xref: /linux/kernel/trace/ring_buffer.c (revision 955abe0a1b41de5ba61fe4cd614ebc123084d499)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 /*
36  * The "absolute" timestamp in the buffer is only 59 bits.
37  * If a clock has the 5 MSBs set, it needs to be saved and
38  * reinserted.
39  */
40 #define TS_MSB		(0xf8ULL << 56)
41 #define ABS_TS_MASK	(~TS_MSB)
42 
43 static void update_pages_handler(struct work_struct *work);
44 
45 /*
46  * The ring buffer header is special. We must manually up keep it.
47  */
48 int ring_buffer_print_entry_header(struct trace_seq *s)
49 {
50 	trace_seq_puts(s, "# compressed entry header\n");
51 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
52 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
53 	trace_seq_puts(s, "\tarray       :   32 bits\n");
54 	trace_seq_putc(s, '\n');
55 	trace_seq_printf(s, "\tpadding     : type == %d\n",
56 			 RINGBUF_TYPE_PADDING);
57 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
58 			 RINGBUF_TYPE_TIME_EXTEND);
59 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
60 			 RINGBUF_TYPE_TIME_STAMP);
61 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
62 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
63 
64 	return !trace_seq_has_overflowed(s);
65 }
66 
67 /*
68  * The ring buffer is made up of a list of pages. A separate list of pages is
69  * allocated for each CPU. A writer may only write to a buffer that is
70  * associated with the CPU it is currently executing on.  A reader may read
71  * from any per cpu buffer.
72  *
73  * The reader is special. For each per cpu buffer, the reader has its own
74  * reader page. When a reader has read the entire reader page, this reader
75  * page is swapped with another page in the ring buffer.
76  *
77  * Now, as long as the writer is off the reader page, the reader can do what
78  * ever it wants with that page. The writer will never write to that page
79  * again (as long as it is out of the ring buffer).
80  *
81  * Here's some silly ASCII art.
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *                   |   |-->|   |-->|   |
99  *                   +---+   +---+   +---+
100  *                     ^               |
101  *                     |               |
102  *                     +---------------+
103  *
104  *
105  *   +------+
106  *   |reader|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |-->|   |-->|   |
110  *      |            +---+   +---+   +---+
111  *      |                              |
112  *      |                              |
113  *      +------------------------------+
114  *
115  *
116  *   +------+
117  *   |buffer|          RING BUFFER
118  *   |page  |------------------v
119  *   +------+        +---+   +---+   +---+
120  *      ^            |   |   |   |-->|   |
121  *      |   New      +---+   +---+   +---+
122  *      |  Reader------^               |
123  *      |   page                       |
124  *      +------------------------------+
125  *
126  *
127  * After we make this swap, the reader can hand this page off to the splice
128  * code and be done with it. It can even allocate a new page if it needs to
129  * and swap that into the ring buffer.
130  *
131  * We will be using cmpxchg soon to make all this lockless.
132  *
133  */
134 
135 /* Used for individual buffers (after the counter) */
136 #define RB_BUFFER_OFF		(1 << 20)
137 
138 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
139 
140 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
141 #define RB_ALIGNMENT		4U
142 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
143 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
144 
145 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
146 # define RB_FORCE_8BYTE_ALIGNMENT	0
147 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
148 #else
149 # define RB_FORCE_8BYTE_ALIGNMENT	1
150 # define RB_ARCH_ALIGNMENT		8U
151 #endif
152 
153 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
154 
155 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
156 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
157 
158 enum {
159 	RB_LEN_TIME_EXTEND = 8,
160 	RB_LEN_TIME_STAMP =  8,
161 };
162 
163 #define skip_time_extend(event) \
164 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
165 
166 #define extended_time(event) \
167 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
168 
169 static inline bool rb_null_event(struct ring_buffer_event *event)
170 {
171 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
172 }
173 
174 static void rb_event_set_padding(struct ring_buffer_event *event)
175 {
176 	/* padding has a NULL time_delta */
177 	event->type_len = RINGBUF_TYPE_PADDING;
178 	event->time_delta = 0;
179 }
180 
181 static unsigned
182 rb_event_data_length(struct ring_buffer_event *event)
183 {
184 	unsigned length;
185 
186 	if (event->type_len)
187 		length = event->type_len * RB_ALIGNMENT;
188 	else
189 		length = event->array[0];
190 	return length + RB_EVNT_HDR_SIZE;
191 }
192 
193 /*
194  * Return the length of the given event. Will return
195  * the length of the time extend if the event is a
196  * time extend.
197  */
198 static inline unsigned
199 rb_event_length(struct ring_buffer_event *event)
200 {
201 	switch (event->type_len) {
202 	case RINGBUF_TYPE_PADDING:
203 		if (rb_null_event(event))
204 			/* undefined */
205 			return -1;
206 		return  event->array[0] + RB_EVNT_HDR_SIZE;
207 
208 	case RINGBUF_TYPE_TIME_EXTEND:
209 		return RB_LEN_TIME_EXTEND;
210 
211 	case RINGBUF_TYPE_TIME_STAMP:
212 		return RB_LEN_TIME_STAMP;
213 
214 	case RINGBUF_TYPE_DATA:
215 		return rb_event_data_length(event);
216 	default:
217 		WARN_ON_ONCE(1);
218 	}
219 	/* not hit */
220 	return 0;
221 }
222 
223 /*
224  * Return total length of time extend and data,
225  *   or just the event length for all other events.
