1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kthread.h> /* for self test */ 15 #include <linux/kmemcheck.h> 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 struct buffer_data_page { 284 u64 time_stamp; /* page time stamp */ 285 local_t commit; /* write committed index */ 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 287 }; 288 289 /* 290 * Note, the buffer_page list must be first. The buffer pages 291 * are allocated in cache lines, which means that each buffer 292 * page will be at the beginning of a cache line, and thus 293 * the least significant bits will be zero. We use this to 294 * add flags in the list struct pointers, to make the ring buffer 295 * lockless. 296 */ 297 struct buffer_page { 298 struct list_head list; /* list of buffer pages */ 299 local_t write; /* index for next write */ 300 unsigned read; /* index for next read */ 301 local_t entries; /* entries on this page */ 302 unsigned long real_end; /* real end of data */ 303 struct buffer_data_page *page; /* Actual data page */ 304 }; 305 306 /* 307 * The buffer page counters, write and entries, must be reset 308 * atomically when crossing page boundaries. To synchronize this 309 * update, two counters are inserted into the number. One is 310 * the actual counter for the write position or count on the page. 311 * 312 * The other is a counter of updaters. Before an update happens 313 * the update partition of the counter is incremented. This will 314 * allow the updater to update the counter atomically. 315 * 316 * The counter is 20 bits, and the state data is 12. 317 */ 318 #define RB_WRITE_MASK 0xfffff 319 #define RB_WRITE_INTCNT (1 << 20) 320 321 static void rb_init_page(struct buffer_data_page *bpage) 322 { 323 local_set(&bpage->commit, 0); 324 } 325 326 /** 327 * ring_buffer_page_len - the size of data on the page. 328 * @page: The page to read 329 * 330 * Returns the amount of data on the page, including buffer page header. 331 */ 332 size_t ring_buffer_page_len(void *page) 333 { 334 return local_read(&((struct buffer_data_page *)page)->commit) 335 + BUF_PAGE_HDR_SIZE; 336 } 337 338 /* 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 340 * this issue out. 341 */ 342 static void free_buffer_page(struct buffer_page *bpage) 343 { 344 free_page((unsigned long)bpage->page); 345 kfree(bpage); 346 } 347 348 /* 349 * We need to fit the time_stamp delta into 27 bits. 350 */ 351 static inline int test_time_stamp(u64 delta) 352 { 353 if (delta & TS_DELTA_TEST) 354 return 1; 355 return 0; 356 } 357 358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 359 360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 362 363 int ring_buffer_print_page_header(struct trace_seq *s) 364 { 365 struct buffer_data_page field; 366 367 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 368 "offset:0;\tsize:%u;\tsigned:%u;\n", 369 (unsigned int)sizeof(field.time_stamp), 370 (unsigned int)is_signed_type(u64)); 371 372 trace_seq_printf(s, "\tfield: local_t commit;\t" 373 "offset:%u;\tsize:%u;\tsigned:%u;\n", 374 (unsigned int)offsetof(typeof(field), commit), 375 (unsigned int)sizeof(field.commit), 376 (unsigned int)is_signed_type(long)); 377 378 trace_seq_printf(s, "\tfield: int overwrite;\t" 379 "offset:%u;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)offsetof(typeof(field), commit), 381 1, 382 (unsigned int)is_signed_type(long)); 383 384 trace_seq_printf(s, "\tfield: char data;\t" 385 "offset:%u;\tsize:%u;\tsigned:%u;\n", 386 (unsigned int)offsetof(typeof(field), data), 387 (unsigned int)BUF_PAGE_SIZE, 388 (unsigned int)is_signed_type(char)); 389 390 return !trace_seq_has_overflowed(s); 391 } 392 393 struct rb_irq_work { 394 struct irq_work work; 395 wait_queue_head_t waiters; 396 wait_queue_head_t full_waiters; 397 bool waiters_pending; 398 bool full_waiters_pending; 399 bool wakeup_full; 400 }; 401 402 /* 403 * Structure to hold event state and handle nested events. 404 */ 405 struct rb_event_info { 406 u64 ts; 407 u64 delta; 408 unsigned long length; 409 struct buffer_page *tail_page; 410 int add_timestamp; 411 }; 412 413 /* 414 * Used for which event context the event is in. 415 * NMI = 0 416 * IRQ = 1 417 * SOFTIRQ = 2 418 * NORMAL = 3 419 * 420 * See trace_recursive_lock() comment below for more details. 421 */ 422 enum { 423 RB_CTX_NMI, 424 RB_CTX_IRQ, 425 RB_CTX_SOFTIRQ, 426 RB_CTX_NORMAL, 427 RB_CTX_MAX 428 }; 429 430 /* 431 * head_page == tail_page && head == tail then buffer is empty. 432 */ 433 struct ring_buffer_per_cpu { 434 int cpu; 435 atomic_t record_disabled; 436 struct ring_buffer *buffer; 437 raw_spinlock_t reader_lock; /* serialize readers */ 438 arch_spinlock_t lock; 439 struct lock_class_key lock_key; 440 unsigned long nr_pages; 441 unsigned int current_context; 442 struct list_head *pages; 443 struct buffer_page *head_page; /* read from head */ 444 struct buffer_page *tail_page; /* write to tail */ 445 struct buffer_page *commit_page; /* committed pages */ 446 struct buffer_page *reader_page; 447 unsigned long lost_events; 448 unsigned long last_overrun; 449 local_t entries_bytes; 450 local_t entries; 451 local_t overrun; 452 local_t commit_overrun; 453 local_t dropped_events; 454 local_t committing; 455 local_t commits; 456 unsigned long read; 457 unsigned long read_bytes; 458 u64 write_stamp; 459 u64 read_stamp; 460 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 461 long nr_pages_to_update; 462 struct list_head new_pages; /* new pages to add */ 463 struct work_struct update_pages_work; 464 struct completion update_done; 465 466 struct rb_irq_work irq_work; 467 }; 468 469 struct ring_buffer { 470 unsigned flags; 471 int cpus; 472 atomic_t record_disabled; 473 atomic_t resize_disabled; 474 cpumask_var_t cpumask; 475 476 struct lock_class_key *reader_lock_key; 477 478 struct mutex mutex; 479 480 struct ring_buffer_per_cpu **buffers; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 struct notifier_block cpu_notify; 484 #endif 485 u64 (*clock)(void); 486 487 struct rb_irq_work irq_work; 488 }; 489 490 struct ring_buffer_iter { 491 struct ring_buffer_per_cpu *cpu_buffer; 492 unsigned long head; 493 struct buffer_page *head_page; 494 struct buffer_page *cache_reader_page; 495 unsigned long cache_read; 496 u64 read_stamp; 497 }; 498 499 /* 500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 501 * 502 * Schedules a delayed work to wake up any task that is blocked on the 503 * ring buffer waiters queue. 504 */ 505 static void rb_wake_up_waiters(struct irq_work *work) 506 { 507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 508 509 wake_up_all(&rbwork->waiters); 510 if (rbwork->wakeup_full) { 511 rbwork->wakeup_full = false; 512 wake_up_all(&rbwork->full_waiters); 513 } 514 } 515 516 /** 517 * ring_buffer_wait - wait for input to the ring buffer 518 * @buffer: buffer to wait on 519 * @cpu: the cpu buffer to wait on 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 521 * 522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 523 * as data is added to any of the @buffer's cpu buffers. Otherwise 524 * it will wait for data to be added to a specific cpu buffer. 525 */ 526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 527 { 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 529 DEFINE_WAIT(wait); 530 struct rb_irq_work *work; 531 int ret = 0; 532 533 /* 534 * Depending on what the caller is waiting for, either any 535 * data in any cpu buffer, or a specific buffer, put the 536 * caller on the appropriate wait queue. 537 */ 538 if (cpu == RING_BUFFER_ALL_CPUS) { 539 work = &buffer->irq_work; 540 /* Full only makes sense on per cpu reads */ 541 full = false; 542 } else { 543 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 544 return -ENODEV; 545 cpu_buffer = buffer->buffers[cpu]; 546 work = &cpu_buffer->irq_work; 547 } 548 549 550 while (true) { 551 if (full) 552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 553 else 554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 555 556 /* 557 * The events can happen in critical sections where 558 * checking a work queue can cause deadlocks. 559 * After adding a task to the queue, this flag is set 560 * only to notify events to try to wake up the queue 561 * using irq_work. 562 * 563 * We don't clear it even if the buffer is no longer 564 * empty. The flag only causes the next event to run 565 * irq_work to do the work queue wake up. The worse 566 * that can happen if we race with !trace_empty() is that 567 * an event will cause an irq_work to try to wake up 568 * an empty queue. 569 * 570 * There's no reason to protect this flag either, as 571 * the work queue and irq_work logic will do the necessary 572 * synchronization for the wake ups. The only thing 573 * that is necessary is that the wake up happens after 574 * a task has been queued. It's OK for spurious wake ups. 575 */ 576 if (full) 577 work->full_waiters_pending = true; 578 else 579 work->waiters_pending = true; 580 581 if (signal_pending(current)) { 582 ret = -EINTR; 583 break; 584 } 585 586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 587 break; 588 589 if (cpu != RING_BUFFER_ALL_CPUS && 590 !ring_buffer_empty_cpu(buffer, cpu)) { 591 unsigned long flags; 592 bool pagebusy; 593 594 if (!full) 595 break; 596 597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 600 601 if (!pagebusy) 602 break; 603 } 604 605 schedule(); 606 } 607 608 if (full) 609 finish_wait(&work->full_waiters, &wait); 610 else 611 finish_wait(&work->waiters, &wait); 612 613 return ret; 614 } 615 616 /** 617 * ring_buffer_poll_wait - poll on buffer input 618 * @buffer: buffer to wait on 619 * @cpu: the cpu buffer to wait on 620 * @filp: the file descriptor 621 * @poll_table: The poll descriptor 622 * 623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 624 * as data is added to any of the @buffer's cpu buffers. Otherwise 625 * it will wait for data to be added to a specific cpu buffer. 626 * 627 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 628 * zero otherwise. 629 */ 630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 631 struct file *filp, poll_table *poll_table) 632 { 633 struct ring_buffer_per_cpu *cpu_buffer; 634 struct rb_irq_work *work; 635 636 if (cpu == RING_BUFFER_ALL_CPUS) 637 work = &buffer->irq_work; 638 else { 639 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 640 return -EINVAL; 641 642 cpu_buffer = buffer->buffers[cpu]; 643 work = &cpu_buffer->irq_work; 644 } 645 646 poll_wait(filp, &work->waiters, poll_table); 647 work->waiters_pending = true; 648 /* 649 * There's a tight race between setting the waiters_pending and 650 * checking if the ring buffer is empty. Once the waiters_pending bit 651 * is set, the next event will wake the task up, but we can get stuck 652 * if there's only a single event in. 653 * 654 * FIXME: Ideally, we need a memory barrier on the writer side as well, 655 * but adding a memory barrier to all events will cause too much of a 656 * performance hit in the fast path. We only need a memory barrier when 657 * the buffer goes from empty to having content. But as this race is 658 * extremely small, and it's not a problem if another event comes in, we 659 * will fix it later. 660 */ 661 smp_mb(); 662 663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 665 return POLLIN | POLLRDNORM; 666 return 0; 667 } 668 669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 670 #define RB_WARN_ON(b, cond) \ 671 ({ \ 672 int _____ret = unlikely(cond); \ 673 if (_____ret) { \ 674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 675 struct ring_buffer_per_cpu *__b = \ 676 (void *)b; \ 677 atomic_inc(&__b->buffer->record_disabled); \ 678 } else \ 679 atomic_inc(&b->record_disabled); \ 680 WARN_ON(1); \ 681 } \ 682 _____ret; \ 683 }) 684 685 /* Up this if you want to test the TIME_EXTENTS and normalization */ 686 #define DEBUG_SHIFT 0 687 688 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 689 { 690 /* shift to debug/test normalization and TIME_EXTENTS */ 691 return buffer->clock() << DEBUG_SHIFT; 692 } 693 694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 695 { 696 u64 time; 697 698 preempt_disable_notrace(); 699 time = rb_time_stamp(buffer); 700 preempt_enable_no_resched_notrace(); 701 702 return time; 703 } 704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 705 706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 707 int cpu, u64 *ts) 708 { 709 /* Just stupid testing the normalize function and deltas */ 710 *ts >>= DEBUG_SHIFT; 711 } 712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 713 714 /* 715 * Making the ring buffer lockless makes things tricky. 716 * Although writes only happen on the CPU that they are on, 717 * and they only need to worry about interrupts. Reads can 718 * happen on any CPU. 719 * 720 * The reader page is always off the ring buffer, but when the 721 * reader finishes with a page, it needs to swap its page with 722 * a new one from the buffer. The reader needs to take from 723 * the head (writes go to the tail). But if a writer is in overwrite 724 * mode and wraps, it must push the head page forward. 725 * 726 * Here lies the problem. 727 * 728 * The reader must be careful to replace only the head page, and 729 * not another one. As described at the top of the file in the 730 * ASCII art, the reader sets its old page to point to the next 731 * page after head. It then sets the page after head to point to 732 * the old reader page. But if the writer moves the head page 733 * during this operation, the reader could end up with the tail. 734 * 735 * We use cmpxchg to help prevent this race. We also do something 736 * special with the page before head. We set the LSB to 1. 737 * 738 * When the writer must push the page forward, it will clear the 739 * bit that points to the head page, move the head, and then set 740 * the bit that points to the new head page. 741 * 742 * We also don't want an interrupt coming in and moving the head 743 * page on another writer. Thus we use the second LSB to catch 744 * that too. Thus: 745 * 746 * head->list->prev->next bit 1 bit 0 747 * ------- ------- 748 * Normal page 0 0 749 * Points to head page 0 1 750 * New head page 1 0 751 * 752 * Note we can not trust the prev pointer of the head page, because: 753 * 754 * +----+ +-----+ +-----+ 755 * | |------>| T |---X--->| N | 756 * | |<------| | | | 757 * +----+ +-----+ +-----+ 758 * ^ ^ | 759 * | +-----+ | | 760 * +----------| R |----------+ | 761 * | |<-----------+ 762 * +-----+ 763 * 764 * Key: ---X--> HEAD flag set in pointer 765 * T Tail page 766 * R Reader page 767 * N Next page 768 * 769 * (see __rb_reserve_next() to see where this happens) 770 * 771 * What the above shows is that the reader just swapped out 772 * the reader page with a page in the buffer, but before it 773 * could make the new header point back to the new page added 774 * it was preempted by a writer. The writer moved forward onto 775 * the new page added by the reader and is about to move forward 776 * again. 777 * 778 * You can see, it is legitimate for the previous pointer of 779 * the head (or any page) not to point back to itself. But only 780 * temporarially. 