xref: /linux/kernel/trace/ring_buffer.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23 
24 #include <asm/local.h>
25 #include "trace.h"
26 
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32 	int ret;
33 
34 	ret = trace_seq_printf(s, "# compressed entry header\n");
35 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38 	ret = trace_seq_printf(s, "\n");
39 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40 			       RINGBUF_TYPE_PADDING);
41 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 			       RINGBUF_TYPE_TIME_EXTEND);
43 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45 
46 	return ret;
47 }
48 
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116 
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134 
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145 
146 enum {
147 	RB_BUFFERS_ON_BIT	= 0,
148 	RB_BUFFERS_DISABLED_BIT	= 1,
149 };
150 
151 enum {
152 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
153 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155 
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171 
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185 
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196 
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202 	return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205 
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT		4U
208 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210 
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT	0
213 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT	1
216 # define RB_ARCH_ALIGNMENT		8U
217 #endif
218 
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221 
222 enum {
223 	RB_LEN_TIME_EXTEND = 8,
224 	RB_LEN_TIME_STAMP = 16,
225 };
226 
227 static inline int rb_null_event(struct ring_buffer_event *event)
228 {
229 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230 }
231 
232 static void rb_event_set_padding(struct ring_buffer_event *event)
233 {
234 	/* padding has a NULL time_delta */
235 	event->type_len = RINGBUF_TYPE_PADDING;
236 	event->time_delta = 0;
237 }
238 
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
241 {
242 	unsigned length;
243 
244 	if (event->type_len)
245 		length = event->type_len * RB_ALIGNMENT;
246 	else
247 		length = event->array[0];
248 	return length + RB_EVNT_HDR_SIZE;
249 }
250 
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
254 {
255 	switch (event->type_len) {
256 	case RINGBUF_TYPE_PADDING:
257 		if (rb_null_event(event))
258 			/* undefined */
259 			return -1;
260 		return  event->array[0] + RB_EVNT_HDR_SIZE;
261 
262 	case RINGBUF_TYPE_TIME_EXTEND:
263 		return RB_LEN_TIME_EXTEND;
264 
265 	case RINGBUF_TYPE_TIME_STAMP:
266 		return RB_LEN_TIME_STAMP;
267 
268 	case RINGBUF_TYPE_DATA:
269 		return rb_event_data_length(event);
270 	default:
271 		BUG();
272 	}
273 	/* not hit */
274 	return 0;
275 }
276 
277 /**
278  * ring_buffer_event_length - return the length of the event
279  * @event: the event to get the length of
280  */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283 	unsigned length = rb_event_length(event);
284 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285 		return length;
286 	length -= RB_EVNT_HDR_SIZE;
287 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288                 length -= sizeof(event->array[0]);
289 	return length;
290 }
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292 
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
296 {
297 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298 	/* If length is in len field, then array[0] has the data */
299 	if (event->type_len)
300 		return (void *)&event->array[0];
301 	/* Otherwise length is in array[0] and array[1] has the data */
302 	return (void *)&event->array[1];
303 }
304 
305 /**
306  * ring_buffer_event_data - return the data of the event
307  * @event: the event to get the data from
308  */
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
310 {
311 	return rb_event_data(event);
312 }
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314 
315 #define for_each_buffer_cpu(buffer, cpu)		\
316 	for_each_cpu(cpu, buffer->cpumask)
317 
318 #define TS_SHIFT	27
319 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST	(~TS_MASK)
321 
322 struct buffer_data_page {
323 	u64		 time_stamp;	/* page time stamp */
324 	local_t		 commit;	/* write committed index */
325 	unsigned char	 data[];	/* data of buffer page */
326 };
327 
328 /*
329  * Note, the buffer_page list must be first. The buffer pages
330  * are allocated in cache lines, which means that each buffer
331  * page will be at the beginning of a cache line, and thus
332  * the least significant bits will be zero. We use this to
333  * add flags in the list struct pointers, to make the ring buffer
334  * lockless.
335  */
336 struct buffer_page {
337 	struct list_head list;		/* list of buffer pages */
338 	local_t		 write;		/* index for next write */
339 	unsigned	 read;		/* index for next read */
340 	local_t		 entries;	/* entries on this page */
341 	struct buffer_data_page *page;	/* Actual data page */
342 };
343 
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK		0xfffff
357 #define RB_WRITE_INTCNT		(1 << 20)
358 
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361 	local_set(&bpage->commit, 0);
362 }
363 
364 /**
365  * ring_buffer_page_len - the size of data on the page.
366  * @page: The page to read
367  *
368  * Returns the amount of data on the page, including buffer page header.
369  */
370 size_t ring_buffer_page_len(void *page)
371 {
372 	return local_read(&((struct buffer_data_page *)page)->commit)
373 		+ BUF_PAGE_HDR_SIZE;
374 }
375 
376 /*
377  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
378  * this issue out.
379  */
380 static void free_buffer_page(struct buffer_page *bpage)
381 {
382 	free_page((unsigned long)bpage->page);
383 	kfree(bpage);
384 }
385 
386 /*
387  * We need to fit the time_stamp delta into 27 bits.
388  */
389 static inline int test_time_stamp(u64 delta)
390 {
391 	if (delta & TS_DELTA_TEST)
392 		return 1;
393 	return 0;
394 }
395 
396 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
397 
398 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
399 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
400 
401 /* Max number of timestamps that can fit on a page */
402 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
403 
404 int ring_buffer_print_page_header(struct trace_seq *s)
405 {
406 	struct buffer_data_page field;
407 	int ret;
408 
409 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
410 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
411 			       (unsigned int)sizeof(field.time_stamp),
412 			       (unsigned int)is_signed_type(u64));
413 
414 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
415 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
416 			       (unsigned int)offsetof(typeof(field), commit),
417 			       (unsigned int)sizeof(field.commit),
418 			       (unsigned int)is_signed_type(long));
419 
420 	ret = trace_seq_printf(s, "\tfield: char data;\t"
421 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 			       (unsigned int)offsetof(typeof(field), data),
423 			       (unsigned int)BUF_PAGE_SIZE,
424 			       (unsigned int)is_signed_type(char));
425 
426 	return ret;
427 }
428 
429 /*
430  * head_page == tail_page && head == tail then buffer is empty.
431  */
432 struct ring_buffer_per_cpu {
433 	int				cpu;
434 	struct ring_buffer		*buffer;
435 	spinlock_t			reader_lock;	/* serialize readers */
436 	arch_spinlock_t			lock;
437 	struct lock_class_key		lock_key;
438 	struct list_head		*pages;
439 	struct buffer_page		*head_page;	/* read from head */
440 	struct buffer_page		*tail_page;	/* write to tail */
441 	struct buffer_page		*commit_page;	/* committed pages */
442 	struct buffer_page		*reader_page;
443 	local_t				commit_overrun;
444 	local_t				overrun;
445 	local_t				entries;
446 	local_t				committing;
447 	local_t				commits;
448 	unsigned long			read;
449 	u64				write_stamp;
450 	u64				read_stamp;
451 	atomic_t			record_disabled;
452 };
453 
454 struct ring_buffer {
455 	unsigned			pages;
456 	unsigned			flags;
457 	int				cpus;
458 	atomic_t			record_disabled;
459 	cpumask_var_t			cpumask;
460 
461 	struct lock_class_key		*reader_lock_key;
462 
463 	struct mutex			mutex;
464 
465 	struct ring_buffer_per_cpu	**buffers;
466 
467 #ifdef CONFIG_HOTPLUG_CPU
468 	struct notifier_block		cpu_notify;
469 #endif
470 	u64				(*clock)(void);
471 };
472 
473 struct ring_buffer_iter {
474 	struct ring_buffer_per_cpu	*cpu_buffer;
475 	unsigned long			head;
476 	struct buffer_page		*head_page;
477 	struct buffer_page		*cache_reader_page;
478 	unsigned long			cache_read;
479 	u64				read_stamp;
480 };
481 
482 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
483 #define RB_WARN_ON(b, cond)						\
484 	({								\
485 		int _____ret = unlikely(cond);				\
486 		if (_____ret) {						\
487 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
488 				struct ring_buffer_per_cpu *__b =	\
489 					(void *)b;			\
490 				atomic_inc(&__b->buffer->record_disabled); \
491 			} else						\
492 				atomic_inc(&b->record_disabled);	\
493 			WARN_ON(1);					\
494 		}							\
495 		_____ret;						\
496 	})
497 
498 /* Up this if you want to test the TIME_EXTENTS and normalization */
499 #define DEBUG_SHIFT 0
500 
501 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
502 {
503 	/* shift to debug/test normalization and TIME_EXTENTS */
504 	return buffer->clock() << DEBUG_SHIFT;
505 }
506 
507 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
508 {
509 	u64 time;
510 
511 	preempt_disable_notrace();
512 	time = rb_time_stamp(buffer);
513 	preempt_enable_no_resched_notrace();
514 
515 	return time;
516 }
517 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
518 
519 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
520 				      int cpu, u64 *ts)
521 {
522 	/* Just stupid testing the normalize function and deltas */
523 	*ts >>= DEBUG_SHIFT;
524 }
525 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
526 
527 /*
528  * Making the ring buffer lockless makes things tricky.
529  * Although writes only happen on the CPU that they are on,
530  * and they only need to worry about interrupts. Reads can
531  * happen on any CPU.
532  *
533  * The reader page is always off the ring buffer, but when the
534  * reader finishes with a page, it needs to swap its page with
535  * a new one from the buffer. The reader needs to take from
536  * the head (writes go to the tail). But if a writer is in overwrite
537  * mode and wraps, it must push the head page forward.
538  *
539  * Here lies the problem.
540  *
541  * The reader must be careful to replace only the head page, and
542  * not another one. As described at the top of the file in the
543  * ASCII art, the reader sets its old page to point to the next
544  * page after head. It then sets the page after head to point to
545  * the old reader page. But if the writer moves the head page
546  * during this operation, the reader could end up with the tail.
547  *
548  * We use cmpxchg to help prevent this race. We also do something
549  * special with the page before head. We set the LSB to 1.
550  *
551  * When the writer must push the page forward, it will clear the
552  * bit that points to the head page, move the head, and then set
553  * the bit that points to the new head page.
554  *
555  * We also don't want an interrupt coming in and moving the head
556  * page on another writer. Thus we use the second LSB to catch
557  * that too. Thus:
558  *
559  * head->list->prev->next        bit 1          bit 0
560  *                              -------        -------
561  * Normal page                     0              0
562  * Points to head page             0              1
563  * New head page                   1              0
564  *
565  * Note we can not trust the prev pointer of the head page, because:
566  *
567  * +----+       +-----+        +-----+
568  * |    |------>|  T  |---X--->|  N  |
569  * |    |<------|     |        |     |
570  * +----+       +-----+        +-----+
571  *   ^                           ^ |
572  *   |          +-----+          | |
573  *   +----------|  R  |----------+ |
574  *              |     |<-----------+
575  *              +-----+
576  *
577  * Key:  ---X-->  HEAD flag set in pointer
578  *         T      Tail page
579  *         R      Reader page
580  *         N      Next page
581  *
582  * (see __rb_reserve_next() to see where this happens)
583  *
584  *  What the above shows is that the reader just swapped out
585  *  the reader page with a page in the buffer, but before it
586  *  could make the new header point back to the new page added
587  *  it was preempted by a writer. The writer moved forward onto
588  *  the new page added by the reader and is about to move forward
589  *  again.
590  *
591  *  You can see, it is legitimate for the previous pointer of
592  *  the head (or any page) not to point back to itself. But only
593  *  temporarially.
594  */
595 
596 #define RB_PAGE_NORMAL		0UL
597 #define RB_PAGE_HEAD		1UL
598 #define RB_PAGE_UPDATE		2UL
599 
600 
601 #define RB_FLAG_MASK		3UL
602 
603 /* PAGE_MOVED is not part of the mask */
604 #define RB_PAGE_MOVED		4UL
605 
606 /*
607  * rb_list_head - remove any bit
608  */
609 static struct list_head *rb_list_head(struct list_head *list)
610 {
611 	unsigned long val = (unsigned long)list;
612 
613 	return (struct list_head *)(val & ~RB_FLAG_MASK);
614 }
615 
616 /*
617  * rb_is_head_page - test if the given page is the head page
618  *
619  * Because the reader may move the head_page pointer, we can
620  * not trust what the head page is (it may be pointing to
621  * the reader page). But if the next page is a header page,
622  * its flags will be non zero.
623  */
624 static int inline
625 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
626 		struct buffer_page *page, struct list_head *list)
627 {
628 	unsigned long val;
629 
630 	val = (unsigned long)list->next;
631 
632 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
633 		return RB_PAGE_MOVED;
634 
635 	return val & RB_FLAG_MASK;
636 }
637 
638 /*
639  * rb_is_reader_page
640  *
641  * The unique thing about the reader page, is that, if the
642  * writer is ever on it, the previous pointer never points
643  * back to the reader page.
644  */
645 static int rb_is_reader_page(struct buffer_page *page)
646 {
647 	struct list_head *list = page->list.prev;
648 
649 	return rb_list_head(list->next) != &page->list;
650 }
651 
652 /*
653  * rb_set_list_to_head - set a list_head to be pointing to head.
654  */
655 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
656 				struct list_head *list)
657 {
658 	unsigned long *ptr;
659 
660 	ptr = (unsigned long *)&list->next;
661 	*ptr |= RB_PAGE_HEAD;
662 	*ptr &= ~RB_PAGE_UPDATE;
663 }
664 
665 /*
666  * rb_head_page_activate - sets up head page
667  */
668 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
669 {
670 	struct buffer_page *head;
671 
672 	head = cpu_buffer->head_page;
673 	if (!head)
674 		return;
675 
676 	/*
677 	 * Set the previous list pointer to have the HEAD flag.
