 	ret = -EBUSY;
4094 	if (local_read(&cpu_buffer_a->committing))
4095 		goto out_dec;
4096 	if (local_read(&cpu_buffer_b->committing))
4097 		goto out_dec;
4098 
4099 	buffer_a->buffers[cpu] = cpu_buffer_b;
4100 	buffer_b->buffers[cpu] = cpu_buffer_a;
4101 
4102 	cpu_buffer_b->buffer = buffer_a;
4103 	cpu_buffer_a->buffer = buffer_b;
4104 
4105 	ret = 0;
4106 
4107 out_dec:
4108 	atomic_dec(&cpu_buffer_a->record_disabled);
4109 	atomic_dec(&cpu_buffer_b->record_disabled);
4110 out:
4111 	return ret;
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4114 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4115 
4116 /**
4117  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4118  * @buffer: the buffer to allocate for.
4119  *
4120  * This function is used in conjunction with ring_buffer_read_page.
4121  * When reading a full page from the ring buffer, these functions
4122  * can be used to speed up the process. The calling function should
4123  * allocate a few pages first with this function. Then when it
4124  * needs to get pages from the ring buffer, it passes the result
4125  * of this function into ring_buffer_read_page, which will swap
4126  * the page that was allocated, with the read page of the buffer.
4127  *
4128  * Returns:
4129  *  The page allocated, or NULL on error.
4130  */
4131 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4132 {
4133 	struct buffer_data_page *bpage;
4134 	struct page *page;
4135 
4136 	page = alloc_pages_node(cpu_to_node(cpu),
4137 				GFP_KERNEL | __GFP_NORETRY, 0);
4138 	if (!page)
4139 		return NULL;
4140 
4141 	bpage = page_address(page);
4142 
4143 	rb_init_page(bpage);
4144 
4145 	return bpage;
4146 }
4147 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4148 
4149 /**
4150  * ring_buffer_free_read_page - free an allocated read page
4151  * @buffer: the buffer the page was allocate for
4152  * @data: the page to free
4153  *
4154  * Free a page allocated from ring_buffer_alloc_read_page.
4155  */
4156 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4157 {
4158 	free_page((unsigned long)data);
4159 }
4160 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4161 
4162 /**
4163  * ring_buffer_read_page - extract a page from the ring buffer
4164  * @buffer: buffer to extract from
4165  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4166  * @len: amount to extract
4167  * @cpu: the cpu of the buffer to extract
4168  * @full: should the extraction only happen when the page is full.
4169  *
4170  * This function will pull out a page from the ring buffer and consume it.
4171  * @data_page must be the address of the variable that was returned
4172  * from ring_buffer_alloc_read_page. This is because the page might be used
4173  * to swap with a page in the ring buffer.
4174  *
4175  * for example:
4176  *	rpage = ring_buffer_alloc_read_page(buffer);
4177  *	if (!rpage)
4178  *		return error;
4179  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4180  *	if (ret >= 0)
4181  *		process_page(rpage, ret);
4182  *
4183  * When @full is set, the function will not return true unless
4184  * the writer is off the reader page.
4185  *
4186  * Note: it is up to the calling functions to handle sleeps and wakeups.
4187  *  The ring buffer can be used anywhere in the kernel and can not
4188  *  blindly call wake_up. The layer that uses the ring buffer must be
4189  *  responsible for that.
4190  *
4191  * Returns:
4192  *  >=0 if data has been transferred, returns the offset of consumed data.
4193  *  <0 if no data has been transferred.
4194  */
4195 int ring_buffer_read_page(struct ring_buffer *buffer,
4196 			  void **data_page, size_t len, int cpu, int full)
4197 {
4198 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4199 	struct ring_buffer_event *event;
4200 	struct buffer_data_page *bpage;
4201 	struct buffer_page *reader;
4202 	unsigned long missed_events;
4203 	unsigned long flags;
4204 	unsigned int commit;
4205 	unsigned int read;
4206 	u64 save_timestamp;
4207 	int ret = -1;
4208 
4209 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4210 		goto out;
4211 
4212 	/*
4213 	 * If len is not big enough to hold the page header, then
4214 	 * we can not copy anything.
4215 	 */
4216 	if (len <= BUF_PAGE_HDR_SIZE)
4217 		goto out;
4218 
4219 	len -= BUF_PAGE_HDR_SIZE;
4220 
4221 	if (!data_page)
4222 		goto out;
4223 
4224 	bpage = *data_page;
4225 	if (!bpage)
4226 		goto out;
4227 
4228 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4229 
4230 	reader = rb_get_reader_page(cpu_buffer);
4231 	if (!reader)
4232 		goto out_unlock;
4233 
4234 	event = rb_reader_event(cpu_buffer);
4235 
4236 	read = reader->read;
4237 	commit = rb_page_commit(reader);
4238 
4239 	/* Check if any events were dropped */
4240 	missed_events = cpu_buffer->lost_events;
4241 
4242 	/*
4243 	 * If this page has been partially read or
4244 	 * if len is not big enough to read the rest of the page or
4245 	 * a writer is still on the page, then
4246 	 * we must copy the data from the page to the buffer.
4247 	 * Otherwise, we can simply swap the page with the one passed in.