781 */ 782 783 #define RB_PAGE_NORMAL 0UL 784 #define RB_PAGE_HEAD 1UL 785 #define RB_PAGE_UPDATE 2UL 786 787 788 #define RB_FLAG_MASK 3UL 789 790 /* PAGE_MOVED is not part of the mask */ 791 #define RB_PAGE_MOVED 4UL 792 793 /* 794 * rb_list_head - remove any bit 795 */ 796 static struct list_head *rb_list_head(struct list_head *list) 797 { 798 unsigned long val = (unsigned long)list; 799 800 return (struct list_head *)(val & ~RB_FLAG_MASK); 801 } 802 803 /* 804 * rb_is_head_page - test if the given page is the head page 805 * 806 * Because the reader may move the head_page pointer, we can 807 * not trust what the head page is (it may be pointing to 808 * the reader page). But if the next page is a header page, 809 * its flags will be non zero. 810 */ 811 static inline int 812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 813 struct buffer_page *page, struct list_head *list) 814 { 815 unsigned long val; 816 817 val = (unsigned long)list->next; 818 819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 820 return RB_PAGE_MOVED; 821 822 return val & RB_FLAG_MASK; 823 } 824 825 /* 826 * rb_is_reader_page 827 * 828 * The unique thing about the reader page, is that, if the 829 * writer is ever on it, the previous pointer never points 830 * back to the reader page. 831 */ 832 static bool rb_is_reader_page(struct buffer_page *page) 833 { 834 struct list_head *list = page->list.prev; 835 836 return rb_list_head(list->next) != &page->list; 837 } 838 839 /* 840 * rb_set_list_to_head - set a list_head to be pointing to head. 841 */ 842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 843 struct list_head *list) 844 { 845 unsigned long *ptr; 846 847 ptr = (unsigned long *)&list->next; 848 *ptr |= RB_PAGE_HEAD; 849 *ptr &= ~RB_PAGE_UPDATE; 850 } 851 852 /* 853 * rb_head_page_activate - sets up head page 854 */ 855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 856 { 857 struct buffer_page *head; 858 859 head = cpu_buffer->head_page; 860 if (!head) 861 return; 862 863 /* 864 * Set the previous list pointer to have the HEAD flag. 865 */ 866 rb_set_list_to_head(cpu_buffer, head->list.prev); 867 } 868 869 static void rb_list_head_clear(struct list_head *list) 870 { 871 unsigned long *ptr = (unsigned long *)&list->next; 872 873 *ptr &= ~RB_FLAG_MASK; 874 } 875 876 /* 877 * rb_head_page_dactivate - clears head page ptr (for free list) 878 */ 879 static void 880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 881 { 882 struct list_head *hd; 883 884 /* Go through the whole list and clear any pointers found. */ 885 rb_list_head_clear(cpu_buffer->pages); 886 887 list_for_each(hd, cpu_buffer->pages) 888 rb_list_head_clear(hd); 889 } 890 891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 892 struct buffer_page *head, 893 struct buffer_page *prev, 894 int old_flag, int new_flag) 895 { 896 struct list_head *list; 897 unsigned long val = (unsigned long)&head->list; 898 unsigned long ret; 899 900 list = &prev->list; 901 902 val &= ~RB_FLAG_MASK; 903 904 ret = cmpxchg((unsigned long *)&list->next, 905 val | old_flag, val | new_flag); 906 907 /* check if the reader took the page */ 908 if ((ret & ~RB_FLAG_MASK) != val) 909 return RB_PAGE_MOVED; 910 911 return ret & RB_FLAG_MASK; 912 } 913 914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 915 struct buffer_page *head, 916 struct buffer_page *prev, 917 int old_flag) 918 { 919 return rb_head_page_set(cpu_buffer, head, prev, 920 old_flag, RB_PAGE_UPDATE); 921 } 922 923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 924 struct buffer_page *head, 925 struct buffer_page *prev, 926 int old_flag) 927 { 928 return rb_head_page_set(cpu_buffer, head, prev, 929 old_flag, RB_PAGE_HEAD); 930 } 931 932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 933 struct buffer_page *head, 934 struct buffer_page *prev, 935 int old_flag) 936 { 937 return rb_head_page_set(cpu_buffer, head, prev, 938 old_flag, RB_PAGE_NORMAL); 939 } 940 941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 942 struct buffer_page **bpage) 943 { 944 struct list_head *p = rb_list_head((*bpage)->list.next); 945 946 *bpage = list_entry(p, struct buffer_page, list); 947 } 948 949 static struct buffer_page * 950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 951 { 952 struct buffer_page *head; 953 struct buffer_page *page; 954 struct list_head *list; 955 int i; 956 957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 958 return NULL; 959 960 /* sanity check */ 961 list = cpu_buffer->pages; 962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 963 return NULL; 964 965 page = head = cpu_buffer->head_page; 966 /* 967 * It is possible that the writer moves the header behind 968 * where we started, and we miss in one loop. 969 * A second loop should grab the header, but we'll do 970 * three loops just because I'm paranoid. 971 */ 972 for (i = 0; i < 3; i++) { 973 do { 974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 975 cpu_buffer->head_page = page; 976 return page; 977 } 978 rb_inc_page(cpu_buffer, &page); 979 } while (page != head); 980 } 981 982 RB_WARN_ON(cpu_buffer, 1); 983 984 return NULL; 985 } 986 987 static int rb_head_page_replace(struct buffer_page *old, 988 struct buffer_page *new) 989 { 990 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 991 unsigned long val; 992 unsigned long ret; 993 994 val = *ptr & ~RB_FLAG_MASK; 995 val |= RB_PAGE_HEAD; 996 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 998 999 return ret == val; 1000 } 1001 1002 /* 1003 * rb_tail_page_update - move the tail page forward 1004 */ 1005 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1006 struct buffer_page *tail_page, 1007 struct buffer_page *next_page) 1008 { 1009 unsigned long old_entries; 1010 unsigned long old_write; 1011 1012 /* 1013 * The tail page now needs to be moved forward. 1014 * 1015 * We need to reset the tail page, but without messing 1016 * with possible erasing of data brought in by interrupts 1017 * that have moved the tail page and are currently on it. 1018 * 1019 * We add a counter to the write field to denote this. 1020 */ 1021 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1022 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1023 1024 /* 1025 * Just make sure we have seen our old_write and synchronize 1026 * with any interrupts that come in. 1027 */ 1028 barrier(); 1029 1030 /* 1031 * If the tail page is still the same as what we think 1032 * it is, then it is up to us to update the tail 1033 * pointer. 1034 */ 1035 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1036 /* Zero the write counter */ 1037 unsigned long val = old_write & ~RB_WRITE_MASK; 1038 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1039 1040 /* 1041 * This will only succeed if an interrupt did 1042 * not come in and change it. In which case, we 1043 * do not want to modify it. 1044 * 1045 * We add (void) to let the compiler know that we do not care 1046 * about the return value of these functions. We use the 1047 * cmpxchg to only update if an interrupt did not already 1048 * do it for us. If the cmpxchg fails, we don't care. 1049 */ 1050 (void)local_cmpxchg(&next_page->write, old_write, val); 1051 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1052 1053 /* 1054 * No need to worry about races with clearing out the commit. 1055 * it only can increment when a commit takes place. But that 1056 * only happens in the outer most nested commit. 1057 */ 1058 local_set(&next_page->page->commit, 0); 1059 1060 /* Again, either we update tail_page or an interrupt does */ 1061 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1062 } 1063 } 1064 1065 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1066 struct buffer_page *bpage) 1067 { 1068 unsigned long val = (unsigned long)bpage; 1069 1070 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1071 return 1; 1072 1073 return 0; 1074 } 1075 1076 /** 1077 * rb_check_list - make sure a pointer to a list has the last bits zero 1078 */ 1079 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1080 struct list_head *list) 1081 { 1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1083 return 1; 1084 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1085 return 1; 1086 return 0; 1087 } 1088 1089 /** 1090 * rb_check_pages - integrity check of buffer pages 1091 * @cpu_buffer: CPU buffer with pages to test 1092 * 1093 * As a safety measure we check to make sure the data pages have not 1094 * been corrupted. 1095 */ 1096 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1097 { 1098 struct list_head *head = cpu_buffer->pages; 1099 struct buffer_page *bpage, *tmp; 1100 1101 /* Reset the head page if it exists */ 1102 if (cpu_buffer->head_page) 1103 rb_set_head_page(cpu_buffer); 1104 1105 rb_head_page_deactivate(cpu_buffer); 1106 1107 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1108 return -1; 1109 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1110 return -1; 1111 1112 if (rb_check_list(cpu_buffer, head)) 1113 return -1; 1114 1115 list_for_each_entry_safe(bpage, tmp, head, list) { 1116 if (RB_WARN_ON(cpu_buffer, 1117 bpage->list.next->prev != &bpage->list)) 1118 return -1; 1119 if (RB_WARN_ON(cpu_buffer, 1120 bpage->list.prev->next != &bpage->list)) 1121 return -1; 1122 if (rb_check_list(cpu_buffer, &bpage->list)) 1123 return -1; 1124 } 1125 1126 rb_head_page_activate(cpu_buffer); 1127 1128 return 0; 1129 } 1130 1131 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1132 { 1133 struct buffer_page *bpage, *tmp; 1134 long i; 1135 1136 for (i = 0; i < nr_pages; i++) { 1137 struct page *page; 1138 /* 1139 * __GFP_NORETRY flag makes sure that the allocation fails 1140 * gracefully without invoking oom-killer and the system is 1141 * not destabilized. 1142 */ 1143 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1144 GFP_KERNEL | __GFP_NORETRY, 1145 cpu_to_node(cpu)); 1146 if (!bpage) 1147 goto free_pages; 1148 1149 list_add(&bpage->list, pages); 1150 1151 page = alloc_pages_node(cpu_to_node(cpu), 1152 GFP_KERNEL | __GFP_NORETRY, 0); 1153 if (!page) 1154 goto free_pages; 1155 bpage->page = page_address(page); 1156 rb_init_page(bpage->page); 1157 } 1158 1159 return 0; 1160 1161 free_pages: 1162 list_for_each_entry_safe(bpage, tmp, pages, list) { 1163 list_del_init(&bpage->list); 1164 free_buffer_page(bpage); 1165 } 1166 1167 return -ENOMEM; 1168 } 1169 1170 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1171 unsigned long nr_pages) 1172 { 1173 LIST_HEAD(pages); 1174 1175 WARN_ON(!nr_pages); 1176 1177 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1178 return -ENOMEM; 1179 1180 /* 1181 * The ring buffer page list is a circular list that does not 1182 * start and end with a list head. All page list items point to 1183 * other pages. 1184 */ 1185 cpu_buffer->pages = pages.next; 1186 list_del(&pages); 1187 1188 cpu_buffer->nr_pages = nr_pages; 1189 1190 rb_check_pages(cpu_buffer); 1191 1192 return 0; 1193 } 1194 1195 static struct ring_buffer_per_cpu * 1196 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1197 { 1198 struct ring_buffer_per_cpu *cpu_buffer; 1199 struct buffer_page *bpage; 1200 struct page *page; 1201 int ret; 1202 1203 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1204 GFP_KERNEL, cpu_to_node(cpu)); 1205 if (!cpu_buffer) 1206 return NULL; 1207 1208 cpu_buffer->cpu = cpu; 1209 cpu_buffer->buffer = buffer; 1210 raw_spin_lock_init(&cpu_buffer->reader_lock); 1211 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1212 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1213 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1214 init_completion(&cpu_buffer->update_done); 1215 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1216 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1217 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1218 1219 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1220 GFP_KERNEL, cpu_to_node(cpu)); 1221 if (!bpage) 1222 goto fail_free_buffer; 1223 1224 rb_check_bpage(cpu_buffer, bpage); 1225 1226 cpu_buffer->reader_page = bpage; 1227 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1228 if (!page) 1229 goto fail_free_reader; 1230 bpage->page = page_address(page); 1231 rb_init_page(bpage->page); 1232 1233 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1234 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1235 1236 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1237 if (ret < 0) 1238 goto fail_free_reader; 1239 1240 cpu_buffer->head_page 1241 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1242 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1243 1244 rb_head_page_activate(cpu_buffer); 1245 1246 return cpu_buffer; 1247 1248 fail_free_reader: 1249 free_buffer_page(cpu_buffer->reader_page); 1250 1251 fail_free_buffer: 1252 kfree(cpu_buffer); 1253 return NULL; 1254 } 1255 1256 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1257 { 1258 struct list_head *head = cpu_buffer->pages; 1259 struct buffer_page *bpage, *tmp; 1260 1261 free_buffer_page(cpu_buffer->reader_page); 1262 1263 rb_head_page_deactivate(cpu_buffer); 1264 1265 if (head) { 1266 list_for_each_entry_safe(bpage, tmp, head, list) { 1267 list_del_init(&bpage->list); 1268 free_buffer_page(bpage); 1269 } 1270 bpage = list_entry(head, struct buffer_page, list); 1271 free_buffer_page(bpage); 1272 } 1273 1274 kfree(cpu_buffer); 1275 } 1276 1277 #ifdef CONFIG_HOTPLUG_CPU 1278 static int rb_cpu_notify(struct notifier_block *self, 1279 unsigned long action, void *hcpu); 1280 #endif 1281 1282 /** 1283 * __ring_buffer_alloc - allocate a new ring_buffer 1284 * @size: the size in bytes per cpu that is needed. 1285 * @flags: attributes to set for the ring buffer. 1286 * 1287 * Currently the only flag that is available is the RB_FL_OVERWRITE 1288 * flag. This flag means that the buffer will overwrite old data 1289 * when the buffer wraps. If this flag is not set, the buffer will 1290 * drop data when the tail hits the head. 1291 */ 1292 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1293 struct lock_class_key *key) 1294 { 1295 struct ring_buffer *buffer; 1296 long nr_pages; 1297 int bsize; 1298 int cpu; 1299 1300 /* keep it in its own cache line */ 1301 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1302 GFP_KERNEL); 1303 if (!buffer) 1304 return NULL; 1305 1306 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1307 goto fail_free_buffer; 1308 1309 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1310 buffer->flags = flags; 1311 buffer->clock = trace_clock_local; 1312 buffer->reader_lock_key = key; 1313 1314 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1315 init_waitqueue_head(&buffer->irq_work.waiters); 1316 1317 /* need at least two pages */ 1318 if (nr_pages < 2) 1319 nr_pages = 2; 1320 1321 /* 1322 * In case of non-hotplug cpu, if the ring-buffer is allocated 1323 * in early initcall, it will not be notified of secondary cpus. 1324 * In that off case, we need to allocate for all possible cpus. 1325 */ 1326 #ifdef CONFIG_HOTPLUG_CPU 1327 cpu_notifier_register_begin(); 1328 cpumask_copy(buffer->cpumask, cpu_online_mask); 1329 #else 1330 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1331 #endif 1332 buffer->cpus = nr_cpu_ids; 1333 1334 bsize = sizeof(void *) * nr_cpu_ids; 1335 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1336 GFP_KERNEL); 1337 if (!buffer->buffers) 1338 goto fail_free_cpumask; 1339 1340 for_each_buffer_cpu(buffer, cpu) { 1341 buffer->buffers[cpu] = 1342 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1343 if (!buffer->buffers[cpu]) 1344 goto fail_free_buffers; 1345 } 1346 1347 #ifdef CONFIG_HOTPLUG_CPU 1348 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1349 buffer->cpu_notify.priority = 0; 1350 __register_cpu_notifier(&buffer->cpu_notify); 1351 cpu_notifier_register_done(); 1352 #endif 1353 1354 mutex_init(&buffer->mutex); 1355 1356 return buffer; 1357 1358 fail_free_buffers: 1359 for_each_buffer_cpu(buffer, cpu) { 1360 if (buffer->buffers[cpu]) 1361 rb_free_cpu_buffer(buffer->buffers[cpu]); 1362 } 1363 kfree(buffer->buffers); 1364 1365 fail_free_cpumask: 1366 free_cpumask_var(buffer->cpumask); 1367 #ifdef CONFIG_HOTPLUG_CPU 1368 cpu_notifier_register_done(); 1369 #endif 1370 1371 fail_free_buffer: 1372 kfree(buffer); 1373 return NULL; 1374 } 1375 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1376 1377 /** 1378 * ring_buffer_free - free a ring buffer. 1379 * @buffer: the buffer to free. 1380 */ 1381 void 1382 ring_buffer_free(struct ring_buffer *buffer) 1383 { 1384 int cpu; 1385 1386 #ifdef CONFIG_HOTPLUG_CPU 1387 cpu_notifier_register_begin(); 1388 __unregister_cpu_notifier(&buffer->cpu_notify); 1389 #endif 1390 1391 for_each_buffer_cpu(buffer, cpu) 1392 rb_free_cpu_buffer(buffer->buffers[cpu]); 1393 1394 #ifdef CONFIG_HOTPLUG_CPU 1395 cpu_notifier_register_done(); 1396 #endif 1397 1398 kfree(buffer->buffers); 1399 free_cpumask_var(buffer->cpumask); 1400 1401 kfree(buffer); 1402 } 1403 EXPORT_SYMBOL_GPL(ring_buffer_free); 1404 1405 void ring_buffer_set_clock(struct ring_buffer *buffer, 1406 u64 (*clock)(void)) 1407 { 1408 buffer->clock = clock; 1409 } 1410 1411 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1412 1413 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1414 { 1415 return local_read(&bpage->entries) & RB_WRITE_MASK; 1416 } 1417 1418 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1419 { 1420 return local_read(&bpage->write) & RB_WRITE_MASK; 1421 } 1422 1423 static int 1424 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1425 { 1426 struct list_head *tail_page, *to_remove, *next_page; 1427 struct buffer_page *to_remove_page, *tmp_iter_page; 1428 struct buffer_page *last_page, *first_page; 1429 unsigned long nr_removed; 1430 unsigned long head_bit; 1431 int page_entries; 1432 1433 head_bit = 0; 1434 1435 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1436 atomic_inc(&cpu_buffer->record_disabled); 1437 /* 1438 * We don't race with the readers since we have acquired the reader 1439 * lock. We also don't race with writers after disabling recording. 1440 * This makes it easy to figure out the first and the last page to be 1441 * removed from the list. We unlink all the pages in between including 1442 * the first and last pages. This is done in a busy loop so that we 1443 * lose the least number of traces. 1444 * The pages are freed after we restart recording and unlock readers. 1445 */ 1446 tail_page = &cpu_buffer->tail_page->list; 1447 1448 /* 1449 * tail page might be on reader page, we remove the next page 1450 * from the ring buffer 1451 */ 1452 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1453 tail_page = rb_list_head(tail_page->next); 1454 to_remove = tail_page; 1455 1456 /* start of pages to remove */ 1457 first_page = list_entry(rb_list_head(to_remove->next), 1458 struct buffer_page, list); 1459 1460 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1461 to_remove = rb_list_head(to_remove)->next; 1462 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1463 } 1464 1465 next_page = rb_list_head(to_remove)->next; 1466 1467 /* 1468 * Now we remove all pages between tail_page and next_page. 1469 * Make sure that we have head_bit value preserved for the 1470 * next page 1471 */ 1472 tail_page->next = (struct list_head *)((unsigned long)next_page | 1473 head_bit); 1474 next_page = rb_list_head(next_page); 1475 next_page->prev = tail_page; 1476 1477 /* make sure pages points to a valid page in the ring buffer */ 1478 cpu_buffer->pages = next_page; 1479 1480 /* update head page */ 1481 if (head_bit) 1482 cpu_buffer->head_page = list_entry(next_page, 1483 struct buffer_page, list); 1484 1485 /* 1486 * change read pointer to make sure any read iterators reset 1487 * themselves 1488 */ 1489 cpu_buffer->read = 0; 1490 1491 /* pages are removed, resume tracing and then free the pages */ 1492 atomic_dec(&cpu_buffer->record_disabled); 1493 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1494 1495 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1496 1497 /* last buffer page to remove */ 1498 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1499 list); 1500 tmp_iter_page = first_page; 1501 1502 do { 1503 to_remove_page = tmp_iter_page; 1504 rb_inc_page(cpu_buffer, &tmp_iter_page); 1505 1506 /* update the counters */ 1507 page_entries = rb_page_entries(to_remove_page); 1508 if (page_entries) { 1509 /* 1510 * If something was added to this page, it was full 1511 * since it is not the tail page. So we deduct the 1512 * bytes consumed in ring buffer from here. 1513 * Increment overrun to account for the lost events. 