1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/ftrace_irq.h> 9 #include <linux/spinlock.h> 10 #include <linux/debugfs.h> 11 #include <linux/uaccess.h> 12 #include <linux/hardirq.h> 13 #include <linux/kmemcheck.h> 14 #include <linux/module.h> 15 #include <linux/percpu.h> 16 #include <linux/mutex.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/hash.h> 20 #include <linux/list.h> 21 #include <linux/cpu.h> 22 #include <linux/fs.h> 23 24 #include <asm/local.h> 25 #include "trace.h" 26 27 /* 28 * The ring buffer header is special. We must manually up keep it. 29 */ 30 int ring_buffer_print_entry_header(struct trace_seq *s) 31 { 32 int ret; 33 34 ret = trace_seq_printf(s, "# compressed entry header\n"); 35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 37 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 38 ret = trace_seq_printf(s, "\n"); 39 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 40 RINGBUF_TYPE_PADDING); 41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 42 RINGBUF_TYPE_TIME_EXTEND); 43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 45 46 return ret; 47 } 48 49 /* 50 * The ring buffer is made up of a list of pages. A separate list of pages is 51 * allocated for each CPU. A writer may only write to a buffer that is 52 * associated with the CPU it is currently executing on. A reader may read 53 * from any per cpu buffer. 54 * 55 * The reader is special. For each per cpu buffer, the reader has its own 56 * reader page. When a reader has read the entire reader page, this reader 57 * page is swapped with another page in the ring buffer. 58 * 59 * Now, as long as the writer is off the reader page, the reader can do what 60 * ever it wants with that page. The writer will never write to that page 61 * again (as long as it is out of the ring buffer). 62 * 63 * Here's some silly ASCII art. 64 * 65 * +------+ 66 * |reader| RING BUFFER 67 * |page | 68 * +------+ +---+ +---+ +---+ 69 * | |-->| |-->| | 70 * +---+ +---+ +---+ 71 * ^ | 72 * | | 73 * +---------------+ 74 * 75 * 76 * +------+ 77 * |reader| RING BUFFER 78 * |page |------------------v 79 * +------+ +---+ +---+ +---+ 80 * | |-->| |-->| | 81 * +---+ +---+ +---+ 82 * ^ | 83 * | | 84 * +---------------+ 85 * 86 * 87 * +------+ 88 * |reader| RING BUFFER 89 * |page |------------------v 90 * +------+ +---+ +---+ +---+ 91 * ^ | |-->| |-->| | 92 * | +---+ +---+ +---+ 93 * | | 94 * | | 95 * +------------------------------+ 96 * 97 * 98 * +------+ 99 * |buffer| RING BUFFER 100 * |page |------------------v 101 * +------+ +---+ +---+ +---+ 102 * ^ | | | |-->| | 103 * | New +---+ +---+ +---+ 104 * | Reader------^ | 105 * | page | 106 * +------------------------------+ 107 * 108 * 109 * After we make this swap, the reader can hand this page off to the splice 110 * code and be done with it. It can even allocate a new page if it needs to 111 * and swap that into the ring buffer. 112 * 113 * We will be using cmpxchg soon to make all this lockless. 114 * 115 */ 116 117 /* 118 * A fast way to enable or disable all ring buffers is to 119 * call tracing_on or tracing_off. Turning off the ring buffers 120 * prevents all ring buffers from being recorded to. 121 * Turning this switch on, makes it OK to write to the 122 * ring buffer, if the ring buffer is enabled itself. 123 * 124 * There's three layers that must be on in order to write 125 * to the ring buffer. 126 * 127 * 1) This global flag must be set. 128 * 2) The ring buffer must be enabled for recording. 129 * 3) The per cpu buffer must be enabled for recording. 130 * 131 * In case of an anomaly, this global flag has a bit set that 132 * will permantly disable all ring buffers. 133 */ 134 135 /* 136 * Global flag to disable all recording to ring buffers 137 * This has two bits: ON, DISABLED 138 * 139 * ON DISABLED 140 * ---- ---------- 141 * 0 0 : ring buffers are off 142 * 1 0 : ring buffers are on 143 * X 1 : ring buffers are permanently disabled 144 */ 145 146 enum { 147 RB_BUFFERS_ON_BIT = 0, 148 RB_BUFFERS_DISABLED_BIT = 1, 149 }; 150 151 enum { 152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 154 }; 155 156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 157 158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 159 160 /** 161 * tracing_on - enable all tracing buffers 162 * 163 * This function enables all tracing buffers that may have been 164 * disabled with tracing_off. 165 */ 166 void tracing_on(void) 167 { 168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 169 } 170 EXPORT_SYMBOL_GPL(tracing_on); 171 172 /** 173 * tracing_off - turn off all tracing buffers 174 * 175 * This function stops all tracing buffers from recording data. 176 * It does not disable any overhead the tracers themselves may 177 * be causing. This function simply causes all recording to 178 * the ring buffers to fail. 179 */ 180 void tracing_off(void) 181 { 182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 183 } 184 EXPORT_SYMBOL_GPL(tracing_off); 185 186 /** 187 * tracing_off_permanent - permanently disable ring buffers 188 * 189 * This function, once called, will disable all ring buffers 190 * permanently. 191 */ 192 void tracing_off_permanent(void) 193 { 194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 195 } 196 197 /** 198 * tracing_is_on - show state of ring buffers enabled 199 */ 200 int tracing_is_on(void) 201 { 202 return ring_buffer_flags == RB_BUFFERS_ON; 203 } 204 EXPORT_SYMBOL_GPL(tracing_is_on); 205 206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 207 #define RB_ALIGNMENT 4U 208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 210 211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 212 # define RB_FORCE_8BYTE_ALIGNMENT 0 213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 214 #else 215 # define RB_FORCE_8BYTE_ALIGNMENT 1 216 # define RB_ARCH_ALIGNMENT 8U 217 #endif 218 219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 221 222 enum { 223 RB_LEN_TIME_EXTEND = 8, 224 RB_LEN_TIME_STAMP = 16, 225 }; 226 227 static inline int rb_null_event(struct ring_buffer_event *event) 228 { 229 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 230 } 231 232 static void rb_event_set_padding(struct ring_buffer_event *event) 233 { 234 /* padding has a NULL time_delta */ 235 event->type_len = RINGBUF_TYPE_PADDING; 236 event->time_delta = 0; 237 } 238 239 static unsigned 240 rb_event_data_length(struct ring_buffer_event *event) 241 { 242 unsigned length; 243 244 if (event->type_len) 245 length = event->type_len * RB_ALIGNMENT; 246 else 247 length = event->array[0]; 248 return length + RB_EVNT_HDR_SIZE; 249 } 250 251 /* inline for ring buffer fast paths */ 252 static unsigned 253 rb_event_length(struct ring_buffer_event *event) 254 { 255 switch (event->type_len) { 256 case RINGBUF_TYPE_PADDING: 257 if (rb_null_event(event)) 258 /* undefined */ 259 return -1; 260 return event->array[0] + RB_EVNT_HDR_SIZE; 261 262 case RINGBUF_TYPE_TIME_EXTEND: 263 return RB_LEN_TIME_EXTEND; 264 265 case RINGBUF_TYPE_TIME_STAMP: 266 return RB_LEN_TIME_STAMP; 267 268 case RINGBUF_TYPE_DATA: 269 return rb_event_data_length(event); 270 default: 271 BUG(); 272 } 273 /* not hit */ 274 return 0; 275 } 276 277 /** 278 * ring_buffer_event_length - return the length of the event 279 * @event: the event to get the length of 280 */ 281 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 282 { 283 unsigned length = rb_event_length(event); 284 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 285 return length; 286 length -= RB_EVNT_HDR_SIZE; 287 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 288 length -= sizeof(event->array[0]); 289 return length; 290 } 291 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 292 293 /* inline for ring buffer fast paths */ 294 static void * 295 rb_event_data(struct ring_buffer_event *event) 296 { 297 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 298 /* If length is in len field, then array[0] has the data */ 299 if (event->type_len) 300 return (void *)&event->array[0]; 301 /* Otherwise length is in array[0] and array[1] has the data */ 302 return (void *)&event->array[1]; 303 } 304 305 /** 306 * ring_buffer_event_data - return the data of the event 307 * @event: the event to get the data from 308 */ 309 void *ring_buffer_event_data(struct ring_buffer_event *event) 310 { 311 return rb_event_data(event); 312 } 313 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 314 315 #define for_each_buffer_cpu(buffer, cpu) \ 316 for_each_cpu(cpu, buffer->cpumask) 317 318 #define TS_SHIFT 27 319 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 320 #define TS_DELTA_TEST (~TS_MASK) 321 322 /* Flag when events were overwritten */ 323 #define RB_MISSED_EVENTS (1 << 31) 324 /* Missed count stored at end */ 325 #define RB_MISSED_STORED (1 << 30) 326 327 struct buffer_data_page { 328 u64 time_stamp; /* page time stamp */ 329 local_t commit; /* write committed index */ 330 unsigned char data[]; /* data of buffer page */ 331 }; 332 333 /* 334 * Note, the buffer_page list must be first. The buffer pages 335 * are allocated in cache lines, which means that each buffer 336 * page will be at the beginning of a cache line, and thus 337 * the least significant bits will be zero. We use this to 338 * add flags in the list struct pointers, to make the ring buffer 339 * lockless. 340 */ 341 struct buffer_page { 342 struct list_head list; /* list of buffer pages */ 343 local_t write; /* index for next write */ 344 unsigned read; /* index for next read */ 345 local_t entries; /* entries on this page */ 346 unsigned long real_end; /* real end of data */ 347 struct buffer_data_page *page; /* Actual data page */ 348 }; 349 350 /* 351 * The buffer page counters, write and entries, must be reset 352 * atomically when crossing page boundaries. To synchronize this 353 * update, two counters are inserted into the number. One is 354 * the actual counter for the write position or count on the page. 355 * 356 * The other is a counter of updaters. Before an update happens 357 * the update partition of the counter is incremented. This will 358 * allow the updater to update the counter atomically. 359 * 360 * The counter is 20 bits, and the state data is 12. 361 */ 362 #define RB_WRITE_MASK 0xfffff 363 #define RB_WRITE_INTCNT (1 << 20) 364 365 static void rb_init_page(struct buffer_data_page *bpage) 366 { 367 local_set(&bpage->commit, 0); 368 } 369 370 /** 371 * ring_buffer_page_len - the size of data on the page. 372 * @page: The page to read 373 * 374 * Returns the amount of data on the page, including buffer page header. 375 */ 376 size_t ring_buffer_page_len(void *page) 377 { 378 return local_read(&((struct buffer_data_page *)page)->commit) 379 + BUF_PAGE_HDR_SIZE; 380 } 381 382 /* 383 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 384 * this issue out. 385 */ 386 static void free_buffer_page(struct buffer_page *bpage) 387 { 388 free_page((unsigned long)bpage->page); 389 kfree(bpage); 390 } 391 392 /* 393 * We need to fit the time_stamp delta into 27 bits. 394 */ 395 static inline int test_time_stamp(u64 delta) 396 { 397 if (delta & TS_DELTA_TEST) 398 return 1; 399 return 0; 400 } 401 402 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 403 404 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 405 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 406 407 /* Max number of timestamps that can fit on a page */ 408 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP) 409 410 int ring_buffer_print_page_header(struct trace_seq *s) 411 { 412 struct buffer_data_page field; 413 int ret; 414 415 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 416 "offset:0;\tsize:%u;\tsigned:%u;\n", 417 (unsigned int)sizeof(field.time_stamp), 418 (unsigned int)is_signed_type(u64)); 419 420 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 421 "offset:%u;\tsize:%u;\tsigned:%u;\n", 422 (unsigned int)offsetof(typeof(field), commit), 423 (unsigned int)sizeof(field.commit), 424 (unsigned int)is_signed_type(long)); 425 426 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 427 "offset:%u;\tsize:%u;\tsigned:%u;\n", 428 (unsigned int)offsetof(typeof(field), commit), 429 1, 430 (unsigned int)is_signed_type(long)); 431 432 ret = trace_seq_printf(s, "\tfield: char data;\t" 433 "offset:%u;\tsize:%u;\tsigned:%u;\n", 434 (unsigned int)offsetof(typeof(field), data), 435 (unsigned int)BUF_PAGE_SIZE, 436 (unsigned int)is_signed_type(char)); 437 438 return ret; 439 } 440 441 /* 442 * head_page == tail_page && head == tail then buffer is empty. 443 */ 444 struct ring_buffer_per_cpu { 445 int cpu; 446 struct ring_buffer *buffer; 447 spinlock_t reader_lock; /* serialize readers */ 448 arch_spinlock_t lock; 449 struct lock_class_key lock_key; 450 struct list_head *pages; 451 struct buffer_page *head_page; /* read from head */ 452 struct buffer_page *tail_page; /* write to tail */ 453 struct buffer_page *commit_page; /* committed pages */ 454 struct buffer_page *reader_page; 455 unsigned long lost_events; 456 unsigned long last_overrun; 457 local_t commit_overrun; 458 local_t overrun; 459 local_t entries; 460 local_t committing; 461 local_t commits; 462 unsigned long read; 463 u64 write_stamp; 464 u64 read_stamp; 465 atomic_t record_disabled; 466 }; 467 468 struct ring_buffer { 469 unsigned pages; 470 unsigned flags; 471 int cpus; 472 atomic_t record_disabled; 473 cpumask_var_t cpumask; 474 475 struct lock_class_key *reader_lock_key; 476 477 struct mutex mutex; 478 479 struct ring_buffer_per_cpu **buffers; 480 481 #ifdef CONFIG_HOTPLUG_CPU 482 struct notifier_block cpu_notify; 483 #endif 484 u64 (*clock)(void); 485 }; 486 487 struct ring_buffer_iter { 488 struct ring_buffer_per_cpu *cpu_buffer; 489 unsigned long head; 490 struct buffer_page *head_page; 491 struct buffer_page *cache_reader_page; 492 unsigned long cache_read; 493 u64 read_stamp; 494 }; 495 496 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 497 #define RB_WARN_ON(b, cond) \ 498 ({ \ 499 int _____ret = unlikely(cond); \ 500 if (_____ret) { \ 501 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 502 struct ring_buffer_per_cpu *__b = \ 503 (void *)b; \ 504 atomic_inc(&__b->buffer->record_disabled); \ 505 } else \ 506 atomic_inc(&b->record_disabled); \ 507 WARN_ON(1); \ 508 } \ 509 _____ret; \ 510 }) 511 512 /* Up this if you want to test the TIME_EXTENTS and normalization */ 513 #define DEBUG_SHIFT 0 514 515 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 516 { 517 /* shift to debug/test normalization and TIME_EXTENTS */ 518 return buffer->clock() << DEBUG_SHIFT; 519 } 520 521 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 522 { 523 u64 time; 524 525 preempt_disable_notrace(); 526 time = rb_time_stamp(buffer); 527 preempt_enable_no_resched_notrace(); 528 529 return time; 530 } 531 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 532 533 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 534 int cpu, u64 *ts) 535 { 536 /* Just stupid testing the normalize function and deltas */ 537 *ts >>= DEBUG_SHIFT; 538 } 539 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 540 541 /* 542 * Making the ring buffer lockless makes things tricky. 