226  */
227 static inline unsigned
228 rb_event_ts_length(struct ring_buffer_event *event)
229 {
230 	unsigned len = 0;
231 
232 	if (extended_time(event)) {
233 		/* time extends include the data event after it */
234 		len = RB_LEN_TIME_EXTEND;
235 		event = skip_time_extend(event);
236 	}
237 	return len + rb_event_length(event);
238 }
239 
240 /**
241  * ring_buffer_event_length - return the length of the event
242  * @event: the event to get the length of
243  *
244  * Returns the size of the data load of a data event.
245  * If the event is something other than a data event, it
246  * returns the size of the event itself. With the exception
247  * of a TIME EXTEND, where it still returns the size of the
248  * data load of the data event after it.
249  */
250 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
251 {
252 	unsigned length;
253 
254 	if (extended_time(event))
255 		event = skip_time_extend(event);
256 
257 	length = rb_event_length(event);
258 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
259 		return length;
260 	length -= RB_EVNT_HDR_SIZE;
261 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
262                 length -= sizeof(event->array[0]);
263 	return length;
264 }
265 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
266 
267 /* inline for ring buffer fast paths */
268 static __always_inline void *
269 rb_event_data(struct ring_buffer_event *event)
270 {
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
274 	/* If length is in len field, then array[0] has the data */
275 	if (event->type_len)
276 		return (void *)&event->array[0];
277 	/* Otherwise length is in array[0] and array[1] has the data */
278 	return (void *)&event->array[1];
279 }
280 
281 /**
282  * ring_buffer_event_data - return the data of the event
283  * @event: the event to get the data from
284  */
285 void *ring_buffer_event_data(struct ring_buffer_event *event)
286 {
287 	return rb_event_data(event);
288 }
289 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
290 
291 #define for_each_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu(cpu, buffer->cpumask)
293 
294 #define for_each_online_buffer_cpu(buffer, cpu)		\
295 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
296 
297 #define TS_SHIFT	27
298 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
299 #define TS_DELTA_TEST	(~TS_MASK)
300 
301 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
302 {
303 	u64 ts;
304 
305 	ts = event->array[0];
306 	ts <<= TS_SHIFT;
307 	ts += event->time_delta;
308 
309 	return ts;
310 }
311 
312 /* Flag when events were overwritten */
313 #define RB_MISSED_EVENTS	(1 << 31)
314 /* Missed count stored at end */
315 #define RB_MISSED_STORED	(1 << 30)
316 
317 #define RB_MISSED_MASK		(3 << 30)
318 
319 struct buffer_data_page {
320 	u64		 time_stamp;	/* page time stamp */
321 	local_t		 commit;	/* write committed index */
322 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
323 };
324 
325 struct buffer_data_read_page {
326 	unsigned		order;	/* order of the page */
327 	struct buffer_data_page	*data;	/* actual data, stored in this page */
328 };
329 
330 /*
331  * Note, the buffer_page list must be first. The buffer pages
332  * are allocated in cache lines, which means that each buffer
333  * page will be at the beginning of a cache line, and thus
334  * the least significant bits will be zero. We use this to
335  * add flags in the list struct pointers, to make the ring buffer
336  * lockless.
337  */
338 struct buffer_page {
339 	struct list_head list;		/* list of buffer pages */
340 	local_t		 write;		/* index for next write */
341 	unsigned	 read;		/* index for next read */
342 	local_t		 entries;	/* entries on this page */
343 	unsigned long	 real_end;	/* real end of data */
344 	unsigned	 order;		/* order of the page */
345 	u32		 id;		/* ID for external mapping */
346 	struct buffer_data_page *page;	/* Actual data page */
347 };
348 
349 /*
350  * The buffer page counters, write and entries, must be reset
351  * atomically when crossing page boundaries. To synchronize this
352  * update, two counters are inserted into the number. One is
353  * the actual counter for the write position or count on the page.
354  *
355  * The other is a counter of updaters. Before an update happens
356  * the update partition of the counter is incremented. This will
357  * allow the updater to update the counter atomically.
358  *
359  * The counter is 20 bits, and the state data is 12.
360  */
361 #define RB_WRITE_MASK		0xfffff
362 #define RB_WRITE_INTCNT		(1 << 20)
363 
364 static void rb_init_page(struct buffer_data_page *bpage)
365 {
366 	local_set(&bpage->commit, 0);
367 }
368 
369 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
370 {
371 	return local_read(&bpage->page->commit);
372 }
373 
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376 	free_pages((unsigned long)bpage->page, bpage->order);
377 	kfree(bpage);
378 }
379 
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline bool test_time_stamp(u64 delta)
384 {
385 	return !!(delta & TS_DELTA_TEST);
386 }
387 
388 struct rb_irq_work {
389 	struct irq_work			work;
390 	wait_queue_head_t		waiters;
391 	wait_queue_head_t		full_waiters;
392 	atomic_t			seq;
393 	bool				waiters_pending;
394 	bool				full_waiters_pending;
395 	bool				wakeup_full;
396 };
397 
398 /*
399  * Structure to hold event state and handle nested events.