1514 */ 1515 local_add(page_entries, &cpu_buffer->overrun); 1516 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1517 } 1518 1519 /* 1520 * We have already removed references to this list item, just 1521 * free up the buffer_page and its page 1522 */ 1523 free_buffer_page(to_remove_page); 1524 nr_removed--; 1525 1526 } while (to_remove_page != last_page); 1527 1528 RB_WARN_ON(cpu_buffer, nr_removed); 1529 1530 return nr_removed == 0; 1531 } 1532 1533 static int 1534 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1535 { 1536 struct list_head *pages = &cpu_buffer->new_pages; 1537 int retries, success; 1538 1539 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1540 /* 1541 * We are holding the reader lock, so the reader page won't be swapped 1542 * in the ring buffer. Now we are racing with the writer trying to 1543 * move head page and the tail page. 1544 * We are going to adapt the reader page update process where: 1545 * 1. We first splice the start and end of list of new pages between 1546 * the head page and its previous page. 1547 * 2. We cmpxchg the prev_page->next to point from head page to the 1548 * start of new pages list. 1549 * 3. Finally, we update the head->prev to the end of new list. 1550 * 1551 * We will try this process 10 times, to make sure that we don't keep 1552 * spinning. 1553 */ 1554 retries = 10; 1555 success = 0; 1556 while (retries--) { 1557 struct list_head *head_page, *prev_page, *r; 1558 struct list_head *last_page, *first_page; 1559 struct list_head *head_page_with_bit; 1560 1561 head_page = &rb_set_head_page(cpu_buffer)->list; 1562 if (!head_page) 1563 break; 1564 prev_page = head_page->prev; 1565 1566 first_page = pages->next; 1567 last_page = pages->prev; 1568 1569 head_page_with_bit = (struct list_head *) 1570 ((unsigned long)head_page | RB_PAGE_HEAD); 1571 1572 last_page->next = head_page_with_bit; 1573 first_page->prev = prev_page; 1574 1575 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1576 1577 if (r == head_page_with_bit) { 1578 /* 1579 * yay, we replaced the page pointer to our new list, 1580 * now, we just have to update to head page's prev 1581 * pointer to point to end of list 1582 */ 1583 head_page->prev = last_page; 1584 success = 1; 1585 break; 1586 } 1587 } 1588 1589 if (success) 1590 INIT_LIST_HEAD(pages); 1591 /* 1592 * If we weren't successful in adding in new pages, warn and stop 1593 * tracing 1594 */ 1595 RB_WARN_ON(cpu_buffer, !success); 1596 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1597 1598 /* free pages if they weren't inserted */ 1599 if (!success) { 1600 struct buffer_page *bpage, *tmp; 1601 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1602 list) { 1603 list_del_init(&bpage->list); 1604 free_buffer_page(bpage); 1605 } 1606 } 1607 return success; 1608 } 1609 1610 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1611 { 1612 int success; 1613 1614 if (cpu_buffer->nr_pages_to_update > 0) 1615 success = rb_insert_pages(cpu_buffer); 1616 else 1617 success = rb_remove_pages(cpu_buffer, 1618 -cpu_buffer->nr_pages_to_update); 1619 1620 if (success) 1621 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1622 } 1623 1624 static void update_pages_handler(struct work_struct *work) 1625 { 1626 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1627 struct ring_buffer_per_cpu, update_pages_work); 1628 rb_update_pages(cpu_buffer); 1629 complete(&cpu_buffer->update_done); 1630 } 1631 1632 /** 1633 * ring_buffer_resize - resize the ring buffer 1634 * @buffer: the buffer to resize. 1635 * @size: the new size. 1636 * @cpu_id: the cpu buffer to resize 1637 * 1638 * Minimum size is 2 * BUF_PAGE_SIZE. 1639 * 1640 * Returns 0 on success and < 0 on failure. 1641 */ 1642 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1643 int cpu_id) 1644 { 1645 struct ring_buffer_per_cpu *cpu_buffer; 1646 unsigned long nr_pages; 1647 int cpu, err = 0; 1648 1649 /* 1650 * Always succeed at resizing a non-existent buffer: 1651 */ 1652 if (!buffer) 1653 return size; 1654 1655 /* Make sure the requested buffer exists */ 1656 if (cpu_id != RING_BUFFER_ALL_CPUS && 1657 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1658 return size; 1659 1660 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1661 1662 /* we need a minimum of two pages */ 1663 if (nr_pages < 2) 1664 nr_pages = 2; 1665 1666 size = nr_pages * BUF_PAGE_SIZE; 1667 1668 /* 1669 * Don't succeed if resizing is disabled, as a reader might be 1670 * manipulating the ring buffer and is expecting a sane state while 1671 * this is true. 1672 */ 1673 if (atomic_read(&buffer->resize_disabled)) 1674 return -EBUSY; 1675 1676 /* prevent another thread from changing buffer sizes */ 1677 mutex_lock(&buffer->mutex); 1678 1679 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1680 /* calculate the pages to update */ 1681 for_each_buffer_cpu(buffer, cpu) { 1682 cpu_buffer = buffer->buffers[cpu]; 1683 1684 cpu_buffer->nr_pages_to_update = nr_pages - 1685 cpu_buffer->nr_pages; 1686 /* 1687 * nothing more to do for removing pages or no update 1688 */ 1689 if (cpu_buffer->nr_pages_to_update <= 0) 1690 continue; 1691 /* 1692 * to add pages, make sure all new pages can be 1693 * allocated without receiving ENOMEM 1694 */ 1695 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1696 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1697 &cpu_buffer->new_pages, cpu)) { 1698 /* not enough memory for new pages */ 1699 err = -ENOMEM; 1700 goto out_err; 1701 } 1702 } 1703 1704 get_online_cpus(); 1705 /* 1706 * Fire off all the required work handlers 1707 * We can't schedule on offline CPUs, but it's not necessary 1708 * since we can change their buffer sizes without any race. 1709 */ 1710 for_each_buffer_cpu(buffer, cpu) { 1711 cpu_buffer = buffer->buffers[cpu]; 1712 if (!cpu_buffer->nr_pages_to_update) 1713 continue; 1714 1715 /* Can't run something on an offline CPU. */ 1716 if (!cpu_online(cpu)) { 1717 rb_update_pages(cpu_buffer); 1718 cpu_buffer->nr_pages_to_update = 0; 1719 } else { 1720 schedule_work_on(cpu, 1721 &cpu_buffer->update_pages_work); 1722 } 1723 } 1724 1725 /* wait for all the updates to complete */ 1726 for_each_buffer_cpu(buffer, cpu) { 1727 cpu_buffer = buffer->buffers[cpu]; 1728 if (!cpu_buffer->nr_pages_to_update) 1729 continue; 1730 1731 if (cpu_online(cpu)) 1732 wait_for_completion(&cpu_buffer->update_done); 1733 cpu_buffer->nr_pages_to_update = 0; 1734 } 1735 1736 put_online_cpus(); 1737 } else { 1738 /* Make sure this CPU has been intitialized */ 1739 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1740 goto out; 1741 1742 cpu_buffer = buffer->buffers[cpu_id]; 1743 1744 if (nr_pages == cpu_buffer->nr_pages) 1745 goto out; 1746 1747 cpu_buffer->nr_pages_to_update = nr_pages - 1748 cpu_buffer->nr_pages; 1749 1750 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1751 if (cpu_buffer->nr_pages_to_update > 0 && 1752 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1753 &cpu_buffer->new_pages, cpu_id)) { 1754 err = -ENOMEM; 1755 goto out_err; 1756 } 1757 1758 get_online_cpus(); 1759 1760 /* Can't run something on an offline CPU. */ 1761 if (!cpu_online(cpu_id)) 1762 rb_update_pages(cpu_buffer); 1763 else { 1764 schedule_work_on(cpu_id, 1765 &cpu_buffer->update_pages_work); 1766 wait_for_completion(&cpu_buffer->update_done); 1767 } 1768 1769 cpu_buffer->nr_pages_to_update = 0; 1770 put_online_cpus(); 1771 } 1772 1773 out: 1774 /* 1775 * The ring buffer resize can happen with the ring buffer 1776 * enabled, so that the update disturbs the tracing as little 1777 * as possible. But if the buffer is disabled, we do not need 1778 * to worry about that, and we can take the time to verify 1779 * that the buffer is not corrupt. 1780 */ 1781 if (atomic_read(&buffer->record_disabled)) { 1782 atomic_inc(&buffer->record_disabled); 1783 /* 1784 * Even though the buffer was disabled, we must make sure 1785 * that it is truly disabled before calling rb_check_pages. 1786 * There could have been a race between checking 1787 * record_disable and incrementing it. 1788 */ 1789 synchronize_sched(); 1790 for_each_buffer_cpu(buffer, cpu) { 1791 cpu_buffer = buffer->buffers[cpu]; 1792 rb_check_pages(cpu_buffer); 1793 } 1794 atomic_dec(&buffer->record_disabled); 1795 } 1796 1797 mutex_unlock(&buffer->mutex); 1798 return size; 1799 1800 out_err: 1801 for_each_buffer_cpu(buffer, cpu) { 1802 struct buffer_page *bpage, *tmp; 1803 1804 cpu_buffer = buffer->buffers[cpu]; 1805 cpu_buffer->nr_pages_to_update = 0; 1806 1807 if (list_empty(&cpu_buffer->new_pages)) 1808 continue; 1809 1810 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1811 list) { 1812 list_del_init(&bpage->list); 1813 free_buffer_page(bpage); 1814 } 1815 } 1816 mutex_unlock(&buffer->mutex); 1817 return err; 1818 } 1819 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1820 1821 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1822 { 1823 mutex_lock(&buffer->mutex); 1824 if (val) 1825 buffer->flags |= RB_FL_OVERWRITE; 1826 else 1827 buffer->flags &= ~RB_FL_OVERWRITE; 1828 mutex_unlock(&buffer->mutex); 1829 } 1830 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1831 1832 static inline void * 1833 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1834 { 1835 return bpage->data + index; 1836 } 1837 1838 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1839 { 1840 return bpage->page->data + index; 1841 } 1842 1843 static inline struct ring_buffer_event * 1844 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1845 { 1846 return __rb_page_index(cpu_buffer->reader_page, 1847 cpu_buffer->reader_page->read); 1848 } 1849 1850 static inline struct ring_buffer_event * 1851 rb_iter_head_event(struct ring_buffer_iter *iter) 1852 { 1853 return __rb_page_index(iter->head_page, iter->head); 1854 } 1855 1856 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1857 { 1858 return local_read(&bpage->page->commit); 1859 } 1860 1861 /* Size is determined by what has been committed */ 1862 static inline unsigned rb_page_size(struct buffer_page *bpage) 1863 { 1864 return rb_page_commit(bpage); 1865 } 1866 1867 static inline unsigned 1868 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1869 { 1870 return rb_page_commit(cpu_buffer->commit_page); 1871 } 1872 1873 static inline unsigned 1874 rb_event_index(struct ring_buffer_event *event) 1875 { 1876 unsigned long addr = (unsigned long)event; 1877 1878 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1879 } 1880 1881 static void rb_inc_iter(struct ring_buffer_iter *iter) 1882 { 1883 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1884 1885 /* 1886 * The iterator could be on the reader page (it starts there). 1887 * But the head could have moved, since the reader was 1888 * found. Check for this case and assign the iterator 1889 * to the head page instead of next. 1890 */ 1891 if (iter->head_page == cpu_buffer->reader_page) 1892 iter->head_page = rb_set_head_page(cpu_buffer); 1893 else 1894 rb_inc_page(cpu_buffer, &iter->head_page); 1895 1896 iter->read_stamp = iter->head_page->page->time_stamp; 1897 iter->head = 0; 1898 } 1899 1900 /* 1901 * rb_handle_head_page - writer hit the head page 1902 * 1903 * Returns: +1 to retry page 1904 * 0 to continue 1905 * -1 on error 1906 */ 1907 static int 1908 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1909 struct buffer_page *tail_page, 1910 struct buffer_page *next_page) 1911 { 1912 struct buffer_page *new_head; 1913 int entries; 1914 int type; 1915 int ret; 1916 1917 entries = rb_page_entries(next_page); 1918 1919 /* 1920 * The hard part is here. We need to move the head 1921 * forward, and protect against both readers on 1922 * other CPUs and writers coming in via interrupts. 1923 */ 1924 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1925 RB_PAGE_HEAD); 1926 1927 /* 1928 * type can be one of four: 1929 * NORMAL - an interrupt already moved it for us 1930 * HEAD - we are the first to get here. 1931 * UPDATE - we are the interrupt interrupting 1932 * a current move. 1933 * MOVED - a reader on another CPU moved the next 1934 * pointer to its reader page. Give up 1935 * and try again. 1936 */ 1937 1938 switch (type) { 1939 case RB_PAGE_HEAD: 1940 /* 1941 * We changed the head to UPDATE, thus 1942 * it is our responsibility to update 1943 * the counters. 1944 */ 1945 local_add(entries, &cpu_buffer->overrun); 1946 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1947 1948 /* 1949 * The entries will be zeroed out when we move the 1950 * tail page. 1951 */ 1952 1953 /* still more to do */ 1954 break; 1955 1956 case RB_PAGE_UPDATE: 1957 /* 1958 * This is an interrupt that interrupt the 1959 * previous update. Still more to do. 1960 */ 1961 break; 1962 case RB_PAGE_NORMAL: 1963 /* 1964 * An interrupt came in before the update 1965 * and processed this for us. 1966 * Nothing left to do. 1967 */ 1968 return 1; 1969 case RB_PAGE_MOVED: 1970 /* 1971 * The reader is on another CPU and just did 1972 * a swap with our next_page. 1973 * Try again. 1974 */ 1975 return 1; 1976 default: 1977 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1978 return -1; 1979 } 1980 1981 /* 1982 * Now that we are here, the old head pointer is 1983 * set to UPDATE. This will keep the reader from 1984 * swapping the head page with the reader page. 1985 * The reader (on another CPU) will spin till 1986 * we are finished. 1987 * 1988 * We just need to protect against interrupts 1989 * doing the job. We will set the next pointer 1990 * to HEAD. After that, we set the old pointer 1991 * to NORMAL, but only if it was HEAD before. 1992 * otherwise we are an interrupt, and only 1993 * want the outer most commit to reset it. 1994 */ 1995 new_head = next_page; 1996 rb_inc_page(cpu_buffer, &new_head); 1997 1998 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1999 RB_PAGE_NORMAL); 2000 2001 /* 2002 * Valid returns are: 2003 * HEAD - an interrupt came in and already set it. 2004 * NORMAL - One of two things: 2005 * 1) We really set it. 2006 * 2) A bunch of interrupts came in and moved 2007 * the page forward again. 2008 */ 2009 switch (ret) { 2010 case RB_PAGE_HEAD: 2011 case RB_PAGE_NORMAL: 2012 /* OK */ 2013 break; 2014 default: 2015 RB_WARN_ON(cpu_buffer, 1); 2016 return -1; 2017 } 2018 2019 /* 2020 * It is possible that an interrupt came in, 2021 * set the head up, then more interrupts came in 2022 * and moved it again. When we get back here, 2023 * the page would have been set to NORMAL but we 2024 * just set it back to HEAD. 2025 * 2026 * How do you detect this? Well, if that happened 2027 * the tail page would have moved. 2028 */ 2029 if (ret == RB_PAGE_NORMAL) { 2030 struct buffer_page *buffer_tail_page; 2031 2032 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2033 /* 2034 * If the tail had moved passed next, then we need 2035 * to reset the pointer. 2036 */ 2037 if (buffer_tail_page != tail_page && 2038 buffer_tail_page != next_page) 2039 rb_head_page_set_normal(cpu_buffer, new_head, 2040 next_page, 2041 RB_PAGE_HEAD); 2042 } 2043 2044 /* 2045 * If this was the outer most commit (the one that 2046 * changed the original pointer from HEAD to UPDATE), 2047 * then it is up to us to reset it to NORMAL. 2048 */ 2049 if (type == RB_PAGE_HEAD) { 2050 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2051 tail_page, 2052 RB_PAGE_UPDATE); 2053 if (RB_WARN_ON(cpu_buffer, 2054 ret != RB_PAGE_UPDATE)) 2055 return -1; 2056 } 2057 2058 return 0; 2059 } 2060 2061 static inline void 2062 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2063 unsigned long tail, struct rb_event_info *info) 2064 { 2065 struct buffer_page *tail_page = info->tail_page; 2066 struct ring_buffer_event *event; 2067 unsigned long length = info->length; 2068 2069 /* 2070 * Only the event that crossed the page boundary 2071 * must fill the old tail_page with padding. 2072 */ 2073 if (tail >= BUF_PAGE_SIZE) { 2074 /* 2075 * If the page was filled, then we still need 2076 * to update the real_end. Reset it to zero 2077 * and the reader will ignore it. 2078 */ 2079 if (tail == BUF_PAGE_SIZE) 2080 tail_page->real_end = 0; 2081 2082 local_sub(length, &tail_page->write); 2083 return; 2084 } 2085 2086 event = __rb_page_index(tail_page, tail); 2087 kmemcheck_annotate_bitfield(event, bitfield); 2088 2089 /* account for padding bytes */ 2090 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2091 2092 /* 2093 * Save the original length to the meta data. 2094 * This will be used by the reader to add lost event 2095 * counter. 