543 * Although writes only happen on the CPU that they are on, 544 * and they only need to worry about interrupts. Reads can 545 * happen on any CPU. 546 * 547 * The reader page is always off the ring buffer, but when the 548 * reader finishes with a page, it needs to swap its page with 549 * a new one from the buffer. The reader needs to take from 550 * the head (writes go to the tail). But if a writer is in overwrite 551 * mode and wraps, it must push the head page forward. 552 * 553 * Here lies the problem. 554 * 555 * The reader must be careful to replace only the head page, and 556 * not another one. As described at the top of the file in the 557 * ASCII art, the reader sets its old page to point to the next 558 * page after head. It then sets the page after head to point to 559 * the old reader page. But if the writer moves the head page 560 * during this operation, the reader could end up with the tail. 561 * 562 * We use cmpxchg to help prevent this race. We also do something 563 * special with the page before head. We set the LSB to 1. 564 * 565 * When the writer must push the page forward, it will clear the 566 * bit that points to the head page, move the head, and then set 567 * the bit that points to the new head page. 568 * 569 * We also don't want an interrupt coming in and moving the head 570 * page on another writer. Thus we use the second LSB to catch 571 * that too. Thus: 572 * 573 * head->list->prev->next bit 1 bit 0 574 * ------- ------- 575 * Normal page 0 0 576 * Points to head page 0 1 577 * New head page 1 0 578 * 579 * Note we can not trust the prev pointer of the head page, because: 580 * 581 * +----+ +-----+ +-----+ 582 * | |------>| T |---X--->| N | 583 * | |<------| | | | 584 * +----+ +-----+ +-----+ 585 * ^ ^ | 586 * | +-----+ | | 587 * +----------| R |----------+ | 588 * | |<-----------+ 589 * +-----+ 590 * 591 * Key: ---X--> HEAD flag set in pointer 592 * T Tail page 593 * R Reader page 594 * N Next page 595 * 596 * (see __rb_reserve_next() to see where this happens) 597 * 598 * What the above shows is that the reader just swapped out 599 * the reader page with a page in the buffer, but before it 600 * could make the new header point back to the new page added 601 * it was preempted by a writer. The writer moved forward onto 602 * the new page added by the reader and is about to move forward 603 * again. 604 * 605 * You can see, it is legitimate for the previous pointer of 606 * the head (or any page) not to point back to itself. But only 607 * temporarially. 608 */ 609 610 #define RB_PAGE_NORMAL 0UL 611 #define RB_PAGE_HEAD 1UL 612 #define RB_PAGE_UPDATE 2UL 613 614 615 #define RB_FLAG_MASK 3UL 616 617 /* PAGE_MOVED is not part of the mask */ 618 #define RB_PAGE_MOVED 4UL 619 620 /* 621 * rb_list_head - remove any bit 622 */ 623 static struct list_head *rb_list_head(struct list_head *list) 624 { 625 unsigned long val = (unsigned long)list; 626 627 return (struct list_head *)(val & ~RB_FLAG_MASK); 628 } 629 630 /* 631 * rb_is_head_page - test if the given page is the head page 632 * 633 * Because the reader may move the head_page pointer, we can 634 * not trust what the head page is (it may be pointing to 635 * the reader page). But if the next page is a header page, 636 * its flags will be non zero. 637 */ 638 static int inline 639 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 640 struct buffer_page *page, struct list_head *list) 641 { 642 unsigned long val; 643 644 val = (unsigned long)list->next; 645 646 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 647 return RB_PAGE_MOVED; 648 649 return val & RB_FLAG_MASK; 650 } 651 652 /* 653 * rb_is_reader_page 654 * 655 * The unique thing about the reader page, is that, if the 656 * writer is ever on it, the previous pointer never points 657 * back to the reader page. 658 */ 659 static int rb_is_reader_page(struct buffer_page *page) 660 { 661 struct list_head *list = page->list.prev; 662 663 return rb_list_head(list->next) != &page->list; 664 } 665 666 /* 667 * rb_set_list_to_head - set a list_head to be pointing to head. 668 */ 669 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 670 struct list_head *list) 671 { 672 unsigned long *ptr; 673 674 ptr = (unsigned long *)&list->next; 675 *ptr |= RB_PAGE_HEAD; 676 *ptr &= ~RB_PAGE_UPDATE; 677 } 678 679 /* 680 * rb_head_page_activate - sets up head page 681 */ 682 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 683 { 684 struct buffer_page *head; 685 686 head = cpu_buffer->head_page; 687 if (!head) 688 return; 689 690 /* 691 * Set the previous list pointer to have the HEAD flag. 692 */ 693 rb_set_list_to_head(cpu_buffer, head->list.prev); 694 } 695 696 static void rb_list_head_clear(struct list_head *list) 697 { 698 unsigned long *ptr = (unsigned long *)&list->next; 699 700 *ptr &= ~RB_FLAG_MASK; 701 } 702 703 /* 704 * rb_head_page_dactivate - clears head page ptr (for free list) 705 */ 706 static void 707 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 708 { 709 struct list_head *hd; 710 711 /* Go through the whole list and clear any pointers found. */ 712 rb_list_head_clear(cpu_buffer->pages); 713 714 list_for_each(hd, cpu_buffer->pages) 715 rb_list_head_clear(hd); 716 } 717 718 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 719 struct buffer_page *head, 720 struct buffer_page *prev, 721 int old_flag, int new_flag) 722 { 723 struct list_head *list; 724 unsigned long val = (unsigned long)&head->list; 725 unsigned long ret; 726 727 list = &prev->list; 728 729 val &= ~RB_FLAG_MASK; 730 731 ret = cmpxchg((unsigned long *)&list->next, 732 val | old_flag, val | new_flag); 733 734 /* check if the reader took the page */ 735 if ((ret & ~RB_FLAG_MASK) != val) 736 return RB_PAGE_MOVED; 737 738 return ret & RB_FLAG_MASK; 739 } 740 741 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 742 struct buffer_page *head, 743 struct buffer_page *prev, 744 int old_flag) 745 { 746 return rb_head_page_set(cpu_buffer, head, prev, 747 old_flag, RB_PAGE_UPDATE); 748 } 749 750 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 751 struct buffer_page *head, 752 struct buffer_page *prev, 753 int old_flag) 754 { 755 return rb_head_page_set(cpu_buffer, head, prev, 756 old_flag, RB_PAGE_HEAD); 757 } 758 759 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 760 struct buffer_page *head, 761 struct buffer_page *prev, 762 int old_flag) 763 { 764 return rb_head_page_set(cpu_buffer, head, prev, 765 old_flag, RB_PAGE_NORMAL); 766 } 767 768 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 769 struct buffer_page **bpage) 770 { 771 struct list_head *p = rb_list_head((*bpage)->list.next); 772 773 *bpage = list_entry(p, struct buffer_page, list); 774 } 775 776 static struct buffer_page * 777 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 778 { 779 struct buffer_page *head; 780 struct buffer_page *page; 781 struct list_head *list; 782 int i; 783 784 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 785 return NULL; 786 787 /* sanity check */ 788 list = cpu_buffer->pages; 789 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 790 return NULL; 791 792 page = head = cpu_buffer->head_page; 793 /* 794 * It is possible that the writer moves the header behind 795 * where we started, and we miss in one loop. 796 * A second loop should grab the header, but we'll do 797 * three loops just because I'm paranoid. 798 */ 799 for (i = 0; i < 3; i++) { 800 do { 801 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 802 cpu_buffer->head_page = page; 803 return page; 804 } 805 rb_inc_page(cpu_buffer, &page); 806 } while (page != head); 807 } 808 809 RB_WARN_ON(cpu_buffer, 1); 810 811 return NULL; 812 } 813 814 static int rb_head_page_replace(struct buffer_page *old, 815 struct buffer_page *new) 816 { 817 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 818 unsigned long val; 819 unsigned long ret; 820 821 val = *ptr & ~RB_FLAG_MASK; 822 val |= RB_PAGE_HEAD; 823 824 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 825 826 return ret == val; 827 } 828 829 /* 830 * rb_tail_page_update - move the tail page forward 831 * 832 * Returns 1 if moved tail page, 0 if someone else did. 833 */ 834 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 835 struct buffer_page *tail_page, 836 struct buffer_page *next_page) 837 { 838 struct buffer_page *old_tail; 839 unsigned long old_entries; 840 unsigned long old_write; 841 int ret = 0; 842 843 /* 844 * The tail page now needs to be moved forward. 845 * 846 * We need to reset the tail page, but without messing 847 * with possible erasing of data brought in by interrupts 848 * that have moved the tail page and are currently on it. 849 * 850 * We add a counter to the write field to denote this. 851 */ 852 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 853 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 854 855 /* 856 * Just make sure we have seen our old_write and synchronize 857 * with any interrupts that come in. 858 */ 859 barrier(); 860 861 /* 862 * If the tail page is still the same as what we think 863 * it is, then it is up to us to update the tail 864 * pointer. 865 */ 866 if (tail_page == cpu_buffer->tail_page) { 867 /* Zero the write counter */ 868 unsigned long val = old_write & ~RB_WRITE_MASK; 869 unsigned long eval = old_entries & ~RB_WRITE_MASK; 870 871 /* 872 * This will only succeed if an interrupt did 873 * not come in and change it. In which case, we 874 * do not want to modify it. 875 * 876 * We add (void) to let the compiler know that we do not care 877 * about the return value of these functions. We use the 878 * cmpxchg to only update if an interrupt did not already 879 * do it for us. If the cmpxchg fails, we don't care. 880 */ 881 (void)local_cmpxchg(&next_page->write, old_write, val); 882 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 883 884 /* 885 * No need to worry about races with clearing out the commit. 886 * it only can increment when a commit takes place. But that 887 * only happens in the outer most nested commit. 888 */ 889 local_set(&next_page->page->commit, 0); 890 891 old_tail = cmpxchg(&cpu_buffer->tail_page, 892 tail_page, next_page); 893 894 if (old_tail == tail_page) 895 ret = 1; 896 } 897 898 return ret; 899 } 900 901 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 902 struct buffer_page *bpage) 903 { 904 unsigned long val = (unsigned long)bpage; 905 906 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 907 return 1; 908 909 return 0; 910 } 911 912 /** 913 * rb_check_list - make sure a pointer to a list has the last bits zero 914 */ 915 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 916 struct list_head *list) 917 { 918 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 919 return 1; 920 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 921 return 1; 922 return 0; 923 } 924 925 /** 926 * check_pages - integrity check of buffer pages 927 * @cpu_buffer: CPU buffer with pages to test 928 * 929 * As a safety measure we check to make sure the data pages have not 930 * been corrupted. 931 */ 932 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 933 { 934 struct list_head *head = cpu_buffer->pages; 935 struct buffer_page *bpage, *tmp; 936 937 rb_head_page_deactivate(cpu_buffer); 938 939 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 940 return -1; 941 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 942 return -1; 943 944 if (rb_check_list(cpu_buffer, head)) 945 return -1; 946 947 list_for_each_entry_safe(bpage, tmp, head, list) { 948 if (RB_WARN_ON(cpu_buffer, 949 bpage->list.next->prev != &bpage->list)) 950 return -1; 951 if (RB_WARN_ON(cpu_buffer, 952 bpage->list.prev->next != &bpage->list)) 953 return -1; 954 if (rb_check_list(cpu_buffer, &bpage->list)) 955 return -1; 956 } 957 958 rb_head_page_activate(cpu_buffer); 959 960 return 0; 961 } 962 963 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 964 unsigned nr_pages) 965 { 966 struct buffer_page *bpage, *tmp; 967 unsigned long addr; 968 LIST_HEAD(pages); 969 unsigned i; 970 971 WARN_ON(!nr_pages); 972 973 for (i = 0; i < nr_pages; i++) { 974 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 975 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 976 if (!bpage) 977 goto free_pages; 978 979 rb_check_bpage(cpu_buffer, bpage); 980 981 list_add(&bpage->list, &pages); 982 983 addr = __get_free_page(GFP_KERNEL); 984 if (!addr) 985 goto free_pages; 986 bpage->page = (void *)addr; 987 rb_init_page(bpage->page); 988 } 989 990 /* 991 * The ring buffer page list is a circular list that does not 992 * start and end with a list head. All page list items point to 993 * other pages. 