400  */
401 struct rb_event_info {
402 	u64			ts;
403 	u64			delta;
404 	u64			before;
405 	u64			after;
406 	unsigned long		length;
407 	struct buffer_page	*tail_page;
408 	int			add_timestamp;
409 };
410 
411 /*
412  * Used for the add_timestamp
413  *  NONE
414  *  EXTEND - wants a time extend
415  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
416  *  FORCE - force a full time stamp.
417  */
418 enum {
419 	RB_ADD_STAMP_NONE		= 0,
420 	RB_ADD_STAMP_EXTEND		= BIT(1),
421 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
422 	RB_ADD_STAMP_FORCE		= BIT(3)
423 };
424 /*
425  * Used for which event context the event is in.
426  *  TRANSITION = 0
427  *  NMI     = 1
428  *  IRQ     = 2
429  *  SOFTIRQ = 3
430  *  NORMAL  = 4
431  *
432  * See trace_recursive_lock() comment below for more details.
433  */
434 enum {
435 	RB_CTX_TRANSITION,
436 	RB_CTX_NMI,
437 	RB_CTX_IRQ,
438 	RB_CTX_SOFTIRQ,
439 	RB_CTX_NORMAL,
440 	RB_CTX_MAX
441 };
442 
443 struct rb_time_struct {
444 	local64_t	time;
445 };
446 typedef struct rb_time_struct rb_time_t;
447 
448 #define MAX_NEST	5
449 
450 /*
451  * head_page == tail_page && head == tail then buffer is empty.
452  */
453 struct ring_buffer_per_cpu {
454 	int				cpu;
455 	atomic_t			record_disabled;
456 	atomic_t			resize_disabled;
457 	struct trace_buffer	*buffer;
458 	raw_spinlock_t			reader_lock;	/* serialize readers */
459 	arch_spinlock_t			lock;
460 	struct lock_class_key		lock_key;
461 	struct buffer_data_page		*free_page;
462 	unsigned long			nr_pages;
463 	unsigned int			current_context;
464 	struct list_head		*pages;
465 	struct buffer_page		*head_page;	/* read from head */
466 	struct buffer_page		*tail_page;	/* write to tail */
467 	struct buffer_page		*commit_page;	/* committed pages */
468 	struct buffer_page		*reader_page;
469 	unsigned long			lost_events;
470 	unsigned long			last_overrun;
471 	unsigned long			nest;
472 	local_t				entries_bytes;
473 	local_t				entries;
474 	local_t				overrun;
475 	local_t				commit_overrun;
476 	local_t				dropped_events;
477 	local_t				committing;
478 	local_t				commits;
479 	local_t				pages_touched;
480 	local_t				pages_lost;
481 	local_t				pages_read;
482 	long				last_pages_touch;
483 	size_t				shortest_full;
484 	unsigned long			read;
485 	unsigned long			read_bytes;
486 	rb_time_t			write_stamp;
487 	rb_time_t			before_stamp;
488 	u64				event_stamp[MAX_NEST];
489 	u64				read_stamp;
490 	/* pages removed since last reset */
491 	unsigned long			pages_removed;
492 
493 	unsigned int			mapped;
494 	struct mutex			mapping_lock;
495 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
496 	struct trace_buffer_meta	*meta_page;
497 
498 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
499 	long				nr_pages_to_update;
500 	struct list_head		new_pages; /* new pages to add */
501 	struct work_struct		update_pages_work;
502 	struct completion		update_done;
503 
504 	struct rb_irq_work		irq_work;
505 };
506 
507 struct trace_buffer {
508 	unsigned			flags;
509 	int				cpus;
510 	atomic_t			record_disabled;
511 	atomic_t			resizing;
512 	cpumask_var_t			cpumask;
513 
514 	struct lock_class_key		*reader_lock_key;
515 
516 	struct mutex			mutex;
517 
518 	struct ring_buffer_per_cpu	**buffers;
519 
520 	struct hlist_node		node;
521 	u64				(*clock)(void);
522 
523 	struct rb_irq_work		irq_work;
524 	bool				time_stamp_abs;
525 
526 	unsigned int			subbuf_size;
527 	unsigned int			subbuf_order;
528 	unsigned int			max_data_size;
529 };
530 
531 struct ring_buffer_iter {
532 	struct ring_buffer_per_cpu	*cpu_buffer;
533 	unsigned long			head;
534 	unsigned long			next_event;
535 	struct buffer_page		*head_page;
536 	struct buffer_page		*cache_reader_page;
537 	unsigned long			cache_read;
538 	unsigned long			cache_pages_removed;
539 	u64				read_stamp;
540 	u64				page_stamp;
541 	struct ring_buffer_event	*event;
542 	size_t				event_size;
543 	int				missed_events;
544 };
545 
546 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
547 {
548 	struct buffer_data_page field;
549 
550 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
551 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
552 			 (unsigned int)sizeof(field.time_stamp),
553 			 (unsigned int)is_signed_type(u64));
554 
555 	trace_seq_printf(s, "\tfield: local_t commit;\t"
556 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
557 			 (unsigned int)offsetof(typeof(field), commit),
558 			 (unsigned int)sizeof(field.commit),
559 			 (unsigned int)is_signed_type(long));
560 
561 	trace_seq_printf(s, "\tfield: int overwrite;\t"
562 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
563 			 (unsigned int)offsetof(typeof(field), commit),
564 			 1,
565 			 (unsigned int)is_signed_type(long));
566 
567 	trace_seq_printf(s, "\tfield: char data;\t"
568 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
569 			 (unsigned int)offsetof(typeof(field), data),
570 			 (unsigned int)buffer->subbuf_size,
571 			 (unsigned int)is_signed_type(char));
572 
573 	return !trace_seq_has_overflowed(s);
574 }
575 
576 static inline void rb_time_read(rb_time_t *t, u64 *ret)
577 {
578 	*ret = local64_read(&t->time);
579 }
580 static void rb_time_set(rb_time_t *t, u64 val)
581 {
582 	local64_set(&t->time, val);
583 }
584 
585 /*
586  * Enable this to make sure that the event passed to
587  * ring_buffer_event_time_stamp() is not committed and also
588  * is on the buffer that it passed in.
