xref: /linux/kernel/trace/ring_buffer.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 struct buffer_data_page {
284 	u64		 time_stamp;	/* page time stamp */
285 	local_t		 commit;	/* write committed index */
286 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
287 };
288 
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298 	struct list_head list;		/* list of buffer pages */
299 	local_t		 write;		/* index for next write */
300 	unsigned	 read;		/* index for next read */
301 	local_t		 entries;	/* entries on this page */
302 	unsigned long	 real_end;	/* real end of data */
303 	struct buffer_data_page *page;	/* Actual data page */
304 };
305 
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK		0xfffff
319 #define RB_WRITE_INTCNT		(1 << 20)
320 
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 	local_set(&bpage->commit, 0);
324 }
325 
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334 	return local_read(&((struct buffer_data_page *)page)->commit)
335 		+ BUF_PAGE_HDR_SIZE;
336 }
337 
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 	free_page((unsigned long)bpage->page);
345 	kfree(bpage);
346 }
347 
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353 	if (delta & TS_DELTA_TEST)
354 		return 1;
355 	return 0;
356 }
357 
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359 
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362 
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 	struct buffer_data_page field;
366 
367 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 			 (unsigned int)sizeof(field.time_stamp),
370 			 (unsigned int)is_signed_type(u64));
371 
372 	trace_seq_printf(s, "\tfield: local_t commit;\t"
373 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 			 (unsigned int)offsetof(typeof(field), commit),
375 			 (unsigned int)sizeof(field.commit),
376 			 (unsigned int)is_signed_type(long));
377 
378 	trace_seq_printf(s, "\tfield: int overwrite;\t"
379 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)offsetof(typeof(field), commit),
381 			 1,
382 			 (unsigned int)is_signed_type(long));
383 
384 	trace_seq_printf(s, "\tfield: char data;\t"
385 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 			 (unsigned int)offsetof(typeof(field), data),
387 			 (unsigned int)BUF_PAGE_SIZE,
388 			 (unsigned int)is_signed_type(char));
389 
390 	return !trace_seq_has_overflowed(s);
391 }
392 
393 struct rb_irq_work {
394 	struct irq_work			work;
395 	wait_queue_head_t		waiters;
396 	wait_queue_head_t		full_waiters;
397 	bool				waiters_pending;
398 	bool				full_waiters_pending;
399 	bool				wakeup_full;
400 };
401 
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406 	u64			ts;
407 	u64			delta;
408 	unsigned long		length;
409 	struct buffer_page	*tail_page;
410 	int			add_timestamp;
411 };
412 
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423 	RB_CTX_NMI,
424 	RB_CTX_IRQ,
425 	RB_CTX_SOFTIRQ,
426 	RB_CTX_NORMAL,
427 	RB_CTX_MAX
428 };
429 
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434 	int				cpu;
435 	atomic_t			record_disabled;
436 	struct ring_buffer		*buffer;
437 	raw_spinlock_t			reader_lock;	/* serialize readers */
438 	arch_spinlock_t			lock;
439 	struct lock_class_key		lock_key;
440 	unsigned long			nr_pages;
441 	unsigned int			current_context;
442 	struct list_head		*pages;
443 	struct buffer_page		*head_page;	/* read from head */
444 	struct buffer_page		*tail_page;	/* write to tail */
445 	struct buffer_page		*commit_page;	/* committed pages */
446 	struct buffer_page		*reader_page;
447 	unsigned long			lost_events;
448 	unsigned long			last_overrun;
449 	local_t				entries_bytes;
450 	local_t				entries;
451 	local_t				overrun;
452 	local_t				commit_overrun;
453 	local_t				dropped_events;
454 	local_t				committing;
455 	local_t				commits;
456 	unsigned long			read;
457 	unsigned long			read_bytes;
458 	u64				write_stamp;
459 	u64				read_stamp;
460 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
461 	long				nr_pages_to_update;
462 	struct list_head		new_pages; /* new pages to add */
463 	struct work_struct		update_pages_work;
464 	struct completion		update_done;
465 
466 	struct rb_irq_work		irq_work;
467 };
468 
469 struct ring_buffer {
470 	unsigned			flags;
471 	int				cpus;
472 	atomic_t			record_disabled;
473 	atomic_t			resize_disabled;
474 	cpumask_var_t			cpumask;
475 
476 	struct lock_class_key		*reader_lock_key;
477 
478 	struct mutex			mutex;
479 
480 	struct ring_buffer_per_cpu	**buffers;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 	struct notifier_block		cpu_notify;
484 #endif
485 	u64				(*clock)(void);
486 
487 	struct rb_irq_work		irq_work;
488 };
489 
490 struct ring_buffer_iter {
491 	struct ring_buffer_per_cpu	*cpu_buffer;
492 	unsigned long			head;
493 	struct buffer_page		*head_page;
494 	struct buffer_page		*cache_reader_page;
495 	unsigned long			cache_read;
496 	u64				read_stamp;
497 };
498 
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508 
509 	wake_up_all(&rbwork->waiters);
510 	if (rbwork->wakeup_full) {
511 		rbwork->wakeup_full = false;
512 		wake_up_all(&rbwork->full_waiters);
513 	}
514 }
515 
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 	DEFINE_WAIT(wait);
530 	struct rb_irq_work *work;
531 	int ret = 0;
532 
533 	/*
534 	 * Depending on what the caller is waiting for, either any
535 	 * data in any cpu buffer, or a specific buffer, put the
536 	 * caller on the appropriate wait queue.
537 	 */
538 	if (cpu == RING_BUFFER_ALL_CPUS) {
539 		work = &buffer->irq_work;
540 		/* Full only makes sense on per cpu reads */
541 		full = false;
542 	} else {
543 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 			return -ENODEV;
545 		cpu_buffer = buffer->buffers[cpu];
546 		work = &cpu_buffer->irq_work;
547 	}
548 
549 
550 	while (true) {
551 		if (full)
552 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 		else
554 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555 
556 		/*
557 		 * The events can happen in critical sections where
558 		 * checking a work queue can cause deadlocks.
559 		 * After adding a task to the queue, this flag is set
560 		 * only to notify events to try to wake up the queue
561 		 * using irq_work.
562 		 *
563 		 * We don't clear it even if the buffer is no longer
564 		 * empty. The flag only causes the next event to run
565 		 * irq_work to do the work queue wake up. The worse
566 		 * that can happen if we race with !trace_empty() is that
567 		 * an event will cause an irq_work to try to wake up
568 		 * an empty queue.
569 		 *
570 		 * There's no reason to protect this flag either, as
571 		 * the work queue and irq_work logic will do the necessary
572 		 * synchronization for the wake ups. The only thing
573 		 * that is necessary is that the wake up happens after
574 		 * a task has been queued. It's OK for spurious wake ups.
575 		 */
576 		if (full)
577 			work->full_waiters_pending = true;
578 		else
579 			work->waiters_pending = true;
580 
581 		if (signal_pending(current)) {
582 			ret = -EINTR;
583 			break;
584 		}
585 
586 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 			break;
588 
589 		if (cpu != RING_BUFFER_ALL_CPUS &&
590 		    !ring_buffer_empty_cpu(buffer, cpu)) {
591 			unsigned long flags;
592 			bool pagebusy;
593 
594 			if (!full)
595 				break;
596 
597 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600 
601 			if (!pagebusy)
602 				break;
603 		}
604 
605 		schedule();
606 	}
607 
608 	if (full)
609 		finish_wait(&work->full_waiters, &wait);
610 	else
611 		finish_wait(&work->waiters, &wait);
612 
613 	return ret;
614 }
615 
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 			  struct file *filp, poll_table *poll_table)
632 {
633 	struct ring_buffer_per_cpu *cpu_buffer;
634 	struct rb_irq_work *work;
635 
636 	if (cpu == RING_BUFFER_ALL_CPUS)
637 		work = &buffer->irq_work;
638 	else {
639 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 			return -EINVAL;
641 
642 		cpu_buffer = buffer->buffers[cpu];
643 		work = &cpu_buffer->irq_work;
644 	}
645 
646 	poll_wait(filp, &work->waiters, poll_table);
647 	work->waiters_pending = true;
648 	/*
649 	 * There's a tight race between setting the waiters_pending and
650 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
651 	 * is set, the next event will wake the task up, but we can get stuck
652 	 * if there's only a single event in.
653 	 *
654 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 	 * but adding a memory barrier to all events will cause too much of a
656 	 * performance hit in the fast path.  We only need a memory barrier when
657 	 * the buffer goes from empty to having content.  But as this race is
658 	 * extremely small, and it's not a problem if another event comes in, we
659 	 * will fix it later.
660 	 */
661 	smp_mb();
662 
663 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 		return POLLIN | POLLRDNORM;
666 	return 0;
667 }
668 
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)						\
671 	({								\
672 		int _____ret = unlikely(cond);				\
673 		if (_____ret) {						\
674 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 				struct ring_buffer_per_cpu *__b =	\
676 					(void *)b;			\
677 				atomic_inc(&__b->buffer->record_disabled); \
678 			} else						\
679 				atomic_inc(&b->record_disabled);	\
680 			WARN_ON(1);					\
681 		}							\
682 		_____ret;						\
683 	})
684 
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687 
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690 	/* shift to debug/test normalization and TIME_EXTENTS */
691 	return buffer->clock() << DEBUG_SHIFT;
692 }
693 
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696 	u64 time;
697 
698 	preempt_disable_notrace();
699 	time = rb_time_stamp(buffer);
700 	preempt_enable_no_resched_notrace();
701 
702 	return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705 
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 				      int cpu, u64 *ts)
708 {
709 	/* Just stupid testing the normalize function and deltas */
710 	*ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713 
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782 
783 #define RB_PAGE_NORMAL		0UL
784 #define RB_PAGE_HEAD		1UL
785 #define RB_PAGE_UPDATE		2UL
786 
787 
788 #define RB_FLAG_MASK		3UL
789 
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED		4UL
792 
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798 	unsigned long val = (unsigned long)list;
799 
800 	return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802 
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 		struct buffer_page *page, struct list_head *list)
814 {
815 	unsigned long val;
816 
817 	val = (unsigned long)list->next;
818 
819 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 		return RB_PAGE_MOVED;
821 
822 	return val & RB_FLAG_MASK;
823 }
824 
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834 	struct list_head *list = page->list.prev;
835 
836 	return rb_list_head(list->next) != &page->list;
837 }
838 
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 				struct list_head *list)
844 {
845 	unsigned long *ptr;
846 
847 	ptr = (unsigned long *)&list->next;
848 	*ptr |= RB_PAGE_HEAD;
849 	*ptr &= ~RB_PAGE_UPDATE;
850 }
851 
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857 	struct buffer_page *head;
858 
859 	head = cpu_buffer->head_page;
860 	if (!head)
861 		return;
862 
863 	/*
864 	 * Set the previous list pointer to have the HEAD flag.
865 	 */
866 	rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868 
869 static void rb_list_head_clear(struct list_head *list)
870 {
871 	unsigned long *ptr = (unsigned long *)&list->next;
872 
873 	*ptr &= ~RB_FLAG_MASK;
874 }
875 
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882 	struct list_head *hd;
883 
884 	/* Go through the whole list and clear any pointers found. */
885 	rb_list_head_clear(cpu_buffer->pages);
886 
887 	list_for_each(hd, cpu_buffer->pages)
888 		rb_list_head_clear(hd);
889 }
890 
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 			    struct buffer_page *head,
893 			    struct buffer_page *prev,
894 			    int old_flag, int new_flag)
895 {
896 	struct list_head *list;
897 	unsigned long val = (unsigned long)&head->list;
898 	unsigned long ret;
899 
900 	list = &prev->list;
901 
902 	val &= ~RB_FLAG_MASK;
903 
904 	ret = cmpxchg((unsigned long *)&list->next,
905 		      val | old_flag, val | new_flag);
906 
907 	/* check if the reader took the page */
908 	if ((ret & ~RB_FLAG_MASK) != val)
909 		return RB_PAGE_MOVED;
910 
911 	return ret & RB_FLAG_MASK;
912 }
913 
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 				   struct buffer_page *head,
916 				   struct buffer_page *prev,
917 				   int old_flag)
918 {
919 	return rb_head_page_set(cpu_buffer, head, prev,
920 				old_flag, RB_PAGE_UPDATE);
921 }
922 
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 				 struct buffer_page *head,
925 				 struct buffer_page *prev,
926 				 int old_flag)
927 {
928 	return rb_head_page_set(cpu_buffer, head, prev,
929 				old_flag, RB_PAGE_HEAD);
930 }
931 
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 				   struct buffer_page *head,
934 				   struct buffer_page *prev,
935 				   int old_flag)
936 {
937 	return rb_head_page_set(cpu_buffer, head, prev,
938 				old_flag, RB_PAGE_NORMAL);
939 }
940 
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 			       struct buffer_page **bpage)
943 {
944 	struct list_head *p = rb_list_head((*bpage)->list.next);
945 
946 	*bpage = list_entry(p, struct buffer_page, list);
947 }
948 
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952 	struct buffer_page *head;
953 	struct buffer_page *page;
954 	struct list_head *list;
955 	int i;
956 
957 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 		return NULL;
959 
960 	/* sanity check */
961 	list = cpu_buffer->pages;
962 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 		return NULL;
964 
965 	page = head = cpu_buffer->head_page;
966 	/*
967 	 * It is possible that the writer moves the header behind
968 	 * where we started, and we miss in one loop.
969 	 * A second loop should grab the header, but we'll do
970 	 * three loops just because I'm paranoid.
971 	 */
972 	for (i = 0; i < 3; i++) {
973 		do {
974 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 				cpu_buffer->head_page = page;
976 				return page;
977 			}
978 			rb_inc_page(cpu_buffer, &page);
979 		} while (page != head);
980 	}
981 
982 	RB_WARN_ON(cpu_buffer, 1);
983 
984 	return NULL;
985 }
986 
987 static int rb_head_page_replace(struct buffer_page *old,
988 				struct buffer_page *new)
989 {
990 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 	unsigned long val;
992 	unsigned long ret;
993 
994 	val = *ptr & ~RB_FLAG_MASK;
995 	val |= RB_PAGE_HEAD;
996 
997 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998 
999 	return ret == val;
1000 }
1001 
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  */
1005 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006 			       struct buffer_page *tail_page,
1007 			       struct buffer_page *next_page)
1008 {
1009 	unsigned long old_entries;
1010 	unsigned long old_write;
1011 
1012 	/*
1013 	 * The tail page now needs to be moved forward.
1014 	 *
1015 	 * We need to reset the tail page, but without messing
1016 	 * with possible erasing of data brought in by interrupts
1017 	 * that have moved the tail page and are currently on it.
1018 	 *
1019 	 * We add a counter to the write field to denote this.
1020 	 */
1021 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023 
1024 	/*
1025 	 * Just make sure we have seen our old_write and synchronize
1026 	 * with any interrupts that come in.
1027 	 */
1028 	barrier();
1029 
1030 	/*
1031 	 * If the tail page is still the same as what we think
1032 	 * it is, then it is up to us to update the tail
1033 	 * pointer.
1034 	 */
1035 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036 		/* Zero the write counter */
1037 		unsigned long val = old_write & ~RB_WRITE_MASK;
1038 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039 
1040 		/*
1041 		 * This will only succeed if an interrupt did
1042 		 * not come in and change it. In which case, we
1043 		 * do not want to modify it.
1044 		 *
1045 		 * We add (void) to let the compiler know that we do not care
1046 		 * about the return value of these functions. We use the
1047 		 * cmpxchg to only update if an interrupt did not already
1048 		 * do it for us. If the cmpxchg fails, we don't care.
1049 		 */
1050 		(void)local_cmpxchg(&next_page->write, old_write, val);
1051 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052 
1053 		/*
1054 		 * No need to worry about races with clearing out the commit.
1055 		 * it only can increment when a commit takes place. But that
1056 		 * only happens in the outer most nested commit.
1057 		 */
1058 		local_set(&next_page->page->commit, 0);
1059 
1060 		/* Again, either we update tail_page or an interrupt does */
1061 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1062 	}
1063 }
1064 
1065 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066 			  struct buffer_page *bpage)
1067 {
1068 	unsigned long val = (unsigned long)bpage;
1069 
1070 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071 		return 1;
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  * rb_check_list - make sure a pointer to a list has the last bits zero
1078  */
1079 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080 			 struct list_head *list)
1081 {
1082 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083 		return 1;
1084 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085 		return 1;
1086 	return 0;
1087 }
1088 
1089 /**
1090  * rb_check_pages - integrity check of buffer pages
1091  * @cpu_buffer: CPU buffer with pages to test
1092  *
1093  * As a safety measure we check to make sure the data pages have not
1094  * been corrupted.