4248 	 */
4249 	if (read || (len < (commit - read)) ||
4250 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4251 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4252 		unsigned int rpos = read;
4253 		unsigned int pos = 0;
4254 		unsigned int size;
4255 
4256 		if (full)
4257 			goto out_unlock;
4258 
4259 		if (len > (commit - read))
4260 			len = (commit - read);
4261 
4262 		/* Always keep the time extend and data together */
4263 		size = rb_event_ts_length(event);
4264 
4265 		if (len < size)
4266 			goto out_unlock;
4267 
4268 		/* save the current timestamp, since the user will need it */
4269 		save_timestamp = cpu_buffer->read_stamp;
4270 
4271 		/* Need to copy one event at a time */
4272 		do {
4273 			/* We need the size of one event, because
4274 			 * rb_advance_reader only advances by one event,
4275 			 * whereas rb_event_ts_length may include the size of
4276 			 * one or two events.
4277 			 * We have already ensured there's enough space if this
4278 			 * is a time extend. */
4279 			size = rb_event_length(event);
4280 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4281 
4282 			len -= size;
4283 
4284 			rb_advance_reader(cpu_buffer);
4285 			rpos = reader->read;
4286 			pos += size;
4287 
4288 			if (rpos >= commit)
4289 				break;
4290 
4291 			event = rb_reader_event(cpu_buffer);
4292 			/* Always keep the time extend and data together */
4293 			size = rb_event_ts_length(event);
4294 		} while (len >= size);
4295 
4296 		/* update bpage */
4297 		local_set(&bpage->commit, pos);
4298 		bpage->time_stamp = save_timestamp;
4299 
4300 		/* we copied everything to the beginning */
4301 		read = 0;
4302 	} else {
4303 		/* update the entry counter */
4304 		cpu_buffer->read += rb_page_entries(reader);
4305 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4306 
4307 		/* swap the pages */
4308 		rb_init_page(bpage);
4309 		bpage = reader->page;
4310 		reader->page = *data_page;
4311 		local_set(&reader->write, 0);
4312 		local_set(&reader->entries, 0);
4313 		reader->read = 0;
4314 		*data_page = bpage;
4315 
4316 		/*
4317 		 * Use the real_end for the data size,
4318 		 * This gives us a chance to store the lost events
4319 		 * on the page.
4320 		 */
4321 		if (reader->real_end)
4322 			local_set(&bpage->commit, reader->real_end);
4323 	}
4324 	ret = read;
4325 
4326 	cpu_buffer->lost_events = 0;
4327 
4328 	commit = local_read(&bpage->commit);
4329 	/*
4330 	 * Set a flag in the commit field if we lost events
4331 	 */
4332 	if (missed_events) {
4333 		/* If there is room at the end of the page to save the
4334 		 * missed events, then record it there.
4335 		 */
4336 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4337 			memcpy(&bpage->data[commit], &missed_events,
4338 			       sizeof(missed_events));
4339 			local_add(RB_MISSED_STORED, &bpage->commit);
4340 			commit += sizeof(missed_events);
4341 		}
4342 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4343 	}
4344 
4345 	/*
4346 	 * This page may be off to user land. Zero it out here.
4347 	 */
4348 	if (commit < BUF_PAGE_SIZE)
4349 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4350 
4351  out_unlock:
4352 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4353 
4354  out:
4355 	return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4358 
4359 #ifdef CONFIG_HOTPLUG_CPU
4360 static int rb_cpu_notify(struct notifier_block *self,
4361 			 unsigned long action, void *hcpu)
4362 {
4363 	struct ring_buffer *buffer =
4364 		container_of(self, struct ring_buffer, cpu_notify);
4365 	long cpu = (long)hcpu;
4366 	int cpu_i, nr_pages_same;
4367 	unsigned int nr_pages;
4368 
4369 	switch (action) {
4370 	case CPU_UP_PREPARE:
4371 	case CPU_UP_PREPARE_FROZEN:
4372 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4373 			return NOTIFY_OK;
4374 
4375 		nr_pages = 0;
4376 		nr_pages_same = 1;
4377 		/* check if all cpu sizes are same */
4378 		for_each_buffer_cpu(buffer, cpu_i) {
4379 			/* fill in the size from first enabled cpu */
4380 			if (nr_pages == 0)
4381 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4382 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4383 				nr_pages_same = 0;
4384 				break;
4385 			}
4386 		}
4387 		/* allocate minimum pages, user can later expand it */
4388 		if (!nr_pages_same)
4389 			nr_pages = 2;
4390 		buffer->buffers[cpu] =
4391 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4392 		if (!buffer->buffers[cpu]) {
4393 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4394 			     cpu);
4395 			return NOTIFY_OK;
4396 		}
4397 		smp_wmb();
4398 		cpumask_set_cpu(cpu, buffer->cpumask);
4399 		break;
4400 	case CPU_DOWN_PREPARE:
4401 	case CPU_DOWN_PREPARE_FROZEN:
4402 		/*
4403 		 * Do nothing.
4404 		 *  If we were to free the buffer, then the user would
4405 		 *  lose any trace that was in the buffer.
4406 		 */
4407 		break;
4408 	default:
4409 		break;
4410 	}
4411 	return NOTIFY_OK;
4412 }
4413 #endif
4414