994 */ 995 cpu_buffer->pages = pages.next; 996 list_del(&pages); 997 998 rb_check_pages(cpu_buffer); 999 1000 return 0; 1001 1002 free_pages: 1003 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1004 list_del_init(&bpage->list); 1005 free_buffer_page(bpage); 1006 } 1007 return -ENOMEM; 1008 } 1009 1010 static struct ring_buffer_per_cpu * 1011 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 1012 { 1013 struct ring_buffer_per_cpu *cpu_buffer; 1014 struct buffer_page *bpage; 1015 unsigned long addr; 1016 int ret; 1017 1018 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1019 GFP_KERNEL, cpu_to_node(cpu)); 1020 if (!cpu_buffer) 1021 return NULL; 1022 1023 cpu_buffer->cpu = cpu; 1024 cpu_buffer->buffer = buffer; 1025 spin_lock_init(&cpu_buffer->reader_lock); 1026 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1027 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1028 1029 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1030 GFP_KERNEL, cpu_to_node(cpu)); 1031 if (!bpage) 1032 goto fail_free_buffer; 1033 1034 rb_check_bpage(cpu_buffer, bpage); 1035 1036 cpu_buffer->reader_page = bpage; 1037 addr = __get_free_page(GFP_KERNEL); 1038 if (!addr) 1039 goto fail_free_reader; 1040 bpage->page = (void *)addr; 1041 rb_init_page(bpage->page); 1042 1043 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1044 1045 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1046 if (ret < 0) 1047 goto fail_free_reader; 1048 1049 cpu_buffer->head_page 1050 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1051 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1052 1053 rb_head_page_activate(cpu_buffer); 1054 1055 return cpu_buffer; 1056 1057 fail_free_reader: 1058 free_buffer_page(cpu_buffer->reader_page); 1059 1060 fail_free_buffer: 1061 kfree(cpu_buffer); 1062 return NULL; 1063 } 1064 1065 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1066 { 1067 struct list_head *head = cpu_buffer->pages; 1068 struct buffer_page *bpage, *tmp; 1069 1070 free_buffer_page(cpu_buffer->reader_page); 1071 1072 rb_head_page_deactivate(cpu_buffer); 1073 1074 if (head) { 1075 list_for_each_entry_safe(bpage, tmp, head, list) { 1076 list_del_init(&bpage->list); 1077 free_buffer_page(bpage); 1078 } 1079 bpage = list_entry(head, struct buffer_page, list); 1080 free_buffer_page(bpage); 1081 } 1082 1083 kfree(cpu_buffer); 1084 } 1085 1086 #ifdef CONFIG_HOTPLUG_CPU 1087 static int rb_cpu_notify(struct notifier_block *self, 1088 unsigned long action, void *hcpu); 1089 #endif 1090 1091 /** 1092 * ring_buffer_alloc - allocate a new ring_buffer 1093 * @size: the size in bytes per cpu that is needed. 1094 * @flags: attributes to set for the ring buffer. 1095 * 1096 * Currently the only flag that is available is the RB_FL_OVERWRITE 1097 * flag. This flag means that the buffer will overwrite old data 1098 * when the buffer wraps. If this flag is not set, the buffer will 1099 * drop data when the tail hits the head. 1100 */ 1101 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1102 struct lock_class_key *key) 1103 { 1104 struct ring_buffer *buffer; 1105 int bsize; 1106 int cpu; 1107 1108 /* keep it in its own cache line */ 1109 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1110 GFP_KERNEL); 1111 if (!buffer) 1112 return NULL; 1113 1114 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1115 goto fail_free_buffer; 1116 1117 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1118 buffer->flags = flags; 1119 buffer->clock = trace_clock_local; 1120 buffer->reader_lock_key = key; 1121 1122 /* need at least two pages */ 1123 if (buffer->pages < 2) 1124 buffer->pages = 2; 1125 1126 /* 1127 * In case of non-hotplug cpu, if the ring-buffer is allocated 1128 * in early initcall, it will not be notified of secondary cpus. 1129 * In that off case, we need to allocate for all possible cpus. 1130 */ 1131 #ifdef CONFIG_HOTPLUG_CPU 1132 get_online_cpus(); 1133 cpumask_copy(buffer->cpumask, cpu_online_mask); 1134 #else 1135 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1136 #endif 1137 buffer->cpus = nr_cpu_ids; 1138 1139 bsize = sizeof(void *) * nr_cpu_ids; 1140 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1141 GFP_KERNEL); 1142 if (!buffer->buffers) 1143 goto fail_free_cpumask; 1144 1145 for_each_buffer_cpu(buffer, cpu) { 1146 buffer->buffers[cpu] = 1147 rb_allocate_cpu_buffer(buffer, cpu); 1148 if (!buffer->buffers[cpu]) 1149 goto fail_free_buffers; 1150 } 1151 1152 #ifdef CONFIG_HOTPLUG_CPU 1153 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1154 buffer->cpu_notify.priority = 0; 1155 register_cpu_notifier(&buffer->cpu_notify); 1156 #endif 1157 1158 put_online_cpus(); 1159 mutex_init(&buffer->mutex); 1160 1161 return buffer; 1162 1163 fail_free_buffers: 1164 for_each_buffer_cpu(buffer, cpu) { 1165 if (buffer->buffers[cpu]) 1166 rb_free_cpu_buffer(buffer->buffers[cpu]); 1167 } 1168 kfree(buffer->buffers); 1169 1170 fail_free_cpumask: 1171 free_cpumask_var(buffer->cpumask); 1172 put_online_cpus(); 1173 1174 fail_free_buffer: 1175 kfree(buffer); 1176 return NULL; 1177 } 1178 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1179 1180 /** 1181 * ring_buffer_free - free a ring buffer. 1182 * @buffer: the buffer to free. 1183 */ 1184 void 1185 ring_buffer_free(struct ring_buffer *buffer) 1186 { 1187 int cpu; 1188 1189 get_online_cpus(); 1190 1191 #ifdef CONFIG_HOTPLUG_CPU 1192 unregister_cpu_notifier(&buffer->cpu_notify); 1193 #endif 1194 1195 for_each_buffer_cpu(buffer, cpu) 1196 rb_free_cpu_buffer(buffer->buffers[cpu]); 1197 1198 put_online_cpus(); 1199 1200 kfree(buffer->buffers); 1201 free_cpumask_var(buffer->cpumask); 1202 1203 kfree(buffer); 1204 } 1205 EXPORT_SYMBOL_GPL(ring_buffer_free); 1206 1207 void ring_buffer_set_clock(struct ring_buffer *buffer, 1208 u64 (*clock)(void)) 1209 { 1210 buffer->clock = clock; 1211 } 1212 1213 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1214 1215 static void 1216 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1217 { 1218 struct buffer_page *bpage; 1219 struct list_head *p; 1220 unsigned i; 1221 1222 spin_lock_irq(&cpu_buffer->reader_lock); 1223 rb_head_page_deactivate(cpu_buffer); 1224 1225 for (i = 0; i < nr_pages; i++) { 1226 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1227 goto out; 1228 p = cpu_buffer->pages->next; 1229 bpage = list_entry(p, struct buffer_page, list); 1230 list_del_init(&bpage->list); 1231 free_buffer_page(bpage); 1232 } 1233 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1234 goto out; 1235 1236 rb_reset_cpu(cpu_buffer); 1237 rb_check_pages(cpu_buffer); 1238 1239 out: 1240 spin_unlock_irq(&cpu_buffer->reader_lock); 1241 } 1242 1243 static void 1244 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1245 struct list_head *pages, unsigned nr_pages) 1246 { 1247 struct buffer_page *bpage; 1248 struct list_head *p; 1249 unsigned i; 1250 1251 spin_lock_irq(&cpu_buffer->reader_lock); 1252 rb_head_page_deactivate(cpu_buffer); 1253 1254 for (i = 0; i < nr_pages; i++) { 1255 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1256 goto out; 1257 p = pages->next; 1258 bpage = list_entry(p, struct buffer_page, list); 1259 list_del_init(&bpage->list); 1260 list_add_tail(&bpage->list, cpu_buffer->pages); 1261 } 1262 rb_reset_cpu(cpu_buffer); 1263 rb_check_pages(cpu_buffer); 1264 1265 out: 1266 spin_unlock_irq(&cpu_buffer->reader_lock); 1267 } 1268 1269 /** 1270 * ring_buffer_resize - resize the ring buffer 1271 * @buffer: the buffer to resize. 1272 * @size: the new size. 1273 * 1274 * Minimum size is 2 * BUF_PAGE_SIZE. 1275 * 1276 * Returns -1 on failure. 1277 */ 1278 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1279 { 1280 struct ring_buffer_per_cpu *cpu_buffer; 1281 unsigned nr_pages, rm_pages, new_pages; 1282 struct buffer_page *bpage, *tmp; 1283 unsigned long buffer_size; 1284 unsigned long addr; 1285 LIST_HEAD(pages); 1286 int i, cpu; 1287 1288 /* 1289 * Always succeed at resizing a non-existent buffer: 1290 */ 1291 if (!buffer) 1292 return size; 1293 1294 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1295 size *= BUF_PAGE_SIZE; 1296 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1297 1298 /* we need a minimum of two pages */ 1299 if (size < BUF_PAGE_SIZE * 2) 1300 size = BUF_PAGE_SIZE * 2; 1301 1302 if (size == buffer_size) 1303 return size; 1304 1305 atomic_inc(&buffer->record_disabled); 1306 1307 /* Make sure all writers are done with this buffer. */ 1308 synchronize_sched(); 1309 1310 mutex_lock(&buffer->mutex); 1311 get_online_cpus(); 1312 1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1314 1315 if (size < buffer_size) { 1316 1317 /* easy case, just free pages */ 1318 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1319 goto out_fail; 1320 1321 rm_pages = buffer->pages - nr_pages; 1322 1323 for_each_buffer_cpu(buffer, cpu) { 1324 cpu_buffer = buffer->buffers[cpu]; 1325 rb_remove_pages(cpu_buffer, rm_pages); 1326 } 1327 goto out; 1328 } 1329 1330 /* 1331 * This is a bit more difficult. We only want to add pages 1332 * when we can allocate enough for all CPUs. We do this 1333 * by allocating all the pages and storing them on a local 1334 * link list. If we succeed in our allocation, then we 1335 * add these pages to the cpu_buffers. Otherwise we just free 1336 * them all and return -ENOMEM; 1337 */ 1338 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1339 goto out_fail; 1340 1341 new_pages = nr_pages - buffer->pages; 1342 1343 for_each_buffer_cpu(buffer, cpu) { 1344 for (i = 0; i < new_pages; i++) { 1345 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1346 cache_line_size()), 1347 GFP_KERNEL, cpu_to_node(cpu)); 1348 if (!bpage) 1349 goto free_pages; 1350 list_add(&bpage->list, &pages); 1351 addr = __get_free_page(GFP_KERNEL); 1352 if (!addr) 1353 goto free_pages; 1354 bpage->page = (void *)addr; 1355 rb_init_page(bpage->page); 1356 } 1357 } 1358 1359 for_each_buffer_cpu(buffer, cpu) { 1360 cpu_buffer = buffer->buffers[cpu]; 1361 rb_insert_pages(cpu_buffer, &pages, new_pages); 1362 } 1363 1364 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1365 goto out_fail; 1366 1367 out: 1368 buffer->pages = nr_pages; 1369 put_online_cpus(); 1370 mutex_unlock(&buffer->mutex); 1371 1372 atomic_dec(&buffer->record_disabled); 1373 1374 return size; 1375 1376 free_pages: 1377 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1378 list_del_init(&bpage->list); 1379 free_buffer_page(bpage); 1380 } 1381 put_online_cpus(); 1382 mutex_unlock(&buffer->mutex); 1383 atomic_dec(&buffer->record_disabled); 1384 return -ENOMEM; 1385 1386 /* 1387 * Something went totally wrong, and we are too paranoid 1388 * to even clean up the mess. 1389 */ 1390 out_fail: 1391 put_online_cpus(); 1392 mutex_unlock(&buffer->mutex); 1393 atomic_dec(&buffer->record_disabled); 1394 return -1; 1395 } 1396 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1397 1398 static inline void * 1399 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1400 { 1401 return bpage->data + index; 1402 } 1403 1404 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1405 { 1406 return bpage->page->data + index; 1407 } 1408 1409 static inline struct ring_buffer_event * 1410 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1411 { 1412 return __rb_page_index(cpu_buffer->reader_page, 1413 cpu_buffer->reader_page->read); 1414 } 1415 1416 static inline struct ring_buffer_event * 1417 rb_iter_head_event(struct ring_buffer_iter *iter) 1418 { 1419 return __rb_page_index(iter->head_page, iter->head); 1420 } 1421 1422 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1423 { 1424 return local_read(&bpage->write) & RB_WRITE_MASK; 1425 } 1426 1427 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1428 { 1429 return local_read(&bpage->page->commit); 1430 } 1431 1432 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1433 { 1434 return local_read(&bpage->entries) & RB_WRITE_MASK; 1435 } 1436 1437 /* Size is determined by what has been commited */ 1438 static inline unsigned rb_page_size(struct buffer_page *bpage) 1439 { 1440 return rb_page_commit(bpage); 1441 } 1442 1443 static inline unsigned 1444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1445 { 1446 return rb_page_commit(cpu_buffer->commit_page); 1447 } 1448 1449 static inline unsigned 1450 rb_event_index(struct ring_buffer_event *event) 1451 { 1452 unsigned long addr = (unsigned long)event; 1453 1454 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1455 } 1456 1457 static inline int 1458 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1459 struct ring_buffer_event *event) 1460 { 1461 unsigned long addr = (unsigned long)event; 1462 unsigned long index; 1463 1464 index = rb_event_index(event); 1465 addr &= PAGE_MASK; 1466 1467 return cpu_buffer->commit_page->page == (void *)addr && 1468 rb_commit_index(cpu_buffer) == index; 1469 } 1470 1471 static void 1472 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1473 { 1474 unsigned long max_count; 1475 1476 /* 1477 * We only race with interrupts and NMIs on this CPU. 1478 * If we own the commit event, then we can commit 1479 * all others that interrupted us, since the interruptions 1480 * are in stack format (they finish before they come 1481 * back to us). This allows us to do a simple loop to 1482 * assign the commit to the tail. 1483 */ 1484 again: 1485 max_count = cpu_buffer->buffer->pages * 100; 1486 1487 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1488 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1489 return; 1490 if (RB_WARN_ON(cpu_buffer, 1491 rb_is_reader_page(cpu_buffer->tail_page))) 1492 return; 1493 local_set(&cpu_buffer->commit_page->page->commit, 1494 rb_page_write(cpu_buffer->commit_page)); 1495 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1496 cpu_buffer->write_stamp = 1497 cpu_buffer->commit_page->page->time_stamp; 1498 /* add barrier to keep gcc from optimizing too much */ 1499 barrier(); 1500 } 1501 while (rb_commit_index(cpu_buffer) != 1502 rb_page_write(cpu_buffer->commit_page)) { 1503 1504 local_set(&cpu_buffer->commit_page->page->commit, 1505 rb_page_write(cpu_buffer->commit_page)); 1506 RB_WARN_ON(cpu_buffer, 1507 local_read(&cpu_buffer->commit_page->page->commit) & 1508 ~RB_WRITE_MASK); 1509 barrier(); 1510 } 1511 1512 /* again, keep gcc from optimizing */ 1513 barrier(); 1514 1515 /* 1516 * If an interrupt came in just after the first while loop 1517 * and pushed the tail page forward, we will be left with 1518 * a dangling commit that will never go forward. 1519 */ 1520 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1521 goto again; 1522 } 1523 1524 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1525 { 1526 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1527 cpu_buffer->reader_page->read = 0; 1528 } 1529 1530 static void rb_inc_iter(struct ring_buffer_iter *iter) 1531 { 1532 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1533 1534 /* 1535 * The iterator could be on the reader page (it starts there). 