1095  */
1096 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098 	struct list_head *head = cpu_buffer->pages;
1099 	struct buffer_page *bpage, *tmp;
1100 
1101 	/* Reset the head page if it exists */
1102 	if (cpu_buffer->head_page)
1103 		rb_set_head_page(cpu_buffer);
1104 
1105 	rb_head_page_deactivate(cpu_buffer);
1106 
1107 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108 		return -1;
1109 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110 		return -1;
1111 
1112 	if (rb_check_list(cpu_buffer, head))
1113 		return -1;
1114 
1115 	list_for_each_entry_safe(bpage, tmp, head, list) {
1116 		if (RB_WARN_ON(cpu_buffer,
1117 			       bpage->list.next->prev != &bpage->list))
1118 			return -1;
1119 		if (RB_WARN_ON(cpu_buffer,
1120 			       bpage->list.prev->next != &bpage->list))
1121 			return -1;
1122 		if (rb_check_list(cpu_buffer, &bpage->list))
1123 			return -1;
1124 	}
1125 
1126 	rb_head_page_activate(cpu_buffer);
1127 
1128 	return 0;
1129 }
1130 
1131 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1132 {
1133 	struct buffer_page *bpage, *tmp;
1134 	long i;
1135 
1136 	for (i = 0; i < nr_pages; i++) {
1137 		struct page *page;
1138 		/*
1139 		 * __GFP_NORETRY flag makes sure that the allocation fails
1140 		 * gracefully without invoking oom-killer and the system is
1141 		 * not destabilized.
1142 		 */
1143 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144 				    GFP_KERNEL | __GFP_NORETRY,
1145 				    cpu_to_node(cpu));
1146 		if (!bpage)
1147 			goto free_pages;
1148 
1149 		list_add(&bpage->list, pages);
1150 
1151 		page = alloc_pages_node(cpu_to_node(cpu),
1152 					GFP_KERNEL | __GFP_NORETRY, 0);
1153 		if (!page)
1154 			goto free_pages;
1155 		bpage->page = page_address(page);
1156 		rb_init_page(bpage->page);
1157 	}
1158 
1159 	return 0;
1160 
1161 free_pages:
1162 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1163 		list_del_init(&bpage->list);
1164 		free_buffer_page(bpage);
1165 	}
1166 
1167 	return -ENOMEM;
1168 }
1169 
1170 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171 			     unsigned long nr_pages)
1172 {
1173 	LIST_HEAD(pages);
1174 
1175 	WARN_ON(!nr_pages);
1176 
1177 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178 		return -ENOMEM;
1179 
1180 	/*
1181 	 * The ring buffer page list is a circular list that does not
1182 	 * start and end with a list head. All page list items point to
1183 	 * other pages.
1184 	 */
1185 	cpu_buffer->pages = pages.next;
1186 	list_del(&pages);
1187 
1188 	cpu_buffer->nr_pages = nr_pages;
1189 
1190 	rb_check_pages(cpu_buffer);
1191 
1192 	return 0;
1193 }
1194 
1195 static struct ring_buffer_per_cpu *
1196 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1197 {
1198 	struct ring_buffer_per_cpu *cpu_buffer;
1199 	struct buffer_page *bpage;
1200 	struct page *page;
1201 	int ret;
1202 
1203 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204 				  GFP_KERNEL, cpu_to_node(cpu));
1205 	if (!cpu_buffer)
1206 		return NULL;
1207 
1208 	cpu_buffer->cpu = cpu;
1209 	cpu_buffer->buffer = buffer;
1210 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1211 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214 	init_completion(&cpu_buffer->update_done);
1215 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1218 
1219 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220 			    GFP_KERNEL, cpu_to_node(cpu));
1221 	if (!bpage)
1222 		goto fail_free_buffer;
1223 
1224 	rb_check_bpage(cpu_buffer, bpage);
1225 
1226 	cpu_buffer->reader_page = bpage;
1227 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228 	if (!page)
1229 		goto fail_free_reader;
1230 	bpage->page = page_address(page);
1231 	rb_init_page(bpage->page);
1232 
1233 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235 
1236 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237 	if (ret < 0)
1238 		goto fail_free_reader;
1239 
1240 	cpu_buffer->head_page
1241 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1242 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243 
1244 	rb_head_page_activate(cpu_buffer);
1245 
1246 	return cpu_buffer;
1247 
1248  fail_free_reader:
1249 	free_buffer_page(cpu_buffer->reader_page);
1250 
1251  fail_free_buffer:
1252 	kfree(cpu_buffer);
1253 	return NULL;
1254 }
1255 
1256 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257 {
1258 	struct list_head *head = cpu_buffer->pages;
1259 	struct buffer_page *bpage, *tmp;
1260 
1261 	free_buffer_page(cpu_buffer->reader_page);
1262 
1263 	rb_head_page_deactivate(cpu_buffer);
1264 
1265 	if (head) {
1266 		list_for_each_entry_safe(bpage, tmp, head, list) {
1267 			list_del_init(&bpage->list);
1268 			free_buffer_page(bpage);
1269 		}
1270 		bpage = list_entry(head, struct buffer_page, list);
1271 		free_buffer_page(bpage);
1272 	}
1273 
1274 	kfree(cpu_buffer);
1275 }
1276 
1277 #ifdef CONFIG_HOTPLUG_CPU
1278 static int rb_cpu_notify(struct notifier_block *self,
1279 			 unsigned long action, void *hcpu);
1280 #endif
1281 
1282 /**
1283  * __ring_buffer_alloc - allocate a new ring_buffer
1284  * @size: the size in bytes per cpu that is needed.
1285  * @flags: attributes to set for the ring buffer.
1286  *
1287  * Currently the only flag that is available is the RB_FL_OVERWRITE
1288  * flag. This flag means that the buffer will overwrite old data
1289  * when the buffer wraps. If this flag is not set, the buffer will
1290  * drop data when the tail hits the head.
1291  */
1292 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1293 					struct lock_class_key *key)
1294 {
1295 	struct ring_buffer *buffer;
1296 	long nr_pages;
1297 	int bsize;
1298 	int cpu;
1299 
1300 	/* keep it in its own cache line */
1301 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1302 			 GFP_KERNEL);
1303 	if (!buffer)
1304 		return NULL;
1305 
1306 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1307 		goto fail_free_buffer;
1308 
1309 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1310 	buffer->flags = flags;
1311 	buffer->clock = trace_clock_local;
1312 	buffer->reader_lock_key = key;
1313 
1314 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1315 	init_waitqueue_head(&buffer->irq_work.waiters);
1316 
1317 	/* need at least two pages */
1318 	if (nr_pages < 2)
1319 		nr_pages = 2;
1320 
1321 	/*
1322 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1323 	 * in early initcall, it will not be notified of secondary cpus.
1324 	 * In that off case, we need to allocate for all possible cpus.
1325 	 */
1326 #ifdef CONFIG_HOTPLUG_CPU
1327 	cpu_notifier_register_begin();
1328 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1329 #else
1330 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1331 #endif
1332 	buffer->cpus = nr_cpu_ids;
1333 
1334 	bsize = sizeof(void *) * nr_cpu_ids;
1335 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1336 				  GFP_KERNEL);
1337 	if (!buffer->buffers)
1338 		goto fail_free_cpumask;
1339 
1340 	for_each_buffer_cpu(buffer, cpu) {
1341 		buffer->buffers[cpu] =
1342 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1343 		if (!buffer->buffers[cpu])
1344 			goto fail_free_buffers;
1345 	}
1346 
1347 #ifdef CONFIG_HOTPLUG_CPU
1348 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1349 	buffer->cpu_notify.priority = 0;
1350 	__register_cpu_notifier(&buffer->cpu_notify);
1351 	cpu_notifier_register_done();
1352 #endif
1353 
1354 	mutex_init(&buffer->mutex);
1355 
1356 	return buffer;
1357 
1358  fail_free_buffers:
1359 	for_each_buffer_cpu(buffer, cpu) {
1360 		if (buffer->buffers[cpu])
1361 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1362 	}
1363 	kfree(buffer->buffers);
1364 
1365  fail_free_cpumask:
1366 	free_cpumask_var(buffer->cpumask);
1367 #ifdef CONFIG_HOTPLUG_CPU
1368 	cpu_notifier_register_done();
1369 #endif
1370 
1371  fail_free_buffer:
1372 	kfree(buffer);
1373 	return NULL;
1374 }
1375 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1376 
1377 /**
1378  * ring_buffer_free - free a ring buffer.
1379  * @buffer: the buffer to free.
1380  */
1381 void
1382 ring_buffer_free(struct ring_buffer *buffer)
1383 {
1384 	int cpu;
1385 
1386 #ifdef CONFIG_HOTPLUG_CPU
1387 	cpu_notifier_register_begin();
1388 	__unregister_cpu_notifier(&buffer->cpu_notify);
1389 #endif
1390 
1391 	for_each_buffer_cpu(buffer, cpu)
1392 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1393 
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 	cpu_notifier_register_done();
1396 #endif
1397 
1398 	kfree(buffer->buffers);
1399 	free_cpumask_var(buffer->cpumask);
1400 
1401 	kfree(buffer);
1402 }
1403 EXPORT_SYMBOL_GPL(ring_buffer_free);
1404 
1405 void ring_buffer_set_clock(struct ring_buffer *buffer,
1406 			   u64 (*clock)(void))
1407 {
1408 	buffer->clock = clock;
1409 }
1410 
1411 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1412 
1413 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1414 {
1415 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1416 }
1417 
1418 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1419 {
1420 	return local_read(&bpage->write) & RB_WRITE_MASK;
1421 }
1422 
1423 static int
1424 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1425 {
1426 	struct list_head *tail_page, *to_remove, *next_page;
1427 	struct buffer_page *to_remove_page, *tmp_iter_page;
1428 	struct buffer_page *last_page, *first_page;
1429 	unsigned long nr_removed;
1430 	unsigned long head_bit;
1431 	int page_entries;
1432 
1433 	head_bit = 0;
1434 
1435 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1436 	atomic_inc(&cpu_buffer->record_disabled);
1437 	/*
1438 	 * We don't race with the readers since we have acquired the reader
1439 	 * lock. We also don't race with writers after disabling recording.
1440 	 * This makes it easy to figure out the first and the last page to be
1441 	 * removed from the list. We unlink all the pages in between including
1442 	 * the first and last pages. This is done in a busy loop so that we
1443 	 * lose the least number of traces.
1444 	 * The pages are freed after we restart recording and unlock readers.
1445 	 */
1446 	tail_page = &cpu_buffer->tail_page->list;
1447 
1448 	/*
1449 	 * tail page might be on reader page, we remove the next page
1450 	 * from the ring buffer
1451 	 */
1452 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1453 		tail_page = rb_list_head(tail_page->next);
1454 	to_remove = tail_page;
1455 
1456 	/* start of pages to remove */
1457 	first_page = list_entry(rb_list_head(to_remove->next),
1458 				struct buffer_page, list);
1459 
1460 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1461 		to_remove = rb_list_head(to_remove)->next;
1462 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1463 	}
1464 
1465 	next_page = rb_list_head(to_remove)->next;
1466 
1467 	/*
1468 	 * Now we remove all pages between tail_page and next_page.
1469 	 * Make sure that we have head_bit value preserved for the
1470 	 * next page
1471 	 */
1472 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1473 						head_bit);
1474 	next_page = rb_list_head(next_page);
1475 	next_page->prev = tail_page;
1476 
1477 	/* make sure pages points to a valid page in the ring buffer */
1478 	cpu_buffer->pages = next_page;
1479 
1480 	/* update head page */
1481 	if (head_bit)
1482 		cpu_buffer->head_page = list_entry(next_page,
1483 						struct buffer_page, list);
1484 
1485 	/*
1486 	 * change read pointer to make sure any read iterators reset
1487 	 * themselves
1488 	 */
1489 	cpu_buffer->read = 0;
1490 
1491 	/* pages are removed, resume tracing and then free the pages */
1492 	atomic_dec(&cpu_buffer->record_disabled);
1493 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1494 
1495 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1496 
1497 	/* last buffer page to remove */
1498 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1499 				list);
1500 	tmp_iter_page = first_page;
1501 
1502 	do {
1503 		to_remove_page = tmp_iter_page;
1504 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1505 
1506 		/* update the counters */
1507 		page_entries = rb_page_entries(to_remove_page);
1508 		if (page_entries) {
1509 			/*
1510 			 * If something was added to this page, it was full
1511 			 * since it is not the tail page. So we deduct the
1512 			 * bytes consumed in ring buffer from here.
1513 			 * Increment overrun to account for the lost events.
1514 			 */
1515 			local_add(page_entries, &cpu_buffer->overrun);
1516 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1517 		}
1518 
1519 		/*
1520 		 * We have already removed references to this list item, just
1521 		 * free up the buffer_page and its page
1522 		 */
1523 		free_buffer_page(to_remove_page);
1524 		nr_removed--;
1525 
1526 	} while (to_remove_page != last_page);
1527 
1528 	RB_WARN_ON(cpu_buffer, nr_removed);
1529 
1530 	return nr_removed == 0;
1531 }
1532 
1533 static int
1534 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1535 {
1536 	struct list_head *pages = &cpu_buffer->new_pages;
1537 	int retries, success;
1538 
1539 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1540 	/*
1541 	 * We are holding the reader lock, so the reader page won't be swapped
1542 	 * in the ring buffer. Now we are racing with the writer trying to
1543 	 * move head page and the tail page.
1544 	 * We are going to adapt the reader page update process where:
1545 	 * 1. We first splice the start and end of list of new pages between
1546 	 *    the head page and its previous page.
1547 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1548 	 *    start of new pages list.
1549 	 * 3. Finally, we update the head->prev to the end of new list.
1550 	 *
1551 	 * We will try this process 10 times, to make sure that we don't keep
1552 	 * spinning.
1553 	 */
1554 	retries = 10;
1555 	success = 0;
1556 	while (retries--) {
1557 		struct list_head *head_page, *prev_page, *r;
1558 		struct list_head *last_page, *first_page;
1559 		struct list_head *head_page_with_bit;
1560 
1561 		head_page = &rb_set_head_page(cpu_buffer)->list;
1562 		if (!head_page)
1563 			break;
1564 		prev_page = head_page->prev;
1565 
1566 		first_page = pages->next;
1567 		last_page  = pages->prev;
1568 
1569 		head_page_with_bit = (struct list_head *)
1570 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1571 
1572 		last_page->next = head_page_with_bit;
1573 		first_page->prev = prev_page;
1574 
1575 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1576 
1577 		if (r == head_page_with_bit) {
1578 			/*
1579 			 * yay, we replaced the page pointer to our new list,
1580 			 * now, we just have to update to head page's prev
1581 			 * pointer to point to end of list
1582 			 */
1583 			head_page->prev = last_page;
1584 			success = 1;
1585 			break;
1586 		}
1587 	}
1588 
1589 	if (success)
1590 		INIT_LIST_HEAD(pages);
1591 	/*
1592 	 * If we weren't successful in adding in new pages, warn and stop
1593 	 * tracing
1594 	 */
1595 	RB_WARN_ON(cpu_buffer, !success);
1596 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1597 
1598 	/* free pages if they weren't inserted */
1599 	if (!success) {
1600 		struct buffer_page *bpage, *tmp;
1601 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1602 					 list) {
1603 			list_del_init(&bpage->list);
1604 			free_buffer_page(bpage);
1605 		}
1606 	}
1607 	return success;
1608 }
1609 
1610 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1611 {
1612 	int success;
1613 
1614 	if (cpu_buffer->nr_pages_to_update > 0)
1615 		success = rb_insert_pages(cpu_buffer);
1616 	else
1617 		success = rb_remove_pages(cpu_buffer,
1618 					-cpu_buffer->nr_pages_to_update);
1619 
1620 	if (success)
1621 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1622 }
1623 
1624 static void update_pages_handler(struct work_struct *work)
1625 {
1626 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1627 			struct ring_buffer_per_cpu, update_pages_work);
1628 	rb_update_pages(cpu_buffer);
1629 	complete(&cpu_buffer->update_done);
1630 }
1631 
1632 /**
1633  * ring_buffer_resize - resize the ring buffer
1634  * @buffer: the buffer to resize.
1635  * @size: the new size.
1636  * @cpu_id: the cpu buffer to resize
1637  *
1638  * Minimum size is 2 * BUF_PAGE_SIZE.
1639  *
1640  * Returns 0 on success and < 0 on failure.
1641  */
1642 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1643 			int cpu_id)
1644 {
1645 	struct ring_buffer_per_cpu *cpu_buffer;
1646 	unsigned long nr_pages;
1647 	int cpu, err = 0;
1648 
1649 	/*
1650 	 * Always succeed at resizing a non-existent buffer:
1651 	 */
1652 	if (!buffer)
1653 		return size;
1654 
1655 	/* Make sure the requested buffer exists */
1656 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1657 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1658 		return size;
1659 
1660 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1661 
1662 	/* we need a minimum of two pages */
1663 	if (nr_pages < 2)
1664 		nr_pages = 2;
1665 
1666 	size = nr_pages * BUF_PAGE_SIZE;
1667 
1668 	/*
1669 	 * Don't succeed if resizing is disabled, as a reader might be
1670 	 * manipulating the ring buffer and is expecting a sane state while
1671 	 * this is true.