2096 */ 2097 tail_page->real_end = tail; 2098 2099 /* 2100 * If this event is bigger than the minimum size, then 2101 * we need to be careful that we don't subtract the 2102 * write counter enough to allow another writer to slip 2103 * in on this page. 2104 * We put in a discarded commit instead, to make sure 2105 * that this space is not used again. 2106 * 2107 * If we are less than the minimum size, we don't need to 2108 * worry about it. 2109 */ 2110 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2111 /* No room for any events */ 2112 2113 /* Mark the rest of the page with padding */ 2114 rb_event_set_padding(event); 2115 2116 /* Set the write back to the previous setting */ 2117 local_sub(length, &tail_page->write); 2118 return; 2119 } 2120 2121 /* Put in a discarded event */ 2122 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2123 event->type_len = RINGBUF_TYPE_PADDING; 2124 /* time delta must be non zero */ 2125 event->time_delta = 1; 2126 2127 /* Set write to end of buffer */ 2128 length = (tail + length) - BUF_PAGE_SIZE; 2129 local_sub(length, &tail_page->write); 2130 } 2131 2132 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2133 2134 /* 2135 * This is the slow path, force gcc not to inline it. 2136 */ 2137 static noinline struct ring_buffer_event * 2138 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2139 unsigned long tail, struct rb_event_info *info) 2140 { 2141 struct buffer_page *tail_page = info->tail_page; 2142 struct buffer_page *commit_page = cpu_buffer->commit_page; 2143 struct ring_buffer *buffer = cpu_buffer->buffer; 2144 struct buffer_page *next_page; 2145 int ret; 2146 2147 next_page = tail_page; 2148 2149 rb_inc_page(cpu_buffer, &next_page); 2150 2151 /* 2152 * If for some reason, we had an interrupt storm that made 2153 * it all the way around the buffer, bail, and warn 2154 * about it. 2155 */ 2156 if (unlikely(next_page == commit_page)) { 2157 local_inc(&cpu_buffer->commit_overrun); 2158 goto out_reset; 2159 } 2160 2161 /* 2162 * This is where the fun begins! 2163 * 2164 * We are fighting against races between a reader that 2165 * could be on another CPU trying to swap its reader 2166 * page with the buffer head. 2167 * 2168 * We are also fighting against interrupts coming in and 2169 * moving the head or tail on us as well. 2170 * 2171 * If the next page is the head page then we have filled 2172 * the buffer, unless the commit page is still on the 2173 * reader page. 2174 */ 2175 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2176 2177 /* 2178 * If the commit is not on the reader page, then 2179 * move the header page. 2180 */ 2181 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2182 /* 2183 * If we are not in overwrite mode, 2184 * this is easy, just stop here. 2185 */ 2186 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2187 local_inc(&cpu_buffer->dropped_events); 2188 goto out_reset; 2189 } 2190 2191 ret = rb_handle_head_page(cpu_buffer, 2192 tail_page, 2193 next_page); 2194 if (ret < 0) 2195 goto out_reset; 2196 if (ret) 2197 goto out_again; 2198 } else { 2199 /* 2200 * We need to be careful here too. The 2201 * commit page could still be on the reader 2202 * page. We could have a small buffer, and 2203 * have filled up the buffer with events 2204 * from interrupts and such, and wrapped. 2205 * 2206 * Note, if the tail page is also the on the 2207 * reader_page, we let it move out. 2208 */ 2209 if (unlikely((cpu_buffer->commit_page != 2210 cpu_buffer->tail_page) && 2211 (cpu_buffer->commit_page == 2212 cpu_buffer->reader_page))) { 2213 local_inc(&cpu_buffer->commit_overrun); 2214 goto out_reset; 2215 } 2216 } 2217 } 2218 2219 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2220 2221 out_again: 2222 2223 rb_reset_tail(cpu_buffer, tail, info); 2224 2225 /* Commit what we have for now. */ 2226 rb_end_commit(cpu_buffer); 2227 /* rb_end_commit() decs committing */ 2228 local_inc(&cpu_buffer->committing); 2229 2230 /* fail and let the caller try again */ 2231 return ERR_PTR(-EAGAIN); 2232 2233 out_reset: 2234 /* reset write */ 2235 rb_reset_tail(cpu_buffer, tail, info); 2236 2237 return NULL; 2238 } 2239 2240 /* Slow path, do not inline */ 2241 static noinline struct ring_buffer_event * 2242 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2243 { 2244 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2245 2246 /* Not the first event on the page? */ 2247 if (rb_event_index(event)) { 2248 event->time_delta = delta & TS_MASK; 2249 event->array[0] = delta >> TS_SHIFT; 2250 } else { 2251 /* nope, just zero it */ 2252 event->time_delta = 0; 2253 event->array[0] = 0; 2254 } 2255 2256 return skip_time_extend(event); 2257 } 2258 2259 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2260 struct ring_buffer_event *event); 2261 2262 /** 2263 * rb_update_event - update event type and data 2264 * @event: the event to update 2265 * @type: the type of event 2266 * @length: the size of the event field in the ring buffer 2267 * 2268 * Update the type and data fields of the event. The length 2269 * is the actual size that is written to the ring buffer, 2270 * and with this, we can determine what to place into the 2271 * data field. 2272 */ 2273 static void 2274 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2275 struct ring_buffer_event *event, 2276 struct rb_event_info *info) 2277 { 2278 unsigned length = info->length; 2279 u64 delta = info->delta; 2280 2281 /* Only a commit updates the timestamp */ 2282 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2283 delta = 0; 2284 2285 /* 2286 * If we need to add a timestamp, then we 2287 * add it to the start of the resevered space. 2288 */ 2289 if (unlikely(info->add_timestamp)) { 2290 event = rb_add_time_stamp(event, delta); 2291 length -= RB_LEN_TIME_EXTEND; 2292 delta = 0; 2293 } 2294 2295 event->time_delta = delta; 2296 length -= RB_EVNT_HDR_SIZE; 2297 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2298 event->type_len = 0; 2299 event->array[0] = length; 2300 } else 2301 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2302 } 2303 2304 static unsigned rb_calculate_event_length(unsigned length) 2305 { 2306 struct ring_buffer_event event; /* Used only for sizeof array */ 2307 2308 /* zero length can cause confusions */ 2309 if (!length) 2310 length++; 2311 2312 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2313 length += sizeof(event.array[0]); 2314 2315 length += RB_EVNT_HDR_SIZE; 2316 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2317 2318 /* 2319 * In case the time delta is larger than the 27 bits for it 2320 * in the header, we need to add a timestamp. If another 2321 * event comes in when trying to discard this one to increase 2322 * the length, then the timestamp will be added in the allocated 2323 * space of this event. If length is bigger than the size needed 2324 * for the TIME_EXTEND, then padding has to be used. The events 2325 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2326 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2327 * As length is a multiple of 4, we only need to worry if it 2328 * is 12 (RB_LEN_TIME_EXTEND + 4). 2329 */ 2330 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2331 length += RB_ALIGNMENT; 2332 2333 return length; 2334 } 2335 2336 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2337 static inline bool sched_clock_stable(void) 2338 { 2339 return true; 2340 } 2341 #endif 2342 2343 static inline int 2344 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2345 struct ring_buffer_event *event) 2346 { 2347 unsigned long new_index, old_index; 2348 struct buffer_page *bpage; 2349 unsigned long index; 2350 unsigned long addr; 2351 2352 new_index = rb_event_index(event); 2353 old_index = new_index + rb_event_ts_length(event); 2354 addr = (unsigned long)event; 2355 addr &= PAGE_MASK; 2356 2357 bpage = READ_ONCE(cpu_buffer->tail_page); 2358 2359 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2360 unsigned long write_mask = 2361 local_read(&bpage->write) & ~RB_WRITE_MASK; 2362 unsigned long event_length = rb_event_length(event); 2363 /* 2364 * This is on the tail page. It is possible that 2365 * a write could come in and move the tail page 2366 * and write to the next page. That is fine 2367 * because we just shorten what is on this page. 2368 */ 2369 old_index += write_mask; 2370 new_index += write_mask; 2371 index = local_cmpxchg(&bpage->write, old_index, new_index); 2372 if (index == old_index) { 2373 /* update counters */ 2374 local_sub(event_length, &cpu_buffer->entries_bytes); 2375 return 1; 2376 } 2377 } 2378 2379 /* could not discard */ 2380 return 0; 2381 } 2382 2383 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2384 { 2385 local_inc(&cpu_buffer->committing); 2386 local_inc(&cpu_buffer->commits); 2387 } 2388 2389 static void 2390 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2391 { 2392 unsigned long max_count; 2393 2394 /* 2395 * We only race with interrupts and NMIs on this CPU. 2396 * If we own the commit event, then we can commit 2397 * all others that interrupted us, since the interruptions 2398 * are in stack format (they finish before they come 2399 * back to us). This allows us to do a simple loop to 2400 * assign the commit to the tail. 2401 */ 2402 again: 2403 max_count = cpu_buffer->nr_pages * 100; 2404 2405 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2406 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2407 return; 2408 if (RB_WARN_ON(cpu_buffer, 2409 rb_is_reader_page(cpu_buffer->tail_page))) 2410 return; 2411 local_set(&cpu_buffer->commit_page->page->commit, 2412 rb_page_write(cpu_buffer->commit_page)); 2413 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2414 /* Only update the write stamp if the page has an event */ 2415 if (rb_page_write(cpu_buffer->commit_page)) 2416 cpu_buffer->write_stamp = 2417 cpu_buffer->commit_page->page->time_stamp; 2418 /* add barrier to keep gcc from optimizing too much */ 2419 barrier(); 2420 } 2421 while (rb_commit_index(cpu_buffer) != 2422 rb_page_write(cpu_buffer->commit_page)) { 2423 2424 local_set(&cpu_buffer->commit_page->page->commit, 2425 rb_page_write(cpu_buffer->commit_page)); 2426 RB_WARN_ON(cpu_buffer, 2427 local_read(&cpu_buffer->commit_page->page->commit) & 2428 ~RB_WRITE_MASK); 2429 barrier(); 2430 } 2431 2432 /* again, keep gcc from optimizing */ 2433 barrier(); 2434 2435 /* 2436 * If an interrupt came in just after the first while loop 2437 * and pushed the tail page forward, we will be left with 2438 * a dangling commit that will never go forward. 2439 */ 2440 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2441 goto again; 2442 } 2443 2444 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2445 { 2446 unsigned long commits; 2447 2448 if (RB_WARN_ON(cpu_buffer, 2449 !local_read(&cpu_buffer->committing))) 2450 return; 2451 2452 again: 2453 commits = local_read(&cpu_buffer->commits); 2454 /* synchronize with interrupts */ 2455 barrier(); 2456 if (local_read(&cpu_buffer->committing) == 1) 2457 rb_set_commit_to_write(cpu_buffer); 2458 2459 local_dec(&cpu_buffer->committing); 2460 2461 /* synchronize with interrupts */ 2462 barrier(); 2463 2464 /* 2465 * Need to account for interrupts coming in between the 2466 * updating of the commit page and the clearing of the 2467 * committing counter. 2468 */ 2469 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2470 !local_read(&cpu_buffer->committing)) { 2471 local_inc(&cpu_buffer->committing); 2472 goto again; 2473 } 2474 } 2475 2476 static inline void rb_event_discard(struct ring_buffer_event *event) 2477 { 2478 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2479 event = skip_time_extend(event); 2480 2481 /* array[0] holds the actual length for the discarded event */ 2482 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2483 event->type_len = RINGBUF_TYPE_PADDING; 2484 /* time delta must be non zero */ 2485 if (!event->time_delta) 2486 event->time_delta = 1; 2487 } 2488 2489 static inline bool 2490 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2491 struct ring_buffer_event *event) 2492 { 2493 unsigned long addr = (unsigned long)event; 2494 unsigned long index; 2495 2496 index = rb_event_index(event); 2497 addr &= PAGE_MASK; 2498 2499 return cpu_buffer->commit_page->page == (void *)addr && 2500 rb_commit_index(cpu_buffer) == index; 2501 } 2502 2503 static void 2504 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2505 struct ring_buffer_event *event) 2506 { 2507 u64 delta; 2508 2509 /* 2510 * The event first in the commit queue updates the 2511 * time stamp. 2512 */ 2513 if (rb_event_is_commit(cpu_buffer, event)) { 2514 /* 2515 * A commit event that is first on a page 2516 * updates the write timestamp with the page stamp 2517 */ 2518 if (!rb_event_index(event)) 2519 cpu_buffer->write_stamp = 2520 cpu_buffer->commit_page->page->time_stamp; 2521 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2522 delta = event->array[0]; 2523 delta <<= TS_SHIFT; 2524 delta += event->time_delta; 2525 cpu_buffer->write_stamp += delta; 2526 } else 2527 cpu_buffer->write_stamp += event->time_delta; 2528 } 2529 } 2530 2531 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2532 struct ring_buffer_event *event) 2533 { 2534 local_inc(&cpu_buffer->entries); 2535 rb_update_write_stamp(cpu_buffer, event); 2536 rb_end_commit(cpu_buffer); 2537 } 2538 2539 static __always_inline void 2540 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2541 { 2542 bool pagebusy; 2543 2544 if (buffer->irq_work.waiters_pending) { 2545 buffer->irq_work.waiters_pending = false; 2546 /* irq_work_queue() supplies it's own memory barriers */ 2547 irq_work_queue(&buffer->irq_work.work); 2548 } 2549 2550 if (cpu_buffer->irq_work.waiters_pending) { 2551 cpu_buffer->irq_work.waiters_pending = false; 2552 /* irq_work_queue() supplies it's own memory barriers */ 2553 irq_work_queue(&cpu_buffer->irq_work.work); 2554 } 2555 2556 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2557 2558 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2559 cpu_buffer->irq_work.wakeup_full = true; 2560 cpu_buffer->irq_work.full_waiters_pending = false; 2561 /* irq_work_queue() supplies it's own memory barriers */ 2562 irq_work_queue(&cpu_buffer->irq_work.work); 2563 } 2564 } 2565 2566 /* 2567 * The lock and unlock are done within a preempt disable section. 2568 * The current_context per_cpu variable can only be modified 2569 * by the current task between lock and unlock. But it can 2570 * be modified more than once via an interrupt. To pass this 2571 * information from the lock to the unlock without having to 2572 * access the 'in_interrupt()' functions again (which do show 2573 * a bit of overhead in something as critical as function tracing, 2574 * we use a bitmask trick. 2575 * 2576 * bit 0 = NMI context 2577 * bit 1 = IRQ context 2578 * bit 2 = SoftIRQ context 2579 * bit 3 = normal context. 2580 * 2581 * This works because this is the order of contexts that can 2582 * preempt other contexts. A SoftIRQ never preempts an IRQ 2583 * context. 2584 * 2585 * When the context is determined, the corresponding bit is 2586 * checked and set (if it was set, then a recursion of that context 2587 * happened). 2588 * 2589 * On unlock, we need to clear this bit. To do so, just subtract 2590 * 1 from the current_context and AND it to itself. 2591 * 2592 * (binary) 2593 * 101 - 1 = 100 2594 * 101 & 100 = 100 (clearing bit zero) 2595 * 2596 * 1010 - 1 = 1001 2597 * 1010 & 1001 = 1000 (clearing bit 1) 2598 * 2599 * The least significant bit can be cleared this way, and it 2600 * just so happens that it is the same bit corresponding to 2601 * the current context. 2602 */ 2603 2604 static __always_inline int 2605 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2606 { 2607 unsigned int val = cpu_buffer->current_context; 2608 int bit; 2609 2610 if (in_interrupt()) { 2611 if (in_nmi()) 2612 bit = RB_CTX_NMI; 2613 else if (in_irq()) 2614 bit = RB_CTX_IRQ; 2615 else 2616 bit = RB_CTX_SOFTIRQ; 2617 } else 2618 bit = RB_CTX_NORMAL; 2619 2620 if (unlikely(val & (1 << bit))) 2621 return 1; 2622 2623 val |= (1 << bit); 2624 cpu_buffer->current_context = val; 2625 2626 return 0; 2627 } 2628 2629 static __always_inline void 2630 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2631 { 2632 cpu_buffer->current_context &= cpu_buffer->current_context - 1; 2633 } 2634 2635 /** 2636 * ring_buffer_unlock_commit - commit a reserved 2637 * @buffer: The buffer to commit to 2638 * @event: The event pointer to commit. 2639 * 2640 * This commits the data to the ring buffer, and releases any locks held. 2641 * 2642 * Must be paired with ring_buffer_lock_reserve. 