1536 * But the head could have moved, since the reader was 1537 * found. Check for this case and assign the iterator 1538 * to the head page instead of next. 1539 */ 1540 if (iter->head_page == cpu_buffer->reader_page) 1541 iter->head_page = rb_set_head_page(cpu_buffer); 1542 else 1543 rb_inc_page(cpu_buffer, &iter->head_page); 1544 1545 iter->read_stamp = iter->head_page->page->time_stamp; 1546 iter->head = 0; 1547 } 1548 1549 /** 1550 * ring_buffer_update_event - update event type and data 1551 * @event: the even to update 1552 * @type: the type of event 1553 * @length: the size of the event field in the ring buffer 1554 * 1555 * Update the type and data fields of the event. The length 1556 * is the actual size that is written to the ring buffer, 1557 * and with this, we can determine what to place into the 1558 * data field. 1559 */ 1560 static void 1561 rb_update_event(struct ring_buffer_event *event, 1562 unsigned type, unsigned length) 1563 { 1564 event->type_len = type; 1565 1566 switch (type) { 1567 1568 case RINGBUF_TYPE_PADDING: 1569 case RINGBUF_TYPE_TIME_EXTEND: 1570 case RINGBUF_TYPE_TIME_STAMP: 1571 break; 1572 1573 case 0: 1574 length -= RB_EVNT_HDR_SIZE; 1575 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 1576 event->array[0] = length; 1577 else 1578 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1579 break; 1580 default: 1581 BUG(); 1582 } 1583 } 1584 1585 /* 1586 * rb_handle_head_page - writer hit the head page 1587 * 1588 * Returns: +1 to retry page 1589 * 0 to continue 1590 * -1 on error 1591 */ 1592 static int 1593 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1594 struct buffer_page *tail_page, 1595 struct buffer_page *next_page) 1596 { 1597 struct buffer_page *new_head; 1598 int entries; 1599 int type; 1600 int ret; 1601 1602 entries = rb_page_entries(next_page); 1603 1604 /* 1605 * The hard part is here. We need to move the head 1606 * forward, and protect against both readers on 1607 * other CPUs and writers coming in via interrupts. 1608 */ 1609 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1610 RB_PAGE_HEAD); 1611 1612 /* 1613 * type can be one of four: 1614 * NORMAL - an interrupt already moved it for us 1615 * HEAD - we are the first to get here. 1616 * UPDATE - we are the interrupt interrupting 1617 * a current move. 1618 * MOVED - a reader on another CPU moved the next 1619 * pointer to its reader page. Give up 1620 * and try again. 1621 */ 1622 1623 switch (type) { 1624 case RB_PAGE_HEAD: 1625 /* 1626 * We changed the head to UPDATE, thus 1627 * it is our responsibility to update 1628 * the counters. 1629 */ 1630 local_add(entries, &cpu_buffer->overrun); 1631 1632 /* 1633 * The entries will be zeroed out when we move the 1634 * tail page. 1635 */ 1636 1637 /* still more to do */ 1638 break; 1639 1640 case RB_PAGE_UPDATE: 1641 /* 1642 * This is an interrupt that interrupt the 1643 * previous update. Still more to do. 1644 */ 1645 break; 1646 case RB_PAGE_NORMAL: 1647 /* 1648 * An interrupt came in before the update 1649 * and processed this for us. 1650 * Nothing left to do. 1651 */ 1652 return 1; 1653 case RB_PAGE_MOVED: 1654 /* 1655 * The reader is on another CPU and just did 1656 * a swap with our next_page. 1657 * Try again. 1658 */ 1659 return 1; 1660 default: 1661 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1662 return -1; 1663 } 1664 1665 /* 1666 * Now that we are here, the old head pointer is 1667 * set to UPDATE. This will keep the reader from 1668 * swapping the head page with the reader page. 1669 * The reader (on another CPU) will spin till 1670 * we are finished. 1671 * 1672 * We just need to protect against interrupts 1673 * doing the job. We will set the next pointer 1674 * to HEAD. After that, we set the old pointer 1675 * to NORMAL, but only if it was HEAD before. 1676 * otherwise we are an interrupt, and only 1677 * want the outer most commit to reset it. 1678 */ 1679 new_head = next_page; 1680 rb_inc_page(cpu_buffer, &new_head); 1681 1682 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1683 RB_PAGE_NORMAL); 1684 1685 /* 1686 * Valid returns are: 1687 * HEAD - an interrupt came in and already set it. 1688 * NORMAL - One of two things: 1689 * 1) We really set it. 1690 * 2) A bunch of interrupts came in and moved 1691 * the page forward again. 1692 */ 1693 switch (ret) { 1694 case RB_PAGE_HEAD: 1695 case RB_PAGE_NORMAL: 1696 /* OK */ 1697 break; 1698 default: 1699 RB_WARN_ON(cpu_buffer, 1); 1700 return -1; 1701 } 1702 1703 /* 1704 * It is possible that an interrupt came in, 1705 * set the head up, then more interrupts came in 1706 * and moved it again. When we get back here, 1707 * the page would have been set to NORMAL but we 1708 * just set it back to HEAD. 1709 * 1710 * How do you detect this? Well, if that happened 1711 * the tail page would have moved. 1712 */ 1713 if (ret == RB_PAGE_NORMAL) { 1714 /* 1715 * If the tail had moved passed next, then we need 1716 * to reset the pointer. 1717 */ 1718 if (cpu_buffer->tail_page != tail_page && 1719 cpu_buffer->tail_page != next_page) 1720 rb_head_page_set_normal(cpu_buffer, new_head, 1721 next_page, 1722 RB_PAGE_HEAD); 1723 } 1724 1725 /* 1726 * If this was the outer most commit (the one that 1727 * changed the original pointer from HEAD to UPDATE), 1728 * then it is up to us to reset it to NORMAL. 1729 */ 1730 if (type == RB_PAGE_HEAD) { 1731 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1732 tail_page, 1733 RB_PAGE_UPDATE); 1734 if (RB_WARN_ON(cpu_buffer, 1735 ret != RB_PAGE_UPDATE)) 1736 return -1; 1737 } 1738 1739 return 0; 1740 } 1741 1742 static unsigned rb_calculate_event_length(unsigned length) 1743 { 1744 struct ring_buffer_event event; /* Used only for sizeof array */ 1745 1746 /* zero length can cause confusions */ 1747 if (!length) 1748 length = 1; 1749 1750 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 1751 length += sizeof(event.array[0]); 1752 1753 length += RB_EVNT_HDR_SIZE; 1754 length = ALIGN(length, RB_ARCH_ALIGNMENT); 1755 1756 return length; 1757 } 1758 1759 static inline void 1760 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1761 struct buffer_page *tail_page, 1762 unsigned long tail, unsigned long length) 1763 { 1764 struct ring_buffer_event *event; 1765 1766 /* 1767 * Only the event that crossed the page boundary 1768 * must fill the old tail_page with padding. 1769 */ 1770 if (tail >= BUF_PAGE_SIZE) { 1771 local_sub(length, &tail_page->write); 1772 return; 1773 } 1774 1775 event = __rb_page_index(tail_page, tail); 1776 kmemcheck_annotate_bitfield(event, bitfield); 1777 1778 /* 1779 * Save the original length to the meta data. 1780 * This will be used by the reader to add lost event 1781 * counter. 1782 */ 1783 tail_page->real_end = tail; 1784 1785 /* 1786 * If this event is bigger than the minimum size, then 1787 * we need to be careful that we don't subtract the 1788 * write counter enough to allow another writer to slip 1789 * in on this page. 1790 * We put in a discarded commit instead, to make sure 1791 * that this space is not used again. 1792 * 1793 * If we are less than the minimum size, we don't need to 1794 * worry about it. 1795 */ 1796 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1797 /* No room for any events */ 1798 1799 /* Mark the rest of the page with padding */ 1800 rb_event_set_padding(event); 1801 1802 /* Set the write back to the previous setting */ 1803 local_sub(length, &tail_page->write); 1804 return; 1805 } 1806 1807 /* Put in a discarded event */ 1808 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1809 event->type_len = RINGBUF_TYPE_PADDING; 1810 /* time delta must be non zero */ 1811 event->time_delta = 1; 1812 1813 /* Set write to end of buffer */ 1814 length = (tail + length) - BUF_PAGE_SIZE; 1815 local_sub(length, &tail_page->write); 1816 } 1817 1818 static struct ring_buffer_event * 1819 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1820 unsigned long length, unsigned long tail, 1821 struct buffer_page *tail_page, u64 *ts) 1822 { 1823 struct buffer_page *commit_page = cpu_buffer->commit_page; 1824 struct ring_buffer *buffer = cpu_buffer->buffer; 1825 struct buffer_page *next_page; 1826 int ret; 1827 1828 next_page = tail_page; 1829 1830 rb_inc_page(cpu_buffer, &next_page); 1831 1832 /* 1833 * If for some reason, we had an interrupt storm that made 1834 * it all the way around the buffer, bail, and warn 1835 * about it. 1836 */ 1837 if (unlikely(next_page == commit_page)) { 1838 local_inc(&cpu_buffer->commit_overrun); 1839 goto out_reset; 1840 } 1841 1842 /* 1843 * This is where the fun begins! 1844 * 1845 * We are fighting against races between a reader that 1846 * could be on another CPU trying to swap its reader 1847 * page with the buffer head. 1848 * 1849 * We are also fighting against interrupts coming in and 1850 * moving the head or tail on us as well. 1851 * 1852 * If the next page is the head page then we have filled 1853 * the buffer, unless the commit page is still on the 1854 * reader page. 1855 */ 1856 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1857 1858 /* 1859 * If the commit is not on the reader page, then 1860 * move the header page. 1861 */ 1862 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1863 /* 1864 * If we are not in overwrite mode, 1865 * this is easy, just stop here. 1866 */ 1867 if (!(buffer->flags & RB_FL_OVERWRITE)) 1868 goto out_reset; 1869 1870 ret = rb_handle_head_page(cpu_buffer, 1871 tail_page, 1872 next_page); 1873 if (ret < 0) 1874 goto out_reset; 1875 if (ret) 1876 goto out_again; 1877 } else { 1878 /* 1879 * We need to be careful here too. The 1880 * commit page could still be on the reader 1881 * page. We could have a small buffer, and 1882 * have filled up the buffer with events 1883 * from interrupts and such, and wrapped. 1884 * 1885 * Note, if the tail page is also the on the 1886 * reader_page, we let it move out. 1887 */ 1888 if (unlikely((cpu_buffer->commit_page != 1889 cpu_buffer->tail_page) && 1890 (cpu_buffer->commit_page == 1891 cpu_buffer->reader_page))) { 1892 local_inc(&cpu_buffer->commit_overrun); 1893 goto out_reset; 1894 } 1895 } 1896 } 1897 1898 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1899 if (ret) { 1900 /* 1901 * Nested commits always have zero deltas, so 1902 * just reread the time stamp 1903 */ 1904 *ts = rb_time_stamp(buffer); 1905 next_page->page->time_stamp = *ts; 1906 } 1907 1908 out_again: 1909 1910 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1911 1912 /* fail and let the caller try again */ 1913 return ERR_PTR(-EAGAIN); 1914 1915 out_reset: 1916 /* reset write */ 1917 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1918 1919 return NULL; 1920 } 1921 1922 static struct ring_buffer_event * 1923 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 1924 unsigned type, unsigned long length, u64 *ts) 1925 { 1926 struct buffer_page *tail_page; 1927 struct ring_buffer_event *event; 1928 unsigned long tail, write; 1929 1930 tail_page = cpu_buffer->tail_page; 1931 write = local_add_return(length, &tail_page->write); 1932 1933 /* set write to only the index of the write */ 1934 write &= RB_WRITE_MASK; 1935 tail = write - length; 1936 1937 /* See if we shot pass the end of this buffer page */ 1938 if (write > BUF_PAGE_SIZE) 1939 return rb_move_tail(cpu_buffer, length, tail, 1940 tail_page, ts); 1941 1942 /* We reserved something on the buffer */ 1943 1944 event = __rb_page_index(tail_page, tail); 1945 kmemcheck_annotate_bitfield(event, bitfield); 1946 rb_update_event(event, type, length); 1947 1948 /* The passed in type is zero for DATA */ 1949 if (likely(!type)) 1950 local_inc(&tail_page->entries); 1951 1952 /* 1953 * If this is the first commit on the page, then update 1954 * its timestamp. 1955 */ 1956 if (!tail) 1957 tail_page->page->time_stamp = *ts; 1958 1959 return event; 1960 } 1961 1962 static inline int 1963 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 1964 struct ring_buffer_event *event) 1965 { 1966 unsigned long new_index, old_index; 1967 struct buffer_page *bpage; 1968 unsigned long index; 1969 unsigned long addr; 1970 1971 new_index = rb_event_index(event); 1972 old_index = new_index + rb_event_length(event); 1973 addr = (unsigned long)event; 1974 addr &= PAGE_MASK; 1975 1976 bpage = cpu_buffer->tail_page; 1977 1978 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 1979 unsigned long write_mask = 1980 local_read(&bpage->write) & ~RB_WRITE_MASK; 1981 /* 1982 * This is on the tail page. It is possible that 1983 * a write could come in and move the tail page 1984 * and write to the next page. That is fine 1985 * because we just shorten what is on this page. 1986 */ 1987 old_index += write_mask; 1988 new_index += write_mask; 1989 index = local_cmpxchg(&bpage->write, old_index, new_index); 1990 if (index == old_index) 1991 return 1; 1992 } 1993 1994 /* could not discard */ 1995 return 0; 1996 } 1997 1998 static int 1999 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2000 u64 *ts, u64 *delta) 2001 { 2002 struct ring_buffer_event *event; 2003 int ret; 2004 2005 WARN_ONCE(*delta > (1ULL << 59), 2006 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n", 2007 (unsigned long long)*delta, 2008 (unsigned long long)*ts, 2009 (unsigned long long)cpu_buffer->write_stamp); 2010 2011 /* 2012 * The delta is too big, we to add a 2013 * new timestamp. 