678 	 */
679 	rb_set_list_to_head(cpu_buffer, head->list.prev);
680 }
681 
682 static void rb_list_head_clear(struct list_head *list)
683 {
684 	unsigned long *ptr = (unsigned long *)&list->next;
685 
686 	*ptr &= ~RB_FLAG_MASK;
687 }
688 
689 /*
690  * rb_head_page_dactivate - clears head page ptr (for free list)
691  */
692 static void
693 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695 	struct list_head *hd;
696 
697 	/* Go through the whole list and clear any pointers found. */
698 	rb_list_head_clear(cpu_buffer->pages);
699 
700 	list_for_each(hd, cpu_buffer->pages)
701 		rb_list_head_clear(hd);
702 }
703 
704 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
705 			    struct buffer_page *head,
706 			    struct buffer_page *prev,
707 			    int old_flag, int new_flag)
708 {
709 	struct list_head *list;
710 	unsigned long val = (unsigned long)&head->list;
711 	unsigned long ret;
712 
713 	list = &prev->list;
714 
715 	val &= ~RB_FLAG_MASK;
716 
717 	ret = cmpxchg((unsigned long *)&list->next,
718 		      val | old_flag, val | new_flag);
719 
720 	/* check if the reader took the page */
721 	if ((ret & ~RB_FLAG_MASK) != val)
722 		return RB_PAGE_MOVED;
723 
724 	return ret & RB_FLAG_MASK;
725 }
726 
727 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
728 				   struct buffer_page *head,
729 				   struct buffer_page *prev,
730 				   int old_flag)
731 {
732 	return rb_head_page_set(cpu_buffer, head, prev,
733 				old_flag, RB_PAGE_UPDATE);
734 }
735 
736 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
737 				 struct buffer_page *head,
738 				 struct buffer_page *prev,
739 				 int old_flag)
740 {
741 	return rb_head_page_set(cpu_buffer, head, prev,
742 				old_flag, RB_PAGE_HEAD);
743 }
744 
745 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
746 				   struct buffer_page *head,
747 				   struct buffer_page *prev,
748 				   int old_flag)
749 {
750 	return rb_head_page_set(cpu_buffer, head, prev,
751 				old_flag, RB_PAGE_NORMAL);
752 }
753 
754 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
755 			       struct buffer_page **bpage)
756 {
757 	struct list_head *p = rb_list_head((*bpage)->list.next);
758 
759 	*bpage = list_entry(p, struct buffer_page, list);
760 }
761 
762 static struct buffer_page *
763 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
764 {
765 	struct buffer_page *head;
766 	struct buffer_page *page;
767 	struct list_head *list;
768 	int i;
769 
770 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
771 		return NULL;
772 
773 	/* sanity check */
774 	list = cpu_buffer->pages;
775 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
776 		return NULL;
777 
778 	page = head = cpu_buffer->head_page;
779 	/*
780 	 * It is possible that the writer moves the header behind
781 	 * where we started, and we miss in one loop.
782 	 * A second loop should grab the header, but we'll do
783 	 * three loops just because I'm paranoid.
784 	 */
785 	for (i = 0; i < 3; i++) {
786 		do {
787 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
788 				cpu_buffer->head_page = page;
789 				return page;
790 			}
791 			rb_inc_page(cpu_buffer, &page);
792 		} while (page != head);
793 	}
794 
795 	RB_WARN_ON(cpu_buffer, 1);
796 
797 	return NULL;
798 }
799 
800 static int rb_head_page_replace(struct buffer_page *old,
801 				struct buffer_page *new)
802 {
803 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
804 	unsigned long val;
805 	unsigned long ret;
806 
807 	val = *ptr & ~RB_FLAG_MASK;
808 	val |= RB_PAGE_HEAD;
809 
810 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
811 
812 	return ret == val;
813 }
814 
815 /*
816  * rb_tail_page_update - move the tail page forward
817  *
818  * Returns 1 if moved tail page, 0 if someone else did.
819  */
820 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
821 			       struct buffer_page *tail_page,
822 			       struct buffer_page *next_page)
823 {
824 	struct buffer_page *old_tail;
825 	unsigned long old_entries;
826 	unsigned long old_write;
827 	int ret = 0;
828 
829 	/*
830 	 * The tail page now needs to be moved forward.
831 	 *
832 	 * We need to reset the tail page, but without messing
833 	 * with possible erasing of data brought in by interrupts
834 	 * that have moved the tail page and are currently on it.
835 	 *
836 	 * We add a counter to the write field to denote this.
837 	 */
838 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
839 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
840 
841 	/*
842 	 * Just make sure we have seen our old_write and synchronize
843 	 * with any interrupts that come in.
844 	 */
845 	barrier();
846 
847 	/*
848 	 * If the tail page is still the same as what we think
849 	 * it is, then it is up to us to update the tail
850 	 * pointer.
851 	 */
852 	if (tail_page == cpu_buffer->tail_page) {
853 		/* Zero the write counter */
854 		unsigned long val = old_write & ~RB_WRITE_MASK;
855 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
856 
857 		/*
858 		 * This will only succeed if an interrupt did
859 		 * not come in and change it. In which case, we
860 		 * do not want to modify it.
861 		 *
862 		 * We add (void) to let the compiler know that we do not care
863 		 * about the return value of these functions. We use the
864 		 * cmpxchg to only update if an interrupt did not already
865 		 * do it for us. If the cmpxchg fails, we don't care.
866 		 */
867 		(void)local_cmpxchg(&next_page->write, old_write, val);
868 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
869 
870 		/*
871 		 * No need to worry about races with clearing out the commit.
872 		 * it only can increment when a commit takes place. But that
873 		 * only happens in the outer most nested commit.
874 		 */
875 		local_set(&next_page->page->commit, 0);
876 
877 		old_tail = cmpxchg(&cpu_buffer->tail_page,
878 				   tail_page, next_page);
879 
880 		if (old_tail == tail_page)
881 			ret = 1;
882 	}
883 
884 	return ret;
885 }
886 
887 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
888 			  struct buffer_page *bpage)
889 {
890 	unsigned long val = (unsigned long)bpage;
891 
892 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
893 		return 1;
894 
895 	return 0;
896 }
897 
898 /**
899  * rb_check_list - make sure a pointer to a list has the last bits zero
900  */
901 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
902 			 struct list_head *list)
903 {
904 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
905 		return 1;
906 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
907 		return 1;
908 	return 0;
909 }
910 
911 /**
912  * check_pages - integrity check of buffer pages
913  * @cpu_buffer: CPU buffer with pages to test
914  *
915  * As a safety measure we check to make sure the data pages have not
916  * been corrupted.
917  */
918 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
919 {
920 	struct list_head *head = cpu_buffer->pages;
921 	struct buffer_page *bpage, *tmp;
922 
923 	rb_head_page_deactivate(cpu_buffer);
924 
925 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
926 		return -1;
927 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
928 		return -1;
929 
930 	if (rb_check_list(cpu_buffer, head))
931 		return -1;
932 
933 	list_for_each_entry_safe(bpage, tmp, head, list) {
934 		if (RB_WARN_ON(cpu_buffer,
935 			       bpage->list.next->prev != &bpage->list))
936 			return -1;
937 		if (RB_WARN_ON(cpu_buffer,
938 			       bpage->list.prev->next != &bpage->list))
939 			return -1;
940 		if (rb_check_list(cpu_buffer, &bpage->list))
941 			return -1;
942 	}
943 
944 	rb_head_page_activate(cpu_buffer);
945 
946 	return 0;
947 }
948 
949 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
950 			     unsigned nr_pages)
951 {
952 	struct buffer_page *bpage, *tmp;
953 	unsigned long addr;
954 	LIST_HEAD(pages);
955 	unsigned i;
956 
957 	WARN_ON(!nr_pages);
958 
959 	for (i = 0; i < nr_pages; i++) {
960 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
961 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
962 		if (!bpage)
963 			goto free_pages;
964 
965 		rb_check_bpage(cpu_buffer, bpage);
966 
967 		list_add(&bpage->list, &pages);
968 
969 		addr = __get_free_page(GFP_KERNEL);
970 		if (!addr)
971 			goto free_pages;
972 		bpage->page = (void *)addr;
973 		rb_init_page(bpage->page);
974 	}
975 
976 	/*
977 	 * The ring buffer page list is a circular list that does not
978 	 * start and end with a list head. All page list items point to
979 	 * other pages.
980 	 */
981 	cpu_buffer->pages = pages.next;
982 	list_del(&pages);
983 
984 	rb_check_pages(cpu_buffer);
985 
986 	return 0;
987 
988  free_pages:
989 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
990 		list_del_init(&bpage->list);
991 		free_buffer_page(bpage);
992 	}
993 	return -ENOMEM;
994 }
995 
996 static struct ring_buffer_per_cpu *
997 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
998 {
999 	struct ring_buffer_per_cpu *cpu_buffer;
1000 	struct buffer_page *bpage;
1001 	unsigned long addr;
1002 	int ret;
1003 
1004 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1005 				  GFP_KERNEL, cpu_to_node(cpu));
1006 	if (!cpu_buffer)
1007 		return NULL;
1008 
1009 	cpu_buffer->cpu = cpu;
1010 	cpu_buffer->buffer = buffer;
1011 	spin_lock_init(&cpu_buffer->reader_lock);
1012 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1013 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1014 
1015 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1016 			    GFP_KERNEL, cpu_to_node(cpu));
1017 	if (!bpage)
1018 		goto fail_free_buffer;
1019 
1020 	rb_check_bpage(cpu_buffer, bpage);
1021 
1022 	cpu_buffer->reader_page = bpage;
1023 	addr = __get_free_page(GFP_KERNEL);
1024 	if (!addr)
1025 		goto fail_free_reader;
1026 	bpage->page = (void *)addr;
1027 	rb_init_page(bpage->page);
1028 
1029 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1030 
1031 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1032 	if (ret < 0)
1033 		goto fail_free_reader;
1034 
1035 	cpu_buffer->head_page
1036 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1037 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1038 
1039 	rb_head_page_activate(cpu_buffer);
1040 
1041 	return cpu_buffer;
1042 
1043  fail_free_reader:
1044 	free_buffer_page(cpu_buffer->reader_page);
1045 
1046  fail_free_buffer:
1047 	kfree(cpu_buffer);
1048 	return NULL;
1049 }
1050 
1051 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1052 {
1053 	struct list_head *head = cpu_buffer->pages;
1054 	struct buffer_page *bpage, *tmp;
1055 
1056 	free_buffer_page(cpu_buffer->reader_page);
1057 
1058 	rb_head_page_deactivate(cpu_buffer);
1059 
1060 	if (head) {
1061 		list_for_each_entry_safe(bpage, tmp, head, list) {
1062 			list_del_init(&bpage->list);
1063 			free_buffer_page(bpage);
1064 		}
1065 		bpage = list_entry(head, struct buffer_page, list);
1066 		free_buffer_page(bpage);
1067 	}
1068 
1069 	kfree(cpu_buffer);
1070 }
1071 
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 static int rb_cpu_notify(struct notifier_block *self,
1074 			 unsigned long action, void *hcpu);
1075 #endif
1076 
1077 /**
1078  * ring_buffer_alloc - allocate a new ring_buffer
1079  * @size: the size in bytes per cpu that is needed.
1080  * @flags: attributes to set for the ring buffer.
1081  *
1082  * Currently the only flag that is available is the RB_FL_OVERWRITE
1083  * flag. This flag means that the buffer will overwrite old data
1084  * when the buffer wraps. If this flag is not set, the buffer will
1085  * drop data when the tail hits the head.
1086  */
1087 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1088 					struct lock_class_key *key)
1089 {
1090 	struct ring_buffer *buffer;
1091 	int bsize;
1092 	int cpu;
1093 
1094 	/* keep it in its own cache line */
1095 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1096 			 GFP_KERNEL);
1097 	if (!buffer)
1098 		return NULL;
1099 
1100 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1101 		goto fail_free_buffer;
1102 
1103 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1104 	buffer->flags = flags;
1105 	buffer->clock = trace_clock_local;
1106 	buffer->reader_lock_key = key;
1107 
1108 	/* need at least two pages */
1109 	if (buffer->pages < 2)
1110 		buffer->pages = 2;
1111 
1112 	/*
1113 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1114 	 * in early initcall, it will not be notified of secondary cpus.
1115 	 * In that off case, we need to allocate for all possible cpus.
1116 	 */
1117 #ifdef CONFIG_HOTPLUG_CPU
1118 	get_online_cpus();
1119 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1120 #else
1121 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1122 #endif
1123 	buffer->cpus = nr_cpu_ids;
1124 
1125 	bsize = sizeof(void *) * nr_cpu_ids;
1126 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1127 				  GFP_KERNEL);
1128 	if (!buffer->buffers)
1129 		goto fail_free_cpumask;
1130 
1131 	for_each_buffer_cpu(buffer, cpu) {
1132 		buffer->buffers[cpu] =
1133 			rb_allocate_cpu_buffer(buffer, cpu);
1134 		if (!buffer->buffers[cpu])
1135 			goto fail_free_buffers;
1136 	}
1137 
1138 #ifdef CONFIG_HOTPLUG_CPU
1139 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1140 	buffer->cpu_notify.priority = 0;
1141 	register_cpu_notifier(&buffer->cpu_notify);
1142 #endif
1143 
1144 	put_online_cpus();
1145 	mutex_init(&buffer->mutex);
1146 
1147 	return buffer;
1148 
1149  fail_free_buffers:
1150 	for_each_buffer_cpu(buffer, cpu) {
1151 		if (buffer->buffers[cpu])
1152 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1153 	}
1154 	kfree(buffer->buffers);
1155 
1156  fail_free_cpumask:
1157 	free_cpumask_var(buffer->cpumask);
1158 	put_online_cpus();
1159 
1160  fail_free_buffer:
1161 	kfree(buffer);
1162 	return NULL;
1163 }
1164 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1165 
1166 /**
1167  * ring_buffer_free - free a ring buffer.
1168  * @buffer: the buffer to free.