1672 	 */
1673 	if (atomic_read(&buffer->resize_disabled))
1674 		return -EBUSY;
1675 
1676 	/* prevent another thread from changing buffer sizes */
1677 	mutex_lock(&buffer->mutex);
1678 
1679 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1680 		/* calculate the pages to update */
1681 		for_each_buffer_cpu(buffer, cpu) {
1682 			cpu_buffer = buffer->buffers[cpu];
1683 
1684 			cpu_buffer->nr_pages_to_update = nr_pages -
1685 							cpu_buffer->nr_pages;
1686 			/*
1687 			 * nothing more to do for removing pages or no update
1688 			 */
1689 			if (cpu_buffer->nr_pages_to_update <= 0)
1690 				continue;
1691 			/*
1692 			 * to add pages, make sure all new pages can be
1693 			 * allocated without receiving ENOMEM
1694 			 */
1695 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1696 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1697 						&cpu_buffer->new_pages, cpu)) {
1698 				/* not enough memory for new pages */
1699 				err = -ENOMEM;
1700 				goto out_err;
1701 			}
1702 		}
1703 
1704 		get_online_cpus();
1705 		/*
1706 		 * Fire off all the required work handlers
1707 		 * We can't schedule on offline CPUs, but it's not necessary
1708 		 * since we can change their buffer sizes without any race.
1709 		 */
1710 		for_each_buffer_cpu(buffer, cpu) {
1711 			cpu_buffer = buffer->buffers[cpu];
1712 			if (!cpu_buffer->nr_pages_to_update)
1713 				continue;
1714 
1715 			/* Can't run something on an offline CPU. */
1716 			if (!cpu_online(cpu)) {
1717 				rb_update_pages(cpu_buffer);
1718 				cpu_buffer->nr_pages_to_update = 0;
1719 			} else {
1720 				schedule_work_on(cpu,
1721 						&cpu_buffer->update_pages_work);
1722 			}
1723 		}
1724 
1725 		/* wait for all the updates to complete */
1726 		for_each_buffer_cpu(buffer, cpu) {
1727 			cpu_buffer = buffer->buffers[cpu];
1728 			if (!cpu_buffer->nr_pages_to_update)
1729 				continue;
1730 
1731 			if (cpu_online(cpu))
1732 				wait_for_completion(&cpu_buffer->update_done);
1733 			cpu_buffer->nr_pages_to_update = 0;
1734 		}
1735 
1736 		put_online_cpus();
1737 	} else {
1738 		/* Make sure this CPU has been intitialized */
1739 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1740 			goto out;
1741 
1742 		cpu_buffer = buffer->buffers[cpu_id];
1743 
1744 		if (nr_pages == cpu_buffer->nr_pages)
1745 			goto out;
1746 
1747 		cpu_buffer->nr_pages_to_update = nr_pages -
1748 						cpu_buffer->nr_pages;
1749 
1750 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1751 		if (cpu_buffer->nr_pages_to_update > 0 &&
1752 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1753 					    &cpu_buffer->new_pages, cpu_id)) {
1754 			err = -ENOMEM;
1755 			goto out_err;
1756 		}
1757 
1758 		get_online_cpus();
1759 
1760 		/* Can't run something on an offline CPU. */
1761 		if (!cpu_online(cpu_id))
1762 			rb_update_pages(cpu_buffer);
1763 		else {
1764 			schedule_work_on(cpu_id,
1765 					 &cpu_buffer->update_pages_work);
1766 			wait_for_completion(&cpu_buffer->update_done);
1767 		}
1768 
1769 		cpu_buffer->nr_pages_to_update = 0;
1770 		put_online_cpus();
1771 	}
1772 
1773  out:
1774 	/*
1775 	 * The ring buffer resize can happen with the ring buffer
1776 	 * enabled, so that the update disturbs the tracing as little
1777 	 * as possible. But if the buffer is disabled, we do not need
1778 	 * to worry about that, and we can take the time to verify
1779 	 * that the buffer is not corrupt.
1780 	 */
1781 	if (atomic_read(&buffer->record_disabled)) {
1782 		atomic_inc(&buffer->record_disabled);
1783 		/*
1784 		 * Even though the buffer was disabled, we must make sure
1785 		 * that it is truly disabled before calling rb_check_pages.
1786 		 * There could have been a race between checking
1787 		 * record_disable and incrementing it.
1788 		 */
1789 		synchronize_sched();
1790 		for_each_buffer_cpu(buffer, cpu) {
1791 			cpu_buffer = buffer->buffers[cpu];
1792 			rb_check_pages(cpu_buffer);
1793 		}
1794 		atomic_dec(&buffer->record_disabled);
1795 	}
1796 
1797 	mutex_unlock(&buffer->mutex);
1798 	return size;
1799 
1800  out_err:
1801 	for_each_buffer_cpu(buffer, cpu) {
1802 		struct buffer_page *bpage, *tmp;
1803 
1804 		cpu_buffer = buffer->buffers[cpu];
1805 		cpu_buffer->nr_pages_to_update = 0;
1806 
1807 		if (list_empty(&cpu_buffer->new_pages))
1808 			continue;
1809 
1810 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1811 					list) {
1812 			list_del_init(&bpage->list);
1813 			free_buffer_page(bpage);
1814 		}
1815 	}
1816 	mutex_unlock(&buffer->mutex);
1817 	return err;
1818 }
1819 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1820 
1821 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1822 {
1823 	mutex_lock(&buffer->mutex);
1824 	if (val)
1825 		buffer->flags |= RB_FL_OVERWRITE;
1826 	else
1827 		buffer->flags &= ~RB_FL_OVERWRITE;
1828 	mutex_unlock(&buffer->mutex);
1829 }
1830 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1831 
1832 static inline void *
1833 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1834 {
1835 	return bpage->data + index;
1836 }
1837 
1838 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1839 {
1840 	return bpage->page->data + index;
1841 }
1842 
1843 static inline struct ring_buffer_event *
1844 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1845 {
1846 	return __rb_page_index(cpu_buffer->reader_page,
1847 			       cpu_buffer->reader_page->read);
1848 }
1849 
1850 static inline struct ring_buffer_event *
1851 rb_iter_head_event(struct ring_buffer_iter *iter)
1852 {
1853 	return __rb_page_index(iter->head_page, iter->head);
1854 }
1855 
1856 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1857 {
1858 	return local_read(&bpage->page->commit);
1859 }
1860 
1861 /* Size is determined by what has been committed */
1862 static inline unsigned rb_page_size(struct buffer_page *bpage)
1863 {
1864 	return rb_page_commit(bpage);
1865 }
1866 
1867 static inline unsigned
1868 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1869 {
1870 	return rb_page_commit(cpu_buffer->commit_page);
1871 }
1872 
1873 static inline unsigned
1874 rb_event_index(struct ring_buffer_event *event)
1875 {
1876 	unsigned long addr = (unsigned long)event;
1877 
1878 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1879 }
1880 
1881 static void rb_inc_iter(struct ring_buffer_iter *iter)
1882 {
1883 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1884 
1885 	/*
1886 	 * The iterator could be on the reader page (it starts there).
1887 	 * But the head could have moved, since the reader was
1888 	 * found. Check for this case and assign the iterator
1889 	 * to the head page instead of next.
1890 	 */
1891 	if (iter->head_page == cpu_buffer->reader_page)
1892 		iter->head_page = rb_set_head_page(cpu_buffer);
1893 	else
1894 		rb_inc_page(cpu_buffer, &iter->head_page);
1895 
1896 	iter->read_stamp = iter->head_page->page->time_stamp;
1897 	iter->head = 0;
1898 }
1899 
1900 /*
1901  * rb_handle_head_page - writer hit the head page
1902  *
1903  * Returns: +1 to retry page
1904  *           0 to continue
1905  *          -1 on error
1906  */
1907 static int
1908 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1909 		    struct buffer_page *tail_page,
1910 		    struct buffer_page *next_page)
1911 {
1912 	struct buffer_page *new_head;
1913 	int entries;
1914 	int type;
1915 	int ret;
1916 
1917 	entries = rb_page_entries(next_page);
1918 
1919 	/*
1920 	 * The hard part is here. We need to move the head
1921 	 * forward, and protect against both readers on
1922 	 * other CPUs and writers coming in via interrupts.
1923 	 */
1924 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1925 				       RB_PAGE_HEAD);
1926 
1927 	/*
1928 	 * type can be one of four:
1929 	 *  NORMAL - an interrupt already moved it for us
1930 	 *  HEAD   - we are the first to get here.
1931 	 *  UPDATE - we are the interrupt interrupting
1932 	 *           a current move.
1933 	 *  MOVED  - a reader on another CPU moved the next
1934 	 *           pointer to its reader page. Give up
1935 	 *           and try again.
1936 	 */
1937 
1938 	switch (type) {
1939 	case RB_PAGE_HEAD:
1940 		/*
1941 		 * We changed the head to UPDATE, thus
1942 		 * it is our responsibility to update
1943 		 * the counters.
1944 		 */
1945 		local_add(entries, &cpu_buffer->overrun);
1946 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1947 
1948 		/*
1949 		 * The entries will be zeroed out when we move the
1950 		 * tail page.
1951 		 */
1952 
1953 		/* still more to do */
1954 		break;
1955 
1956 	case RB_PAGE_UPDATE:
1957 		/*
1958 		 * This is an interrupt that interrupt the
1959 		 * previous update. Still more to do.
1960 		 */
1961 		break;
1962 	case RB_PAGE_NORMAL:
1963 		/*
1964 		 * An interrupt came in before the update
1965 		 * and processed this for us.
1966 		 * Nothing left to do.
1967 		 */
1968 		return 1;
1969 	case RB_PAGE_MOVED:
1970 		/*
1971 		 * The reader is on another CPU and just did
1972 		 * a swap with our next_page.
1973 		 * Try again.
1974 		 */
1975 		return 1;
1976 	default:
1977 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1978 		return -1;
1979 	}
1980 
1981 	/*
1982 	 * Now that we are here, the old head pointer is
1983 	 * set to UPDATE. This will keep the reader from
1984 	 * swapping the head page with the reader page.
1985 	 * The reader (on another CPU) will spin till
1986 	 * we are finished.
1987 	 *
1988 	 * We just need to protect against interrupts
1989 	 * doing the job. We will set the next pointer
1990 	 * to HEAD. After that, we set the old pointer
1991 	 * to NORMAL, but only if it was HEAD before.
1992 	 * otherwise we are an interrupt, and only
1993 	 * want the outer most commit to reset it.
1994 	 */
1995 	new_head = next_page;
1996 	rb_inc_page(cpu_buffer, &new_head);
1997 
1998 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1999 				    RB_PAGE_NORMAL);
2000 
2001 	/*
2002 	 * Valid returns are:
2003 	 *  HEAD   - an interrupt came in and already set it.
2004 	 *  NORMAL - One of two things:
2005 	 *            1) We really set it.
2006 	 *            2) A bunch of interrupts came in and moved
2007 	 *               the page forward again.
2008 	 */
2009 	switch (ret) {
2010 	case RB_PAGE_HEAD:
2011 	case RB_PAGE_NORMAL:
2012 		/* OK */
2013 		break;
2014 	default:
2015 		RB_WARN_ON(cpu_buffer, 1);
2016 		return -1;
2017 	}
2018 
2019 	/*
2020 	 * It is possible that an interrupt came in,
2021 	 * set the head up, then more interrupts came in
2022 	 * and moved it again. When we get back here,
2023 	 * the page would have been set to NORMAL but we
2024 	 * just set it back to HEAD.
2025 	 *
2026 	 * How do you detect this? Well, if that happened
2027 	 * the tail page would have moved.
2028 	 */
2029 	if (ret == RB_PAGE_NORMAL) {
2030 		struct buffer_page *buffer_tail_page;
2031 
2032 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2033 		/*
2034 		 * If the tail had moved passed next, then we need
2035 		 * to reset the pointer.
2036 		 */
2037 		if (buffer_tail_page != tail_page &&
2038 		    buffer_tail_page != next_page)
2039 			rb_head_page_set_normal(cpu_buffer, new_head,
2040 						next_page,
2041 						RB_PAGE_HEAD);
2042 	}
2043 
2044 	/*
2045 	 * If this was the outer most commit (the one that
2046 	 * changed the original pointer from HEAD to UPDATE),
2047 	 * then it is up to us to reset it to NORMAL.
2048 	 */
2049 	if (type == RB_PAGE_HEAD) {
2050 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2051 					      tail_page,
2052 					      RB_PAGE_UPDATE);
2053 		if (RB_WARN_ON(cpu_buffer,
2054 			       ret != RB_PAGE_UPDATE))
2055 			return -1;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static inline void
2062 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2063 	      unsigned long tail, struct rb_event_info *info)
2064 {
2065 	struct buffer_page *tail_page = info->tail_page;
2066 	struct ring_buffer_event *event;
2067 	unsigned long length = info->length;
2068 
2069 	/*
2070 	 * Only the event that crossed the page boundary
2071 	 * must fill the old tail_page with padding.
2072 	 */
2073 	if (tail >= BUF_PAGE_SIZE) {
2074 		/*
2075 		 * If the page was filled, then we still need
2076 		 * to update the real_end. Reset it to zero
2077 		 * and the reader will ignore it.
2078 		 */
2079 		if (tail == BUF_PAGE_SIZE)
2080 			tail_page->real_end = 0;
2081 
2082 		local_sub(length, &tail_page->write);
2083 		return;
2084 	}
2085 
2086 	event = __rb_page_index(tail_page, tail);
2087 	kmemcheck_annotate_bitfield(event, bitfield);
2088 
2089 	/* account for padding bytes */
2090 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2091 
2092 	/*
2093 	 * Save the original length to the meta data.
2094 	 * This will be used by the reader to add lost event
2095 	 * counter.
2096 	 */
2097 	tail_page->real_end = tail;
2098 
2099 	/*
2100 	 * If this event is bigger than the minimum size, then
2101 	 * we need to be careful that we don't subtract the
2102 	 * write counter enough to allow another writer to slip
2103 	 * in on this page.
2104 	 * We put in a discarded commit instead, to make sure
2105 	 * that this space is not used again.
2106 	 *
2107 	 * If we are less than the minimum size, we don't need to
2108 	 * worry about it.
2109 	 */
2110 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2111 		/* No room for any events */
2112 
2113 		/* Mark the rest of the page with padding */
2114 		rb_event_set_padding(event);
2115 
2116 		/* Set the write back to the previous setting */
2117 		local_sub(length, &tail_page->write);
2118 		return;
2119 	}
2120 
2121 	/* Put in a discarded event */
2122 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2123 	event->type_len = RINGBUF_TYPE_PADDING;
2124 	/* time delta must be non zero */
2125 	event->time_delta = 1;
2126 
2127 	/* Set write to end of buffer */
2128 	length = (tail + length) - BUF_PAGE_SIZE;
2129 	local_sub(length, &tail_page->write);
2130 }
2131 
2132 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2133 
2134 /*
2135  * This is the slow path, force gcc not to inline it.
2136  */
2137 static noinline struct ring_buffer_event *
2138 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2139 	     unsigned long tail, struct rb_event_info *info)
2140 {
2141 	struct buffer_page *tail_page = info->tail_page;
2142 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2143 	struct ring_buffer *buffer = cpu_buffer->buffer;
2144 	struct buffer_page *next_page;
2145 	int ret;
2146 
2147 	next_page = tail_page;
2148 
2149 	rb_inc_page(cpu_buffer, &next_page);
2150 
2151 	/*
2152 	 * If for some reason, we had an interrupt storm that made
2153 	 * it all the way around the buffer, bail, and warn
2154 	 * about it.
2155 	 */
2156 	if (unlikely(next_page == commit_page)) {
2157 		local_inc(&cpu_buffer->commit_overrun);
2158 		goto out_reset;
2159 	}
2160 
2161 	/*
2162 	 * This is where the fun begins!
2163 	 *
2164 	 * We are fighting against races between a reader that
2165 	 * could be on another CPU trying to swap its reader
2166 	 * page with the buffer head.
2167 	 *
2168 	 * We are also fighting against interrupts coming in and
2169 	 * moving the head or tail on us as well.
2170 	 *
2171 	 * If the next page is the head page then we have filled
2172 	 * the buffer, unless the commit page is still on the
2173 	 * reader page.
2174 	 */
2175 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2176 
2177 		/*
2178 		 * If the commit is not on the reader page, then
2179 		 * move the header page.
2180 		 */
2181 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2182 			/*
2183 			 * If we are not in overwrite mode,
2184 			 * this is easy, just stop here.
2185 			 */
2186 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2187 				local_inc(&cpu_buffer->dropped_events);
2188 				goto out_reset;
2189 			}
2190 
2191 			ret = rb_handle_head_page(cpu_buffer,
2192 						  tail_page,
2193 						  next_page);
2194 			if (ret < 0)
2195 				goto out_reset;
2196 			if (ret)
2197 				goto out_again;
2198 		} else {
2199 			/*
2200 			 * We need to be careful here too. The
2201 			 * commit page could still be on the reader
2202 			 * page. We could have a small buffer, and
2203 			 * have filled up the buffer with events
2204 			 * from interrupts and such, and wrapped.
2205 			 *
2206 			 * Note, if the tail page is also the on the
2207 			 * reader_page, we let it move out.