2014 */ 2015 event = __rb_reserve_next(cpu_buffer, 2016 RINGBUF_TYPE_TIME_EXTEND, 2017 RB_LEN_TIME_EXTEND, 2018 ts); 2019 if (!event) 2020 return -EBUSY; 2021 2022 if (PTR_ERR(event) == -EAGAIN) 2023 return -EAGAIN; 2024 2025 /* Only a commited time event can update the write stamp */ 2026 if (rb_event_is_commit(cpu_buffer, event)) { 2027 /* 2028 * If this is the first on the page, then it was 2029 * updated with the page itself. Try to discard it 2030 * and if we can't just make it zero. 2031 */ 2032 if (rb_event_index(event)) { 2033 event->time_delta = *delta & TS_MASK; 2034 event->array[0] = *delta >> TS_SHIFT; 2035 } else { 2036 /* try to discard, since we do not need this */ 2037 if (!rb_try_to_discard(cpu_buffer, event)) { 2038 /* nope, just zero it */ 2039 event->time_delta = 0; 2040 event->array[0] = 0; 2041 } 2042 } 2043 cpu_buffer->write_stamp = *ts; 2044 /* let the caller know this was the commit */ 2045 ret = 1; 2046 } else { 2047 /* Try to discard the event */ 2048 if (!rb_try_to_discard(cpu_buffer, event)) { 2049 /* Darn, this is just wasted space */ 2050 event->time_delta = 0; 2051 event->array[0] = 0; 2052 } 2053 ret = 0; 2054 } 2055 2056 *delta = 0; 2057 2058 return ret; 2059 } 2060 2061 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2062 { 2063 local_inc(&cpu_buffer->committing); 2064 local_inc(&cpu_buffer->commits); 2065 } 2066 2067 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2068 { 2069 unsigned long commits; 2070 2071 if (RB_WARN_ON(cpu_buffer, 2072 !local_read(&cpu_buffer->committing))) 2073 return; 2074 2075 again: 2076 commits = local_read(&cpu_buffer->commits); 2077 /* synchronize with interrupts */ 2078 barrier(); 2079 if (local_read(&cpu_buffer->committing) == 1) 2080 rb_set_commit_to_write(cpu_buffer); 2081 2082 local_dec(&cpu_buffer->committing); 2083 2084 /* synchronize with interrupts */ 2085 barrier(); 2086 2087 /* 2088 * Need to account for interrupts coming in between the 2089 * updating of the commit page and the clearing of the 2090 * committing counter. 2091 */ 2092 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2093 !local_read(&cpu_buffer->committing)) { 2094 local_inc(&cpu_buffer->committing); 2095 goto again; 2096 } 2097 } 2098 2099 static struct ring_buffer_event * 2100 rb_reserve_next_event(struct ring_buffer *buffer, 2101 struct ring_buffer_per_cpu *cpu_buffer, 2102 unsigned long length) 2103 { 2104 struct ring_buffer_event *event; 2105 u64 ts, delta = 0; 2106 int commit = 0; 2107 int nr_loops = 0; 2108 2109 rb_start_commit(cpu_buffer); 2110 2111 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2112 /* 2113 * Due to the ability to swap a cpu buffer from a buffer 2114 * it is possible it was swapped before we committed. 2115 * (committing stops a swap). We check for it here and 2116 * if it happened, we have to fail the write. 2117 */ 2118 barrier(); 2119 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2120 local_dec(&cpu_buffer->committing); 2121 local_dec(&cpu_buffer->commits); 2122 return NULL; 2123 } 2124 #endif 2125 2126 length = rb_calculate_event_length(length); 2127 again: 2128 /* 2129 * We allow for interrupts to reenter here and do a trace. 2130 * If one does, it will cause this original code to loop 2131 * back here. Even with heavy interrupts happening, this 2132 * should only happen a few times in a row. If this happens 2133 * 1000 times in a row, there must be either an interrupt 2134 * storm or we have something buggy. 2135 * Bail! 2136 */ 2137 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2138 goto out_fail; 2139 2140 ts = rb_time_stamp(cpu_buffer->buffer); 2141 2142 /* 2143 * Only the first commit can update the timestamp. 2144 * Yes there is a race here. If an interrupt comes in 2145 * just after the conditional and it traces too, then it 2146 * will also check the deltas. More than one timestamp may 2147 * also be made. But only the entry that did the actual 2148 * commit will be something other than zero. 2149 */ 2150 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page && 2151 rb_page_write(cpu_buffer->tail_page) == 2152 rb_commit_index(cpu_buffer))) { 2153 u64 diff; 2154 2155 diff = ts - cpu_buffer->write_stamp; 2156 2157 /* make sure this diff is calculated here */ 2158 barrier(); 2159 2160 /* Did the write stamp get updated already? */ 2161 if (unlikely(ts < cpu_buffer->write_stamp)) 2162 goto get_event; 2163 2164 delta = diff; 2165 if (unlikely(test_time_stamp(delta))) { 2166 2167 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta); 2168 if (commit == -EBUSY) 2169 goto out_fail; 2170 2171 if (commit == -EAGAIN) 2172 goto again; 2173 2174 RB_WARN_ON(cpu_buffer, commit < 0); 2175 } 2176 } 2177 2178 get_event: 2179 event = __rb_reserve_next(cpu_buffer, 0, length, &ts); 2180 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2181 goto again; 2182 2183 if (!event) 2184 goto out_fail; 2185 2186 if (!rb_event_is_commit(cpu_buffer, event)) 2187 delta = 0; 2188 2189 event->time_delta = delta; 2190 2191 return event; 2192 2193 out_fail: 2194 rb_end_commit(cpu_buffer); 2195 return NULL; 2196 } 2197 2198 #ifdef CONFIG_TRACING 2199 2200 #define TRACE_RECURSIVE_DEPTH 16 2201 2202 static int trace_recursive_lock(void) 2203 { 2204 current->trace_recursion++; 2205 2206 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH)) 2207 return 0; 2208 2209 /* Disable all tracing before we do anything else */ 2210 tracing_off_permanent(); 2211 2212 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2213 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2214 current->trace_recursion, 2215 hardirq_count() >> HARDIRQ_SHIFT, 2216 softirq_count() >> SOFTIRQ_SHIFT, 2217 in_nmi()); 2218 2219 WARN_ON_ONCE(1); 2220 return -1; 2221 } 2222 2223 static void trace_recursive_unlock(void) 2224 { 2225 WARN_ON_ONCE(!current->trace_recursion); 2226 2227 current->trace_recursion--; 2228 } 2229 2230 #else 2231 2232 #define trace_recursive_lock() (0) 2233 #define trace_recursive_unlock() do { } while (0) 2234 2235 #endif 2236 2237 static DEFINE_PER_CPU(int, rb_need_resched); 2238 2239 /** 2240 * ring_buffer_lock_reserve - reserve a part of the buffer 2241 * @buffer: the ring buffer to reserve from 2242 * @length: the length of the data to reserve (excluding event header) 2243 * 2244 * Returns a reseverd event on the ring buffer to copy directly to. 2245 * The user of this interface will need to get the body to write into 2246 * and can use the ring_buffer_event_data() interface. 2247 * 2248 * The length is the length of the data needed, not the event length 2249 * which also includes the event header. 2250 * 2251 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2252 * If NULL is returned, then nothing has been allocated or locked. 2253 */ 2254 struct ring_buffer_event * 2255 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2256 { 2257 struct ring_buffer_per_cpu *cpu_buffer; 2258 struct ring_buffer_event *event; 2259 int cpu, resched; 2260 2261 if (ring_buffer_flags != RB_BUFFERS_ON) 2262 return NULL; 2263 2264 /* If we are tracing schedule, we don't want to recurse */ 2265 resched = ftrace_preempt_disable(); 2266 2267 if (atomic_read(&buffer->record_disabled)) 2268 goto out_nocheck; 2269 2270 if (trace_recursive_lock()) 2271 goto out_nocheck; 2272 2273 cpu = raw_smp_processor_id(); 2274 2275 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2276 goto out; 2277 2278 cpu_buffer = buffer->buffers[cpu]; 2279 2280 if (atomic_read(&cpu_buffer->record_disabled)) 2281 goto out; 2282 2283 if (length > BUF_MAX_DATA_SIZE) 2284 goto out; 2285 2286 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2287 if (!event) 2288 goto out; 2289 2290 /* 2291 * Need to store resched state on this cpu. 2292 * Only the first needs to. 2293 */ 2294 2295 if (preempt_count() == 1) 2296 per_cpu(rb_need_resched, cpu) = resched; 2297 2298 return event; 2299 2300 out: 2301 trace_recursive_unlock(); 2302 2303 out_nocheck: 2304 ftrace_preempt_enable(resched); 2305 return NULL; 2306 } 2307 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2308 2309 static void 2310 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2311 struct ring_buffer_event *event) 2312 { 2313 /* 2314 * The event first in the commit queue updates the 2315 * time stamp. 2316 */ 2317 if (rb_event_is_commit(cpu_buffer, event)) 2318 cpu_buffer->write_stamp += event->time_delta; 2319 } 2320 2321 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2322 struct ring_buffer_event *event) 2323 { 2324 local_inc(&cpu_buffer->entries); 2325 rb_update_write_stamp(cpu_buffer, event); 2326 rb_end_commit(cpu_buffer); 2327 } 2328 2329 /** 2330 * ring_buffer_unlock_commit - commit a reserved 2331 * @buffer: The buffer to commit to 2332 * @event: The event pointer to commit. 2333 * 2334 * This commits the data to the ring buffer, and releases any locks held. 2335 * 2336 * Must be paired with ring_buffer_lock_reserve. 2337 */ 2338 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2339 struct ring_buffer_event *event) 2340 { 2341 struct ring_buffer_per_cpu *cpu_buffer; 2342 int cpu = raw_smp_processor_id(); 2343 2344 cpu_buffer = buffer->buffers[cpu]; 2345 2346 rb_commit(cpu_buffer, event); 2347 2348 trace_recursive_unlock(); 2349 2350 /* 2351 * Only the last preempt count needs to restore preemption. 2352 */ 2353 if (preempt_count() == 1) 2354 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2355 else 2356 preempt_enable_no_resched_notrace(); 2357 2358 return 0; 2359 } 2360 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2361 2362 static inline void rb_event_discard(struct ring_buffer_event *event) 2363 { 2364 /* array[0] holds the actual length for the discarded event */ 2365 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2366 event->type_len = RINGBUF_TYPE_PADDING; 2367 /* time delta must be non zero */ 2368 if (!event->time_delta) 2369 event->time_delta = 1; 2370 } 2371 2372 /* 2373 * Decrement the entries to the page that an event is on. 2374 * The event does not even need to exist, only the pointer 2375 * to the page it is on. This may only be called before the commit 2376 * takes place. 2377 */ 2378 static inline void 2379 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2380 struct ring_buffer_event *event) 2381 { 2382 unsigned long addr = (unsigned long)event; 2383 struct buffer_page *bpage = cpu_buffer->commit_page; 2384 struct buffer_page *start; 2385 2386 addr &= PAGE_MASK; 2387 2388 /* Do the likely case first */ 2389 if (likely(bpage->page == (void *)addr)) { 2390 local_dec(&bpage->entries); 2391 return; 2392 } 2393 2394 /* 2395 * Because the commit page may be on the reader page we 2396 * start with the next page and check the end loop there. 2397 */ 2398 rb_inc_page(cpu_buffer, &bpage); 2399 start = bpage; 2400 do { 2401 if (bpage->page == (void *)addr) { 2402 local_dec(&bpage->entries); 2403 return; 2404 } 2405 rb_inc_page(cpu_buffer, &bpage); 2406 } while (bpage != start); 2407 2408 /* commit not part of this buffer?? */ 2409 RB_WARN_ON(cpu_buffer, 1); 2410 } 2411 2412 /** 2413 * ring_buffer_commit_discard - discard an event that has not been committed 2414 * @buffer: the ring buffer 2415 * @event: non committed event to discard 2416 * 2417 * Sometimes an event that is in the ring buffer needs to be ignored. 2418 * This function lets the user discard an event in the ring buffer 2419 * and then that event will not be read later. 2420 * 2421 * This function only works if it is called before the the item has been 2422 * committed. It will try to free the event from the ring buffer 2423 * if another event has not been added behind it. 2424 * 2425 * If another event has been added behind it, it will set the event 2426 * up as discarded, and perform the commit. 2427 * 2428 * If this function is called, do not call ring_buffer_unlock_commit on 2429 * the event. 2430 */ 2431 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2432 struct ring_buffer_event *event) 2433 { 2434 struct ring_buffer_per_cpu *cpu_buffer; 2435 int cpu; 2436 2437 /* The event is discarded regardless */ 2438 rb_event_discard(event); 2439 2440 cpu = smp_processor_id(); 2441 cpu_buffer = buffer->buffers[cpu]; 2442 2443 /* 2444 * This must only be called if the event has not been 2445 * committed yet. Thus we can assume that preemption 2446 * is still disabled. 2447 */ 2448 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2449 2450 rb_decrement_entry(cpu_buffer, event); 2451 if (rb_try_to_discard(cpu_buffer, event)) 2452 goto out; 2453 2454 /* 2455 * The commit is still visible by the reader, so we 2456 * must still update the timestamp. 2457 */ 2458 rb_update_write_stamp(cpu_buffer, event); 2459 out: 2460 rb_end_commit(cpu_buffer); 2461 2462 trace_recursive_unlock(); 2463 2464 /* 2465 * Only the last preempt count needs to restore preemption. 2466 */ 2467 if (preempt_count() == 1) 2468 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2469 else 2470 preempt_enable_no_resched_notrace(); 2471 2472 } 2473 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2474 2475 /** 2476 * ring_buffer_write - write data to the buffer without reserving 2477 * @buffer: The ring buffer to write to. 2478 * @length: The length of the data being written (excluding the event header) 2479 * @data: The data to write to the buffer. 2480 * 2481 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2482 * one function. If you already have the data to write to the buffer, it 2483 * may be easier to simply call this function. 2484 * 2485 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2486 * and not the length of the event which would hold the header. 2487 */ 2488 int ring_buffer_write(struct ring_buffer *buffer, 2489 unsigned long length, 2490 void *data) 2491 { 2492 struct ring_buffer_per_cpu *cpu_buffer; 2493 struct ring_buffer_event *event; 2494 void *body; 2495 int ret = -EBUSY; 2496 int cpu, resched; 2497 2498 if (ring_buffer_flags != RB_BUFFERS_ON) 2499 return -EBUSY; 2500 2501 resched = ftrace_preempt_disable(); 2502 2503 if (atomic_read(&buffer->record_disabled)) 2504 goto out; 2505 2506 cpu = raw_smp_processor_id(); 2507 2508 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2509 goto out; 2510 2511 cpu_buffer = buffer->buffers[cpu]; 2512 2513 if (atomic_read(&cpu_buffer->record_disabled)) 2514 goto out; 2515 2516 if (length > BUF_MAX_DATA_SIZE) 2517 goto out; 2518 2519 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2520 if (!event) 2521 goto out; 2522 2523 body = rb_event_data(event); 2524 2525 memcpy(body, data, length); 2526 2527 rb_commit(cpu_buffer, event); 2528 2529 ret = 0; 2530 out: 2531 ftrace_preempt_enable(resched); 2532 2533 return ret; 2534 } 2535 EXPORT_SYMBOL_GPL(ring_buffer_write); 2536 2537 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2538 { 2539 struct buffer_page *reader = cpu_buffer->reader_page; 2540 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2541 struct buffer_page *commit = cpu_buffer->commit_page; 2542 2543 /* In case of error, head will be NULL */ 2544 if (unlikely(!head)) 2545 return 1; 2546 2547 return reader->read == rb_page_commit(reader) && 2548 (commit == reader || 2549 (commit == head && 2550 head->read == rb_page_commit(commit))); 2551 } 2552 2553 /** 2554 * ring_buffer_record_disable - stop all writes into the buffer 2555 * @buffer: The ring buffer to stop writes to. 2556 * 2557 * This prevents all writes to the buffer. Any attempt to write 2558 * to the buffer after this will fail and return NULL. 2559 * 2560 * The caller should call synchronize_sched() after this. 2561 */ 2562 void ring_buffer_record_disable(struct ring_buffer *buffer) 2563 { 2564 atomic_inc(&buffer->record_disabled); 2565 } 2566 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2567 2568 /** 2569 * ring_buffer_record_enable - enable writes to the buffer 2570 * @buffer: The ring buffer to enable writes 2571 * 2572 * Note, multiple disables will need the same number of enables 2573 * to truly enable the writing (much like preempt_disable). 