1169  */
1170 void
1171 ring_buffer_free(struct ring_buffer *buffer)
1172 {
1173 	int cpu;
1174 
1175 	get_online_cpus();
1176 
1177 #ifdef CONFIG_HOTPLUG_CPU
1178 	unregister_cpu_notifier(&buffer->cpu_notify);
1179 #endif
1180 
1181 	for_each_buffer_cpu(buffer, cpu)
1182 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1183 
1184 	put_online_cpus();
1185 
1186 	kfree(buffer->buffers);
1187 	free_cpumask_var(buffer->cpumask);
1188 
1189 	kfree(buffer);
1190 }
1191 EXPORT_SYMBOL_GPL(ring_buffer_free);
1192 
1193 void ring_buffer_set_clock(struct ring_buffer *buffer,
1194 			   u64 (*clock)(void))
1195 {
1196 	buffer->clock = clock;
1197 }
1198 
1199 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1200 
1201 static void
1202 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1203 {
1204 	struct buffer_page *bpage;
1205 	struct list_head *p;
1206 	unsigned i;
1207 
1208 	spin_lock_irq(&cpu_buffer->reader_lock);
1209 	rb_head_page_deactivate(cpu_buffer);
1210 
1211 	for (i = 0; i < nr_pages; i++) {
1212 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1213 			goto out;
1214 		p = cpu_buffer->pages->next;
1215 		bpage = list_entry(p, struct buffer_page, list);
1216 		list_del_init(&bpage->list);
1217 		free_buffer_page(bpage);
1218 	}
1219 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1220 		goto out;
1221 
1222 	rb_reset_cpu(cpu_buffer);
1223 	rb_check_pages(cpu_buffer);
1224 
1225 out:
1226 	spin_unlock_irq(&cpu_buffer->reader_lock);
1227 }
1228 
1229 static void
1230 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1231 		struct list_head *pages, unsigned nr_pages)
1232 {
1233 	struct buffer_page *bpage;
1234 	struct list_head *p;
1235 	unsigned i;
1236 
1237 	spin_lock_irq(&cpu_buffer->reader_lock);
1238 	rb_head_page_deactivate(cpu_buffer);
1239 
1240 	for (i = 0; i < nr_pages; i++) {
1241 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1242 			goto out;
1243 		p = pages->next;
1244 		bpage = list_entry(p, struct buffer_page, list);
1245 		list_del_init(&bpage->list);
1246 		list_add_tail(&bpage->list, cpu_buffer->pages);
1247 	}
1248 	rb_reset_cpu(cpu_buffer);
1249 	rb_check_pages(cpu_buffer);
1250 
1251 out:
1252 	spin_unlock_irq(&cpu_buffer->reader_lock);
1253 }
1254 
1255 /**
1256  * ring_buffer_resize - resize the ring buffer
1257  * @buffer: the buffer to resize.
1258  * @size: the new size.
1259  *
1260  * Minimum size is 2 * BUF_PAGE_SIZE.
1261  *
1262  * Returns -1 on failure.
1263  */
1264 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1265 {
1266 	struct ring_buffer_per_cpu *cpu_buffer;
1267 	unsigned nr_pages, rm_pages, new_pages;
1268 	struct buffer_page *bpage, *tmp;
1269 	unsigned long buffer_size;
1270 	unsigned long addr;
1271 	LIST_HEAD(pages);
1272 	int i, cpu;
1273 
1274 	/*
1275 	 * Always succeed at resizing a non-existent buffer:
1276 	 */
1277 	if (!buffer)
1278 		return size;
1279 
1280 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1281 	size *= BUF_PAGE_SIZE;
1282 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1283 
1284 	/* we need a minimum of two pages */
1285 	if (size < BUF_PAGE_SIZE * 2)
1286 		size = BUF_PAGE_SIZE * 2;
1287 
1288 	if (size == buffer_size)
1289 		return size;
1290 
1291 	atomic_inc(&buffer->record_disabled);
1292 
1293 	/* Make sure all writers are done with this buffer. */
1294 	synchronize_sched();
1295 
1296 	mutex_lock(&buffer->mutex);
1297 	get_online_cpus();
1298 
1299 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1300 
1301 	if (size < buffer_size) {
1302 
1303 		/* easy case, just free pages */
1304 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1305 			goto out_fail;
1306 
1307 		rm_pages = buffer->pages - nr_pages;
1308 
1309 		for_each_buffer_cpu(buffer, cpu) {
1310 			cpu_buffer = buffer->buffers[cpu];
1311 			rb_remove_pages(cpu_buffer, rm_pages);
1312 		}
1313 		goto out;
1314 	}
1315 
1316 	/*
1317 	 * This is a bit more difficult. We only want to add pages
1318 	 * when we can allocate enough for all CPUs. We do this
1319 	 * by allocating all the pages and storing them on a local
1320 	 * link list. If we succeed in our allocation, then we
1321 	 * add these pages to the cpu_buffers. Otherwise we just free
1322 	 * them all and return -ENOMEM;
1323 	 */
1324 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1325 		goto out_fail;
1326 
1327 	new_pages = nr_pages - buffer->pages;
1328 
1329 	for_each_buffer_cpu(buffer, cpu) {
1330 		for (i = 0; i < new_pages; i++) {
1331 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1332 						  cache_line_size()),
1333 					    GFP_KERNEL, cpu_to_node(cpu));
1334 			if (!bpage)
1335 				goto free_pages;
1336 			list_add(&bpage->list, &pages);
1337 			addr = __get_free_page(GFP_KERNEL);
1338 			if (!addr)
1339 				goto free_pages;
1340 			bpage->page = (void *)addr;
1341 			rb_init_page(bpage->page);
1342 		}
1343 	}
1344 
1345 	for_each_buffer_cpu(buffer, cpu) {
1346 		cpu_buffer = buffer->buffers[cpu];
1347 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1348 	}
1349 
1350 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1351 		goto out_fail;
1352 
1353  out:
1354 	buffer->pages = nr_pages;
1355 	put_online_cpus();
1356 	mutex_unlock(&buffer->mutex);
1357 
1358 	atomic_dec(&buffer->record_disabled);
1359 
1360 	return size;
1361 
1362  free_pages:
1363 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1364 		list_del_init(&bpage->list);
1365 		free_buffer_page(bpage);
1366 	}
1367 	put_online_cpus();
1368 	mutex_unlock(&buffer->mutex);
1369 	atomic_dec(&buffer->record_disabled);
1370 	return -ENOMEM;
1371 
1372 	/*
1373 	 * Something went totally wrong, and we are too paranoid
1374 	 * to even clean up the mess.
1375 	 */
1376  out_fail:
1377 	put_online_cpus();
1378 	mutex_unlock(&buffer->mutex);
1379 	atomic_dec(&buffer->record_disabled);
1380 	return -1;
1381 }
1382 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1383 
1384 static inline void *
1385 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1386 {
1387 	return bpage->data + index;
1388 }
1389 
1390 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1391 {
1392 	return bpage->page->data + index;
1393 }
1394 
1395 static inline struct ring_buffer_event *
1396 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1397 {
1398 	return __rb_page_index(cpu_buffer->reader_page,
1399 			       cpu_buffer->reader_page->read);
1400 }
1401 
1402 static inline struct ring_buffer_event *
1403 rb_iter_head_event(struct ring_buffer_iter *iter)
1404 {
1405 	return __rb_page_index(iter->head_page, iter->head);
1406 }
1407 
1408 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1409 {
1410 	return local_read(&bpage->write) & RB_WRITE_MASK;
1411 }
1412 
1413 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1414 {
1415 	return local_read(&bpage->page->commit);
1416 }
1417 
1418 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1419 {
1420 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1421 }
1422 
1423 /* Size is determined by what has been commited */
1424 static inline unsigned rb_page_size(struct buffer_page *bpage)
1425 {
1426 	return rb_page_commit(bpage);
1427 }
1428 
1429 static inline unsigned
1430 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1431 {
1432 	return rb_page_commit(cpu_buffer->commit_page);
1433 }
1434 
1435 static inline unsigned
1436 rb_event_index(struct ring_buffer_event *event)
1437 {
1438 	unsigned long addr = (unsigned long)event;
1439 
1440 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1441 }
1442 
1443 static inline int
1444 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1445 		   struct ring_buffer_event *event)
1446 {
1447 	unsigned long addr = (unsigned long)event;
1448 	unsigned long index;
1449 
1450 	index = rb_event_index(event);
1451 	addr &= PAGE_MASK;
1452 
1453 	return cpu_buffer->commit_page->page == (void *)addr &&
1454 		rb_commit_index(cpu_buffer) == index;
1455 }
1456 
1457 static void
1458 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1459 {
1460 	unsigned long max_count;
1461 
1462 	/*
1463 	 * We only race with interrupts and NMIs on this CPU.
1464 	 * If we own the commit event, then we can commit
1465 	 * all others that interrupted us, since the interruptions
1466 	 * are in stack format (they finish before they come
1467 	 * back to us). This allows us to do a simple loop to
1468 	 * assign the commit to the tail.
1469 	 */
1470  again:
1471 	max_count = cpu_buffer->buffer->pages * 100;
1472 
1473 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1474 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1475 			return;
1476 		if (RB_WARN_ON(cpu_buffer,
1477 			       rb_is_reader_page(cpu_buffer->tail_page)))
1478 			return;
1479 		local_set(&cpu_buffer->commit_page->page->commit,
1480 			  rb_page_write(cpu_buffer->commit_page));
1481 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1482 		cpu_buffer->write_stamp =
1483 			cpu_buffer->commit_page->page->time_stamp;
1484 		/* add barrier to keep gcc from optimizing too much */
1485 		barrier();
1486 	}
1487 	while (rb_commit_index(cpu_buffer) !=
1488 	       rb_page_write(cpu_buffer->commit_page)) {
1489 
1490 		local_set(&cpu_buffer->commit_page->page->commit,
1491 			  rb_page_write(cpu_buffer->commit_page));
1492 		RB_WARN_ON(cpu_buffer,
1493 			   local_read(&cpu_buffer->commit_page->page->commit) &
1494 			   ~RB_WRITE_MASK);
1495 		barrier();
1496 	}
1497 
1498 	/* again, keep gcc from optimizing */
1499 	barrier();
1500 
1501 	/*
1502 	 * If an interrupt came in just after the first while loop
1503 	 * and pushed the tail page forward, we will be left with
1504 	 * a dangling commit that will never go forward.
1505 	 */
1506 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1507 		goto again;
1508 }
1509 
1510 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1511 {
1512 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1513 	cpu_buffer->reader_page->read = 0;
1514 }
1515 
1516 static void rb_inc_iter(struct ring_buffer_iter *iter)
1517 {
1518 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1519 
1520 	/*
1521 	 * The iterator could be on the reader page (it starts there).
1522 	 * But the head could have moved, since the reader was
1523 	 * found. Check for this case and assign the iterator
1524 	 * to the head page instead of next.
1525 	 */
1526 	if (iter->head_page == cpu_buffer->reader_page)
1527 		iter->head_page = rb_set_head_page(cpu_buffer);
1528 	else
1529 		rb_inc_page(cpu_buffer, &iter->head_page);
1530 
1531 	iter->read_stamp = iter->head_page->page->time_stamp;
1532 	iter->head = 0;
1533 }
1534 
1535 /**
1536  * ring_buffer_update_event - update event type and data
1537  * @event: the even to update
1538  * @type: the type of event
1539  * @length: the size of the event field in the ring buffer
1540  *
1541  * Update the type and data fields of the event. The length
1542  * is the actual size that is written to the ring buffer,
1543  * and with this, we can determine what to place into the
1544  * data field.
1545  */
1546 static void
1547 rb_update_event(struct ring_buffer_event *event,
1548 			 unsigned type, unsigned length)
1549 {
1550 	event->type_len = type;
1551 
1552 	switch (type) {
1553 
1554 	case RINGBUF_TYPE_PADDING:
1555 	case RINGBUF_TYPE_TIME_EXTEND:
1556 	case RINGBUF_TYPE_TIME_STAMP:
1557 		break;
1558 
1559 	case 0:
1560 		length -= RB_EVNT_HDR_SIZE;
1561 		if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1562 			event->array[0] = length;
1563 		else
1564 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1565 		break;
1566 	default:
1567 		BUG();
1568 	}
1569 }
1570 
1571 /*
1572  * rb_handle_head_page - writer hit the head page
1573  *
1574  * Returns: +1 to retry page
1575  *           0 to continue
1576  *          -1 on error
1577  */
1578 static int
1579 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1580 		    struct buffer_page *tail_page,
1581 		    struct buffer_page *next_page)
1582 {
1583 	struct buffer_page *new_head;
1584 	int entries;
1585 	int type;
1586 	int ret;
1587 
1588 	entries = rb_page_entries(next_page);
1589 
1590 	/*
1591 	 * The hard part is here. We need to move the head
1592 	 * forward, and protect against both readers on
1593 	 * other CPUs and writers coming in via interrupts.
1594 	 */
1595 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1596 				       RB_PAGE_HEAD);
1597 
1598 	/*
1599 	 * type can be one of four:
1600 	 *  NORMAL - an interrupt already moved it for us
1601 	 *  HEAD   - we are the first to get here.
1602 	 *  UPDATE - we are the interrupt interrupting
1603 	 *           a current move.
1604 	 *  MOVED  - a reader on another CPU moved the next
1605 	 *           pointer to its reader page. Give up
1606 	 *           and try again.
1607 	 */
1608 
1609 	switch (type) {
1610 	case RB_PAGE_HEAD:
1611 		/*
1612 		 * We changed the head to UPDATE, thus
1613 		 * it is our responsibility to update
1614 		 * the counters.
1615 		 */
1616 		local_add(entries, &cpu_buffer->overrun);
1617 
1618 		/*
1619 		 * The entries will be zeroed out when we move the
1620 		 * tail page.
1621 		 */
1622 
1623 		/* still more to do */
1624 		break;
1625 
1626 	case RB_PAGE_UPDATE:
1627 		/*
1628 		 * This is an interrupt that interrupt the
1629 		 * previous update. Still more to do.