2643 */ 2644 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2645 struct ring_buffer_event *event) 2646 { 2647 struct ring_buffer_per_cpu *cpu_buffer; 2648 int cpu = raw_smp_processor_id(); 2649 2650 cpu_buffer = buffer->buffers[cpu]; 2651 2652 rb_commit(cpu_buffer, event); 2653 2654 rb_wakeups(buffer, cpu_buffer); 2655 2656 trace_recursive_unlock(cpu_buffer); 2657 2658 preempt_enable_notrace(); 2659 2660 return 0; 2661 } 2662 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2663 2664 static noinline void 2665 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2666 struct rb_event_info *info) 2667 { 2668 WARN_ONCE(info->delta > (1ULL << 59), 2669 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2670 (unsigned long long)info->delta, 2671 (unsigned long long)info->ts, 2672 (unsigned long long)cpu_buffer->write_stamp, 2673 sched_clock_stable() ? "" : 2674 "If you just came from a suspend/resume,\n" 2675 "please switch to the trace global clock:\n" 2676 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2677 info->add_timestamp = 1; 2678 } 2679 2680 static struct ring_buffer_event * 2681 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2682 struct rb_event_info *info) 2683 { 2684 struct ring_buffer_event *event; 2685 struct buffer_page *tail_page; 2686 unsigned long tail, write; 2687 2688 /* 2689 * If the time delta since the last event is too big to 2690 * hold in the time field of the event, then we append a 2691 * TIME EXTEND event ahead of the data event. 2692 */ 2693 if (unlikely(info->add_timestamp)) 2694 info->length += RB_LEN_TIME_EXTEND; 2695 2696 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2697 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2698 write = local_add_return(info->length, &tail_page->write); 2699 2700 /* set write to only the index of the write */ 2701 write &= RB_WRITE_MASK; 2702 tail = write - info->length; 2703 2704 /* 2705 * If this is the first commit on the page, then it has the same 2706 * timestamp as the page itself. 2707 */ 2708 if (!tail) 2709 info->delta = 0; 2710 2711 /* See if we shot pass the end of this buffer page */ 2712 if (unlikely(write > BUF_PAGE_SIZE)) 2713 return rb_move_tail(cpu_buffer, tail, info); 2714 2715 /* We reserved something on the buffer */ 2716 2717 event = __rb_page_index(tail_page, tail); 2718 kmemcheck_annotate_bitfield(event, bitfield); 2719 rb_update_event(cpu_buffer, event, info); 2720 2721 local_inc(&tail_page->entries); 2722 2723 /* 2724 * If this is the first commit on the page, then update 2725 * its timestamp. 2726 */ 2727 if (!tail) 2728 tail_page->page->time_stamp = info->ts; 2729 2730 /* account for these added bytes */ 2731 local_add(info->length, &cpu_buffer->entries_bytes); 2732 2733 return event; 2734 } 2735 2736 static struct ring_buffer_event * 2737 rb_reserve_next_event(struct ring_buffer *buffer, 2738 struct ring_buffer_per_cpu *cpu_buffer, 2739 unsigned long length) 2740 { 2741 struct ring_buffer_event *event; 2742 struct rb_event_info info; 2743 int nr_loops = 0; 2744 u64 diff; 2745 2746 rb_start_commit(cpu_buffer); 2747 2748 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2749 /* 2750 * Due to the ability to swap a cpu buffer from a buffer 2751 * it is possible it was swapped before we committed. 2752 * (committing stops a swap). We check for it here and 2753 * if it happened, we have to fail the write. 2754 */ 2755 barrier(); 2756 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2757 local_dec(&cpu_buffer->committing); 2758 local_dec(&cpu_buffer->commits); 2759 return NULL; 2760 } 2761 #endif 2762 2763 info.length = rb_calculate_event_length(length); 2764 again: 2765 info.add_timestamp = 0; 2766 info.delta = 0; 2767 2768 /* 2769 * We allow for interrupts to reenter here and do a trace. 2770 * If one does, it will cause this original code to loop 2771 * back here. Even with heavy interrupts happening, this 2772 * should only happen a few times in a row. If this happens 2773 * 1000 times in a row, there must be either an interrupt 2774 * storm or we have something buggy. 2775 * Bail! 2776 */ 2777 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2778 goto out_fail; 2779 2780 info.ts = rb_time_stamp(cpu_buffer->buffer); 2781 diff = info.ts - cpu_buffer->write_stamp; 2782 2783 /* make sure this diff is calculated here */ 2784 barrier(); 2785 2786 /* Did the write stamp get updated already? */ 2787 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2788 info.delta = diff; 2789 if (unlikely(test_time_stamp(info.delta))) 2790 rb_handle_timestamp(cpu_buffer, &info); 2791 } 2792 2793 event = __rb_reserve_next(cpu_buffer, &info); 2794 2795 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2796 if (info.add_timestamp) 2797 info.length -= RB_LEN_TIME_EXTEND; 2798 goto again; 2799 } 2800 2801 if (!event) 2802 goto out_fail; 2803 2804 return event; 2805 2806 out_fail: 2807 rb_end_commit(cpu_buffer); 2808 return NULL; 2809 } 2810 2811 /** 2812 * ring_buffer_lock_reserve - reserve a part of the buffer 2813 * @buffer: the ring buffer to reserve from 2814 * @length: the length of the data to reserve (excluding event header) 2815 * 2816 * Returns a reseverd event on the ring buffer to copy directly to. 2817 * The user of this interface will need to get the body to write into 2818 * and can use the ring_buffer_event_data() interface. 2819 * 2820 * The length is the length of the data needed, not the event length 2821 * which also includes the event header. 2822 * 2823 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2824 * If NULL is returned, then nothing has been allocated or locked. 2825 */ 2826 struct ring_buffer_event * 2827 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2828 { 2829 struct ring_buffer_per_cpu *cpu_buffer; 2830 struct ring_buffer_event *event; 2831 int cpu; 2832 2833 /* If we are tracing schedule, we don't want to recurse */ 2834 preempt_disable_notrace(); 2835 2836 if (unlikely(atomic_read(&buffer->record_disabled))) 2837 goto out; 2838 2839 cpu = raw_smp_processor_id(); 2840 2841 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2842 goto out; 2843 2844 cpu_buffer = buffer->buffers[cpu]; 2845 2846 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2847 goto out; 2848 2849 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2850 goto out; 2851 2852 if (unlikely(trace_recursive_lock(cpu_buffer))) 2853 goto out; 2854 2855 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2856 if (!event) 2857 goto out_unlock; 2858 2859 return event; 2860 2861 out_unlock: 2862 trace_recursive_unlock(cpu_buffer); 2863 out: 2864 preempt_enable_notrace(); 2865 return NULL; 2866 } 2867 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2868 2869 /* 2870 * Decrement the entries to the page that an event is on. 2871 * The event does not even need to exist, only the pointer 2872 * to the page it is on. This may only be called before the commit 2873 * takes place. 2874 */ 2875 static inline void 2876 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2877 struct ring_buffer_event *event) 2878 { 2879 unsigned long addr = (unsigned long)event; 2880 struct buffer_page *bpage = cpu_buffer->commit_page; 2881 struct buffer_page *start; 2882 2883 addr &= PAGE_MASK; 2884 2885 /* Do the likely case first */ 2886 if (likely(bpage->page == (void *)addr)) { 2887 local_dec(&bpage->entries); 2888 return; 2889 } 2890 2891 /* 2892 * Because the commit page may be on the reader page we 2893 * start with the next page and check the end loop there. 2894 */ 2895 rb_inc_page(cpu_buffer, &bpage); 2896 start = bpage; 2897 do { 2898 if (bpage->page == (void *)addr) { 2899 local_dec(&bpage->entries); 2900 return; 2901 } 2902 rb_inc_page(cpu_buffer, &bpage); 2903 } while (bpage != start); 2904 2905 /* commit not part of this buffer?? */ 2906 RB_WARN_ON(cpu_buffer, 1); 2907 } 2908 2909 /** 2910 * ring_buffer_commit_discard - discard an event that has not been committed 2911 * @buffer: the ring buffer 2912 * @event: non committed event to discard 2913 * 2914 * Sometimes an event that is in the ring buffer needs to be ignored. 2915 * This function lets the user discard an event in the ring buffer 2916 * and then that event will not be read later. 2917 * 2918 * This function only works if it is called before the the item has been 2919 * committed. It will try to free the event from the ring buffer 2920 * if another event has not been added behind it. 2921 * 2922 * If another event has been added behind it, it will set the event 2923 * up as discarded, and perform the commit. 2924 * 2925 * If this function is called, do not call ring_buffer_unlock_commit on 2926 * the event. 2927 */ 2928 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2929 struct ring_buffer_event *event) 2930 { 2931 struct ring_buffer_per_cpu *cpu_buffer; 2932 int cpu; 2933 2934 /* The event is discarded regardless */ 2935 rb_event_discard(event); 2936 2937 cpu = smp_processor_id(); 2938 cpu_buffer = buffer->buffers[cpu]; 2939 2940 /* 2941 * This must only be called if the event has not been 2942 * committed yet. Thus we can assume that preemption 2943 * is still disabled. 2944 */ 2945 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2946 2947 rb_decrement_entry(cpu_buffer, event); 2948 if (rb_try_to_discard(cpu_buffer, event)) 2949 goto out; 2950 2951 /* 2952 * The commit is still visible by the reader, so we 2953 * must still update the timestamp. 2954 */ 2955 rb_update_write_stamp(cpu_buffer, event); 2956 out: 2957 rb_end_commit(cpu_buffer); 2958 2959 trace_recursive_unlock(cpu_buffer); 2960 2961 preempt_enable_notrace(); 2962 2963 } 2964 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2965 2966 /** 2967 * ring_buffer_write - write data to the buffer without reserving 2968 * @buffer: The ring buffer to write to. 2969 * @length: The length of the data being written (excluding the event header) 2970 * @data: The data to write to the buffer. 2971 * 2972 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2973 * one function. If you already have the data to write to the buffer, it 2974 * may be easier to simply call this function. 2975 * 2976 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2977 * and not the length of the event which would hold the header. 2978 */ 2979 int ring_buffer_write(struct ring_buffer *buffer, 2980 unsigned long length, 2981 void *data) 2982 { 2983 struct ring_buffer_per_cpu *cpu_buffer; 2984 struct ring_buffer_event *event; 2985 void *body; 2986 int ret = -EBUSY; 2987 int cpu; 2988 2989 preempt_disable_notrace(); 2990 2991 if (atomic_read(&buffer->record_disabled)) 2992 goto out; 2993 2994 cpu = raw_smp_processor_id(); 2995 2996 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2997 goto out; 2998 2999 cpu_buffer = buffer->buffers[cpu]; 3000 3001 if (atomic_read(&cpu_buffer->record_disabled)) 3002 goto out; 3003 3004 if (length > BUF_MAX_DATA_SIZE) 3005 goto out; 3006 3007 if (unlikely(trace_recursive_lock(cpu_buffer))) 3008 goto out; 3009 3010 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3011 if (!event) 3012 goto out_unlock; 3013 3014 body = rb_event_data(event); 3015 3016 memcpy(body, data, length); 3017 3018 rb_commit(cpu_buffer, event); 3019 3020 rb_wakeups(buffer, cpu_buffer); 3021 3022 ret = 0; 3023 3024 out_unlock: 3025 trace_recursive_unlock(cpu_buffer); 3026 3027 out: 3028 preempt_enable_notrace(); 3029 3030 return ret; 3031 } 3032 EXPORT_SYMBOL_GPL(ring_buffer_write); 3033 3034 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3035 { 3036 struct buffer_page *reader = cpu_buffer->reader_page; 3037 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3038 struct buffer_page *commit = cpu_buffer->commit_page; 3039 3040 /* In case of error, head will be NULL */ 3041 if (unlikely(!head)) 3042 return true; 3043 3044 return reader->read == rb_page_commit(reader) && 3045 (commit == reader || 3046 (commit == head && 3047 head->read == rb_page_commit(commit))); 3048 } 3049 3050 /** 3051 * ring_buffer_record_disable - stop all writes into the buffer 3052 * @buffer: The ring buffer to stop writes to. 3053 * 3054 * This prevents all writes to the buffer. Any attempt to write 3055 * to the buffer after this will fail and return NULL. 3056 * 3057 * The caller should call synchronize_sched() after this. 3058 */ 3059 void ring_buffer_record_disable(struct ring_buffer *buffer) 3060 { 3061 atomic_inc(&buffer->record_disabled); 3062 } 3063 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3064 3065 /** 3066 * ring_buffer_record_enable - enable writes to the buffer 3067 * @buffer: The ring buffer to enable writes 3068 * 3069 * Note, multiple disables will need the same number of enables 3070 * to truly enable the writing (much like preempt_disable). 3071 */ 3072 void ring_buffer_record_enable(struct ring_buffer *buffer) 3073 { 3074 atomic_dec(&buffer->record_disabled); 3075 } 3076 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3077 3078 /** 3079 * ring_buffer_record_off - stop all writes into the buffer 3080 * @buffer: The ring buffer to stop writes to. 3081 * 3082 * This prevents all writes to the buffer. Any attempt to write 3083 * to the buffer after this will fail and return NULL. 3084 * 3085 * This is different than ring_buffer_record_disable() as 3086 * it works like an on/off switch, where as the disable() version 3087 * must be paired with a enable(). 3088 */ 3089 void ring_buffer_record_off(struct ring_buffer *buffer) 3090 { 3091 unsigned int rd; 3092 unsigned int new_rd; 3093 3094 do { 3095 rd = atomic_read(&buffer->record_disabled); 3096 new_rd = rd | RB_BUFFER_OFF; 3097 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3098 } 3099 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3100 3101 /** 3102 * ring_buffer_record_on - restart writes into the buffer 3103 * @buffer: The ring buffer to start writes to. 3104 * 3105 * This enables all writes to the buffer that was disabled by 3106 * ring_buffer_record_off(). 3107 * 3108 * This is different than ring_buffer_record_enable() as 3109 * it works like an on/off switch, where as the enable() version 3110 * must be paired with a disable(). 3111 */ 3112 void ring_buffer_record_on(struct ring_buffer *buffer) 3113 { 3114 unsigned int rd; 3115 unsigned int new_rd; 3116 3117 do { 3118 rd = atomic_read(&buffer->record_disabled); 3119 new_rd = rd & ~RB_BUFFER_OFF; 3120 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3121 } 3122 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3123 3124 /** 3125 * ring_buffer_record_is_on - return true if the ring buffer can write 3126 * @buffer: The ring buffer to see if write is enabled 3127 * 3128 * Returns true if the ring buffer is in a state that it accepts writes. 3129 */ 3130 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3131 { 3132 return !atomic_read(&buffer->record_disabled); 3133 } 3134 3135 /** 3136 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3137 * @buffer: The ring buffer to stop writes to. 3138 * @cpu: The CPU buffer to stop 3139 * 3140 * This prevents all writes to the buffer. Any attempt to write 3141 * to the buffer after this will fail and return NULL. 3142 * 3143 * The caller should call synchronize_sched() after this. 3144 */ 3145 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3146 { 3147 struct ring_buffer_per_cpu *cpu_buffer; 3148 3149 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3150 return; 3151 3152 cpu_buffer = buffer->buffers[cpu]; 3153 atomic_inc(&cpu_buffer->record_disabled); 3154 } 3155 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3156 3157 /** 3158 * ring_buffer_record_enable_cpu - enable writes to the buffer 3159 * @buffer: The ring buffer to enable writes 3160 * @cpu: The CPU to enable. 3161 * 3162 * Note, multiple disables will need the same number of enables 3163 * to truly enable the writing (much like preempt_disable). 3164 */ 3165 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3166 { 3167 struct ring_buffer_per_cpu *cpu_buffer; 3168 3169 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3170 return; 3171 3172 cpu_buffer = buffer->buffers[cpu]; 3173 atomic_dec(&cpu_buffer->record_disabled); 3174 } 3175 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3176 3177 /* 3178 * The total entries in the ring buffer is the running counter 3179 * of entries entered into the ring buffer, minus the sum of 3180 * the entries read from the ring buffer and the number of 3181 * entries that were overwritten. 3182 */ 3183 static inline unsigned long 3184 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3185 { 3186 return local_read(&cpu_buffer->entries) - 3187 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3188 } 3189 3190 /** 3191 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3192 * @buffer: The ring buffer 3193 * @cpu: The per CPU buffer to read from. 3194 */ 3195 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3196 { 3197 unsigned long flags; 3198 struct ring_buffer_per_cpu *cpu_buffer; 3199 struct buffer_page *bpage; 3200 u64 ret = 0; 3201 3202 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3203 return 0; 3204 3205 cpu_buffer = buffer->buffers[cpu]; 3206 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3207 /* 3208 * if the tail is on reader_page, oldest time stamp is on the reader 3209 * page 3210 */ 3211 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3212 bpage = cpu_buffer->reader_page; 3213 else 3214 bpage = rb_set_head_page(cpu_buffer); 3215 if (bpage) 3216 ret = bpage->page->time_stamp; 3217 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3218 3219 return ret; 3220 } 3221 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3222 3223 /** 3224 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3225 * @buffer: The ring buffer 3226 * @cpu: The per CPU buffer to read from. 3227 */ 3228 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3229 { 3230 struct ring_buffer_per_cpu *cpu_buffer; 3231 unsigned long ret; 3232 3233 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3234 return 0; 3235 3236 cpu_buffer = buffer->buffers[cpu]; 3237 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3242 3243 /** 3244 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3245 * @buffer: The ring buffer 3246 * @cpu: The per CPU buffer to get the entries from. 3247 */ 3248 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3249 { 3250 struct ring_buffer_per_cpu *cpu_buffer; 3251 3252 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3253 return 0; 3254 3255 cpu_buffer = buffer->buffers[cpu]; 3256 3257 return rb_num_of_entries(cpu_buffer); 3258 } 3259 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3260 3261 /** 3262 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3263 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3264 * @buffer: The ring buffer 3265 * @cpu: The per CPU buffer to get the number of overruns from 3266 */ 3267 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3268 { 3269 struct ring_buffer_per_cpu *cpu_buffer; 3270 unsigned long ret; 3271 3272 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3273 return 0; 3274 3275 cpu_buffer = buffer->buffers[cpu]; 3276 ret = local_read(&cpu_buffer->overrun); 3277 3278 return ret; 3279 } 3280 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3281 3282 /** 3283 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3284 * commits failing due to the buffer wrapping around while there are uncommitted 3285 * events, such as during an interrupt storm. 