589  */
590 //#define RB_VERIFY_EVENT
591 #ifdef RB_VERIFY_EVENT
592 static struct list_head *rb_list_head(struct list_head *list);
593 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
594 			 void *event)
595 {
596 	struct buffer_page *page = cpu_buffer->commit_page;
597 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
598 	struct list_head *next;
599 	long commit, write;
600 	unsigned long addr = (unsigned long)event;
601 	bool done = false;
602 	int stop = 0;
603 
604 	/* Make sure the event exists and is not committed yet */
605 	do {
606 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
607 			done = true;
608 		commit = local_read(&page->page->commit);
609 		write = local_read(&page->write);
610 		if (addr >= (unsigned long)&page->page->data[commit] &&
611 		    addr < (unsigned long)&page->page->data[write])
612 			return;
613 
614 		next = rb_list_head(page->list.next);
615 		page = list_entry(next, struct buffer_page, list);
616 	} while (!done);
617 	WARN_ON_ONCE(1);
618 }
619 #else
620 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
621 			 void *event)
622 {
623 }
624 #endif
625 
626 /*
627  * The absolute time stamp drops the 5 MSBs and some clocks may
628  * require them. The rb_fix_abs_ts() will take a previous full
629  * time stamp, and add the 5 MSB of that time stamp on to the
630  * saved absolute time stamp. Then they are compared in case of
631  * the unlikely event that the latest time stamp incremented
632  * the 5 MSB.
633  */
634 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
635 {
636 	if (save_ts & TS_MSB) {
637 		abs |= save_ts & TS_MSB;
638 		/* Check for overflow */
639 		if (unlikely(abs < save_ts))
640 			abs += 1ULL << 59;
641 	}
642 	return abs;
643 }
644 
645 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
646 
647 /**
648  * ring_buffer_event_time_stamp - return the event's current time stamp
649  * @buffer: The buffer that the event is on
650  * @event: the event to get the time stamp of
651  *
652  * Note, this must be called after @event is reserved, and before it is
653  * committed to the ring buffer. And must be called from the same
654  * context where the event was reserved (normal, softirq, irq, etc).
655  *
656  * Returns the time stamp associated with the current event.
657  * If the event has an extended time stamp, then that is used as
658  * the time stamp to return.
659  * In the highly unlikely case that the event was nested more than
660  * the max nesting, then the write_stamp of the buffer is returned,
661  * otherwise  current time is returned, but that really neither of
662  * the last two cases should ever happen.
663  */
664 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
665 				 struct ring_buffer_event *event)
666 {
667 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
668 	unsigned int nest;
669 	u64 ts;
670 
671 	/* If the event includes an absolute time, then just use that */
672 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
673 		ts = rb_event_time_stamp(event);
674 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
675 	}
676 
677 	nest = local_read(&cpu_buffer->committing);
678 	verify_event(cpu_buffer, event);
679 	if (WARN_ON_ONCE(!nest))
680 		goto fail;
681 
682 	/* Read the current saved nesting level time stamp */
683 	if (likely(--nest < MAX_NEST))
684 		return cpu_buffer->event_stamp[nest];
685 
686 	/* Shouldn't happen, warn if it does */
687 	WARN_ONCE(1, "nest (%d) greater than max", nest);
688 
689  fail:
690 	rb_time_read(&cpu_buffer->write_stamp, &ts);
691 
692 	return ts;
693 }
694 
695 /**
696  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
697  * @buffer: The ring_buffer to get the number of pages from
698  * @cpu: The cpu of the ring_buffer to get the number of pages from
699  *
700  * Returns the number of pages that have content in the ring buffer.
701  */
702 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
703 {
704 	size_t read;
705 	size_t lost;
706 	size_t cnt;
707 
708 	read = local_read(&buffer->buffers[cpu]->pages_read);
709 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
710 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
711 
712 	if (WARN_ON_ONCE(cnt < lost))
713 		return 0;
714 
715 	cnt -= lost;
716 
717 	/* The reader can read an empty page, but not more than that */
718 	if (cnt < read) {
719 		WARN_ON_ONCE(read > cnt + 1);
720 		return 0;
721 	}
722 
723 	return cnt - read;
724 }
725 
726 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
727 {
728 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
729 	size_t nr_pages;
730 	size_t dirty;
731 
732 	nr_pages = cpu_buffer->nr_pages;
733 	if (!nr_pages || !full)
734 		return true;
735 
736 	/*
737 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
738 	 * that the writer is on is not counted as dirty.