1630 		 */
1631 		break;
1632 	case RB_PAGE_NORMAL:
1633 		/*
1634 		 * An interrupt came in before the update
1635 		 * and processed this for us.
1636 		 * Nothing left to do.
1637 		 */
1638 		return 1;
1639 	case RB_PAGE_MOVED:
1640 		/*
1641 		 * The reader is on another CPU and just did
1642 		 * a swap with our next_page.
1643 		 * Try again.
1644 		 */
1645 		return 1;
1646 	default:
1647 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1648 		return -1;
1649 	}
1650 
1651 	/*
1652 	 * Now that we are here, the old head pointer is
1653 	 * set to UPDATE. This will keep the reader from
1654 	 * swapping the head page with the reader page.
1655 	 * The reader (on another CPU) will spin till
1656 	 * we are finished.
1657 	 *
1658 	 * We just need to protect against interrupts
1659 	 * doing the job. We will set the next pointer
1660 	 * to HEAD. After that, we set the old pointer
1661 	 * to NORMAL, but only if it was HEAD before.
1662 	 * otherwise we are an interrupt, and only
1663 	 * want the outer most commit to reset it.
1664 	 */
1665 	new_head = next_page;
1666 	rb_inc_page(cpu_buffer, &new_head);
1667 
1668 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1669 				    RB_PAGE_NORMAL);
1670 
1671 	/*
1672 	 * Valid returns are:
1673 	 *  HEAD   - an interrupt came in and already set it.
1674 	 *  NORMAL - One of two things:
1675 	 *            1) We really set it.
1676 	 *            2) A bunch of interrupts came in and moved
1677 	 *               the page forward again.
1678 	 */
1679 	switch (ret) {
1680 	case RB_PAGE_HEAD:
1681 	case RB_PAGE_NORMAL:
1682 		/* OK */
1683 		break;
1684 	default:
1685 		RB_WARN_ON(cpu_buffer, 1);
1686 		return -1;
1687 	}
1688 
1689 	/*
1690 	 * It is possible that an interrupt came in,
1691 	 * set the head up, then more interrupts came in
1692 	 * and moved it again. When we get back here,
1693 	 * the page would have been set to NORMAL but we
1694 	 * just set it back to HEAD.
1695 	 *
1696 	 * How do you detect this? Well, if that happened
1697 	 * the tail page would have moved.
1698 	 */
1699 	if (ret == RB_PAGE_NORMAL) {
1700 		/*
1701 		 * If the tail had moved passed next, then we need
1702 		 * to reset the pointer.
1703 		 */
1704 		if (cpu_buffer->tail_page != tail_page &&
1705 		    cpu_buffer->tail_page != next_page)
1706 			rb_head_page_set_normal(cpu_buffer, new_head,
1707 						next_page,
1708 						RB_PAGE_HEAD);
1709 	}
1710 
1711 	/*
1712 	 * If this was the outer most commit (the one that
1713 	 * changed the original pointer from HEAD to UPDATE),
1714 	 * then it is up to us to reset it to NORMAL.
1715 	 */
1716 	if (type == RB_PAGE_HEAD) {
1717 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1718 					      tail_page,
1719 					      RB_PAGE_UPDATE);
1720 		if (RB_WARN_ON(cpu_buffer,
1721 			       ret != RB_PAGE_UPDATE))
1722 			return -1;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static unsigned rb_calculate_event_length(unsigned length)
1729 {
1730 	struct ring_buffer_event event; /* Used only for sizeof array */
1731 
1732 	/* zero length can cause confusions */
1733 	if (!length)
1734 		length = 1;
1735 
1736 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1737 		length += sizeof(event.array[0]);
1738 
1739 	length += RB_EVNT_HDR_SIZE;
1740 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1741 
1742 	return length;
1743 }
1744 
1745 static inline void
1746 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1747 	      struct buffer_page *tail_page,
1748 	      unsigned long tail, unsigned long length)
1749 {
1750 	struct ring_buffer_event *event;
1751 
1752 	/*
1753 	 * Only the event that crossed the page boundary
1754 	 * must fill the old tail_page with padding.
1755 	 */
1756 	if (tail >= BUF_PAGE_SIZE) {
1757 		local_sub(length, &tail_page->write);
1758 		return;
1759 	}
1760 
1761 	event = __rb_page_index(tail_page, tail);
1762 	kmemcheck_annotate_bitfield(event, bitfield);
1763 
1764 	/*
1765 	 * If this event is bigger than the minimum size, then
1766 	 * we need to be careful that we don't subtract the
1767 	 * write counter enough to allow another writer to slip
1768 	 * in on this page.
1769 	 * We put in a discarded commit instead, to make sure
1770 	 * that this space is not used again.
1771 	 *
1772 	 * If we are less than the minimum size, we don't need to
1773 	 * worry about it.
1774 	 */
1775 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1776 		/* No room for any events */
1777 
1778 		/* Mark the rest of the page with padding */
1779 		rb_event_set_padding(event);
1780 
1781 		/* Set the write back to the previous setting */
1782 		local_sub(length, &tail_page->write);
1783 		return;
1784 	}
1785 
1786 	/* Put in a discarded event */
1787 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1788 	event->type_len = RINGBUF_TYPE_PADDING;
1789 	/* time delta must be non zero */
1790 	event->time_delta = 1;
1791 
1792 	/* Set write to end of buffer */
1793 	length = (tail + length) - BUF_PAGE_SIZE;
1794 	local_sub(length, &tail_page->write);
1795 }
1796 
1797 static struct ring_buffer_event *
1798 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1799 	     unsigned long length, unsigned long tail,
1800 	     struct buffer_page *tail_page, u64 *ts)
1801 {
1802 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1803 	struct ring_buffer *buffer = cpu_buffer->buffer;
1804 	struct buffer_page *next_page;
1805 	int ret;
1806 
1807 	next_page = tail_page;
1808 
1809 	rb_inc_page(cpu_buffer, &next_page);
1810 
1811 	/*
1812 	 * If for some reason, we had an interrupt storm that made
1813 	 * it all the way around the buffer, bail, and warn
1814 	 * about it.
1815 	 */
1816 	if (unlikely(next_page == commit_page)) {
1817 		local_inc(&cpu_buffer->commit_overrun);
1818 		goto out_reset;
1819 	}
1820 
1821 	/*
1822 	 * This is where the fun begins!
1823 	 *
1824 	 * We are fighting against races between a reader that
1825 	 * could be on another CPU trying to swap its reader
1826 	 * page with the buffer head.
1827 	 *
1828 	 * We are also fighting against interrupts coming in and
1829 	 * moving the head or tail on us as well.
1830 	 *
1831 	 * If the next page is the head page then we have filled
1832 	 * the buffer, unless the commit page is still on the
1833 	 * reader page.
1834 	 */
1835 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1836 
1837 		/*
1838 		 * If the commit is not on the reader page, then
1839 		 * move the header page.
1840 		 */
1841 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1842 			/*
1843 			 * If we are not in overwrite mode,
1844 			 * this is easy, just stop here.
1845 			 */
1846 			if (!(buffer->flags & RB_FL_OVERWRITE))
1847 				goto out_reset;
1848 
1849 			ret = rb_handle_head_page(cpu_buffer,
1850 						  tail_page,
1851 						  next_page);
1852 			if (ret < 0)
1853 				goto out_reset;
1854 			if (ret)
1855 				goto out_again;
1856 		} else {
1857 			/*
1858 			 * We need to be careful here too. The
1859 			 * commit page could still be on the reader
1860 			 * page. We could have a small buffer, and
1861 			 * have filled up the buffer with events
1862 			 * from interrupts and such, and wrapped.
1863 			 *
1864 			 * Note, if the tail page is also the on the
1865 			 * reader_page, we let it move out.
1866 			 */
1867 			if (unlikely((cpu_buffer->commit_page !=
1868 				      cpu_buffer->tail_page) &&
1869 				     (cpu_buffer->commit_page ==
1870 				      cpu_buffer->reader_page))) {
1871 				local_inc(&cpu_buffer->commit_overrun);
1872 				goto out_reset;
1873 			}
1874 		}
1875 	}
1876 
1877 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1878 	if (ret) {
1879 		/*
1880 		 * Nested commits always have zero deltas, so
1881 		 * just reread the time stamp
1882 		 */
1883 		*ts = rb_time_stamp(buffer);
1884 		next_page->page->time_stamp = *ts;
1885 	}
1886 
1887  out_again:
1888 
1889 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1890 
1891 	/* fail and let the caller try again */
1892 	return ERR_PTR(-EAGAIN);
1893 
1894  out_reset:
1895 	/* reset write */
1896 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1897 
1898 	return NULL;
1899 }
1900 
1901 static struct ring_buffer_event *
1902 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1903 		  unsigned type, unsigned long length, u64 *ts)
1904 {
1905 	struct buffer_page *tail_page;
1906 	struct ring_buffer_event *event;
1907 	unsigned long tail, write;
1908 
1909 	tail_page = cpu_buffer->tail_page;
1910 	write = local_add_return(length, &tail_page->write);
1911 
1912 	/* set write to only the index of the write */
1913 	write &= RB_WRITE_MASK;
1914 	tail = write - length;
1915 
1916 	/* See if we shot pass the end of this buffer page */
1917 	if (write > BUF_PAGE_SIZE)
1918 		return rb_move_tail(cpu_buffer, length, tail,
1919 				    tail_page, ts);
1920 
1921 	/* We reserved something on the buffer */
1922 
1923 	event = __rb_page_index(tail_page, tail);
1924 	kmemcheck_annotate_bitfield(event, bitfield);
1925 	rb_update_event(event, type, length);
1926 
1927 	/* The passed in type is zero for DATA */
1928 	if (likely(!type))
1929 		local_inc(&tail_page->entries);
1930 
1931 	/*
1932 	 * If this is the first commit on the page, then update
1933 	 * its timestamp.
1934 	 */
1935 	if (!tail)
1936 		tail_page->page->time_stamp = *ts;
1937 
1938 	return event;
1939 }
1940 
1941 static inline int
1942 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1943 		  struct ring_buffer_event *event)
1944 {
1945 	unsigned long new_index, old_index;
1946 	struct buffer_page *bpage;
1947 	unsigned long index;
1948 	unsigned long addr;
1949 
1950 	new_index = rb_event_index(event);
1951 	old_index = new_index + rb_event_length(event);
1952 	addr = (unsigned long)event;
1953 	addr &= PAGE_MASK;
1954 
1955 	bpage = cpu_buffer->tail_page;
1956 
1957 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1958 		unsigned long write_mask =
1959 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1960 		/*
1961 		 * This is on the tail page. It is possible that
1962 		 * a write could come in and move the tail page
1963 		 * and write to the next page. That is fine
1964 		 * because we just shorten what is on this page.
1965 		 */
1966 		old_index += write_mask;
1967 		new_index += write_mask;
1968 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1969 		if (index == old_index)
1970 			return 1;
1971 	}
1972 
1973 	/* could not discard */
1974 	return 0;
1975 }
1976 
1977 static int
1978 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1979 		  u64 *ts, u64 *delta)
1980 {
1981 	struct ring_buffer_event *event;
1982 	static int once;
1983 	int ret;
1984 
1985 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1986 		printk(KERN_WARNING "Delta way too big! %llu"
1987 		       " ts=%llu write stamp = %llu\n",
1988 		       (unsigned long long)*delta,
1989 		       (unsigned long long)*ts,
1990 		       (unsigned long long)cpu_buffer->write_stamp);
1991 		WARN_ON(1);
1992 	}
1993 
1994 	/*
1995 	 * The delta is too big, we to add a
1996 	 * new timestamp.
1997 	 */
1998 	event = __rb_reserve_next(cpu_buffer,
1999 				  RINGBUF_TYPE_TIME_EXTEND,
2000 				  RB_LEN_TIME_EXTEND,
2001 				  ts);
2002 	if (!event)
2003 		return -EBUSY;
2004 
2005 	if (PTR_ERR(event) == -EAGAIN)
2006 		return -EAGAIN;
2007 
2008 	/* Only a commited time event can update the write stamp */
2009 	if (rb_event_is_commit(cpu_buffer, event)) {
2010 		/*
2011 		 * If this is the first on the page, then it was
2012 		 * updated with the page itself. Try to discard it
2013 		 * and if we can't just make it zero.
2014 		 */
2015 		if (rb_event_index(event)) {
2016 			event->time_delta = *delta & TS_MASK;
2017 			event->array[0] = *delta >> TS_SHIFT;
2018 		} else {
2019 			/* try to discard, since we do not need this */
2020 			if (!rb_try_to_discard(cpu_buffer, event)) {
2021 				/* nope, just zero it */
2022 				event->time_delta = 0;
2023 				event->array[0] = 0;
2024 			}
2025 		}
2026 		cpu_buffer->write_stamp = *ts;
2027 		/* let the caller know this was the commit */
2028 		ret = 1;
2029 	} else {
2030 		/* Try to discard the event */
2031 		if (!rb_try_to_discard(cpu_buffer, event)) {
2032 			/* Darn, this is just wasted space */
2033 			event->time_delta = 0;
2034 			event->array[0] = 0;
2035 		}
2036 		ret = 0;
2037 	}
2038 
2039 	*delta = 0;
2040 
2041 	return ret;
2042 }
2043 
2044 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2045 {
2046 	local_inc(&cpu_buffer->committing);
2047 	local_inc(&cpu_buffer->commits);
2048 }
2049 
2050 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2051 {
2052 	unsigned long commits;
2053 
2054 	if (RB_WARN_ON(cpu_buffer,
2055 		       !local_read(&cpu_buffer->committing)))
2056 		return;
2057 
2058  again:
2059 	commits = local_read(&cpu_buffer->commits);
2060 	/* synchronize with interrupts */
2061 	barrier();
2062 	if (local_read(&cpu_buffer->committing) == 1)
2063 		rb_set_commit_to_write(cpu_buffer);
2064 
2065 	local_dec(&cpu_buffer->committing);
2066 
2067 	/* synchronize with interrupts */
2068 	barrier();
2069 
2070 	/*
2071 	 * Need to account for interrupts coming in between the
2072 	 * updating of the commit page and the clearing of the
2073 	 * committing counter.