3286 * @buffer: The ring buffer 3287 * @cpu: The per CPU buffer to get the number of overruns from 3288 */ 3289 unsigned long 3290 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3291 { 3292 struct ring_buffer_per_cpu *cpu_buffer; 3293 unsigned long ret; 3294 3295 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3296 return 0; 3297 3298 cpu_buffer = buffer->buffers[cpu]; 3299 ret = local_read(&cpu_buffer->commit_overrun); 3300 3301 return ret; 3302 } 3303 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3304 3305 /** 3306 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3307 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3308 * @buffer: The ring buffer 3309 * @cpu: The per CPU buffer to get the number of overruns from 3310 */ 3311 unsigned long 3312 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3313 { 3314 struct ring_buffer_per_cpu *cpu_buffer; 3315 unsigned long ret; 3316 3317 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3318 return 0; 3319 3320 cpu_buffer = buffer->buffers[cpu]; 3321 ret = local_read(&cpu_buffer->dropped_events); 3322 3323 return ret; 3324 } 3325 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3326 3327 /** 3328 * ring_buffer_read_events_cpu - get the number of events successfully read 3329 * @buffer: The ring buffer 3330 * @cpu: The per CPU buffer to get the number of events read 3331 */ 3332 unsigned long 3333 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3334 { 3335 struct ring_buffer_per_cpu *cpu_buffer; 3336 3337 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3338 return 0; 3339 3340 cpu_buffer = buffer->buffers[cpu]; 3341 return cpu_buffer->read; 3342 } 3343 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3344 3345 /** 3346 * ring_buffer_entries - get the number of entries in a buffer 3347 * @buffer: The ring buffer 3348 * 3349 * Returns the total number of entries in the ring buffer 3350 * (all CPU entries) 3351 */ 3352 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3353 { 3354 struct ring_buffer_per_cpu *cpu_buffer; 3355 unsigned long entries = 0; 3356 int cpu; 3357 3358 /* if you care about this being correct, lock the buffer */ 3359 for_each_buffer_cpu(buffer, cpu) { 3360 cpu_buffer = buffer->buffers[cpu]; 3361 entries += rb_num_of_entries(cpu_buffer); 3362 } 3363 3364 return entries; 3365 } 3366 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3367 3368 /** 3369 * ring_buffer_overruns - get the number of overruns in buffer 3370 * @buffer: The ring buffer 3371 * 3372 * Returns the total number of overruns in the ring buffer 3373 * (all CPU entries) 3374 */ 3375 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3376 { 3377 struct ring_buffer_per_cpu *cpu_buffer; 3378 unsigned long overruns = 0; 3379 int cpu; 3380 3381 /* if you care about this being correct, lock the buffer */ 3382 for_each_buffer_cpu(buffer, cpu) { 3383 cpu_buffer = buffer->buffers[cpu]; 3384 overruns += local_read(&cpu_buffer->overrun); 3385 } 3386 3387 return overruns; 3388 } 3389 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3390 3391 static void rb_iter_reset(struct ring_buffer_iter *iter) 3392 { 3393 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3394 3395 /* Iterator usage is expected to have record disabled */ 3396 iter->head_page = cpu_buffer->reader_page; 3397 iter->head = cpu_buffer->reader_page->read; 3398 3399 iter->cache_reader_page = iter->head_page; 3400 iter->cache_read = cpu_buffer->read; 3401 3402 if (iter->head) 3403 iter->read_stamp = cpu_buffer->read_stamp; 3404 else 3405 iter->read_stamp = iter->head_page->page->time_stamp; 3406 } 3407 3408 /** 3409 * ring_buffer_iter_reset - reset an iterator 3410 * @iter: The iterator to reset 3411 * 3412 * Resets the iterator, so that it will start from the beginning 3413 * again. 3414 */ 3415 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3416 { 3417 struct ring_buffer_per_cpu *cpu_buffer; 3418 unsigned long flags; 3419 3420 if (!iter) 3421 return; 3422 3423 cpu_buffer = iter->cpu_buffer; 3424 3425 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3426 rb_iter_reset(iter); 3427 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3428 } 3429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3430 3431 /** 3432 * ring_buffer_iter_empty - check if an iterator has no more to read 3433 * @iter: The iterator to check 3434 */ 3435 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3436 { 3437 struct ring_buffer_per_cpu *cpu_buffer; 3438 3439 cpu_buffer = iter->cpu_buffer; 3440 3441 return iter->head_page == cpu_buffer->commit_page && 3442 iter->head == rb_commit_index(cpu_buffer); 3443 } 3444 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3445 3446 static void 3447 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3448 struct ring_buffer_event *event) 3449 { 3450 u64 delta; 3451 3452 switch (event->type_len) { 3453 case RINGBUF_TYPE_PADDING: 3454 return; 3455 3456 case RINGBUF_TYPE_TIME_EXTEND: 3457 delta = event->array[0]; 3458 delta <<= TS_SHIFT; 3459 delta += event->time_delta; 3460 cpu_buffer->read_stamp += delta; 3461 return; 3462 3463 case RINGBUF_TYPE_TIME_STAMP: 3464 /* FIXME: not implemented */ 3465 return; 3466 3467 case RINGBUF_TYPE_DATA: 3468 cpu_buffer->read_stamp += event->time_delta; 3469 return; 3470 3471 default: 3472 BUG(); 3473 } 3474 return; 3475 } 3476 3477 static void 3478 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3479 struct ring_buffer_event *event) 3480 { 3481 u64 delta; 3482 3483 switch (event->type_len) { 3484 case RINGBUF_TYPE_PADDING: 3485 return; 3486 3487 case RINGBUF_TYPE_TIME_EXTEND: 3488 delta = event->array[0]; 3489 delta <<= TS_SHIFT; 3490 delta += event->time_delta; 3491 iter->read_stamp += delta; 3492 return; 3493 3494 case RINGBUF_TYPE_TIME_STAMP: 3495 /* FIXME: not implemented */ 3496 return; 3497 3498 case RINGBUF_TYPE_DATA: 3499 iter->read_stamp += event->time_delta; 3500 return; 3501 3502 default: 3503 BUG(); 3504 } 3505 return; 3506 } 3507 3508 static struct buffer_page * 3509 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3510 { 3511 struct buffer_page *reader = NULL; 3512 unsigned long overwrite; 3513 unsigned long flags; 3514 int nr_loops = 0; 3515 int ret; 3516 3517 local_irq_save(flags); 3518 arch_spin_lock(&cpu_buffer->lock); 3519 3520 again: 3521 /* 3522 * This should normally only loop twice. But because the 3523 * start of the reader inserts an empty page, it causes 3524 * a case where we will loop three times. There should be no 3525 * reason to loop four times (that I know of). 3526 */ 3527 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3528 reader = NULL; 3529 goto out; 3530 } 3531 3532 reader = cpu_buffer->reader_page; 3533 3534 /* If there's more to read, return this page */ 3535 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3536 goto out; 3537 3538 /* Never should we have an index greater than the size */ 3539 if (RB_WARN_ON(cpu_buffer, 3540 cpu_buffer->reader_page->read > rb_page_size(reader))) 3541 goto out; 3542 3543 /* check if we caught up to the tail */ 3544 reader = NULL; 3545 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3546 goto out; 3547 3548 /* Don't bother swapping if the ring buffer is empty */ 3549 if (rb_num_of_entries(cpu_buffer) == 0) 3550 goto out; 3551 3552 /* 3553 * Reset the reader page to size zero. 3554 */ 3555 local_set(&cpu_buffer->reader_page->write, 0); 3556 local_set(&cpu_buffer->reader_page->entries, 0); 3557 local_set(&cpu_buffer->reader_page->page->commit, 0); 3558 cpu_buffer->reader_page->real_end = 0; 3559 3560 spin: 3561 /* 3562 * Splice the empty reader page into the list around the head. 3563 */ 3564 reader = rb_set_head_page(cpu_buffer); 3565 if (!reader) 3566 goto out; 3567 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3568 cpu_buffer->reader_page->list.prev = reader->list.prev; 3569 3570 /* 3571 * cpu_buffer->pages just needs to point to the buffer, it 3572 * has no specific buffer page to point to. Lets move it out 3573 * of our way so we don't accidentally swap it. 3574 */ 3575 cpu_buffer->pages = reader->list.prev; 3576 3577 /* The reader page will be pointing to the new head */ 3578 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3579 3580 /* 3581 * We want to make sure we read the overruns after we set up our 3582 * pointers to the next object. The writer side does a 3583 * cmpxchg to cross pages which acts as the mb on the writer 3584 * side. Note, the reader will constantly fail the swap 3585 * while the writer is updating the pointers, so this 3586 * guarantees that the overwrite recorded here is the one we 3587 * want to compare with the last_overrun. 3588 */ 3589 smp_mb(); 3590 overwrite = local_read(&(cpu_buffer->overrun)); 3591 3592 /* 3593 * Here's the tricky part. 3594 * 3595 * We need to move the pointer past the header page. 3596 * But we can only do that if a writer is not currently 3597 * moving it. The page before the header page has the 3598 * flag bit '1' set if it is pointing to the page we want. 3599 * but if the writer is in the process of moving it 3600 * than it will be '2' or already moved '0'. 3601 */ 3602 3603 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3604 3605 /* 3606 * If we did not convert it, then we must try again. 3607 */ 3608 if (!ret) 3609 goto spin; 3610 3611 /* 3612 * Yeah! We succeeded in replacing the page. 3613 * 3614 * Now make the new head point back to the reader page. 3615 */ 3616 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3617 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3618 3619 /* Finally update the reader page to the new head */ 3620 cpu_buffer->reader_page = reader; 3621 cpu_buffer->reader_page->read = 0; 3622 3623 if (overwrite != cpu_buffer->last_overrun) { 3624 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3625 cpu_buffer->last_overrun = overwrite; 3626 } 3627 3628 goto again; 3629 3630 out: 3631 /* Update the read_stamp on the first event */ 3632 if (reader && reader->read == 0) 3633 cpu_buffer->read_stamp = reader->page->time_stamp; 3634 3635 arch_spin_unlock(&cpu_buffer->lock); 3636 local_irq_restore(flags); 3637 3638 return reader; 3639 } 3640 3641 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3642 { 3643 struct ring_buffer_event *event; 3644 struct buffer_page *reader; 3645 unsigned length; 3646 3647 reader = rb_get_reader_page(cpu_buffer); 3648 3649 /* This function should not be called when buffer is empty */ 3650 if (RB_WARN_ON(cpu_buffer, !reader)) 3651 return; 3652 3653 event = rb_reader_event(cpu_buffer); 3654 3655 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3656 cpu_buffer->read++; 3657 3658 rb_update_read_stamp(cpu_buffer, event); 3659 3660 length = rb_event_length(event); 3661 cpu_buffer->reader_page->read += length; 3662 } 3663 3664 static void rb_advance_iter(struct ring_buffer_iter *iter) 3665 { 3666 struct ring_buffer_per_cpu *cpu_buffer; 3667 struct ring_buffer_event *event; 3668 unsigned length; 3669 3670 cpu_buffer = iter->cpu_buffer; 3671 3672 /* 3673 * Check if we are at the end of the buffer. 3674 */ 3675 if (iter->head >= rb_page_size(iter->head_page)) { 3676 /* discarded commits can make the page empty */ 3677 if (iter->head_page == cpu_buffer->commit_page) 3678 return; 3679 rb_inc_iter(iter); 3680 return; 3681 } 3682 3683 event = rb_iter_head_event(iter); 3684 3685 length = rb_event_length(event); 3686 3687 /* 3688 * This should not be called to advance the header if we are 3689 * at the tail of the buffer. 3690 */ 3691 if (RB_WARN_ON(cpu_buffer, 3692 (iter->head_page == cpu_buffer->commit_page) && 3693 (iter->head + length > rb_commit_index(cpu_buffer)))) 3694 return; 3695 3696 rb_update_iter_read_stamp(iter, event); 3697 3698 iter->head += length; 3699 3700 /* check for end of page padding */ 3701 if ((iter->head >= rb_page_size(iter->head_page)) && 3702 (iter->head_page != cpu_buffer->commit_page)) 3703 rb_inc_iter(iter); 3704 } 3705 3706 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3707 { 3708 return cpu_buffer->lost_events; 3709 } 3710 3711 static struct ring_buffer_event * 3712 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3713 unsigned long *lost_events) 3714 { 3715 struct ring_buffer_event *event; 3716 struct buffer_page *reader; 3717 int nr_loops = 0; 3718 3719 again: 3720 /* 3721 * We repeat when a time extend is encountered. 3722 * Since the time extend is always attached to a data event, 3723 * we should never loop more than once. 3724 * (We never hit the following condition more than twice). 3725 */ 3726 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3727 return NULL; 3728 3729 reader = rb_get_reader_page(cpu_buffer); 3730 if (!reader) 3731 return NULL; 3732 3733 event = rb_reader_event(cpu_buffer); 3734 3735 switch (event->type_len) { 3736 case RINGBUF_TYPE_PADDING: 3737 if (rb_null_event(event)) 3738 RB_WARN_ON(cpu_buffer, 1); 3739 /* 3740 * Because the writer could be discarding every 3741 * event it creates (which would probably be bad) 3742 * if we were to go back to "again" then we may never 3743 * catch up, and will trigger the warn on, or lock 3744 * the box. Return the padding, and we will release 3745 * the current locks, and try again. 3746 */ 3747 return event; 3748 3749 case RINGBUF_TYPE_TIME_EXTEND: 3750 /* Internal data, OK to advance */ 3751 rb_advance_reader(cpu_buffer); 3752 goto again; 3753 3754 case RINGBUF_TYPE_TIME_STAMP: 3755 /* FIXME: not implemented */ 3756 rb_advance_reader(cpu_buffer); 3757 goto again; 3758 3759 case RINGBUF_TYPE_DATA: 3760 if (ts) { 3761 *ts = cpu_buffer->read_stamp + event->time_delta; 3762 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3763 cpu_buffer->cpu, ts); 3764 } 3765 if (lost_events) 3766 *lost_events = rb_lost_events(cpu_buffer); 3767 return event; 3768 3769 default: 3770 BUG(); 3771 } 3772 3773 return NULL; 3774 } 3775 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3776 3777 static struct ring_buffer_event * 3778 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3779 { 3780 struct ring_buffer *buffer; 3781 struct ring_buffer_per_cpu *cpu_buffer; 3782 struct ring_buffer_event *event; 3783 int nr_loops = 0; 3784 3785 cpu_buffer = iter->cpu_buffer; 3786 buffer = cpu_buffer->buffer; 3787 3788 /* 3789 * Check if someone performed a consuming read to 3790 * the buffer. A consuming read invalidates the iterator 3791 * and we need to reset the iterator in this case. 3792 */ 3793 if (unlikely(iter->cache_read != cpu_buffer->read || 3794 iter->cache_reader_page != cpu_buffer->reader_page)) 3795 rb_iter_reset(iter); 3796 3797 again: 3798 if (ring_buffer_iter_empty(iter)) 3799 return NULL; 3800 3801 /* 3802 * We repeat when a time extend is encountered or we hit 3803 * the end of the page. Since the time extend is always attached 3804 * to a data event, we should never loop more than three times. 3805 * Once for going to next page, once on time extend, and 3806 * finally once to get the event. 3807 * (We never hit the following condition more than thrice). 3808 */ 3809 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3810 return NULL; 3811 3812 if (rb_per_cpu_empty(cpu_buffer)) 3813 return NULL; 3814 3815 if (iter->head >= rb_page_size(iter->head_page)) { 3816 rb_inc_iter(iter); 3817 goto again; 3818 } 3819 3820 event = rb_iter_head_event(iter); 3821 3822 switch (event->type_len) { 3823 case RINGBUF_TYPE_PADDING: 3824 if (rb_null_event(event)) { 3825 rb_inc_iter(iter); 3826 goto again; 3827 } 3828 rb_advance_iter(iter); 3829 return event; 3830 3831 case RINGBUF_TYPE_TIME_EXTEND: 3832 /* Internal data, OK to advance */ 3833 rb_advance_iter(iter); 3834 goto again; 3835 3836 case RINGBUF_TYPE_TIME_STAMP: 3837 /* FIXME: not implemented */ 3838 rb_advance_iter(iter); 3839 goto again; 3840 3841 case RINGBUF_TYPE_DATA: 3842 if (ts) { 3843 *ts = iter->read_stamp + event->time_delta; 3844 ring_buffer_normalize_time_stamp(buffer, 3845 cpu_buffer->cpu, ts); 3846 } 3847 return event; 3848 3849 default: 3850 BUG(); 3851 } 3852 3853 return NULL; 3854 } 3855 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3856 3857 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3858 { 3859 if (likely(!in_nmi())) { 3860 raw_spin_lock(&cpu_buffer->reader_lock); 3861 return true; 3862 } 3863 3864 /* 3865 * If an NMI die dumps out the content of the ring buffer 3866 * trylock must be used to prevent a deadlock if the NMI 3867 * preempted a task that holds the ring buffer locks. If 3868 * we get the lock then all is fine, if not, then continue 3869 * to do the read, but this can corrupt the ring buffer, 3870 * so it must be permanently disabled from future writes. 