1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/cacheflush.h> 13 #include <linux/trace_seq.h> 14 #include <linux/spinlock.h> 15 #include <linux/irq_work.h> 16 #include <linux/security.h> 17 #include <linux/uaccess.h> 18 #include <linux/hardirq.h> 19 #include <linux/kthread.h> /* for self test */ 20 #include <linux/module.h> 21 #include <linux/percpu.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/list.h> 28 #include <linux/cpu.h> 29 #include <linux/oom.h> 30 #include <linux/mm.h> 31 32 #include <asm/local64.h> 33 #include <asm/local.h> 34 #include <asm/setup.h> 35 36 #include "trace.h" 37 38 /* 39 * The "absolute" timestamp in the buffer is only 59 bits. 40 * If a clock has the 5 MSBs set, it needs to be saved and 41 * reinserted. 42 */ 43 #define TS_MSB (0xf8ULL << 56) 44 #define ABS_TS_MASK (~TS_MSB) 45 46 static void update_pages_handler(struct work_struct *work); 47 48 #define RING_BUFFER_META_MAGIC 0xBADFEED 49 50 struct ring_buffer_meta { 51 int magic; 52 int struct_sizes; 53 unsigned long total_size; 54 unsigned long buffers_offset; 55 }; 56 57 struct ring_buffer_cpu_meta { 58 unsigned long first_buffer; 59 unsigned long head_buffer; 60 unsigned long commit_buffer; 61 __u32 subbuf_size; 62 __u32 nr_subbufs; 63 int buffers[]; 64 }; 65 66 /* 67 * The ring buffer header is special. We must manually up keep it. 68 */ 69 int ring_buffer_print_entry_header(struct trace_seq *s) 70 { 71 trace_seq_puts(s, "# compressed entry header\n"); 72 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 73 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 74 trace_seq_puts(s, "\tarray : 32 bits\n"); 75 trace_seq_putc(s, '\n'); 76 trace_seq_printf(s, "\tpadding : type == %d\n", 77 RINGBUF_TYPE_PADDING); 78 trace_seq_printf(s, "\ttime_extend : type == %d\n", 79 RINGBUF_TYPE_TIME_EXTEND); 80 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 81 RINGBUF_TYPE_TIME_STAMP); 82 trace_seq_printf(s, "\tdata max type_len == %d\n", 83 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 84 85 return !trace_seq_has_overflowed(s); 86 } 87 88 /* 89 * The ring buffer is made up of a list of pages. A separate list of pages is 90 * allocated for each CPU. A writer may only write to a buffer that is 91 * associated with the CPU it is currently executing on. A reader may read 92 * from any per cpu buffer. 93 * 94 * The reader is special. For each per cpu buffer, the reader has its own 95 * reader page. When a reader has read the entire reader page, this reader 96 * page is swapped with another page in the ring buffer. 97 * 98 * Now, as long as the writer is off the reader page, the reader can do what 99 * ever it wants with that page. The writer will never write to that page 100 * again (as long as it is out of the ring buffer). 101 * 102 * Here's some silly ASCII art. 103 * 104 * +------+ 105 * |reader| RING BUFFER 106 * |page | 107 * +------+ +---+ +---+ +---+ 108 * | |-->| |-->| | 109 * +---+ +---+ +---+ 110 * ^ | 111 * | | 112 * +---------------+ 113 * 114 * 115 * +------+ 116 * |reader| RING BUFFER 117 * |page |------------------v 118 * +------+ +---+ +---+ +---+ 119 * | |-->| |-->| | 120 * +---+ +---+ +---+ 121 * ^ | 122 * | | 123 * +---------------+ 124 * 125 * 126 * +------+ 127 * |reader| RING BUFFER 128 * |page |------------------v 129 * +------+ +---+ +---+ +---+ 130 * ^ | |-->| |-->| | 131 * | +---+ +---+ +---+ 132 * | | 133 * | | 134 * +------------------------------+ 135 * 136 * 137 * +------+ 138 * |buffer| RING BUFFER 139 * |page |------------------v 140 * +------+ +---+ +---+ +---+ 141 * ^ | | | |-->| | 142 * | New +---+ +---+ +---+ 143 * | Reader------^ | 144 * | page | 145 * +------------------------------+ 146 * 147 * 148 * After we make this swap, the reader can hand this page off to the splice 149 * code and be done with it. It can even allocate a new page if it needs to 150 * and swap that into the ring buffer. 151 * 152 * We will be using cmpxchg soon to make all this lockless. 153 * 154 */ 155 156 /* Used for individual buffers (after the counter) */ 157 #define RB_BUFFER_OFF (1 << 20) 158 159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 160 161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 162 #define RB_ALIGNMENT 4U 163 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 164 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 165 166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 167 # define RB_FORCE_8BYTE_ALIGNMENT 0 168 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 169 #else 170 # define RB_FORCE_8BYTE_ALIGNMENT 1 171 # define RB_ARCH_ALIGNMENT 8U 172 #endif 173 174 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 175 176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 178 179 enum { 180 RB_LEN_TIME_EXTEND = 8, 181 RB_LEN_TIME_STAMP = 8, 182 }; 183 184 #define skip_time_extend(event) \ 185 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 186 187 #define extended_time(event) \ 188 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 189 190 static inline bool rb_null_event(struct ring_buffer_event *event) 191 { 192 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 193 } 194 195 static void rb_event_set_padding(struct ring_buffer_event *event) 196 { 197 /* padding has a NULL time_delta */ 198 event->type_len = RINGBUF_TYPE_PADDING; 199 event->time_delta = 0; 200 } 201 202 static unsigned 203 rb_event_data_length(struct ring_buffer_event *event) 204 { 205 unsigned length; 206 207 if (event->type_len) 208 length = event->type_len * RB_ALIGNMENT; 209 else 210 length = event->array[0]; 211 return length + RB_EVNT_HDR_SIZE; 212 } 213 214 /* 215 * Return the length of the given event. Will return 216 * the length of the time extend if the event is a 217 * time extend. 218 */ 219 static inline unsigned 220 rb_event_length(struct ring_buffer_event *event) 221 { 222 switch (event->type_len) { 223 case RINGBUF_TYPE_PADDING: 224 if (rb_null_event(event)) 225 /* undefined */ 226 return -1; 227 return event->array[0] + RB_EVNT_HDR_SIZE; 228 229 case RINGBUF_TYPE_TIME_EXTEND: 230 return RB_LEN_TIME_EXTEND; 231 232 case RINGBUF_TYPE_TIME_STAMP: 233 return RB_LEN_TIME_STAMP; 234 235 case RINGBUF_TYPE_DATA: 236 return rb_event_data_length(event); 237 default: 238 WARN_ON_ONCE(1); 239 } 240 /* not hit */ 241 return 0; 242 } 243 244 /* 245 * Return total length of time extend and data, 246 * or just the event length for all other events. 247 */ 248 static inline unsigned 249 rb_event_ts_length(struct ring_buffer_event *event) 250 { 251 unsigned len = 0; 252 253 if (extended_time(event)) { 254 /* time extends include the data event after it */ 255 len = RB_LEN_TIME_EXTEND; 256 event = skip_time_extend(event); 257 } 258 return len + rb_event_length(event); 259 } 260 261 /** 262 * ring_buffer_event_length - return the length of the event 263 * @event: the event to get the length of 264 * 265 * Returns the size of the data load of a data event. 266 * If the event is something other than a data event, it 267 * returns the size of the event itself. With the exception 268 * of a TIME EXTEND, where it still returns the size of the 269 * data load of the data event after it. 270 */ 271 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 272 { 273 unsigned length; 274 275 if (extended_time(event)) 276 event = skip_time_extend(event); 277 278 length = rb_event_length(event); 279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 280 return length; 281 length -= RB_EVNT_HDR_SIZE; 282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 283 length -= sizeof(event->array[0]); 284 return length; 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 287 288 /* inline for ring buffer fast paths */ 289 static __always_inline void * 290 rb_event_data(struct ring_buffer_event *event) 291 { 292 if (extended_time(event)) 293 event = skip_time_extend(event); 294 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 295 /* If length is in len field, then array[0] has the data */ 296 if (event->type_len) 297 return (void *)&event->array[0]; 298 /* Otherwise length is in array[0] and array[1] has the data */ 299 return (void *)&event->array[1]; 300 } 301 302 /** 303 * ring_buffer_event_data - return the data of the event 304 * @event: the event to get the data from 305 */ 306 void *ring_buffer_event_data(struct ring_buffer_event *event) 307 { 308 return rb_event_data(event); 309 } 310 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 311 312 #define for_each_buffer_cpu(buffer, cpu) \ 313 for_each_cpu(cpu, buffer->cpumask) 314 315 #define for_each_online_buffer_cpu(buffer, cpu) \ 316 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 317 318 #define TS_SHIFT 27 319 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 320 #define TS_DELTA_TEST (~TS_MASK) 321 322 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 323 { 324 u64 ts; 325 326 ts = event->array[0]; 327 ts <<= TS_SHIFT; 328 ts += event->time_delta; 329 330 return ts; 331 } 332 333 /* Flag when events were overwritten */ 334 #define RB_MISSED_EVENTS (1 << 31) 335 /* Missed count stored at end */ 336 #define RB_MISSED_STORED (1 << 30) 337 338 #define RB_MISSED_MASK (3 << 30) 339 340 struct buffer_data_page { 341 u64 time_stamp; /* page time stamp */ 342 local_t commit; /* write committed index */ 343 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 344 }; 345 346 struct buffer_data_read_page { 347 unsigned order; /* order of the page */ 348 struct buffer_data_page *data; /* actual data, stored in this page */ 349 }; 350 351 /* 352 * Note, the buffer_page list must be first. The buffer pages 353 * are allocated in cache lines, which means that each buffer 354 * page will be at the beginning of a cache line, and thus 355 * the least significant bits will be zero. We use this to 356 * add flags in the list struct pointers, to make the ring buffer 357 * lockless. 358 */ 359 struct buffer_page { 360 struct list_head list; /* list of buffer pages */ 361 local_t write; /* index for next write */ 362 unsigned read; /* index for next read */ 363 local_t entries; /* entries on this page */ 364 unsigned long real_end; /* real end of data */ 365 unsigned order; /* order of the page */ 366 u32 id:30; /* ID for external mapping */ 367 u32 range:1; /* Mapped via a range */ 368 struct buffer_data_page *page; /* Actual data page */ 369 }; 370 371 /* 372 * The buffer page counters, write and entries, must be reset 373 * atomically when crossing page boundaries. To synchronize this 374 * update, two counters are inserted into the number. One is 375 * the actual counter for the write position or count on the page. 376 * 377 * The other is a counter of updaters. Before an update happens 378 * the update partition of the counter is incremented. This will 379 * allow the updater to update the counter atomically. 380 * 381 * The counter is 20 bits, and the state data is 12. 382 */ 383 #define RB_WRITE_MASK 0xfffff 384 #define RB_WRITE_INTCNT (1 << 20) 385 386 static void rb_init_page(struct buffer_data_page *bpage) 387 { 388 local_set(&bpage->commit, 0); 389 } 390 391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 392 { 393 return local_read(&bpage->page->commit); 394 } 395 396 static void free_buffer_page(struct buffer_page *bpage) 397 { 398 /* Range pages are not to be freed */ 399 if (!bpage->range) 400 free_pages((unsigned long)bpage->page, bpage->order); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline bool test_time_stamp(u64 delta) 408 { 409 return !!(delta & TS_DELTA_TEST); 410 } 411 412 struct rb_irq_work { 413 struct irq_work work; 414 wait_queue_head_t waiters; 415 wait_queue_head_t full_waiters; 416 atomic_t seq; 417 bool waiters_pending; 418 bool full_waiters_pending; 419 bool wakeup_full; 420 }; 421 422 /* 423 * Structure to hold event state and handle nested events. 424 */ 425 struct rb_event_info { 426 u64 ts; 427 u64 delta; 428 u64 before; 429 u64 after; 430 unsigned long length; 431 struct buffer_page *tail_page; 432 int add_timestamp; 433 }; 434 435 /* 436 * Used for the add_timestamp 437 * NONE 438 * EXTEND - wants a time extend 439 * ABSOLUTE - the buffer requests all events to have absolute time stamps 440 * FORCE - force a full time stamp. 441 */ 442 enum { 443 RB_ADD_STAMP_NONE = 0, 444 RB_ADD_STAMP_EXTEND = BIT(1), 445 RB_ADD_STAMP_ABSOLUTE = BIT(2), 446 RB_ADD_STAMP_FORCE = BIT(3) 447 }; 448 /* 449 * Used for which event context the event is in. 450 * TRANSITION = 0 451 * NMI = 1 452 * IRQ = 2 453 * SOFTIRQ = 3 454 * NORMAL = 4 455 * 456 * See trace_recursive_lock() comment below for more details. 457 */ 458 enum { 459 RB_CTX_TRANSITION, 460 RB_CTX_NMI, 461 RB_CTX_IRQ, 462 RB_CTX_SOFTIRQ, 463 RB_CTX_NORMAL, 464 RB_CTX_MAX 465 }; 466 467 struct rb_time_struct { 468 local64_t time; 469 }; 470 typedef struct rb_time_struct rb_time_t; 471 472 #define MAX_NEST 5 473 474 /* 475 * head_page == tail_page && head == tail then buffer is empty. 476 */ 477 struct ring_buffer_per_cpu { 478 int cpu; 479 atomic_t record_disabled; 480 atomic_t resize_disabled; 481 struct trace_buffer *buffer; 482 raw_spinlock_t reader_lock; /* serialize readers */ 483 arch_spinlock_t lock; 484 struct lock_class_key lock_key; 485 struct buffer_data_page *free_page; 486 unsigned long nr_pages; 487 unsigned int current_context; 488 struct list_head *pages; 489 /* pages generation counter, incremented when the list changes */ 490 unsigned long cnt; 491 struct buffer_page *head_page; /* read from head */ 492 struct buffer_page *tail_page; /* write to tail */ 493 struct buffer_page *commit_page; /* committed pages */ 494 struct buffer_page *reader_page; 495 unsigned long lost_events; 496 unsigned long last_overrun; 497 unsigned long nest; 498 local_t entries_bytes; 499 local_t entries; 500 local_t overrun; 501 local_t commit_overrun; 502 local_t dropped_events; 503 local_t committing; 504 local_t commits; 505 local_t pages_touched; 506 local_t pages_lost; 507 local_t pages_read; 508 long last_pages_touch; 509 size_t shortest_full; 510 unsigned long read; 511 unsigned long read_bytes; 512 rb_time_t write_stamp; 513 rb_time_t before_stamp; 514 u64 event_stamp[MAX_NEST]; 515 u64 read_stamp; 516 /* pages removed since last reset */ 517 unsigned long pages_removed; 518 519 unsigned int mapped; 520 unsigned int user_mapped; /* user space mapping */ 521 struct mutex mapping_lock; 522 unsigned long *subbuf_ids; /* ID to subbuf VA */ 523 struct trace_buffer_meta *meta_page; 524 struct ring_buffer_cpu_meta *ring_meta; 525 526 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 527 long nr_pages_to_update; 528 struct list_head new_pages; /* new pages to add */ 529 struct work_struct update_pages_work; 530 struct completion update_done; 531 532 struct rb_irq_work irq_work; 533 }; 534 535 struct trace_buffer { 536 unsigned flags; 537 int cpus; 538 atomic_t record_disabled; 539 atomic_t resizing; 540 cpumask_var_t cpumask; 541 542 struct lock_class_key *reader_lock_key; 543 544 struct mutex mutex; 545 546 struct ring_buffer_per_cpu **buffers; 547 548 struct hlist_node node; 549 u64 (*clock)(void); 550 551 struct rb_irq_work irq_work; 552 bool time_stamp_abs; 553 554 unsigned long range_addr_start; 555 unsigned long range_addr_end; 556 557 struct ring_buffer_meta *meta; 558 559 unsigned int subbuf_size; 560 unsigned int subbuf_order; 561 unsigned int max_data_size; 562 }; 563 564 struct ring_buffer_iter { 565 struct ring_buffer_per_cpu *cpu_buffer; 566 unsigned long head; 567 unsigned long next_event; 568 struct buffer_page *head_page; 569 struct buffer_page *cache_reader_page; 570 unsigned long cache_read; 571 unsigned long cache_pages_removed; 572 u64 read_stamp; 573 u64 page_stamp; 574 struct ring_buffer_event *event; 575 size_t event_size; 576 int missed_events; 577 }; 578 579 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 580 { 581 struct buffer_data_page field; 582 583 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 584 "offset:0;\tsize:%u;\tsigned:%u;\n", 585 (unsigned int)sizeof(field.time_stamp), 586 (unsigned int)is_signed_type(u64)); 587 588 trace_seq_printf(s, "\tfield: local_t commit;\t" 589 "offset:%u;\tsize:%u;\tsigned:%u;\n", 590 (unsigned int)offsetof(typeof(field), commit), 591 (unsigned int)sizeof(field.commit), 592 (unsigned int)is_signed_type(long)); 593 594 trace_seq_printf(s, "\tfield: int overwrite;\t" 595 "offset:%u;\tsize:%u;\tsigned:%u;\n", 596 (unsigned int)offsetof(typeof(field), commit), 597 1, 598 (unsigned int)is_signed_type(long)); 599 600 trace_seq_printf(s, "\tfield: char data;\t" 601 "offset:%u;\tsize:%u;\tsigned:%u;\n", 602 (unsigned int)offsetof(typeof(field), data), 603 (unsigned int)buffer->subbuf_size, 604 (unsigned int)is_signed_type(char)); 605 606 return !trace_seq_has_overflowed(s); 607 } 608 609 static inline void rb_time_read(rb_time_t *t, u64 *ret) 610 { 611 *ret = local64_read(&t->time); 612 } 613 static void rb_time_set(rb_time_t *t, u64 val) 614 { 615 local64_set(&t->time, val); 616 } 617 618 /* 619 * Enable this to make sure that the event passed to 620 * ring_buffer_event_time_stamp() is not committed and also 621 * is on the buffer that it passed in. 622 */ 623 //#define RB_VERIFY_EVENT 624 #ifdef RB_VERIFY_EVENT 625 static struct list_head *rb_list_head(struct list_head *list); 626 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 627 void *event) 628 { 629 struct buffer_page *page = cpu_buffer->commit_page; 630 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 631 struct list_head *next; 632 long commit, write; 633 unsigned long addr = (unsigned long)event; 634 bool done = false; 635 int stop = 0; 636 637 /* Make sure the event exists and is not committed yet */ 638 do { 639 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 640 done = true; 641 commit = local_read(&page->page->commit); 642 write = local_read(&page->write); 643 if (addr >= (unsigned long)&page->page->data[commit] && 644 addr < (unsigned long)&page->page->data[write]) 645 return; 646 647 next = rb_list_head(page->list.next); 648 page = list_entry(next, struct buffer_page, list); 649 } while (!done); 650 WARN_ON_ONCE(1); 651 } 652 #else 653 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 654 void *event) 655 { 656 } 657 #endif 658 659 /* 660 * The absolute time stamp drops the 5 MSBs and some clocks may 661 * require them. The rb_fix_abs_ts() will take a previous full 662 * time stamp, and add the 5 MSB of that time stamp on to the 663 * saved absolute time stamp. Then they are compared in case of 664 * the unlikely event that the latest time stamp incremented 665 * the 5 MSB. 666 */ 667 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 668 { 669 if (save_ts & TS_MSB) { 670 abs |= save_ts & TS_MSB; 671 /* Check for overflow */ 672 if (unlikely(abs < save_ts)) 673 abs += 1ULL << 59; 674 } 675 return abs; 676 } 677 678 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 679 680 /** 681 * ring_buffer_event_time_stamp - return the event's current time stamp 682 * @buffer: The buffer that the event is on 683 * @event: the event to get the time stamp of 684 * 685 * Note, this must be called after @event is reserved, and before it is 686 * committed to the ring buffer. And must be called from the same 687 * context where the event was reserved (normal, softirq, irq, etc). 688 * 689 * Returns the time stamp associated with the current event. 690 * If the event has an extended time stamp, then that is used as 691 * the time stamp to return. 692 * In the highly unlikely case that the event was nested more than 693 * the max nesting, then the write_stamp of the buffer is returned, 694 * otherwise current time is returned, but that really neither of 695 * the last two cases should ever happen. 696 */ 697 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 698 struct ring_buffer_event *event) 699 { 700 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 701 unsigned int nest; 702 u64 ts; 703 704 /* If the event includes an absolute time, then just use that */ 705 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 706 ts = rb_event_time_stamp(event); 707 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 708 } 709 710 nest = local_read(&cpu_buffer->committing); 711 verify_event(cpu_buffer, event); 712 if (WARN_ON_ONCE(!nest)) 713 goto fail; 714 715 /* Read the current saved nesting level time stamp */ 716 if (likely(--nest < MAX_NEST)) 717 return cpu_buffer->event_stamp[nest]; 718 719 /* Shouldn't happen, warn if it does */ 720 WARN_ONCE(1, "nest (%d) greater than max", nest); 721 722 fail: 723 rb_time_read(&cpu_buffer->write_stamp, &ts); 724 725 return ts; 726 } 727 728 /** 729 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 730 * @buffer: The ring_buffer to get the number of pages from 731 * @cpu: The cpu of the ring_buffer to get the number of pages from 732 * 733 * Returns the number of pages that have content in the ring buffer. 734 */ 735 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 736 { 737 size_t read; 738 size_t lost; 739 size_t cnt; 740 741 read = local_read(&buffer->buffers[cpu]->pages_read); 742 lost = local_read(&buffer->buffers[cpu]->pages_lost); 743 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 744 745 if (WARN_ON_ONCE(cnt < lost)) 746 return 0; 747 748 cnt -= lost; 749 750 /* The reader can read an empty page, but not more than that */ 751 if (cnt < read) { 752 WARN_ON_ONCE(read > cnt + 1); 753 return 0; 754 } 755 756 return cnt - read; 757 } 758 759 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 760 { 761 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 762 size_t nr_pages; 763 size_t dirty; 764 765 nr_pages = cpu_buffer->nr_pages; 766 if (!nr_pages || !full) 767 return true; 768 769 /* 770 * Add one as dirty will never equal nr_pages, as the sub-buffer 771 * that the writer is on is not counted as dirty. 772 * This is needed if "buffer_percent" is set to 100. 773 */ 774 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 775 776 return (dirty * 100) >= (full * nr_pages); 777 } 778 779 /* 780 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 781 * 782 * Schedules a delayed work to wake up any task that is blocked on the 783 * ring buffer waiters queue. 784 */ 785 static void rb_wake_up_waiters(struct irq_work *work) 786 { 787 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 788 789 /* For waiters waiting for the first wake up */ 790 (void)atomic_fetch_inc_release(&rbwork->seq); 791 792 wake_up_all(&rbwork->waiters); 793 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 794 /* Only cpu_buffer sets the above flags */ 795 struct ring_buffer_per_cpu *cpu_buffer = 796 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 797 798 /* Called from interrupt context */ 799 raw_spin_lock(&cpu_buffer->reader_lock); 800 rbwork->wakeup_full = false; 801 rbwork->full_waiters_pending = false; 802 803 /* Waking up all waiters, they will reset the shortest full */ 804 cpu_buffer->shortest_full = 0; 805 raw_spin_unlock(&cpu_buffer->reader_lock); 806 807 wake_up_all(&rbwork->full_waiters); 808 } 809 } 810 811 /** 812 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 813 * @buffer: The ring buffer to wake waiters on 814 * @cpu: The CPU buffer to wake waiters on 815 * 816 * In the case of a file that represents a ring buffer is closing, 817 * it is prudent to wake up any waiters that are on this. 818 */ 819 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 820 { 821 struct ring_buffer_per_cpu *cpu_buffer; 822 struct rb_irq_work *rbwork; 823 824 if (!buffer) 825 return; 826 827 if (cpu == RING_BUFFER_ALL_CPUS) { 828 829 /* Wake up individual ones too. One level recursion */ 830 for_each_buffer_cpu(buffer, cpu) 831 ring_buffer_wake_waiters(buffer, cpu); 832 833 rbwork = &buffer->irq_work; 834 } else { 835 if (WARN_ON_ONCE(!buffer->buffers)) 836 return; 837 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 838 return; 839 840 cpu_buffer = buffer->buffers[cpu]; 841 /* The CPU buffer may not have been initialized yet */ 842 if (!cpu_buffer) 843 return; 844 rbwork = &cpu_buffer->irq_work; 845 } 846 847 /* This can be called in any context */ 848 irq_work_queue(&rbwork->work); 849 } 850 851 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 852 { 853 struct ring_buffer_per_cpu *cpu_buffer; 854 bool ret = false; 855 856 /* Reads of all CPUs always waits for any data */ 857 if (cpu == RING_BUFFER_ALL_CPUS) 858 return !ring_buffer_empty(buffer); 859 860 cpu_buffer = buffer->buffers[cpu]; 861 862 if (!ring_buffer_empty_cpu(buffer, cpu)) { 863 unsigned long flags; 864 bool pagebusy; 865 866 if (!full) 867 return true; 868 869 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 870 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 871 ret = !pagebusy && full_hit(buffer, cpu, full); 872 873 if (!ret && (!cpu_buffer->shortest_full || 874 cpu_buffer->shortest_full > full)) { 875 cpu_buffer->shortest_full = full; 876 } 877 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 878 } 879 return ret; 880 } 881 882 static inline bool 883 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 884 int cpu, int full, ring_buffer_cond_fn cond, void *data) 885 { 886 if (rb_watermark_hit(buffer, cpu, full)) 887 return true; 888 889 if (cond(data)) 890 return true; 891 892 /* 893 * The events can happen in critical sections where 894 * checking a work queue can cause deadlocks. 895 * After adding a task to the queue, this flag is set 896 * only to notify events to try to wake up the queue 897 * using irq_work. 898 * 899 * We don't clear it even if the buffer is no longer 900 * empty. The flag only causes the next event to run 901 * irq_work to do the work queue wake up. The worse 902 * that can happen if we race with !trace_empty() is that 903 * an event will cause an irq_work to try to wake up 904 * an empty queue. 905 * 906 * There's no reason to protect this flag either, as 907 * the work queue and irq_work logic will do the necessary 908 * synchronization for the wake ups. The only thing 909 * that is necessary is that the wake up happens after 910 * a task has been queued. It's OK for spurious wake ups. 911 */ 912 if (full) 913 rbwork->full_waiters_pending = true; 914 else 915 rbwork->waiters_pending = true; 916 917 return false; 918 } 919 920 struct rb_wait_data { 921 struct rb_irq_work *irq_work; 922 int seq; 923 }; 924 925 /* 926 * The default wait condition for ring_buffer_wait() is to just to exit the 927 * wait loop the first time it is woken up. 928 */ 929 static bool rb_wait_once(void *data) 930 { 931 struct rb_wait_data *rdata = data; 932 struct rb_irq_work *rbwork = rdata->irq_work; 933 934 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 935 } 936 937 /** 938 * ring_buffer_wait - wait for input to the ring buffer 939 * @buffer: buffer to wait on 940 * @cpu: the cpu buffer to wait on 941 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 942 * @cond: condition function to break out of wait (NULL to run once) 943 * @data: the data to pass to @cond. 944 * 945 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 946 * as data is added to any of the @buffer's cpu buffers. Otherwise 947 * it will wait for data to be added to a specific cpu buffer. 948 */ 949 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 950 ring_buffer_cond_fn cond, void *data) 951 { 952 struct ring_buffer_per_cpu *cpu_buffer; 953 struct wait_queue_head *waitq; 954 struct rb_irq_work *rbwork; 955 struct rb_wait_data rdata; 956 int ret = 0; 957 958 /* 959 * Depending on what the caller is waiting for, either any 960 * data in any cpu buffer, or a specific buffer, put the 961 * caller on the appropriate wait queue. 962 */ 963 if (cpu == RING_BUFFER_ALL_CPUS) { 964 rbwork = &buffer->irq_work; 965 /* Full only makes sense on per cpu reads */ 966 full = 0; 967 } else { 968 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 969 return -ENODEV; 970 cpu_buffer = buffer->buffers[cpu]; 971 rbwork = &cpu_buffer->irq_work; 972 } 973 974 if (full) 975 waitq = &rbwork->full_waiters; 976 else 977 waitq = &rbwork->waiters; 978 979 /* Set up to exit loop as soon as it is woken */ 980 if (!cond) { 981 cond = rb_wait_once; 982 rdata.irq_work = rbwork; 983 rdata.seq = atomic_read_acquire(&rbwork->seq); 984 data = &rdata; 985 } 986 987 ret = wait_event_interruptible((*waitq), 988 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 989 990 return ret; 991 } 992 993 /** 994 * ring_buffer_poll_wait - poll on buffer input 995 * @buffer: buffer to wait on 996 * @cpu: the cpu buffer to wait on 997 * @filp: the file descriptor 998 * @poll_table: The poll descriptor 999 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1000 * 1001 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1002 * as data is added to any of the @buffer's cpu buffers. Otherwise 1003 * it will wait for data to be added to a specific cpu buffer. 