2074 	 */
2075 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2076 	    !local_read(&cpu_buffer->committing)) {
2077 		local_inc(&cpu_buffer->committing);
2078 		goto again;
2079 	}
2080 }
2081 
2082 static struct ring_buffer_event *
2083 rb_reserve_next_event(struct ring_buffer *buffer,
2084 		      struct ring_buffer_per_cpu *cpu_buffer,
2085 		      unsigned long length)
2086 {
2087 	struct ring_buffer_event *event;
2088 	u64 ts, delta = 0;
2089 	int commit = 0;
2090 	int nr_loops = 0;
2091 
2092 	rb_start_commit(cpu_buffer);
2093 
2094 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2095 	/*
2096 	 * Due to the ability to swap a cpu buffer from a buffer
2097 	 * it is possible it was swapped before we committed.
2098 	 * (committing stops a swap). We check for it here and
2099 	 * if it happened, we have to fail the write.
2100 	 */
2101 	barrier();
2102 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2103 		local_dec(&cpu_buffer->committing);
2104 		local_dec(&cpu_buffer->commits);
2105 		return NULL;
2106 	}
2107 #endif
2108 
2109 	length = rb_calculate_event_length(length);
2110  again:
2111 	/*
2112 	 * We allow for interrupts to reenter here and do a trace.
2113 	 * If one does, it will cause this original code to loop
2114 	 * back here. Even with heavy interrupts happening, this
2115 	 * should only happen a few times in a row. If this happens
2116 	 * 1000 times in a row, there must be either an interrupt
2117 	 * storm or we have something buggy.
2118 	 * Bail!
2119 	 */
2120 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2121 		goto out_fail;
2122 
2123 	ts = rb_time_stamp(cpu_buffer->buffer);
2124 
2125 	/*
2126 	 * Only the first commit can update the timestamp.
2127 	 * Yes there is a race here. If an interrupt comes in
2128 	 * just after the conditional and it traces too, then it
2129 	 * will also check the deltas. More than one timestamp may
2130 	 * also be made. But only the entry that did the actual
2131 	 * commit will be something other than zero.
2132 	 */
2133 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2134 		   rb_page_write(cpu_buffer->tail_page) ==
2135 		   rb_commit_index(cpu_buffer))) {
2136 		u64 diff;
2137 
2138 		diff = ts - cpu_buffer->write_stamp;
2139 
2140 		/* make sure this diff is calculated here */
2141 		barrier();
2142 
2143 		/* Did the write stamp get updated already? */
2144 		if (unlikely(ts < cpu_buffer->write_stamp))
2145 			goto get_event;
2146 
2147 		delta = diff;
2148 		if (unlikely(test_time_stamp(delta))) {
2149 
2150 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2151 			if (commit == -EBUSY)
2152 				goto out_fail;
2153 
2154 			if (commit == -EAGAIN)
2155 				goto again;
2156 
2157 			RB_WARN_ON(cpu_buffer, commit < 0);
2158 		}
2159 	}
2160 
2161  get_event:
2162 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2163 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2164 		goto again;
2165 
2166 	if (!event)
2167 		goto out_fail;
2168 
2169 	if (!rb_event_is_commit(cpu_buffer, event))
2170 		delta = 0;
2171 
2172 	event->time_delta = delta;
2173 
2174 	return event;
2175 
2176  out_fail:
2177 	rb_end_commit(cpu_buffer);
2178 	return NULL;
2179 }
2180 
2181 #ifdef CONFIG_TRACING
2182 
2183 #define TRACE_RECURSIVE_DEPTH 16
2184 
2185 static int trace_recursive_lock(void)
2186 {
2187 	current->trace_recursion++;
2188 
2189 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2190 		return 0;
2191 
2192 	/* Disable all tracing before we do anything else */
2193 	tracing_off_permanent();
2194 
2195 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2196 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2197 		    current->trace_recursion,
2198 		    hardirq_count() >> HARDIRQ_SHIFT,
2199 		    softirq_count() >> SOFTIRQ_SHIFT,
2200 		    in_nmi());
2201 
2202 	WARN_ON_ONCE(1);
2203 	return -1;
2204 }
2205 
2206 static void trace_recursive_unlock(void)
2207 {
2208 	WARN_ON_ONCE(!current->trace_recursion);
2209 
2210 	current->trace_recursion--;
2211 }
2212 
2213 #else
2214 
2215 #define trace_recursive_lock()		(0)
2216 #define trace_recursive_unlock()	do { } while (0)
2217 
2218 #endif
2219 
2220 static DEFINE_PER_CPU(int, rb_need_resched);
2221 
2222 /**
2223  * ring_buffer_lock_reserve - reserve a part of the buffer
2224  * @buffer: the ring buffer to reserve from
2225  * @length: the length of the data to reserve (excluding event header)
2226  *
2227  * Returns a reseverd event on the ring buffer to copy directly to.
2228  * The user of this interface will need to get the body to write into
2229  * and can use the ring_buffer_event_data() interface.
2230  *
2231  * The length is the length of the data needed, not the event length
2232  * which also includes the event header.
2233  *
2234  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2235  * If NULL is returned, then nothing has been allocated or locked.
2236  */
2237 struct ring_buffer_event *
2238 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2239 {
2240 	struct ring_buffer_per_cpu *cpu_buffer;
2241 	struct ring_buffer_event *event;
2242 	int cpu, resched;
2243 
2244 	if (ring_buffer_flags != RB_BUFFERS_ON)
2245 		return NULL;
2246 
2247 	/* If we are tracing schedule, we don't want to recurse */
2248 	resched = ftrace_preempt_disable();
2249 
2250 	if (atomic_read(&buffer->record_disabled))
2251 		goto out_nocheck;
2252 
2253 	if (trace_recursive_lock())
2254 		goto out_nocheck;
2255 
2256 	cpu = raw_smp_processor_id();
2257 
2258 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2259 		goto out;
2260 
2261 	cpu_buffer = buffer->buffers[cpu];
2262 
2263 	if (atomic_read(&cpu_buffer->record_disabled))
2264 		goto out;
2265 
2266 	if (length > BUF_MAX_DATA_SIZE)
2267 		goto out;
2268 
2269 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2270 	if (!event)
2271 		goto out;
2272 
2273 	/*
2274 	 * Need to store resched state on this cpu.
2275 	 * Only the first needs to.
2276 	 */
2277 
2278 	if (preempt_count() == 1)
2279 		per_cpu(rb_need_resched, cpu) = resched;
2280 
2281 	return event;
2282 
2283  out:
2284 	trace_recursive_unlock();
2285 
2286  out_nocheck:
2287 	ftrace_preempt_enable(resched);
2288 	return NULL;
2289 }
2290 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2291 
2292 static void
2293 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2294 		      struct ring_buffer_event *event)
2295 {
2296 	/*
2297 	 * The event first in the commit queue updates the
2298 	 * time stamp.
2299 	 */
2300 	if (rb_event_is_commit(cpu_buffer, event))
2301 		cpu_buffer->write_stamp += event->time_delta;
2302 }
2303 
2304 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2305 		      struct ring_buffer_event *event)
2306 {
2307 	local_inc(&cpu_buffer->entries);
2308 	rb_update_write_stamp(cpu_buffer, event);
2309 	rb_end_commit(cpu_buffer);
2310 }
2311 
2312 /**
2313  * ring_buffer_unlock_commit - commit a reserved
2314  * @buffer: The buffer to commit to
2315  * @event: The event pointer to commit.
2316  *
2317  * This commits the data to the ring buffer, and releases any locks held.
2318  *
2319  * Must be paired with ring_buffer_lock_reserve.
2320  */
2321 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2322 			      struct ring_buffer_event *event)
2323 {
2324 	struct ring_buffer_per_cpu *cpu_buffer;
2325 	int cpu = raw_smp_processor_id();
2326 
2327 	cpu_buffer = buffer->buffers[cpu];
2328 
2329 	rb_commit(cpu_buffer, event);
2330 
2331 	trace_recursive_unlock();
2332 
2333 	/*
2334 	 * Only the last preempt count needs to restore preemption.
2335 	 */
2336 	if (preempt_count() == 1)
2337 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2338 	else
2339 		preempt_enable_no_resched_notrace();
2340 
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2344 
2345 static inline void rb_event_discard(struct ring_buffer_event *event)
2346 {
2347 	/* array[0] holds the actual length for the discarded event */
2348 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2349 	event->type_len = RINGBUF_TYPE_PADDING;
2350 	/* time delta must be non zero */
2351 	if (!event->time_delta)
2352 		event->time_delta = 1;
2353 }
2354 
2355 /*
2356  * Decrement the entries to the page that an event is on.
2357  * The event does not even need to exist, only the pointer
2358  * to the page it is on. This may only be called before the commit
2359  * takes place.
2360  */
2361 static inline void
2362 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2363 		   struct ring_buffer_event *event)
2364 {
2365 	unsigned long addr = (unsigned long)event;
2366 	struct buffer_page *bpage = cpu_buffer->commit_page;
2367 	struct buffer_page *start;
2368 
2369 	addr &= PAGE_MASK;
2370 
2371 	/* Do the likely case first */
2372 	if (likely(bpage->page == (void *)addr)) {
2373 		local_dec(&bpage->entries);
2374 		return;
2375 	}
2376 
2377 	/*
2378 	 * Because the commit page may be on the reader page we
2379 	 * start with the next page and check the end loop there.
2380 	 */
2381 	rb_inc_page(cpu_buffer, &bpage);
2382 	start = bpage;
2383 	do {
2384 		if (bpage->page == (void *)addr) {
2385 			local_dec(&bpage->entries);
2386 			return;
2387 		}
2388 		rb_inc_page(cpu_buffer, &bpage);
2389 	} while (bpage != start);
2390 
2391 	/* commit not part of this buffer?? */
2392 	RB_WARN_ON(cpu_buffer, 1);
2393 }
2394 
2395 /**
2396  * ring_buffer_commit_discard - discard an event that has not been committed
2397  * @buffer: the ring buffer
2398  * @event: non committed event to discard
2399  *
2400  * Sometimes an event that is in the ring buffer needs to be ignored.
2401  * This function lets the user discard an event in the ring buffer
2402  * and then that event will not be read later.
2403  *
2404  * This function only works if it is called before the the item has been
2405  * committed. It will try to free the event from the ring buffer
2406  * if another event has not been added behind it.
2407  *
2408  * If another event has been added behind it, it will set the event
2409  * up as discarded, and perform the commit.
2410  *
2411  * If this function is called, do not call ring_buffer_unlock_commit on
2412  * the event.
2413  */
2414 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2415 				struct ring_buffer_event *event)
2416 {
2417 	struct ring_buffer_per_cpu *cpu_buffer;
2418 	int cpu;
2419 
2420 	/* The event is discarded regardless */
2421 	rb_event_discard(event);
2422 
2423 	cpu = smp_processor_id();
2424 	cpu_buffer = buffer->buffers[cpu];
2425 
2426 	/*
2427 	 * This must only be called if the event has not been
2428 	 * committed yet. Thus we can assume that preemption
2429 	 * is still disabled.
2430 	 */
2431 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2432 
2433 	rb_decrement_entry(cpu_buffer, event);
2434 	if (rb_try_to_discard(cpu_buffer, event))
2435 		goto out;
2436 
2437 	/*
2438 	 * The commit is still visible by the reader, so we
2439 	 * must still update the timestamp.
2440 	 */
2441 	rb_update_write_stamp(cpu_buffer, event);
2442  out:
2443 	rb_end_commit(cpu_buffer);
2444 
2445 	trace_recursive_unlock();
2446 
2447 	/*
2448 	 * Only the last preempt count needs to restore preemption.
2449 	 */
2450 	if (preempt_count() == 1)
2451 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2452 	else
2453 		preempt_enable_no_resched_notrace();
2454 
2455 }
2456 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2457 
2458 /**
2459  * ring_buffer_write - write data to the buffer without reserving
2460  * @buffer: The ring buffer to write to.
2461  * @length: The length of the data being written (excluding the event header)
2462  * @data: The data to write to the buffer.
2463  *
2464  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2465  * one function. If you already have the data to write to the buffer, it
2466  * may be easier to simply call this function.
2467  *
2468  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2469  * and not the length of the event which would hold the header.
2470  */
2471 int ring_buffer_write(struct ring_buffer *buffer,
2472 			unsigned long length,
2473 			void *data)
2474 {
2475 	struct ring_buffer_per_cpu *cpu_buffer;
2476 	struct ring_buffer_event *event;
2477 	void *body;
2478 	int ret = -EBUSY;
2479 	int cpu, resched;
2480 
2481 	if (ring_buffer_flags != RB_BUFFERS_ON)
2482 		return -EBUSY;
2483 
2484 	resched = ftrace_preempt_disable();
2485 
2486 	if (atomic_read(&buffer->record_disabled))
2487 		goto out;
2488 
2489 	cpu = raw_smp_processor_id();
2490 
2491 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2492 		goto out;
2493 
2494 	cpu_buffer = buffer->buffers[cpu];
2495 
2496 	if (atomic_read(&cpu_buffer->record_disabled))
2497 		goto out;
2498 
2499 	if (length > BUF_MAX_DATA_SIZE)
2500 		goto out;
2501 
2502 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2503 	if (!event)
2504 		goto out;
2505 
2506 	body = rb_event_data(event);
2507 
2508 	memcpy(body, data, length);
2509 
2510 	rb_commit(cpu_buffer, event);
2511 
2512 	ret = 0;
2513  out:
2514 	ftrace_preempt_enable(resched);
2515 
2516 	return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(ring_buffer_write);
2519 
2520 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522 	struct buffer_page *reader = cpu_buffer->reader_page;
2523 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2524 	struct buffer_page *commit = cpu_buffer->commit_page;
2525 
2526 	/* In case of error, head will be NULL */
2527 	if (unlikely(!head))
2528 		return 1;
2529 
2530 	return reader->read == rb_page_commit(reader) &&
2531 		(commit == reader ||
2532 		 (commit == head &&
2533 		  head->read == rb_page_commit(commit)));
2534 }
2535 
2536 /**
2537  * ring_buffer_record_disable - stop all writes into the buffer
2538  * @buffer: The ring buffer to stop writes to.