2574 */ 2575 void ring_buffer_record_enable(struct ring_buffer *buffer) 2576 { 2577 atomic_dec(&buffer->record_disabled); 2578 } 2579 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2580 2581 /** 2582 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2583 * @buffer: The ring buffer to stop writes to. 2584 * @cpu: The CPU buffer to stop 2585 * 2586 * This prevents all writes to the buffer. Any attempt to write 2587 * to the buffer after this will fail and return NULL. 2588 * 2589 * The caller should call synchronize_sched() after this. 2590 */ 2591 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2592 { 2593 struct ring_buffer_per_cpu *cpu_buffer; 2594 2595 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2596 return; 2597 2598 cpu_buffer = buffer->buffers[cpu]; 2599 atomic_inc(&cpu_buffer->record_disabled); 2600 } 2601 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2602 2603 /** 2604 * ring_buffer_record_enable_cpu - enable writes to the buffer 2605 * @buffer: The ring buffer to enable writes 2606 * @cpu: The CPU to enable. 2607 * 2608 * Note, multiple disables will need the same number of enables 2609 * to truly enable the writing (much like preempt_disable). 2610 */ 2611 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2612 { 2613 struct ring_buffer_per_cpu *cpu_buffer; 2614 2615 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2616 return; 2617 2618 cpu_buffer = buffer->buffers[cpu]; 2619 atomic_dec(&cpu_buffer->record_disabled); 2620 } 2621 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2622 2623 /** 2624 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2625 * @buffer: The ring buffer 2626 * @cpu: The per CPU buffer to get the entries from. 2627 */ 2628 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2629 { 2630 struct ring_buffer_per_cpu *cpu_buffer; 2631 unsigned long ret; 2632 2633 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2634 return 0; 2635 2636 cpu_buffer = buffer->buffers[cpu]; 2637 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun)) 2638 - cpu_buffer->read; 2639 2640 return ret; 2641 } 2642 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2643 2644 /** 2645 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2646 * @buffer: The ring buffer 2647 * @cpu: The per CPU buffer to get the number of overruns from 2648 */ 2649 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2650 { 2651 struct ring_buffer_per_cpu *cpu_buffer; 2652 unsigned long ret; 2653 2654 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2655 return 0; 2656 2657 cpu_buffer = buffer->buffers[cpu]; 2658 ret = local_read(&cpu_buffer->overrun); 2659 2660 return ret; 2661 } 2662 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2663 2664 /** 2665 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2666 * @buffer: The ring buffer 2667 * @cpu: The per CPU buffer to get the number of overruns from 2668 */ 2669 unsigned long 2670 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2671 { 2672 struct ring_buffer_per_cpu *cpu_buffer; 2673 unsigned long ret; 2674 2675 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2676 return 0; 2677 2678 cpu_buffer = buffer->buffers[cpu]; 2679 ret = local_read(&cpu_buffer->commit_overrun); 2680 2681 return ret; 2682 } 2683 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2684 2685 /** 2686 * ring_buffer_entries - get the number of entries in a buffer 2687 * @buffer: The ring buffer 2688 * 2689 * Returns the total number of entries in the ring buffer 2690 * (all CPU entries) 2691 */ 2692 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2693 { 2694 struct ring_buffer_per_cpu *cpu_buffer; 2695 unsigned long entries = 0; 2696 int cpu; 2697 2698 /* if you care about this being correct, lock the buffer */ 2699 for_each_buffer_cpu(buffer, cpu) { 2700 cpu_buffer = buffer->buffers[cpu]; 2701 entries += (local_read(&cpu_buffer->entries) - 2702 local_read(&cpu_buffer->overrun)) - cpu_buffer->read; 2703 } 2704 2705 return entries; 2706 } 2707 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2708 2709 /** 2710 * ring_buffer_overruns - get the number of overruns in buffer 2711 * @buffer: The ring buffer 2712 * 2713 * Returns the total number of overruns in the ring buffer 2714 * (all CPU entries) 2715 */ 2716 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2717 { 2718 struct ring_buffer_per_cpu *cpu_buffer; 2719 unsigned long overruns = 0; 2720 int cpu; 2721 2722 /* if you care about this being correct, lock the buffer */ 2723 for_each_buffer_cpu(buffer, cpu) { 2724 cpu_buffer = buffer->buffers[cpu]; 2725 overruns += local_read(&cpu_buffer->overrun); 2726 } 2727 2728 return overruns; 2729 } 2730 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2731 2732 static void rb_iter_reset(struct ring_buffer_iter *iter) 2733 { 2734 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2735 2736 /* Iterator usage is expected to have record disabled */ 2737 if (list_empty(&cpu_buffer->reader_page->list)) { 2738 iter->head_page = rb_set_head_page(cpu_buffer); 2739 if (unlikely(!iter->head_page)) 2740 return; 2741 iter->head = iter->head_page->read; 2742 } else { 2743 iter->head_page = cpu_buffer->reader_page; 2744 iter->head = cpu_buffer->reader_page->read; 2745 } 2746 if (iter->head) 2747 iter->read_stamp = cpu_buffer->read_stamp; 2748 else 2749 iter->read_stamp = iter->head_page->page->time_stamp; 2750 iter->cache_reader_page = cpu_buffer->reader_page; 2751 iter->cache_read = cpu_buffer->read; 2752 } 2753 2754 /** 2755 * ring_buffer_iter_reset - reset an iterator 2756 * @iter: The iterator to reset 2757 * 2758 * Resets the iterator, so that it will start from the beginning 2759 * again. 2760 */ 2761 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2762 { 2763 struct ring_buffer_per_cpu *cpu_buffer; 2764 unsigned long flags; 2765 2766 if (!iter) 2767 return; 2768 2769 cpu_buffer = iter->cpu_buffer; 2770 2771 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2772 rb_iter_reset(iter); 2773 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2774 } 2775 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2776 2777 /** 2778 * ring_buffer_iter_empty - check if an iterator has no more to read 2779 * @iter: The iterator to check 2780 */ 2781 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2782 { 2783 struct ring_buffer_per_cpu *cpu_buffer; 2784 2785 cpu_buffer = iter->cpu_buffer; 2786 2787 return iter->head_page == cpu_buffer->commit_page && 2788 iter->head == rb_commit_index(cpu_buffer); 2789 } 2790 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2791 2792 static void 2793 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2794 struct ring_buffer_event *event) 2795 { 2796 u64 delta; 2797 2798 switch (event->type_len) { 2799 case RINGBUF_TYPE_PADDING: 2800 return; 2801 2802 case RINGBUF_TYPE_TIME_EXTEND: 2803 delta = event->array[0]; 2804 delta <<= TS_SHIFT; 2805 delta += event->time_delta; 2806 cpu_buffer->read_stamp += delta; 2807 return; 2808 2809 case RINGBUF_TYPE_TIME_STAMP: 2810 /* FIXME: not implemented */ 2811 return; 2812 2813 case RINGBUF_TYPE_DATA: 2814 cpu_buffer->read_stamp += event->time_delta; 2815 return; 2816 2817 default: 2818 BUG(); 2819 } 2820 return; 2821 } 2822 2823 static void 2824 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2825 struct ring_buffer_event *event) 2826 { 2827 u64 delta; 2828 2829 switch (event->type_len) { 2830 case RINGBUF_TYPE_PADDING: 2831 return; 2832 2833 case RINGBUF_TYPE_TIME_EXTEND: 2834 delta = event->array[0]; 2835 delta <<= TS_SHIFT; 2836 delta += event->time_delta; 2837 iter->read_stamp += delta; 2838 return; 2839 2840 case RINGBUF_TYPE_TIME_STAMP: 2841 /* FIXME: not implemented */ 2842 return; 2843 2844 case RINGBUF_TYPE_DATA: 2845 iter->read_stamp += event->time_delta; 2846 return; 2847 2848 default: 2849 BUG(); 2850 } 2851 return; 2852 } 2853 2854 static struct buffer_page * 2855 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2856 { 2857 struct buffer_page *reader = NULL; 2858 unsigned long overwrite; 2859 unsigned long flags; 2860 int nr_loops = 0; 2861 int ret; 2862 2863 local_irq_save(flags); 2864 arch_spin_lock(&cpu_buffer->lock); 2865 2866 again: 2867 /* 2868 * This should normally only loop twice. But because the 2869 * start of the reader inserts an empty page, it causes 2870 * a case where we will loop three times. There should be no 2871 * reason to loop four times (that I know of). 2872 */ 2873 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 2874 reader = NULL; 2875 goto out; 2876 } 2877 2878 reader = cpu_buffer->reader_page; 2879 2880 /* If there's more to read, return this page */ 2881 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 2882 goto out; 2883 2884 /* Never should we have an index greater than the size */ 2885 if (RB_WARN_ON(cpu_buffer, 2886 cpu_buffer->reader_page->read > rb_page_size(reader))) 2887 goto out; 2888 2889 /* check if we caught up to the tail */ 2890 reader = NULL; 2891 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 2892 goto out; 2893 2894 /* 2895 * Reset the reader page to size zero. 2896 */ 2897 local_set(&cpu_buffer->reader_page->write, 0); 2898 local_set(&cpu_buffer->reader_page->entries, 0); 2899 local_set(&cpu_buffer->reader_page->page->commit, 0); 2900 cpu_buffer->reader_page->real_end = 0; 2901 2902 spin: 2903 /* 2904 * Splice the empty reader page into the list around the head. 2905 */ 2906 reader = rb_set_head_page(cpu_buffer); 2907 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 2908 cpu_buffer->reader_page->list.prev = reader->list.prev; 2909 2910 /* 2911 * cpu_buffer->pages just needs to point to the buffer, it 2912 * has no specific buffer page to point to. Lets move it out 2913 * of our way so we don't accidently swap it. 2914 */ 2915 cpu_buffer->pages = reader->list.prev; 2916 2917 /* The reader page will be pointing to the new head */ 2918 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2919 2920 /* 2921 * We want to make sure we read the overruns after we set up our 2922 * pointers to the next object. The writer side does a 2923 * cmpxchg to cross pages which acts as the mb on the writer 2924 * side. Note, the reader will constantly fail the swap 2925 * while the writer is updating the pointers, so this 2926 * guarantees that the overwrite recorded here is the one we 2927 * want to compare with the last_overrun. 2928 */ 2929 smp_mb(); 2930 overwrite = local_read(&(cpu_buffer->overrun)); 2931 2932 /* 2933 * Here's the tricky part. 2934 * 2935 * We need to move the pointer past the header page. 2936 * But we can only do that if a writer is not currently 2937 * moving it. The page before the header page has the 2938 * flag bit '1' set if it is pointing to the page we want. 2939 * but if the writer is in the process of moving it 2940 * than it will be '2' or already moved '0'. 2941 */ 2942 2943 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 2944 2945 /* 2946 * If we did not convert it, then we must try again. 2947 */ 2948 if (!ret) 2949 goto spin; 2950 2951 /* 2952 * Yeah! We succeeded in replacing the page. 2953 * 2954 * Now make the new head point back to the reader page. 2955 */ 2956 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 2957 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2958 2959 /* Finally update the reader page to the new head */ 2960 cpu_buffer->reader_page = reader; 2961 rb_reset_reader_page(cpu_buffer); 2962 2963 if (overwrite != cpu_buffer->last_overrun) { 2964 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 2965 cpu_buffer->last_overrun = overwrite; 2966 } 2967 2968 goto again; 2969 2970 out: 2971 arch_spin_unlock(&cpu_buffer->lock); 2972 local_irq_restore(flags); 2973 2974 return reader; 2975 } 2976 2977 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 2978 { 2979 struct ring_buffer_event *event; 2980 struct buffer_page *reader; 2981 unsigned length; 2982 2983 reader = rb_get_reader_page(cpu_buffer); 2984 2985 /* This function should not be called when buffer is empty */ 2986 if (RB_WARN_ON(cpu_buffer, !reader)) 2987 return; 2988 2989 event = rb_reader_event(cpu_buffer); 2990 2991 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 2992 cpu_buffer->read++; 2993 2994 rb_update_read_stamp(cpu_buffer, event); 2995 2996 length = rb_event_length(event); 2997 cpu_buffer->reader_page->read += length; 2998 } 2999 3000 static void rb_advance_iter(struct ring_buffer_iter *iter) 3001 { 3002 struct ring_buffer *buffer; 3003 struct ring_buffer_per_cpu *cpu_buffer; 3004 struct ring_buffer_event *event; 3005 unsigned length; 3006 3007 cpu_buffer = iter->cpu_buffer; 3008 buffer = cpu_buffer->buffer; 3009 3010 /* 3011 * Check if we are at the end of the buffer. 3012 */ 3013 if (iter->head >= rb_page_size(iter->head_page)) { 3014 /* discarded commits can make the page empty */ 3015 if (iter->head_page == cpu_buffer->commit_page) 3016 return; 3017 rb_inc_iter(iter); 3018 return; 3019 } 3020 3021 event = rb_iter_head_event(iter); 3022 3023 length = rb_event_length(event); 3024 3025 /* 3026 * This should not be called to advance the header if we are 3027 * at the tail of the buffer. 