2208 			 */
2209 			if (unlikely((cpu_buffer->commit_page !=
2210 				      cpu_buffer->tail_page) &&
2211 				     (cpu_buffer->commit_page ==
2212 				      cpu_buffer->reader_page))) {
2213 				local_inc(&cpu_buffer->commit_overrun);
2214 				goto out_reset;
2215 			}
2216 		}
2217 	}
2218 
2219 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2220 
2221  out_again:
2222 
2223 	rb_reset_tail(cpu_buffer, tail, info);
2224 
2225 	/* Commit what we have for now. */
2226 	rb_end_commit(cpu_buffer);
2227 	/* rb_end_commit() decs committing */
2228 	local_inc(&cpu_buffer->committing);
2229 
2230 	/* fail and let the caller try again */
2231 	return ERR_PTR(-EAGAIN);
2232 
2233  out_reset:
2234 	/* reset write */
2235 	rb_reset_tail(cpu_buffer, tail, info);
2236 
2237 	return NULL;
2238 }
2239 
2240 /* Slow path, do not inline */
2241 static noinline struct ring_buffer_event *
2242 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2243 {
2244 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2245 
2246 	/* Not the first event on the page? */
2247 	if (rb_event_index(event)) {
2248 		event->time_delta = delta & TS_MASK;
2249 		event->array[0] = delta >> TS_SHIFT;
2250 	} else {
2251 		/* nope, just zero it */
2252 		event->time_delta = 0;
2253 		event->array[0] = 0;
2254 	}
2255 
2256 	return skip_time_extend(event);
2257 }
2258 
2259 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2260 				     struct ring_buffer_event *event);
2261 
2262 /**
2263  * rb_update_event - update event type and data
2264  * @event: the event to update
2265  * @type: the type of event
2266  * @length: the size of the event field in the ring buffer
2267  *
2268  * Update the type and data fields of the event. The length
2269  * is the actual size that is written to the ring buffer,
2270  * and with this, we can determine what to place into the
2271  * data field.
2272  */
2273 static void
2274 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2275 		struct ring_buffer_event *event,
2276 		struct rb_event_info *info)
2277 {
2278 	unsigned length = info->length;
2279 	u64 delta = info->delta;
2280 
2281 	/* Only a commit updates the timestamp */
2282 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2283 		delta = 0;
2284 
2285 	/*
2286 	 * If we need to add a timestamp, then we
2287 	 * add it to the start of the resevered space.
2288 	 */
2289 	if (unlikely(info->add_timestamp)) {
2290 		event = rb_add_time_stamp(event, delta);
2291 		length -= RB_LEN_TIME_EXTEND;
2292 		delta = 0;
2293 	}
2294 
2295 	event->time_delta = delta;
2296 	length -= RB_EVNT_HDR_SIZE;
2297 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2298 		event->type_len = 0;
2299 		event->array[0] = length;
2300 	} else
2301 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2302 }
2303 
2304 static unsigned rb_calculate_event_length(unsigned length)
2305 {
2306 	struct ring_buffer_event event; /* Used only for sizeof array */
2307 
2308 	/* zero length can cause confusions */
2309 	if (!length)
2310 		length++;
2311 
2312 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2313 		length += sizeof(event.array[0]);
2314 
2315 	length += RB_EVNT_HDR_SIZE;
2316 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2317 
2318 	/*
2319 	 * In case the time delta is larger than the 27 bits for it
2320 	 * in the header, we need to add a timestamp. If another
2321 	 * event comes in when trying to discard this one to increase
2322 	 * the length, then the timestamp will be added in the allocated
2323 	 * space of this event. If length is bigger than the size needed
2324 	 * for the TIME_EXTEND, then padding has to be used. The events
2325 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2326 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2327 	 * As length is a multiple of 4, we only need to worry if it
2328 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2329 	 */
2330 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2331 		length += RB_ALIGNMENT;
2332 
2333 	return length;
2334 }
2335 
2336 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2337 static inline bool sched_clock_stable(void)
2338 {
2339 	return true;
2340 }
2341 #endif
2342 
2343 static inline int
2344 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2345 		  struct ring_buffer_event *event)
2346 {
2347 	unsigned long new_index, old_index;
2348 	struct buffer_page *bpage;
2349 	unsigned long index;
2350 	unsigned long addr;
2351 
2352 	new_index = rb_event_index(event);
2353 	old_index = new_index + rb_event_ts_length(event);
2354 	addr = (unsigned long)event;
2355 	addr &= PAGE_MASK;
2356 
2357 	bpage = READ_ONCE(cpu_buffer->tail_page);
2358 
2359 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2360 		unsigned long write_mask =
2361 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2362 		unsigned long event_length = rb_event_length(event);
2363 		/*
2364 		 * This is on the tail page. It is possible that
2365 		 * a write could come in and move the tail page
2366 		 * and write to the next page. That is fine
2367 		 * because we just shorten what is on this page.
2368 		 */
2369 		old_index += write_mask;
2370 		new_index += write_mask;
2371 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2372 		if (index == old_index) {
2373 			/* update counters */
2374 			local_sub(event_length, &cpu_buffer->entries_bytes);
2375 			return 1;
2376 		}
2377 	}
2378 
2379 	/* could not discard */
2380 	return 0;
2381 }
2382 
2383 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2384 {
2385 	local_inc(&cpu_buffer->committing);
2386 	local_inc(&cpu_buffer->commits);
2387 }
2388 
2389 static void
2390 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2391 {
2392 	unsigned long max_count;
2393 
2394 	/*
2395 	 * We only race with interrupts and NMIs on this CPU.
2396 	 * If we own the commit event, then we can commit
2397 	 * all others that interrupted us, since the interruptions
2398 	 * are in stack format (they finish before they come
2399 	 * back to us). This allows us to do a simple loop to
2400 	 * assign the commit to the tail.
2401 	 */
2402  again:
2403 	max_count = cpu_buffer->nr_pages * 100;
2404 
2405 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2406 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2407 			return;
2408 		if (RB_WARN_ON(cpu_buffer,
2409 			       rb_is_reader_page(cpu_buffer->tail_page)))
2410 			return;
2411 		local_set(&cpu_buffer->commit_page->page->commit,
2412 			  rb_page_write(cpu_buffer->commit_page));
2413 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2414 		/* Only update the write stamp if the page has an event */
2415 		if (rb_page_write(cpu_buffer->commit_page))
2416 			cpu_buffer->write_stamp =
2417 				cpu_buffer->commit_page->page->time_stamp;
2418 		/* add barrier to keep gcc from optimizing too much */
2419 		barrier();
2420 	}
2421 	while (rb_commit_index(cpu_buffer) !=
2422 	       rb_page_write(cpu_buffer->commit_page)) {
2423 
2424 		local_set(&cpu_buffer->commit_page->page->commit,
2425 			  rb_page_write(cpu_buffer->commit_page));
2426 		RB_WARN_ON(cpu_buffer,
2427 			   local_read(&cpu_buffer->commit_page->page->commit) &
2428 			   ~RB_WRITE_MASK);
2429 		barrier();
2430 	}
2431 
2432 	/* again, keep gcc from optimizing */
2433 	barrier();
2434 
2435 	/*
2436 	 * If an interrupt came in just after the first while loop
2437 	 * and pushed the tail page forward, we will be left with
2438 	 * a dangling commit that will never go forward.
2439 	 */
2440 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2441 		goto again;
2442 }
2443 
2444 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2445 {
2446 	unsigned long commits;
2447 
2448 	if (RB_WARN_ON(cpu_buffer,
2449 		       !local_read(&cpu_buffer->committing)))
2450 		return;
2451 
2452  again:
2453 	commits = local_read(&cpu_buffer->commits);
2454 	/* synchronize with interrupts */
2455 	barrier();
2456 	if (local_read(&cpu_buffer->committing) == 1)
2457 		rb_set_commit_to_write(cpu_buffer);
2458 
2459 	local_dec(&cpu_buffer->committing);
2460 
2461 	/* synchronize with interrupts */
2462 	barrier();
2463 
2464 	/*
2465 	 * Need to account for interrupts coming in between the
2466 	 * updating of the commit page and the clearing of the
2467 	 * committing counter.
2468 	 */
2469 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2470 	    !local_read(&cpu_buffer->committing)) {
2471 		local_inc(&cpu_buffer->committing);
2472 		goto again;
2473 	}
2474 }
2475 
2476 static inline void rb_event_discard(struct ring_buffer_event *event)
2477 {
2478 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2479 		event = skip_time_extend(event);
2480 
2481 	/* array[0] holds the actual length for the discarded event */
2482 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2483 	event->type_len = RINGBUF_TYPE_PADDING;
2484 	/* time delta must be non zero */
2485 	if (!event->time_delta)
2486 		event->time_delta = 1;
2487 }
2488 
2489 static inline bool
2490 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2491 		   struct ring_buffer_event *event)
2492 {
2493 	unsigned long addr = (unsigned long)event;
2494 	unsigned long index;
2495 
2496 	index = rb_event_index(event);
2497 	addr &= PAGE_MASK;
2498 
2499 	return cpu_buffer->commit_page->page == (void *)addr &&
2500 		rb_commit_index(cpu_buffer) == index;
2501 }
2502 
2503 static void
2504 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2505 		      struct ring_buffer_event *event)
2506 {
2507 	u64 delta;
2508 
2509 	/*
2510 	 * The event first in the commit queue updates the
2511 	 * time stamp.
2512 	 */
2513 	if (rb_event_is_commit(cpu_buffer, event)) {
2514 		/*
2515 		 * A commit event that is first on a page
2516 		 * updates the write timestamp with the page stamp
2517 		 */
2518 		if (!rb_event_index(event))
2519 			cpu_buffer->write_stamp =
2520 				cpu_buffer->commit_page->page->time_stamp;
2521 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2522 			delta = event->array[0];
2523 			delta <<= TS_SHIFT;
2524 			delta += event->time_delta;
2525 			cpu_buffer->write_stamp += delta;
2526 		} else
2527 			cpu_buffer->write_stamp += event->time_delta;
2528 	}
2529 }
2530 
2531 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2532 		      struct ring_buffer_event *event)
2533 {
2534 	local_inc(&cpu_buffer->entries);
2535 	rb_update_write_stamp(cpu_buffer, event);
2536 	rb_end_commit(cpu_buffer);
2537 }
2538 
2539 static __always_inline void
2540 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2541 {
2542 	bool pagebusy;
2543 
2544 	if (buffer->irq_work.waiters_pending) {
2545 		buffer->irq_work.waiters_pending = false;
2546 		/* irq_work_queue() supplies it's own memory barriers */
2547 		irq_work_queue(&buffer->irq_work.work);
2548 	}
2549 
2550 	if (cpu_buffer->irq_work.waiters_pending) {
2551 		cpu_buffer->irq_work.waiters_pending = false;
2552 		/* irq_work_queue() supplies it's own memory barriers */
2553 		irq_work_queue(&cpu_buffer->irq_work.work);
2554 	}
2555 
2556 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2557 
2558 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2559 		cpu_buffer->irq_work.wakeup_full = true;
2560 		cpu_buffer->irq_work.full_waiters_pending = false;
2561 		/* irq_work_queue() supplies it's own memory barriers */
2562 		irq_work_queue(&cpu_buffer->irq_work.work);
2563 	}
2564 }
2565 
2566 /*
2567  * The lock and unlock are done within a preempt disable section.
2568  * The current_context per_cpu variable can only be modified
2569  * by the current task between lock and unlock. But it can
2570  * be modified more than once via an interrupt. To pass this
2571  * information from the lock to the unlock without having to
2572  * access the 'in_interrupt()' functions again (which do show
2573  * a bit of overhead in something as critical as function tracing,
2574  * we use a bitmask trick.
2575  *
2576  *  bit 0 =  NMI context
2577  *  bit 1 =  IRQ context
2578  *  bit 2 =  SoftIRQ context
2579  *  bit 3 =  normal context.
2580  *
2581  * This works because this is the order of contexts that can
2582  * preempt other contexts. A SoftIRQ never preempts an IRQ
2583  * context.
2584  *
2585  * When the context is determined, the corresponding bit is
2586  * checked and set (if it was set, then a recursion of that context
2587  * happened).
2588  *
2589  * On unlock, we need to clear this bit. To do so, just subtract
2590  * 1 from the current_context and AND it to itself.
2591  *
2592  * (binary)
2593  *  101 - 1 = 100
2594  *  101 & 100 = 100 (clearing bit zero)
2595  *
2596  *  1010 - 1 = 1001
2597  *  1010 & 1001 = 1000 (clearing bit 1)
2598  *
2599  * The least significant bit can be cleared this way, and it
2600  * just so happens that it is the same bit corresponding to
2601  * the current context.
2602  */
2603 
2604 static __always_inline int
2605 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2606 {
2607 	unsigned int val = cpu_buffer->current_context;
2608 	int bit;
2609 
2610 	if (in_interrupt()) {
2611 		if (in_nmi())
2612 			bit = RB_CTX_NMI;
2613 		else if (in_irq())
2614 			bit = RB_CTX_IRQ;
2615 		else
2616 			bit = RB_CTX_SOFTIRQ;
2617 	} else
2618 		bit = RB_CTX_NORMAL;
2619 
2620 	if (unlikely(val & (1 << bit)))
2621 		return 1;
2622 
2623 	val |= (1 << bit);
2624 	cpu_buffer->current_context = val;
2625 
2626 	return 0;
2627 }
2628 
2629 static __always_inline void
2630 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2631 {
2632 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2633 }
2634 
2635 /**
2636  * ring_buffer_unlock_commit - commit a reserved
2637  * @buffer: The buffer to commit to
2638  * @event: The event pointer to commit.
2639  *
2640  * This commits the data to the ring buffer, and releases any locks held.
2641  *
2642  * Must be paired with ring_buffer_lock_reserve.
2643  */
2644 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2645 			      struct ring_buffer_event *event)
2646 {
2647 	struct ring_buffer_per_cpu *cpu_buffer;
2648 	int cpu = raw_smp_processor_id();
2649 
2650 	cpu_buffer = buffer->buffers[cpu];
2651 
2652 	rb_commit(cpu_buffer, event);
2653 
2654 	rb_wakeups(buffer, cpu_buffer);
2655 
2656 	trace_recursive_unlock(cpu_buffer);
2657 
2658 	preempt_enable_notrace();
2659 
2660 	return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2663 
2664 static noinline void
2665 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2666 		    struct rb_event_info *info)
2667 {
2668 	WARN_ONCE(info->delta > (1ULL << 59),
2669 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2670 		  (unsigned long long)info->delta,
2671 		  (unsigned long long)info->ts,
2672 		  (unsigned long long)cpu_buffer->write_stamp,
2673 		  sched_clock_stable() ? "" :
2674 		  "If you just came from a suspend/resume,\n"
2675 		  "please switch to the trace global clock:\n"
2676 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2677 	info->add_timestamp = 1;
2678 }
2679 
2680 static struct ring_buffer_event *
2681 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2682 		  struct rb_event_info *info)
2683 {
2684 	struct ring_buffer_event *event;
2685 	struct buffer_page *tail_page;
2686 	unsigned long tail, write;
2687 
2688 	/*
2689 	 * If the time delta since the last event is too big to
2690 	 * hold in the time field of the event, then we append a
2691 	 * TIME EXTEND event ahead of the data event.
2692 	 */
2693 	if (unlikely(info->add_timestamp))
2694 		info->length += RB_LEN_TIME_EXTEND;
2695 
2696 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2697 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2698 	write = local_add_return(info->length, &tail_page->write);
2699 
2700 	/* set write to only the index of the write */
2701 	write &= RB_WRITE_MASK;
2702 	tail = write - info->length;
2703 
2704 	/*
2705 	 * If this is the first commit on the page, then it has the same
2706 	 * timestamp as the page itself.
2707 	 */
2708 	if (!tail)
2709 		info->delta = 0;
2710 
2711 	/* See if we shot pass the end of this buffer page */
2712 	if (unlikely(write > BUF_PAGE_SIZE))
2713 		return rb_move_tail(cpu_buffer, tail, info);
2714 
2715 	/* We reserved something on the buffer */
2716 
2717 	event = __rb_page_index(tail_page, tail);
2718 	kmemcheck_annotate_bitfield(event, bitfield);
2719 	rb_update_event(cpu_buffer, event, info);
2720 
2721 	local_inc(&tail_page->entries);
2722 
2723 	/*
2724 	 * If this is the first commit on the page, then update
2725 	 * its timestamp.
2726 	 */
2727 	if (!tail)
2728 		tail_page->page->time_stamp = info->ts;
2729 
2730 	/* account for these added bytes */
2731 	local_add(info->length, &cpu_buffer->entries_bytes);
2732 
2733 	return event;
2734 }
2735 
2736 static struct ring_buffer_event *
2737 rb_reserve_next_event(struct ring_buffer *buffer,
2738 		      struct ring_buffer_per_cpu *cpu_buffer,
2739 		      unsigned long length)
2740 {
2741 	struct ring_buffer_event *event;
2742 	struct rb_event_info info;
2743 	int nr_loops = 0;
2744 	u64 diff;
2745 
2746 	rb_start_commit(cpu_buffer);
2747 
2748 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2749 	/*
2750 	 * Due to the ability to swap a cpu buffer from a buffer
2751 	 * it is possible it was swapped before we committed.
2752 	 * (committing stops a swap). We check for it here and
2753 	 * if it happened, we have to fail the write.