2539  *
2540  * This prevents all writes to the buffer. Any attempt to write
2541  * to the buffer after this will fail and return NULL.
2542  *
2543  * The caller should call synchronize_sched() after this.
2544  */
2545 void ring_buffer_record_disable(struct ring_buffer *buffer)
2546 {
2547 	atomic_inc(&buffer->record_disabled);
2548 }
2549 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2550 
2551 /**
2552  * ring_buffer_record_enable - enable writes to the buffer
2553  * @buffer: The ring buffer to enable writes
2554  *
2555  * Note, multiple disables will need the same number of enables
2556  * to truly enable the writing (much like preempt_disable).
2557  */
2558 void ring_buffer_record_enable(struct ring_buffer *buffer)
2559 {
2560 	atomic_dec(&buffer->record_disabled);
2561 }
2562 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2563 
2564 /**
2565  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2566  * @buffer: The ring buffer to stop writes to.
2567  * @cpu: The CPU buffer to stop
2568  *
2569  * This prevents all writes to the buffer. Any attempt to write
2570  * to the buffer after this will fail and return NULL.
2571  *
2572  * The caller should call synchronize_sched() after this.
2573  */
2574 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2575 {
2576 	struct ring_buffer_per_cpu *cpu_buffer;
2577 
2578 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2579 		return;
2580 
2581 	cpu_buffer = buffer->buffers[cpu];
2582 	atomic_inc(&cpu_buffer->record_disabled);
2583 }
2584 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2585 
2586 /**
2587  * ring_buffer_record_enable_cpu - enable writes to the buffer
2588  * @buffer: The ring buffer to enable writes
2589  * @cpu: The CPU to enable.
2590  *
2591  * Note, multiple disables will need the same number of enables
2592  * to truly enable the writing (much like preempt_disable).
2593  */
2594 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2595 {
2596 	struct ring_buffer_per_cpu *cpu_buffer;
2597 
2598 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2599 		return;
2600 
2601 	cpu_buffer = buffer->buffers[cpu];
2602 	atomic_dec(&cpu_buffer->record_disabled);
2603 }
2604 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2605 
2606 /**
2607  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2608  * @buffer: The ring buffer
2609  * @cpu: The per CPU buffer to get the entries from.
2610  */
2611 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2612 {
2613 	struct ring_buffer_per_cpu *cpu_buffer;
2614 	unsigned long ret;
2615 
2616 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2617 		return 0;
2618 
2619 	cpu_buffer = buffer->buffers[cpu];
2620 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2621 		- cpu_buffer->read;
2622 
2623 	return ret;
2624 }
2625 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2626 
2627 /**
2628  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2629  * @buffer: The ring buffer
2630  * @cpu: The per CPU buffer to get the number of overruns from
2631  */
2632 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2633 {
2634 	struct ring_buffer_per_cpu *cpu_buffer;
2635 	unsigned long ret;
2636 
2637 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2638 		return 0;
2639 
2640 	cpu_buffer = buffer->buffers[cpu];
2641 	ret = local_read(&cpu_buffer->overrun);
2642 
2643 	return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2646 
2647 /**
2648  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2649  * @buffer: The ring buffer
2650  * @cpu: The per CPU buffer to get the number of overruns from
2651  */
2652 unsigned long
2653 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2654 {
2655 	struct ring_buffer_per_cpu *cpu_buffer;
2656 	unsigned long ret;
2657 
2658 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2659 		return 0;
2660 
2661 	cpu_buffer = buffer->buffers[cpu];
2662 	ret = local_read(&cpu_buffer->commit_overrun);
2663 
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2667 
2668 /**
2669  * ring_buffer_entries - get the number of entries in a buffer
2670  * @buffer: The ring buffer
2671  *
2672  * Returns the total number of entries in the ring buffer
2673  * (all CPU entries)
2674  */
2675 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2676 {
2677 	struct ring_buffer_per_cpu *cpu_buffer;
2678 	unsigned long entries = 0;
2679 	int cpu;
2680 
2681 	/* if you care about this being correct, lock the buffer */
2682 	for_each_buffer_cpu(buffer, cpu) {
2683 		cpu_buffer = buffer->buffers[cpu];
2684 		entries += (local_read(&cpu_buffer->entries) -
2685 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2686 	}
2687 
2688 	return entries;
2689 }
2690 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2691 
2692 /**
2693  * ring_buffer_overruns - get the number of overruns in buffer
2694  * @buffer: The ring buffer
2695  *
2696  * Returns the total number of overruns in the ring buffer
2697  * (all CPU entries)
2698  */
2699 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2700 {
2701 	struct ring_buffer_per_cpu *cpu_buffer;
2702 	unsigned long overruns = 0;
2703 	int cpu;
2704 
2705 	/* if you care about this being correct, lock the buffer */
2706 	for_each_buffer_cpu(buffer, cpu) {
2707 		cpu_buffer = buffer->buffers[cpu];
2708 		overruns += local_read(&cpu_buffer->overrun);
2709 	}
2710 
2711 	return overruns;
2712 }
2713 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2714 
2715 static void rb_iter_reset(struct ring_buffer_iter *iter)
2716 {
2717 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2718 
2719 	/* Iterator usage is expected to have record disabled */
2720 	if (list_empty(&cpu_buffer->reader_page->list)) {
2721 		iter->head_page = rb_set_head_page(cpu_buffer);
2722 		if (unlikely(!iter->head_page))
2723 			return;
2724 		iter->head = iter->head_page->read;
2725 	} else {
2726 		iter->head_page = cpu_buffer->reader_page;
2727 		iter->head = cpu_buffer->reader_page->read;
2728 	}
2729 	if (iter->head)
2730 		iter->read_stamp = cpu_buffer->read_stamp;
2731 	else
2732 		iter->read_stamp = iter->head_page->page->time_stamp;
2733 	iter->cache_reader_page = cpu_buffer->reader_page;
2734 	iter->cache_read = cpu_buffer->read;
2735 }
2736 
2737 /**
2738  * ring_buffer_iter_reset - reset an iterator
2739  * @iter: The iterator to reset
2740  *
2741  * Resets the iterator, so that it will start from the beginning
2742  * again.
2743  */
2744 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2745 {
2746 	struct ring_buffer_per_cpu *cpu_buffer;
2747 	unsigned long flags;
2748 
2749 	if (!iter)
2750 		return;
2751 
2752 	cpu_buffer = iter->cpu_buffer;
2753 
2754 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2755 	rb_iter_reset(iter);
2756 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2757 }
2758 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2759 
2760 /**
2761  * ring_buffer_iter_empty - check if an iterator has no more to read
2762  * @iter: The iterator to check
2763  */
2764 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2765 {
2766 	struct ring_buffer_per_cpu *cpu_buffer;
2767 
2768 	cpu_buffer = iter->cpu_buffer;
2769 
2770 	return iter->head_page == cpu_buffer->commit_page &&
2771 		iter->head == rb_commit_index(cpu_buffer);
2772 }
2773 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2774 
2775 static void
2776 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2777 		     struct ring_buffer_event *event)
2778 {
2779 	u64 delta;
2780 
2781 	switch (event->type_len) {
2782 	case RINGBUF_TYPE_PADDING:
2783 		return;
2784 
2785 	case RINGBUF_TYPE_TIME_EXTEND:
2786 		delta = event->array[0];
2787 		delta <<= TS_SHIFT;
2788 		delta += event->time_delta;
2789 		cpu_buffer->read_stamp += delta;
2790 		return;
2791 
2792 	case RINGBUF_TYPE_TIME_STAMP:
2793 		/* FIXME: not implemented */
2794 		return;
2795 
2796 	case RINGBUF_TYPE_DATA:
2797 		cpu_buffer->read_stamp += event->time_delta;
2798 		return;
2799 
2800 	default:
2801 		BUG();
2802 	}
2803 	return;
2804 }
2805 
2806 static void
2807 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2808 			  struct ring_buffer_event *event)
2809 {
2810 	u64 delta;
2811 
2812 	switch (event->type_len) {
2813 	case RINGBUF_TYPE_PADDING:
2814 		return;
2815 
2816 	case RINGBUF_TYPE_TIME_EXTEND:
2817 		delta = event->array[0];
2818 		delta <<= TS_SHIFT;
2819 		delta += event->time_delta;
2820 		iter->read_stamp += delta;
2821 		return;
2822 
2823 	case RINGBUF_TYPE_TIME_STAMP:
2824 		/* FIXME: not implemented */
2825 		return;
2826 
2827 	case RINGBUF_TYPE_DATA:
2828 		iter->read_stamp += event->time_delta;
2829 		return;
2830 
2831 	default:
2832 		BUG();
2833 	}
2834 	return;
2835 }
2836 
2837 static struct buffer_page *
2838 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2839 {
2840 	struct buffer_page *reader = NULL;
2841 	unsigned long flags;
2842 	int nr_loops = 0;
2843 	int ret;
2844 
2845 	local_irq_save(flags);
2846 	arch_spin_lock(&cpu_buffer->lock);
2847 
2848  again:
2849 	/*
2850 	 * This should normally only loop twice. But because the
2851 	 * start of the reader inserts an empty page, it causes
2852 	 * a case where we will loop three times. There should be no
2853 	 * reason to loop four times (that I know of).
2854 	 */
2855 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2856 		reader = NULL;
2857 		goto out;
2858 	}
2859 
2860 	reader = cpu_buffer->reader_page;
2861 
2862 	/* If there's more to read, return this page */
2863 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2864 		goto out;
2865 
2866 	/* Never should we have an index greater than the size */
2867 	if (RB_WARN_ON(cpu_buffer,
2868 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2869 		goto out;
2870 
2871 	/* check if we caught up to the tail */
2872 	reader = NULL;
2873 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2874 		goto out;
2875 
2876 	/*
2877 	 * Reset the reader page to size zero.
2878 	 */
2879 	local_set(&cpu_buffer->reader_page->write, 0);
2880 	local_set(&cpu_buffer->reader_page->entries, 0);
2881 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2882 
2883  spin:
2884 	/*
2885 	 * Splice the empty reader page into the list around the head.
2886 	 */
2887 	reader = rb_set_head_page(cpu_buffer);
2888 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2889 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2890 
2891 	/*
2892 	 * cpu_buffer->pages just needs to point to the buffer, it
2893 	 *  has no specific buffer page to point to. Lets move it out
2894 	 *  of our way so we don't accidently swap it.
2895 	 */
2896 	cpu_buffer->pages = reader->list.prev;
2897 
2898 	/* The reader page will be pointing to the new head */
2899 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2900 
2901 	/*
2902 	 * Here's the tricky part.
2903 	 *
2904 	 * We need to move the pointer past the header page.
2905 	 * But we can only do that if a writer is not currently
2906 	 * moving it. The page before the header page has the
2907 	 * flag bit '1' set if it is pointing to the page we want.
2908 	 * but if the writer is in the process of moving it
2909 	 * than it will be '2' or already moved '0'.
2910 	 */
2911 
2912 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2913 
2914 	/*
2915 	 * If we did not convert it, then we must try again.
2916 	 */
2917 	if (!ret)
2918 		goto spin;
2919 
2920 	/*
2921 	 * Yeah! We succeeded in replacing the page.
2922 	 *
2923 	 * Now make the new head point back to the reader page.
2924 	 */
2925 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2926 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2927 
2928 	/* Finally update the reader page to the new head */
2929 	cpu_buffer->reader_page = reader;
2930 	rb_reset_reader_page(cpu_buffer);
2931 
2932 	goto again;
2933 
2934  out:
2935 	arch_spin_unlock(&cpu_buffer->lock);
2936 	local_irq_restore(flags);
2937 
2938 	return reader;
2939 }
2940 
2941 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2942 {
2943 	struct ring_buffer_event *event;
2944 	struct buffer_page *reader;
2945 	unsigned length;
2946 
2947 	reader = rb_get_reader_page(cpu_buffer);
2948 
2949 	/* This function should not be called when buffer is empty */
2950 	if (RB_WARN_ON(cpu_buffer, !reader))
2951 		return;
2952 
2953 	event = rb_reader_event(cpu_buffer);
2954 
2955 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2956 		cpu_buffer->read++;
2957 
2958 	rb_update_read_stamp(cpu_buffer, event);
2959 
2960 	length = rb_event_length(event);
2961 	cpu_buffer->reader_page->read += length;
2962 }
2963 
2964 static void rb_advance_iter(struct ring_buffer_iter *iter)
2965 {
2966 	struct ring_buffer *buffer;
2967 	struct ring_buffer_per_cpu *cpu_buffer;
2968 	struct ring_buffer_event *event;
2969 	unsigned length;
2970 
2971 	cpu_buffer = iter->cpu_buffer;
2972 	buffer = cpu_buffer->buffer;
2973 
2974 	/*
2975 	 * Check if we are at the end of the buffer.
2976 	 */
2977 	if (iter->head >= rb_page_size(iter->head_page)) {
2978 		/* discarded commits can make the page empty */
2979 		if (iter->head_page == cpu_buffer->commit_page)
2980 			return;
2981 		rb_inc_iter(iter);
2982 		return;
2983 	}
2984 
2985 	event = rb_iter_head_event(iter);
2986 
2987 	length = rb_event_length(event);
2988 
2989 	/*
2990 	 * This should not be called to advance the header if we are
2991 	 * at the tail of the buffer.