1004 * 1005 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1006 * zero otherwise. 1007 */ 1008 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1009 struct file *filp, poll_table *poll_table, int full) 1010 { 1011 struct ring_buffer_per_cpu *cpu_buffer; 1012 struct rb_irq_work *rbwork; 1013 1014 if (cpu == RING_BUFFER_ALL_CPUS) { 1015 rbwork = &buffer->irq_work; 1016 full = 0; 1017 } else { 1018 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1019 return EPOLLERR; 1020 1021 cpu_buffer = buffer->buffers[cpu]; 1022 rbwork = &cpu_buffer->irq_work; 1023 } 1024 1025 if (full) { 1026 poll_wait(filp, &rbwork->full_waiters, poll_table); 1027 1028 if (rb_watermark_hit(buffer, cpu, full)) 1029 return EPOLLIN | EPOLLRDNORM; 1030 /* 1031 * Only allow full_waiters_pending update to be seen after 1032 * the shortest_full is set (in rb_watermark_hit). If the 1033 * writer sees the full_waiters_pending flag set, it will 1034 * compare the amount in the ring buffer to shortest_full. 1035 * If the amount in the ring buffer is greater than the 1036 * shortest_full percent, it will call the irq_work handler 1037 * to wake up this list. The irq_handler will reset shortest_full 1038 * back to zero. That's done under the reader_lock, but 1039 * the below smp_mb() makes sure that the update to 1040 * full_waiters_pending doesn't leak up into the above. 1041 */ 1042 smp_mb(); 1043 rbwork->full_waiters_pending = true; 1044 return 0; 1045 } 1046 1047 poll_wait(filp, &rbwork->waiters, poll_table); 1048 rbwork->waiters_pending = true; 1049 1050 /* 1051 * There's a tight race between setting the waiters_pending and 1052 * checking if the ring buffer is empty. Once the waiters_pending bit 1053 * is set, the next event will wake the task up, but we can get stuck 1054 * if there's only a single event in. 1055 * 1056 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1057 * but adding a memory barrier to all events will cause too much of a 1058 * performance hit in the fast path. We only need a memory barrier when 1059 * the buffer goes from empty to having content. But as this race is 1060 * extremely small, and it's not a problem if another event comes in, we 1061 * will fix it later. 1062 */ 1063 smp_mb(); 1064 1065 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1066 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1067 return EPOLLIN | EPOLLRDNORM; 1068 return 0; 1069 } 1070 1071 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1072 #define RB_WARN_ON(b, cond) \ 1073 ({ \ 1074 int _____ret = unlikely(cond); \ 1075 if (_____ret) { \ 1076 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1077 struct ring_buffer_per_cpu *__b = \ 1078 (void *)b; \ 1079 atomic_inc(&__b->buffer->record_disabled); \ 1080 } else \ 1081 atomic_inc(&b->record_disabled); \ 1082 WARN_ON(1); \ 1083 } \ 1084 _____ret; \ 1085 }) 1086 1087 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1088 #define DEBUG_SHIFT 0 1089 1090 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1091 { 1092 u64 ts; 1093 1094 /* Skip retpolines :-( */ 1095 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1096 ts = trace_clock_local(); 1097 else 1098 ts = buffer->clock(); 1099 1100 /* shift to debug/test normalization and TIME_EXTENTS */ 1101 return ts << DEBUG_SHIFT; 1102 } 1103 1104 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1105 { 1106 u64 time; 1107 1108 preempt_disable_notrace(); 1109 time = rb_time_stamp(buffer); 1110 preempt_enable_notrace(); 1111 1112 return time; 1113 } 1114 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1115 1116 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1117 int cpu, u64 *ts) 1118 { 1119 /* Just stupid testing the normalize function and deltas */ 1120 *ts >>= DEBUG_SHIFT; 1121 } 1122 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1123 1124 /* 1125 * Making the ring buffer lockless makes things tricky. 1126 * Although writes only happen on the CPU that they are on, 1127 * and they only need to worry about interrupts. Reads can 1128 * happen on any CPU. 1129 * 1130 * The reader page is always off the ring buffer, but when the 1131 * reader finishes with a page, it needs to swap its page with 1132 * a new one from the buffer. The reader needs to take from 1133 * the head (writes go to the tail). But if a writer is in overwrite 1134 * mode and wraps, it must push the head page forward. 1135 * 1136 * Here lies the problem. 1137 * 1138 * The reader must be careful to replace only the head page, and 1139 * not another one. As described at the top of the file in the 1140 * ASCII art, the reader sets its old page to point to the next 1141 * page after head. It then sets the page after head to point to 1142 * the old reader page. But if the writer moves the head page 1143 * during this operation, the reader could end up with the tail. 1144 * 1145 * We use cmpxchg to help prevent this race. We also do something 1146 * special with the page before head. We set the LSB to 1. 1147 * 1148 * When the writer must push the page forward, it will clear the 1149 * bit that points to the head page, move the head, and then set 1150 * the bit that points to the new head page. 1151 * 1152 * We also don't want an interrupt coming in and moving the head 1153 * page on another writer. Thus we use the second LSB to catch 1154 * that too. Thus: 1155 * 1156 * head->list->prev->next bit 1 bit 0 1157 * ------- ------- 1158 * Normal page 0 0 1159 * Points to head page 0 1 1160 * New head page 1 0 1161 * 1162 * Note we can not trust the prev pointer of the head page, because: 1163 * 1164 * +----+ +-----+ +-----+ 1165 * | |------>| T |---X--->| N | 1166 * | |<------| | | | 1167 * +----+ +-----+ +-----+ 1168 * ^ ^ | 1169 * | +-----+ | | 1170 * +----------| R |----------+ | 1171 * | |<-----------+ 1172 * +-----+ 1173 * 1174 * Key: ---X--> HEAD flag set in pointer 1175 * T Tail page 1176 * R Reader page 1177 * N Next page 1178 * 1179 * (see __rb_reserve_next() to see where this happens) 1180 * 1181 * What the above shows is that the reader just swapped out 1182 * the reader page with a page in the buffer, but before it 1183 * could make the new header point back to the new page added 1184 * it was preempted by a writer. The writer moved forward onto 1185 * the new page added by the reader and is about to move forward 1186 * again. 1187 * 1188 * You can see, it is legitimate for the previous pointer of 1189 * the head (or any page) not to point back to itself. But only 1190 * temporarily. 1191 */ 1192 1193 #define RB_PAGE_NORMAL 0UL 1194 #define RB_PAGE_HEAD 1UL 1195 #define RB_PAGE_UPDATE 2UL 1196 1197 1198 #define RB_FLAG_MASK 3UL 1199 1200 /* PAGE_MOVED is not part of the mask */ 1201 #define RB_PAGE_MOVED 4UL 1202 1203 /* 1204 * rb_list_head - remove any bit 1205 */ 1206 static struct list_head *rb_list_head(struct list_head *list) 1207 { 1208 unsigned long val = (unsigned long)list; 1209 1210 return (struct list_head *)(val & ~RB_FLAG_MASK); 1211 } 1212 1213 /* 1214 * rb_is_head_page - test if the given page is the head page 1215 * 1216 * Because the reader may move the head_page pointer, we can 1217 * not trust what the head page is (it may be pointing to 1218 * the reader page). But if the next page is a header page, 1219 * its flags will be non zero. 1220 */ 1221 static inline int 1222 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1223 { 1224 unsigned long val; 1225 1226 val = (unsigned long)list->next; 1227 1228 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1229 return RB_PAGE_MOVED; 1230 1231 return val & RB_FLAG_MASK; 1232 } 1233 1234 /* 1235 * rb_is_reader_page 1236 * 1237 * The unique thing about the reader page, is that, if the 1238 * writer is ever on it, the previous pointer never points 1239 * back to the reader page. 1240 */ 1241 static bool rb_is_reader_page(struct buffer_page *page) 1242 { 1243 struct list_head *list = page->list.prev; 1244 1245 return rb_list_head(list->next) != &page->list; 1246 } 1247 1248 /* 1249 * rb_set_list_to_head - set a list_head to be pointing to head. 1250 */ 1251 static void rb_set_list_to_head(struct list_head *list) 1252 { 1253 unsigned long *ptr; 1254 1255 ptr = (unsigned long *)&list->next; 1256 *ptr |= RB_PAGE_HEAD; 1257 *ptr &= ~RB_PAGE_UPDATE; 1258 } 1259 1260 /* 1261 * rb_head_page_activate - sets up head page 1262 */ 1263 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1264 { 1265 struct buffer_page *head; 1266 1267 head = cpu_buffer->head_page; 1268 if (!head) 1269 return; 1270 1271 /* 1272 * Set the previous list pointer to have the HEAD flag. 1273 */ 1274 rb_set_list_to_head(head->list.prev); 1275 1276 if (cpu_buffer->ring_meta) { 1277 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 1278 meta->head_buffer = (unsigned long)head->page; 1279 } 1280 } 1281 1282 static void rb_list_head_clear(struct list_head *list) 1283 { 1284 unsigned long *ptr = (unsigned long *)&list->next; 1285 1286 *ptr &= ~RB_FLAG_MASK; 1287 } 1288 1289 /* 1290 * rb_head_page_deactivate - clears head page ptr (for free list) 1291 */ 1292 static void 1293 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1294 { 1295 struct list_head *hd; 1296 1297 /* Go through the whole list and clear any pointers found. */ 1298 rb_list_head_clear(cpu_buffer->pages); 1299 1300 list_for_each(hd, cpu_buffer->pages) 1301 rb_list_head_clear(hd); 1302 } 1303 1304 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1305 struct buffer_page *head, 1306 struct buffer_page *prev, 1307 int old_flag, int new_flag) 1308 { 1309 struct list_head *list; 1310 unsigned long val = (unsigned long)&head->list; 1311 unsigned long ret; 1312 1313 list = &prev->list; 1314 1315 val &= ~RB_FLAG_MASK; 1316 1317 ret = cmpxchg((unsigned long *)&list->next, 1318 val | old_flag, val | new_flag); 1319 1320 /* check if the reader took the page */ 1321 if ((ret & ~RB_FLAG_MASK) != val) 1322 return RB_PAGE_MOVED; 1323 1324 return ret & RB_FLAG_MASK; 1325 } 1326 1327 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1328 struct buffer_page *head, 1329 struct buffer_page *prev, 1330 int old_flag) 1331 { 1332 return rb_head_page_set(cpu_buffer, head, prev, 1333 old_flag, RB_PAGE_UPDATE); 1334 } 1335 1336 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1337 struct buffer_page *head, 1338 struct buffer_page *prev, 1339 int old_flag) 1340 { 1341 return rb_head_page_set(cpu_buffer, head, prev, 1342 old_flag, RB_PAGE_HEAD); 1343 } 1344 1345 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1346 struct buffer_page *head, 1347 struct buffer_page *prev, 1348 int old_flag) 1349 { 1350 return rb_head_page_set(cpu_buffer, head, prev, 1351 old_flag, RB_PAGE_NORMAL); 1352 } 1353 1354 static inline void rb_inc_page(struct buffer_page **bpage) 1355 { 1356 struct list_head *p = rb_list_head((*bpage)->list.next); 1357 1358 *bpage = list_entry(p, struct buffer_page, list); 1359 } 1360 1361 static struct buffer_page * 1362 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1363 { 1364 struct buffer_page *head; 1365 struct buffer_page *page; 1366 struct list_head *list; 1367 int i; 1368 1369 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1370 return NULL; 1371 1372 /* sanity check */ 1373 list = cpu_buffer->pages; 1374 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1375 return NULL; 1376 1377 page = head = cpu_buffer->head_page; 1378 /* 1379 * It is possible that the writer moves the header behind 1380 * where we started, and we miss in one loop. 1381 * A second loop should grab the header, but we'll do 1382 * three loops just because I'm paranoid. 1383 */ 1384 for (i = 0; i < 3; i++) { 1385 do { 1386 if (rb_is_head_page(page, page->list.prev)) { 1387 cpu_buffer->head_page = page; 1388 return page; 1389 } 1390 rb_inc_page(&page); 1391 } while (page != head); 1392 } 1393 1394 RB_WARN_ON(cpu_buffer, 1); 1395 1396 return NULL; 1397 } 1398 1399 static bool rb_head_page_replace(struct buffer_page *old, 1400 struct buffer_page *new) 1401 { 1402 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1403 unsigned long val; 1404 1405 val = *ptr & ~RB_FLAG_MASK; 1406 val |= RB_PAGE_HEAD; 1407 1408 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1409 } 1410 1411 /* 1412 * rb_tail_page_update - move the tail page forward 1413 */ 1414 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1415 struct buffer_page *tail_page, 1416 struct buffer_page *next_page) 1417 { 1418 unsigned long old_entries; 1419 unsigned long old_write; 1420 1421 /* 1422 * The tail page now needs to be moved forward. 1423 * 1424 * We need to reset the tail page, but without messing 1425 * with possible erasing of data brought in by interrupts 1426 * that have moved the tail page and are currently on it. 1427 * 1428 * We add a counter to the write field to denote this. 1429 */ 1430 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1431 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1432 1433 /* 1434 * Just make sure we have seen our old_write and synchronize 1435 * with any interrupts that come in. 1436 */ 1437 barrier(); 1438 1439 /* 1440 * If the tail page is still the same as what we think 1441 * it is, then it is up to us to update the tail 1442 * pointer. 1443 */ 1444 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1445 /* Zero the write counter */ 1446 unsigned long val = old_write & ~RB_WRITE_MASK; 1447 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1448 1449 /* 1450 * This will only succeed if an interrupt did 1451 * not come in and change it. In which case, we 1452 * do not want to modify it. 1453 * 1454 * We add (void) to let the compiler know that we do not care 1455 * about the return value of these functions. We use the 1456 * cmpxchg to only update if an interrupt did not already 1457 * do it for us. If the cmpxchg fails, we don't care. 1458 */ 1459 (void)local_cmpxchg(&next_page->write, old_write, val); 1460 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1461 1462 /* 1463 * No need to worry about races with clearing out the commit. 1464 * it only can increment when a commit takes place. But that 1465 * only happens in the outer most nested commit. 1466 */ 1467 local_set(&next_page->page->commit, 0); 1468 1469 /* Either we update tail_page or an interrupt does */ 1470 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1471 local_inc(&cpu_buffer->pages_touched); 1472 } 1473 } 1474 1475 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1476 struct buffer_page *bpage) 1477 { 1478 unsigned long val = (unsigned long)bpage; 1479 1480 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1481 } 1482 1483 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer, 1484 struct list_head *list) 1485 { 1486 if (RB_WARN_ON(cpu_buffer, 1487 rb_list_head(rb_list_head(list->next)->prev) != list)) 1488 return false; 1489 1490 if (RB_WARN_ON(cpu_buffer, 1491 rb_list_head(rb_list_head(list->prev)->next) != list)) 1492 return false; 1493 1494 return true; 1495 } 1496 1497 /** 1498 * rb_check_pages - integrity check of buffer pages 1499 * @cpu_buffer: CPU buffer with pages to test 1500 * 1501 * As a safety measure we check to make sure the data pages have not 1502 * been corrupted. 1503 */ 1504 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1505 { 1506 struct list_head *head, *tmp; 1507 unsigned long buffer_cnt; 1508 unsigned long flags; 1509 int nr_loops = 0; 1510 1511 /* 1512 * Walk the linked list underpinning the ring buffer and validate all 1513 * its next and prev links. 1514 * 1515 * The check acquires the reader_lock to avoid concurrent processing 1516 * with code that could be modifying the list. However, the lock cannot 1517 * be held for the entire duration of the walk, as this would make the 1518 * time when interrupts are disabled non-deterministic, dependent on the 1519 * ring buffer size. Therefore, the code releases and re-acquires the 1520 * lock after checking each page. The ring_buffer_per_cpu.cnt variable 1521 * is then used to detect if the list was modified while the lock was 1522 * not held, in which case the check needs to be restarted. 1523 * 1524 * The code attempts to perform the check at most three times before 1525 * giving up. This is acceptable because this is only a self-validation 1526 * to detect problems early on. In practice, the list modification 1527 * operations are fairly spaced, and so this check typically succeeds at 1528 * most on the second try. 1529 */ 1530 again: 1531 if (++nr_loops > 3) 1532 return; 1533 1534 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1535 head = rb_list_head(cpu_buffer->pages); 1536 if (!rb_check_links(cpu_buffer, head)) 1537 goto out_locked; 1538 buffer_cnt = cpu_buffer->cnt; 1539 tmp = head; 1540 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1541 1542 while (true) { 1543 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1544 1545 if (buffer_cnt != cpu_buffer->cnt) { 1546 /* The list was updated, try again. */ 1547 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1548 goto again; 1549 } 1550 1551 tmp = rb_list_head(tmp->next); 1552 if (tmp == head) 1553 /* The iteration circled back, all is done. */ 1554 goto out_locked; 1555 1556 if (!rb_check_links(cpu_buffer, tmp)) 1557 goto out_locked; 1558 1559 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1560 } 1561 1562 out_locked: 1563 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1564 } 1565 1566 /* 1567 * Take an address, add the meta data size as well as the array of 1568 * array subbuffer indexes, then align it to a subbuffer size. 1569 * 1570 * This is used to help find the next per cpu subbuffer within a mapped range. 1571 */ 1572 static unsigned long 1573 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs) 1574 { 1575 addr += sizeof(struct ring_buffer_cpu_meta) + 1576 sizeof(int) * nr_subbufs; 1577 return ALIGN(addr, subbuf_size); 1578 } 1579 1580 /* 1581 * Return the ring_buffer_meta for a given @cpu. 1582 */ 1583 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu) 1584 { 1585 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 1586 struct ring_buffer_cpu_meta *meta; 1587 struct ring_buffer_meta *bmeta; 1588 unsigned long ptr; 1589 int nr_subbufs; 1590 1591 bmeta = buffer->meta; 1592 if (!bmeta) 1593 return NULL; 1594 1595 ptr = (unsigned long)bmeta + bmeta->buffers_offset; 1596 meta = (struct ring_buffer_cpu_meta *)ptr; 1597 1598 /* When nr_pages passed in is zero, the first meta has already been initialized */ 1599 if (!nr_pages) { 1600 nr_subbufs = meta->nr_subbufs; 1601 } else { 1602 /* Include the reader page */ 1603 nr_subbufs = nr_pages + 1; 1604 } 1605 1606 /* 1607 * The first chunk may not be subbuffer aligned, where as 1608 * the rest of the chunks are. 1609 */ 1610 if (cpu) { 1611 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1612 ptr += subbuf_size * nr_subbufs; 1613 1614 /* We can use multiplication to find chunks greater than 1 */ 1615 if (cpu > 1) { 1616 unsigned long size; 1617 unsigned long p; 1618 1619 /* Save the beginning of this CPU chunk */ 1620 p = ptr; 1621 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1622 ptr += subbuf_size * nr_subbufs; 1623 1624 /* Now all chunks after this are the same size */ 1625 size = ptr - p; 1626 ptr += size * (cpu - 2); 1627 } 1628 } 1629 return (void *)ptr; 1630 } 1631 1632 /* Return the start of subbufs given the meta pointer */ 1633 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta) 1634 { 1635 int subbuf_size = meta->subbuf_size; 1636 unsigned long ptr; 1637 1638 ptr = (unsigned long)meta; 1639 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs); 1640 1641 return (void *)ptr; 1642 } 1643 1644 /* 1645 * Return a specific sub-buffer for a given @cpu defined by @idx. 1646 */ 1647 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx) 1648 { 1649 struct ring_buffer_cpu_meta *meta; 1650 unsigned long ptr; 1651 int subbuf_size; 1652 1653 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu); 1654 if (!meta) 1655 return NULL; 1656 1657 if (WARN_ON_ONCE(idx >= meta->nr_subbufs)) 1658 return NULL; 1659 1660 subbuf_size = meta->subbuf_size; 1661 1662 /* Map this buffer to the order that's in meta->buffers[] */ 1663 idx = meta->buffers[idx]; 1664 1665 ptr = (unsigned long)rb_subbufs_from_meta(meta); 1666 1667 ptr += subbuf_size * idx; 1668 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end) 1669 return NULL; 1670 1671 return (void *)ptr; 1672 } 1673 1674 /* 1675 * See if the existing memory contains a valid meta section. 1676 * if so, use that, otherwise initialize it. 1677 */ 1678 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size) 1679 { 1680 unsigned long ptr = buffer->range_addr_start; 1681 struct ring_buffer_meta *bmeta; 1682 unsigned long total_size; 1683 int struct_sizes; 1684 1685 bmeta = (struct ring_buffer_meta *)ptr; 1686 buffer->meta = bmeta; 1687 1688 total_size = buffer->range_addr_end - buffer->range_addr_start; 1689 1690 struct_sizes = sizeof(struct ring_buffer_cpu_meta); 1691 struct_sizes |= sizeof(*bmeta) << 16; 1692 1693 /* The first buffer will start word size after the meta page */ 1694 ptr += sizeof(*bmeta); 1695 ptr = ALIGN(ptr, sizeof(long)); 1696 ptr += scratch_size; 1697 1698 if (bmeta->magic != RING_BUFFER_META_MAGIC) { 1699 pr_info("Ring buffer boot meta mismatch of magic\n"); 1700 goto init; 1701 } 1702 1703 if (bmeta->struct_sizes != struct_sizes) { 1704 pr_info("Ring buffer boot meta mismatch of struct size\n"); 1705 goto init; 1706 } 1707 1708 if (bmeta->total_size != total_size) { 1709 pr_info("Ring buffer boot meta mismatch of total size\n"); 1710 goto init; 1711 } 1712 1713 if (bmeta->buffers_offset > bmeta->total_size) { 1714 pr_info("Ring buffer boot meta mismatch of offset outside of total size\n"); 1715 goto init; 1716 } 1717 1718 if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) { 1719 pr_info("Ring buffer boot meta mismatch of first buffer offset\n"); 1720 goto init; 1721 } 1722 1723 return true; 1724 1725 init: 1726 bmeta->magic = RING_BUFFER_META_MAGIC; 1727 bmeta->struct_sizes = struct_sizes; 1728 bmeta->total_size = total_size; 1729 bmeta->buffers_offset = (void *)ptr - (void *)bmeta; 1730 1731 /* Zero out the scatch pad */ 1732 memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta)); 1733 1734 return false; 1735 } 1736 1737 /* 1738 * See if the existing memory contains valid ring buffer data. 1739 * As the previous kernel must be the same as this kernel, all 1740 * the calculations (size of buffers and number of buffers) 1741 * must be the same. 1742 */ 1743 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu, 1744 struct trace_buffer *buffer, int nr_pages, 1745 unsigned long *subbuf_mask) 1746 { 1747 int subbuf_size = PAGE_SIZE; 1748 struct buffer_data_page *subbuf; 1749 unsigned long buffers_start; 1750 unsigned long buffers_end; 1751 int i; 1752 1753 if (!subbuf_mask) 1754 return false; 1755 1756 buffers_start = meta->first_buffer; 1757 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs); 1758 1759 /* Is the head and commit buffers within the range of buffers? */ 1760 if (meta->head_buffer < buffers_start || 1761 meta->head_buffer >= buffers_end) { 1762 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu); 1763 return false; 1764 } 1765 1766 if (meta->commit_buffer < buffers_start || 1767 meta->commit_buffer >= buffers_end) { 1768 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu); 1769 return false; 1770 } 1771 1772 subbuf = rb_subbufs_from_meta(meta); 1773 1774 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs); 1775 1776 /* Is the meta buffers and the subbufs themselves have correct data? */ 1777 for (i = 0; i < meta->nr_subbufs; i++) { 1778 if (meta->buffers[i] < 0 || 1779 meta->buffers[i] >= meta->nr_subbufs) { 1780 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu); 1781 return false; 1782 } 1783 1784 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) { 1785 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu); 1786 return false; 1787 } 1788 1789 if (test_bit(meta->buffers[i], subbuf_mask)) { 1790 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu); 1791 return false; 1792 } 1793 1794 set_bit(meta->buffers[i], subbuf_mask); 1795 subbuf = (void *)subbuf + subbuf_size; 1796 } 1797 1798 return true; 1799 } 1800 1801 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf); 1802 1803 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu, 1804 unsigned long long *timestamp, u64 *delta_ptr) 1805 { 1806 struct ring_buffer_event *event; 1807 u64 ts, delta; 1808 int events = 0; 1809 int e; 1810 1811 *delta_ptr = 0; 1812 *timestamp = 0; 1813 1814 ts = dpage->time_stamp; 1815 1816 for (e = 0; e < tail; e += rb_event_length(event)) { 1817 1818 event = (struct ring_buffer_event *)(dpage->data + e); 1819 1820 switch (event->type_len) { 1821 1822 case RINGBUF_TYPE_TIME_EXTEND: 1823 delta = rb_event_time_stamp(event); 1824 ts += delta; 1825 break; 1826 1827 case RINGBUF_TYPE_TIME_STAMP: 1828 delta = rb_event_time_stamp(event); 1829 delta = rb_fix_abs_ts(delta, ts); 1830 if (delta < ts) { 1831 *delta_ptr = delta; 1832 *timestamp = ts; 1833 return -1; 1834 } 1835 ts = delta; 1836 break; 1837 1838 case RINGBUF_TYPE_PADDING: 1839 if (event->time_delta == 1) 1840 break; 1841 fallthrough; 1842 case RINGBUF_TYPE_DATA: 1843 events++; 1844 ts += event->time_delta; 1845 break; 1846 1847 default: 1848 return -1; 1849 } 1850 } 1851 *timestamp = ts; 1852 return events; 1853 } 1854 1855 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu) 1856 { 1857 unsigned long long ts; 1858 u64 delta; 1859 int tail; 1860 1861 tail = local_read(&dpage->commit); 1862 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta); 1863 } 1864 1865 /* If the meta data has been validated, now validate the events */ 1866 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer) 1867 { 1868 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 1869 struct buffer_page *head_page; 1870 unsigned long entry_bytes = 0; 1871 unsigned long entries = 0; 1872 int ret; 1873 int i; 1874 1875 if (!meta || !meta->head_buffer) 1876 return; 1877 1878 /* Do the reader page first */ 1879 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu); 1880 if (ret < 0) { 1881 pr_info("Ring buffer reader page is invalid\n"); 1882 goto invalid; 1883 } 1884 entries += ret; 1885 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit); 1886 local_set(&cpu_buffer->reader_page->entries, ret); 1887 1888 head_page = cpu_buffer->head_page; 1889 1890 /* If the commit_buffer is the reader page, update the commit page */ 1891 if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) { 1892 cpu_buffer->commit_page = cpu_buffer->reader_page; 1893 /* Nothing more to do, the only page is the reader page */ 1894 goto done; 1895 } 1896 1897 /* Iterate until finding the commit page */ 1898 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) { 1899 1900 /* Reader page has already been done */ 1901 if (head_page == cpu_buffer->reader_page) 1902 continue; 1903 1904 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu); 1905 if (ret < 0) { 1906 pr_info("Ring buffer meta [%d] invalid buffer page\n", 1907 cpu_buffer->cpu); 1908 goto invalid; 1909 } 1910 1911 /* If the buffer has content, update pages_touched */ 1912 if (ret) 1913 local_inc(&cpu_buffer->pages_touched); 1914 1915 entries += ret; 1916 entry_bytes += local_read(&head_page->page->commit); 1917 local_set(&cpu_buffer->head_page->entries, ret); 1918 1919 if (head_page == cpu_buffer->commit_page) 1920 break; 1921 } 1922 1923 if (head_page != cpu_buffer->commit_page) { 1924 pr_info("Ring buffer meta [%d] commit page not found\n", 1925 cpu_buffer->cpu); 1926 goto invalid; 1927 } 1928 done: 1929 local_set(&cpu_buffer->entries, entries); 1930 local_set(&cpu_buffer->entries_bytes, entry_bytes); 1931 1932 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu); 1933 return; 1934 1935 invalid: 1936 /* The content of the buffers are invalid, reset the meta data */ 1937 meta->head_buffer = 0; 1938 meta->commit_buffer = 0; 1939 1940 /* Reset the reader page */ 1941 local_set(&cpu_buffer->reader_page->entries, 0); 1942 local_set(&cpu_buffer->reader_page->page->commit, 0); 1943 1944 /* Reset all the subbuffers */ 1945 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) { 1946 local_set(&head_page->entries, 0); 1947 local_set(&head_page->page->commit, 0); 1948 } 1949 } 1950 1951 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size) 1952 { 1953 struct ring_buffer_cpu_meta *meta; 1954 unsigned long *subbuf_mask; 1955 unsigned long delta; 1956 void *subbuf; 1957 bool valid = false; 1958 int cpu; 1959 int i; 1960 1961 /* Create a mask to test the subbuf array */ 1962 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL); 1963 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */ 1964 1965 if (rb_meta_init(buffer, scratch_size)) 1966 valid = true; 1967 1968 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1969 void *next_meta; 1970 1971 meta = rb_range_meta(buffer, nr_pages, cpu); 1972 1973 if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) { 1974 /* Make the mappings match the current address */ 1975 subbuf = rb_subbufs_from_meta(meta); 1976 delta = (unsigned long)subbuf - meta->first_buffer; 1977 meta->first_buffer += delta; 1978 meta->head_buffer += delta; 1979 meta->commit_buffer += delta; 1980 continue; 1981 } 1982 1983 if (cpu < nr_cpu_ids - 1) 1984 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1); 1985 else 1986 next_meta = (void *)buffer->range_addr_end; 1987 1988 memset(meta, 0, next_meta - (void *)meta); 1989 1990 meta->nr_subbufs = nr_pages + 1; 1991 meta->subbuf_size = PAGE_SIZE; 1992 1993 subbuf = rb_subbufs_from_meta(meta); 1994 1995 meta->first_buffer = (unsigned long)subbuf; 1996 1997 /* 1998 * The buffers[] array holds the order of the sub-buffers 1999 * that are after the meta data. The sub-buffers may 2000 * be swapped out when read and inserted into a different 2001 * location of the ring buffer. Although their addresses 2002 * remain the same, the buffers[] array contains the 2003 * index into the sub-buffers holding their actual order. 