2754 	 */
2755 	barrier();
2756 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2757 		local_dec(&cpu_buffer->committing);
2758 		local_dec(&cpu_buffer->commits);
2759 		return NULL;
2760 	}
2761 #endif
2762 
2763 	info.length = rb_calculate_event_length(length);
2764  again:
2765 	info.add_timestamp = 0;
2766 	info.delta = 0;
2767 
2768 	/*
2769 	 * We allow for interrupts to reenter here and do a trace.
2770 	 * If one does, it will cause this original code to loop
2771 	 * back here. Even with heavy interrupts happening, this
2772 	 * should only happen a few times in a row. If this happens
2773 	 * 1000 times in a row, there must be either an interrupt
2774 	 * storm or we have something buggy.
2775 	 * Bail!
2776 	 */
2777 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2778 		goto out_fail;
2779 
2780 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2781 	diff = info.ts - cpu_buffer->write_stamp;
2782 
2783 	/* make sure this diff is calculated here */
2784 	barrier();
2785 
2786 	/* Did the write stamp get updated already? */
2787 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2788 		info.delta = diff;
2789 		if (unlikely(test_time_stamp(info.delta)))
2790 			rb_handle_timestamp(cpu_buffer, &info);
2791 	}
2792 
2793 	event = __rb_reserve_next(cpu_buffer, &info);
2794 
2795 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2796 		if (info.add_timestamp)
2797 			info.length -= RB_LEN_TIME_EXTEND;
2798 		goto again;
2799 	}
2800 
2801 	if (!event)
2802 		goto out_fail;
2803 
2804 	return event;
2805 
2806  out_fail:
2807 	rb_end_commit(cpu_buffer);
2808 	return NULL;
2809 }
2810 
2811 /**
2812  * ring_buffer_lock_reserve - reserve a part of the buffer
2813  * @buffer: the ring buffer to reserve from
2814  * @length: the length of the data to reserve (excluding event header)
2815  *
2816  * Returns a reseverd event on the ring buffer to copy directly to.
2817  * The user of this interface will need to get the body to write into
2818  * and can use the ring_buffer_event_data() interface.
2819  *
2820  * The length is the length of the data needed, not the event length
2821  * which also includes the event header.
2822  *
2823  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2824  * If NULL is returned, then nothing has been allocated or locked.
2825  */
2826 struct ring_buffer_event *
2827 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2828 {
2829 	struct ring_buffer_per_cpu *cpu_buffer;
2830 	struct ring_buffer_event *event;
2831 	int cpu;
2832 
2833 	/* If we are tracing schedule, we don't want to recurse */
2834 	preempt_disable_notrace();
2835 
2836 	if (unlikely(atomic_read(&buffer->record_disabled)))
2837 		goto out;
2838 
2839 	cpu = raw_smp_processor_id();
2840 
2841 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2842 		goto out;
2843 
2844 	cpu_buffer = buffer->buffers[cpu];
2845 
2846 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2847 		goto out;
2848 
2849 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2850 		goto out;
2851 
2852 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2853 		goto out;
2854 
2855 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2856 	if (!event)
2857 		goto out_unlock;
2858 
2859 	return event;
2860 
2861  out_unlock:
2862 	trace_recursive_unlock(cpu_buffer);
2863  out:
2864 	preempt_enable_notrace();
2865 	return NULL;
2866 }
2867 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2868 
2869 /*
2870  * Decrement the entries to the page that an event is on.
2871  * The event does not even need to exist, only the pointer
2872  * to the page it is on. This may only be called before the commit
2873  * takes place.
2874  */
2875 static inline void
2876 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2877 		   struct ring_buffer_event *event)
2878 {
2879 	unsigned long addr = (unsigned long)event;
2880 	struct buffer_page *bpage = cpu_buffer->commit_page;
2881 	struct buffer_page *start;
2882 
2883 	addr &= PAGE_MASK;
2884 
2885 	/* Do the likely case first */
2886 	if (likely(bpage->page == (void *)addr)) {
2887 		local_dec(&bpage->entries);
2888 		return;
2889 	}
2890 
2891 	/*
2892 	 * Because the commit page may be on the reader page we
2893 	 * start with the next page and check the end loop there.
2894 	 */
2895 	rb_inc_page(cpu_buffer, &bpage);
2896 	start = bpage;
2897 	do {
2898 		if (bpage->page == (void *)addr) {
2899 			local_dec(&bpage->entries);
2900 			return;
2901 		}
2902 		rb_inc_page(cpu_buffer, &bpage);
2903 	} while (bpage != start);
2904 
2905 	/* commit not part of this buffer?? */
2906 	RB_WARN_ON(cpu_buffer, 1);
2907 }
2908 
2909 /**
2910  * ring_buffer_commit_discard - discard an event that has not been committed
2911  * @buffer: the ring buffer
2912  * @event: non committed event to discard
2913  *
2914  * Sometimes an event that is in the ring buffer needs to be ignored.
2915  * This function lets the user discard an event in the ring buffer
2916  * and then that event will not be read later.
2917  *
2918  * This function only works if it is called before the the item has been
2919  * committed. It will try to free the event from the ring buffer
2920  * if another event has not been added behind it.
2921  *
2922  * If another event has been added behind it, it will set the event
2923  * up as discarded, and perform the commit.
2924  *
2925  * If this function is called, do not call ring_buffer_unlock_commit on
2926  * the event.
2927  */
2928 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2929 				struct ring_buffer_event *event)
2930 {
2931 	struct ring_buffer_per_cpu *cpu_buffer;
2932 	int cpu;
2933 
2934 	/* The event is discarded regardless */
2935 	rb_event_discard(event);
2936 
2937 	cpu = smp_processor_id();
2938 	cpu_buffer = buffer->buffers[cpu];
2939 
2940 	/*
2941 	 * This must only be called if the event has not been
2942 	 * committed yet. Thus we can assume that preemption
2943 	 * is still disabled.
2944 	 */
2945 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2946 
2947 	rb_decrement_entry(cpu_buffer, event);
2948 	if (rb_try_to_discard(cpu_buffer, event))
2949 		goto out;
2950 
2951 	/*
2952 	 * The commit is still visible by the reader, so we
2953 	 * must still update the timestamp.
2954 	 */
2955 	rb_update_write_stamp(cpu_buffer, event);
2956  out:
2957 	rb_end_commit(cpu_buffer);
2958 
2959 	trace_recursive_unlock(cpu_buffer);
2960 
2961 	preempt_enable_notrace();
2962 
2963 }
2964 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2965 
2966 /**
2967  * ring_buffer_write - write data to the buffer without reserving
2968  * @buffer: The ring buffer to write to.
2969  * @length: The length of the data being written (excluding the event header)
2970  * @data: The data to write to the buffer.
2971  *
2972  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2973  * one function. If you already have the data to write to the buffer, it
2974  * may be easier to simply call this function.
2975  *
2976  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2977  * and not the length of the event which would hold the header.
2978  */
2979 int ring_buffer_write(struct ring_buffer *buffer,
2980 		      unsigned long length,
2981 		      void *data)
2982 {
2983 	struct ring_buffer_per_cpu *cpu_buffer;
2984 	struct ring_buffer_event *event;
2985 	void *body;
2986 	int ret = -EBUSY;
2987 	int cpu;
2988 
2989 	preempt_disable_notrace();
2990 
2991 	if (atomic_read(&buffer->record_disabled))
2992 		goto out;
2993 
2994 	cpu = raw_smp_processor_id();
2995 
2996 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2997 		goto out;
2998 
2999 	cpu_buffer = buffer->buffers[cpu];
3000 
3001 	if (atomic_read(&cpu_buffer->record_disabled))
3002 		goto out;
3003 
3004 	if (length > BUF_MAX_DATA_SIZE)
3005 		goto out;
3006 
3007 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3008 		goto out;
3009 
3010 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3011 	if (!event)
3012 		goto out_unlock;
3013 
3014 	body = rb_event_data(event);
3015 
3016 	memcpy(body, data, length);
3017 
3018 	rb_commit(cpu_buffer, event);
3019 
3020 	rb_wakeups(buffer, cpu_buffer);
3021 
3022 	ret = 0;
3023 
3024  out_unlock:
3025 	trace_recursive_unlock(cpu_buffer);
3026 
3027  out:
3028 	preempt_enable_notrace();
3029 
3030 	return ret;
3031 }
3032 EXPORT_SYMBOL_GPL(ring_buffer_write);
3033 
3034 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3035 {
3036 	struct buffer_page *reader = cpu_buffer->reader_page;
3037 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3038 	struct buffer_page *commit = cpu_buffer->commit_page;
3039 
3040 	/* In case of error, head will be NULL */
3041 	if (unlikely(!head))
3042 		return true;
3043 
3044 	return reader->read == rb_page_commit(reader) &&
3045 		(commit == reader ||
3046 		 (commit == head &&
3047 		  head->read == rb_page_commit(commit)));
3048 }
3049 
3050 /**
3051  * ring_buffer_record_disable - stop all writes into the buffer
3052  * @buffer: The ring buffer to stop writes to.
3053  *
3054  * This prevents all writes to the buffer. Any attempt to write
3055  * to the buffer after this will fail and return NULL.
3056  *
3057  * The caller should call synchronize_sched() after this.
3058  */
3059 void ring_buffer_record_disable(struct ring_buffer *buffer)
3060 {
3061 	atomic_inc(&buffer->record_disabled);
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3064 
3065 /**
3066  * ring_buffer_record_enable - enable writes to the buffer
3067  * @buffer: The ring buffer to enable writes
3068  *
3069  * Note, multiple disables will need the same number of enables
3070  * to truly enable the writing (much like preempt_disable).
3071  */
3072 void ring_buffer_record_enable(struct ring_buffer *buffer)
3073 {
3074 	atomic_dec(&buffer->record_disabled);
3075 }
3076 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3077 
3078 /**
3079  * ring_buffer_record_off - stop all writes into the buffer
3080  * @buffer: The ring buffer to stop writes to.
3081  *
3082  * This prevents all writes to the buffer. Any attempt to write
3083  * to the buffer after this will fail and return NULL.
3084  *
3085  * This is different than ring_buffer_record_disable() as
3086  * it works like an on/off switch, where as the disable() version
3087  * must be paired with a enable().
3088  */
3089 void ring_buffer_record_off(struct ring_buffer *buffer)
3090 {
3091 	unsigned int rd;
3092 	unsigned int new_rd;
3093 
3094 	do {
3095 		rd = atomic_read(&buffer->record_disabled);
3096 		new_rd = rd | RB_BUFFER_OFF;
3097 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3098 }
3099 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3100 
3101 /**
3102  * ring_buffer_record_on - restart writes into the buffer
3103  * @buffer: The ring buffer to start writes to.
3104  *
3105  * This enables all writes to the buffer that was disabled by
3106  * ring_buffer_record_off().
3107  *
3108  * This is different than ring_buffer_record_enable() as
3109  * it works like an on/off switch, where as the enable() version
3110  * must be paired with a disable().
3111  */
3112 void ring_buffer_record_on(struct ring_buffer *buffer)
3113 {
3114 	unsigned int rd;
3115 	unsigned int new_rd;
3116 
3117 	do {
3118 		rd = atomic_read(&buffer->record_disabled);
3119 		new_rd = rd & ~RB_BUFFER_OFF;
3120 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3121 }
3122 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3123 
3124 /**
3125  * ring_buffer_record_is_on - return true if the ring buffer can write
3126  * @buffer: The ring buffer to see if write is enabled
3127  *
3128  * Returns true if the ring buffer is in a state that it accepts writes.
3129  */
3130 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3131 {
3132 	return !atomic_read(&buffer->record_disabled);
3133 }
3134 
3135 /**
3136  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3137  * @buffer: The ring buffer to stop writes to.
3138  * @cpu: The CPU buffer to stop
3139  *
3140  * This prevents all writes to the buffer. Any attempt to write
3141  * to the buffer after this will fail and return NULL.
3142  *
3143  * The caller should call synchronize_sched() after this.
3144  */
3145 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3146 {
3147 	struct ring_buffer_per_cpu *cpu_buffer;
3148 
3149 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3150 		return;
3151 
3152 	cpu_buffer = buffer->buffers[cpu];
3153 	atomic_inc(&cpu_buffer->record_disabled);
3154 }
3155 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3156 
3157 /**
3158  * ring_buffer_record_enable_cpu - enable writes to the buffer
3159  * @buffer: The ring buffer to enable writes
3160  * @cpu: The CPU to enable.
3161  *
3162  * Note, multiple disables will need the same number of enables
3163  * to truly enable the writing (much like preempt_disable).
3164  */
3165 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3166 {
3167 	struct ring_buffer_per_cpu *cpu_buffer;
3168 
3169 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3170 		return;
3171 
3172 	cpu_buffer = buffer->buffers[cpu];
3173 	atomic_dec(&cpu_buffer->record_disabled);
3174 }
3175 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3176 
3177 /*
3178  * The total entries in the ring buffer is the running counter
3179  * of entries entered into the ring buffer, minus the sum of
3180  * the entries read from the ring buffer and the number of
3181  * entries that were overwritten.
3182  */
3183 static inline unsigned long
3184 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3185 {
3186 	return local_read(&cpu_buffer->entries) -
3187 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3188 }
3189 
3190 /**
3191  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3192  * @buffer: The ring buffer
3193  * @cpu: The per CPU buffer to read from.
3194  */
3195 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3196 {
3197 	unsigned long flags;
3198 	struct ring_buffer_per_cpu *cpu_buffer;
3199 	struct buffer_page *bpage;
3200 	u64 ret = 0;
3201 
3202 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 		return 0;
3204 
3205 	cpu_buffer = buffer->buffers[cpu];
3206 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3207 	/*
3208 	 * if the tail is on reader_page, oldest time stamp is on the reader
3209 	 * page
3210 	 */
3211 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3212 		bpage = cpu_buffer->reader_page;
3213 	else
3214 		bpage = rb_set_head_page(cpu_buffer);
3215 	if (bpage)
3216 		ret = bpage->page->time_stamp;
3217 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3218 
3219 	return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3222 
3223 /**
3224  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3225  * @buffer: The ring buffer
3226  * @cpu: The per CPU buffer to read from.
3227  */
3228 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3229 {
3230 	struct ring_buffer_per_cpu *cpu_buffer;
3231 	unsigned long ret;
3232 
3233 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3234 		return 0;
3235 
3236 	cpu_buffer = buffer->buffers[cpu];
3237 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3242 
3243 /**
3244  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3245  * @buffer: The ring buffer
3246  * @cpu: The per CPU buffer to get the entries from.
3247  */
3248 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3249 {
3250 	struct ring_buffer_per_cpu *cpu_buffer;
3251 
3252 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253 		return 0;
3254 
3255 	cpu_buffer = buffer->buffers[cpu];
3256 
3257 	return rb_num_of_entries(cpu_buffer);
3258 }
3259 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3260 
3261 /**
3262  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3263  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3264  * @buffer: The ring buffer
3265  * @cpu: The per CPU buffer to get the number of overruns from
3266  */
3267 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3268 {
3269 	struct ring_buffer_per_cpu *cpu_buffer;
3270 	unsigned long ret;
3271 
3272 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273 		return 0;
3274 
3275 	cpu_buffer = buffer->buffers[cpu];
3276 	ret = local_read(&cpu_buffer->overrun);
3277 
3278 	return ret;
3279 }
3280 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3281 
3282 /**
3283  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3284  * commits failing due to the buffer wrapping around while there are uncommitted
3285  * events, such as during an interrupt storm.
3286  * @buffer: The ring buffer
3287  * @cpu: The per CPU buffer to get the number of overruns from
3288  */
3289 unsigned long
3290 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3291 {
3292 	struct ring_buffer_per_cpu *cpu_buffer;
3293 	unsigned long ret;
3294 
3295 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296 		return 0;
3297 
3298 	cpu_buffer = buffer->buffers[cpu];
3299 	ret = local_read(&cpu_buffer->commit_overrun);
3300 
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3304 
3305 /**
3306  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3307  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3308  * @buffer: The ring buffer
3309  * @cpu: The per CPU buffer to get the number of overruns from
3310  */
3311 unsigned long
3312 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3313 {
3314 	struct ring_buffer_per_cpu *cpu_buffer;
3315 	unsigned long ret;
3316 
3317 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3318 		return 0;
3319 
3320 	cpu_buffer = buffer->buffers[cpu];
3321 	ret = local_read(&cpu_buffer->dropped_events);
3322 
3323 	return ret;
3324 }
3325 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3326 
3327 /**
3328  * ring_buffer_read_events_cpu - get the number of events successfully read
3329  * @buffer: The ring buffer
3330  * @cpu: The per CPU buffer to get the number of events read
3331  */
3332 unsigned long
3333 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3334 {
3335 	struct ring_buffer_per_cpu *cpu_buffer;
3336 
3337 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3338 		return 0;
3339 
3340 	cpu_buffer = buffer->buffers[cpu];
3341 	return cpu_buffer->read;
3342 }
3343 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3344 
3345 /**
3346  * ring_buffer_entries - get the number of entries in a buffer
3347  * @buffer: The ring buffer
3348  *
3349  * Returns the total number of entries in the ring buffer
3350  * (all CPU entries)
3351  */
3352 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3353 {
3354 	struct ring_buffer_per_cpu *cpu_buffer;
3355 	unsigned long entries = 0;
3356 	int cpu;
3357 
3358 	/* if you care about this being correct, lock the buffer */
3359 	for_each_buffer_cpu(buffer, cpu) {
3360 		cpu_buffer = buffer->buffers[cpu];
3361 		entries += rb_num_of_entries(cpu_buffer);
3362 	}
3363 
3364 	return entries;
3365 }
3366 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3367 
3368 /**
3369  * ring_buffer_overruns - get the number of overruns in buffer
3370  * @buffer: The ring buffer
3371  *
3372  * Returns the total number of overruns in the ring buffer
3373  * (all CPU entries)
3374  */
3375 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3376 {
3377 	struct ring_buffer_per_cpu *cpu_buffer;
3378 	unsigned long overruns = 0;
3379 	int cpu;
3380 
3381 	/* if you care about this being correct, lock the buffer */
3382 	for_each_buffer_cpu(buffer, cpu) {
3383 		cpu_buffer = buffer->buffers[cpu];
3384 		overruns += local_read(&cpu_buffer->overrun);
3385 	}
3386 
3387 	return overruns;
3388 }
3389 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3390 
3391 static void rb_iter_reset(struct ring_buffer_iter *iter)
3392 {
3393 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3394 
3395 	/* Iterator usage is expected to have record disabled */
3396 	iter->head_page = cpu_buffer->reader_page;
3397 	iter->head = cpu_buffer->reader_page->read;
3398 
3399 	iter->cache_reader_page = iter->head_page;
3400 	iter->cache_read = cpu_buffer->read;
3401 
3402 	if (iter->head)
3403 		iter->read_stamp = cpu_buffer->read_stamp;
3404 	else
3405 		iter->read_stamp = iter->head_page->page->time_stamp;
3406 }
3407 
3408 /**
3409  * ring_buffer_iter_reset - reset an iterator
3410  * @iter: The iterator to reset
3411  *
3412  * Resets the iterator, so that it will start from the beginning
3413  * again.