739 	 * This is needed if "buffer_percent" is set to 100.
740 	 */
741 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
742 
743 	return (dirty * 100) >= (full * nr_pages);
744 }
745 
746 /*
747  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
748  *
749  * Schedules a delayed work to wake up any task that is blocked on the
750  * ring buffer waiters queue.
751  */
752 static void rb_wake_up_waiters(struct irq_work *work)
753 {
754 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
755 
756 	/* For waiters waiting for the first wake up */
757 	(void)atomic_fetch_inc_release(&rbwork->seq);
758 
759 	wake_up_all(&rbwork->waiters);
760 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
761 		/* Only cpu_buffer sets the above flags */
762 		struct ring_buffer_per_cpu *cpu_buffer =
763 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
764 
765 		/* Called from interrupt context */
766 		raw_spin_lock(&cpu_buffer->reader_lock);
767 		rbwork->wakeup_full = false;
768 		rbwork->full_waiters_pending = false;
769 
770 		/* Waking up all waiters, they will reset the shortest full */
771 		cpu_buffer->shortest_full = 0;
772 		raw_spin_unlock(&cpu_buffer->reader_lock);
773 
774 		wake_up_all(&rbwork->full_waiters);
775 	}
776 }
777 
778 /**
779  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
780  * @buffer: The ring buffer to wake waiters on
781  * @cpu: The CPU buffer to wake waiters on
782  *
783  * In the case of a file that represents a ring buffer is closing,
784  * it is prudent to wake up any waiters that are on this.
785  */
786 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
787 {
788 	struct ring_buffer_per_cpu *cpu_buffer;
789 	struct rb_irq_work *rbwork;
790 
791 	if (!buffer)
792 		return;
793 
794 	if (cpu == RING_BUFFER_ALL_CPUS) {
795 
796 		/* Wake up individual ones too. One level recursion */
797 		for_each_buffer_cpu(buffer, cpu)
798 			ring_buffer_wake_waiters(buffer, cpu);
799 
800 		rbwork = &buffer->irq_work;
801 	} else {
802 		if (WARN_ON_ONCE(!buffer->buffers))
803 			return;
804 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
805 			return;
806 
807 		cpu_buffer = buffer->buffers[cpu];
808 		/* The CPU buffer may not have been initialized yet */
809 		if (!cpu_buffer)
810 			return;
811 		rbwork = &cpu_buffer->irq_work;
812 	}
813 
814 	/* This can be called in any context */
815 	irq_work_queue(&rbwork->work);
816 }
817 
818 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
819 {
820 	struct ring_buffer_per_cpu *cpu_buffer;
821 	bool ret = false;
822 
823 	/* Reads of all CPUs always waits for any data */
824 	if (cpu == RING_BUFFER_ALL_CPUS)
825 		return !ring_buffer_empty(buffer);
826 
827 	cpu_buffer = buffer->buffers[cpu];
828 
829 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
830 		unsigned long flags;
831 		bool pagebusy;
832 
833 		if (!full)
834 			return true;
835 
836 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
837 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
838 		ret = !pagebusy && full_hit(buffer, cpu, full);
839 
840 		if (!ret && (!cpu_buffer->shortest_full ||
841 			     cpu_buffer->shortest_full > full)) {
842 		    cpu_buffer->shortest_full = full;
843 		}
844 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
845 	}
846 	return ret;
847 }
848 
849 static inline bool
850 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
851 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
852 {
853 	if (rb_watermark_hit(buffer, cpu, full))
854 		return true;
855 
856 	if (cond(data))
857 		return true;
858 
859 	/*
860 	 * The events can happen in critical sections where
861 	 * checking a work queue can cause deadlocks.
862 	 * After adding a task to the queue, this flag is set
863 	 * only to notify events to try to wake up the queue
864 	 * using irq_work.
865 	 *
866 	 * We don't clear it even if the buffer is no longer
867 	 * empty. The flag only causes the next event to run
868 	 * irq_work to do the work queue wake up. The worse
869 	 * that can happen if we race with !trace_empty() is that
870 	 * an event will cause an irq_work to try to wake up
871 	 * an empty queue.
872 	 *
873 	 * There's no reason to protect this flag either, as
874 	 * the work queue and irq_work logic will do the necessary
875 	 * synchronization for the wake ups. The only thing
876 	 * that is necessary is that the wake up happens after
877 	 * a task has been queued. It's OK for spurious wake ups.
878 	 */
879 	if (full)
880 		rbwork->full_waiters_pending = true;
881 	else
882 		rbwork->waiters_pending = true;
883 
884 	return false;
885 }
886 
887 struct rb_wait_data {
888 	struct rb_irq_work		*irq_work;
889 	int				seq;
890 };
891 
892 /*
893  * The default wait condition for ring_buffer_wait() is to just to exit the
894  * wait loop the first time it is woken up.