2004 */ 2005 for (i = 0; i < meta->nr_subbufs; i++) { 2006 meta->buffers[i] = i; 2007 rb_init_page(subbuf); 2008 subbuf += meta->subbuf_size; 2009 } 2010 } 2011 bitmap_free(subbuf_mask); 2012 } 2013 2014 static void *rbm_start(struct seq_file *m, loff_t *pos) 2015 { 2016 struct ring_buffer_per_cpu *cpu_buffer = m->private; 2017 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2018 unsigned long val; 2019 2020 if (!meta) 2021 return NULL; 2022 2023 if (*pos > meta->nr_subbufs) 2024 return NULL; 2025 2026 val = *pos; 2027 val++; 2028 2029 return (void *)val; 2030 } 2031 2032 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos) 2033 { 2034 (*pos)++; 2035 2036 return rbm_start(m, pos); 2037 } 2038 2039 static int rbm_show(struct seq_file *m, void *v) 2040 { 2041 struct ring_buffer_per_cpu *cpu_buffer = m->private; 2042 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2043 unsigned long val = (unsigned long)v; 2044 2045 if (val == 1) { 2046 seq_printf(m, "head_buffer: %d\n", 2047 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer)); 2048 seq_printf(m, "commit_buffer: %d\n", 2049 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer)); 2050 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size); 2051 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs); 2052 return 0; 2053 } 2054 2055 val -= 2; 2056 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]); 2057 2058 return 0; 2059 } 2060 2061 static void rbm_stop(struct seq_file *m, void *p) 2062 { 2063 } 2064 2065 static const struct seq_operations rb_meta_seq_ops = { 2066 .start = rbm_start, 2067 .next = rbm_next, 2068 .show = rbm_show, 2069 .stop = rbm_stop, 2070 }; 2071 2072 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu) 2073 { 2074 struct seq_file *m; 2075 int ret; 2076 2077 ret = seq_open(file, &rb_meta_seq_ops); 2078 if (ret) 2079 return ret; 2080 2081 m = file->private_data; 2082 m->private = buffer->buffers[cpu]; 2083 2084 return 0; 2085 } 2086 2087 /* Map the buffer_pages to the previous head and commit pages */ 2088 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer, 2089 struct buffer_page *bpage) 2090 { 2091 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2092 2093 if (meta->head_buffer == (unsigned long)bpage->page) 2094 cpu_buffer->head_page = bpage; 2095 2096 if (meta->commit_buffer == (unsigned long)bpage->page) { 2097 cpu_buffer->commit_page = bpage; 2098 cpu_buffer->tail_page = bpage; 2099 } 2100 } 2101 2102 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2103 long nr_pages, struct list_head *pages) 2104 { 2105 struct trace_buffer *buffer = cpu_buffer->buffer; 2106 struct ring_buffer_cpu_meta *meta = NULL; 2107 struct buffer_page *bpage, *tmp; 2108 bool user_thread = current->mm != NULL; 2109 gfp_t mflags; 2110 long i; 2111 2112 /* 2113 * Check if the available memory is there first. 2114 * Note, si_mem_available() only gives us a rough estimate of available 2115 * memory. It may not be accurate. But we don't care, we just want 2116 * to prevent doing any allocation when it is obvious that it is 2117 * not going to succeed. 2118 */ 2119 i = si_mem_available(); 2120 if (i < nr_pages) 2121 return -ENOMEM; 2122 2123 /* 2124 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 2125 * gracefully without invoking oom-killer and the system is not 2126 * destabilized. 2127 */ 2128 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 2129 2130 /* 2131 * If a user thread allocates too much, and si_mem_available() 2132 * reports there's enough memory, even though there is not. 2133 * Make sure the OOM killer kills this thread. This can happen 2134 * even with RETRY_MAYFAIL because another task may be doing 2135 * an allocation after this task has taken all memory. 2136 * This is the task the OOM killer needs to take out during this 2137 * loop, even if it was triggered by an allocation somewhere else. 2138 */ 2139 if (user_thread) 2140 set_current_oom_origin(); 2141 2142 if (buffer->range_addr_start) 2143 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu); 2144 2145 for (i = 0; i < nr_pages; i++) { 2146 struct page *page; 2147 2148 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2149 mflags, cpu_to_node(cpu_buffer->cpu)); 2150 if (!bpage) 2151 goto free_pages; 2152 2153 rb_check_bpage(cpu_buffer, bpage); 2154 2155 /* 2156 * Append the pages as for mapped buffers we want to keep 2157 * the order 2158 */ 2159 list_add_tail(&bpage->list, pages); 2160 2161 if (meta) { 2162 /* A range was given. Use that for the buffer page */ 2163 bpage->page = rb_range_buffer(cpu_buffer, i + 1); 2164 if (!bpage->page) 2165 goto free_pages; 2166 /* If this is valid from a previous boot */ 2167 if (meta->head_buffer) 2168 rb_meta_buffer_update(cpu_buffer, bpage); 2169 bpage->range = 1; 2170 bpage->id = i + 1; 2171 } else { 2172 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 2173 mflags | __GFP_COMP | __GFP_ZERO, 2174 cpu_buffer->buffer->subbuf_order); 2175 if (!page) 2176 goto free_pages; 2177 bpage->page = page_address(page); 2178 rb_init_page(bpage->page); 2179 } 2180 bpage->order = cpu_buffer->buffer->subbuf_order; 2181 2182 if (user_thread && fatal_signal_pending(current)) 2183 goto free_pages; 2184 } 2185 if (user_thread) 2186 clear_current_oom_origin(); 2187 2188 return 0; 2189 2190 free_pages: 2191 list_for_each_entry_safe(bpage, tmp, pages, list) { 2192 list_del_init(&bpage->list); 2193 free_buffer_page(bpage); 2194 } 2195 if (user_thread) 2196 clear_current_oom_origin(); 2197 2198 return -ENOMEM; 2199 } 2200 2201 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2202 unsigned long nr_pages) 2203 { 2204 LIST_HEAD(pages); 2205 2206 WARN_ON(!nr_pages); 2207 2208 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 2209 return -ENOMEM; 2210 2211 /* 2212 * The ring buffer page list is a circular list that does not 2213 * start and end with a list head. All page list items point to 2214 * other pages. 2215 */ 2216 cpu_buffer->pages = pages.next; 2217 list_del(&pages); 2218 2219 cpu_buffer->nr_pages = nr_pages; 2220 2221 rb_check_pages(cpu_buffer); 2222 2223 return 0; 2224 } 2225 2226 static struct ring_buffer_per_cpu * 2227 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 2228 { 2229 struct ring_buffer_per_cpu *cpu_buffer; 2230 struct ring_buffer_cpu_meta *meta; 2231 struct buffer_page *bpage; 2232 struct page *page; 2233 int ret; 2234 2235 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 2236 GFP_KERNEL, cpu_to_node(cpu)); 2237 if (!cpu_buffer) 2238 return NULL; 2239 2240 cpu_buffer->cpu = cpu; 2241 cpu_buffer->buffer = buffer; 2242 raw_spin_lock_init(&cpu_buffer->reader_lock); 2243 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 2244 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 2245 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 2246 init_completion(&cpu_buffer->update_done); 2247 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 2248 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 2249 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 2250 mutex_init(&cpu_buffer->mapping_lock); 2251 2252 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2253 GFP_KERNEL, cpu_to_node(cpu)); 2254 if (!bpage) 2255 goto fail_free_buffer; 2256 2257 rb_check_bpage(cpu_buffer, bpage); 2258 2259 cpu_buffer->reader_page = bpage; 2260 2261 if (buffer->range_addr_start) { 2262 /* 2263 * Range mapped buffers have the same restrictions as memory 2264 * mapped ones do. 2265 */ 2266 cpu_buffer->mapped = 1; 2267 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu); 2268 bpage->page = rb_range_buffer(cpu_buffer, 0); 2269 if (!bpage->page) 2270 goto fail_free_reader; 2271 if (cpu_buffer->ring_meta->head_buffer) 2272 rb_meta_buffer_update(cpu_buffer, bpage); 2273 bpage->range = 1; 2274 } else { 2275 page = alloc_pages_node(cpu_to_node(cpu), 2276 GFP_KERNEL | __GFP_COMP | __GFP_ZERO, 2277 cpu_buffer->buffer->subbuf_order); 2278 if (!page) 2279 goto fail_free_reader; 2280 bpage->page = page_address(page); 2281 rb_init_page(bpage->page); 2282 } 2283 2284 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2285 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2286 2287 ret = rb_allocate_pages(cpu_buffer, nr_pages); 2288 if (ret < 0) 2289 goto fail_free_reader; 2290 2291 rb_meta_validate_events(cpu_buffer); 2292 2293 /* If the boot meta was valid then this has already been updated */ 2294 meta = cpu_buffer->ring_meta; 2295 if (!meta || !meta->head_buffer || 2296 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) { 2297 if (meta && meta->head_buffer && 2298 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) { 2299 pr_warn("Ring buffer meta buffers not all mapped\n"); 2300 if (!cpu_buffer->head_page) 2301 pr_warn(" Missing head_page\n"); 2302 if (!cpu_buffer->commit_page) 2303 pr_warn(" Missing commit_page\n"); 2304 if (!cpu_buffer->tail_page) 2305 pr_warn(" Missing tail_page\n"); 2306 } 2307 2308 cpu_buffer->head_page 2309 = list_entry(cpu_buffer->pages, struct buffer_page, list); 2310 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 2311 2312 rb_head_page_activate(cpu_buffer); 2313 2314 if (cpu_buffer->ring_meta) 2315 meta->commit_buffer = meta->head_buffer; 2316 } else { 2317 /* The valid meta buffer still needs to activate the head page */ 2318 rb_head_page_activate(cpu_buffer); 2319 } 2320 2321 return cpu_buffer; 2322 2323 fail_free_reader: 2324 free_buffer_page(cpu_buffer->reader_page); 2325 2326 fail_free_buffer: 2327 kfree(cpu_buffer); 2328 return NULL; 2329 } 2330 2331 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 2332 { 2333 struct list_head *head = cpu_buffer->pages; 2334 struct buffer_page *bpage, *tmp; 2335 2336 irq_work_sync(&cpu_buffer->irq_work.work); 2337 2338 free_buffer_page(cpu_buffer->reader_page); 2339 2340 if (head) { 2341 rb_head_page_deactivate(cpu_buffer); 2342 2343 list_for_each_entry_safe(bpage, tmp, head, list) { 2344 list_del_init(&bpage->list); 2345 free_buffer_page(bpage); 2346 } 2347 bpage = list_entry(head, struct buffer_page, list); 2348 free_buffer_page(bpage); 2349 } 2350 2351 free_page((unsigned long)cpu_buffer->free_page); 2352 2353 kfree(cpu_buffer); 2354 } 2355 2356 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags, 2357 int order, unsigned long start, 2358 unsigned long end, 2359 unsigned long scratch_size, 2360 struct lock_class_key *key) 2361 { 2362 struct trace_buffer *buffer; 2363 long nr_pages; 2364 int subbuf_size; 2365 int bsize; 2366 int cpu; 2367 int ret; 2368 2369 /* keep it in its own cache line */ 2370 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 2371 GFP_KERNEL); 2372 if (!buffer) 2373 return NULL; 2374 2375 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 2376 goto fail_free_buffer; 2377 2378 buffer->subbuf_order = order; 2379 subbuf_size = (PAGE_SIZE << order); 2380 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE; 2381 2382 /* Max payload is buffer page size - header (8bytes) */ 2383 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 2384 2385 buffer->flags = flags; 2386 buffer->clock = trace_clock_local; 2387 buffer->reader_lock_key = key; 2388 2389 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 2390 init_waitqueue_head(&buffer->irq_work.waiters); 2391 2392 buffer->cpus = nr_cpu_ids; 2393 2394 bsize = sizeof(void *) * nr_cpu_ids; 2395 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 2396 GFP_KERNEL); 2397 if (!buffer->buffers) 2398 goto fail_free_cpumask; 2399 2400 /* If start/end are specified, then that overrides size */ 2401 if (start && end) { 2402 unsigned long buffers_start; 2403 unsigned long ptr; 2404 int n; 2405 2406 /* Make sure that start is word aligned */ 2407 start = ALIGN(start, sizeof(long)); 2408 2409 /* scratch_size needs to be aligned too */ 2410 scratch_size = ALIGN(scratch_size, sizeof(long)); 2411 2412 /* Subtract the buffer meta data and word aligned */ 2413 buffers_start = start + sizeof(struct ring_buffer_cpu_meta); 2414 buffers_start = ALIGN(buffers_start, sizeof(long)); 2415 buffers_start += scratch_size; 2416 2417 /* Calculate the size for the per CPU data */ 2418 size = end - buffers_start; 2419 size = size / nr_cpu_ids; 2420 2421 /* 2422 * The number of sub-buffers (nr_pages) is determined by the 2423 * total size allocated minus the meta data size. 2424 * Then that is divided by the number of per CPU buffers 2425 * needed, plus account for the integer array index that 2426 * will be appended to the meta data. 2427 */ 2428 nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) / 2429 (subbuf_size + sizeof(int)); 2430 /* Need at least two pages plus the reader page */ 2431 if (nr_pages < 3) 2432 goto fail_free_buffers; 2433 2434 again: 2435 /* Make sure that the size fits aligned */ 2436 for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) { 2437 ptr += sizeof(struct ring_buffer_cpu_meta) + 2438 sizeof(int) * nr_pages; 2439 ptr = ALIGN(ptr, subbuf_size); 2440 ptr += subbuf_size * nr_pages; 2441 } 2442 if (ptr > end) { 2443 if (nr_pages <= 3) 2444 goto fail_free_buffers; 2445 nr_pages--; 2446 goto again; 2447 } 2448 2449 /* nr_pages should not count the reader page */ 2450 nr_pages--; 2451 buffer->range_addr_start = start; 2452 buffer->range_addr_end = end; 2453 2454 rb_range_meta_init(buffer, nr_pages, scratch_size); 2455 } else { 2456 2457 /* need at least two pages */ 2458 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2459 if (nr_pages < 2) 2460 nr_pages = 2; 2461 } 2462 2463 cpu = raw_smp_processor_id(); 2464 cpumask_set_cpu(cpu, buffer->cpumask); 2465 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 2466 if (!buffer->buffers[cpu]) 2467 goto fail_free_buffers; 2468 2469 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2470 if (ret < 0) 2471 goto fail_free_buffers; 2472 2473 mutex_init(&buffer->mutex); 2474 2475 return buffer; 2476 2477 fail_free_buffers: 2478 for_each_buffer_cpu(buffer, cpu) { 2479 if (buffer->buffers[cpu]) 2480 rb_free_cpu_buffer(buffer->buffers[cpu]); 2481 } 2482 kfree(buffer->buffers); 2483 2484 fail_free_cpumask: 2485 free_cpumask_var(buffer->cpumask); 2486 2487 fail_free_buffer: 2488 kfree(buffer); 2489 return NULL; 2490 } 2491 2492 /** 2493 * __ring_buffer_alloc - allocate a new ring_buffer 2494 * @size: the size in bytes per cpu that is needed. 2495 * @flags: attributes to set for the ring buffer. 2496 * @key: ring buffer reader_lock_key. 2497 * 2498 * Currently the only flag that is available is the RB_FL_OVERWRITE 2499 * flag. This flag means that the buffer will overwrite old data 2500 * when the buffer wraps. If this flag is not set, the buffer will 2501 * drop data when the tail hits the head. 2502 */ 2503 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 2504 struct lock_class_key *key) 2505 { 2506 /* Default buffer page size - one system page */ 2507 return alloc_buffer(size, flags, 0, 0, 0, 0, key); 2508 2509 } 2510 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 2511 2512 /** 2513 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory 2514 * @size: the size in bytes per cpu that is needed. 2515 * @flags: attributes to set for the ring buffer. 2516 * @order: sub-buffer order 2517 * @start: start of allocated range 2518 * @range_size: size of allocated range 2519 * @scratch_size: size of scratch area (for preallocated memory buffers) 2520 * @key: ring buffer reader_lock_key. 2521 * 2522 * Currently the only flag that is available is the RB_FL_OVERWRITE 2523 * flag. This flag means that the buffer will overwrite old data 2524 * when the buffer wraps. If this flag is not set, the buffer will 2525 * drop data when the tail hits the head. 2526 */ 2527 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags, 2528 int order, unsigned long start, 2529 unsigned long range_size, 2530 unsigned long scratch_size, 2531 struct lock_class_key *key) 2532 { 2533 return alloc_buffer(size, flags, order, start, start + range_size, 2534 scratch_size, key); 2535 } 2536 2537 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size) 2538 { 2539 struct ring_buffer_meta *meta; 2540 void *ptr; 2541 2542 if (!buffer || !buffer->meta) 2543 return NULL; 2544 2545 meta = buffer->meta; 2546 2547 ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long)); 2548 2549 if (size) 2550 *size = (void *)meta + meta->buffers_offset - ptr; 2551 2552 return ptr; 2553 } 2554 2555 /** 2556 * ring_buffer_free - free a ring buffer. 2557 * @buffer: the buffer to free. 2558 */ 2559 void 2560 ring_buffer_free(struct trace_buffer *buffer) 2561 { 2562 int cpu; 2563 2564 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2565 2566 irq_work_sync(&buffer->irq_work.work); 2567 2568 for_each_buffer_cpu(buffer, cpu) 2569 rb_free_cpu_buffer(buffer->buffers[cpu]); 2570 2571 kfree(buffer->buffers); 2572 free_cpumask_var(buffer->cpumask); 2573 2574 kfree(buffer); 2575 } 2576 EXPORT_SYMBOL_GPL(ring_buffer_free); 2577 2578 void ring_buffer_set_clock(struct trace_buffer *buffer, 2579 u64 (*clock)(void)) 2580 { 2581 buffer->clock = clock; 2582 } 2583 2584 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 2585 { 2586 buffer->time_stamp_abs = abs; 2587 } 2588 2589 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 2590 { 2591 return buffer->time_stamp_abs; 2592 } 2593 2594 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 2595 { 2596 return local_read(&bpage->entries) & RB_WRITE_MASK; 2597 } 2598 2599 static inline unsigned long rb_page_write(struct buffer_page *bpage) 2600 { 2601 return local_read(&bpage->write) & RB_WRITE_MASK; 2602 } 2603 2604 static bool 2605 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 2606 { 2607 struct list_head *tail_page, *to_remove, *next_page; 2608 struct buffer_page *to_remove_page, *tmp_iter_page; 2609 struct buffer_page *last_page, *first_page; 2610 unsigned long nr_removed; 2611 unsigned long head_bit; 2612 int page_entries; 2613 2614 head_bit = 0; 2615 2616 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2617 atomic_inc(&cpu_buffer->record_disabled); 2618 /* 2619 * We don't race with the readers since we have acquired the reader 2620 * lock. We also don't race with writers after disabling recording. 2621 * This makes it easy to figure out the first and the last page to be 2622 * removed from the list. We unlink all the pages in between including 2623 * the first and last pages. This is done in a busy loop so that we 2624 * lose the least number of traces. 2625 * The pages are freed after we restart recording and unlock readers. 2626 */ 2627 tail_page = &cpu_buffer->tail_page->list; 2628 2629 /* 2630 * tail page might be on reader page, we remove the next page 2631 * from the ring buffer 2632 */ 2633 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2634 tail_page = rb_list_head(tail_page->next); 2635 to_remove = tail_page; 2636 2637 /* start of pages to remove */ 2638 first_page = list_entry(rb_list_head(to_remove->next), 2639 struct buffer_page, list); 2640 2641 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 2642 to_remove = rb_list_head(to_remove)->next; 2643 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 2644 } 2645 /* Read iterators need to reset themselves when some pages removed */ 2646 cpu_buffer->pages_removed += nr_removed; 2647 2648 next_page = rb_list_head(to_remove)->next; 2649 2650 /* 2651 * Now we remove all pages between tail_page and next_page. 2652 * Make sure that we have head_bit value preserved for the 2653 * next page 2654 */ 2655 tail_page->next = (struct list_head *)((unsigned long)next_page | 2656 head_bit); 2657 next_page = rb_list_head(next_page); 2658 next_page->prev = tail_page; 2659 2660 /* make sure pages points to a valid page in the ring buffer */ 2661 cpu_buffer->pages = next_page; 2662 cpu_buffer->cnt++; 2663 2664 /* update head page */ 2665 if (head_bit) 2666 cpu_buffer->head_page = list_entry(next_page, 2667 struct buffer_page, list); 2668 2669 /* pages are removed, resume tracing and then free the pages */ 2670 atomic_dec(&cpu_buffer->record_disabled); 2671 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2672 2673 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2674 2675 /* last buffer page to remove */ 2676 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2677 list); 2678 tmp_iter_page = first_page; 2679 2680 do { 2681 cond_resched(); 2682 2683 to_remove_page = tmp_iter_page; 2684 rb_inc_page(&tmp_iter_page); 2685 2686 /* update the counters */ 2687 page_entries = rb_page_entries(to_remove_page); 2688 if (page_entries) { 2689 /* 2690 * If something was added to this page, it was full 2691 * since it is not the tail page. So we deduct the 2692 * bytes consumed in ring buffer from here. 2693 * Increment overrun to account for the lost events. 2694 */ 2695 local_add(page_entries, &cpu_buffer->overrun); 2696 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2697 local_inc(&cpu_buffer->pages_lost); 2698 } 2699 2700 /* 2701 * We have already removed references to this list item, just 2702 * free up the buffer_page and its page 2703 */ 2704 free_buffer_page(to_remove_page); 2705 nr_removed--; 2706 2707 } while (to_remove_page != last_page); 2708 2709 RB_WARN_ON(cpu_buffer, nr_removed); 2710 2711 return nr_removed == 0; 2712 } 2713 2714 static bool 2715 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2716 { 2717 struct list_head *pages = &cpu_buffer->new_pages; 2718 unsigned long flags; 2719 bool success; 2720 int retries; 2721 2722 /* Can be called at early boot up, where interrupts must not been enabled */ 2723 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2724 /* 2725 * We are holding the reader lock, so the reader page won't be swapped 2726 * in the ring buffer. Now we are racing with the writer trying to 2727 * move head page and the tail page. 2728 * We are going to adapt the reader page update process where: 2729 * 1. We first splice the start and end of list of new pages between 2730 * the head page and its previous page. 2731 * 2. We cmpxchg the prev_page->next to point from head page to the 2732 * start of new pages list. 2733 * 3. Finally, we update the head->prev to the end of new list. 2734 * 2735 * We will try this process 10 times, to make sure that we don't keep 2736 * spinning. 2737 */ 2738 retries = 10; 2739 success = false; 2740 while (retries--) { 2741 struct list_head *head_page, *prev_page; 2742 struct list_head *last_page, *first_page; 2743 struct list_head *head_page_with_bit; 2744 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2745 2746 if (!hpage) 2747 break; 2748 head_page = &hpage->list; 2749 prev_page = head_page->prev; 2750 2751 first_page = pages->next; 2752 last_page = pages->prev; 2753 2754 head_page_with_bit = (struct list_head *) 2755 ((unsigned long)head_page | RB_PAGE_HEAD); 2756 2757 last_page->next = head_page_with_bit; 2758 first_page->prev = prev_page; 2759 2760 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2761 if (try_cmpxchg(&prev_page->next, 2762 &head_page_with_bit, first_page)) { 2763 /* 2764 * yay, we replaced the page pointer to our new list, 2765 * now, we just have to update to head page's prev 2766 * pointer to point to end of list 2767 */ 2768 head_page->prev = last_page; 2769 cpu_buffer->cnt++; 2770 success = true; 2771 break; 2772 } 2773 } 2774 2775 if (success) 2776 INIT_LIST_HEAD(pages); 2777 /* 2778 * If we weren't successful in adding in new pages, warn and stop 2779 * tracing 2780 */ 2781 RB_WARN_ON(cpu_buffer, !success); 2782 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2783 2784 /* free pages if they weren't inserted */ 2785 if (!success) { 2786 struct buffer_page *bpage, *tmp; 2787 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2788 list) { 2789 list_del_init(&bpage->list); 2790 free_buffer_page(bpage); 2791 } 2792 } 2793 return success; 2794 } 2795 2796 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2797 { 2798 bool success; 2799 2800 if (cpu_buffer->nr_pages_to_update > 0) 2801 success = rb_insert_pages(cpu_buffer); 2802 else 2803 success = rb_remove_pages(cpu_buffer, 2804 -cpu_buffer->nr_pages_to_update); 2805 2806 if (success) 2807 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2808 } 2809 2810 static void update_pages_handler(struct work_struct *work) 2811 { 2812 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2813 struct ring_buffer_per_cpu, update_pages_work); 2814 rb_update_pages(cpu_buffer); 2815 complete(&cpu_buffer->update_done); 2816 } 2817 2818 /** 2819 * ring_buffer_resize - resize the ring buffer 2820 * @buffer: the buffer to resize. 2821 * @size: the new size. 2822 * @cpu_id: the cpu buffer to resize 2823 * 2824 * Minimum size is 2 * buffer->subbuf_size. 2825 * 2826 * Returns 0 on success and < 0 on failure. 2827 */ 2828 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2829 int cpu_id) 2830 { 2831 struct ring_buffer_per_cpu *cpu_buffer; 2832 unsigned long nr_pages; 2833 int cpu, err; 2834 2835 /* 2836 * Always succeed at resizing a non-existent buffer: 2837 */ 2838 if (!buffer) 2839 return 0; 2840 2841 /* Make sure the requested buffer exists */ 2842 if (cpu_id != RING_BUFFER_ALL_CPUS && 2843 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2844 return 0; 2845 2846 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2847 2848 /* we need a minimum of two pages */ 2849 if (nr_pages < 2) 2850 nr_pages = 2; 2851 2852 /* prevent another thread from changing buffer sizes */ 2853 mutex_lock(&buffer->mutex); 2854 atomic_inc(&buffer->resizing); 2855 2856 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2857 /* 2858 * Don't succeed if resizing is disabled, as a reader might be 2859 * manipulating the ring buffer and is expecting a sane state while 2860 * this is true. 2861 */ 2862 for_each_buffer_cpu(buffer, cpu) { 2863 cpu_buffer = buffer->buffers[cpu]; 2864 if (atomic_read(&cpu_buffer->resize_disabled)) { 2865 err = -EBUSY; 2866 goto out_err_unlock; 2867 } 2868 } 2869 2870 /* calculate the pages to update */ 2871 for_each_buffer_cpu(buffer, cpu) { 2872 cpu_buffer = buffer->buffers[cpu]; 2873 2874 cpu_buffer->nr_pages_to_update = nr_pages - 2875 cpu_buffer->nr_pages; 2876 /* 2877 * nothing more to do for removing pages or no update 2878 */ 2879 if (cpu_buffer->nr_pages_to_update <= 0) 2880 continue; 2881 /* 2882 * to add pages, make sure all new pages can be 2883 * allocated without receiving ENOMEM 2884 */ 2885 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2886 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2887 &cpu_buffer->new_pages)) { 2888 /* not enough memory for new pages */ 2889 err = -ENOMEM; 2890 goto out_err; 2891 } 2892 2893 cond_resched(); 2894 } 2895 2896 cpus_read_lock(); 2897 /* 2898 * Fire off all the required work handlers 2899 * We can't schedule on offline CPUs, but it's not necessary 2900 * since we can change their buffer sizes without any race. 2901 */ 2902 for_each_buffer_cpu(buffer, cpu) { 2903 cpu_buffer = buffer->buffers[cpu]; 2904 if (!cpu_buffer->nr_pages_to_update) 2905 continue; 2906 2907 /* Can't run something on an offline CPU. */ 2908 if (!cpu_online(cpu)) { 2909 rb_update_pages(cpu_buffer); 2910 cpu_buffer->nr_pages_to_update = 0; 2911 } else { 2912 /* Run directly if possible. */ 2913 migrate_disable(); 2914 if (cpu != smp_processor_id()) { 2915 migrate_enable(); 2916 schedule_work_on(cpu, 2917 &cpu_buffer->update_pages_work); 2918 } else { 2919 update_pages_handler(&cpu_buffer->update_pages_work); 2920 migrate_enable(); 2921 } 2922 } 2923 } 2924 2925 /* wait for all the updates to complete */ 2926 for_each_buffer_cpu(buffer, cpu) { 2927 cpu_buffer = buffer->buffers[cpu]; 2928 if (!cpu_buffer->nr_pages_to_update) 2929 continue; 2930 2931 if (cpu_online(cpu)) 2932 wait_for_completion(&cpu_buffer->update_done); 2933 cpu_buffer->nr_pages_to_update = 0; 2934 } 2935 2936 cpus_read_unlock(); 2937 } else { 2938 cpu_buffer = buffer->buffers[cpu_id]; 2939 2940 if (nr_pages == cpu_buffer->nr_pages) 2941 goto out; 2942 2943 /* 2944 * Don't succeed if resizing is disabled, as a reader might be 2945 * manipulating the ring buffer and is expecting a sane state while 2946 * this is true. 2947 */ 2948 if (atomic_read(&cpu_buffer->resize_disabled)) { 2949 err = -EBUSY; 2950 goto out_err_unlock; 2951 } 2952 2953 cpu_buffer->nr_pages_to_update = nr_pages - 2954 cpu_buffer->nr_pages; 2955 2956 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2957 if (cpu_buffer->nr_pages_to_update > 0 && 2958 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2959 &cpu_buffer->new_pages)) { 2960 err = -ENOMEM; 2961 goto out_err; 2962 } 2963 2964 cpus_read_lock(); 2965 2966 /* Can't run something on an offline CPU. */ 2967 if (!cpu_online(cpu_id)) 2968 rb_update_pages(cpu_buffer); 2969 else { 2970 /* Run directly if possible. */ 2971 migrate_disable(); 2972 if (cpu_id == smp_processor_id()) { 2973 rb_update_pages(cpu_buffer); 2974 migrate_enable(); 2975 } else { 2976 migrate_enable(); 2977 schedule_work_on(cpu_id, 2978 &cpu_buffer->update_pages_work); 2979 wait_for_completion(&cpu_buffer->update_done); 2980 } 2981 } 2982 2983 cpu_buffer->nr_pages_to_update = 0; 2984 cpus_read_unlock(); 2985 } 2986 2987 out: 2988 /* 2989 * The ring buffer resize can happen with the ring buffer 2990 * enabled, so that the update disturbs the tracing as little 2991 * as possible. But if the buffer is disabled, we do not need 2992 * to worry about that, and we can take the time to verify 2993 * that the buffer is not corrupt. 