2992 	 */
2993 	if (RB_WARN_ON(cpu_buffer,
2994 		       (iter->head_page == cpu_buffer->commit_page) &&
2995 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2996 		return;
2997 
2998 	rb_update_iter_read_stamp(iter, event);
2999 
3000 	iter->head += length;
3001 
3002 	/* check for end of page padding */
3003 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3004 	    (iter->head_page != cpu_buffer->commit_page))
3005 		rb_advance_iter(iter);
3006 }
3007 
3008 static struct ring_buffer_event *
3009 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3010 {
3011 	struct ring_buffer_event *event;
3012 	struct buffer_page *reader;
3013 	int nr_loops = 0;
3014 
3015  again:
3016 	/*
3017 	 * We repeat when a timestamp is encountered. It is possible
3018 	 * to get multiple timestamps from an interrupt entering just
3019 	 * as one timestamp is about to be written, or from discarded
3020 	 * commits. The most that we can have is the number on a single page.
3021 	 */
3022 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3023 		return NULL;
3024 
3025 	reader = rb_get_reader_page(cpu_buffer);
3026 	if (!reader)
3027 		return NULL;
3028 
3029 	event = rb_reader_event(cpu_buffer);
3030 
3031 	switch (event->type_len) {
3032 	case RINGBUF_TYPE_PADDING:
3033 		if (rb_null_event(event))
3034 			RB_WARN_ON(cpu_buffer, 1);
3035 		/*
3036 		 * Because the writer could be discarding every
3037 		 * event it creates (which would probably be bad)
3038 		 * if we were to go back to "again" then we may never
3039 		 * catch up, and will trigger the warn on, or lock
3040 		 * the box. Return the padding, and we will release
3041 		 * the current locks, and try again.
3042 		 */
3043 		return event;
3044 
3045 	case RINGBUF_TYPE_TIME_EXTEND:
3046 		/* Internal data, OK to advance */
3047 		rb_advance_reader(cpu_buffer);
3048 		goto again;
3049 
3050 	case RINGBUF_TYPE_TIME_STAMP:
3051 		/* FIXME: not implemented */
3052 		rb_advance_reader(cpu_buffer);
3053 		goto again;
3054 
3055 	case RINGBUF_TYPE_DATA:
3056 		if (ts) {
3057 			*ts = cpu_buffer->read_stamp + event->time_delta;
3058 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3059 							 cpu_buffer->cpu, ts);
3060 		}
3061 		return event;
3062 
3063 	default:
3064 		BUG();
3065 	}
3066 
3067 	return NULL;
3068 }
3069 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3070 
3071 static struct ring_buffer_event *
3072 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3073 {
3074 	struct ring_buffer *buffer;
3075 	struct ring_buffer_per_cpu *cpu_buffer;
3076 	struct ring_buffer_event *event;
3077 	int nr_loops = 0;
3078 
3079 	cpu_buffer = iter->cpu_buffer;
3080 	buffer = cpu_buffer->buffer;
3081 
3082 	/*
3083 	 * Check if someone performed a consuming read to
3084 	 * the buffer. A consuming read invalidates the iterator
3085 	 * and we need to reset the iterator in this case.
3086 	 */
3087 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3088 		     iter->cache_reader_page != cpu_buffer->reader_page))
3089 		rb_iter_reset(iter);
3090 
3091  again:
3092 	if (ring_buffer_iter_empty(iter))
3093 		return NULL;
3094 
3095 	/*
3096 	 * We repeat when a timestamp is encountered.
3097 	 * We can get multiple timestamps by nested interrupts or also
3098 	 * if filtering is on (discarding commits). Since discarding
3099 	 * commits can be frequent we can get a lot of timestamps.
3100 	 * But we limit them by not adding timestamps if they begin
3101 	 * at the start of a page.
3102 	 */
3103 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3104 		return NULL;
3105 
3106 	if (rb_per_cpu_empty(cpu_buffer))
3107 		return NULL;
3108 
3109 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3110 		rb_inc_iter(iter);
3111 		goto again;
3112 	}
3113 
3114 	event = rb_iter_head_event(iter);
3115 
3116 	switch (event->type_len) {
3117 	case RINGBUF_TYPE_PADDING:
3118 		if (rb_null_event(event)) {
3119 			rb_inc_iter(iter);
3120 			goto again;
3121 		}
3122 		rb_advance_iter(iter);
3123 		return event;
3124 
3125 	case RINGBUF_TYPE_TIME_EXTEND:
3126 		/* Internal data, OK to advance */
3127 		rb_advance_iter(iter);
3128 		goto again;
3129 
3130 	case RINGBUF_TYPE_TIME_STAMP:
3131 		/* FIXME: not implemented */
3132 		rb_advance_iter(iter);
3133 		goto again;
3134 
3135 	case RINGBUF_TYPE_DATA:
3136 		if (ts) {
3137 			*ts = iter->read_stamp + event->time_delta;
3138 			ring_buffer_normalize_time_stamp(buffer,
3139 							 cpu_buffer->cpu, ts);
3140 		}
3141 		return event;
3142 
3143 	default:
3144 		BUG();
3145 	}
3146 
3147 	return NULL;
3148 }
3149 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3150 
3151 static inline int rb_ok_to_lock(void)
3152 {
3153 	/*
3154 	 * If an NMI die dumps out the content of the ring buffer
3155 	 * do not grab locks. We also permanently disable the ring
3156 	 * buffer too. A one time deal is all you get from reading
3157 	 * the ring buffer from an NMI.
3158 	 */
3159 	if (likely(!in_nmi()))
3160 		return 1;
3161 
3162 	tracing_off_permanent();
3163 	return 0;
3164 }
3165 
3166 /**
3167  * ring_buffer_peek - peek at the next event to be read
3168  * @buffer: The ring buffer to read
3169  * @cpu: The cpu to peak at
3170  * @ts: The timestamp counter of this event.
3171  *
3172  * This will return the event that will be read next, but does
3173  * not consume the data.
3174  */
3175 struct ring_buffer_event *
3176 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3177 {
3178 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3179 	struct ring_buffer_event *event;
3180 	unsigned long flags;
3181 	int dolock;
3182 
3183 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3184 		return NULL;
3185 
3186 	dolock = rb_ok_to_lock();
3187  again:
3188 	local_irq_save(flags);
3189 	if (dolock)
3190 		spin_lock(&cpu_buffer->reader_lock);
3191 	event = rb_buffer_peek(cpu_buffer, ts);
3192 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3193 		rb_advance_reader(cpu_buffer);
3194 	if (dolock)
3195 		spin_unlock(&cpu_buffer->reader_lock);
3196 	local_irq_restore(flags);
3197 
3198 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3199 		goto again;
3200 
3201 	return event;
3202 }
3203 
3204 /**
3205  * ring_buffer_iter_peek - peek at the next event to be read
3206  * @iter: The ring buffer iterator
3207  * @ts: The timestamp counter of this event.
3208  *
3209  * This will return the event that will be read next, but does
3210  * not increment the iterator.
3211  */
3212 struct ring_buffer_event *
3213 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3214 {
3215 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3216 	struct ring_buffer_event *event;
3217 	unsigned long flags;
3218 
3219  again:
3220 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3221 	event = rb_iter_peek(iter, ts);
3222 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3223 
3224 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3225 		goto again;
3226 
3227 	return event;
3228 }
3229 
3230 /**
3231  * ring_buffer_consume - return an event and consume it
3232  * @buffer: The ring buffer to get the next event from
3233  *
3234  * Returns the next event in the ring buffer, and that event is consumed.
3235  * Meaning, that sequential reads will keep returning a different event,
3236  * and eventually empty the ring buffer if the producer is slower.
3237  */
3238 struct ring_buffer_event *
3239 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3240 {
3241 	struct ring_buffer_per_cpu *cpu_buffer;
3242 	struct ring_buffer_event *event = NULL;
3243 	unsigned long flags;
3244 	int dolock;
3245 
3246 	dolock = rb_ok_to_lock();
3247 
3248  again:
3249 	/* might be called in atomic */
3250 	preempt_disable();
3251 
3252 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253 		goto out;
3254 
3255 	cpu_buffer = buffer->buffers[cpu];
3256 	local_irq_save(flags);
3257 	if (dolock)
3258 		spin_lock(&cpu_buffer->reader_lock);
3259 
3260 	event = rb_buffer_peek(cpu_buffer, ts);
3261 	if (event)
3262 		rb_advance_reader(cpu_buffer);
3263 
3264 	if (dolock)
3265 		spin_unlock(&cpu_buffer->reader_lock);
3266 	local_irq_restore(flags);
3267 
3268  out:
3269 	preempt_enable();
3270 
3271 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3272 		goto again;
3273 
3274 	return event;
3275 }
3276 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3277 
3278 /**
3279  * ring_buffer_read_start - start a non consuming read of the buffer
3280  * @buffer: The ring buffer to read from
3281  * @cpu: The cpu buffer to iterate over
3282  *
3283  * This starts up an iteration through the buffer. It also disables
3284  * the recording to the buffer until the reading is finished.
3285  * This prevents the reading from being corrupted. This is not
3286  * a consuming read, so a producer is not expected.
3287  *
3288  * Must be paired with ring_buffer_finish.
3289  */
3290 struct ring_buffer_iter *
3291 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3292 {
3293 	struct ring_buffer_per_cpu *cpu_buffer;
3294 	struct ring_buffer_iter *iter;
3295 	unsigned long flags;
3296 
3297 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298 		return NULL;
3299 
3300 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3301 	if (!iter)
3302 		return NULL;
3303 
3304 	cpu_buffer = buffer->buffers[cpu];
3305 
3306 	iter->cpu_buffer = cpu_buffer;
3307 
3308 	atomic_inc(&cpu_buffer->record_disabled);
3309 	synchronize_sched();
3310 
3311 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3312 	arch_spin_lock(&cpu_buffer->lock);
3313 	rb_iter_reset(iter);
3314 	arch_spin_unlock(&cpu_buffer->lock);
3315 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3316 
3317 	return iter;
3318 }
3319 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3320 
3321 /**
3322  * ring_buffer_finish - finish reading the iterator of the buffer
3323  * @iter: The iterator retrieved by ring_buffer_start
3324  *
3325  * This re-enables the recording to the buffer, and frees the
3326  * iterator.
3327  */
3328 void
3329 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3330 {
3331 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3332 
3333 	atomic_dec(&cpu_buffer->record_disabled);
3334 	kfree(iter);
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3337 
3338 /**
3339  * ring_buffer_read - read the next item in the ring buffer by the iterator
3340  * @iter: The ring buffer iterator
3341  * @ts: The time stamp of the event read.
3342  *
3343  * This reads the next event in the ring buffer and increments the iterator.
3344  */
3345 struct ring_buffer_event *
3346 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3347 {
3348 	struct ring_buffer_event *event;
3349 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3350 	unsigned long flags;
3351 
3352 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3353  again:
3354 	event = rb_iter_peek(iter, ts);
3355 	if (!event)
3356 		goto out;
3357 
3358 	if (event->type_len == RINGBUF_TYPE_PADDING)
3359 		goto again;
3360 
3361 	rb_advance_iter(iter);
3362  out:
3363 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3364 
3365 	return event;
3366 }
3367 EXPORT_SYMBOL_GPL(ring_buffer_read);
3368 
3369 /**
3370  * ring_buffer_size - return the size of the ring buffer (in bytes)
3371  * @buffer: The ring buffer.
3372  */
3373 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3374 {
3375 	return BUF_PAGE_SIZE * buffer->pages;
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_size);
3378 
3379 static void
3380 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3381 {
3382 	rb_head_page_deactivate(cpu_buffer);
3383 
3384 	cpu_buffer->head_page
3385 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3386 	local_set(&cpu_buffer->head_page->write, 0);
3387 	local_set(&cpu_buffer->head_page->entries, 0);
3388 	local_set(&cpu_buffer->head_page->page->commit, 0);
3389 
3390 	cpu_buffer->head_page->read = 0;
3391 
3392 	cpu_buffer->tail_page = cpu_buffer->head_page;
3393 	cpu_buffer->commit_page = cpu_buffer->head_page;
3394 
3395 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3396 	local_set(&cpu_buffer->reader_page->write, 0);
3397 	local_set(&cpu_buffer->reader_page->entries, 0);
3398 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3399 	cpu_buffer->reader_page->read = 0;
3400 
3401 	local_set(&cpu_buffer->commit_overrun, 0);
3402 	local_set(&cpu_buffer->overrun, 0);
3403 	local_set(&cpu_buffer->entries, 0);
3404 	local_set(&cpu_buffer->committing, 0);
3405 	local_set(&cpu_buffer->commits, 0);
3406 	cpu_buffer->read = 0;
3407 
3408 	cpu_buffer->write_stamp = 0;
3409 	cpu_buffer->read_stamp = 0;
3410 
3411 	rb_head_page_activate(cpu_buffer);
3412 }
3413 
3414 /**
3415  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3416  * @buffer: The ring buffer to reset a per cpu buffer of
3417  * @cpu: The CPU buffer to be reset
3418  */
3419 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3420 {
3421 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3422 	unsigned long flags;
3423 
3424 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 		return;
3426 
3427 	atomic_inc(&cpu_buffer->record_disabled);
3428 
3429 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3430 
3431 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3432 		goto out;
3433 
3434 	arch_spin_lock(&cpu_buffer->lock);
3435 
3436 	rb_reset_cpu(cpu_buffer);
3437 
3438 	arch_spin_unlock(&cpu_buffer->lock);
3439 
3440  out:
3441 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3442 
3443 	atomic_dec(&cpu_buffer->record_disabled);
3444 }
3445 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3446 
3447 /**
3448  * ring_buffer_reset - reset a ring buffer
3449  * @buffer: The ring buffer to reset all cpu buffers
3450  */
3451 void ring_buffer_reset(struct ring_buffer *buffer)
3452 {
3453 	int cpu;
3454 
3455 	for_each_buffer_cpu(buffer, cpu)
3456 		ring_buffer_reset_cpu(buffer, cpu);
3457 }
3458 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3459 
3460 /**
3461  * rind_buffer_empty - is the ring buffer empty?