3028 */ 3029 if (RB_WARN_ON(cpu_buffer, 3030 (iter->head_page == cpu_buffer->commit_page) && 3031 (iter->head + length > rb_commit_index(cpu_buffer)))) 3032 return; 3033 3034 rb_update_iter_read_stamp(iter, event); 3035 3036 iter->head += length; 3037 3038 /* check for end of page padding */ 3039 if ((iter->head >= rb_page_size(iter->head_page)) && 3040 (iter->head_page != cpu_buffer->commit_page)) 3041 rb_advance_iter(iter); 3042 } 3043 3044 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3045 { 3046 return cpu_buffer->lost_events; 3047 } 3048 3049 static struct ring_buffer_event * 3050 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3051 unsigned long *lost_events) 3052 { 3053 struct ring_buffer_event *event; 3054 struct buffer_page *reader; 3055 int nr_loops = 0; 3056 3057 again: 3058 /* 3059 * We repeat when a timestamp is encountered. It is possible 3060 * to get multiple timestamps from an interrupt entering just 3061 * as one timestamp is about to be written, or from discarded 3062 * commits. The most that we can have is the number on a single page. 3063 */ 3064 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3065 return NULL; 3066 3067 reader = rb_get_reader_page(cpu_buffer); 3068 if (!reader) 3069 return NULL; 3070 3071 event = rb_reader_event(cpu_buffer); 3072 3073 switch (event->type_len) { 3074 case RINGBUF_TYPE_PADDING: 3075 if (rb_null_event(event)) 3076 RB_WARN_ON(cpu_buffer, 1); 3077 /* 3078 * Because the writer could be discarding every 3079 * event it creates (which would probably be bad) 3080 * if we were to go back to "again" then we may never 3081 * catch up, and will trigger the warn on, or lock 3082 * the box. Return the padding, and we will release 3083 * the current locks, and try again. 3084 */ 3085 return event; 3086 3087 case RINGBUF_TYPE_TIME_EXTEND: 3088 /* Internal data, OK to advance */ 3089 rb_advance_reader(cpu_buffer); 3090 goto again; 3091 3092 case RINGBUF_TYPE_TIME_STAMP: 3093 /* FIXME: not implemented */ 3094 rb_advance_reader(cpu_buffer); 3095 goto again; 3096 3097 case RINGBUF_TYPE_DATA: 3098 if (ts) { 3099 *ts = cpu_buffer->read_stamp + event->time_delta; 3100 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3101 cpu_buffer->cpu, ts); 3102 } 3103 if (lost_events) 3104 *lost_events = rb_lost_events(cpu_buffer); 3105 return event; 3106 3107 default: 3108 BUG(); 3109 } 3110 3111 return NULL; 3112 } 3113 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3114 3115 static struct ring_buffer_event * 3116 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3117 { 3118 struct ring_buffer *buffer; 3119 struct ring_buffer_per_cpu *cpu_buffer; 3120 struct ring_buffer_event *event; 3121 int nr_loops = 0; 3122 3123 cpu_buffer = iter->cpu_buffer; 3124 buffer = cpu_buffer->buffer; 3125 3126 /* 3127 * Check if someone performed a consuming read to 3128 * the buffer. A consuming read invalidates the iterator 3129 * and we need to reset the iterator in this case. 3130 */ 3131 if (unlikely(iter->cache_read != cpu_buffer->read || 3132 iter->cache_reader_page != cpu_buffer->reader_page)) 3133 rb_iter_reset(iter); 3134 3135 again: 3136 if (ring_buffer_iter_empty(iter)) 3137 return NULL; 3138 3139 /* 3140 * We repeat when a timestamp is encountered. 3141 * We can get multiple timestamps by nested interrupts or also 3142 * if filtering is on (discarding commits). Since discarding 3143 * commits can be frequent we can get a lot of timestamps. 3144 * But we limit them by not adding timestamps if they begin 3145 * at the start of a page. 3146 */ 3147 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3148 return NULL; 3149 3150 if (rb_per_cpu_empty(cpu_buffer)) 3151 return NULL; 3152 3153 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3154 rb_inc_iter(iter); 3155 goto again; 3156 } 3157 3158 event = rb_iter_head_event(iter); 3159 3160 switch (event->type_len) { 3161 case RINGBUF_TYPE_PADDING: 3162 if (rb_null_event(event)) { 3163 rb_inc_iter(iter); 3164 goto again; 3165 } 3166 rb_advance_iter(iter); 3167 return event; 3168 3169 case RINGBUF_TYPE_TIME_EXTEND: 3170 /* Internal data, OK to advance */ 3171 rb_advance_iter(iter); 3172 goto again; 3173 3174 case RINGBUF_TYPE_TIME_STAMP: 3175 /* FIXME: not implemented */ 3176 rb_advance_iter(iter); 3177 goto again; 3178 3179 case RINGBUF_TYPE_DATA: 3180 if (ts) { 3181 *ts = iter->read_stamp + event->time_delta; 3182 ring_buffer_normalize_time_stamp(buffer, 3183 cpu_buffer->cpu, ts); 3184 } 3185 return event; 3186 3187 default: 3188 BUG(); 3189 } 3190 3191 return NULL; 3192 } 3193 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3194 3195 static inline int rb_ok_to_lock(void) 3196 { 3197 /* 3198 * If an NMI die dumps out the content of the ring buffer 3199 * do not grab locks. We also permanently disable the ring 3200 * buffer too. A one time deal is all you get from reading 3201 * the ring buffer from an NMI. 3202 */ 3203 if (likely(!in_nmi())) 3204 return 1; 3205 3206 tracing_off_permanent(); 3207 return 0; 3208 } 3209 3210 /** 3211 * ring_buffer_peek - peek at the next event to be read 3212 * @buffer: The ring buffer to read 3213 * @cpu: The cpu to peak at 3214 * @ts: The timestamp counter of this event. 3215 * @lost_events: a variable to store if events were lost (may be NULL) 3216 * 3217 * This will return the event that will be read next, but does 3218 * not consume the data. 3219 */ 3220 struct ring_buffer_event * 3221 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3222 unsigned long *lost_events) 3223 { 3224 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3225 struct ring_buffer_event *event; 3226 unsigned long flags; 3227 int dolock; 3228 3229 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3230 return NULL; 3231 3232 dolock = rb_ok_to_lock(); 3233 again: 3234 local_irq_save(flags); 3235 if (dolock) 3236 spin_lock(&cpu_buffer->reader_lock); 3237 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3238 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3239 rb_advance_reader(cpu_buffer); 3240 if (dolock) 3241 spin_unlock(&cpu_buffer->reader_lock); 3242 local_irq_restore(flags); 3243 3244 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3245 goto again; 3246 3247 return event; 3248 } 3249 3250 /** 3251 * ring_buffer_iter_peek - peek at the next event to be read 3252 * @iter: The ring buffer iterator 3253 * @ts: The timestamp counter of this event. 3254 * 3255 * This will return the event that will be read next, but does 3256 * not increment the iterator. 3257 */ 3258 struct ring_buffer_event * 3259 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3260 { 3261 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3262 struct ring_buffer_event *event; 3263 unsigned long flags; 3264 3265 again: 3266 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3267 event = rb_iter_peek(iter, ts); 3268 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3269 3270 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3271 goto again; 3272 3273 return event; 3274 } 3275 3276 /** 3277 * ring_buffer_consume - return an event and consume it 3278 * @buffer: The ring buffer to get the next event from 3279 * @cpu: the cpu to read the buffer from 3280 * @ts: a variable to store the timestamp (may be NULL) 3281 * @lost_events: a variable to store if events were lost (may be NULL) 3282 * 3283 * Returns the next event in the ring buffer, and that event is consumed. 3284 * Meaning, that sequential reads will keep returning a different event, 3285 * and eventually empty the ring buffer if the producer is slower. 3286 */ 3287 struct ring_buffer_event * 3288 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3289 unsigned long *lost_events) 3290 { 3291 struct ring_buffer_per_cpu *cpu_buffer; 3292 struct ring_buffer_event *event = NULL; 3293 unsigned long flags; 3294 int dolock; 3295 3296 dolock = rb_ok_to_lock(); 3297 3298 again: 3299 /* might be called in atomic */ 3300 preempt_disable(); 3301 3302 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3303 goto out; 3304 3305 cpu_buffer = buffer->buffers[cpu]; 3306 local_irq_save(flags); 3307 if (dolock) 3308 spin_lock(&cpu_buffer->reader_lock); 3309 3310 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3311 if (event) { 3312 cpu_buffer->lost_events = 0; 3313 rb_advance_reader(cpu_buffer); 3314 } 3315 3316 if (dolock) 3317 spin_unlock(&cpu_buffer->reader_lock); 3318 local_irq_restore(flags); 3319 3320 out: 3321 preempt_enable(); 3322 3323 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3324 goto again; 3325 3326 return event; 3327 } 3328 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3329 3330 /** 3331 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3332 * @buffer: The ring buffer to read from 3333 * @cpu: The cpu buffer to iterate over 3334 * 3335 * This performs the initial preparations necessary to iterate 3336 * through the buffer. Memory is allocated, buffer recording 3337 * is disabled, and the iterator pointer is returned to the caller. 3338 * 3339 * Disabling buffer recordng prevents the reading from being 3340 * corrupted. This is not a consuming read, so a producer is not 3341 * expected. 3342 * 3343 * After a sequence of ring_buffer_read_prepare calls, the user is 3344 * expected to make at least one call to ring_buffer_prepare_sync. 3345 * Afterwards, ring_buffer_read_start is invoked to get things going 3346 * for real. 3347 * 3348 * This overall must be paired with ring_buffer_finish. 3349 */ 3350 struct ring_buffer_iter * 3351 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3352 { 3353 struct ring_buffer_per_cpu *cpu_buffer; 3354 struct ring_buffer_iter *iter; 3355 3356 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3357 return NULL; 3358 3359 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3360 if (!iter) 3361 return NULL; 3362 3363 cpu_buffer = buffer->buffers[cpu]; 3364 3365 iter->cpu_buffer = cpu_buffer; 3366 3367 atomic_inc(&cpu_buffer->record_disabled); 3368 3369 return iter; 3370 } 3371 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3372 3373 /** 3374 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3375 * 3376 * All previously invoked ring_buffer_read_prepare calls to prepare 3377 * iterators will be synchronized. Afterwards, read_buffer_read_start 3378 * calls on those iterators are allowed. 3379 */ 3380 void 3381 ring_buffer_read_prepare_sync(void) 3382 { 3383 synchronize_sched(); 3384 } 3385 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3386 3387 /** 3388 * ring_buffer_read_start - start a non consuming read of the buffer 3389 * @iter: The iterator returned by ring_buffer_read_prepare 3390 * 3391 * This finalizes the startup of an iteration through the buffer. 3392 * The iterator comes from a call to ring_buffer_read_prepare and 3393 * an intervening ring_buffer_read_prepare_sync must have been 3394 * performed. 3395 * 3396 * Must be paired with ring_buffer_finish. 3397 */ 3398 void 3399 ring_buffer_read_start(struct ring_buffer_iter *iter) 3400 { 3401 struct ring_buffer_per_cpu *cpu_buffer; 3402 unsigned long flags; 3403 3404 if (!iter) 3405 return; 3406 3407 cpu_buffer = iter->cpu_buffer; 3408 3409 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3410 arch_spin_lock(&cpu_buffer->lock); 3411 rb_iter_reset(iter); 3412 arch_spin_unlock(&cpu_buffer->lock); 3413 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3414 } 3415 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3416 3417 /** 3418 * ring_buffer_finish - finish reading the iterator of the buffer 3419 * @iter: The iterator retrieved by ring_buffer_start 3420 * 3421 * This re-enables the recording to the buffer, and frees the 3422 * iterator. 3423 */ 3424 void 3425 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3426 { 3427 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3428 3429 atomic_dec(&cpu_buffer->record_disabled); 3430 kfree(iter); 3431 } 3432 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3433 3434 /** 3435 * ring_buffer_read - read the next item in the ring buffer by the iterator 3436 * @iter: The ring buffer iterator 3437 * @ts: The time stamp of the event read. 3438 * 3439 * This reads the next event in the ring buffer and increments the iterator. 3440 */ 3441 struct ring_buffer_event * 3442 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3443 { 3444 struct ring_buffer_event *event; 3445 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3446 unsigned long flags; 3447 3448 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3449 again: 3450 event = rb_iter_peek(iter, ts); 3451 if (!event) 3452 goto out; 3453 3454 if (event->type_len == RINGBUF_TYPE_PADDING) 3455 goto again; 3456 3457 rb_advance_iter(iter); 3458 out: 3459 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3460 3461 return event; 3462 } 3463 EXPORT_SYMBOL_GPL(ring_buffer_read); 3464 3465 /** 3466 * ring_buffer_size - return the size of the ring buffer (in bytes) 3467 * @buffer: The ring buffer. 3468 */ 3469 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3470 { 3471 return BUF_PAGE_SIZE * buffer->pages; 3472 } 3473 EXPORT_SYMBOL_GPL(ring_buffer_size); 3474 3475 static void 3476 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3477 { 3478 rb_head_page_deactivate(cpu_buffer); 3479 3480 cpu_buffer->head_page 3481 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3482 local_set(&cpu_buffer->head_page->write, 0); 3483 local_set(&cpu_buffer->head_page->entries, 0); 3484 local_set(&cpu_buffer->head_page->page->commit, 0); 3485 3486 cpu_buffer->head_page->read = 0; 3487 3488 cpu_buffer->tail_page = cpu_buffer->head_page; 3489 cpu_buffer->commit_page = cpu_buffer->head_page; 3490 3491 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3492 local_set(&cpu_buffer->reader_page->write, 0); 3493 local_set(&cpu_buffer->reader_page->entries, 0); 3494 local_set(&cpu_buffer->reader_page->page->commit, 0); 3495 cpu_buffer->reader_page->read = 0; 3496 3497 local_set(&cpu_buffer->commit_overrun, 0); 3498 local_set(&cpu_buffer->overrun, 0); 3499 local_set(&cpu_buffer->entries, 0); 3500 local_set(&cpu_buffer->committing, 0); 3501 local_set(&cpu_buffer->commits, 0); 3502 cpu_buffer->read = 0; 3503 3504 cpu_buffer->write_stamp = 0; 3505 cpu_buffer->read_stamp = 0; 3506 3507 cpu_buffer->lost_events = 0; 3508 cpu_buffer->last_overrun = 0; 3509 3510 rb_head_page_activate(cpu_buffer); 3511 } 3512 3513 /** 3514 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3515 * @buffer: The ring buffer to reset a per cpu buffer of 3516 * @cpu: The CPU buffer to be reset 3517 */ 3518 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3519 { 3520 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3521 unsigned long flags; 3522 3523 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3524 return; 3525 3526 atomic_inc(&cpu_buffer->record_disabled); 3527 3528 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3529 3530 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3531 goto out; 3532 3533 arch_spin_lock(&cpu_buffer->lock); 3534 3535 rb_reset_cpu(cpu_buffer); 3536 3537 arch_spin_unlock(&cpu_buffer->lock); 3538 3539 out: 3540 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3541 3542 atomic_dec(&cpu_buffer->record_disabled); 3543 } 3544 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3545 3546 /** 3547 * ring_buffer_reset - reset a ring buffer 3548 * @buffer: The ring buffer to reset all cpu buffers 3549 */ 3550 void ring_buffer_reset(struct ring_buffer *buffer) 3551 { 3552 int cpu; 3553 3554 for_each_buffer_cpu(buffer, cpu) 3555 ring_buffer_reset_cpu(buffer, cpu); 3556 } 3557 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3558 3559 /** 3560 * rind_buffer_empty - is the ring buffer empty? 