2994 */ 2995 if (atomic_read(&buffer->record_disabled)) { 2996 atomic_inc(&buffer->record_disabled); 2997 /* 2998 * Even though the buffer was disabled, we must make sure 2999 * that it is truly disabled before calling rb_check_pages. 3000 * There could have been a race between checking 3001 * record_disable and incrementing it. 3002 */ 3003 synchronize_rcu(); 3004 for_each_buffer_cpu(buffer, cpu) { 3005 cpu_buffer = buffer->buffers[cpu]; 3006 rb_check_pages(cpu_buffer); 3007 } 3008 atomic_dec(&buffer->record_disabled); 3009 } 3010 3011 atomic_dec(&buffer->resizing); 3012 mutex_unlock(&buffer->mutex); 3013 return 0; 3014 3015 out_err: 3016 for_each_buffer_cpu(buffer, cpu) { 3017 struct buffer_page *bpage, *tmp; 3018 3019 cpu_buffer = buffer->buffers[cpu]; 3020 cpu_buffer->nr_pages_to_update = 0; 3021 3022 if (list_empty(&cpu_buffer->new_pages)) 3023 continue; 3024 3025 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 3026 list) { 3027 list_del_init(&bpage->list); 3028 free_buffer_page(bpage); 3029 } 3030 } 3031 out_err_unlock: 3032 atomic_dec(&buffer->resizing); 3033 mutex_unlock(&buffer->mutex); 3034 return err; 3035 } 3036 EXPORT_SYMBOL_GPL(ring_buffer_resize); 3037 3038 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 3039 { 3040 mutex_lock(&buffer->mutex); 3041 if (val) 3042 buffer->flags |= RB_FL_OVERWRITE; 3043 else 3044 buffer->flags &= ~RB_FL_OVERWRITE; 3045 mutex_unlock(&buffer->mutex); 3046 } 3047 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 3048 3049 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 3050 { 3051 return bpage->page->data + index; 3052 } 3053 3054 static __always_inline struct ring_buffer_event * 3055 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 3056 { 3057 return __rb_page_index(cpu_buffer->reader_page, 3058 cpu_buffer->reader_page->read); 3059 } 3060 3061 static struct ring_buffer_event * 3062 rb_iter_head_event(struct ring_buffer_iter *iter) 3063 { 3064 struct ring_buffer_event *event; 3065 struct buffer_page *iter_head_page = iter->head_page; 3066 unsigned long commit; 3067 unsigned length; 3068 3069 if (iter->head != iter->next_event) 3070 return iter->event; 3071 3072 /* 3073 * When the writer goes across pages, it issues a cmpxchg which 3074 * is a mb(), which will synchronize with the rmb here. 3075 * (see rb_tail_page_update() and __rb_reserve_next()) 3076 */ 3077 commit = rb_page_commit(iter_head_page); 3078 smp_rmb(); 3079 3080 /* An event needs to be at least 8 bytes in size */ 3081 if (iter->head > commit - 8) 3082 goto reset; 3083 3084 event = __rb_page_index(iter_head_page, iter->head); 3085 length = rb_event_length(event); 3086 3087 /* 3088 * READ_ONCE() doesn't work on functions and we don't want the 3089 * compiler doing any crazy optimizations with length. 3090 */ 3091 barrier(); 3092 3093 if ((iter->head + length) > commit || length > iter->event_size) 3094 /* Writer corrupted the read? */ 3095 goto reset; 3096 3097 memcpy(iter->event, event, length); 3098 /* 3099 * If the page stamp is still the same after this rmb() then the 3100 * event was safely copied without the writer entering the page. 3101 */ 3102 smp_rmb(); 3103 3104 /* Make sure the page didn't change since we read this */ 3105 if (iter->page_stamp != iter_head_page->page->time_stamp || 3106 commit > rb_page_commit(iter_head_page)) 3107 goto reset; 3108 3109 iter->next_event = iter->head + length; 3110 return iter->event; 3111 reset: 3112 /* Reset to the beginning */ 3113 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3114 iter->head = 0; 3115 iter->next_event = 0; 3116 iter->missed_events = 1; 3117 return NULL; 3118 } 3119 3120 /* Size is determined by what has been committed */ 3121 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 3122 { 3123 return rb_page_commit(bpage) & ~RB_MISSED_MASK; 3124 } 3125 3126 static __always_inline unsigned 3127 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 3128 { 3129 return rb_page_commit(cpu_buffer->commit_page); 3130 } 3131 3132 static __always_inline unsigned 3133 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 3134 { 3135 unsigned long addr = (unsigned long)event; 3136 3137 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 3138 3139 return addr - BUF_PAGE_HDR_SIZE; 3140 } 3141 3142 static void rb_inc_iter(struct ring_buffer_iter *iter) 3143 { 3144 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3145 3146 /* 3147 * The iterator could be on the reader page (it starts there). 3148 * But the head could have moved, since the reader was 3149 * found. Check for this case and assign the iterator 3150 * to the head page instead of next. 3151 */ 3152 if (iter->head_page == cpu_buffer->reader_page) 3153 iter->head_page = rb_set_head_page(cpu_buffer); 3154 else 3155 rb_inc_page(&iter->head_page); 3156 3157 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3158 iter->head = 0; 3159 iter->next_event = 0; 3160 } 3161 3162 /* Return the index into the sub-buffers for a given sub-buffer */ 3163 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf) 3164 { 3165 void *subbuf_array; 3166 3167 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs; 3168 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size); 3169 return (subbuf - subbuf_array) / meta->subbuf_size; 3170 } 3171 3172 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer, 3173 struct buffer_page *next_page) 3174 { 3175 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3176 unsigned long old_head = (unsigned long)next_page->page; 3177 unsigned long new_head; 3178 3179 rb_inc_page(&next_page); 3180 new_head = (unsigned long)next_page->page; 3181 3182 /* 3183 * Only move it forward once, if something else came in and 3184 * moved it forward, then we don't want to touch it. 3185 */ 3186 (void)cmpxchg(&meta->head_buffer, old_head, new_head); 3187 } 3188 3189 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer, 3190 struct buffer_page *reader) 3191 { 3192 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3193 void *old_reader = cpu_buffer->reader_page->page; 3194 void *new_reader = reader->page; 3195 int id; 3196 3197 id = reader->id; 3198 cpu_buffer->reader_page->id = id; 3199 reader->id = 0; 3200 3201 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader); 3202 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader); 3203 3204 /* The head pointer is the one after the reader */ 3205 rb_update_meta_head(cpu_buffer, reader); 3206 } 3207 3208 /* 3209 * rb_handle_head_page - writer hit the head page 3210 * 3211 * Returns: +1 to retry page 3212 * 0 to continue 3213 * -1 on error 3214 */ 3215 static int 3216 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 3217 struct buffer_page *tail_page, 3218 struct buffer_page *next_page) 3219 { 3220 struct buffer_page *new_head; 3221 int entries; 3222 int type; 3223 int ret; 3224 3225 entries = rb_page_entries(next_page); 3226 3227 /* 3228 * The hard part is here. We need to move the head 3229 * forward, and protect against both readers on 3230 * other CPUs and writers coming in via interrupts. 3231 */ 3232 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 3233 RB_PAGE_HEAD); 3234 3235 /* 3236 * type can be one of four: 3237 * NORMAL - an interrupt already moved it for us 3238 * HEAD - we are the first to get here. 3239 * UPDATE - we are the interrupt interrupting 3240 * a current move. 3241 * MOVED - a reader on another CPU moved the next 3242 * pointer to its reader page. Give up 3243 * and try again. 3244 */ 3245 3246 switch (type) { 3247 case RB_PAGE_HEAD: 3248 /* 3249 * We changed the head to UPDATE, thus 3250 * it is our responsibility to update 3251 * the counters. 3252 */ 3253 local_add(entries, &cpu_buffer->overrun); 3254 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 3255 local_inc(&cpu_buffer->pages_lost); 3256 3257 if (cpu_buffer->ring_meta) 3258 rb_update_meta_head(cpu_buffer, next_page); 3259 /* 3260 * The entries will be zeroed out when we move the 3261 * tail page. 3262 */ 3263 3264 /* still more to do */ 3265 break; 3266 3267 case RB_PAGE_UPDATE: 3268 /* 3269 * This is an interrupt that interrupt the 3270 * previous update. Still more to do. 3271 */ 3272 break; 3273 case RB_PAGE_NORMAL: 3274 /* 3275 * An interrupt came in before the update 3276 * and processed this for us. 3277 * Nothing left to do. 3278 */ 3279 return 1; 3280 case RB_PAGE_MOVED: 3281 /* 3282 * The reader is on another CPU and just did 3283 * a swap with our next_page. 3284 * Try again. 3285 */ 3286 return 1; 3287 default: 3288 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 3289 return -1; 3290 } 3291 3292 /* 3293 * Now that we are here, the old head pointer is 3294 * set to UPDATE. This will keep the reader from 3295 * swapping the head page with the reader page. 3296 * The reader (on another CPU) will spin till 3297 * we are finished. 3298 * 3299 * We just need to protect against interrupts 3300 * doing the job. We will set the next pointer 3301 * to HEAD. After that, we set the old pointer 3302 * to NORMAL, but only if it was HEAD before. 3303 * otherwise we are an interrupt, and only 3304 * want the outer most commit to reset it. 3305 */ 3306 new_head = next_page; 3307 rb_inc_page(&new_head); 3308 3309 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 3310 RB_PAGE_NORMAL); 3311 3312 /* 3313 * Valid returns are: 3314 * HEAD - an interrupt came in and already set it. 3315 * NORMAL - One of two things: 3316 * 1) We really set it. 3317 * 2) A bunch of interrupts came in and moved 3318 * the page forward again. 3319 */ 3320 switch (ret) { 3321 case RB_PAGE_HEAD: 3322 case RB_PAGE_NORMAL: 3323 /* OK */ 3324 break; 3325 default: 3326 RB_WARN_ON(cpu_buffer, 1); 3327 return -1; 3328 } 3329 3330 /* 3331 * It is possible that an interrupt came in, 3332 * set the head up, then more interrupts came in 3333 * and moved it again. When we get back here, 3334 * the page would have been set to NORMAL but we 3335 * just set it back to HEAD. 3336 * 3337 * How do you detect this? Well, if that happened 3338 * the tail page would have moved. 3339 */ 3340 if (ret == RB_PAGE_NORMAL) { 3341 struct buffer_page *buffer_tail_page; 3342 3343 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 3344 /* 3345 * If the tail had moved passed next, then we need 3346 * to reset the pointer. 3347 */ 3348 if (buffer_tail_page != tail_page && 3349 buffer_tail_page != next_page) 3350 rb_head_page_set_normal(cpu_buffer, new_head, 3351 next_page, 3352 RB_PAGE_HEAD); 3353 } 3354 3355 /* 3356 * If this was the outer most commit (the one that 3357 * changed the original pointer from HEAD to UPDATE), 3358 * then it is up to us to reset it to NORMAL. 3359 */ 3360 if (type == RB_PAGE_HEAD) { 3361 ret = rb_head_page_set_normal(cpu_buffer, next_page, 3362 tail_page, 3363 RB_PAGE_UPDATE); 3364 if (RB_WARN_ON(cpu_buffer, 3365 ret != RB_PAGE_UPDATE)) 3366 return -1; 3367 } 3368 3369 return 0; 3370 } 3371 3372 static inline void 3373 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 3374 unsigned long tail, struct rb_event_info *info) 3375 { 3376 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 3377 struct buffer_page *tail_page = info->tail_page; 3378 struct ring_buffer_event *event; 3379 unsigned long length = info->length; 3380 3381 /* 3382 * Only the event that crossed the page boundary 3383 * must fill the old tail_page with padding. 3384 */ 3385 if (tail >= bsize) { 3386 /* 3387 * If the page was filled, then we still need 3388 * to update the real_end. Reset it to zero 3389 * and the reader will ignore it. 3390 */ 3391 if (tail == bsize) 3392 tail_page->real_end = 0; 3393 3394 local_sub(length, &tail_page->write); 3395 return; 3396 } 3397 3398 event = __rb_page_index(tail_page, tail); 3399 3400 /* 3401 * Save the original length to the meta data. 3402 * This will be used by the reader to add lost event 3403 * counter. 3404 */ 3405 tail_page->real_end = tail; 3406 3407 /* 3408 * If this event is bigger than the minimum size, then 3409 * we need to be careful that we don't subtract the 3410 * write counter enough to allow another writer to slip 3411 * in on this page. 3412 * We put in a discarded commit instead, to make sure 3413 * that this space is not used again, and this space will 3414 * not be accounted into 'entries_bytes'. 3415 * 3416 * If we are less than the minimum size, we don't need to 3417 * worry about it. 3418 */ 3419 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 3420 /* No room for any events */ 3421 3422 /* Mark the rest of the page with padding */ 3423 rb_event_set_padding(event); 3424 3425 /* Make sure the padding is visible before the write update */ 3426 smp_wmb(); 3427 3428 /* Set the write back to the previous setting */ 3429 local_sub(length, &tail_page->write); 3430 return; 3431 } 3432 3433 /* Put in a discarded event */ 3434 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 3435 event->type_len = RINGBUF_TYPE_PADDING; 3436 /* time delta must be non zero */ 3437 event->time_delta = 1; 3438 3439 /* account for padding bytes */ 3440 local_add(bsize - tail, &cpu_buffer->entries_bytes); 3441 3442 /* Make sure the padding is visible before the tail_page->write update */ 3443 smp_wmb(); 3444 3445 /* Set write to end of buffer */ 3446 length = (tail + length) - bsize; 3447 local_sub(length, &tail_page->write); 3448 } 3449 3450 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 3451 3452 /* 3453 * This is the slow path, force gcc not to inline it. 3454 */ 3455 static noinline struct ring_buffer_event * 3456 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 3457 unsigned long tail, struct rb_event_info *info) 3458 { 3459 struct buffer_page *tail_page = info->tail_page; 3460 struct buffer_page *commit_page = cpu_buffer->commit_page; 3461 struct trace_buffer *buffer = cpu_buffer->buffer; 3462 struct buffer_page *next_page; 3463 int ret; 3464 3465 next_page = tail_page; 3466 3467 rb_inc_page(&next_page); 3468 3469 /* 3470 * If for some reason, we had an interrupt storm that made 3471 * it all the way around the buffer, bail, and warn 3472 * about it. 3473 */ 3474 if (unlikely(next_page == commit_page)) { 3475 local_inc(&cpu_buffer->commit_overrun); 3476 goto out_reset; 3477 } 3478 3479 /* 3480 * This is where the fun begins! 3481 * 3482 * We are fighting against races between a reader that 3483 * could be on another CPU trying to swap its reader 3484 * page with the buffer head. 3485 * 3486 * We are also fighting against interrupts coming in and 3487 * moving the head or tail on us as well. 3488 * 3489 * If the next page is the head page then we have filled 3490 * the buffer, unless the commit page is still on the 3491 * reader page. 3492 */ 3493 if (rb_is_head_page(next_page, &tail_page->list)) { 3494 3495 /* 3496 * If the commit is not on the reader page, then 3497 * move the header page. 3498 */ 3499 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 3500 /* 3501 * If we are not in overwrite mode, 3502 * this is easy, just stop here. 3503 */ 3504 if (!(buffer->flags & RB_FL_OVERWRITE)) { 3505 local_inc(&cpu_buffer->dropped_events); 3506 goto out_reset; 3507 } 3508 3509 ret = rb_handle_head_page(cpu_buffer, 3510 tail_page, 3511 next_page); 3512 if (ret < 0) 3513 goto out_reset; 3514 if (ret) 3515 goto out_again; 3516 } else { 3517 /* 3518 * We need to be careful here too. The 3519 * commit page could still be on the reader 3520 * page. We could have a small buffer, and 3521 * have filled up the buffer with events 3522 * from interrupts and such, and wrapped. 3523 * 3524 * Note, if the tail page is also on the 3525 * reader_page, we let it move out. 3526 */ 3527 if (unlikely((cpu_buffer->commit_page != 3528 cpu_buffer->tail_page) && 3529 (cpu_buffer->commit_page == 3530 cpu_buffer->reader_page))) { 3531 local_inc(&cpu_buffer->commit_overrun); 3532 goto out_reset; 3533 } 3534 } 3535 } 3536 3537 rb_tail_page_update(cpu_buffer, tail_page, next_page); 3538 3539 out_again: 3540 3541 rb_reset_tail(cpu_buffer, tail, info); 3542 3543 /* Commit what we have for now. */ 3544 rb_end_commit(cpu_buffer); 3545 /* rb_end_commit() decs committing */ 3546 local_inc(&cpu_buffer->committing); 3547 3548 /* fail and let the caller try again */ 3549 return ERR_PTR(-EAGAIN); 3550 3551 out_reset: 3552 /* reset write */ 3553 rb_reset_tail(cpu_buffer, tail, info); 3554 3555 return NULL; 3556 } 3557 3558 /* Slow path */ 3559 static struct ring_buffer_event * 3560 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3561 struct ring_buffer_event *event, u64 delta, bool abs) 3562 { 3563 if (abs) 3564 event->type_len = RINGBUF_TYPE_TIME_STAMP; 3565 else 3566 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 3567 3568 /* Not the first event on the page, or not delta? */ 3569 if (abs || rb_event_index(cpu_buffer, event)) { 3570 event->time_delta = delta & TS_MASK; 3571 event->array[0] = delta >> TS_SHIFT; 3572 } else { 3573 /* nope, just zero it */ 3574 event->time_delta = 0; 3575 event->array[0] = 0; 3576 } 3577 3578 return skip_time_extend(event); 3579 } 3580 3581 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 3582 static inline bool sched_clock_stable(void) 3583 { 3584 return true; 3585 } 3586 #endif 3587 3588 static void 3589 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3590 struct rb_event_info *info) 3591 { 3592 u64 write_stamp; 3593 3594 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 3595 (unsigned long long)info->delta, 3596 (unsigned long long)info->ts, 3597 (unsigned long long)info->before, 3598 (unsigned long long)info->after, 3599 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 3600 sched_clock_stable() ? "" : 3601 "If you just came from a suspend/resume,\n" 3602 "please switch to the trace global clock:\n" 3603 " echo global > /sys/kernel/tracing/trace_clock\n" 3604 "or add trace_clock=global to the kernel command line\n"); 3605 } 3606 3607 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3608 struct ring_buffer_event **event, 3609 struct rb_event_info *info, 3610 u64 *delta, 3611 unsigned int *length) 3612 { 3613 bool abs = info->add_timestamp & 3614 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 3615 3616 if (unlikely(info->delta > (1ULL << 59))) { 3617 /* 3618 * Some timers can use more than 59 bits, and when a timestamp 3619 * is added to the buffer, it will lose those bits. 3620 */ 3621 if (abs && (info->ts & TS_MSB)) { 3622 info->delta &= ABS_TS_MASK; 3623 3624 /* did the clock go backwards */ 3625 } else if (info->before == info->after && info->before > info->ts) { 3626 /* not interrupted */ 3627 static int once; 3628 3629 /* 3630 * This is possible with a recalibrating of the TSC. 3631 * Do not produce a call stack, but just report it. 3632 */ 3633 if (!once) { 3634 once++; 3635 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 3636 info->before, info->ts); 3637 } 3638 } else 3639 rb_check_timestamp(cpu_buffer, info); 3640 if (!abs) 3641 info->delta = 0; 3642 } 3643 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 3644 *length -= RB_LEN_TIME_EXTEND; 3645 *delta = 0; 3646 } 3647 3648 /** 3649 * rb_update_event - update event type and data 3650 * @cpu_buffer: The per cpu buffer of the @event 3651 * @event: the event to update 3652 * @info: The info to update the @event with (contains length and delta) 3653 * 3654 * Update the type and data fields of the @event. The length 3655 * is the actual size that is written to the ring buffer, 3656 * and with this, we can determine what to place into the 3657 * data field. 3658 */ 3659 static void 3660 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 3661 struct ring_buffer_event *event, 3662 struct rb_event_info *info) 3663 { 3664 unsigned length = info->length; 3665 u64 delta = info->delta; 3666 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 3667 3668 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 3669 cpu_buffer->event_stamp[nest] = info->ts; 3670 3671 /* 3672 * If we need to add a timestamp, then we 3673 * add it to the start of the reserved space. 3674 */ 3675 if (unlikely(info->add_timestamp)) 3676 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 3677 3678 event->time_delta = delta; 3679 length -= RB_EVNT_HDR_SIZE; 3680 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 3681 event->type_len = 0; 3682 event->array[0] = length; 3683 } else 3684 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 3685 } 3686 3687 static unsigned rb_calculate_event_length(unsigned length) 3688 { 3689 struct ring_buffer_event event; /* Used only for sizeof array */ 3690 3691 /* zero length can cause confusions */ 3692 if (!length) 3693 length++; 3694 3695 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 3696 length += sizeof(event.array[0]); 3697 3698 length += RB_EVNT_HDR_SIZE; 3699 length = ALIGN(length, RB_ARCH_ALIGNMENT); 3700 3701 /* 3702 * In case the time delta is larger than the 27 bits for it 3703 * in the header, we need to add a timestamp. If another 3704 * event comes in when trying to discard this one to increase 3705 * the length, then the timestamp will be added in the allocated 3706 * space of this event. If length is bigger than the size needed 3707 * for the TIME_EXTEND, then padding has to be used. The events 3708 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 3709 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 3710 * As length is a multiple of 4, we only need to worry if it 3711 * is 12 (RB_LEN_TIME_EXTEND + 4). 3712 */ 3713 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3714 length += RB_ALIGNMENT; 3715 3716 return length; 3717 } 3718 3719 static inline bool 3720 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3721 struct ring_buffer_event *event) 3722 { 3723 unsigned long new_index, old_index; 3724 struct buffer_page *bpage; 3725 unsigned long addr; 3726 3727 new_index = rb_event_index(cpu_buffer, event); 3728 old_index = new_index + rb_event_ts_length(event); 3729 addr = (unsigned long)event; 3730 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3731 3732 bpage = READ_ONCE(cpu_buffer->tail_page); 3733 3734 /* 3735 * Make sure the tail_page is still the same and 3736 * the next write location is the end of this event 3737 */ 3738 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3739 unsigned long write_mask = 3740 local_read(&bpage->write) & ~RB_WRITE_MASK; 3741 unsigned long event_length = rb_event_length(event); 3742 3743 /* 3744 * For the before_stamp to be different than the write_stamp 3745 * to make sure that the next event adds an absolute 3746 * value and does not rely on the saved write stamp, which 3747 * is now going to be bogus. 3748 * 3749 * By setting the before_stamp to zero, the next event 3750 * is not going to use the write_stamp and will instead 3751 * create an absolute timestamp. This means there's no 3752 * reason to update the wirte_stamp! 3753 */ 3754 rb_time_set(&cpu_buffer->before_stamp, 0); 3755 3756 /* 3757 * If an event were to come in now, it would see that the 3758 * write_stamp and the before_stamp are different, and assume 3759 * that this event just added itself before updating 3760 * the write stamp. The interrupting event will fix the 3761 * write stamp for us, and use an absolute timestamp. 3762 */ 3763 3764 /* 3765 * This is on the tail page. It is possible that 3766 * a write could come in and move the tail page 3767 * and write to the next page. That is fine 3768 * because we just shorten what is on this page. 3769 */ 3770 old_index += write_mask; 3771 new_index += write_mask; 3772 3773 /* caution: old_index gets updated on cmpxchg failure */ 3774 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3775 /* update counters */ 3776 local_sub(event_length, &cpu_buffer->entries_bytes); 3777 return true; 3778 } 3779 } 3780 3781 /* could not discard */ 3782 return false; 3783 } 3784 3785 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3786 { 3787 local_inc(&cpu_buffer->committing); 3788 local_inc(&cpu_buffer->commits); 3789 } 3790 3791 static __always_inline void 3792 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3793 { 3794 unsigned long max_count; 3795 3796 /* 3797 * We only race with interrupts and NMIs on this CPU. 3798 * If we own the commit event, then we can commit 3799 * all others that interrupted us, since the interruptions 3800 * are in stack format (they finish before they come 3801 * back to us). This allows us to do a simple loop to 3802 * assign the commit to the tail. 3803 */ 3804 again: 3805 max_count = cpu_buffer->nr_pages * 100; 3806 3807 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3808 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3809 return; 3810 if (RB_WARN_ON(cpu_buffer, 3811 rb_is_reader_page(cpu_buffer->tail_page))) 3812 return; 3813 /* 3814 * No need for a memory barrier here, as the update 3815 * of the tail_page did it for this page. 3816 */ 3817 local_set(&cpu_buffer->commit_page->page->commit, 3818 rb_page_write(cpu_buffer->commit_page)); 3819 rb_inc_page(&cpu_buffer->commit_page); 3820 if (cpu_buffer->ring_meta) { 3821 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3822 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page; 3823 } 3824 /* add barrier to keep gcc from optimizing too much */ 3825 barrier(); 3826 } 3827 while (rb_commit_index(cpu_buffer) != 3828 rb_page_write(cpu_buffer->commit_page)) { 3829 3830 /* Make sure the readers see the content of what is committed. */ 3831 smp_wmb(); 3832 local_set(&cpu_buffer->commit_page->page->commit, 3833 rb_page_write(cpu_buffer->commit_page)); 3834 RB_WARN_ON(cpu_buffer, 3835 local_read(&cpu_buffer->commit_page->page->commit) & 3836 ~RB_WRITE_MASK); 3837 barrier(); 3838 } 3839 3840 /* again, keep gcc from optimizing */ 3841 barrier(); 3842 3843 /* 3844 * If an interrupt came in just after the first while loop 3845 * and pushed the tail page forward, we will be left with 3846 * a dangling commit that will never go forward. 3847 */ 3848 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3849 goto again; 3850 } 3851 3852 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3853 { 3854 unsigned long commits; 3855 3856 if (RB_WARN_ON(cpu_buffer, 3857 !local_read(&cpu_buffer->committing))) 3858 return; 3859 3860 again: 3861 commits = local_read(&cpu_buffer->commits); 3862 /* synchronize with interrupts */ 3863 barrier(); 3864 if (local_read(&cpu_buffer->committing) == 1) 3865 rb_set_commit_to_write(cpu_buffer); 3866 3867 local_dec(&cpu_buffer->committing); 3868 3869 /* synchronize with interrupts */ 3870 barrier(); 3871 3872 /* 3873 * Need to account for interrupts coming in between the 3874 * updating of the commit page and the clearing of the 3875 * committing counter. 