3462  * @buffer: The ring buffer to test
3463  */
3464 int ring_buffer_empty(struct ring_buffer *buffer)
3465 {
3466 	struct ring_buffer_per_cpu *cpu_buffer;
3467 	unsigned long flags;
3468 	int dolock;
3469 	int cpu;
3470 	int ret;
3471 
3472 	dolock = rb_ok_to_lock();
3473 
3474 	/* yes this is racy, but if you don't like the race, lock the buffer */
3475 	for_each_buffer_cpu(buffer, cpu) {
3476 		cpu_buffer = buffer->buffers[cpu];
3477 		local_irq_save(flags);
3478 		if (dolock)
3479 			spin_lock(&cpu_buffer->reader_lock);
3480 		ret = rb_per_cpu_empty(cpu_buffer);
3481 		if (dolock)
3482 			spin_unlock(&cpu_buffer->reader_lock);
3483 		local_irq_restore(flags);
3484 
3485 		if (!ret)
3486 			return 0;
3487 	}
3488 
3489 	return 1;
3490 }
3491 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3492 
3493 /**
3494  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3495  * @buffer: The ring buffer
3496  * @cpu: The CPU buffer to test
3497  */
3498 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3499 {
3500 	struct ring_buffer_per_cpu *cpu_buffer;
3501 	unsigned long flags;
3502 	int dolock;
3503 	int ret;
3504 
3505 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3506 		return 1;
3507 
3508 	dolock = rb_ok_to_lock();
3509 
3510 	cpu_buffer = buffer->buffers[cpu];
3511 	local_irq_save(flags);
3512 	if (dolock)
3513 		spin_lock(&cpu_buffer->reader_lock);
3514 	ret = rb_per_cpu_empty(cpu_buffer);
3515 	if (dolock)
3516 		spin_unlock(&cpu_buffer->reader_lock);
3517 	local_irq_restore(flags);
3518 
3519 	return ret;
3520 }
3521 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3522 
3523 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3524 /**
3525  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3526  * @buffer_a: One buffer to swap with
3527  * @buffer_b: The other buffer to swap with
3528  *
3529  * This function is useful for tracers that want to take a "snapshot"
3530  * of a CPU buffer and has another back up buffer lying around.
3531  * it is expected that the tracer handles the cpu buffer not being
3532  * used at the moment.
3533  */
3534 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3535 			 struct ring_buffer *buffer_b, int cpu)
3536 {
3537 	struct ring_buffer_per_cpu *cpu_buffer_a;
3538 	struct ring_buffer_per_cpu *cpu_buffer_b;
3539 	int ret = -EINVAL;
3540 
3541 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3542 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3543 		goto out;
3544 
3545 	/* At least make sure the two buffers are somewhat the same */
3546 	if (buffer_a->pages != buffer_b->pages)
3547 		goto out;
3548 
3549 	ret = -EAGAIN;
3550 
3551 	if (ring_buffer_flags != RB_BUFFERS_ON)
3552 		goto out;
3553 
3554 	if (atomic_read(&buffer_a->record_disabled))
3555 		goto out;
3556 
3557 	if (atomic_read(&buffer_b->record_disabled))
3558 		goto out;
3559 
3560 	cpu_buffer_a = buffer_a->buffers[cpu];
3561 	cpu_buffer_b = buffer_b->buffers[cpu];
3562 
3563 	if (atomic_read(&cpu_buffer_a->record_disabled))
3564 		goto out;
3565 
3566 	if (atomic_read(&cpu_buffer_b->record_disabled))
3567 		goto out;
3568 
3569 	/*
3570 	 * We can't do a synchronize_sched here because this
3571 	 * function can be called in atomic context.
3572 	 * Normally this will be called from the same CPU as cpu.
3573 	 * If not it's up to the caller to protect this.
3574 	 */
3575 	atomic_inc(&cpu_buffer_a->record_disabled);
3576 	atomic_inc(&cpu_buffer_b->record_disabled);
3577 
3578 	ret = -EBUSY;
3579 	if (local_read(&cpu_buffer_a->committing))
3580 		goto out_dec;
3581 	if (local_read(&cpu_buffer_b->committing))
3582 		goto out_dec;
3583 
3584 	buffer_a->buffers[cpu] = cpu_buffer_b;
3585 	buffer_b->buffers[cpu] = cpu_buffer_a;
3586 
3587 	cpu_buffer_b->buffer = buffer_a;
3588 	cpu_buffer_a->buffer = buffer_b;
3589 
3590 	ret = 0;
3591 
3592 out_dec:
3593 	atomic_dec(&cpu_buffer_a->record_disabled);
3594 	atomic_dec(&cpu_buffer_b->record_disabled);
3595 out:
3596 	return ret;
3597 }
3598 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3599 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3600 
3601 /**
3602  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3603  * @buffer: the buffer to allocate for.
3604  *
3605  * This function is used in conjunction with ring_buffer_read_page.
3606  * When reading a full page from the ring buffer, these functions
3607  * can be used to speed up the process. The calling function should
3608  * allocate a few pages first with this function. Then when it
3609  * needs to get pages from the ring buffer, it passes the result
3610  * of this function into ring_buffer_read_page, which will swap
3611  * the page that was allocated, with the read page of the buffer.
3612  *
3613  * Returns:
3614  *  The page allocated, or NULL on error.
3615  */
3616 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3617 {
3618 	struct buffer_data_page *bpage;
3619 	unsigned long addr;
3620 
3621 	addr = __get_free_page(GFP_KERNEL);
3622 	if (!addr)
3623 		return NULL;
3624 
3625 	bpage = (void *)addr;
3626 
3627 	rb_init_page(bpage);
3628 
3629 	return bpage;
3630 }
3631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3632 
3633 /**
3634  * ring_buffer_free_read_page - free an allocated read page
3635  * @buffer: the buffer the page was allocate for
3636  * @data: the page to free
3637  *
3638  * Free a page allocated from ring_buffer_alloc_read_page.
3639  */
3640 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3641 {
3642 	free_page((unsigned long)data);
3643 }
3644 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3645 
3646 /**
3647  * ring_buffer_read_page - extract a page from the ring buffer
3648  * @buffer: buffer to extract from
3649  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3650  * @len: amount to extract
3651  * @cpu: the cpu of the buffer to extract
3652  * @full: should the extraction only happen when the page is full.
3653  *
3654  * This function will pull out a page from the ring buffer and consume it.
3655  * @data_page must be the address of the variable that was returned
3656  * from ring_buffer_alloc_read_page. This is because the page might be used
3657  * to swap with a page in the ring buffer.
3658  *
3659  * for example:
3660  *	rpage = ring_buffer_alloc_read_page(buffer);
3661  *	if (!rpage)
3662  *		return error;
3663  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3664  *	if (ret >= 0)
3665  *		process_page(rpage, ret);
3666  *
3667  * When @full is set, the function will not return true unless
3668  * the writer is off the reader page.
3669  *
3670  * Note: it is up to the calling functions to handle sleeps and wakeups.
3671  *  The ring buffer can be used anywhere in the kernel and can not
3672  *  blindly call wake_up. The layer that uses the ring buffer must be
3673  *  responsible for that.
3674  *
3675  * Returns:
3676  *  >=0 if data has been transferred, returns the offset of consumed data.
3677  *  <0 if no data has been transferred.
3678  */
3679 int ring_buffer_read_page(struct ring_buffer *buffer,
3680 			  void **data_page, size_t len, int cpu, int full)
3681 {
3682 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3683 	struct ring_buffer_event *event;
3684 	struct buffer_data_page *bpage;
3685 	struct buffer_page *reader;
3686 	unsigned long flags;
3687 	unsigned int commit;
3688 	unsigned int read;
3689 	u64 save_timestamp;
3690 	int ret = -1;
3691 
3692 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3693 		goto out;
3694 
3695 	/*
3696 	 * If len is not big enough to hold the page header, then
3697 	 * we can not copy anything.
3698 	 */
3699 	if (len <= BUF_PAGE_HDR_SIZE)
3700 		goto out;
3701 
3702 	len -= BUF_PAGE_HDR_SIZE;
3703 
3704 	if (!data_page)
3705 		goto out;
3706 
3707 	bpage = *data_page;
3708 	if (!bpage)
3709 		goto out;
3710 
3711 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3712 
3713 	reader = rb_get_reader_page(cpu_buffer);
3714 	if (!reader)
3715 		goto out_unlock;
3716 
3717 	event = rb_reader_event(cpu_buffer);
3718 
3719 	read = reader->read;
3720 	commit = rb_page_commit(reader);
3721 
3722 	/*
3723 	 * If this page has been partially read or
3724 	 * if len is not big enough to read the rest of the page or
3725 	 * a writer is still on the page, then
3726 	 * we must copy the data from the page to the buffer.
3727 	 * Otherwise, we can simply swap the page with the one passed in.
3728 	 */
3729 	if (read || (len < (commit - read)) ||
3730 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3731 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3732 		unsigned int rpos = read;
3733 		unsigned int pos = 0;
3734 		unsigned int size;
3735 
3736 		if (full)
3737 			goto out_unlock;
3738 
3739 		if (len > (commit - read))
3740 			len = (commit - read);
3741 
3742 		size = rb_event_length(event);
3743 
3744 		if (len < size)
3745 			goto out_unlock;
3746 
3747 		/* save the current timestamp, since the user will need it */
3748 		save_timestamp = cpu_buffer->read_stamp;
3749 
3750 		/* Need to copy one event at a time */
3751 		do {
3752 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3753 
3754 			len -= size;
3755 
3756 			rb_advance_reader(cpu_buffer);
3757 			rpos = reader->read;
3758 			pos += size;
3759 
3760 			event = rb_reader_event(cpu_buffer);
3761 			size = rb_event_length(event);
3762 		} while (len > size);
3763 
3764 		/* update bpage */
3765 		local_set(&bpage->commit, pos);
3766 		bpage->time_stamp = save_timestamp;
3767 
3768 		/* we copied everything to the beginning */
3769 		read = 0;
3770 	} else {
3771 		/* update the entry counter */
3772 		cpu_buffer->read += rb_page_entries(reader);
3773 
3774 		/* swap the pages */
3775 		rb_init_page(bpage);
3776 		bpage = reader->page;
3777 		reader->page = *data_page;
3778 		local_set(&reader->write, 0);
3779 		local_set(&reader->entries, 0);
3780 		reader->read = 0;
3781 		*data_page = bpage;
3782 	}
3783 	ret = read;
3784 
3785  out_unlock:
3786 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3787 
3788  out:
3789 	return ret;
3790 }
3791 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3792 
3793 #ifdef CONFIG_TRACING
3794 static ssize_t
3795 rb_simple_read(struct file *filp, char __user *ubuf,
3796 	       size_t cnt, loff_t *ppos)
3797 {
3798 	unsigned long *p = filp->private_data;
3799 	char buf[64];
3800 	int r;
3801 
3802 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3803 		r = sprintf(buf, "permanently disabled\n");
3804 	else
3805 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3806 
3807 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3808 }
3809 
3810 static ssize_t
3811 rb_simple_write(struct file *filp, const char __user *ubuf,
3812 		size_t cnt, loff_t *ppos)
3813 {
3814 	unsigned long *p = filp->private_data;
3815 	char buf[64];
3816 	unsigned long val;
3817 	int ret;
3818 
3819 	if (cnt >= sizeof(buf))
3820 		return -EINVAL;
3821 
3822 	if (copy_from_user(&buf, ubuf, cnt))
3823 		return -EFAULT;
3824 
3825 	buf[cnt] = 0;
3826 
3827 	ret = strict_strtoul(buf, 10, &val);
3828 	if (ret < 0)
3829 		return ret;
3830 
3831 	if (val)
3832 		set_bit(RB_BUFFERS_ON_BIT, p);
3833 	else
3834 		clear_bit(RB_BUFFERS_ON_BIT, p);
3835 
3836 	(*ppos)++;
3837 
3838 	return cnt;
3839 }
3840 
3841 static const struct file_operations rb_simple_fops = {
3842 	.open		= tracing_open_generic,
3843 	.read		= rb_simple_read,
3844 	.write		= rb_simple_write,
3845 };
3846 
3847 
3848 static __init int rb_init_debugfs(void)
3849 {
3850 	struct dentry *d_tracer;
3851 
3852 	d_tracer = tracing_init_dentry();
3853 
3854 	trace_create_file("tracing_on", 0644, d_tracer,
3855 			    &ring_buffer_flags, &rb_simple_fops);
3856 
3857 	return 0;
3858 }
3859 
3860 fs_initcall(rb_init_debugfs);
3861 #endif
3862 
3863 #ifdef CONFIG_HOTPLUG_CPU
3864 static int rb_cpu_notify(struct notifier_block *self,
3865 			 unsigned long action, void *hcpu)
3866 {
3867 	struct ring_buffer *buffer =
3868 		container_of(self, struct ring_buffer, cpu_notify);
3869 	long cpu = (long)hcpu;
3870 
3871 	switch (action) {
3872 	case CPU_UP_PREPARE:
3873 	case CPU_UP_PREPARE_FROZEN:
3874 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3875 			return NOTIFY_OK;
3876 
3877 		buffer->buffers[cpu] =
3878 			rb_allocate_cpu_buffer(buffer, cpu);
3879 		if (!buffer->buffers[cpu]) {
3880 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3881 			     cpu);
3882 			return NOTIFY_OK;
3883 		}
3884 		smp_wmb();
3885 		cpumask_set_cpu(cpu, buffer->cpumask);
3886 		break;
3887 	case CPU_DOWN_PREPARE:
3888 	case CPU_DOWN_PREPARE_FROZEN:
3889 		/*
3890 		 * Do nothing.
3891 		 *  If we were to free the buffer, then the user would
3892 		 *  lose any trace that was in the buffer.
3893 		 */
3894 		break;
3895 	default:
3896 		break;
3897 	}
3898 	return NOTIFY_OK;
3899 }
3900 #endif
3901