3414  */
3415 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3416 {
3417 	struct ring_buffer_per_cpu *cpu_buffer;
3418 	unsigned long flags;
3419 
3420 	if (!iter)
3421 		return;
3422 
3423 	cpu_buffer = iter->cpu_buffer;
3424 
3425 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3426 	rb_iter_reset(iter);
3427 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3428 }
3429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3430 
3431 /**
3432  * ring_buffer_iter_empty - check if an iterator has no more to read
3433  * @iter: The iterator to check
3434  */
3435 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3436 {
3437 	struct ring_buffer_per_cpu *cpu_buffer;
3438 
3439 	cpu_buffer = iter->cpu_buffer;
3440 
3441 	return iter->head_page == cpu_buffer->commit_page &&
3442 		iter->head == rb_commit_index(cpu_buffer);
3443 }
3444 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3445 
3446 static void
3447 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3448 		     struct ring_buffer_event *event)
3449 {
3450 	u64 delta;
3451 
3452 	switch (event->type_len) {
3453 	case RINGBUF_TYPE_PADDING:
3454 		return;
3455 
3456 	case RINGBUF_TYPE_TIME_EXTEND:
3457 		delta = event->array[0];
3458 		delta <<= TS_SHIFT;
3459 		delta += event->time_delta;
3460 		cpu_buffer->read_stamp += delta;
3461 		return;
3462 
3463 	case RINGBUF_TYPE_TIME_STAMP:
3464 		/* FIXME: not implemented */
3465 		return;
3466 
3467 	case RINGBUF_TYPE_DATA:
3468 		cpu_buffer->read_stamp += event->time_delta;
3469 		return;
3470 
3471 	default:
3472 		BUG();
3473 	}
3474 	return;
3475 }
3476 
3477 static void
3478 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3479 			  struct ring_buffer_event *event)
3480 {
3481 	u64 delta;
3482 
3483 	switch (event->type_len) {
3484 	case RINGBUF_TYPE_PADDING:
3485 		return;
3486 
3487 	case RINGBUF_TYPE_TIME_EXTEND:
3488 		delta = event->array[0];
3489 		delta <<= TS_SHIFT;
3490 		delta += event->time_delta;
3491 		iter->read_stamp += delta;
3492 		return;
3493 
3494 	case RINGBUF_TYPE_TIME_STAMP:
3495 		/* FIXME: not implemented */
3496 		return;
3497 
3498 	case RINGBUF_TYPE_DATA:
3499 		iter->read_stamp += event->time_delta;
3500 		return;
3501 
3502 	default:
3503 		BUG();
3504 	}
3505 	return;
3506 }
3507 
3508 static struct buffer_page *
3509 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3510 {
3511 	struct buffer_page *reader = NULL;
3512 	unsigned long overwrite;
3513 	unsigned long flags;
3514 	int nr_loops = 0;
3515 	int ret;
3516 
3517 	local_irq_save(flags);
3518 	arch_spin_lock(&cpu_buffer->lock);
3519 
3520  again:
3521 	/*
3522 	 * This should normally only loop twice. But because the
3523 	 * start of the reader inserts an empty page, it causes
3524 	 * a case where we will loop three times. There should be no
3525 	 * reason to loop four times (that I know of).
3526 	 */
3527 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3528 		reader = NULL;
3529 		goto out;
3530 	}
3531 
3532 	reader = cpu_buffer->reader_page;
3533 
3534 	/* If there's more to read, return this page */
3535 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3536 		goto out;
3537 
3538 	/* Never should we have an index greater than the size */
3539 	if (RB_WARN_ON(cpu_buffer,
3540 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3541 		goto out;
3542 
3543 	/* check if we caught up to the tail */
3544 	reader = NULL;
3545 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3546 		goto out;
3547 
3548 	/* Don't bother swapping if the ring buffer is empty */
3549 	if (rb_num_of_entries(cpu_buffer) == 0)
3550 		goto out;
3551 
3552 	/*
3553 	 * Reset the reader page to size zero.
3554 	 */
3555 	local_set(&cpu_buffer->reader_page->write, 0);
3556 	local_set(&cpu_buffer->reader_page->entries, 0);
3557 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3558 	cpu_buffer->reader_page->real_end = 0;
3559 
3560  spin:
3561 	/*
3562 	 * Splice the empty reader page into the list around the head.
3563 	 */
3564 	reader = rb_set_head_page(cpu_buffer);
3565 	if (!reader)
3566 		goto out;
3567 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3568 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3569 
3570 	/*
3571 	 * cpu_buffer->pages just needs to point to the buffer, it
3572 	 *  has no specific buffer page to point to. Lets move it out
3573 	 *  of our way so we don't accidentally swap it.
3574 	 */
3575 	cpu_buffer->pages = reader->list.prev;
3576 
3577 	/* The reader page will be pointing to the new head */
3578 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3579 
3580 	/*
3581 	 * We want to make sure we read the overruns after we set up our
3582 	 * pointers to the next object. The writer side does a
3583 	 * cmpxchg to cross pages which acts as the mb on the writer
3584 	 * side. Note, the reader will constantly fail the swap
3585 	 * while the writer is updating the pointers, so this
3586 	 * guarantees that the overwrite recorded here is the one we
3587 	 * want to compare with the last_overrun.
3588 	 */
3589 	smp_mb();
3590 	overwrite = local_read(&(cpu_buffer->overrun));
3591 
3592 	/*
3593 	 * Here's the tricky part.
3594 	 *
3595 	 * We need to move the pointer past the header page.
3596 	 * But we can only do that if a writer is not currently
3597 	 * moving it. The page before the header page has the
3598 	 * flag bit '1' set if it is pointing to the page we want.
3599 	 * but if the writer is in the process of moving it
3600 	 * than it will be '2' or already moved '0'.
3601 	 */
3602 
3603 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3604 
3605 	/*
3606 	 * If we did not convert it, then we must try again.
3607 	 */
3608 	if (!ret)
3609 		goto spin;
3610 
3611 	/*
3612 	 * Yeah! We succeeded in replacing the page.
3613 	 *
3614 	 * Now make the new head point back to the reader page.
3615 	 */
3616 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3617 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3618 
3619 	/* Finally update the reader page to the new head */
3620 	cpu_buffer->reader_page = reader;
3621 	cpu_buffer->reader_page->read = 0;
3622 
3623 	if (overwrite != cpu_buffer->last_overrun) {
3624 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3625 		cpu_buffer->last_overrun = overwrite;
3626 	}
3627 
3628 	goto again;
3629 
3630  out:
3631 	/* Update the read_stamp on the first event */
3632 	if (reader && reader->read == 0)
3633 		cpu_buffer->read_stamp = reader->page->time_stamp;
3634 
3635 	arch_spin_unlock(&cpu_buffer->lock);
3636 	local_irq_restore(flags);
3637 
3638 	return reader;
3639 }
3640 
3641 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3642 {
3643 	struct ring_buffer_event *event;
3644 	struct buffer_page *reader;
3645 	unsigned length;
3646 
3647 	reader = rb_get_reader_page(cpu_buffer);
3648 
3649 	/* This function should not be called when buffer is empty */
3650 	if (RB_WARN_ON(cpu_buffer, !reader))
3651 		return;
3652 
3653 	event = rb_reader_event(cpu_buffer);
3654 
3655 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3656 		cpu_buffer->read++;
3657 
3658 	rb_update_read_stamp(cpu_buffer, event);
3659 
3660 	length = rb_event_length(event);
3661 	cpu_buffer->reader_page->read += length;
3662 }
3663 
3664 static void rb_advance_iter(struct ring_buffer_iter *iter)
3665 {
3666 	struct ring_buffer_per_cpu *cpu_buffer;
3667 	struct ring_buffer_event *event;
3668 	unsigned length;
3669 
3670 	cpu_buffer = iter->cpu_buffer;
3671 
3672 	/*
3673 	 * Check if we are at the end of the buffer.
3674 	 */
3675 	if (iter->head >= rb_page_size(iter->head_page)) {
3676 		/* discarded commits can make the page empty */
3677 		if (iter->head_page == cpu_buffer->commit_page)
3678 			return;
3679 		rb_inc_iter(iter);
3680 		return;
3681 	}
3682 
3683 	event = rb_iter_head_event(iter);
3684 
3685 	length = rb_event_length(event);
3686 
3687 	/*
3688 	 * This should not be called to advance the header if we are
3689 	 * at the tail of the buffer.
3690 	 */
3691 	if (RB_WARN_ON(cpu_buffer,
3692 		       (iter->head_page == cpu_buffer->commit_page) &&
3693 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3694 		return;
3695 
3696 	rb_update_iter_read_stamp(iter, event);
3697 
3698 	iter->head += length;
3699 
3700 	/* check for end of page padding */
3701 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3702 	    (iter->head_page != cpu_buffer->commit_page))
3703 		rb_inc_iter(iter);
3704 }
3705 
3706 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3707 {
3708 	return cpu_buffer->lost_events;
3709 }
3710 
3711 static struct ring_buffer_event *
3712 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3713 	       unsigned long *lost_events)
3714 {
3715 	struct ring_buffer_event *event;
3716 	struct buffer_page *reader;
3717 	int nr_loops = 0;
3718 
3719  again:
3720 	/*
3721 	 * We repeat when a time extend is encountered.
3722 	 * Since the time extend is always attached to a data event,
3723 	 * we should never loop more than once.
3724 	 * (We never hit the following condition more than twice).
3725 	 */
3726 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3727 		return NULL;
3728 
3729 	reader = rb_get_reader_page(cpu_buffer);
3730 	if (!reader)
3731 		return NULL;
3732 
3733 	event = rb_reader_event(cpu_buffer);
3734 
3735 	switch (event->type_len) {
3736 	case RINGBUF_TYPE_PADDING:
3737 		if (rb_null_event(event))
3738 			RB_WARN_ON(cpu_buffer, 1);
3739 		/*
3740 		 * Because the writer could be discarding every
3741 		 * event it creates (which would probably be bad)
3742 		 * if we were to go back to "again" then we may never
3743 		 * catch up, and will trigger the warn on, or lock
3744 		 * the box. Return the padding, and we will release
3745 		 * the current locks, and try again.
3746 		 */
3747 		return event;
3748 
3749 	case RINGBUF_TYPE_TIME_EXTEND:
3750 		/* Internal data, OK to advance */
3751 		rb_advance_reader(cpu_buffer);
3752 		goto again;
3753 
3754 	case RINGBUF_TYPE_TIME_STAMP:
3755 		/* FIXME: not implemented */
3756 		rb_advance_reader(cpu_buffer);
3757 		goto again;
3758 
3759 	case RINGBUF_TYPE_DATA:
3760 		if (ts) {
3761 			*ts = cpu_buffer->read_stamp + event->time_delta;
3762 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3763 							 cpu_buffer->cpu, ts);
3764 		}
3765 		if (lost_events)
3766 			*lost_events = rb_lost_events(cpu_buffer);
3767 		return event;
3768 
3769 	default:
3770 		BUG();
3771 	}
3772 
3773 	return NULL;
3774 }
3775 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3776 
3777 static struct ring_buffer_event *
3778 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3779 {
3780 	struct ring_buffer *buffer;
3781 	struct ring_buffer_per_cpu *cpu_buffer;
3782 	struct ring_buffer_event *event;
3783 	int nr_loops = 0;
3784 
3785 	cpu_buffer = iter->cpu_buffer;
3786 	buffer = cpu_buffer->buffer;
3787 
3788 	/*
3789 	 * Check if someone performed a consuming read to
3790 	 * the buffer. A consuming read invalidates the iterator
3791 	 * and we need to reset the iterator in this case.
3792 	 */
3793 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3794 		     iter->cache_reader_page != cpu_buffer->reader_page))
3795 		rb_iter_reset(iter);
3796 
3797  again:
3798 	if (ring_buffer_iter_empty(iter))
3799 		return NULL;
3800 
3801 	/*
3802 	 * We repeat when a time extend is encountered or we hit
3803 	 * the end of the page. Since the time extend is always attached
3804 	 * to a data event, we should never loop more than three times.
3805 	 * Once for going to next page, once on time extend, and
3806 	 * finally once to get the event.
3807 	 * (We never hit the following condition more than thrice).
3808 	 */
3809 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3810 		return NULL;
3811 
3812 	if (rb_per_cpu_empty(cpu_buffer))
3813 		return NULL;
3814 
3815 	if (iter->head >= rb_page_size(iter->head_page)) {
3816 		rb_inc_iter(iter);
3817 		goto again;
3818 	}
3819 
3820 	event = rb_iter_head_event(iter);
3821 
3822 	switch (event->type_len) {
3823 	case RINGBUF_TYPE_PADDING:
3824 		if (rb_null_event(event)) {
3825 			rb_inc_iter(iter);
3826 			goto again;
3827 		}
3828 		rb_advance_iter(iter);
3829 		return event;
3830 
3831 	case RINGBUF_TYPE_TIME_EXTEND:
3832 		/* Internal data, OK to advance */
3833 		rb_advance_iter(iter);
3834 		goto again;
3835 
3836 	case RINGBUF_TYPE_TIME_STAMP:
3837 		/* FIXME: not implemented */
3838 		rb_advance_iter(iter);
3839 		goto again;
3840 
3841 	case RINGBUF_TYPE_DATA:
3842 		if (ts) {
3843 			*ts = iter->read_stamp + event->time_delta;
3844 			ring_buffer_normalize_time_stamp(buffer,
3845 							 cpu_buffer->cpu, ts);
3846 		}
3847 		return event;
3848 
3849 	default:
3850 		BUG();
3851 	}
3852 
3853 	return NULL;
3854 }
3855 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3856 
3857 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3858 {
3859 	if (likely(!in_nmi())) {
3860 		raw_spin_lock(&cpu_buffer->reader_lock);
3861 		return true;
3862 	}
3863 
3864 	/*
3865 	 * If an NMI die dumps out the content of the ring buffer
3866 	 * trylock must be used to prevent a deadlock if the NMI
3867 	 * preempted a task that holds the ring buffer locks. If
3868 	 * we get the lock then all is fine, if not, then continue
3869 	 * to do the read, but this can corrupt the ring buffer,
3870 	 * so it must be permanently disabled from future writes.
3871 	 * Reading from NMI is a oneshot deal.
3872 	 */
3873 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3874 		return true;
3875 
3876 	/* Continue without locking, but disable the ring buffer */
3877 	atomic_inc(&cpu_buffer->record_disabled);
3878 	return false;
3879 }
3880 
3881 static inline void
3882 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3883 {
3884 	if (likely(locked))
3885 		raw_spin_unlock(&cpu_buffer->reader_lock);
3886 	return;
3887 }
3888 
3889 /**
3890  * ring_buffer_peek - peek at the next event to be read
3891  * @buffer: The ring buffer to read
3892  * @cpu: The cpu to peak at
3893  * @ts: The timestamp counter of this event.
3894  * @lost_events: a variable to store if events were lost (may be NULL)
3895  *
3896  * This will return the event that will be read next, but does
3897  * not consume the data.