3876 */ 3877 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3878 !local_read(&cpu_buffer->committing)) { 3879 local_inc(&cpu_buffer->committing); 3880 goto again; 3881 } 3882 } 3883 3884 static inline void rb_event_discard(struct ring_buffer_event *event) 3885 { 3886 if (extended_time(event)) 3887 event = skip_time_extend(event); 3888 3889 /* array[0] holds the actual length for the discarded event */ 3890 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3891 event->type_len = RINGBUF_TYPE_PADDING; 3892 /* time delta must be non zero */ 3893 if (!event->time_delta) 3894 event->time_delta = 1; 3895 } 3896 3897 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3898 { 3899 local_inc(&cpu_buffer->entries); 3900 rb_end_commit(cpu_buffer); 3901 } 3902 3903 static __always_inline void 3904 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3905 { 3906 if (buffer->irq_work.waiters_pending) { 3907 buffer->irq_work.waiters_pending = false; 3908 /* irq_work_queue() supplies it's own memory barriers */ 3909 irq_work_queue(&buffer->irq_work.work); 3910 } 3911 3912 if (cpu_buffer->irq_work.waiters_pending) { 3913 cpu_buffer->irq_work.waiters_pending = false; 3914 /* irq_work_queue() supplies it's own memory barriers */ 3915 irq_work_queue(&cpu_buffer->irq_work.work); 3916 } 3917 3918 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3919 return; 3920 3921 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3922 return; 3923 3924 if (!cpu_buffer->irq_work.full_waiters_pending) 3925 return; 3926 3927 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3928 3929 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3930 return; 3931 3932 cpu_buffer->irq_work.wakeup_full = true; 3933 cpu_buffer->irq_work.full_waiters_pending = false; 3934 /* irq_work_queue() supplies it's own memory barriers */ 3935 irq_work_queue(&cpu_buffer->irq_work.work); 3936 } 3937 3938 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3939 # define do_ring_buffer_record_recursion() \ 3940 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3941 #else 3942 # define do_ring_buffer_record_recursion() do { } while (0) 3943 #endif 3944 3945 /* 3946 * The lock and unlock are done within a preempt disable section. 3947 * The current_context per_cpu variable can only be modified 3948 * by the current task between lock and unlock. But it can 3949 * be modified more than once via an interrupt. To pass this 3950 * information from the lock to the unlock without having to 3951 * access the 'in_interrupt()' functions again (which do show 3952 * a bit of overhead in something as critical as function tracing, 3953 * we use a bitmask trick. 3954 * 3955 * bit 1 = NMI context 3956 * bit 2 = IRQ context 3957 * bit 3 = SoftIRQ context 3958 * bit 4 = normal context. 3959 * 3960 * This works because this is the order of contexts that can 3961 * preempt other contexts. A SoftIRQ never preempts an IRQ 3962 * context. 3963 * 3964 * When the context is determined, the corresponding bit is 3965 * checked and set (if it was set, then a recursion of that context 3966 * happened). 3967 * 3968 * On unlock, we need to clear this bit. To do so, just subtract 3969 * 1 from the current_context and AND it to itself. 3970 * 3971 * (binary) 3972 * 101 - 1 = 100 3973 * 101 & 100 = 100 (clearing bit zero) 3974 * 3975 * 1010 - 1 = 1001 3976 * 1010 & 1001 = 1000 (clearing bit 1) 3977 * 3978 * The least significant bit can be cleared this way, and it 3979 * just so happens that it is the same bit corresponding to 3980 * the current context. 3981 * 3982 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3983 * is set when a recursion is detected at the current context, and if 3984 * the TRANSITION bit is already set, it will fail the recursion. 3985 * This is needed because there's a lag between the changing of 3986 * interrupt context and updating the preempt count. In this case, 3987 * a false positive will be found. To handle this, one extra recursion 3988 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3989 * bit is already set, then it is considered a recursion and the function 3990 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3991 * 3992 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3993 * to be cleared. Even if it wasn't the context that set it. That is, 3994 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3995 * is called before preempt_count() is updated, since the check will 3996 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3997 * NMI then comes in, it will set the NMI bit, but when the NMI code 3998 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3999 * and leave the NMI bit set. But this is fine, because the interrupt 4000 * code that set the TRANSITION bit will then clear the NMI bit when it 4001 * calls trace_recursive_unlock(). If another NMI comes in, it will 4002 * set the TRANSITION bit and continue. 4003 * 4004 * Note: The TRANSITION bit only handles a single transition between context. 4005 */ 4006 4007 static __always_inline bool 4008 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 4009 { 4010 unsigned int val = cpu_buffer->current_context; 4011 int bit = interrupt_context_level(); 4012 4013 bit = RB_CTX_NORMAL - bit; 4014 4015 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 4016 /* 4017 * It is possible that this was called by transitioning 4018 * between interrupt context, and preempt_count() has not 4019 * been updated yet. In this case, use the TRANSITION bit. 4020 */ 4021 bit = RB_CTX_TRANSITION; 4022 if (val & (1 << (bit + cpu_buffer->nest))) { 4023 do_ring_buffer_record_recursion(); 4024 return true; 4025 } 4026 } 4027 4028 val |= (1 << (bit + cpu_buffer->nest)); 4029 cpu_buffer->current_context = val; 4030 4031 return false; 4032 } 4033 4034 static __always_inline void 4035 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 4036 { 4037 cpu_buffer->current_context &= 4038 cpu_buffer->current_context - (1 << cpu_buffer->nest); 4039 } 4040 4041 /* The recursive locking above uses 5 bits */ 4042 #define NESTED_BITS 5 4043 4044 /** 4045 * ring_buffer_nest_start - Allow to trace while nested 4046 * @buffer: The ring buffer to modify 4047 * 4048 * The ring buffer has a safety mechanism to prevent recursion. 4049 * But there may be a case where a trace needs to be done while 4050 * tracing something else. In this case, calling this function 4051 * will allow this function to nest within a currently active 4052 * ring_buffer_lock_reserve(). 4053 * 4054 * Call this function before calling another ring_buffer_lock_reserve() and 4055 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 4056 */ 4057 void ring_buffer_nest_start(struct trace_buffer *buffer) 4058 { 4059 struct ring_buffer_per_cpu *cpu_buffer; 4060 int cpu; 4061 4062 /* Enabled by ring_buffer_nest_end() */ 4063 preempt_disable_notrace(); 4064 cpu = raw_smp_processor_id(); 4065 cpu_buffer = buffer->buffers[cpu]; 4066 /* This is the shift value for the above recursive locking */ 4067 cpu_buffer->nest += NESTED_BITS; 4068 } 4069 4070 /** 4071 * ring_buffer_nest_end - Allow to trace while nested 4072 * @buffer: The ring buffer to modify 4073 * 4074 * Must be called after ring_buffer_nest_start() and after the 4075 * ring_buffer_unlock_commit(). 4076 */ 4077 void ring_buffer_nest_end(struct trace_buffer *buffer) 4078 { 4079 struct ring_buffer_per_cpu *cpu_buffer; 4080 int cpu; 4081 4082 /* disabled by ring_buffer_nest_start() */ 4083 cpu = raw_smp_processor_id(); 4084 cpu_buffer = buffer->buffers[cpu]; 4085 /* This is the shift value for the above recursive locking */ 4086 cpu_buffer->nest -= NESTED_BITS; 4087 preempt_enable_notrace(); 4088 } 4089 4090 /** 4091 * ring_buffer_unlock_commit - commit a reserved 4092 * @buffer: The buffer to commit to 4093 * 4094 * This commits the data to the ring buffer, and releases any locks held. 4095 * 4096 * Must be paired with ring_buffer_lock_reserve. 4097 */ 4098 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 4099 { 4100 struct ring_buffer_per_cpu *cpu_buffer; 4101 int cpu = raw_smp_processor_id(); 4102 4103 cpu_buffer = buffer->buffers[cpu]; 4104 4105 rb_commit(cpu_buffer); 4106 4107 rb_wakeups(buffer, cpu_buffer); 4108 4109 trace_recursive_unlock(cpu_buffer); 4110 4111 preempt_enable_notrace(); 4112 4113 return 0; 4114 } 4115 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 4116 4117 /* Special value to validate all deltas on a page. */ 4118 #define CHECK_FULL_PAGE 1L 4119 4120 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 4121 4122 static const char *show_irq_str(int bits) 4123 { 4124 const char *type[] = { 4125 ".", // 0 4126 "s", // 1 4127 "h", // 2 4128 "Hs", // 3 4129 "n", // 4 4130 "Ns", // 5 4131 "Nh", // 6 4132 "NHs", // 7 4133 }; 4134 4135 return type[bits]; 4136 } 4137 4138 /* Assume this is a trace event */ 4139 static const char *show_flags(struct ring_buffer_event *event) 4140 { 4141 struct trace_entry *entry; 4142 int bits = 0; 4143 4144 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4145 return "X"; 4146 4147 entry = ring_buffer_event_data(event); 4148 4149 if (entry->flags & TRACE_FLAG_SOFTIRQ) 4150 bits |= 1; 4151 4152 if (entry->flags & TRACE_FLAG_HARDIRQ) 4153 bits |= 2; 4154 4155 if (entry->flags & TRACE_FLAG_NMI) 4156 bits |= 4; 4157 4158 return show_irq_str(bits); 4159 } 4160 4161 static const char *show_irq(struct ring_buffer_event *event) 4162 { 4163 struct trace_entry *entry; 4164 4165 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4166 return ""; 4167 4168 entry = ring_buffer_event_data(event); 4169 if (entry->flags & TRACE_FLAG_IRQS_OFF) 4170 return "d"; 4171 return ""; 4172 } 4173 4174 static const char *show_interrupt_level(void) 4175 { 4176 unsigned long pc = preempt_count(); 4177 unsigned char level = 0; 4178 4179 if (pc & SOFTIRQ_OFFSET) 4180 level |= 1; 4181 4182 if (pc & HARDIRQ_MASK) 4183 level |= 2; 4184 4185 if (pc & NMI_MASK) 4186 level |= 4; 4187 4188 return show_irq_str(level); 4189 } 4190 4191 static void dump_buffer_page(struct buffer_data_page *bpage, 4192 struct rb_event_info *info, 4193 unsigned long tail) 4194 { 4195 struct ring_buffer_event *event; 4196 u64 ts, delta; 4197 int e; 4198 4199 ts = bpage->time_stamp; 4200 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 4201 4202 for (e = 0; e < tail; e += rb_event_length(event)) { 4203 4204 event = (struct ring_buffer_event *)(bpage->data + e); 4205 4206 switch (event->type_len) { 4207 4208 case RINGBUF_TYPE_TIME_EXTEND: 4209 delta = rb_event_time_stamp(event); 4210 ts += delta; 4211 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 4212 e, ts, delta); 4213 break; 4214 4215 case RINGBUF_TYPE_TIME_STAMP: 4216 delta = rb_event_time_stamp(event); 4217 ts = rb_fix_abs_ts(delta, ts); 4218 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 4219 e, ts, delta); 4220 break; 4221 4222 case RINGBUF_TYPE_PADDING: 4223 ts += event->time_delta; 4224 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 4225 e, ts, event->time_delta); 4226 break; 4227 4228 case RINGBUF_TYPE_DATA: 4229 ts += event->time_delta; 4230 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 4231 e, ts, event->time_delta, 4232 show_flags(event), show_irq(event)); 4233 break; 4234 4235 default: 4236 break; 4237 } 4238 } 4239 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 4240 } 4241 4242 static DEFINE_PER_CPU(atomic_t, checking); 4243 static atomic_t ts_dump; 4244 4245 #define buffer_warn_return(fmt, ...) \ 4246 do { \ 4247 /* If another report is happening, ignore this one */ \ 4248 if (atomic_inc_return(&ts_dump) != 1) { \ 4249 atomic_dec(&ts_dump); \ 4250 goto out; \ 4251 } \ 4252 atomic_inc(&cpu_buffer->record_disabled); \ 4253 pr_warn(fmt, ##__VA_ARGS__); \ 4254 dump_buffer_page(bpage, info, tail); \ 4255 atomic_dec(&ts_dump); \ 4256 /* There's some cases in boot up that this can happen */ \ 4257 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 4258 /* Do not re-enable checking */ \ 4259 return; \ 4260 } while (0) 4261 4262 /* 4263 * Check if the current event time stamp matches the deltas on 4264 * the buffer page. 4265 */ 4266 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4267 struct rb_event_info *info, 4268 unsigned long tail) 4269 { 4270 struct buffer_data_page *bpage; 4271 u64 ts, delta; 4272 bool full = false; 4273 int ret; 4274 4275 bpage = info->tail_page->page; 4276 4277 if (tail == CHECK_FULL_PAGE) { 4278 full = true; 4279 tail = local_read(&bpage->commit); 4280 } else if (info->add_timestamp & 4281 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 4282 /* Ignore events with absolute time stamps */ 4283 return; 4284 } 4285 4286 /* 4287 * Do not check the first event (skip possible extends too). 4288 * Also do not check if previous events have not been committed. 4289 */ 4290 if (tail <= 8 || tail > local_read(&bpage->commit)) 4291 return; 4292 4293 /* 4294 * If this interrupted another event, 4295 */ 4296 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 4297 goto out; 4298 4299 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta); 4300 if (ret < 0) { 4301 if (delta < ts) { 4302 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 4303 cpu_buffer->cpu, ts, delta); 4304 goto out; 4305 } 4306 } 4307 if ((full && ts > info->ts) || 4308 (!full && ts + info->delta != info->ts)) { 4309 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 4310 cpu_buffer->cpu, 4311 ts + info->delta, info->ts, info->delta, 4312 info->before, info->after, 4313 full ? " (full)" : "", show_interrupt_level()); 4314 } 4315 out: 4316 atomic_dec(this_cpu_ptr(&checking)); 4317 } 4318 #else 4319 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4320 struct rb_event_info *info, 4321 unsigned long tail) 4322 { 4323 } 4324 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 4325 4326 static struct ring_buffer_event * 4327 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 4328 struct rb_event_info *info) 4329 { 4330 struct ring_buffer_event *event; 4331 struct buffer_page *tail_page; 4332 unsigned long tail, write, w; 4333 4334 /* Don't let the compiler play games with cpu_buffer->tail_page */ 4335 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 4336 4337 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 4338 barrier(); 4339 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4340 rb_time_read(&cpu_buffer->write_stamp, &info->after); 4341 barrier(); 4342 info->ts = rb_time_stamp(cpu_buffer->buffer); 4343 4344 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 4345 info->delta = info->ts; 4346 } else { 4347 /* 4348 * If interrupting an event time update, we may need an 4349 * absolute timestamp. 4350 * Don't bother if this is the start of a new page (w == 0). 4351 */ 4352 if (!w) { 4353 /* Use the sub-buffer timestamp */ 4354 info->delta = 0; 4355 } else if (unlikely(info->before != info->after)) { 4356 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 4357 info->length += RB_LEN_TIME_EXTEND; 4358 } else { 4359 info->delta = info->ts - info->after; 4360 if (unlikely(test_time_stamp(info->delta))) { 4361 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 4362 info->length += RB_LEN_TIME_EXTEND; 4363 } 4364 } 4365 } 4366 4367 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 4368 4369 /*C*/ write = local_add_return(info->length, &tail_page->write); 4370 4371 /* set write to only the index of the write */ 4372 write &= RB_WRITE_MASK; 4373 4374 tail = write - info->length; 4375 4376 /* See if we shot pass the end of this buffer page */ 4377 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 4378 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 4379 return rb_move_tail(cpu_buffer, tail, info); 4380 } 4381 4382 if (likely(tail == w)) { 4383 /* Nothing interrupted us between A and C */ 4384 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 4385 /* 4386 * If something came in between C and D, the write stamp 4387 * may now not be in sync. But that's fine as the before_stamp 4388 * will be different and then next event will just be forced 4389 * to use an absolute timestamp. 4390 */ 4391 if (likely(!(info->add_timestamp & 4392 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4393 /* This did not interrupt any time update */ 4394 info->delta = info->ts - info->after; 4395 else 4396 /* Just use full timestamp for interrupting event */ 4397 info->delta = info->ts; 4398 check_buffer(cpu_buffer, info, tail); 4399 } else { 4400 u64 ts; 4401 /* SLOW PATH - Interrupted between A and C */ 4402 4403 /* Save the old before_stamp */ 4404 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4405 4406 /* 4407 * Read a new timestamp and update the before_stamp to make 4408 * the next event after this one force using an absolute 4409 * timestamp. This is in case an interrupt were to come in 4410 * between E and F. 4411 */ 4412 ts = rb_time_stamp(cpu_buffer->buffer); 4413 rb_time_set(&cpu_buffer->before_stamp, ts); 4414 4415 barrier(); 4416 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 4417 barrier(); 4418 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 4419 info->after == info->before && info->after < ts) { 4420 /* 4421 * Nothing came after this event between C and F, it is 4422 * safe to use info->after for the delta as it 4423 * matched info->before and is still valid. 4424 */ 4425 info->delta = ts - info->after; 4426 } else { 4427 /* 4428 * Interrupted between C and F: 4429 * Lost the previous events time stamp. Just set the 4430 * delta to zero, and this will be the same time as 4431 * the event this event interrupted. And the events that 4432 * came after this will still be correct (as they would 4433 * have built their delta on the previous event. 4434 */ 4435 info->delta = 0; 4436 } 4437 info->ts = ts; 4438 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 4439 } 4440 4441 /* 4442 * If this is the first commit on the page, then it has the same 4443 * timestamp as the page itself. 4444 */ 4445 if (unlikely(!tail && !(info->add_timestamp & 4446 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4447 info->delta = 0; 4448 4449 /* We reserved something on the buffer */ 4450 4451 event = __rb_page_index(tail_page, tail); 4452 rb_update_event(cpu_buffer, event, info); 4453 4454 local_inc(&tail_page->entries); 4455 4456 /* 4457 * If this is the first commit on the page, then update 4458 * its timestamp. 4459 */ 4460 if (unlikely(!tail)) 4461 tail_page->page->time_stamp = info->ts; 4462 4463 /* account for these added bytes */ 4464 local_add(info->length, &cpu_buffer->entries_bytes); 4465 4466 return event; 4467 } 4468 4469 static __always_inline struct ring_buffer_event * 4470 rb_reserve_next_event(struct trace_buffer *buffer, 4471 struct ring_buffer_per_cpu *cpu_buffer, 4472 unsigned long length) 4473 { 4474 struct ring_buffer_event *event; 4475 struct rb_event_info info; 4476 int nr_loops = 0; 4477 int add_ts_default; 4478 4479 /* 4480 * ring buffer does cmpxchg as well as atomic64 operations 4481 * (which some archs use locking for atomic64), make sure this 4482 * is safe in NMI context 4483 */ 4484 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) || 4485 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) && 4486 (unlikely(in_nmi()))) { 4487 return NULL; 4488 } 4489 4490 rb_start_commit(cpu_buffer); 4491 /* The commit page can not change after this */ 4492 4493 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4494 /* 4495 * Due to the ability to swap a cpu buffer from a buffer 4496 * it is possible it was swapped before we committed. 4497 * (committing stops a swap). We check for it here and 4498 * if it happened, we have to fail the write. 4499 */ 4500 barrier(); 4501 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 4502 local_dec(&cpu_buffer->committing); 4503 local_dec(&cpu_buffer->commits); 4504 return NULL; 4505 } 4506 #endif 4507 4508 info.length = rb_calculate_event_length(length); 4509 4510 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 4511 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 4512 info.length += RB_LEN_TIME_EXTEND; 4513 if (info.length > cpu_buffer->buffer->max_data_size) 4514 goto out_fail; 4515 } else { 4516 add_ts_default = RB_ADD_STAMP_NONE; 4517 } 4518 4519 again: 4520 info.add_timestamp = add_ts_default; 4521 info.delta = 0; 4522 4523 /* 4524 * We allow for interrupts to reenter here and do a trace. 4525 * If one does, it will cause this original code to loop 4526 * back here. Even with heavy interrupts happening, this 4527 * should only happen a few times in a row. If this happens 4528 * 1000 times in a row, there must be either an interrupt 4529 * storm or we have something buggy. 4530 * Bail! 4531 */ 4532 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 4533 goto out_fail; 4534 4535 event = __rb_reserve_next(cpu_buffer, &info); 4536 4537 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 4538 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 4539 info.length -= RB_LEN_TIME_EXTEND; 4540 goto again; 4541 } 4542 4543 if (likely(event)) 4544 return event; 4545 out_fail: 4546 rb_end_commit(cpu_buffer); 4547 return NULL; 4548 } 4549 4550 /** 4551 * ring_buffer_lock_reserve - reserve a part of the buffer 4552 * @buffer: the ring buffer to reserve from 4553 * @length: the length of the data to reserve (excluding event header) 4554 * 4555 * Returns a reserved event on the ring buffer to copy directly to. 4556 * The user of this interface will need to get the body to write into 4557 * and can use the ring_buffer_event_data() interface. 4558 * 4559 * The length is the length of the data needed, not the event length 4560 * which also includes the event header. 4561 * 4562 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 4563 * If NULL is returned, then nothing has been allocated or locked. 4564 */ 4565 struct ring_buffer_event * 4566 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 4567 { 4568 struct ring_buffer_per_cpu *cpu_buffer; 4569 struct ring_buffer_event *event; 4570 int cpu; 4571 4572 /* If we are tracing schedule, we don't want to recurse */ 4573 preempt_disable_notrace(); 4574 4575 if (unlikely(atomic_read(&buffer->record_disabled))) 4576 goto out; 4577 4578 cpu = raw_smp_processor_id(); 4579 4580 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 4581 goto out; 4582 4583 cpu_buffer = buffer->buffers[cpu]; 4584 4585 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 4586 goto out; 4587 4588 if (unlikely(length > buffer->max_data_size)) 4589 goto out; 4590 4591 if (unlikely(trace_recursive_lock(cpu_buffer))) 4592 goto out; 4593 4594 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4595 if (!event) 4596 goto out_unlock; 4597 4598 return event; 4599 4600 out_unlock: 4601 trace_recursive_unlock(cpu_buffer); 4602 out: 4603 preempt_enable_notrace(); 4604 return NULL; 4605 } 4606 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 4607 4608 /* 4609 * Decrement the entries to the page that an event is on. 4610 * The event does not even need to exist, only the pointer 4611 * to the page it is on. This may only be called before the commit 4612 * takes place. 4613 */ 4614 static inline void 4615 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 4616 struct ring_buffer_event *event) 4617 { 4618 unsigned long addr = (unsigned long)event; 4619 struct buffer_page *bpage = cpu_buffer->commit_page; 4620 struct buffer_page *start; 4621 4622 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 4623 4624 /* Do the likely case first */ 4625 if (likely(bpage->page == (void *)addr)) { 4626 local_dec(&bpage->entries); 4627 return; 4628 } 4629 4630 /* 4631 * Because the commit page may be on the reader page we 4632 * start with the next page and check the end loop there. 4633 */ 4634 rb_inc_page(&bpage); 4635 start = bpage; 4636 do { 4637 if (bpage->page == (void *)addr) { 4638 local_dec(&bpage->entries); 4639 return; 4640 } 4641 rb_inc_page(&bpage); 4642 } while (bpage != start); 4643 4644 /* commit not part of this buffer?? */ 4645 RB_WARN_ON(cpu_buffer, 1); 4646 } 4647 4648 /** 4649 * ring_buffer_discard_commit - discard an event that has not been committed 4650 * @buffer: the ring buffer 4651 * @event: non committed event to discard 4652 * 4653 * Sometimes an event that is in the ring buffer needs to be ignored. 4654 * This function lets the user discard an event in the ring buffer 4655 * and then that event will not be read later. 4656 * 4657 * This function only works if it is called before the item has been 4658 * committed. It will try to free the event from the ring buffer 4659 * if another event has not been added behind it. 4660 * 4661 * If another event has been added behind it, it will set the event 4662 * up as discarded, and perform the commit. 4663 * 4664 * If this function is called, do not call ring_buffer_unlock_commit on 4665 * the event. 4666 */ 4667 void ring_buffer_discard_commit(struct trace_buffer *buffer, 4668 struct ring_buffer_event *event) 4669 { 4670 struct ring_buffer_per_cpu *cpu_buffer; 4671 int cpu; 4672 4673 /* The event is discarded regardless */ 4674 rb_event_discard(event); 4675 4676 cpu = smp_processor_id(); 4677 cpu_buffer = buffer->buffers[cpu]; 4678 4679 /* 4680 * This must only be called if the event has not been 4681 * committed yet. Thus we can assume that preemption 4682 * is still disabled. 4683 */ 4684 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 4685 4686 rb_decrement_entry(cpu_buffer, event); 4687 if (rb_try_to_discard(cpu_buffer, event)) 4688 goto out; 4689 4690 out: 4691 rb_end_commit(cpu_buffer); 4692 4693 trace_recursive_unlock(cpu_buffer); 4694 4695 preempt_enable_notrace(); 4696 4697 } 4698 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 4699 4700 /** 4701 * ring_buffer_write - write data to the buffer without reserving 4702 * @buffer: The ring buffer to write to. 4703 * @length: The length of the data being written (excluding the event header) 4704 * @data: The data to write to the buffer. 4705 * 4706 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 4707 * one function. If you already have the data to write to the buffer, it 4708 * may be easier to simply call this function. 4709 * 4710 * Note, like ring_buffer_lock_reserve, the length is the length of the data 4711 * and not the length of the event which would hold the header. 4712 */ 4713 int ring_buffer_write(struct trace_buffer *buffer, 4714 unsigned long length, 4715 void *data) 4716 { 4717 struct ring_buffer_per_cpu *cpu_buffer; 4718 struct ring_buffer_event *event; 4719 void *body; 4720 int ret = -EBUSY; 4721 int cpu; 4722 4723 preempt_disable_notrace(); 4724 4725 if (atomic_read(&buffer->record_disabled)) 4726 goto out; 4727 4728 cpu = raw_smp_processor_id(); 4729 4730 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4731 goto out; 4732 4733 cpu_buffer = buffer->buffers[cpu]; 4734 4735 if (atomic_read(&cpu_buffer->record_disabled)) 4736 goto out; 4737 4738 if (length > buffer->max_data_size) 4739 goto out; 4740 4741 if (unlikely(trace_recursive_lock(cpu_buffer))) 4742 goto out; 4743 4744 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4745 if (!event) 4746 goto out_unlock; 4747 4748 body = rb_event_data(event); 4749 4750 memcpy(body, data, length); 4751 4752 rb_commit(cpu_buffer); 4753 4754 rb_wakeups(buffer, cpu_buffer); 4755 4756 ret = 0; 4757 4758 out_unlock: 4759 trace_recursive_unlock(cpu_buffer); 4760 4761 out: 4762 preempt_enable_notrace(); 4763 4764 return ret; 4765 } 4766 EXPORT_SYMBOL_GPL(ring_buffer_write); 4767 4768 /* 4769 * The total entries in the ring buffer is the running counter 4770 * of entries entered into the ring buffer, minus the sum of 4771 * the entries read from the ring buffer and the number of 4772 * entries that were overwritten. 4773 */ 4774 static inline unsigned long 4775 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4776 { 4777 return local_read(&cpu_buffer->entries) - 4778 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4779 } 4780 4781 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 4782 { 4783 return !rb_num_of_entries(cpu_buffer); 4784 } 4785 4786 /** 4787 * ring_buffer_record_disable - stop all writes into the buffer 4788 * @buffer: The ring buffer to stop writes to. 4789 * 4790 * This prevents all writes to the buffer. Any attempt to write 4791 * to the buffer after this will fail and return NULL. 4792 * 4793 * The caller should call synchronize_rcu() after this. 4794 */ 4795 void ring_buffer_record_disable(struct trace_buffer *buffer) 4796 { 4797 atomic_inc(&buffer->record_disabled); 4798 } 4799 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4800 4801 /** 4802 * ring_buffer_record_enable - enable writes to the buffer 4803 * @buffer: The ring buffer to enable writes 4804 * 4805 * Note, multiple disables will need the same number of enables 4806 * to truly enable the writing (much like preempt_disable). 