3871 * Reading from NMI is a oneshot deal. 3872 */ 3873 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3874 return true; 3875 3876 /* Continue without locking, but disable the ring buffer */ 3877 atomic_inc(&cpu_buffer->record_disabled); 3878 return false; 3879 } 3880 3881 static inline void 3882 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3883 { 3884 if (likely(locked)) 3885 raw_spin_unlock(&cpu_buffer->reader_lock); 3886 return; 3887 } 3888 3889 /** 3890 * ring_buffer_peek - peek at the next event to be read 3891 * @buffer: The ring buffer to read 3892 * @cpu: The cpu to peak at 3893 * @ts: The timestamp counter of this event. 3894 * @lost_events: a variable to store if events were lost (may be NULL) 3895 * 3896 * This will return the event that will be read next, but does 3897 * not consume the data. 3898 */ 3899 struct ring_buffer_event * 3900 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3901 unsigned long *lost_events) 3902 { 3903 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3904 struct ring_buffer_event *event; 3905 unsigned long flags; 3906 bool dolock; 3907 3908 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3909 return NULL; 3910 3911 again: 3912 local_irq_save(flags); 3913 dolock = rb_reader_lock(cpu_buffer); 3914 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3915 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3916 rb_advance_reader(cpu_buffer); 3917 rb_reader_unlock(cpu_buffer, dolock); 3918 local_irq_restore(flags); 3919 3920 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3921 goto again; 3922 3923 return event; 3924 } 3925 3926 /** 3927 * ring_buffer_iter_peek - peek at the next event to be read 3928 * @iter: The ring buffer iterator 3929 * @ts: The timestamp counter of this event. 3930 * 3931 * This will return the event that will be read next, but does 3932 * not increment the iterator. 3933 */ 3934 struct ring_buffer_event * 3935 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3936 { 3937 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3938 struct ring_buffer_event *event; 3939 unsigned long flags; 3940 3941 again: 3942 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3943 event = rb_iter_peek(iter, ts); 3944 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3945 3946 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3947 goto again; 3948 3949 return event; 3950 } 3951 3952 /** 3953 * ring_buffer_consume - return an event and consume it 3954 * @buffer: The ring buffer to get the next event from 3955 * @cpu: the cpu to read the buffer from 3956 * @ts: a variable to store the timestamp (may be NULL) 3957 * @lost_events: a variable to store if events were lost (may be NULL) 3958 * 3959 * Returns the next event in the ring buffer, and that event is consumed. 3960 * Meaning, that sequential reads will keep returning a different event, 3961 * and eventually empty the ring buffer if the producer is slower. 3962 */ 3963 struct ring_buffer_event * 3964 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3965 unsigned long *lost_events) 3966 { 3967 struct ring_buffer_per_cpu *cpu_buffer; 3968 struct ring_buffer_event *event = NULL; 3969 unsigned long flags; 3970 bool dolock; 3971 3972 again: 3973 /* might be called in atomic */ 3974 preempt_disable(); 3975 3976 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3977 goto out; 3978 3979 cpu_buffer = buffer->buffers[cpu]; 3980 local_irq_save(flags); 3981 dolock = rb_reader_lock(cpu_buffer); 3982 3983 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3984 if (event) { 3985 cpu_buffer->lost_events = 0; 3986 rb_advance_reader(cpu_buffer); 3987 } 3988 3989 rb_reader_unlock(cpu_buffer, dolock); 3990 local_irq_restore(flags); 3991 3992 out: 3993 preempt_enable(); 3994 3995 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3996 goto again; 3997 3998 return event; 3999 } 4000 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4001 4002 /** 4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4004 * @buffer: The ring buffer to read from 4005 * @cpu: The cpu buffer to iterate over 4006 * 4007 * This performs the initial preparations necessary to iterate 4008 * through the buffer. Memory is allocated, buffer recording 4009 * is disabled, and the iterator pointer is returned to the caller. 4010 * 4011 * Disabling buffer recordng prevents the reading from being 4012 * corrupted. This is not a consuming read, so a producer is not 4013 * expected. 4014 * 4015 * After a sequence of ring_buffer_read_prepare calls, the user is 4016 * expected to make at least one call to ring_buffer_read_prepare_sync. 4017 * Afterwards, ring_buffer_read_start is invoked to get things going 4018 * for real. 4019 * 4020 * This overall must be paired with ring_buffer_read_finish. 4021 */ 4022 struct ring_buffer_iter * 4023 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4024 { 4025 struct ring_buffer_per_cpu *cpu_buffer; 4026 struct ring_buffer_iter *iter; 4027 4028 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4029 return NULL; 4030 4031 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4032 if (!iter) 4033 return NULL; 4034 4035 cpu_buffer = buffer->buffers[cpu]; 4036 4037 iter->cpu_buffer = cpu_buffer; 4038 4039 atomic_inc(&buffer->resize_disabled); 4040 atomic_inc(&cpu_buffer->record_disabled); 4041 4042 return iter; 4043 } 4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4045 4046 /** 4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4048 * 4049 * All previously invoked ring_buffer_read_prepare calls to prepare 4050 * iterators will be synchronized. Afterwards, read_buffer_read_start 4051 * calls on those iterators are allowed. 4052 */ 4053 void 4054 ring_buffer_read_prepare_sync(void) 4055 { 4056 synchronize_sched(); 4057 } 4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4059 4060 /** 4061 * ring_buffer_read_start - start a non consuming read of the buffer 4062 * @iter: The iterator returned by ring_buffer_read_prepare 4063 * 4064 * This finalizes the startup of an iteration through the buffer. 4065 * The iterator comes from a call to ring_buffer_read_prepare and 4066 * an intervening ring_buffer_read_prepare_sync must have been 4067 * performed. 4068 * 4069 * Must be paired with ring_buffer_read_finish. 4070 */ 4071 void 4072 ring_buffer_read_start(struct ring_buffer_iter *iter) 4073 { 4074 struct ring_buffer_per_cpu *cpu_buffer; 4075 unsigned long flags; 4076 4077 if (!iter) 4078 return; 4079 4080 cpu_buffer = iter->cpu_buffer; 4081 4082 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4083 arch_spin_lock(&cpu_buffer->lock); 4084 rb_iter_reset(iter); 4085 arch_spin_unlock(&cpu_buffer->lock); 4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4087 } 4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4089 4090 /** 4091 * ring_buffer_read_finish - finish reading the iterator of the buffer 4092 * @iter: The iterator retrieved by ring_buffer_start 4093 * 4094 * This re-enables the recording to the buffer, and frees the 4095 * iterator. 4096 */ 4097 void 4098 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4099 { 4100 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4101 unsigned long flags; 4102 4103 /* 4104 * Ring buffer is disabled from recording, here's a good place 4105 * to check the integrity of the ring buffer. 4106 * Must prevent readers from trying to read, as the check 4107 * clears the HEAD page and readers require it. 4108 */ 4109 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4110 rb_check_pages(cpu_buffer); 4111 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4112 4113 atomic_dec(&cpu_buffer->record_disabled); 4114 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4115 kfree(iter); 4116 } 4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4118 4119 /** 4120 * ring_buffer_read - read the next item in the ring buffer by the iterator 4121 * @iter: The ring buffer iterator 4122 * @ts: The time stamp of the event read. 4123 * 4124 * This reads the next event in the ring buffer and increments the iterator. 4125 */ 4126 struct ring_buffer_event * 4127 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4128 { 4129 struct ring_buffer_event *event; 4130 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4131 unsigned long flags; 4132 4133 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4134 again: 4135 event = rb_iter_peek(iter, ts); 4136 if (!event) 4137 goto out; 4138 4139 if (event->type_len == RINGBUF_TYPE_PADDING) 4140 goto again; 4141 4142 rb_advance_iter(iter); 4143 out: 4144 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4145 4146 return event; 4147 } 4148 EXPORT_SYMBOL_GPL(ring_buffer_read); 4149 4150 /** 4151 * ring_buffer_size - return the size of the ring buffer (in bytes) 4152 * @buffer: The ring buffer. 4153 */ 4154 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4155 { 4156 /* 4157 * Earlier, this method returned 4158 * BUF_PAGE_SIZE * buffer->nr_pages 4159 * Since the nr_pages field is now removed, we have converted this to 4160 * return the per cpu buffer value. 4161 */ 4162 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4163 return 0; 4164 4165 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4166 } 4167 EXPORT_SYMBOL_GPL(ring_buffer_size); 4168 4169 static void 4170 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4171 { 4172 rb_head_page_deactivate(cpu_buffer); 4173 4174 cpu_buffer->head_page 4175 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4176 local_set(&cpu_buffer->head_page->write, 0); 4177 local_set(&cpu_buffer->head_page->entries, 0); 4178 local_set(&cpu_buffer->head_page->page->commit, 0); 4179 4180 cpu_buffer->head_page->read = 0; 4181 4182 cpu_buffer->tail_page = cpu_buffer->head_page; 4183 cpu_buffer->commit_page = cpu_buffer->head_page; 4184 4185 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4186 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4187 local_set(&cpu_buffer->reader_page->write, 0); 4188 local_set(&cpu_buffer->reader_page->entries, 0); 4189 local_set(&cpu_buffer->reader_page->page->commit, 0); 4190 cpu_buffer->reader_page->read = 0; 4191 4192 local_set(&cpu_buffer->entries_bytes, 0); 4193 local_set(&cpu_buffer->overrun, 0); 4194 local_set(&cpu_buffer->commit_overrun, 0); 4195 local_set(&cpu_buffer->dropped_events, 0); 4196 local_set(&cpu_buffer->entries, 0); 4197 local_set(&cpu_buffer->committing, 0); 4198 local_set(&cpu_buffer->commits, 0); 4199 cpu_buffer->read = 0; 4200 cpu_buffer->read_bytes = 0; 4201 4202 cpu_buffer->write_stamp = 0; 4203 cpu_buffer->read_stamp = 0; 4204 4205 cpu_buffer->lost_events = 0; 4206 cpu_buffer->last_overrun = 0; 4207 4208 rb_head_page_activate(cpu_buffer); 4209 } 4210 4211 /** 4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4213 * @buffer: The ring buffer to reset a per cpu buffer of 4214 * @cpu: The CPU buffer to be reset 4215 */ 4216 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4217 { 4218 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4219 unsigned long flags; 4220 4221 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4222 return; 4223 4224 atomic_inc(&buffer->resize_disabled); 4225 atomic_inc(&cpu_buffer->record_disabled); 4226 4227 /* Make sure all commits have finished */ 4228 synchronize_sched(); 4229 4230 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4231 4232 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4233 goto out; 4234 4235 arch_spin_lock(&cpu_buffer->lock); 4236 4237 rb_reset_cpu(cpu_buffer); 4238 4239 arch_spin_unlock(&cpu_buffer->lock); 4240 4241 out: 4242 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4243 4244 atomic_dec(&cpu_buffer->record_disabled); 4245 atomic_dec(&buffer->resize_disabled); 4246 } 4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4248 4249 /** 4250 * ring_buffer_reset - reset a ring buffer 4251 * @buffer: The ring buffer to reset all cpu buffers 4252 */ 4253 void ring_buffer_reset(struct ring_buffer *buffer) 4254 { 4255 int cpu; 4256 4257 for_each_buffer_cpu(buffer, cpu) 4258 ring_buffer_reset_cpu(buffer, cpu); 4259 } 4260 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4261 4262 /** 4263 * rind_buffer_empty - is the ring buffer empty? 4264 * @buffer: The ring buffer to test 4265 */ 4266 bool ring_buffer_empty(struct ring_buffer *buffer) 4267 { 4268 struct ring_buffer_per_cpu *cpu_buffer; 4269 unsigned long flags; 4270 bool dolock; 4271 int cpu; 4272 int ret; 4273 4274 /* yes this is racy, but if you don't like the race, lock the buffer */ 4275 for_each_buffer_cpu(buffer, cpu) { 4276 cpu_buffer = buffer->buffers[cpu]; 4277 local_irq_save(flags); 4278 dolock = rb_reader_lock(cpu_buffer); 4279 ret = rb_per_cpu_empty(cpu_buffer); 4280 rb_reader_unlock(cpu_buffer, dolock); 4281 local_irq_restore(flags); 4282 4283 if (!ret) 4284 return false; 4285 } 4286 4287 return true; 4288 } 4289 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4290 4291 /** 4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4293 * @buffer: The ring buffer 4294 * @cpu: The CPU buffer to test 4295 */ 4296 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4297 { 4298 struct ring_buffer_per_cpu *cpu_buffer; 4299 unsigned long flags; 4300 bool dolock; 4301 int ret; 4302 4303 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4304 return true; 4305 4306 cpu_buffer = buffer->buffers[cpu]; 4307 local_irq_save(flags); 4308 dolock = rb_reader_lock(cpu_buffer); 4309 ret = rb_per_cpu_empty(cpu_buffer); 4310 rb_reader_unlock(cpu_buffer, dolock); 4311 local_irq_restore(flags); 4312 4313 return ret; 4314 } 4315 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4316 4317 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4318 /** 4319 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4320 * @buffer_a: One buffer to swap with 4321 * @buffer_b: The other buffer to swap with 4322 * 4323 * This function is useful for tracers that want to take a "snapshot" 4324 * of a CPU buffer and has another back up buffer lying around. 4325 * it is expected that the tracer handles the cpu buffer not being 4326 * used at the moment. 4327 */ 4328 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4329 struct ring_buffer *buffer_b, int cpu) 4330 { 4331 struct ring_buffer_per_cpu *cpu_buffer_a; 4332 struct ring_buffer_per_cpu *cpu_buffer_b; 4333 int ret = -EINVAL; 4334 4335 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4336 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4337 goto out; 4338 4339 cpu_buffer_a = buffer_a->buffers[cpu]; 4340 cpu_buffer_b = buffer_b->buffers[cpu]; 4341 4342 /* At least make sure the two buffers are somewhat the same */ 4343 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4344 goto out; 4345 4346 ret = -EAGAIN; 4347 4348 if (atomic_read(&buffer_a->record_disabled)) 4349 goto out; 4350 4351 if (atomic_read(&buffer_b->record_disabled)) 4352 goto out; 4353 4354 if (atomic_read(&cpu_buffer_a->record_disabled)) 4355 goto out; 4356 4357 if (atomic_read(&cpu_buffer_b->record_disabled)) 4358 goto out; 4359 4360 /* 4361 * We can't do a synchronize_sched here because this 4362 * function can be called in atomic context. 4363 * Normally this will be called from the same CPU as cpu. 4364 * If not it's up to the caller to protect this. 4365 */ 4366 atomic_inc(&cpu_buffer_a->record_disabled); 4367 atomic_inc(&cpu_buffer_b->record_disabled); 4368 4369 ret = -EBUSY; 4370 if (local_read(&cpu_buffer_a->committing)) 4371 goto out_dec; 4372 if (local_read(&cpu_buffer_b->committing)) 4373 goto out_dec; 4374 4375 buffer_a->buffers[cpu] = cpu_buffer_b; 4376 buffer_b->buffers[cpu] = cpu_buffer_a; 4377 4378 cpu_buffer_b->buffer = buffer_a; 4379 cpu_buffer_a->buffer = buffer_b; 4380 4381 ret = 0; 4382 4383 out_dec: 4384 atomic_dec(&cpu_buffer_a->record_disabled); 4385 atomic_dec(&cpu_buffer_b->record_disabled); 4386 out: 4387 return ret; 4388 } 4389 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4390 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4391 4392 /** 4393 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4394 * @buffer: the buffer to allocate for. 4395 * @cpu: the cpu buffer to allocate. 4396 * 4397 * This function is used in conjunction with ring_buffer_read_page. 4398 * When reading a full page from the ring buffer, these functions 4399 * can be used to speed up the process. The calling function should 4400 * allocate a few pages first with this function. Then when it 4401 * needs to get pages from the ring buffer, it passes the result 4402 * of this function into ring_buffer_read_page, which will swap 4403 * the page that was allocated, with the read page of the buffer. 4404 * 4405 * Returns: 4406 * The page allocated, or NULL on error. 