3898  */
3899 struct ring_buffer_event *
3900 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3901 		 unsigned long *lost_events)
3902 {
3903 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3904 	struct ring_buffer_event *event;
3905 	unsigned long flags;
3906 	bool dolock;
3907 
3908 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3909 		return NULL;
3910 
3911  again:
3912 	local_irq_save(flags);
3913 	dolock = rb_reader_lock(cpu_buffer);
3914 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3915 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916 		rb_advance_reader(cpu_buffer);
3917 	rb_reader_unlock(cpu_buffer, dolock);
3918 	local_irq_restore(flags);
3919 
3920 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921 		goto again;
3922 
3923 	return event;
3924 }
3925 
3926 /**
3927  * ring_buffer_iter_peek - peek at the next event to be read
3928  * @iter: The ring buffer iterator
3929  * @ts: The timestamp counter of this event.
3930  *
3931  * This will return the event that will be read next, but does
3932  * not increment the iterator.
3933  */
3934 struct ring_buffer_event *
3935 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3936 {
3937 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3938 	struct ring_buffer_event *event;
3939 	unsigned long flags;
3940 
3941  again:
3942 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3943 	event = rb_iter_peek(iter, ts);
3944 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3945 
3946 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3947 		goto again;
3948 
3949 	return event;
3950 }
3951 
3952 /**
3953  * ring_buffer_consume - return an event and consume it
3954  * @buffer: The ring buffer to get the next event from
3955  * @cpu: the cpu to read the buffer from
3956  * @ts: a variable to store the timestamp (may be NULL)
3957  * @lost_events: a variable to store if events were lost (may be NULL)
3958  *
3959  * Returns the next event in the ring buffer, and that event is consumed.
3960  * Meaning, that sequential reads will keep returning a different event,
3961  * and eventually empty the ring buffer if the producer is slower.
3962  */
3963 struct ring_buffer_event *
3964 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3965 		    unsigned long *lost_events)
3966 {
3967 	struct ring_buffer_per_cpu *cpu_buffer;
3968 	struct ring_buffer_event *event = NULL;
3969 	unsigned long flags;
3970 	bool dolock;
3971 
3972  again:
3973 	/* might be called in atomic */
3974 	preempt_disable();
3975 
3976 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977 		goto out;
3978 
3979 	cpu_buffer = buffer->buffers[cpu];
3980 	local_irq_save(flags);
3981 	dolock = rb_reader_lock(cpu_buffer);
3982 
3983 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3984 	if (event) {
3985 		cpu_buffer->lost_events = 0;
3986 		rb_advance_reader(cpu_buffer);
3987 	}
3988 
3989 	rb_reader_unlock(cpu_buffer, dolock);
3990 	local_irq_restore(flags);
3991 
3992  out:
3993 	preempt_enable();
3994 
3995 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3996 		goto again;
3997 
3998 	return event;
3999 }
4000 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4001 
4002 /**
4003  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004  * @buffer: The ring buffer to read from
4005  * @cpu: The cpu buffer to iterate over
4006  *
4007  * This performs the initial preparations necessary to iterate
4008  * through the buffer.  Memory is allocated, buffer recording
4009  * is disabled, and the iterator pointer is returned to the caller.
4010  *
4011  * Disabling buffer recordng prevents the reading from being
4012  * corrupted. This is not a consuming read, so a producer is not
4013  * expected.
4014  *
4015  * After a sequence of ring_buffer_read_prepare calls, the user is
4016  * expected to make at least one call to ring_buffer_read_prepare_sync.
4017  * Afterwards, ring_buffer_read_start is invoked to get things going
4018  * for real.
4019  *
4020  * This overall must be paired with ring_buffer_read_finish.
4021  */
4022 struct ring_buffer_iter *
4023 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4024 {
4025 	struct ring_buffer_per_cpu *cpu_buffer;
4026 	struct ring_buffer_iter *iter;
4027 
4028 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029 		return NULL;
4030 
4031 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4032 	if (!iter)
4033 		return NULL;
4034 
4035 	cpu_buffer = buffer->buffers[cpu];
4036 
4037 	iter->cpu_buffer = cpu_buffer;
4038 
4039 	atomic_inc(&buffer->resize_disabled);
4040 	atomic_inc(&cpu_buffer->record_disabled);
4041 
4042 	return iter;
4043 }
4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4045 
4046 /**
4047  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4048  *
4049  * All previously invoked ring_buffer_read_prepare calls to prepare
4050  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4051  * calls on those iterators are allowed.
4052  */
4053 void
4054 ring_buffer_read_prepare_sync(void)
4055 {
4056 	synchronize_sched();
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4059 
4060 /**
4061  * ring_buffer_read_start - start a non consuming read of the buffer
4062  * @iter: The iterator returned by ring_buffer_read_prepare
4063  *
4064  * This finalizes the startup of an iteration through the buffer.
4065  * The iterator comes from a call to ring_buffer_read_prepare and
4066  * an intervening ring_buffer_read_prepare_sync must have been
4067  * performed.
4068  *
4069  * Must be paired with ring_buffer_read_finish.
4070  */
4071 void
4072 ring_buffer_read_start(struct ring_buffer_iter *iter)
4073 {
4074 	struct ring_buffer_per_cpu *cpu_buffer;
4075 	unsigned long flags;
4076 
4077 	if (!iter)
4078 		return;
4079 
4080 	cpu_buffer = iter->cpu_buffer;
4081 
4082 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4083 	arch_spin_lock(&cpu_buffer->lock);
4084 	rb_iter_reset(iter);
4085 	arch_spin_unlock(&cpu_buffer->lock);
4086 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087 }
4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4089 
4090 /**
4091  * ring_buffer_read_finish - finish reading the iterator of the buffer
4092  * @iter: The iterator retrieved by ring_buffer_start
4093  *
4094  * This re-enables the recording to the buffer, and frees the
4095  * iterator.
4096  */
4097 void
4098 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4099 {
4100 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101 	unsigned long flags;
4102 
4103 	/*
4104 	 * Ring buffer is disabled from recording, here's a good place
4105 	 * to check the integrity of the ring buffer.
4106 	 * Must prevent readers from trying to read, as the check
4107 	 * clears the HEAD page and readers require it.
4108 	 */
4109 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110 	rb_check_pages(cpu_buffer);
4111 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4112 
4113 	atomic_dec(&cpu_buffer->record_disabled);
4114 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4115 	kfree(iter);
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4118 
4119 /**
4120  * ring_buffer_read - read the next item in the ring buffer by the iterator
4121  * @iter: The ring buffer iterator
4122  * @ts: The time stamp of the event read.
4123  *
4124  * This reads the next event in the ring buffer and increments the iterator.
4125  */
4126 struct ring_buffer_event *
4127 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4128 {
4129 	struct ring_buffer_event *event;
4130 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4131 	unsigned long flags;
4132 
4133 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4134  again:
4135 	event = rb_iter_peek(iter, ts);
4136 	if (!event)
4137 		goto out;
4138 
4139 	if (event->type_len == RINGBUF_TYPE_PADDING)
4140 		goto again;
4141 
4142 	rb_advance_iter(iter);
4143  out:
4144 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4145 
4146 	return event;
4147 }
4148 EXPORT_SYMBOL_GPL(ring_buffer_read);
4149 
4150 /**
4151  * ring_buffer_size - return the size of the ring buffer (in bytes)
4152  * @buffer: The ring buffer.
4153  */
4154 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4155 {
4156 	/*
4157 	 * Earlier, this method returned
4158 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4159 	 * Since the nr_pages field is now removed, we have converted this to
4160 	 * return the per cpu buffer value.
4161 	 */
4162 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163 		return 0;
4164 
4165 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4166 }
4167 EXPORT_SYMBOL_GPL(ring_buffer_size);
4168 
4169 static void
4170 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4171 {
4172 	rb_head_page_deactivate(cpu_buffer);
4173 
4174 	cpu_buffer->head_page
4175 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4176 	local_set(&cpu_buffer->head_page->write, 0);
4177 	local_set(&cpu_buffer->head_page->entries, 0);
4178 	local_set(&cpu_buffer->head_page->page->commit, 0);
4179 
4180 	cpu_buffer->head_page->read = 0;
4181 
4182 	cpu_buffer->tail_page = cpu_buffer->head_page;
4183 	cpu_buffer->commit_page = cpu_buffer->head_page;
4184 
4185 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4186 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4187 	local_set(&cpu_buffer->reader_page->write, 0);
4188 	local_set(&cpu_buffer->reader_page->entries, 0);
4189 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4190 	cpu_buffer->reader_page->read = 0;
4191 
4192 	local_set(&cpu_buffer->entries_bytes, 0);
4193 	local_set(&cpu_buffer->overrun, 0);
4194 	local_set(&cpu_buffer->commit_overrun, 0);
4195 	local_set(&cpu_buffer->dropped_events, 0);
4196 	local_set(&cpu_buffer->entries, 0);
4197 	local_set(&cpu_buffer->committing, 0);
4198 	local_set(&cpu_buffer->commits, 0);
4199 	cpu_buffer->read = 0;
4200 	cpu_buffer->read_bytes = 0;
4201 
4202 	cpu_buffer->write_stamp = 0;
4203 	cpu_buffer->read_stamp = 0;
4204 
4205 	cpu_buffer->lost_events = 0;
4206 	cpu_buffer->last_overrun = 0;
4207 
4208 	rb_head_page_activate(cpu_buffer);
4209 }
4210 
4211 /**
4212  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213  * @buffer: The ring buffer to reset a per cpu buffer of
4214  * @cpu: The CPU buffer to be reset
4215  */
4216 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4217 {
4218 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4219 	unsigned long flags;
4220 
4221 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222 		return;
4223 
4224 	atomic_inc(&buffer->resize_disabled);
4225 	atomic_inc(&cpu_buffer->record_disabled);
4226 
4227 	/* Make sure all commits have finished */
4228 	synchronize_sched();
4229 
4230 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4231 
4232 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4233 		goto out;
4234 
4235 	arch_spin_lock(&cpu_buffer->lock);
4236 
4237 	rb_reset_cpu(cpu_buffer);
4238 
4239 	arch_spin_unlock(&cpu_buffer->lock);
4240 
4241  out:
4242 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4243 
4244 	atomic_dec(&cpu_buffer->record_disabled);
4245 	atomic_dec(&buffer->resize_disabled);
4246 }
4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4248 
4249 /**
4250  * ring_buffer_reset - reset a ring buffer
4251  * @buffer: The ring buffer to reset all cpu buffers
4252  */
4253 void ring_buffer_reset(struct ring_buffer *buffer)
4254 {
4255 	int cpu;
4256 
4257 	for_each_buffer_cpu(buffer, cpu)
4258 		ring_buffer_reset_cpu(buffer, cpu);
4259 }
4260 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4261 
4262 /**
4263  * rind_buffer_empty - is the ring buffer empty?
4264  * @buffer: The ring buffer to test
4265  */
4266 bool ring_buffer_empty(struct ring_buffer *buffer)
4267 {
4268 	struct ring_buffer_per_cpu *cpu_buffer;
4269 	unsigned long flags;
4270 	bool dolock;
4271 	int cpu;
4272 	int ret;
4273 
4274 	/* yes this is racy, but if you don't like the race, lock the buffer */
4275 	for_each_buffer_cpu(buffer, cpu) {
4276 		cpu_buffer = buffer->buffers[cpu];
4277 		local_irq_save(flags);
4278 		dolock = rb_reader_lock(cpu_buffer);
4279 		ret = rb_per_cpu_empty(cpu_buffer);
4280 		rb_reader_unlock(cpu_buffer, dolock);
4281 		local_irq_restore(flags);
4282 
4283 		if (!ret)
4284 			return false;
4285 	}
4286 
4287 	return true;
4288 }
4289 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4290 
4291 /**
4292  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293  * @buffer: The ring buffer
4294  * @cpu: The CPU buffer to test
4295  */
4296 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297 {
4298 	struct ring_buffer_per_cpu *cpu_buffer;
4299 	unsigned long flags;
4300 	bool dolock;
4301 	int ret;
4302 
4303 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304 		return true;
4305 
4306 	cpu_buffer = buffer->buffers[cpu];
4307 	local_irq_save(flags);
4308 	dolock = rb_reader_lock(cpu_buffer);
4309 	ret = rb_per_cpu_empty(cpu_buffer);
4310 	rb_reader_unlock(cpu_buffer, dolock);
4311 	local_irq_restore(flags);
4312 
4313 	return ret;
4314 }
4315 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4316 
4317 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4318 /**
4319  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4320  * @buffer_a: One buffer to swap with
4321  * @buffer_b: The other buffer to swap with
4322  *
4323  * This function is useful for tracers that want to take a "snapshot"
4324  * of a CPU buffer and has another back up buffer lying around.
4325  * it is expected that the tracer handles the cpu buffer not being
4326  * used at the moment.
4327  */
4328 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4329 			 struct ring_buffer *buffer_b, int cpu)
4330 {
4331 	struct ring_buffer_per_cpu *cpu_buffer_a;
4332 	struct ring_buffer_per_cpu *cpu_buffer_b;
4333 	int ret = -EINVAL;
4334 
4335 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4336 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4337 		goto out;
4338 
4339 	cpu_buffer_a = buffer_a->buffers[cpu];
4340 	cpu_buffer_b = buffer_b->buffers[cpu];
4341 
4342 	/* At least make sure the two buffers are somewhat the same */
4343 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4344 		goto out;
4345 
4346 	ret = -EAGAIN;
4347 
4348 	if (atomic_read(&buffer_a->record_disabled))
4349 		goto out;
4350 
4351 	if (atomic_read(&buffer_b->record_disabled))
4352 		goto out;
4353 
4354 	if (atomic_read(&cpu_buffer_a->record_disabled))
4355 		goto out;
4356 
4357 	if (atomic_read(&cpu_buffer_b->record_disabled))
4358 		goto out;
4359 
4360 	/*
4361 	 * We can't do a synchronize_sched here because this
4362 	 * function can be called in atomic context.
4363 	 * Normally this will be called from the same CPU as cpu.
4364 	 * If not it's up to the caller to protect this.
4365 	 */
4366 	atomic_inc(&cpu_buffer_a->record_disabled);
4367 	atomic_inc(&cpu_buffer_b->record_disabled);
4368 
4369 	ret = -EBUSY;
4370 	if (local_read(&cpu_buffer_a->committing))
4371 		goto out_dec;
4372 	if (local_read(&cpu_buffer_b->committing))
4373 		goto out_dec;
4374 
4375 	buffer_a->buffers[cpu] = cpu_buffer_b;
4376 	buffer_b->buffers[cpu] = cpu_buffer_a;
4377 
4378 	cpu_buffer_b->buffer = buffer_a;
4379 	cpu_buffer_a->buffer = buffer_b;
4380 
4381 	ret = 0;
4382 
4383 out_dec:
4384 	atomic_dec(&cpu_buffer_a->record_disabled);
4385 	atomic_dec(&cpu_buffer_b->record_disabled);
4386 out:
4387 	return ret;
4388 }
4389 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4390 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4391 
4392 /**
4393  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4394  * @buffer: the buffer to allocate for.
4395  * @cpu: the cpu buffer to allocate.
4396  *
4397  * This function is used in conjunction with ring_buffer_read_page.
4398  * When reading a full page from the ring buffer, these functions
4399  * can be used to speed up the process. The calling function should
4400  * allocate a few pages first with this function. Then when it
4401  * needs to get pages from the ring buffer, it passes the result
4402  * of this function into ring_buffer_read_page, which will swap
4403  * the page that was allocated, with the read page of the buffer.
4404  *
4405  * Returns:
4406  *  The page allocated, or NULL on error.
4407  */
4408 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4409 {
4410 	struct buffer_data_page *bpage;
4411 	struct page *page;
4412 
4413 	page = alloc_pages_node(cpu_to_node(cpu),
4414 				GFP_KERNEL | __GFP_NORETRY, 0);
4415 	if (!page)
4416 		return NULL;
4417 
4418 	bpage = page_address(page);
4419 
4420 	rb_init_page(bpage);
4421 
4422 	return bpage;
4423 }
4424 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4425 
4426 /**
4427  * ring_buffer_free_read_page - free an allocated read page
4428  * @buffer: the buffer the page was allocate for
4429  * @data: the page to free
4430  *
4431  * Free a page allocated from ring_buffer_alloc_read_page.
4432  */
4433 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4434 {
4435 	free_page((unsigned long)data);
4436 }
4437 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4438 
4439 /**
4440  * ring_buffer_read_page - extract a page from the ring buffer
4441  * @buffer: buffer to extract from
4442  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4443  * @len: amount to extract
4444  * @cpu: the cpu of the buffer to extract
4445  * @full: should the extraction only happen when the page is full.
4446  *
4447  * This function will pull out a page from the ring buffer and consume it.
4448  * @data_page must be the address of the variable that was returned
4449  * from ring_buffer_alloc_read_page. This is because the page might be used
4450  * to swap with a page in the ring buffer.
4451  *
4452  * for example:
4453  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4454  *	if (!rpage)
4455  *		return error;
4456  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4457  *	if (ret >= 0)
4458  *		process_page(rpage, ret);
4459  *
4460  * When @full is set, the function will not return true unless
4461  * the writer is off the reader page.
4462  *
4463  * Note: it is up to the calling functions to handle sleeps and wakeups.
4464  *  The ring buffer can be used anywhere in the kernel and can not
4465  *  blindly call wake_up. The layer that uses the ring buffer must be
4466  *  responsible for that.
4467  *
4468  * Returns:
4469  *  >=0 if data has been transferred, returns the offset of consumed data.