4807 */ 4808 void ring_buffer_record_enable(struct trace_buffer *buffer) 4809 { 4810 atomic_dec(&buffer->record_disabled); 4811 } 4812 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4813 4814 /** 4815 * ring_buffer_record_off - stop all writes into the buffer 4816 * @buffer: The ring buffer to stop writes to. 4817 * 4818 * This prevents all writes to the buffer. Any attempt to write 4819 * to the buffer after this will fail and return NULL. 4820 * 4821 * This is different than ring_buffer_record_disable() as 4822 * it works like an on/off switch, where as the disable() version 4823 * must be paired with a enable(). 4824 */ 4825 void ring_buffer_record_off(struct trace_buffer *buffer) 4826 { 4827 unsigned int rd; 4828 unsigned int new_rd; 4829 4830 rd = atomic_read(&buffer->record_disabled); 4831 do { 4832 new_rd = rd | RB_BUFFER_OFF; 4833 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4834 } 4835 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4836 4837 /** 4838 * ring_buffer_record_on - restart writes into the buffer 4839 * @buffer: The ring buffer to start writes to. 4840 * 4841 * This enables all writes to the buffer that was disabled by 4842 * ring_buffer_record_off(). 4843 * 4844 * This is different than ring_buffer_record_enable() as 4845 * it works like an on/off switch, where as the enable() version 4846 * must be paired with a disable(). 4847 */ 4848 void ring_buffer_record_on(struct trace_buffer *buffer) 4849 { 4850 unsigned int rd; 4851 unsigned int new_rd; 4852 4853 rd = atomic_read(&buffer->record_disabled); 4854 do { 4855 new_rd = rd & ~RB_BUFFER_OFF; 4856 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4857 } 4858 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4859 4860 /** 4861 * ring_buffer_record_is_on - return true if the ring buffer can write 4862 * @buffer: The ring buffer to see if write is enabled 4863 * 4864 * Returns true if the ring buffer is in a state that it accepts writes. 4865 */ 4866 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4867 { 4868 return !atomic_read(&buffer->record_disabled); 4869 } 4870 4871 /** 4872 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4873 * @buffer: The ring buffer to see if write is set enabled 4874 * 4875 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4876 * Note that this does NOT mean it is in a writable state. 4877 * 4878 * It may return true when the ring buffer has been disabled by 4879 * ring_buffer_record_disable(), as that is a temporary disabling of 4880 * the ring buffer. 4881 */ 4882 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4883 { 4884 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4885 } 4886 4887 /** 4888 * ring_buffer_record_is_on_cpu - return true if the ring buffer can write 4889 * @buffer: The ring buffer to see if write is enabled 4890 * @cpu: The CPU to test if the ring buffer can write too 4891 * 4892 * Returns true if the ring buffer is in a state that it accepts writes 4893 * for a particular CPU. 4894 */ 4895 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu) 4896 { 4897 struct ring_buffer_per_cpu *cpu_buffer; 4898 4899 cpu_buffer = buffer->buffers[cpu]; 4900 4901 return ring_buffer_record_is_set_on(buffer) && 4902 !atomic_read(&cpu_buffer->record_disabled); 4903 } 4904 4905 /** 4906 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4907 * @buffer: The ring buffer to stop writes to. 4908 * @cpu: The CPU buffer to stop 4909 * 4910 * This prevents all writes to the buffer. Any attempt to write 4911 * to the buffer after this will fail and return NULL. 4912 * 4913 * The caller should call synchronize_rcu() after this. 4914 */ 4915 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4916 { 4917 struct ring_buffer_per_cpu *cpu_buffer; 4918 4919 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4920 return; 4921 4922 cpu_buffer = buffer->buffers[cpu]; 4923 atomic_inc(&cpu_buffer->record_disabled); 4924 } 4925 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4926 4927 /** 4928 * ring_buffer_record_enable_cpu - enable writes to the buffer 4929 * @buffer: The ring buffer to enable writes 4930 * @cpu: The CPU to enable. 4931 * 4932 * Note, multiple disables will need the same number of enables 4933 * to truly enable the writing (much like preempt_disable). 4934 */ 4935 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4936 { 4937 struct ring_buffer_per_cpu *cpu_buffer; 4938 4939 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4940 return; 4941 4942 cpu_buffer = buffer->buffers[cpu]; 4943 atomic_dec(&cpu_buffer->record_disabled); 4944 } 4945 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4946 4947 /** 4948 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4949 * @buffer: The ring buffer 4950 * @cpu: The per CPU buffer to read from. 4951 */ 4952 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4953 { 4954 unsigned long flags; 4955 struct ring_buffer_per_cpu *cpu_buffer; 4956 struct buffer_page *bpage; 4957 u64 ret = 0; 4958 4959 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4960 return 0; 4961 4962 cpu_buffer = buffer->buffers[cpu]; 4963 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4964 /* 4965 * if the tail is on reader_page, oldest time stamp is on the reader 4966 * page 4967 */ 4968 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4969 bpage = cpu_buffer->reader_page; 4970 else 4971 bpage = rb_set_head_page(cpu_buffer); 4972 if (bpage) 4973 ret = bpage->page->time_stamp; 4974 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4975 4976 return ret; 4977 } 4978 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4979 4980 /** 4981 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4982 * @buffer: The ring buffer 4983 * @cpu: The per CPU buffer to read from. 4984 */ 4985 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4986 { 4987 struct ring_buffer_per_cpu *cpu_buffer; 4988 unsigned long ret; 4989 4990 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4991 return 0; 4992 4993 cpu_buffer = buffer->buffers[cpu]; 4994 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4995 4996 return ret; 4997 } 4998 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4999 5000 /** 5001 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 5002 * @buffer: The ring buffer 5003 * @cpu: The per CPU buffer to get the entries from. 5004 */ 5005 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 5006 { 5007 struct ring_buffer_per_cpu *cpu_buffer; 5008 5009 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5010 return 0; 5011 5012 cpu_buffer = buffer->buffers[cpu]; 5013 5014 return rb_num_of_entries(cpu_buffer); 5015 } 5016 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 5017 5018 /** 5019 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 5020 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 5021 * @buffer: The ring buffer 5022 * @cpu: The per CPU buffer to get the number of overruns from 5023 */ 5024 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 5025 { 5026 struct ring_buffer_per_cpu *cpu_buffer; 5027 unsigned long ret; 5028 5029 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5030 return 0; 5031 5032 cpu_buffer = buffer->buffers[cpu]; 5033 ret = local_read(&cpu_buffer->overrun); 5034 5035 return ret; 5036 } 5037 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 5038 5039 /** 5040 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 5041 * commits failing due to the buffer wrapping around while there are uncommitted 5042 * events, such as during an interrupt storm. 5043 * @buffer: The ring buffer 5044 * @cpu: The per CPU buffer to get the number of overruns from 5045 */ 5046 unsigned long 5047 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 5048 { 5049 struct ring_buffer_per_cpu *cpu_buffer; 5050 unsigned long ret; 5051 5052 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5053 return 0; 5054 5055 cpu_buffer = buffer->buffers[cpu]; 5056 ret = local_read(&cpu_buffer->commit_overrun); 5057 5058 return ret; 5059 } 5060 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 5061 5062 /** 5063 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 5064 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 5065 * @buffer: The ring buffer 5066 * @cpu: The per CPU buffer to get the number of overruns from 5067 */ 5068 unsigned long 5069 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 5070 { 5071 struct ring_buffer_per_cpu *cpu_buffer; 5072 unsigned long ret; 5073 5074 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5075 return 0; 5076 5077 cpu_buffer = buffer->buffers[cpu]; 5078 ret = local_read(&cpu_buffer->dropped_events); 5079 5080 return ret; 5081 } 5082 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 5083 5084 /** 5085 * ring_buffer_read_events_cpu - get the number of events successfully read 5086 * @buffer: The ring buffer 5087 * @cpu: The per CPU buffer to get the number of events read 5088 */ 5089 unsigned long 5090 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 5091 { 5092 struct ring_buffer_per_cpu *cpu_buffer; 5093 5094 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5095 return 0; 5096 5097 cpu_buffer = buffer->buffers[cpu]; 5098 return cpu_buffer->read; 5099 } 5100 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 5101 5102 /** 5103 * ring_buffer_entries - get the number of entries in a buffer 5104 * @buffer: The ring buffer 5105 * 5106 * Returns the total number of entries in the ring buffer 5107 * (all CPU entries) 5108 */ 5109 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 5110 { 5111 struct ring_buffer_per_cpu *cpu_buffer; 5112 unsigned long entries = 0; 5113 int cpu; 5114 5115 /* if you care about this being correct, lock the buffer */ 5116 for_each_buffer_cpu(buffer, cpu) { 5117 cpu_buffer = buffer->buffers[cpu]; 5118 entries += rb_num_of_entries(cpu_buffer); 5119 } 5120 5121 return entries; 5122 } 5123 EXPORT_SYMBOL_GPL(ring_buffer_entries); 5124 5125 /** 5126 * ring_buffer_overruns - get the number of overruns in buffer 5127 * @buffer: The ring buffer 5128 * 5129 * Returns the total number of overruns in the ring buffer 5130 * (all CPU entries) 5131 */ 5132 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 5133 { 5134 struct ring_buffer_per_cpu *cpu_buffer; 5135 unsigned long overruns = 0; 5136 int cpu; 5137 5138 /* if you care about this being correct, lock the buffer */ 5139 for_each_buffer_cpu(buffer, cpu) { 5140 cpu_buffer = buffer->buffers[cpu]; 5141 overruns += local_read(&cpu_buffer->overrun); 5142 } 5143 5144 return overruns; 5145 } 5146 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 5147 5148 static void rb_iter_reset(struct ring_buffer_iter *iter) 5149 { 5150 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5151 5152 /* Iterator usage is expected to have record disabled */ 5153 iter->head_page = cpu_buffer->reader_page; 5154 iter->head = cpu_buffer->reader_page->read; 5155 iter->next_event = iter->head; 5156 5157 iter->cache_reader_page = iter->head_page; 5158 iter->cache_read = cpu_buffer->read; 5159 iter->cache_pages_removed = cpu_buffer->pages_removed; 5160 5161 if (iter->head) { 5162 iter->read_stamp = cpu_buffer->read_stamp; 5163 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 5164 } else { 5165 iter->read_stamp = iter->head_page->page->time_stamp; 5166 iter->page_stamp = iter->read_stamp; 5167 } 5168 } 5169 5170 /** 5171 * ring_buffer_iter_reset - reset an iterator 5172 * @iter: The iterator to reset 5173 * 5174 * Resets the iterator, so that it will start from the beginning 5175 * again. 5176 */ 5177 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 5178 { 5179 struct ring_buffer_per_cpu *cpu_buffer; 5180 unsigned long flags; 5181 5182 if (!iter) 5183 return; 5184 5185 cpu_buffer = iter->cpu_buffer; 5186 5187 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5188 rb_iter_reset(iter); 5189 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5190 } 5191 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 5192 5193 /** 5194 * ring_buffer_iter_empty - check if an iterator has no more to read 5195 * @iter: The iterator to check 5196 */ 5197 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 5198 { 5199 struct ring_buffer_per_cpu *cpu_buffer; 5200 struct buffer_page *reader; 5201 struct buffer_page *head_page; 5202 struct buffer_page *commit_page; 5203 struct buffer_page *curr_commit_page; 5204 unsigned commit; 5205 u64 curr_commit_ts; 5206 u64 commit_ts; 5207 5208 cpu_buffer = iter->cpu_buffer; 5209 reader = cpu_buffer->reader_page; 5210 head_page = cpu_buffer->head_page; 5211 commit_page = READ_ONCE(cpu_buffer->commit_page); 5212 commit_ts = commit_page->page->time_stamp; 5213 5214 /* 5215 * When the writer goes across pages, it issues a cmpxchg which 5216 * is a mb(), which will synchronize with the rmb here. 5217 * (see rb_tail_page_update()) 5218 */ 5219 smp_rmb(); 5220 commit = rb_page_commit(commit_page); 5221 /* We want to make sure that the commit page doesn't change */ 5222 smp_rmb(); 5223 5224 /* Make sure commit page didn't change */ 5225 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 5226 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 5227 5228 /* If the commit page changed, then there's more data */ 5229 if (curr_commit_page != commit_page || 5230 curr_commit_ts != commit_ts) 5231 return 0; 5232 5233 /* Still racy, as it may return a false positive, but that's OK */ 5234 return ((iter->head_page == commit_page && iter->head >= commit) || 5235 (iter->head_page == reader && commit_page == head_page && 5236 head_page->read == commit && 5237 iter->head == rb_page_size(cpu_buffer->reader_page))); 5238 } 5239 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 5240 5241 static void 5242 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 5243 struct ring_buffer_event *event) 5244 { 5245 u64 delta; 5246 5247 switch (event->type_len) { 5248 case RINGBUF_TYPE_PADDING: 5249 return; 5250 5251 case RINGBUF_TYPE_TIME_EXTEND: 5252 delta = rb_event_time_stamp(event); 5253 cpu_buffer->read_stamp += delta; 5254 return; 5255 5256 case RINGBUF_TYPE_TIME_STAMP: 5257 delta = rb_event_time_stamp(event); 5258 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 5259 cpu_buffer->read_stamp = delta; 5260 return; 5261 5262 case RINGBUF_TYPE_DATA: 5263 cpu_buffer->read_stamp += event->time_delta; 5264 return; 5265 5266 default: 5267 RB_WARN_ON(cpu_buffer, 1); 5268 } 5269 } 5270 5271 static void 5272 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 5273 struct ring_buffer_event *event) 5274 { 5275 u64 delta; 5276 5277 switch (event->type_len) { 5278 case RINGBUF_TYPE_PADDING: 5279 return; 5280 5281 case RINGBUF_TYPE_TIME_EXTEND: 5282 delta = rb_event_time_stamp(event); 5283 iter->read_stamp += delta; 5284 return; 5285 5286 case RINGBUF_TYPE_TIME_STAMP: 5287 delta = rb_event_time_stamp(event); 5288 delta = rb_fix_abs_ts(delta, iter->read_stamp); 5289 iter->read_stamp = delta; 5290 return; 5291 5292 case RINGBUF_TYPE_DATA: 5293 iter->read_stamp += event->time_delta; 5294 return; 5295 5296 default: 5297 RB_WARN_ON(iter->cpu_buffer, 1); 5298 } 5299 } 5300 5301 static struct buffer_page * 5302 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 5303 { 5304 struct buffer_page *reader = NULL; 5305 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 5306 unsigned long overwrite; 5307 unsigned long flags; 5308 int nr_loops = 0; 5309 bool ret; 5310 5311 local_irq_save(flags); 5312 arch_spin_lock(&cpu_buffer->lock); 5313 5314 again: 5315 /* 5316 * This should normally only loop twice. But because the 5317 * start of the reader inserts an empty page, it causes 5318 * a case where we will loop three times. There should be no 5319 * reason to loop four times (that I know of). 5320 */ 5321 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 5322 reader = NULL; 5323 goto out; 5324 } 5325 5326 reader = cpu_buffer->reader_page; 5327 5328 /* If there's more to read, return this page */ 5329 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 5330 goto out; 5331 5332 /* Never should we have an index greater than the size */ 5333 if (RB_WARN_ON(cpu_buffer, 5334 cpu_buffer->reader_page->read > rb_page_size(reader))) 5335 goto out; 5336 5337 /* check if we caught up to the tail */ 5338 reader = NULL; 5339 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 5340 goto out; 5341 5342 /* Don't bother swapping if the ring buffer is empty */ 5343 if (rb_num_of_entries(cpu_buffer) == 0) 5344 goto out; 5345 5346 /* 5347 * Reset the reader page to size zero. 5348 */ 5349 local_set(&cpu_buffer->reader_page->write, 0); 5350 local_set(&cpu_buffer->reader_page->entries, 0); 5351 local_set(&cpu_buffer->reader_page->page->commit, 0); 5352 cpu_buffer->reader_page->real_end = 0; 5353 5354 spin: 5355 /* 5356 * Splice the empty reader page into the list around the head. 5357 */ 5358 reader = rb_set_head_page(cpu_buffer); 5359 if (!reader) 5360 goto out; 5361 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 5362 cpu_buffer->reader_page->list.prev = reader->list.prev; 5363 5364 /* 5365 * cpu_buffer->pages just needs to point to the buffer, it 5366 * has no specific buffer page to point to. Lets move it out 5367 * of our way so we don't accidentally swap it. 5368 */ 5369 cpu_buffer->pages = reader->list.prev; 5370 5371 /* The reader page will be pointing to the new head */ 5372 rb_set_list_to_head(&cpu_buffer->reader_page->list); 5373 5374 /* 5375 * We want to make sure we read the overruns after we set up our 5376 * pointers to the next object. The writer side does a 5377 * cmpxchg to cross pages which acts as the mb on the writer 5378 * side. Note, the reader will constantly fail the swap 5379 * while the writer is updating the pointers, so this 5380 * guarantees that the overwrite recorded here is the one we 5381 * want to compare with the last_overrun. 5382 */ 5383 smp_mb(); 5384 overwrite = local_read(&(cpu_buffer->overrun)); 5385 5386 /* 5387 * Here's the tricky part. 5388 * 5389 * We need to move the pointer past the header page. 5390 * But we can only do that if a writer is not currently 5391 * moving it. The page before the header page has the 5392 * flag bit '1' set if it is pointing to the page we want. 5393 * but if the writer is in the process of moving it 5394 * then it will be '2' or already moved '0'. 5395 */ 5396 5397 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 5398 5399 /* 5400 * If we did not convert it, then we must try again. 5401 */ 5402 if (!ret) 5403 goto spin; 5404 5405 if (cpu_buffer->ring_meta) 5406 rb_update_meta_reader(cpu_buffer, reader); 5407 5408 /* 5409 * Yay! We succeeded in replacing the page. 5410 * 5411 * Now make the new head point back to the reader page. 5412 */ 5413 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 5414 rb_inc_page(&cpu_buffer->head_page); 5415 5416 cpu_buffer->cnt++; 5417 local_inc(&cpu_buffer->pages_read); 5418 5419 /* Finally update the reader page to the new head */ 5420 cpu_buffer->reader_page = reader; 5421 cpu_buffer->reader_page->read = 0; 5422 5423 if (overwrite != cpu_buffer->last_overrun) { 5424 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 5425 cpu_buffer->last_overrun = overwrite; 5426 } 5427 5428 goto again; 5429 5430 out: 5431 /* Update the read_stamp on the first event */ 5432 if (reader && reader->read == 0) 5433 cpu_buffer->read_stamp = reader->page->time_stamp; 5434 5435 arch_spin_unlock(&cpu_buffer->lock); 5436 local_irq_restore(flags); 5437 5438 /* 5439 * The writer has preempt disable, wait for it. But not forever 5440 * Although, 1 second is pretty much "forever" 5441 */ 5442 #define USECS_WAIT 1000000 5443 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 5444 /* If the write is past the end of page, a writer is still updating it */ 5445 if (likely(!reader || rb_page_write(reader) <= bsize)) 5446 break; 5447 5448 udelay(1); 5449 5450 /* Get the latest version of the reader write value */ 5451 smp_rmb(); 5452 } 5453 5454 /* The writer is not moving forward? Something is wrong */ 5455 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 5456 reader = NULL; 5457 5458 /* 5459 * Make sure we see any padding after the write update 5460 * (see rb_reset_tail()). 5461 * 5462 * In addition, a writer may be writing on the reader page 5463 * if the page has not been fully filled, so the read barrier 5464 * is also needed to make sure we see the content of what is 5465 * committed by the writer (see rb_set_commit_to_write()). 5466 */ 5467 smp_rmb(); 5468 5469 5470 return reader; 5471 } 5472 5473 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 5474 { 5475 struct ring_buffer_event *event; 5476 struct buffer_page *reader; 5477 unsigned length; 5478 5479 reader = rb_get_reader_page(cpu_buffer); 5480 5481 /* This function should not be called when buffer is empty */ 5482 if (RB_WARN_ON(cpu_buffer, !reader)) 5483 return; 5484 5485 event = rb_reader_event(cpu_buffer); 5486 5487 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 5488 cpu_buffer->read++; 5489 5490 rb_update_read_stamp(cpu_buffer, event); 5491 5492 length = rb_event_length(event); 5493 cpu_buffer->reader_page->read += length; 5494 cpu_buffer->read_bytes += length; 5495 } 5496 5497 static void rb_advance_iter(struct ring_buffer_iter *iter) 5498 { 5499 struct ring_buffer_per_cpu *cpu_buffer; 5500 5501 cpu_buffer = iter->cpu_buffer; 5502 5503 /* If head == next_event then we need to jump to the next event */ 5504 if (iter->head == iter->next_event) { 5505 /* If the event gets overwritten again, there's nothing to do */ 5506 if (rb_iter_head_event(iter) == NULL) 5507 return; 5508 } 5509 5510 iter->head = iter->next_event; 5511 5512 /* 5513 * Check if we are at the end of the buffer. 5514 */ 5515 if (iter->next_event >= rb_page_size(iter->head_page)) { 5516 /* discarded commits can make the page empty */ 5517 if (iter->head_page == cpu_buffer->commit_page) 5518 return; 5519 rb_inc_iter(iter); 5520 return; 5521 } 5522 5523 rb_update_iter_read_stamp(iter, iter->event); 5524 } 5525 5526 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 5527 { 5528 return cpu_buffer->lost_events; 5529 } 5530 5531 static struct ring_buffer_event * 5532 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 5533 unsigned long *lost_events) 5534 { 5535 struct ring_buffer_event *event; 5536 struct buffer_page *reader; 5537 int nr_loops = 0; 5538 5539 if (ts) 5540 *ts = 0; 5541 again: 5542 /* 5543 * We repeat when a time extend is encountered. 5544 * Since the time extend is always attached to a data event, 5545 * we should never loop more than once. 5546 * (We never hit the following condition more than twice). 5547 */ 5548 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 5549 return NULL; 5550 5551 reader = rb_get_reader_page(cpu_buffer); 5552 if (!reader) 5553 return NULL; 5554 5555 event = rb_reader_event(cpu_buffer); 5556 5557 switch (event->type_len) { 5558 case RINGBUF_TYPE_PADDING: 5559 if (rb_null_event(event)) 5560 RB_WARN_ON(cpu_buffer, 1); 5561 /* 5562 * Because the writer could be discarding every 5563 * event it creates (which would probably be bad) 5564 * if we were to go back to "again" then we may never 5565 * catch up, and will trigger the warn on, or lock 5566 * the box. Return the padding, and we will release 5567 * the current locks, and try again. 5568 */ 5569 return event; 5570 5571 case RINGBUF_TYPE_TIME_EXTEND: 5572 /* Internal data, OK to advance */ 5573 rb_advance_reader(cpu_buffer); 5574 goto again; 5575 5576 case RINGBUF_TYPE_TIME_STAMP: 5577 if (ts) { 5578 *ts = rb_event_time_stamp(event); 5579 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 5580 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5581 cpu_buffer->cpu, ts); 5582 } 5583 /* Internal data, OK to advance */ 5584 rb_advance_reader(cpu_buffer); 5585 goto again; 5586 5587 case RINGBUF_TYPE_DATA: 5588 if (ts && !(*ts)) { 5589 *ts = cpu_buffer->read_stamp + event->time_delta; 5590 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5591 cpu_buffer->cpu, ts); 5592 } 5593 if (lost_events) 5594 *lost_events = rb_lost_events(cpu_buffer); 5595 return event; 5596 5597 default: 5598 RB_WARN_ON(cpu_buffer, 1); 5599 } 5600 5601 return NULL; 5602 } 5603 EXPORT_SYMBOL_GPL(ring_buffer_peek); 5604 5605 static struct ring_buffer_event * 5606 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5607 { 5608 struct trace_buffer *buffer; 5609 struct ring_buffer_per_cpu *cpu_buffer; 5610 struct ring_buffer_event *event; 5611 int nr_loops = 0; 5612 5613 if (ts) 5614 *ts = 0; 5615 5616 cpu_buffer = iter->cpu_buffer; 5617 buffer = cpu_buffer->buffer; 5618 5619 /* 5620 * Check if someone performed a consuming read to the buffer 5621 * or removed some pages from the buffer. In these cases, 5622 * iterator was invalidated and we need to reset it. 5623 */ 5624 if (unlikely(iter->cache_read != cpu_buffer->read || 5625 iter->cache_reader_page != cpu_buffer->reader_page || 5626 iter->cache_pages_removed != cpu_buffer->pages_removed)) 5627 rb_iter_reset(iter); 5628 5629 again: 5630 if (ring_buffer_iter_empty(iter)) 5631 return NULL; 5632 5633 /* 5634 * As the writer can mess with what the iterator is trying 5635 * to read, just give up if we fail to get an event after 5636 * three tries. The iterator is not as reliable when reading 5637 * the ring buffer with an active write as the consumer is. 5638 * Do not warn if the three failures is reached. 5639 */ 5640 if (++nr_loops > 3) 5641 return NULL; 5642 5643 if (rb_per_cpu_empty(cpu_buffer)) 5644 return NULL; 5645 5646 if (iter->head >= rb_page_size(iter->head_page)) { 5647 rb_inc_iter(iter); 5648 goto again; 5649 } 5650 5651 event = rb_iter_head_event(iter); 5652 if (!event) 5653 goto again; 5654 5655 switch (event->type_len) { 5656 case RINGBUF_TYPE_PADDING: 5657 if (rb_null_event(event)) { 5658 rb_inc_iter(iter); 5659 goto again; 5660 } 5661 rb_advance_iter(iter); 5662 return event; 5663 5664 case RINGBUF_TYPE_TIME_EXTEND: 5665 /* Internal data, OK to advance */ 5666 rb_advance_iter(iter); 5667 goto again; 5668 5669 case RINGBUF_TYPE_TIME_STAMP: 5670 if (ts) { 5671 *ts = rb_event_time_stamp(event); 5672 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 5673 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5674 cpu_buffer->cpu, ts); 5675 } 5676 /* Internal data, OK to advance */ 5677 rb_advance_iter(iter); 5678 goto again; 5679 5680 case RINGBUF_TYPE_DATA: 5681 if (ts && !(*ts)) { 5682 *ts = iter->read_stamp + event->time_delta; 5683 ring_buffer_normalize_time_stamp(buffer, 5684 cpu_buffer->cpu, ts); 5685 } 5686 return event; 5687 5688 default: 5689 RB_WARN_ON(cpu_buffer, 1); 5690 } 5691 5692 return NULL; 5693 } 5694 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 5695 5696 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 5697 { 5698 if (likely(!in_nmi())) { 5699 raw_spin_lock(&cpu_buffer->reader_lock); 5700 return true; 5701 } 5702 5703 /* 5704 * If an NMI die dumps out the content of the ring buffer 5705 * trylock must be used to prevent a deadlock if the NMI 5706 * preempted a task that holds the ring buffer locks. If 5707 * we get the lock then all is fine, if not, then continue 5708 * to do the read, but this can corrupt the ring buffer, 5709 * so it must be permanently disabled from future writes. 5710 * Reading from NMI is a oneshot deal. 5711 */ 5712 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 5713 return true; 5714 5715 /* Continue without locking, but disable the ring buffer */ 5716 atomic_inc(&cpu_buffer->record_disabled); 5717 return false; 5718 } 5719 5720 static inline void 5721 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 5722 { 5723 if (likely(locked)) 5724 raw_spin_unlock(&cpu_buffer->reader_lock); 5725 } 5726 5727 /** 5728 * ring_buffer_peek - peek at the next event to be read 5729 * @buffer: The ring buffer to read 5730 * @cpu: The cpu to peak at 5731 * @ts: The timestamp counter of this event. 5732 * @lost_events: a variable to store if events were lost (may be NULL) 5733 * 5734 * This will return the event that will be read next, but does 5735 * not consume the data. 5736 */ 5737 struct ring_buffer_event * 5738 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 5739 unsigned long *lost_events) 5740 { 5741 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5742 struct ring_buffer_event *event; 5743 unsigned long flags; 5744 bool dolock; 5745 5746 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5747 return NULL; 5748 5749 again: 5750 local_irq_save(flags); 5751 dolock = rb_reader_lock(cpu_buffer); 5752 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5753 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5754 rb_advance_reader(cpu_buffer); 5755 rb_reader_unlock(cpu_buffer, dolock); 5756 local_irq_restore(flags); 5757 5758 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5759 goto again; 5760 5761 return event; 5762 } 5763 5764 /** ring_buffer_iter_dropped - report if there are dropped events 5765 * @iter: The ring buffer iterator 5766 * 5767 * Returns true if there was dropped events since the last peek. 5768 */ 5769 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5770 { 5771 bool ret = iter->missed_events != 0; 5772 5773 iter->missed_events = 0; 5774 return ret; 5775 } 5776 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5777 5778 /** 5779 * ring_buffer_iter_peek - peek at the next event to be read 5780 * @iter: The ring buffer iterator 5781 * @ts: The timestamp counter of this event. 