3561 * @buffer: The ring buffer to test 3562 */ 3563 int ring_buffer_empty(struct ring_buffer *buffer) 3564 { 3565 struct ring_buffer_per_cpu *cpu_buffer; 3566 unsigned long flags; 3567 int dolock; 3568 int cpu; 3569 int ret; 3570 3571 dolock = rb_ok_to_lock(); 3572 3573 /* yes this is racy, but if you don't like the race, lock the buffer */ 3574 for_each_buffer_cpu(buffer, cpu) { 3575 cpu_buffer = buffer->buffers[cpu]; 3576 local_irq_save(flags); 3577 if (dolock) 3578 spin_lock(&cpu_buffer->reader_lock); 3579 ret = rb_per_cpu_empty(cpu_buffer); 3580 if (dolock) 3581 spin_unlock(&cpu_buffer->reader_lock); 3582 local_irq_restore(flags); 3583 3584 if (!ret) 3585 return 0; 3586 } 3587 3588 return 1; 3589 } 3590 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3591 3592 /** 3593 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3594 * @buffer: The ring buffer 3595 * @cpu: The CPU buffer to test 3596 */ 3597 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3598 { 3599 struct ring_buffer_per_cpu *cpu_buffer; 3600 unsigned long flags; 3601 int dolock; 3602 int ret; 3603 3604 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3605 return 1; 3606 3607 dolock = rb_ok_to_lock(); 3608 3609 cpu_buffer = buffer->buffers[cpu]; 3610 local_irq_save(flags); 3611 if (dolock) 3612 spin_lock(&cpu_buffer->reader_lock); 3613 ret = rb_per_cpu_empty(cpu_buffer); 3614 if (dolock) 3615 spin_unlock(&cpu_buffer->reader_lock); 3616 local_irq_restore(flags); 3617 3618 return ret; 3619 } 3620 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3621 3622 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3623 /** 3624 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3625 * @buffer_a: One buffer to swap with 3626 * @buffer_b: The other buffer to swap with 3627 * 3628 * This function is useful for tracers that want to take a "snapshot" 3629 * of a CPU buffer and has another back up buffer lying around. 3630 * it is expected that the tracer handles the cpu buffer not being 3631 * used at the moment. 3632 */ 3633 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3634 struct ring_buffer *buffer_b, int cpu) 3635 { 3636 struct ring_buffer_per_cpu *cpu_buffer_a; 3637 struct ring_buffer_per_cpu *cpu_buffer_b; 3638 int ret = -EINVAL; 3639 3640 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3641 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3642 goto out; 3643 3644 /* At least make sure the two buffers are somewhat the same */ 3645 if (buffer_a->pages != buffer_b->pages) 3646 goto out; 3647 3648 ret = -EAGAIN; 3649 3650 if (ring_buffer_flags != RB_BUFFERS_ON) 3651 goto out; 3652 3653 if (atomic_read(&buffer_a->record_disabled)) 3654 goto out; 3655 3656 if (atomic_read(&buffer_b->record_disabled)) 3657 goto out; 3658 3659 cpu_buffer_a = buffer_a->buffers[cpu]; 3660 cpu_buffer_b = buffer_b->buffers[cpu]; 3661 3662 if (atomic_read(&cpu_buffer_a->record_disabled)) 3663 goto out; 3664 3665 if (atomic_read(&cpu_buffer_b->record_disabled)) 3666 goto out; 3667 3668 /* 3669 * We can't do a synchronize_sched here because this 3670 * function can be called in atomic context. 3671 * Normally this will be called from the same CPU as cpu. 3672 * If not it's up to the caller to protect this. 3673 */ 3674 atomic_inc(&cpu_buffer_a->record_disabled); 3675 atomic_inc(&cpu_buffer_b->record_disabled); 3676 3677 ret = -EBUSY; 3678 if (local_read(&cpu_buffer_a->committing)) 3679 goto out_dec; 3680 if (local_read(&cpu_buffer_b->committing)) 3681 goto out_dec; 3682 3683 buffer_a->buffers[cpu] = cpu_buffer_b; 3684 buffer_b->buffers[cpu] = cpu_buffer_a; 3685 3686 cpu_buffer_b->buffer = buffer_a; 3687 cpu_buffer_a->buffer = buffer_b; 3688 3689 ret = 0; 3690 3691 out_dec: 3692 atomic_dec(&cpu_buffer_a->record_disabled); 3693 atomic_dec(&cpu_buffer_b->record_disabled); 3694 out: 3695 return ret; 3696 } 3697 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3698 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3699 3700 /** 3701 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3702 * @buffer: the buffer to allocate for. 3703 * 3704 * This function is used in conjunction with ring_buffer_read_page. 3705 * When reading a full page from the ring buffer, these functions 3706 * can be used to speed up the process. The calling function should 3707 * allocate a few pages first with this function. Then when it 3708 * needs to get pages from the ring buffer, it passes the result 3709 * of this function into ring_buffer_read_page, which will swap 3710 * the page that was allocated, with the read page of the buffer. 3711 * 3712 * Returns: 3713 * The page allocated, or NULL on error. 3714 */ 3715 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer) 3716 { 3717 struct buffer_data_page *bpage; 3718 unsigned long addr; 3719 3720 addr = __get_free_page(GFP_KERNEL); 3721 if (!addr) 3722 return NULL; 3723 3724 bpage = (void *)addr; 3725 3726 rb_init_page(bpage); 3727 3728 return bpage; 3729 } 3730 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3731 3732 /** 3733 * ring_buffer_free_read_page - free an allocated read page 3734 * @buffer: the buffer the page was allocate for 3735 * @data: the page to free 3736 * 3737 * Free a page allocated from ring_buffer_alloc_read_page. 3738 */ 3739 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3740 { 3741 free_page((unsigned long)data); 3742 } 3743 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3744 3745 /** 3746 * ring_buffer_read_page - extract a page from the ring buffer 3747 * @buffer: buffer to extract from 3748 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3749 * @len: amount to extract 3750 * @cpu: the cpu of the buffer to extract 3751 * @full: should the extraction only happen when the page is full. 3752 * 3753 * This function will pull out a page from the ring buffer and consume it. 3754 * @data_page must be the address of the variable that was returned 3755 * from ring_buffer_alloc_read_page. This is because the page might be used 3756 * to swap with a page in the ring buffer. 3757 * 3758 * for example: 3759 * rpage = ring_buffer_alloc_read_page(buffer); 3760 * if (!rpage) 3761 * return error; 3762 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3763 * if (ret >= 0) 3764 * process_page(rpage, ret); 3765 * 3766 * When @full is set, the function will not return true unless 3767 * the writer is off the reader page. 3768 * 3769 * Note: it is up to the calling functions to handle sleeps and wakeups. 3770 * The ring buffer can be used anywhere in the kernel and can not 3771 * blindly call wake_up. The layer that uses the ring buffer must be 3772 * responsible for that. 3773 * 3774 * Returns: 3775 * >=0 if data has been transferred, returns the offset of consumed data. 3776 * <0 if no data has been transferred. 3777 */ 3778 int ring_buffer_read_page(struct ring_buffer *buffer, 3779 void **data_page, size_t len, int cpu, int full) 3780 { 3781 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3782 struct ring_buffer_event *event; 3783 struct buffer_data_page *bpage; 3784 struct buffer_page *reader; 3785 unsigned long missed_events; 3786 unsigned long flags; 3787 unsigned int commit; 3788 unsigned int read; 3789 u64 save_timestamp; 3790 int ret = -1; 3791 3792 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3793 goto out; 3794 3795 /* 3796 * If len is not big enough to hold the page header, then 3797 * we can not copy anything. 3798 */ 3799 if (len <= BUF_PAGE_HDR_SIZE) 3800 goto out; 3801 3802 len -= BUF_PAGE_HDR_SIZE; 3803 3804 if (!data_page) 3805 goto out; 3806 3807 bpage = *data_page; 3808 if (!bpage) 3809 goto out; 3810 3811 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3812 3813 reader = rb_get_reader_page(cpu_buffer); 3814 if (!reader) 3815 goto out_unlock; 3816 3817 event = rb_reader_event(cpu_buffer); 3818 3819 read = reader->read; 3820 commit = rb_page_commit(reader); 3821 3822 /* Check if any events were dropped */ 3823 missed_events = cpu_buffer->lost_events; 3824 3825 /* 3826 * If this page has been partially read or 3827 * if len is not big enough to read the rest of the page or 3828 * a writer is still on the page, then 3829 * we must copy the data from the page to the buffer. 3830 * Otherwise, we can simply swap the page with the one passed in. 3831 */ 3832 if (read || (len < (commit - read)) || 3833 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3834 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3835 unsigned int rpos = read; 3836 unsigned int pos = 0; 3837 unsigned int size; 3838 3839 if (full) 3840 goto out_unlock; 3841 3842 if (len > (commit - read)) 3843 len = (commit - read); 3844 3845 size = rb_event_length(event); 3846 3847 if (len < size) 3848 goto out_unlock; 3849 3850 /* save the current timestamp, since the user will need it */ 3851 save_timestamp = cpu_buffer->read_stamp; 3852 3853 /* Need to copy one event at a time */ 3854 do { 3855 memcpy(bpage->data + pos, rpage->data + rpos, size); 3856 3857 len -= size; 3858 3859 rb_advance_reader(cpu_buffer); 3860 rpos = reader->read; 3861 pos += size; 3862 3863 event = rb_reader_event(cpu_buffer); 3864 size = rb_event_length(event); 3865 } while (len > size); 3866 3867 /* update bpage */ 3868 local_set(&bpage->commit, pos); 3869 bpage->time_stamp = save_timestamp; 3870 3871 /* we copied everything to the beginning */ 3872 read = 0; 3873 } else { 3874 /* update the entry counter */ 3875 cpu_buffer->read += rb_page_entries(reader); 3876 3877 /* swap the pages */ 3878 rb_init_page(bpage); 3879 bpage = reader->page; 3880 reader->page = *data_page; 3881 local_set(&reader->write, 0); 3882 local_set(&reader->entries, 0); 3883 reader->read = 0; 3884 *data_page = bpage; 3885 3886 /* 3887 * Use the real_end for the data size, 3888 * This gives us a chance to store the lost events 3889 * on the page. 3890 */ 3891 if (reader->real_end) 3892 local_set(&bpage->commit, reader->real_end); 3893 } 3894 ret = read; 3895 3896 cpu_buffer->lost_events = 0; 3897 /* 3898 * Set a flag in the commit field if we lost events 3899 */ 3900 if (missed_events) { 3901 commit = local_read(&bpage->commit); 3902 3903 /* If there is room at the end of the page to save the 3904 * missed events, then record it there. 3905 */ 3906 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 3907 memcpy(&bpage->data[commit], &missed_events, 3908 sizeof(missed_events)); 3909 local_add(RB_MISSED_STORED, &bpage->commit); 3910 } 3911 local_add(RB_MISSED_EVENTS, &bpage->commit); 3912 } 3913 3914 out_unlock: 3915 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3916 3917 out: 3918 return ret; 3919 } 3920 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 3921 3922 #ifdef CONFIG_TRACING 3923 static ssize_t 3924 rb_simple_read(struct file *filp, char __user *ubuf, 3925 size_t cnt, loff_t *ppos) 3926 { 3927 unsigned long *p = filp->private_data; 3928 char buf[64]; 3929 int r; 3930 3931 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 3932 r = sprintf(buf, "permanently disabled\n"); 3933 else 3934 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 3935 3936 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 3937 } 3938 3939 static ssize_t 3940 rb_simple_write(struct file *filp, const char __user *ubuf, 3941 size_t cnt, loff_t *ppos) 3942 { 3943 unsigned long *p = filp->private_data; 3944 char buf[64]; 3945 unsigned long val; 3946 int ret; 3947 3948 if (cnt >= sizeof(buf)) 3949 return -EINVAL; 3950 3951 if (copy_from_user(&buf, ubuf, cnt)) 3952 return -EFAULT; 3953 3954 buf[cnt] = 0; 3955 3956 ret = strict_strtoul(buf, 10, &val); 3957 if (ret < 0) 3958 return ret; 3959 3960 if (val) 3961 set_bit(RB_BUFFERS_ON_BIT, p); 3962 else 3963 clear_bit(RB_BUFFERS_ON_BIT, p); 3964 3965 (*ppos)++; 3966 3967 return cnt; 3968 } 3969 3970 static const struct file_operations rb_simple_fops = { 3971 .open = tracing_open_generic, 3972 .read = rb_simple_read, 3973 .write = rb_simple_write, 3974 }; 3975 3976 3977 static __init int rb_init_debugfs(void) 3978 { 3979 struct dentry *d_tracer; 3980 3981 d_tracer = tracing_init_dentry(); 3982 3983 trace_create_file("tracing_on", 0644, d_tracer, 3984 &ring_buffer_flags, &rb_simple_fops); 3985 3986 return 0; 3987 } 3988 3989 fs_initcall(rb_init_debugfs); 3990 #endif 3991 3992 #ifdef CONFIG_HOTPLUG_CPU 3993 static int rb_cpu_notify(struct notifier_block *self, 3994 unsigned long action, void *hcpu) 3995 { 3996 struct ring_buffer *buffer = 3997 container_of(self, struct ring_buffer, cpu_notify); 3998 long cpu = (long)hcpu; 3999 4000 switch (action) { 4001 case CPU_UP_PREPARE: 4002 case CPU_UP_PREPARE_FROZEN: 4003 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4004 return NOTIFY_OK; 4005 4006 buffer->buffers[cpu] = 4007 rb_allocate_cpu_buffer(buffer, cpu); 4008 if (!buffer->buffers[cpu]) { 4009 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4010 cpu); 4011 return NOTIFY_OK; 4012 } 4013 smp_wmb(); 4014 cpumask_set_cpu(cpu, buffer->cpumask); 4015 break; 4016 case CPU_DOWN_PREPARE: 4017 case CPU_DOWN_PREPARE_FROZEN: 4018 /* 4019 * Do nothing. 4020 * If we were to free the buffer, then the user would 4021 * lose any trace that was in the buffer. 4022 */ 4023 break; 4024 default: 4025 break; 4026 } 4027 return NOTIFY_OK; 4028 } 4029 #endif 4030