4470  *  <0 if no data has been transferred.
4471  */
4472 int ring_buffer_read_page(struct ring_buffer *buffer,
4473 			  void **data_page, size_t len, int cpu, int full)
4474 {
4475 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4476 	struct ring_buffer_event *event;
4477 	struct buffer_data_page *bpage;
4478 	struct buffer_page *reader;
4479 	unsigned long missed_events;
4480 	unsigned long flags;
4481 	unsigned int commit;
4482 	unsigned int read;
4483 	u64 save_timestamp;
4484 	int ret = -1;
4485 
4486 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4487 		goto out;
4488 
4489 	/*
4490 	 * If len is not big enough to hold the page header, then
4491 	 * we can not copy anything.
4492 	 */
4493 	if (len <= BUF_PAGE_HDR_SIZE)
4494 		goto out;
4495 
4496 	len -= BUF_PAGE_HDR_SIZE;
4497 
4498 	if (!data_page)
4499 		goto out;
4500 
4501 	bpage = *data_page;
4502 	if (!bpage)
4503 		goto out;
4504 
4505 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4506 
4507 	reader = rb_get_reader_page(cpu_buffer);
4508 	if (!reader)
4509 		goto out_unlock;
4510 
4511 	event = rb_reader_event(cpu_buffer);
4512 
4513 	read = reader->read;
4514 	commit = rb_page_commit(reader);
4515 
4516 	/* Check if any events were dropped */
4517 	missed_events = cpu_buffer->lost_events;
4518 
4519 	/*
4520 	 * If this page has been partially read or
4521 	 * if len is not big enough to read the rest of the page or
4522 	 * a writer is still on the page, then
4523 	 * we must copy the data from the page to the buffer.
4524 	 * Otherwise, we can simply swap the page with the one passed in.
4525 	 */
4526 	if (read || (len < (commit - read)) ||
4527 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4528 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4529 		unsigned int rpos = read;
4530 		unsigned int pos = 0;
4531 		unsigned int size;
4532 
4533 		if (full)
4534 			goto out_unlock;
4535 
4536 		if (len > (commit - read))
4537 			len = (commit - read);
4538 
4539 		/* Always keep the time extend and data together */
4540 		size = rb_event_ts_length(event);
4541 
4542 		if (len < size)
4543 			goto out_unlock;
4544 
4545 		/* save the current timestamp, since the user will need it */
4546 		save_timestamp = cpu_buffer->read_stamp;
4547 
4548 		/* Need to copy one event at a time */
4549 		do {
4550 			/* We need the size of one event, because
4551 			 * rb_advance_reader only advances by one event,
4552 			 * whereas rb_event_ts_length may include the size of
4553 			 * one or two events.
4554 			 * We have already ensured there's enough space if this
4555 			 * is a time extend. */
4556 			size = rb_event_length(event);
4557 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4558 
4559 			len -= size;
4560 
4561 			rb_advance_reader(cpu_buffer);
4562 			rpos = reader->read;
4563 			pos += size;
4564 
4565 			if (rpos >= commit)
4566 				break;
4567 
4568 			event = rb_reader_event(cpu_buffer);
4569 			/* Always keep the time extend and data together */
4570 			size = rb_event_ts_length(event);
4571 		} while (len >= size);
4572 
4573 		/* update bpage */
4574 		local_set(&bpage->commit, pos);
4575 		bpage->time_stamp = save_timestamp;
4576 
4577 		/* we copied everything to the beginning */
4578 		read = 0;
4579 	} else {
4580 		/* update the entry counter */
4581 		cpu_buffer->read += rb_page_entries(reader);
4582 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4583 
4584 		/* swap the pages */
4585 		rb_init_page(bpage);
4586 		bpage = reader->page;
4587 		reader->page = *data_page;
4588 		local_set(&reader->write, 0);
4589 		local_set(&reader->entries, 0);
4590 		reader->read = 0;
4591 		*data_page = bpage;
4592 
4593 		/*
4594 		 * Use the real_end for the data size,
4595 		 * This gives us a chance to store the lost events
4596 		 * on the page.
4597 		 */
4598 		if (reader->real_end)
4599 			local_set(&bpage->commit, reader->real_end);
4600 	}
4601 	ret = read;
4602 
4603 	cpu_buffer->lost_events = 0;
4604 
4605 	commit = local_read(&bpage->commit);
4606 	/*
4607 	 * Set a flag in the commit field if we lost events
4608 	 */
4609 	if (missed_events) {
4610 		/* If there is room at the end of the page to save the
4611 		 * missed events, then record it there.
4612 		 */
4613 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4614 			memcpy(&bpage->data[commit], &missed_events,
4615 			       sizeof(missed_events));
4616 			local_add(RB_MISSED_STORED, &bpage->commit);
4617 			commit += sizeof(missed_events);
4618 		}
4619 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4620 	}
4621 
4622 	/*
4623 	 * This page may be off to user land. Zero it out here.
4624 	 */
4625 	if (commit < BUF_PAGE_SIZE)
4626 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4627 
4628  out_unlock:
4629 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4630 
4631  out:
4632 	return ret;
4633 }
4634 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4635 
4636 #ifdef CONFIG_HOTPLUG_CPU
4637 static int rb_cpu_notify(struct notifier_block *self,
4638 			 unsigned long action, void *hcpu)
4639 {
4640 	struct ring_buffer *buffer =
4641 		container_of(self, struct ring_buffer, cpu_notify);
4642 	long cpu = (long)hcpu;
4643 	long nr_pages_same;
4644 	int cpu_i;
4645 	unsigned long nr_pages;
4646 
4647 	switch (action) {
4648 	case CPU_UP_PREPARE:
4649 	case CPU_UP_PREPARE_FROZEN:
4650 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4651 			return NOTIFY_OK;
4652 
4653 		nr_pages = 0;
4654 		nr_pages_same = 1;
4655 		/* check if all cpu sizes are same */
4656 		for_each_buffer_cpu(buffer, cpu_i) {
4657 			/* fill in the size from first enabled cpu */
4658 			if (nr_pages == 0)
4659 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4660 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4661 				nr_pages_same = 0;
4662 				break;
4663 			}
4664 		}
4665 		/* allocate minimum pages, user can later expand it */
4666 		if (!nr_pages_same)
4667 			nr_pages = 2;
4668 		buffer->buffers[cpu] =
4669 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4670 		if (!buffer->buffers[cpu]) {
4671 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4672 			     cpu);
4673 			return NOTIFY_OK;
4674 		}
4675 		smp_wmb();
4676 		cpumask_set_cpu(cpu, buffer->cpumask);
4677 		break;
4678 	case CPU_DOWN_PREPARE:
4679 	case CPU_DOWN_PREPARE_FROZEN:
4680 		/*
4681 		 * Do nothing.
4682 		 *  If we were to free the buffer, then the user would
4683 		 *  lose any trace that was in the buffer.
4684 		 */
4685 		break;
4686 	default:
4687 		break;
4688 	}
4689 	return NOTIFY_OK;
4690 }
4691 #endif
4692 
4693 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4694 /*
4695  * This is a basic integrity check of the ring buffer.
4696  * Late in the boot cycle this test will run when configured in.
4697  * It will kick off a thread per CPU that will go into a loop
4698  * writing to the per cpu ring buffer various sizes of data.
4699  * Some of the data will be large items, some small.
4700  *
4701  * Another thread is created that goes into a spin, sending out
4702  * IPIs to the other CPUs to also write into the ring buffer.
4703  * this is to test the nesting ability of the buffer.
4704  *
4705  * Basic stats are recorded and reported. If something in the
4706  * ring buffer should happen that's not expected, a big warning
4707  * is displayed and all ring buffers are disabled.
4708  */
4709 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4710 
4711 struct rb_test_data {
4712 	struct ring_buffer	*buffer;
4713 	unsigned long		events;
4714 	unsigned long		bytes_written;
4715 	unsigned long		bytes_alloc;
4716 	unsigned long		bytes_dropped;
4717 	unsigned long		events_nested;
4718 	unsigned long		bytes_written_nested;
4719 	unsigned long		bytes_alloc_nested;
4720 	unsigned long		bytes_dropped_nested;
4721 	int			min_size_nested;
4722 	int			max_size_nested;
4723 	int			max_size;
4724 	int			min_size;
4725 	int			cpu;
4726 	int			cnt;
4727 };
4728 
4729 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4730 
4731 /* 1 meg per cpu */
4732 #define RB_TEST_BUFFER_SIZE	1048576
4733 
4734 static char rb_string[] __initdata =
4735 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4736 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4737 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4738 
4739 static bool rb_test_started __initdata;
4740 
4741 struct rb_item {
4742 	int size;
4743 	char str[];
4744 };
4745 
4746 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4747 {
4748 	struct ring_buffer_event *event;
4749 	struct rb_item *item;
4750 	bool started;
4751 	int event_len;
4752 	int size;
4753 	int len;
4754 	int cnt;
4755 
4756 	/* Have nested writes different that what is written */
4757 	cnt = data->cnt + (nested ? 27 : 0);
4758 
4759 	/* Multiply cnt by ~e, to make some unique increment */
4760 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4761 
4762 	len = size + sizeof(struct rb_item);
4763 
4764 	started = rb_test_started;
4765 	/* read rb_test_started before checking buffer enabled */
4766 	smp_rmb();
4767 
4768 	event = ring_buffer_lock_reserve(data->buffer, len);
4769 	if (!event) {
4770 		/* Ignore dropped events before test starts. */
4771 		if (started) {
4772 			if (nested)
4773 				data->bytes_dropped += len;
4774 			else
4775 				data->bytes_dropped_nested += len;
4776 		}
4777 		return len;
4778 	}
4779 
4780 	event_len = ring_buffer_event_length(event);
4781 
4782 	if (RB_WARN_ON(data->buffer, event_len < len))
4783 		goto out;
4784 
4785 	item = ring_buffer_event_data(event);
4786 	item->size = size;
4787 	memcpy(item->str, rb_string, size);
4788 
4789 	if (nested) {
4790 		data->bytes_alloc_nested += event_len;
4791 		data->bytes_written_nested += len;
4792 		data->events_nested++;
4793 		if (!data->min_size_nested || len < data->min_size_nested)
4794 			data->min_size_nested = len;
4795 		if (len > data->max_size_nested)
4796 			data->max_size_nested = len;
4797 	} else {
4798 		data->bytes_alloc += event_len;
4799 		data->bytes_written += len;
4800 		data->events++;
4801 		if (!data->min_size || len < data->min_size)
4802 			data->max_size = len;
4803 		if (len > data->max_size)
4804 			data->max_size = len;
4805 	}
4806 
4807  out:
4808 	ring_buffer_unlock_commit(data->buffer, event);
4809 
4810 	return 0;
4811 }
4812 
4813 static __init int rb_test(void *arg)
4814 {
4815 	struct rb_test_data *data = arg;
4816 
4817 	while (!kthread_should_stop()) {
4818 		rb_write_something(data, false);
4819 		data->cnt++;
4820 
4821 		set_current_state(TASK_INTERRUPTIBLE);
4822 		/* Now sleep between a min of 100-300us and a max of 1ms */
4823 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4824 	}
4825 
4826 	return 0;
4827 }
4828 
4829 static __init void rb_ipi(void *ignore)
4830 {
4831 	struct rb_test_data *data;
4832 	int cpu = smp_processor_id();
4833 
4834 	data = &rb_data[cpu];
4835 	rb_write_something(data, true);
4836 }
4837 
4838 static __init int rb_hammer_test(void *arg)
4839 {
4840 	while (!kthread_should_stop()) {
4841 
4842 		/* Send an IPI to all cpus to write data! */
4843 		smp_call_function(rb_ipi, NULL, 1);
4844 		/* No sleep, but for non preempt, let others run */
4845 		schedule();
4846 	}
4847 
4848 	return 0;
4849 }
4850 
4851 static __init int test_ringbuffer(void)
4852 {
4853 	struct task_struct *rb_hammer;
4854 	struct ring_buffer *buffer;
4855 	int cpu;
4856 	int ret = 0;
4857 
4858 	pr_info("Running ring buffer tests...\n");
4859 
4860 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4861 	if (WARN_ON(!buffer))
4862 		return 0;
4863 
4864 	/* Disable buffer so that threads can't write to it yet */
4865 	ring_buffer_record_off(buffer);
4866 
4867 	for_each_online_cpu(cpu) {
4868 		rb_data[cpu].buffer = buffer;
4869 		rb_data[cpu].cpu = cpu;
4870 		rb_data[cpu].cnt = cpu;
4871 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4872 						 "rbtester/%d", cpu);
4873 		if (WARN_ON(!rb_threads[cpu])) {
4874 			pr_cont("FAILED\n");
4875 			ret = -1;
4876 			goto out_free;
4877 		}
4878 
4879 		kthread_bind(rb_threads[cpu], cpu);
4880  		wake_up_process(rb_threads[cpu]);
4881 	}
4882 
4883 	/* Now create the rb hammer! */
4884 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4885 	if (WARN_ON(!rb_hammer)) {
4886 		pr_cont("FAILED\n");
4887 		ret = -1;
4888 		goto out_free;
4889 	}
4890 
4891 	ring_buffer_record_on(buffer);
4892 	/*
4893 	 * Show buffer is enabled before setting rb_test_started.
4894 	 * Yes there's a small race window where events could be
4895 	 * dropped and the thread wont catch it. But when a ring
4896 	 * buffer gets enabled, there will always be some kind of
4897 	 * delay before other CPUs see it. Thus, we don't care about
4898 	 * those dropped events. We care about events dropped after
4899 	 * the threads see that the buffer is active.
4900 	 */
4901 	smp_wmb();
4902 	rb_test_started = true;
4903 
4904 	set_current_state(TASK_INTERRUPTIBLE);
4905 	/* Just run for 10 seconds */;
4906 	schedule_timeout(10 * HZ);
4907 
4908 	kthread_stop(rb_hammer);
4909 
4910  out_free:
4911 	for_each_online_cpu(cpu) {
4912 		if (!rb_threads[cpu])
4913 			break;
4914 		kthread_stop(rb_threads[cpu]);
4915 	}
4916 	if (ret) {
4917 		ring_buffer_free(buffer);
4918 		return ret;
4919 	}
4920 
4921 	/* Report! */
4922 	pr_info("finished\n");
4923 	for_each_online_cpu(cpu) {
4924 		struct ring_buffer_event *event;
4925 		struct rb_test_data *data = &rb_data[cpu];
4926 		struct rb_item *item;
4927 		unsigned long total_events;
4928 		unsigned long total_dropped;
4929 		unsigned long total_written;
4930 		unsigned long total_alloc;
4931 		unsigned long total_read = 0;
4932 		unsigned long total_size = 0;
4933 		unsigned long total_len = 0;
4934 		unsigned long total_lost = 0;
4935 		unsigned long lost;
4936 		int big_event_size;
4937 		int small_event_size;
4938 
4939 		ret = -1;
4940 
4941 		total_events = data->events + data->events_nested;
4942 		total_written = data->bytes_written + data->bytes_written_nested;
4943 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4944 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4945 
4946 		big_event_size = data->max_size + data->max_size_nested;
4947 		small_event_size = data->min_size + data->min_size_nested;
4948 
4949 		pr_info("CPU %d:\n", cpu);
4950 		pr_info("              events:    %ld\n", total_events);
4951 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4952 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4953 		pr_info("       written bytes:    %ld\n", total_written);
4954 		pr_info("       biggest event:    %d\n", big_event_size);
4955 		pr_info("      smallest event:    %d\n", small_event_size);
4956 
4957 		if (RB_WARN_ON(buffer, total_dropped))
4958 			break;
4959 
4960 		ret = 0;
4961 
4962 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4963 			total_lost += lost;
4964 			item = ring_buffer_event_data(event);
4965 			total_len += ring_buffer_event_length(event);
4966 			total_size += item->size + sizeof(struct rb_item);
4967 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4968 				pr_info("FAILED!\n");
4969 				pr_info("buffer had: %.*s\n", item->size, item->str);
4970 				pr_info("expected:   %.*s\n", item->size, rb_string);
4971 				RB_WARN_ON(buffer, 1);
4972 				ret = -1;
4973 				break;
4974 			}
4975 			total_read++;
4976 		}
4977 		if (ret)
4978 			break;
4979 
4980 		ret = -1;
4981 
4982 		pr_info("         read events:   %ld\n", total_read);
4983 		pr_info("         lost events:   %ld\n", total_lost);
4984 		pr_info("        total events:   %ld\n", total_lost + total_read);
4985 		pr_info("  recorded len bytes:   %ld\n", total_len);
4986 		pr_info(" recorded size bytes:   %ld\n", total_size);
4987 		if (total_lost)
4988 			pr_info(" With dropped events, record len and size may not match\n"
4989 				" alloced and written from above\n");
4990 		if (!total_lost) {
4991 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4992 				       total_size != total_written))
4993 				break;
4994 		}
4995 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4996 			break;
4997 
4998 		ret = 0;
4999 	}
5000 	if (!ret)
5001 		pr_info("Ring buffer PASSED!\n");
5002 
5003 	ring_buffer_free(buffer);
5004 	return 0;
5005 }
5006 
5007 late_initcall(test_ringbuffer);
5008 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5009