5782 * 5783 * This will return the event that will be read next, but does 5784 * not increment the iterator. 5785 */ 5786 struct ring_buffer_event * 5787 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5788 { 5789 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5790 struct ring_buffer_event *event; 5791 unsigned long flags; 5792 5793 again: 5794 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5795 event = rb_iter_peek(iter, ts); 5796 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5797 5798 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5799 goto again; 5800 5801 return event; 5802 } 5803 5804 /** 5805 * ring_buffer_consume - return an event and consume it 5806 * @buffer: The ring buffer to get the next event from 5807 * @cpu: the cpu to read the buffer from 5808 * @ts: a variable to store the timestamp (may be NULL) 5809 * @lost_events: a variable to store if events were lost (may be NULL) 5810 * 5811 * Returns the next event in the ring buffer, and that event is consumed. 5812 * Meaning, that sequential reads will keep returning a different event, 5813 * and eventually empty the ring buffer if the producer is slower. 5814 */ 5815 struct ring_buffer_event * 5816 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5817 unsigned long *lost_events) 5818 { 5819 struct ring_buffer_per_cpu *cpu_buffer; 5820 struct ring_buffer_event *event = NULL; 5821 unsigned long flags; 5822 bool dolock; 5823 5824 again: 5825 /* might be called in atomic */ 5826 preempt_disable(); 5827 5828 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5829 goto out; 5830 5831 cpu_buffer = buffer->buffers[cpu]; 5832 local_irq_save(flags); 5833 dolock = rb_reader_lock(cpu_buffer); 5834 5835 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5836 if (event) { 5837 cpu_buffer->lost_events = 0; 5838 rb_advance_reader(cpu_buffer); 5839 } 5840 5841 rb_reader_unlock(cpu_buffer, dolock); 5842 local_irq_restore(flags); 5843 5844 out: 5845 preempt_enable(); 5846 5847 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5848 goto again; 5849 5850 return event; 5851 } 5852 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5853 5854 /** 5855 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5856 * @buffer: The ring buffer to read from 5857 * @cpu: The cpu buffer to iterate over 5858 * @flags: gfp flags to use for memory allocation 5859 * 5860 * This performs the initial preparations necessary to iterate 5861 * through the buffer. Memory is allocated, buffer resizing 5862 * is disabled, and the iterator pointer is returned to the caller. 5863 * 5864 * After a sequence of ring_buffer_read_prepare calls, the user is 5865 * expected to make at least one call to ring_buffer_read_prepare_sync. 5866 * Afterwards, ring_buffer_read_start is invoked to get things going 5867 * for real. 5868 * 5869 * This overall must be paired with ring_buffer_read_finish. 5870 */ 5871 struct ring_buffer_iter * 5872 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5873 { 5874 struct ring_buffer_per_cpu *cpu_buffer; 5875 struct ring_buffer_iter *iter; 5876 5877 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5878 return NULL; 5879 5880 iter = kzalloc(sizeof(*iter), flags); 5881 if (!iter) 5882 return NULL; 5883 5884 /* Holds the entire event: data and meta data */ 5885 iter->event_size = buffer->subbuf_size; 5886 iter->event = kmalloc(iter->event_size, flags); 5887 if (!iter->event) { 5888 kfree(iter); 5889 return NULL; 5890 } 5891 5892 cpu_buffer = buffer->buffers[cpu]; 5893 5894 iter->cpu_buffer = cpu_buffer; 5895 5896 atomic_inc(&cpu_buffer->resize_disabled); 5897 5898 return iter; 5899 } 5900 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5901 5902 /** 5903 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5904 * 5905 * All previously invoked ring_buffer_read_prepare calls to prepare 5906 * iterators will be synchronized. Afterwards, read_buffer_read_start 5907 * calls on those iterators are allowed. 5908 */ 5909 void 5910 ring_buffer_read_prepare_sync(void) 5911 { 5912 synchronize_rcu(); 5913 } 5914 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5915 5916 /** 5917 * ring_buffer_read_start - start a non consuming read of the buffer 5918 * @iter: The iterator returned by ring_buffer_read_prepare 5919 * 5920 * This finalizes the startup of an iteration through the buffer. 5921 * The iterator comes from a call to ring_buffer_read_prepare and 5922 * an intervening ring_buffer_read_prepare_sync must have been 5923 * performed. 5924 * 5925 * Must be paired with ring_buffer_read_finish. 5926 */ 5927 void 5928 ring_buffer_read_start(struct ring_buffer_iter *iter) 5929 { 5930 struct ring_buffer_per_cpu *cpu_buffer; 5931 unsigned long flags; 5932 5933 if (!iter) 5934 return; 5935 5936 cpu_buffer = iter->cpu_buffer; 5937 5938 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5939 arch_spin_lock(&cpu_buffer->lock); 5940 rb_iter_reset(iter); 5941 arch_spin_unlock(&cpu_buffer->lock); 5942 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5943 } 5944 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5945 5946 /** 5947 * ring_buffer_read_finish - finish reading the iterator of the buffer 5948 * @iter: The iterator retrieved by ring_buffer_start 5949 * 5950 * This re-enables resizing of the buffer, and frees the iterator. 5951 */ 5952 void 5953 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5954 { 5955 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5956 5957 /* Use this opportunity to check the integrity of the ring buffer. */ 5958 rb_check_pages(cpu_buffer); 5959 5960 atomic_dec(&cpu_buffer->resize_disabled); 5961 kfree(iter->event); 5962 kfree(iter); 5963 } 5964 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5965 5966 /** 5967 * ring_buffer_iter_advance - advance the iterator to the next location 5968 * @iter: The ring buffer iterator 5969 * 5970 * Move the location of the iterator such that the next read will 5971 * be the next location of the iterator. 5972 */ 5973 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5974 { 5975 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5976 unsigned long flags; 5977 5978 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5979 5980 rb_advance_iter(iter); 5981 5982 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5983 } 5984 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5985 5986 /** 5987 * ring_buffer_size - return the size of the ring buffer (in bytes) 5988 * @buffer: The ring buffer. 5989 * @cpu: The CPU to get ring buffer size from. 5990 */ 5991 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5992 { 5993 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5994 return 0; 5995 5996 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5997 } 5998 EXPORT_SYMBOL_GPL(ring_buffer_size); 5999 6000 /** 6001 * ring_buffer_max_event_size - return the max data size of an event 6002 * @buffer: The ring buffer. 6003 * 6004 * Returns the maximum size an event can be. 6005 */ 6006 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 6007 { 6008 /* If abs timestamp is requested, events have a timestamp too */ 6009 if (ring_buffer_time_stamp_abs(buffer)) 6010 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 6011 return buffer->max_data_size; 6012 } 6013 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 6014 6015 static void rb_clear_buffer_page(struct buffer_page *page) 6016 { 6017 local_set(&page->write, 0); 6018 local_set(&page->entries, 0); 6019 rb_init_page(page->page); 6020 page->read = 0; 6021 } 6022 6023 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6024 { 6025 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6026 6027 if (!meta) 6028 return; 6029 6030 meta->reader.read = cpu_buffer->reader_page->read; 6031 meta->reader.id = cpu_buffer->reader_page->id; 6032 meta->reader.lost_events = cpu_buffer->lost_events; 6033 6034 meta->entries = local_read(&cpu_buffer->entries); 6035 meta->overrun = local_read(&cpu_buffer->overrun); 6036 meta->read = cpu_buffer->read; 6037 6038 /* Some archs do not have data cache coherency between kernel and user-space */ 6039 flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE); 6040 } 6041 6042 static void 6043 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 6044 { 6045 struct buffer_page *page; 6046 6047 rb_head_page_deactivate(cpu_buffer); 6048 6049 cpu_buffer->head_page 6050 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6051 rb_clear_buffer_page(cpu_buffer->head_page); 6052 list_for_each_entry(page, cpu_buffer->pages, list) { 6053 rb_clear_buffer_page(page); 6054 } 6055 6056 cpu_buffer->tail_page = cpu_buffer->head_page; 6057 cpu_buffer->commit_page = cpu_buffer->head_page; 6058 6059 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 6060 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6061 rb_clear_buffer_page(cpu_buffer->reader_page); 6062 6063 local_set(&cpu_buffer->entries_bytes, 0); 6064 local_set(&cpu_buffer->overrun, 0); 6065 local_set(&cpu_buffer->commit_overrun, 0); 6066 local_set(&cpu_buffer->dropped_events, 0); 6067 local_set(&cpu_buffer->entries, 0); 6068 local_set(&cpu_buffer->committing, 0); 6069 local_set(&cpu_buffer->commits, 0); 6070 local_set(&cpu_buffer->pages_touched, 0); 6071 local_set(&cpu_buffer->pages_lost, 0); 6072 local_set(&cpu_buffer->pages_read, 0); 6073 cpu_buffer->last_pages_touch = 0; 6074 cpu_buffer->shortest_full = 0; 6075 cpu_buffer->read = 0; 6076 cpu_buffer->read_bytes = 0; 6077 6078 rb_time_set(&cpu_buffer->write_stamp, 0); 6079 rb_time_set(&cpu_buffer->before_stamp, 0); 6080 6081 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 6082 6083 cpu_buffer->lost_events = 0; 6084 cpu_buffer->last_overrun = 0; 6085 6086 rb_head_page_activate(cpu_buffer); 6087 cpu_buffer->pages_removed = 0; 6088 6089 if (cpu_buffer->mapped) { 6090 rb_update_meta_page(cpu_buffer); 6091 if (cpu_buffer->ring_meta) { 6092 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 6093 meta->commit_buffer = meta->head_buffer; 6094 } 6095 } 6096 } 6097 6098 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 6099 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6100 { 6101 unsigned long flags; 6102 6103 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6104 6105 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 6106 goto out; 6107 6108 arch_spin_lock(&cpu_buffer->lock); 6109 6110 rb_reset_cpu(cpu_buffer); 6111 6112 arch_spin_unlock(&cpu_buffer->lock); 6113 6114 out: 6115 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6116 } 6117 6118 /** 6119 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 6120 * @buffer: The ring buffer to reset a per cpu buffer of 6121 * @cpu: The CPU buffer to be reset 6122 */ 6123 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 6124 { 6125 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6126 6127 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6128 return; 6129 6130 /* prevent another thread from changing buffer sizes */ 6131 mutex_lock(&buffer->mutex); 6132 6133 atomic_inc(&cpu_buffer->resize_disabled); 6134 atomic_inc(&cpu_buffer->record_disabled); 6135 6136 /* Make sure all commits have finished */ 6137 synchronize_rcu(); 6138 6139 reset_disabled_cpu_buffer(cpu_buffer); 6140 6141 atomic_dec(&cpu_buffer->record_disabled); 6142 atomic_dec(&cpu_buffer->resize_disabled); 6143 6144 mutex_unlock(&buffer->mutex); 6145 } 6146 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 6147 6148 /* Flag to ensure proper resetting of atomic variables */ 6149 #define RESET_BIT (1 << 30) 6150 6151 /** 6152 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 6153 * @buffer: The ring buffer to reset a per cpu buffer of 6154 */ 6155 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 6156 { 6157 struct ring_buffer_per_cpu *cpu_buffer; 6158 int cpu; 6159 6160 /* prevent another thread from changing buffer sizes */ 6161 mutex_lock(&buffer->mutex); 6162 6163 for_each_online_buffer_cpu(buffer, cpu) { 6164 cpu_buffer = buffer->buffers[cpu]; 6165 6166 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 6167 atomic_inc(&cpu_buffer->record_disabled); 6168 } 6169 6170 /* Make sure all commits have finished */ 6171 synchronize_rcu(); 6172 6173 for_each_buffer_cpu(buffer, cpu) { 6174 cpu_buffer = buffer->buffers[cpu]; 6175 6176 /* 6177 * If a CPU came online during the synchronize_rcu(), then 6178 * ignore it. 6179 */ 6180 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 6181 continue; 6182 6183 reset_disabled_cpu_buffer(cpu_buffer); 6184 6185 atomic_dec(&cpu_buffer->record_disabled); 6186 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 6187 } 6188 6189 mutex_unlock(&buffer->mutex); 6190 } 6191 6192 /** 6193 * ring_buffer_reset - reset a ring buffer 6194 * @buffer: The ring buffer to reset all cpu buffers 6195 */ 6196 void ring_buffer_reset(struct trace_buffer *buffer) 6197 { 6198 struct ring_buffer_per_cpu *cpu_buffer; 6199 int cpu; 6200 6201 /* prevent another thread from changing buffer sizes */ 6202 mutex_lock(&buffer->mutex); 6203 6204 for_each_buffer_cpu(buffer, cpu) { 6205 cpu_buffer = buffer->buffers[cpu]; 6206 6207 atomic_inc(&cpu_buffer->resize_disabled); 6208 atomic_inc(&cpu_buffer->record_disabled); 6209 } 6210 6211 /* Make sure all commits have finished */ 6212 synchronize_rcu(); 6213 6214 for_each_buffer_cpu(buffer, cpu) { 6215 cpu_buffer = buffer->buffers[cpu]; 6216 6217 reset_disabled_cpu_buffer(cpu_buffer); 6218 6219 atomic_dec(&cpu_buffer->record_disabled); 6220 atomic_dec(&cpu_buffer->resize_disabled); 6221 } 6222 6223 mutex_unlock(&buffer->mutex); 6224 } 6225 EXPORT_SYMBOL_GPL(ring_buffer_reset); 6226 6227 /** 6228 * ring_buffer_empty - is the ring buffer empty? 6229 * @buffer: The ring buffer to test 6230 */ 6231 bool ring_buffer_empty(struct trace_buffer *buffer) 6232 { 6233 struct ring_buffer_per_cpu *cpu_buffer; 6234 unsigned long flags; 6235 bool dolock; 6236 bool ret; 6237 int cpu; 6238 6239 /* yes this is racy, but if you don't like the race, lock the buffer */ 6240 for_each_buffer_cpu(buffer, cpu) { 6241 cpu_buffer = buffer->buffers[cpu]; 6242 local_irq_save(flags); 6243 dolock = rb_reader_lock(cpu_buffer); 6244 ret = rb_per_cpu_empty(cpu_buffer); 6245 rb_reader_unlock(cpu_buffer, dolock); 6246 local_irq_restore(flags); 6247 6248 if (!ret) 6249 return false; 6250 } 6251 6252 return true; 6253 } 6254 EXPORT_SYMBOL_GPL(ring_buffer_empty); 6255 6256 /** 6257 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 6258 * @buffer: The ring buffer 6259 * @cpu: The CPU buffer to test 6260 */ 6261 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 6262 { 6263 struct ring_buffer_per_cpu *cpu_buffer; 6264 unsigned long flags; 6265 bool dolock; 6266 bool ret; 6267 6268 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6269 return true; 6270 6271 cpu_buffer = buffer->buffers[cpu]; 6272 local_irq_save(flags); 6273 dolock = rb_reader_lock(cpu_buffer); 6274 ret = rb_per_cpu_empty(cpu_buffer); 6275 rb_reader_unlock(cpu_buffer, dolock); 6276 local_irq_restore(flags); 6277 6278 return ret; 6279 } 6280 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 6281 6282 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 6283 /** 6284 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 6285 * @buffer_a: One buffer to swap with 6286 * @buffer_b: The other buffer to swap with 6287 * @cpu: the CPU of the buffers to swap 6288 * 6289 * This function is useful for tracers that want to take a "snapshot" 6290 * of a CPU buffer and has another back up buffer lying around. 6291 * it is expected that the tracer handles the cpu buffer not being 6292 * used at the moment. 6293 */ 6294 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 6295 struct trace_buffer *buffer_b, int cpu) 6296 { 6297 struct ring_buffer_per_cpu *cpu_buffer_a; 6298 struct ring_buffer_per_cpu *cpu_buffer_b; 6299 int ret = -EINVAL; 6300 6301 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 6302 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 6303 goto out; 6304 6305 cpu_buffer_a = buffer_a->buffers[cpu]; 6306 cpu_buffer_b = buffer_b->buffers[cpu]; 6307 6308 /* It's up to the callers to not try to swap mapped buffers */ 6309 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { 6310 ret = -EBUSY; 6311 goto out; 6312 } 6313 6314 /* At least make sure the two buffers are somewhat the same */ 6315 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 6316 goto out; 6317 6318 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 6319 goto out; 6320 6321 ret = -EAGAIN; 6322 6323 if (atomic_read(&buffer_a->record_disabled)) 6324 goto out; 6325 6326 if (atomic_read(&buffer_b->record_disabled)) 6327 goto out; 6328 6329 if (atomic_read(&cpu_buffer_a->record_disabled)) 6330 goto out; 6331 6332 if (atomic_read(&cpu_buffer_b->record_disabled)) 6333 goto out; 6334 6335 /* 6336 * We can't do a synchronize_rcu here because this 6337 * function can be called in atomic context. 6338 * Normally this will be called from the same CPU as cpu. 6339 * If not it's up to the caller to protect this. 6340 */ 6341 atomic_inc(&cpu_buffer_a->record_disabled); 6342 atomic_inc(&cpu_buffer_b->record_disabled); 6343 6344 ret = -EBUSY; 6345 if (local_read(&cpu_buffer_a->committing)) 6346 goto out_dec; 6347 if (local_read(&cpu_buffer_b->committing)) 6348 goto out_dec; 6349 6350 /* 6351 * When resize is in progress, we cannot swap it because 6352 * it will mess the state of the cpu buffer. 6353 */ 6354 if (atomic_read(&buffer_a->resizing)) 6355 goto out_dec; 6356 if (atomic_read(&buffer_b->resizing)) 6357 goto out_dec; 6358 6359 buffer_a->buffers[cpu] = cpu_buffer_b; 6360 buffer_b->buffers[cpu] = cpu_buffer_a; 6361 6362 cpu_buffer_b->buffer = buffer_a; 6363 cpu_buffer_a->buffer = buffer_b; 6364 6365 ret = 0; 6366 6367 out_dec: 6368 atomic_dec(&cpu_buffer_a->record_disabled); 6369 atomic_dec(&cpu_buffer_b->record_disabled); 6370 out: 6371 return ret; 6372 } 6373 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 6374 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 6375 6376 /** 6377 * ring_buffer_alloc_read_page - allocate a page to read from buffer 6378 * @buffer: the buffer to allocate for. 6379 * @cpu: the cpu buffer to allocate. 6380 * 6381 * This function is used in conjunction with ring_buffer_read_page. 6382 * When reading a full page from the ring buffer, these functions 6383 * can be used to speed up the process. The calling function should 6384 * allocate a few pages first with this function. Then when it 6385 * needs to get pages from the ring buffer, it passes the result 6386 * of this function into ring_buffer_read_page, which will swap 6387 * the page that was allocated, with the read page of the buffer. 6388 * 6389 * Returns: 6390 * The page allocated, or ERR_PTR 6391 */ 6392 struct buffer_data_read_page * 6393 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 6394 { 6395 struct ring_buffer_per_cpu *cpu_buffer; 6396 struct buffer_data_read_page *bpage = NULL; 6397 unsigned long flags; 6398 struct page *page; 6399 6400 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6401 return ERR_PTR(-ENODEV); 6402 6403 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 6404 if (!bpage) 6405 return ERR_PTR(-ENOMEM); 6406 6407 bpage->order = buffer->subbuf_order; 6408 cpu_buffer = buffer->buffers[cpu]; 6409 local_irq_save(flags); 6410 arch_spin_lock(&cpu_buffer->lock); 6411 6412 if (cpu_buffer->free_page) { 6413 bpage->data = cpu_buffer->free_page; 6414 cpu_buffer->free_page = NULL; 6415 } 6416 6417 arch_spin_unlock(&cpu_buffer->lock); 6418 local_irq_restore(flags); 6419 6420 if (bpage->data) 6421 goto out; 6422 6423 page = alloc_pages_node(cpu_to_node(cpu), 6424 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, 6425 cpu_buffer->buffer->subbuf_order); 6426 if (!page) { 6427 kfree(bpage); 6428 return ERR_PTR(-ENOMEM); 6429 } 6430 6431 bpage->data = page_address(page); 6432 6433 out: 6434 rb_init_page(bpage->data); 6435 6436 return bpage; 6437 } 6438 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 6439 6440 /** 6441 * ring_buffer_free_read_page - free an allocated read page 6442 * @buffer: the buffer the page was allocate for 6443 * @cpu: the cpu buffer the page came from 6444 * @data_page: the page to free 6445 * 6446 * Free a page allocated from ring_buffer_alloc_read_page. 6447 */ 6448 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 6449 struct buffer_data_read_page *data_page) 6450 { 6451 struct ring_buffer_per_cpu *cpu_buffer; 6452 struct buffer_data_page *bpage = data_page->data; 6453 struct page *page = virt_to_page(bpage); 6454 unsigned long flags; 6455 6456 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 6457 return; 6458 6459 cpu_buffer = buffer->buffers[cpu]; 6460 6461 /* 6462 * If the page is still in use someplace else, or order of the page 6463 * is different from the subbuffer order of the buffer - 6464 * we can't reuse it 6465 */ 6466 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 6467 goto out; 6468 6469 local_irq_save(flags); 6470 arch_spin_lock(&cpu_buffer->lock); 6471 6472 if (!cpu_buffer->free_page) { 6473 cpu_buffer->free_page = bpage; 6474 bpage = NULL; 6475 } 6476 6477 arch_spin_unlock(&cpu_buffer->lock); 6478 local_irq_restore(flags); 6479 6480 out: 6481 free_pages((unsigned long)bpage, data_page->order); 6482 kfree(data_page); 6483 } 6484 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 6485 6486 /** 6487 * ring_buffer_read_page - extract a page from the ring buffer 6488 * @buffer: buffer to extract from 6489 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 6490 * @len: amount to extract 6491 * @cpu: the cpu of the buffer to extract 6492 * @full: should the extraction only happen when the page is full. 6493 * 6494 * This function will pull out a page from the ring buffer and consume it. 6495 * @data_page must be the address of the variable that was returned 6496 * from ring_buffer_alloc_read_page. This is because the page might be used 6497 * to swap with a page in the ring buffer. 6498 * 6499 * for example: 6500 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 6501 * if (IS_ERR(rpage)) 6502 * return PTR_ERR(rpage); 6503 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 6504 * if (ret >= 0) 6505 * process_page(ring_buffer_read_page_data(rpage), ret); 6506 * ring_buffer_free_read_page(buffer, cpu, rpage); 6507 * 6508 * When @full is set, the function will not return true unless 6509 * the writer is off the reader page. 6510 * 6511 * Note: it is up to the calling functions to handle sleeps and wakeups. 6512 * The ring buffer can be used anywhere in the kernel and can not 6513 * blindly call wake_up. The layer that uses the ring buffer must be 6514 * responsible for that. 6515 * 6516 * Returns: 6517 * >=0 if data has been transferred, returns the offset of consumed data. 6518 * <0 if no data has been transferred. 6519 */ 6520 int ring_buffer_read_page(struct trace_buffer *buffer, 6521 struct buffer_data_read_page *data_page, 6522 size_t len, int cpu, int full) 6523 { 6524 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6525 struct ring_buffer_event *event; 6526 struct buffer_data_page *bpage; 6527 struct buffer_page *reader; 6528 unsigned long missed_events; 6529 unsigned long flags; 6530 unsigned int commit; 6531 unsigned int read; 6532 u64 save_timestamp; 6533 int ret = -1; 6534 6535 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6536 goto out; 6537 6538 /* 6539 * If len is not big enough to hold the page header, then 6540 * we can not copy anything. 6541 */ 6542 if (len <= BUF_PAGE_HDR_SIZE) 6543 goto out; 6544 6545 len -= BUF_PAGE_HDR_SIZE; 6546 6547 if (!data_page || !data_page->data) 6548 goto out; 6549 if (data_page->order != buffer->subbuf_order) 6550 goto out; 6551 6552 bpage = data_page->data; 6553 if (!bpage) 6554 goto out; 6555 6556 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6557 6558 reader = rb_get_reader_page(cpu_buffer); 6559 if (!reader) 6560 goto out_unlock; 6561 6562 event = rb_reader_event(cpu_buffer); 6563 6564 read = reader->read; 6565 commit = rb_page_size(reader); 6566 6567 /* Check if any events were dropped */ 6568 missed_events = cpu_buffer->lost_events; 6569 6570 /* 6571 * If this page has been partially read or 6572 * if len is not big enough to read the rest of the page or 6573 * a writer is still on the page, then 6574 * we must copy the data from the page to the buffer. 6575 * Otherwise, we can simply swap the page with the one passed in. 6576 */ 6577 if (read || (len < (commit - read)) || 6578 cpu_buffer->reader_page == cpu_buffer->commit_page || 6579 cpu_buffer->mapped) { 6580 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 6581 unsigned int rpos = read; 6582 unsigned int pos = 0; 6583 unsigned int size; 6584 6585 /* 6586 * If a full page is expected, this can still be returned 6587 * if there's been a previous partial read and the 6588 * rest of the page can be read and the commit page is off 6589 * the reader page. 6590 */ 6591 if (full && 6592 (!read || (len < (commit - read)) || 6593 cpu_buffer->reader_page == cpu_buffer->commit_page)) 6594 goto out_unlock; 6595 6596 if (len > (commit - read)) 6597 len = (commit - read); 6598 6599 /* Always keep the time extend and data together */ 6600 size = rb_event_ts_length(event); 6601 6602 if (len < size) 6603 goto out_unlock; 6604 6605 /* save the current timestamp, since the user will need it */ 6606 save_timestamp = cpu_buffer->read_stamp; 6607 6608 /* Need to copy one event at a time */ 6609 do { 6610 /* We need the size of one event, because 6611 * rb_advance_reader only advances by one event, 6612 * whereas rb_event_ts_length may include the size of 6613 * one or two events. 6614 * We have already ensured there's enough space if this 6615 * is a time extend. */ 6616 size = rb_event_length(event); 6617 memcpy(bpage->data + pos, rpage->data + rpos, size); 6618 6619 len -= size; 6620 6621 rb_advance_reader(cpu_buffer); 6622 rpos = reader->read; 6623 pos += size; 6624 6625 if (rpos >= commit) 6626 break; 6627 6628 event = rb_reader_event(cpu_buffer); 6629 /* Always keep the time extend and data together */ 6630 size = rb_event_ts_length(event); 6631 } while (len >= size); 6632 6633 /* update bpage */ 6634 local_set(&bpage->commit, pos); 6635 bpage->time_stamp = save_timestamp; 6636 6637 /* we copied everything to the beginning */ 6638 read = 0; 6639 } else { 6640 /* update the entry counter */ 6641 cpu_buffer->read += rb_page_entries(reader); 6642 cpu_buffer->read_bytes += rb_page_size(reader); 6643 6644 /* swap the pages */ 6645 rb_init_page(bpage); 6646 bpage = reader->page; 6647 reader->page = data_page->data; 6648 local_set(&reader->write, 0); 6649 local_set(&reader->entries, 0); 6650 reader->read = 0; 6651 data_page->data = bpage; 6652 6653 /* 6654 * Use the real_end for the data size, 6655 * This gives us a chance to store the lost events 6656 * on the page. 6657 */ 6658 if (reader->real_end) 6659 local_set(&bpage->commit, reader->real_end); 6660 } 6661 ret = read; 6662 6663 cpu_buffer->lost_events = 0; 6664 6665 commit = local_read(&bpage->commit); 6666 /* 6667 * Set a flag in the commit field if we lost events 6668 */ 6669 if (missed_events) { 6670 /* If there is room at the end of the page to save the 6671 * missed events, then record it there. 6672 */ 6673 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 6674 memcpy(&bpage->data[commit], &missed_events, 6675 sizeof(missed_events)); 6676 local_add(RB_MISSED_STORED, &bpage->commit); 6677 commit += sizeof(missed_events); 6678 } 6679 local_add(RB_MISSED_EVENTS, &bpage->commit); 6680 } 6681 6682 /* 6683 * This page may be off to user land. Zero it out here. 6684 */ 6685 if (commit < buffer->subbuf_size) 6686 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 6687 6688 out_unlock: 6689 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6690 6691 out: 6692 return ret; 6693 } 6694 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 6695 6696 /** 6697 * ring_buffer_read_page_data - get pointer to the data in the page. 6698 * @page: the page to get the data from 6699 * 6700 * Returns pointer to the actual data in this page. 6701 */ 6702 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 6703 { 6704 return page->data; 6705 } 6706 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 6707 6708 /** 6709 * ring_buffer_subbuf_size_get - get size of the sub buffer. 