4407 */ 4408 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4409 { 4410 struct buffer_data_page *bpage; 4411 struct page *page; 4412 4413 page = alloc_pages_node(cpu_to_node(cpu), 4414 GFP_KERNEL | __GFP_NORETRY, 0); 4415 if (!page) 4416 return NULL; 4417 4418 bpage = page_address(page); 4419 4420 rb_init_page(bpage); 4421 4422 return bpage; 4423 } 4424 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4425 4426 /** 4427 * ring_buffer_free_read_page - free an allocated read page 4428 * @buffer: the buffer the page was allocate for 4429 * @data: the page to free 4430 * 4431 * Free a page allocated from ring_buffer_alloc_read_page. 4432 */ 4433 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4434 { 4435 free_page((unsigned long)data); 4436 } 4437 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4438 4439 /** 4440 * ring_buffer_read_page - extract a page from the ring buffer 4441 * @buffer: buffer to extract from 4442 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4443 * @len: amount to extract 4444 * @cpu: the cpu of the buffer to extract 4445 * @full: should the extraction only happen when the page is full. 4446 * 4447 * This function will pull out a page from the ring buffer and consume it. 4448 * @data_page must be the address of the variable that was returned 4449 * from ring_buffer_alloc_read_page. This is because the page might be used 4450 * to swap with a page in the ring buffer. 4451 * 4452 * for example: 4453 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4454 * if (!rpage) 4455 * return error; 4456 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4457 * if (ret >= 0) 4458 * process_page(rpage, ret); 4459 * 4460 * When @full is set, the function will not return true unless 4461 * the writer is off the reader page. 4462 * 4463 * Note: it is up to the calling functions to handle sleeps and wakeups. 4464 * The ring buffer can be used anywhere in the kernel and can not 4465 * blindly call wake_up. The layer that uses the ring buffer must be 4466 * responsible for that. 4467 * 4468 * Returns: 4469 * >=0 if data has been transferred, returns the offset of consumed data. 4470 * <0 if no data has been transferred. 4471 */ 4472 int ring_buffer_read_page(struct ring_buffer *buffer, 4473 void **data_page, size_t len, int cpu, int full) 4474 { 4475 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4476 struct ring_buffer_event *event; 4477 struct buffer_data_page *bpage; 4478 struct buffer_page *reader; 4479 unsigned long missed_events; 4480 unsigned long flags; 4481 unsigned int commit; 4482 unsigned int read; 4483 u64 save_timestamp; 4484 int ret = -1; 4485 4486 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4487 goto out; 4488 4489 /* 4490 * If len is not big enough to hold the page header, then 4491 * we can not copy anything. 4492 */ 4493 if (len <= BUF_PAGE_HDR_SIZE) 4494 goto out; 4495 4496 len -= BUF_PAGE_HDR_SIZE; 4497 4498 if (!data_page) 4499 goto out; 4500 4501 bpage = *data_page; 4502 if (!bpage) 4503 goto out; 4504 4505 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4506 4507 reader = rb_get_reader_page(cpu_buffer); 4508 if (!reader) 4509 goto out_unlock; 4510 4511 event = rb_reader_event(cpu_buffer); 4512 4513 read = reader->read; 4514 commit = rb_page_commit(reader); 4515 4516 /* Check if any events were dropped */ 4517 missed_events = cpu_buffer->lost_events; 4518 4519 /* 4520 * If this page has been partially read or 4521 * if len is not big enough to read the rest of the page or 4522 * a writer is still on the page, then 4523 * we must copy the data from the page to the buffer. 4524 * Otherwise, we can simply swap the page with the one passed in. 4525 */ 4526 if (read || (len < (commit - read)) || 4527 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4528 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4529 unsigned int rpos = read; 4530 unsigned int pos = 0; 4531 unsigned int size; 4532 4533 if (full) 4534 goto out_unlock; 4535 4536 if (len > (commit - read)) 4537 len = (commit - read); 4538 4539 /* Always keep the time extend and data together */ 4540 size = rb_event_ts_length(event); 4541 4542 if (len < size) 4543 goto out_unlock; 4544 4545 /* save the current timestamp, since the user will need it */ 4546 save_timestamp = cpu_buffer->read_stamp; 4547 4548 /* Need to copy one event at a time */ 4549 do { 4550 /* We need the size of one event, because 4551 * rb_advance_reader only advances by one event, 4552 * whereas rb_event_ts_length may include the size of 4553 * one or two events. 4554 * We have already ensured there's enough space if this 4555 * is a time extend. */ 4556 size = rb_event_length(event); 4557 memcpy(bpage->data + pos, rpage->data + rpos, size); 4558 4559 len -= size; 4560 4561 rb_advance_reader(cpu_buffer); 4562 rpos = reader->read; 4563 pos += size; 4564 4565 if (rpos >= commit) 4566 break; 4567 4568 event = rb_reader_event(cpu_buffer); 4569 /* Always keep the time extend and data together */ 4570 size = rb_event_ts_length(event); 4571 } while (len >= size); 4572 4573 /* update bpage */ 4574 local_set(&bpage->commit, pos); 4575 bpage->time_stamp = save_timestamp; 4576 4577 /* we copied everything to the beginning */ 4578 read = 0; 4579 } else { 4580 /* update the entry counter */ 4581 cpu_buffer->read += rb_page_entries(reader); 4582 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4583 4584 /* swap the pages */ 4585 rb_init_page(bpage); 4586 bpage = reader->page; 4587 reader->page = *data_page; 4588 local_set(&reader->write, 0); 4589 local_set(&reader->entries, 0); 4590 reader->read = 0; 4591 *data_page = bpage; 4592 4593 /* 4594 * Use the real_end for the data size, 4595 * This gives us a chance to store the lost events 4596 * on the page. 4597 */ 4598 if (reader->real_end) 4599 local_set(&bpage->commit, reader->real_end); 4600 } 4601 ret = read; 4602 4603 cpu_buffer->lost_events = 0; 4604 4605 commit = local_read(&bpage->commit); 4606 /* 4607 * Set a flag in the commit field if we lost events 4608 */ 4609 if (missed_events) { 4610 /* If there is room at the end of the page to save the 4611 * missed events, then record it there. 4612 */ 4613 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4614 memcpy(&bpage->data[commit], &missed_events, 4615 sizeof(missed_events)); 4616 local_add(RB_MISSED_STORED, &bpage->commit); 4617 commit += sizeof(missed_events); 4618 } 4619 local_add(RB_MISSED_EVENTS, &bpage->commit); 4620 } 4621 4622 /* 4623 * This page may be off to user land. Zero it out here. 4624 */ 4625 if (commit < BUF_PAGE_SIZE) 4626 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4627 4628 out_unlock: 4629 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4630 4631 out: 4632 return ret; 4633 } 4634 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4635 4636 #ifdef CONFIG_HOTPLUG_CPU 4637 static int rb_cpu_notify(struct notifier_block *self, 4638 unsigned long action, void *hcpu) 4639 { 4640 struct ring_buffer *buffer = 4641 container_of(self, struct ring_buffer, cpu_notify); 4642 long cpu = (long)hcpu; 4643 long nr_pages_same; 4644 int cpu_i; 4645 unsigned long nr_pages; 4646 4647 switch (action) { 4648 case CPU_UP_PREPARE: 4649 case CPU_UP_PREPARE_FROZEN: 4650 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4651 return NOTIFY_OK; 4652 4653 nr_pages = 0; 4654 nr_pages_same = 1; 4655 /* check if all cpu sizes are same */ 4656 for_each_buffer_cpu(buffer, cpu_i) { 4657 /* fill in the size from first enabled cpu */ 4658 if (nr_pages == 0) 4659 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4660 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4661 nr_pages_same = 0; 4662 break; 4663 } 4664 } 4665 /* allocate minimum pages, user can later expand it */ 4666 if (!nr_pages_same) 4667 nr_pages = 2; 4668 buffer->buffers[cpu] = 4669 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4670 if (!buffer->buffers[cpu]) { 4671 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4672 cpu); 4673 return NOTIFY_OK; 4674 } 4675 smp_wmb(); 4676 cpumask_set_cpu(cpu, buffer->cpumask); 4677 break; 4678 case CPU_DOWN_PREPARE: 4679 case CPU_DOWN_PREPARE_FROZEN: 4680 /* 4681 * Do nothing. 4682 * If we were to free the buffer, then the user would 4683 * lose any trace that was in the buffer. 4684 */ 4685 break; 4686 default: 4687 break; 4688 } 4689 return NOTIFY_OK; 4690 } 4691 #endif 4692 4693 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4694 /* 4695 * This is a basic integrity check of the ring buffer. 4696 * Late in the boot cycle this test will run when configured in. 4697 * It will kick off a thread per CPU that will go into a loop 4698 * writing to the per cpu ring buffer various sizes of data. 4699 * Some of the data will be large items, some small. 4700 * 4701 * Another thread is created that goes into a spin, sending out 4702 * IPIs to the other CPUs to also write into the ring buffer. 4703 * this is to test the nesting ability of the buffer. 4704 * 4705 * Basic stats are recorded and reported. If something in the 4706 * ring buffer should happen that's not expected, a big warning 4707 * is displayed and all ring buffers are disabled. 4708 */ 4709 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4710 4711 struct rb_test_data { 4712 struct ring_buffer *buffer; 4713 unsigned long events; 4714 unsigned long bytes_written; 4715 unsigned long bytes_alloc; 4716 unsigned long bytes_dropped; 4717 unsigned long events_nested; 4718 unsigned long bytes_written_nested; 4719 unsigned long bytes_alloc_nested; 4720 unsigned long bytes_dropped_nested; 4721 int min_size_nested; 4722 int max_size_nested; 4723 int max_size; 4724 int min_size; 4725 int cpu; 4726 int cnt; 4727 }; 4728 4729 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4730 4731 /* 1 meg per cpu */ 4732 #define RB_TEST_BUFFER_SIZE 1048576 4733 4734 static char rb_string[] __initdata = 4735 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4736 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4737 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4738 4739 static bool rb_test_started __initdata; 4740 4741 struct rb_item { 4742 int size; 4743 char str[]; 4744 }; 4745 4746 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4747 { 4748 struct ring_buffer_event *event; 4749 struct rb_item *item; 4750 bool started; 4751 int event_len; 4752 int size; 4753 int len; 4754 int cnt; 4755 4756 /* Have nested writes different that what is written */ 4757 cnt = data->cnt + (nested ? 27 : 0); 4758 4759 /* Multiply cnt by ~e, to make some unique increment */ 4760 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4761 4762 len = size + sizeof(struct rb_item); 4763 4764 started = rb_test_started; 4765 /* read rb_test_started before checking buffer enabled */ 4766 smp_rmb(); 4767 4768 event = ring_buffer_lock_reserve(data->buffer, len); 4769 if (!event) { 4770 /* Ignore dropped events before test starts. */ 4771 if (started) { 4772 if (nested) 4773 data->bytes_dropped += len; 4774 else 4775 data->bytes_dropped_nested += len; 4776 } 4777 return len; 4778 } 4779 4780 event_len = ring_buffer_event_length(event); 4781 4782 if (RB_WARN_ON(data->buffer, event_len < len)) 4783 goto out; 4784 4785 item = ring_buffer_event_data(event); 4786 item->size = size; 4787 memcpy(item->str, rb_string, size); 4788 4789 if (nested) { 4790 data->bytes_alloc_nested += event_len; 4791 data->bytes_written_nested += len; 4792 data->events_nested++; 4793 if (!data->min_size_nested || len < data->min_size_nested) 4794 data->min_size_nested = len; 4795 if (len > data->max_size_nested) 4796 data->max_size_nested = len; 4797 } else { 4798 data->bytes_alloc += event_len; 4799 data->bytes_written += len; 4800 data->events++; 4801 if (!data->min_size || len < data->min_size) 4802 data->max_size = len; 4803 if (len > data->max_size) 4804 data->max_size = len; 4805 } 4806 4807 out: 4808 ring_buffer_unlock_commit(data->buffer, event); 4809 4810 return 0; 4811 } 4812 4813 static __init int rb_test(void *arg) 4814 { 4815 struct rb_test_data *data = arg; 4816 4817 while (!kthread_should_stop()) { 4818 rb_write_something(data, false); 4819 data->cnt++; 4820 4821 set_current_state(TASK_INTERRUPTIBLE); 4822 /* Now sleep between a min of 100-300us and a max of 1ms */ 4823 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4824 } 4825 4826 return 0; 4827 } 4828 4829 static __init void rb_ipi(void *ignore) 4830 { 4831 struct rb_test_data *data; 4832 int cpu = smp_processor_id(); 4833 4834 data = &rb_data[cpu]; 4835 rb_write_something(data, true); 4836 } 4837 4838 static __init int rb_hammer_test(void *arg) 4839 { 4840 while (!kthread_should_stop()) { 4841 4842 /* Send an IPI to all cpus to write data! */ 4843 smp_call_function(rb_ipi, NULL, 1); 4844 /* No sleep, but for non preempt, let others run */ 4845 schedule(); 4846 } 4847 4848 return 0; 4849 } 4850 4851 static __init int test_ringbuffer(void) 4852 { 4853 struct task_struct *rb_hammer; 4854 struct ring_buffer *buffer; 4855 int cpu; 4856 int ret = 0; 4857 4858 pr_info("Running ring buffer tests...\n"); 4859 4860 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4861 if (WARN_ON(!buffer)) 4862 return 0; 4863 4864 /* Disable buffer so that threads can't write to it yet */ 4865 ring_buffer_record_off(buffer); 4866 4867 for_each_online_cpu(cpu) { 4868 rb_data[cpu].buffer = buffer; 4869 rb_data[cpu].cpu = cpu; 4870 rb_data[cpu].cnt = cpu; 4871 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4872 "rbtester/%d", cpu); 4873 if (WARN_ON(!rb_threads[cpu])) { 4874 pr_cont("FAILED\n"); 4875 ret = -1; 4876 goto out_free; 4877 } 4878 4879 kthread_bind(rb_threads[cpu], cpu); 4880 wake_up_process(rb_threads[cpu]); 4881 } 4882 4883 /* Now create the rb hammer! */ 4884 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4885 if (WARN_ON(!rb_hammer)) { 4886 pr_cont("FAILED\n"); 4887 ret = -1; 4888 goto out_free; 4889 } 4890 4891 ring_buffer_record_on(buffer); 4892 /* 4893 * Show buffer is enabled before setting rb_test_started. 4894 * Yes there's a small race window where events could be 4895 * dropped and the thread wont catch it. But when a ring 4896 * buffer gets enabled, there will always be some kind of 4897 * delay before other CPUs see it. Thus, we don't care about 4898 * those dropped events. We care about events dropped after 4899 * the threads see that the buffer is active. 4900 */ 4901 smp_wmb(); 4902 rb_test_started = true; 4903 4904 set_current_state(TASK_INTERRUPTIBLE); 4905 /* Just run for 10 seconds */; 4906 schedule_timeout(10 * HZ); 4907 4908 kthread_stop(rb_hammer); 4909 4910 out_free: 4911 for_each_online_cpu(cpu) { 4912 if (!rb_threads[cpu]) 4913 break; 4914 kthread_stop(rb_threads[cpu]); 4915 } 4916 if (ret) { 4917 ring_buffer_free(buffer); 4918 return ret; 4919 } 4920 4921 /* Report! */ 4922 pr_info("finished\n"); 4923 for_each_online_cpu(cpu) { 4924 struct ring_buffer_event *event; 4925 struct rb_test_data *data = &rb_data[cpu]; 4926 struct rb_item *item; 4927 unsigned long total_events; 4928 unsigned long total_dropped; 4929 unsigned long total_written; 4930 unsigned long total_alloc; 4931 unsigned long total_read = 0; 4932 unsigned long total_size = 0; 4933 unsigned long total_len = 0; 4934 unsigned long total_lost = 0; 4935 unsigned long lost; 4936 int big_event_size; 4937 int small_event_size; 4938 4939 ret = -1; 4940 4941 total_events = data->events + data->events_nested; 4942 total_written = data->bytes_written + data->bytes_written_nested; 4943 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4944 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4945 4946 big_event_size = data->max_size + data->max_size_nested; 4947 small_event_size = data->min_size + data->min_size_nested; 4948 4949 pr_info("CPU %d:\n", cpu); 4950 pr_info(" events: %ld\n", total_events); 4951 pr_info(" dropped bytes: %ld\n", total_dropped); 4952 pr_info(" alloced bytes: %ld\n", total_alloc); 4953 pr_info(" written bytes: %ld\n", total_written); 4954 pr_info(" biggest event: %d\n", big_event_size); 4955 pr_info(" smallest event: %d\n", small_event_size); 4956 4957 if (RB_WARN_ON(buffer, total_dropped)) 4958 break; 4959 4960 ret = 0; 4961 4962 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4963 total_lost += lost; 4964 item = ring_buffer_event_data(event); 4965 total_len += ring_buffer_event_length(event); 4966 total_size += item->size + sizeof(struct rb_item); 4967 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4968 pr_info("FAILED!\n"); 4969 pr_info("buffer had: %.*s\n", item->size, item->str); 4970 pr_info("expected: %.*s\n", item->size, rb_string); 4971 RB_WARN_ON(buffer, 1); 4972 ret = -1; 4973 break; 4974 } 4975 total_read++; 4976 } 4977 if (ret) 4978 break; 4979 4980 ret = -1; 4981 4982 pr_info(" read events: %ld\n", total_read); 4983 pr_info(" lost events: %ld\n", total_lost); 4984 pr_info(" total events: %ld\n", total_lost + total_read); 4985 pr_info(" recorded len bytes: %ld\n", total_len); 4986 pr_info(" recorded size bytes: %ld\n", total_size); 4987 if (total_lost) 4988 pr_info(" With dropped events, record len and size may not match\n" 4989 " alloced and written from above\n"); 4990 if (!total_lost) { 4991 if (RB_WARN_ON(buffer, total_len != total_alloc || 4992 total_size != total_written)) 4993 break; 4994 } 4995 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4996 break; 4997 4998 ret = 0; 4999 } 5000 if (!ret) 5001 pr_info("Ring buffer PASSED!\n"); 5002 5003 ring_buffer_free(buffer); 5004 return 0; 5005 } 5006 5007 late_initcall(test_ringbuffer); 5008 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5009