895  */
896 static bool rb_wait_once(void *data)
897 {
898 	struct rb_wait_data *rdata = data;
899 	struct rb_irq_work *rbwork = rdata->irq_work;
900 
901 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
902 }
903 
904 /**
905  * ring_buffer_wait - wait for input to the ring buffer
906  * @buffer: buffer to wait on
907  * @cpu: the cpu buffer to wait on
908  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
909  * @cond: condition function to break out of wait (NULL to run once)
910  * @data: the data to pass to @cond.
911  *
912  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
913  * as data is added to any of the @buffer's cpu buffers. Otherwise
914  * it will wait for data to be added to a specific cpu buffer.
915  */
916 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
917 		     ring_buffer_cond_fn cond, void *data)
918 {
919 	struct ring_buffer_per_cpu *cpu_buffer;
920 	struct wait_queue_head *waitq;
921 	struct rb_irq_work *rbwork;
922 	struct rb_wait_data rdata;
923 	int ret = 0;
924 
925 	/*
926 	 * Depending on what the caller is waiting for, either any
927 	 * data in any cpu buffer, or a specific buffer, put the
928 	 * caller on the appropriate wait queue.
929 	 */
930 	if (cpu == RING_BUFFER_ALL_CPUS) {
931 		rbwork = &buffer->irq_work;
932 		/* Full only makes sense on per cpu reads */
933 		full = 0;
934 	} else {
935 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
936 			return -ENODEV;
937 		cpu_buffer = buffer->buffers[cpu];
938 		rbwork = &cpu_buffer->irq_work;
939 	}
940 
941 	if (full)
942 		waitq = &rbwork->full_waiters;
943 	else
944 		waitq = &rbwork->waiters;
945 
946 	/* Set up to exit loop as soon as it is woken */
947 	if (!cond) {
948 		cond = rb_wait_once;
949 		rdata.irq_work = rbwork;
950 		rdata.seq = atomic_read_acquire(&rbwork->seq);
951 		data = &rdata;
952 	}
953 
954 	ret = wait_event_interruptible((*waitq),
955 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
956 
957 	return ret;
958 }
959 
960 /**
961  * ring_buffer_poll_wait - poll on buffer input
962  * @buffer: buffer to wait on
963  * @cpu: the cpu buffer to wait on
964  * @filp: the file descriptor
965  * @poll_table: The poll descriptor
966  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
967  *
968  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
969  * as data is added to any of the @buffer's cpu buffers. Otherwise
970  * it will wait for data to be added to a specific cpu buffer.
971  *
972  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
973  * zero otherwise.
974  */
975 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
976 			  struct file *filp, poll_table *poll_table, int full)
977 {
978 	struct ring_buffer_per_cpu *cpu_buffer;
979 	struct rb_irq_work *rbwork;
980 
981 	if (cpu == RING_BUFFER_ALL_CPUS) {
982 		rbwork = &buffer->irq_work;
983 		full = 0;
984 	} else {
985 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
986 			return EPOLLERR;
987 
988 		cpu_buffer = buffer->buffers[cpu];
989 		rbwork = &cpu_buffer->irq_work;
990 	}
991 
992 	if (full) {
993 		poll_wait(filp, &rbwork->full_waiters, poll_table);
994 
995 		if (rb_watermark_hit(buffer, cpu, full))
996 			return EPOLLIN | EPOLLRDNORM;
997 		/*
998 		 * Only allow full_waiters_pending update to be seen after
999 		 * the shortest_full is set (in rb_watermark_hit). If the
1000 		 * writer sees the full_waiters_pending flag set, it will
1001 		 * compare the amount in the ring buffer to shortest_full.
1002 		 * If the amount in the ring buffer is greater than the
1003 		 * shortest_full percent, it will call the irq_work handler
1004 		 * to wake up this list. The irq_handler will reset shortest_full
1005 		 * back to zero. That's done under the reader_lock, but
1006 		 * the below smp_mb() makes sure that the update to
1007 		 * full_waiters_pending doesn't leak up into the above.
1008 		 */
1009 		smp_mb();
1010 		rbwork->full_waiters_pending = true;
1011 		return 0;
1012 	}
1013 
1014 	poll_wait(filp, &rbwork->waiters, poll_table);
1015 	rbwork->waiters_pending = true;
1016 
1017 	/*
1018 	 * There's a tight race between setting the waiters_pending and
1019 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1020 	 * is set, the next event will wake the task up, but we can get stuck
1021 	 * if there's only a single event in.
1022 	 *
1023 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1024 	 * but adding a memory barrier to all events will cause too much of a
1025 	 * performance hit in the fast path.  We only need a memory barrier when
1026 	 * the buffer goes from empty to having content.  But as this race is
1027 	 * extremely small, and it's not a problem if another event comes in, we
1028 	 * will fix it later.