6710 * @buffer: the buffer to get the sub buffer size from 6711 * 6712 * Returns size of the sub buffer, in bytes. 6713 */ 6714 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 6715 { 6716 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6717 } 6718 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 6719 6720 /** 6721 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 6722 * @buffer: The ring_buffer to get the system sub page order from 6723 * 6724 * By default, one ring buffer sub page equals to one system page. This parameter 6725 * is configurable, per ring buffer. The size of the ring buffer sub page can be 6726 * extended, but must be an order of system page size. 6727 * 6728 * Returns the order of buffer sub page size, in system pages: 6729 * 0 means the sub buffer size is 1 system page and so forth. 6730 * In case of an error < 0 is returned. 6731 */ 6732 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 6733 { 6734 if (!buffer) 6735 return -EINVAL; 6736 6737 return buffer->subbuf_order; 6738 } 6739 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 6740 6741 /** 6742 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 6743 * @buffer: The ring_buffer to set the new page size. 6744 * @order: Order of the system pages in one sub buffer page 6745 * 6746 * By default, one ring buffer pages equals to one system page. This API can be 6747 * used to set new size of the ring buffer page. The size must be order of 6748 * system page size, that's why the input parameter @order is the order of 6749 * system pages that are allocated for one ring buffer page: 6750 * 0 - 1 system page 6751 * 1 - 2 system pages 6752 * 3 - 4 system pages 6753 * ... 6754 * 6755 * Returns 0 on success or < 0 in case of an error. 6756 */ 6757 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 6758 { 6759 struct ring_buffer_per_cpu *cpu_buffer; 6760 struct buffer_page *bpage, *tmp; 6761 int old_order, old_size; 6762 int nr_pages; 6763 int psize; 6764 int err; 6765 int cpu; 6766 6767 if (!buffer || order < 0) 6768 return -EINVAL; 6769 6770 if (buffer->subbuf_order == order) 6771 return 0; 6772 6773 psize = (1 << order) * PAGE_SIZE; 6774 if (psize <= BUF_PAGE_HDR_SIZE) 6775 return -EINVAL; 6776 6777 /* Size of a subbuf cannot be greater than the write counter */ 6778 if (psize > RB_WRITE_MASK + 1) 6779 return -EINVAL; 6780 6781 old_order = buffer->subbuf_order; 6782 old_size = buffer->subbuf_size; 6783 6784 /* prevent another thread from changing buffer sizes */ 6785 mutex_lock(&buffer->mutex); 6786 atomic_inc(&buffer->record_disabled); 6787 6788 /* Make sure all commits have finished */ 6789 synchronize_rcu(); 6790 6791 buffer->subbuf_order = order; 6792 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 6793 6794 /* Make sure all new buffers are allocated, before deleting the old ones */ 6795 for_each_buffer_cpu(buffer, cpu) { 6796 6797 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6798 continue; 6799 6800 cpu_buffer = buffer->buffers[cpu]; 6801 6802 if (cpu_buffer->mapped) { 6803 err = -EBUSY; 6804 goto error; 6805 } 6806 6807 /* Update the number of pages to match the new size */ 6808 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 6809 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 6810 6811 /* we need a minimum of two pages */ 6812 if (nr_pages < 2) 6813 nr_pages = 2; 6814 6815 cpu_buffer->nr_pages_to_update = nr_pages; 6816 6817 /* Include the reader page */ 6818 nr_pages++; 6819 6820 /* Allocate the new size buffer */ 6821 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6822 if (__rb_allocate_pages(cpu_buffer, nr_pages, 6823 &cpu_buffer->new_pages)) { 6824 /* not enough memory for new pages */ 6825 err = -ENOMEM; 6826 goto error; 6827 } 6828 } 6829 6830 for_each_buffer_cpu(buffer, cpu) { 6831 struct buffer_data_page *old_free_data_page; 6832 struct list_head old_pages; 6833 unsigned long flags; 6834 6835 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6836 continue; 6837 6838 cpu_buffer = buffer->buffers[cpu]; 6839 6840 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6841 6842 /* Clear the head bit to make the link list normal to read */ 6843 rb_head_page_deactivate(cpu_buffer); 6844 6845 /* 6846 * Collect buffers from the cpu_buffer pages list and the 6847 * reader_page on old_pages, so they can be freed later when not 6848 * under a spinlock. The pages list is a linked list with no 6849 * head, adding old_pages turns it into a regular list with 6850 * old_pages being the head. 6851 */ 6852 list_add(&old_pages, cpu_buffer->pages); 6853 list_add(&cpu_buffer->reader_page->list, &old_pages); 6854 6855 /* One page was allocated for the reader page */ 6856 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6857 struct buffer_page, list); 6858 list_del_init(&cpu_buffer->reader_page->list); 6859 6860 /* Install the new pages, remove the head from the list */ 6861 cpu_buffer->pages = cpu_buffer->new_pages.next; 6862 list_del_init(&cpu_buffer->new_pages); 6863 cpu_buffer->cnt++; 6864 6865 cpu_buffer->head_page 6866 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6867 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6868 6869 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6870 cpu_buffer->nr_pages_to_update = 0; 6871 6872 old_free_data_page = cpu_buffer->free_page; 6873 cpu_buffer->free_page = NULL; 6874 6875 rb_head_page_activate(cpu_buffer); 6876 6877 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6878 6879 /* Free old sub buffers */ 6880 list_for_each_entry_safe(bpage, tmp, &old_pages, list) { 6881 list_del_init(&bpage->list); 6882 free_buffer_page(bpage); 6883 } 6884 free_pages((unsigned long)old_free_data_page, old_order); 6885 6886 rb_check_pages(cpu_buffer); 6887 } 6888 6889 atomic_dec(&buffer->record_disabled); 6890 mutex_unlock(&buffer->mutex); 6891 6892 return 0; 6893 6894 error: 6895 buffer->subbuf_order = old_order; 6896 buffer->subbuf_size = old_size; 6897 6898 atomic_dec(&buffer->record_disabled); 6899 mutex_unlock(&buffer->mutex); 6900 6901 for_each_buffer_cpu(buffer, cpu) { 6902 cpu_buffer = buffer->buffers[cpu]; 6903 6904 if (!cpu_buffer->nr_pages_to_update) 6905 continue; 6906 6907 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6908 list_del_init(&bpage->list); 6909 free_buffer_page(bpage); 6910 } 6911 } 6912 6913 return err; 6914 } 6915 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6916 6917 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6918 { 6919 struct page *page; 6920 6921 if (cpu_buffer->meta_page) 6922 return 0; 6923 6924 page = alloc_page(GFP_USER | __GFP_ZERO); 6925 if (!page) 6926 return -ENOMEM; 6927 6928 cpu_buffer->meta_page = page_to_virt(page); 6929 6930 return 0; 6931 } 6932 6933 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6934 { 6935 unsigned long addr = (unsigned long)cpu_buffer->meta_page; 6936 6937 free_page(addr); 6938 cpu_buffer->meta_page = NULL; 6939 } 6940 6941 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, 6942 unsigned long *subbuf_ids) 6943 { 6944 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6945 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; 6946 struct buffer_page *first_subbuf, *subbuf; 6947 int id = 0; 6948 6949 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; 6950 cpu_buffer->reader_page->id = id++; 6951 6952 first_subbuf = subbuf = rb_set_head_page(cpu_buffer); 6953 do { 6954 if (WARN_ON(id >= nr_subbufs)) 6955 break; 6956 6957 subbuf_ids[id] = (unsigned long)subbuf->page; 6958 subbuf->id = id; 6959 6960 rb_inc_page(&subbuf); 6961 id++; 6962 } while (subbuf != first_subbuf); 6963 6964 /* install subbuf ID to kern VA translation */ 6965 cpu_buffer->subbuf_ids = subbuf_ids; 6966 6967 meta->meta_struct_len = sizeof(*meta); 6968 meta->nr_subbufs = nr_subbufs; 6969 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6970 meta->meta_page_size = meta->subbuf_size; 6971 6972 rb_update_meta_page(cpu_buffer); 6973 } 6974 6975 static struct ring_buffer_per_cpu * 6976 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) 6977 { 6978 struct ring_buffer_per_cpu *cpu_buffer; 6979 6980 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6981 return ERR_PTR(-EINVAL); 6982 6983 cpu_buffer = buffer->buffers[cpu]; 6984 6985 mutex_lock(&cpu_buffer->mapping_lock); 6986 6987 if (!cpu_buffer->user_mapped) { 6988 mutex_unlock(&cpu_buffer->mapping_lock); 6989 return ERR_PTR(-ENODEV); 6990 } 6991 6992 return cpu_buffer; 6993 } 6994 6995 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6996 { 6997 mutex_unlock(&cpu_buffer->mapping_lock); 6998 } 6999 7000 /* 7001 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need 7002 * to be set-up or torn-down. 7003 */ 7004 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, 7005 bool inc) 7006 { 7007 unsigned long flags; 7008 7009 lockdep_assert_held(&cpu_buffer->mapping_lock); 7010 7011 /* mapped is always greater or equal to user_mapped */ 7012 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7013 return -EINVAL; 7014 7015 if (inc && cpu_buffer->mapped == UINT_MAX) 7016 return -EBUSY; 7017 7018 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0)) 7019 return -EINVAL; 7020 7021 mutex_lock(&cpu_buffer->buffer->mutex); 7022 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7023 7024 if (inc) { 7025 cpu_buffer->user_mapped++; 7026 cpu_buffer->mapped++; 7027 } else { 7028 cpu_buffer->user_mapped--; 7029 cpu_buffer->mapped--; 7030 } 7031 7032 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7033 mutex_unlock(&cpu_buffer->buffer->mutex); 7034 7035 return 0; 7036 } 7037 7038 /* 7039 * +--------------+ pgoff == 0 7040 * | meta page | 7041 * +--------------+ pgoff == 1 7042 * | subbuffer 0 | 7043 * | | 7044 * +--------------+ pgoff == (1 + (1 << subbuf_order)) 7045 * | subbuffer 1 | 7046 * | | 7047 * ... 7048 */ 7049 #ifdef CONFIG_MMU 7050 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7051 struct vm_area_struct *vma) 7052 { 7053 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff; 7054 unsigned int subbuf_pages, subbuf_order; 7055 struct page **pages; 7056 int p = 0, s = 0; 7057 int err; 7058 7059 /* Refuse MP_PRIVATE or writable mappings */ 7060 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || 7061 !(vma->vm_flags & VM_MAYSHARE)) 7062 return -EPERM; 7063 7064 subbuf_order = cpu_buffer->buffer->subbuf_order; 7065 subbuf_pages = 1 << subbuf_order; 7066 7067 if (subbuf_order && pgoff % subbuf_pages) 7068 return -EINVAL; 7069 7070 /* 7071 * Make sure the mapping cannot become writable later. Also tell the VM 7072 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). 7073 */ 7074 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, 7075 VM_MAYWRITE); 7076 7077 lockdep_assert_held(&cpu_buffer->mapping_lock); 7078 7079 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ 7080 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */ 7081 if (nr_pages <= pgoff) 7082 return -EINVAL; 7083 7084 nr_pages -= pgoff; 7085 7086 nr_vma_pages = vma_pages(vma); 7087 if (!nr_vma_pages || nr_vma_pages > nr_pages) 7088 return -EINVAL; 7089 7090 nr_pages = nr_vma_pages; 7091 7092 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); 7093 if (!pages) 7094 return -ENOMEM; 7095 7096 if (!pgoff) { 7097 unsigned long meta_page_padding; 7098 7099 pages[p++] = virt_to_page(cpu_buffer->meta_page); 7100 7101 /* 7102 * Pad with the zero-page to align the meta-page with the 7103 * sub-buffers. 7104 */ 7105 meta_page_padding = subbuf_pages - 1; 7106 while (meta_page_padding-- && p < nr_pages) { 7107 unsigned long __maybe_unused zero_addr = 7108 vma->vm_start + (PAGE_SIZE * p); 7109 7110 pages[p++] = ZERO_PAGE(zero_addr); 7111 } 7112 } else { 7113 /* Skip the meta-page */ 7114 pgoff -= subbuf_pages; 7115 7116 s += pgoff / subbuf_pages; 7117 } 7118 7119 while (p < nr_pages) { 7120 struct page *page; 7121 int off = 0; 7122 7123 if (WARN_ON_ONCE(s >= nr_subbufs)) { 7124 err = -EINVAL; 7125 goto out; 7126 } 7127 7128 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); 7129 7130 for (; off < (1 << (subbuf_order)); off++, page++) { 7131 if (p >= nr_pages) 7132 break; 7133 7134 pages[p++] = page; 7135 } 7136 s++; 7137 } 7138 7139 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); 7140 7141 out: 7142 kfree(pages); 7143 7144 return err; 7145 } 7146 #else 7147 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7148 struct vm_area_struct *vma) 7149 { 7150 return -EOPNOTSUPP; 7151 } 7152 #endif 7153 7154 int ring_buffer_map(struct trace_buffer *buffer, int cpu, 7155 struct vm_area_struct *vma) 7156 { 7157 struct ring_buffer_per_cpu *cpu_buffer; 7158 unsigned long flags, *subbuf_ids; 7159 int err = 0; 7160 7161 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7162 return -EINVAL; 7163 7164 cpu_buffer = buffer->buffers[cpu]; 7165 7166 mutex_lock(&cpu_buffer->mapping_lock); 7167 7168 if (cpu_buffer->user_mapped) { 7169 err = __rb_map_vma(cpu_buffer, vma); 7170 if (!err) 7171 err = __rb_inc_dec_mapped(cpu_buffer, true); 7172 mutex_unlock(&cpu_buffer->mapping_lock); 7173 return err; 7174 } 7175 7176 /* prevent another thread from changing buffer/sub-buffer sizes */ 7177 mutex_lock(&buffer->mutex); 7178 7179 err = rb_alloc_meta_page(cpu_buffer); 7180 if (err) 7181 goto unlock; 7182 7183 /* subbuf_ids include the reader while nr_pages does not */ 7184 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); 7185 if (!subbuf_ids) { 7186 rb_free_meta_page(cpu_buffer); 7187 err = -ENOMEM; 7188 goto unlock; 7189 } 7190 7191 atomic_inc(&cpu_buffer->resize_disabled); 7192 7193 /* 7194 * Lock all readers to block any subbuf swap until the subbuf IDs are 7195 * assigned. 7196 */ 7197 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7198 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); 7199 7200 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7201 7202 err = __rb_map_vma(cpu_buffer, vma); 7203 if (!err) { 7204 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7205 /* This is the first time it is mapped by user */ 7206 cpu_buffer->mapped++; 7207 cpu_buffer->user_mapped = 1; 7208 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7209 } else { 7210 kfree(cpu_buffer->subbuf_ids); 7211 cpu_buffer->subbuf_ids = NULL; 7212 rb_free_meta_page(cpu_buffer); 7213 atomic_dec(&cpu_buffer->resize_disabled); 7214 } 7215 7216 unlock: 7217 mutex_unlock(&buffer->mutex); 7218 mutex_unlock(&cpu_buffer->mapping_lock); 7219 7220 return err; 7221 } 7222 7223 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) 7224 { 7225 struct ring_buffer_per_cpu *cpu_buffer; 7226 unsigned long flags; 7227 int err = 0; 7228 7229 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7230 return -EINVAL; 7231 7232 cpu_buffer = buffer->buffers[cpu]; 7233 7234 mutex_lock(&cpu_buffer->mapping_lock); 7235 7236 if (!cpu_buffer->user_mapped) { 7237 err = -ENODEV; 7238 goto out; 7239 } else if (cpu_buffer->user_mapped > 1) { 7240 __rb_inc_dec_mapped(cpu_buffer, false); 7241 goto out; 7242 } 7243 7244 mutex_lock(&buffer->mutex); 7245 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7246 7247 /* This is the last user space mapping */ 7248 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7249 cpu_buffer->mapped--; 7250 cpu_buffer->user_mapped = 0; 7251 7252 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7253 7254 kfree(cpu_buffer->subbuf_ids); 7255 cpu_buffer->subbuf_ids = NULL; 7256 rb_free_meta_page(cpu_buffer); 7257 atomic_dec(&cpu_buffer->resize_disabled); 7258 7259 mutex_unlock(&buffer->mutex); 7260 7261 out: 7262 mutex_unlock(&cpu_buffer->mapping_lock); 7263 7264 return err; 7265 } 7266 7267 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) 7268 { 7269 struct ring_buffer_per_cpu *cpu_buffer; 7270 struct buffer_page *reader; 7271 unsigned long missed_events; 7272 unsigned long reader_size; 7273 unsigned long flags; 7274 7275 cpu_buffer = rb_get_mapped_buffer(buffer, cpu); 7276 if (IS_ERR(cpu_buffer)) 7277 return (int)PTR_ERR(cpu_buffer); 7278 7279 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7280 7281 consume: 7282 if (rb_per_cpu_empty(cpu_buffer)) 7283 goto out; 7284 7285 reader_size = rb_page_size(cpu_buffer->reader_page); 7286 7287 /* 7288 * There are data to be read on the current reader page, we can 7289 * return to the caller. But before that, we assume the latter will read 7290 * everything. Let's update the kernel reader accordingly. 7291 */ 7292 if (cpu_buffer->reader_page->read < reader_size) { 7293 while (cpu_buffer->reader_page->read < reader_size) 7294 rb_advance_reader(cpu_buffer); 7295 goto out; 7296 } 7297 7298 reader = rb_get_reader_page(cpu_buffer); 7299 if (WARN_ON(!reader)) 7300 goto out; 7301 7302 /* Check if any events were dropped */ 7303 missed_events = cpu_buffer->lost_events; 7304 7305 if (cpu_buffer->reader_page != cpu_buffer->commit_page) { 7306 if (missed_events) { 7307 struct buffer_data_page *bpage = reader->page; 7308 unsigned int commit; 7309 /* 7310 * Use the real_end for the data size, 7311 * This gives us a chance to store the lost events 7312 * on the page. 7313 */ 7314 if (reader->real_end) 7315 local_set(&bpage->commit, reader->real_end); 7316 /* 7317 * If there is room at the end of the page to save the 7318 * missed events, then record it there. 7319 */ 7320 commit = rb_page_size(reader); 7321 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 7322 memcpy(&bpage->data[commit], &missed_events, 7323 sizeof(missed_events)); 7324 local_add(RB_MISSED_STORED, &bpage->commit); 7325 } 7326 local_add(RB_MISSED_EVENTS, &bpage->commit); 7327 } 7328 } else { 7329 /* 7330 * There really shouldn't be any missed events if the commit 7331 * is on the reader page. 7332 */ 7333 WARN_ON_ONCE(missed_events); 7334 } 7335 7336 cpu_buffer->lost_events = 0; 7337 7338 goto consume; 7339 7340 out: 7341 /* Some archs do not have data cache coherency between kernel and user-space */ 7342 flush_kernel_vmap_range(cpu_buffer->reader_page->page, 7343 buffer->subbuf_size + BUF_PAGE_HDR_SIZE); 7344 7345 rb_update_meta_page(cpu_buffer); 7346 7347 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7348 rb_put_mapped_buffer(cpu_buffer); 7349 7350 return 0; 7351 } 7352 7353 /* 7354 * We only allocate new buffers, never free them if the CPU goes down. 7355 * If we were to free the buffer, then the user would lose any trace that was in 7356 * the buffer. 7357 */ 7358 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 7359 { 7360 struct trace_buffer *buffer; 7361 long nr_pages_same; 7362 int cpu_i; 7363 unsigned long nr_pages; 7364 7365 buffer = container_of(node, struct trace_buffer, node); 7366 if (cpumask_test_cpu(cpu, buffer->cpumask)) 7367 return 0; 7368 7369 nr_pages = 0; 7370 nr_pages_same = 1; 7371 /* check if all cpu sizes are same */ 7372 for_each_buffer_cpu(buffer, cpu_i) { 7373 /* fill in the size from first enabled cpu */ 7374 if (nr_pages == 0) 7375 nr_pages = buffer->buffers[cpu_i]->nr_pages; 7376 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 7377 nr_pages_same = 0; 7378 break; 7379 } 7380 } 7381 /* allocate minimum pages, user can later expand it */ 7382 if (!nr_pages_same) 7383 nr_pages = 2; 7384 buffer->buffers[cpu] = 7385 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 7386 if (!buffer->buffers[cpu]) { 7387 WARN(1, "failed to allocate ring buffer on CPU %u\n", 7388 cpu); 7389 return -ENOMEM; 7390 } 7391 smp_wmb(); 7392 cpumask_set_cpu(cpu, buffer->cpumask); 7393 return 0; 7394 } 7395 7396 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 7397 /* 7398 * This is a basic integrity check of the ring buffer. 7399 * Late in the boot cycle this test will run when configured in. 7400 * It will kick off a thread per CPU that will go into a loop 7401 * writing to the per cpu ring buffer various sizes of data. 7402 * Some of the data will be large items, some small. 7403 * 7404 * Another thread is created that goes into a spin, sending out 7405 * IPIs to the other CPUs to also write into the ring buffer. 7406 * this is to test the nesting ability of the buffer. 7407 * 7408 * Basic stats are recorded and reported. If something in the 7409 * ring buffer should happen that's not expected, a big warning 7410 * is displayed and all ring buffers are disabled. 7411 */ 7412 static struct task_struct *rb_threads[NR_CPUS] __initdata; 7413 7414 struct rb_test_data { 7415 struct trace_buffer *buffer; 7416 unsigned long events; 7417 unsigned long bytes_written; 7418 unsigned long bytes_alloc; 7419 unsigned long bytes_dropped; 7420 unsigned long events_nested; 7421 unsigned long bytes_written_nested; 7422 unsigned long bytes_alloc_nested; 7423 unsigned long bytes_dropped_nested; 7424 int min_size_nested; 7425 int max_size_nested; 7426 int max_size; 7427 int min_size; 7428 int cpu; 7429 int cnt; 7430 }; 7431 7432 static struct rb_test_data rb_data[NR_CPUS] __initdata; 7433 7434 /* 1 meg per cpu */ 7435 #define RB_TEST_BUFFER_SIZE 1048576 7436 7437 static char rb_string[] __initdata = 7438 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 7439 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 7440 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 7441 7442 static bool rb_test_started __initdata; 7443 7444 struct rb_item { 7445 int size; 7446 char str[]; 7447 }; 7448 7449 static __init int rb_write_something(struct rb_test_data *data, bool nested) 7450 { 7451 struct ring_buffer_event *event; 7452 struct rb_item *item; 7453 bool started; 7454 int event_len; 7455 int size; 7456 int len; 7457 int cnt; 7458 7459 /* Have nested writes different that what is written */ 7460 cnt = data->cnt + (nested ? 27 : 0); 7461 7462 /* Multiply cnt by ~e, to make some unique increment */ 7463 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 7464 7465 len = size + sizeof(struct rb_item); 7466 7467 started = rb_test_started; 7468 /* read rb_test_started before checking buffer enabled */ 7469 smp_rmb(); 7470 7471 event = ring_buffer_lock_reserve(data->buffer, len); 7472 if (!event) { 7473 /* Ignore dropped events before test starts. */ 7474 if (started) { 7475 if (nested) 7476 data->bytes_dropped_nested += len; 7477 else 7478 data->bytes_dropped += len; 7479 } 7480 return len; 7481 } 7482 7483 event_len = ring_buffer_event_length(event); 7484 7485 if (RB_WARN_ON(data->buffer, event_len < len)) 7486 goto out; 7487 7488 item = ring_buffer_event_data(event); 7489 item->size = size; 7490 memcpy(item->str, rb_string, size); 7491 7492 if (nested) { 7493 data->bytes_alloc_nested += event_len; 7494 data->bytes_written_nested += len; 7495 data->events_nested++; 7496 if (!data->min_size_nested || len < data->min_size_nested) 7497 data->min_size_nested = len; 7498 if (len > data->max_size_nested) 7499 data->max_size_nested = len; 7500 } else { 7501 data->bytes_alloc += event_len; 7502 data->bytes_written += len; 7503 data->events++; 7504 if (!data->min_size || len < data->min_size) 7505 data->max_size = len; 7506 if (len > data->max_size) 7507 data->max_size = len; 7508 } 7509 7510 out: 7511 ring_buffer_unlock_commit(data->buffer); 7512 7513 return 0; 7514 } 7515 7516 static __init int rb_test(void *arg) 7517 { 7518 struct rb_test_data *data = arg; 7519 7520 while (!kthread_should_stop()) { 7521 rb_write_something(data, false); 7522 data->cnt++; 7523 7524 set_current_state(TASK_INTERRUPTIBLE); 7525 /* Now sleep between a min of 100-300us and a max of 1ms */ 7526 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 7527 } 7528 7529 return 0; 7530 } 7531 7532 static __init void rb_ipi(void *ignore) 7533 { 7534 struct rb_test_data *data; 7535 int cpu = smp_processor_id(); 7536 7537 data = &rb_data[cpu]; 7538 rb_write_something(data, true); 7539 } 7540 7541 static __init int rb_hammer_test(void *arg) 7542 { 7543 while (!kthread_should_stop()) { 7544 7545 /* Send an IPI to all cpus to write data! */ 7546 smp_call_function(rb_ipi, NULL, 1); 7547 /* No sleep, but for non preempt, let others run */ 7548 schedule(); 7549 } 7550 7551 return 0; 7552 } 7553 7554 static __init int test_ringbuffer(void) 7555 { 7556 struct task_struct *rb_hammer; 7557 struct trace_buffer *buffer; 7558 int cpu; 7559 int ret = 0; 7560 7561 if (security_locked_down(LOCKDOWN_TRACEFS)) { 7562 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 7563 return 0; 7564 } 7565 7566 pr_info("Running ring buffer tests...\n"); 7567 7568 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 7569 if (WARN_ON(!buffer)) 7570 return 0; 7571 7572 /* Disable buffer so that threads can't write to it yet */ 7573 ring_buffer_record_off(buffer); 7574 7575 for_each_online_cpu(cpu) { 7576 rb_data[cpu].buffer = buffer; 7577 rb_data[cpu].cpu = cpu; 7578 rb_data[cpu].cnt = cpu; 7579 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 7580 cpu, "rbtester/%u"); 7581 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 7582 pr_cont("FAILED\n"); 7583 ret = PTR_ERR(rb_threads[cpu]); 7584 goto out_free; 7585 } 7586 } 7587 7588 /* Now create the rb hammer! */ 7589 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 7590 if (WARN_ON(IS_ERR(rb_hammer))) { 7591 pr_cont("FAILED\n"); 7592 ret = PTR_ERR(rb_hammer); 7593 goto out_free; 7594 } 7595 7596 ring_buffer_record_on(buffer); 7597 /* 7598 * Show buffer is enabled before setting rb_test_started. 7599 * Yes there's a small race window where events could be 7600 * dropped and the thread wont catch it. But when a ring 7601 * buffer gets enabled, there will always be some kind of 7602 * delay before other CPUs see it. Thus, we don't care about 7603 * those dropped events. We care about events dropped after 7604 * the threads see that the buffer is active. 7605 */ 7606 smp_wmb(); 7607 rb_test_started = true; 7608 7609 set_current_state(TASK_INTERRUPTIBLE); 7610 /* Just run for 10 seconds */; 7611 schedule_timeout(10 * HZ); 7612 7613 kthread_stop(rb_hammer); 7614 7615 out_free: 7616 for_each_online_cpu(cpu) { 7617 if (!rb_threads[cpu]) 7618 break; 7619 kthread_stop(rb_threads[cpu]); 7620 } 7621 if (ret) { 7622 ring_buffer_free(buffer); 7623 return ret; 7624 } 7625 7626 /* Report! */ 7627 pr_info("finished\n"); 7628 for_each_online_cpu(cpu) { 7629 struct ring_buffer_event *event; 7630 struct rb_test_data *data = &rb_data[cpu]; 7631 struct rb_item *item; 7632 unsigned long total_events; 7633 unsigned long total_dropped; 7634 unsigned long total_written; 7635 unsigned long total_alloc; 7636 unsigned long total_read = 0; 7637 unsigned long total_size = 0; 7638 unsigned long total_len = 0; 7639 unsigned long total_lost = 0; 7640 unsigned long lost; 7641 int big_event_size; 7642 int small_event_size; 7643 7644 ret = -1; 7645 7646 total_events = data->events + data->events_nested; 7647 total_written = data->bytes_written + data->bytes_written_nested; 7648 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 7649 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 7650 7651 big_event_size = data->max_size + data->max_size_nested; 7652 small_event_size = data->min_size + data->min_size_nested; 7653 7654 pr_info("CPU %d:\n", cpu); 7655 pr_info(" events: %ld\n", total_events); 7656 pr_info(" dropped bytes: %ld\n", total_dropped); 7657 pr_info(" alloced bytes: %ld\n", total_alloc); 7658 pr_info(" written bytes: %ld\n", total_written); 7659 pr_info(" biggest event: %d\n", big_event_size); 7660 pr_info(" smallest event: %d\n", small_event_size); 7661 7662 if (RB_WARN_ON(buffer, total_dropped)) 7663 break; 7664 7665 ret = 0; 7666 7667 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 7668 total_lost += lost; 7669 item = ring_buffer_event_data(event); 7670 total_len += ring_buffer_event_length(event); 7671 total_size += item->size + sizeof(struct rb_item); 7672 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 7673 pr_info("FAILED!\n"); 7674 pr_info("buffer had: %.*s\n", item->size, item->str); 7675 pr_info("expected: %.*s\n", item->size, rb_string); 7676 RB_WARN_ON(buffer, 1); 7677 ret = -1; 7678 break; 7679 } 7680 total_read++; 7681 } 7682 if (ret) 7683 break; 7684 7685 ret = -1; 7686 7687 pr_info(" read events: %ld\n", total_read); 7688 pr_info(" lost events: %ld\n", total_lost); 7689 pr_info(" total events: %ld\n", total_lost + total_read); 7690 pr_info(" recorded len bytes: %ld\n", total_len); 7691 pr_info(" recorded size bytes: %ld\n", total_size); 7692 if (total_lost) { 7693 pr_info(" With dropped events, record len and size may not match\n" 7694 " alloced and written from above\n"); 7695 } else { 7696 if (RB_WARN_ON(buffer, total_len != total_alloc || 7697 total_size != total_written)) 7698 break; 7699 } 7700 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 7701 break; 7702 7703 ret = 0; 7704 } 7705 if (!ret) 7706 pr_info("Ring buffer PASSED!\n"); 7707 7708 ring_buffer_free(buffer); 7709 return 0; 7710 } 7711 7712 late_initcall(test_ringbuffer); 7713 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 7714