1029 	 */
1030 	smp_mb();
1031 
1032 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1033 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1034 		return EPOLLIN | EPOLLRDNORM;
1035 	return 0;
1036 }
1037 
1038 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1039 #define RB_WARN_ON(b, cond)						\
1040 	({								\
1041 		int _____ret = unlikely(cond);				\
1042 		if (_____ret) {						\
1043 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1044 				struct ring_buffer_per_cpu *__b =	\
1045 					(void *)b;			\
1046 				atomic_inc(&__b->buffer->record_disabled); \
1047 			} else						\
1048 				atomic_inc(&b->record_disabled);	\
1049 			WARN_ON(1);					\
1050 		}							\
1051 		_____ret;						\
1052 	})
1053 
1054 /* Up this if you want to test the TIME_EXTENTS and normalization */
1055 #define DEBUG_SHIFT 0
1056 
1057 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1058 {
1059 	u64 ts;
1060 
1061 	/* Skip retpolines :-( */
1062 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1063 		ts = trace_clock_local();
1064 	else
1065 		ts = buffer->clock();
1066 
1067 	/* shift to debug/test normalization and TIME_EXTENTS */
1068 	return ts << DEBUG_SHIFT;
1069 }
1070 
1071 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1072 {
1073 	u64 time;
1074 
1075 	preempt_disable_notrace();
1076 	time = rb_time_stamp(buffer);
1077 	preempt_enable_notrace();
1078 
1079 	return time;
1080 }
1081 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1082 
1083 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1084 				      int cpu, u64 *ts)
1085 {
1086 	/* Just stupid testing the normalize function and deltas */
1087 	*ts >>= DEBUG_SHIFT;
1088 }
1089 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1090 
1091 /*
1092  * Making the ring buffer lockless makes things tricky.
1093  * Although writes only happen on the CPU that they are on,
1094  * and they only need to worry about interrupts. Reads can
1095  * happen on any CPU.
1096  *
1097  * The reader page is always off the ring buffer, but when the
1098  * reader finishes with a page, it needs to swap its page with
1099  * a new one from the buffer. The reader needs to take from
1100  * the head (writes go to the tail). But if a writer is in overwrite
1101  * mode and wraps, it must push the head page forward.
1102  *
1103  * Here lies the problem.
1104  *
1105  * The reader must be careful to replace only the head page, and
1106  * not another one. As described at the top of the file in the
1107  * ASCII art, the reader sets its old page to point to the next
1108  * page after head. It then sets the page after head to point to
1109  * the old reader page. But if the writer moves the head page
1110  * during this operation, the reader could end up with the tail.
1111  *
1112  * We use cmpxchg to help prevent this race. We also do something
1113  * special with the page before head. We set the LSB to 1.
1114  *
1115  * When the writer must push the page forward, it will clear the
1116  * bit that points to the head page, move the head, and then set
1117  * the bit that points to the new head page.
1118  *
1119  * We also don't want an interrupt coming in and moving the head
1120  * page on another writer. Thus we use the second LSB to catch
1121  * that too. Thus:
1122  *
1123  * head->list->prev->next        bit 1          bit 0
1124  *                              -------        -------
1125  * Normal page                     0              0
1126  * Points to head page             0              1
1127  * New head page                   1              0
1128  *
1129  * Note we can not trust the prev pointer of the head page, because:
1130  *
1131  * +----+       +-----+        +-----+
1132  * |    |------>|  T  |---X--->|  N  |
1133  * |    |<------|     |        |     |
1134  * +----+       +-----+        +-----+
1135  *   ^                           ^ |
1136  *   |          +-----+          | |
1137  *   +----------|  R  |----------+ |
1138  *              |     |<-----------+
1139  *              +-----+
1140  *
1141  * Key:  ---X-->  HEAD flag set in pointer
1142  *         T      Tail page
1143  *         R      Reader page
1144  *         N      Next page
1145  *
1146  * (see __rb_reserve_next() to see where this happens)
1147  *
1148  *  What the above shows is that the reader just swapped out
1149  *  the reader page with a page in the buffer, but before it
1150  *  could make the new header point back to the new page added
1151  *  it was preempted by a writer. The writer moved forward onto
1152  *  the new page added by the reader and is about to move forward
1153  *  again.
1154  *
1155  *  You can see, it is legitimate for the previous pointer of
1156  *  the head (or any page) not to point back to itself. But only
1157  *  temporarily.
1158  */
1159 
1160 #define RB_PAGE_NORMAL		0UL
1161 #define RB_PAGE_HEAD		1UL
1162 #define RB_PAGE_UPDATE		2UL
1163 
1164 
1165 #define RB_FLAG_MASK		3UL
1166 
1167 /* PAGE_MOVED is not part of the mask */
1168 #define RB_PAGE_MOVED		4UL
1169 
1170 /*
1171  * rb_list_head - remove any bit
1172  */
1173 static struct list_head *rb_list_head(struct list_head *list)
1174 {
1175 	unsigned long val = (unsigned long)list;
1176 
1177 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1178 }
1179 
1180 /*
1181  * rb_is_head_page - test if the given page is the head page
1182  *
1183  * Because the reader may move the head_page pointer, we can
1184  * not trust what the head page is (it may be pointing to
1185  * the reader page). But if the next page is a header page,
1186  * its flags will be non zero.
1187  */
1188 static inline int
1189 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1190 {
1191 	unsigned long val;
1192 
1193 	val = (unsigned long)list->next;
1194 
1195 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1196 		return RB_PAGE_MOVED;
1197 
1198 	return val & RB_FLAG_MASK;
1199 }
1200 
1201 /*
1202  * rb_is_reader_page
1203  *
1204  * The unique thing about the reader page, is that, if the
1205  * writer is ever on it, the previous pointer never points
1206  * back to the reader page.
1207  */
1208 static bool rb_is_reader_page(struct buffer_page *page)
1209 {
1210 	struct list_head *list = page->list.prev;
1211 
1212 	return rb_list_head(list->next) != &page->list;
1213 }
1214 
1215 /*
1216  * rb_set_list_to_head - set a list_head to be pointing to head.
1217  */
1218 static void rb_set_list_to_head(struct list_head *list)
1219 {
1220 	unsigned long *ptr;
1221 
1222 	ptr = (unsigned long *)&list->next;
1223 	*ptr |= RB_PAGE_HEAD;
1224 	*ptr &= ~RB_PAGE_UPDATE;
1225 }
1226 
1227 /*
1228  * rb_head_page_activate - sets up head page
1229  */
1230 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1231 {
1232 	struct buffer_page *head;
1233 
1234 	head = cpu_buffer->head_page;
1235 	if (!head)
1236 		return;
1237 
1238 	/*
1239 	 * Set the previous list pointer to have the HEAD flag.
1240 	 */
1241 	rb_set_list_to_head(head->list.prev);
1242 }
1243 
1244 static void rb_list_head_clear(struct list_head *list)
1245 {
1246 	unsigned long *ptr = (unsigned long *)&list->next;
1247 
1248 	*ptr &= ~RB_FLAG_MASK;
1249 }
1250 
1251 /*
1252  * rb_head_page_deactivate - clears head page ptr (for free list)
1253  */
1254 static void
1255 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1256 {
1257 	struct list_head *hd;
1258 
1259 	/* Go through the whole list and clear any pointers found. */
1260 	rb_list_head_clear(cpu_buffer->pages);
1261 
1262 	list_for_each(hd, cpu_buffer->pages)
1263 		rb_list_head_clear(hd);
1264 }
1265 
1266 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1267 			    struct buffer_page *head,
1268 			    struct buffer_page *prev,
1269 			    int old_flag, int new_flag)
1270 {
1271 	struct list_head *list;
1272 	unsigned long val = (unsigned long)&head->list;
1273 	unsigned long ret;
1274 
1275 	list = &prev->list;
1276 
1277 	val &= ~RB_FLAG_MASK;
1278 
1279 	ret = cmpxchg((unsigned long *)&list->next,
1280 		      val | old_flag, val | new_flag);
1281 
1282 	/* check if the reader took the page */
1283 	if ((ret & ~RB_FLAG_MASK) != val)
1284 		return RB_PAGE_MOVED;
1285 
1286 	return ret & RB_FLAG_MASK;
1287 }
1288 
1289 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1290 				   struct buffer_page *head,
1291 				   struct buffer_page *prev,
1292 				   int old_flag)
1293 {
1294 	return rb_head_page_set(cpu_buffer, head, prev,
1295 				old_flag, RB_PAGE_UPDATE);
1296 }
1297 
1298 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1299 				 struct buffer_page *head,
1300 				 struct buffer_page *prev,
1301 				 int old_flag)
1302 {
1303 	return rb_head_page_set(cpu_buffer, head, prev,
1304 				old_flag, RB_PAGE_HEAD);
1305 }
1306 
1307 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1308 				   struct buffer_page *head,
1309 				   struct buffer_page *prev,
1310 				   int old_flag)
1311 {
1312 	return rb_head_page_set(cpu_buffer, head, prev,
1313 				old_flag, RB_PAGE_NORMAL);
1314 }
1315 
1316 static inline void rb_inc_page(struct buffer_page **bpage)
1317 {
1318 	struct list_head *p = rb_list_head((*bpage)->list.next);
1319 
1320 	*bpage = list_entry(p, struct buffer_page, list);
1321 }
1322 
1323 static struct buffer_page *
1324 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1325 {
1326 	struct buffer_page *head;
1327 	struct buffer_page *page;
1328 	struct list_head *list;
1329 	int i;
1330 
1331 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1332 		return NULL;
1333 
1334 	/* sanity check */
1335 	list = cpu_buffer->pages;
1336 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1337 		return NULL;
1338 
1339 	page = head = cpu_buffer->head_page;
1340 	/*
1341 	 * It is possible that the writer moves the header behind
1342 	 * where we started, and we miss in one loop.
1343 	 * A second loop should grab the header, but we'll do
1344 	 * three loops just because I'm paranoid.
1345 	 */
1346 	for (i = 0; i < 3; i++) {
1347 		do {
1348 			if (rb_is_head_page(page, page->list.prev)) {
1349 				cpu_buffer->head_page = page;
1350 				return page;
1351 			}
1352 			rb_inc_page(&page);
1353 		} while (page != head);
1354 	}
1355 
1356 	RB_WARN_ON(cpu_buffer, 1);
1357 
1358 	return NULL;
1359 }
1360 
1361 static bool rb_head_page_replace(struct buffer_page *old,
1362 				struct buffer_page *new)
1363 {
1364 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1365 	unsigned long val;
1366 
1367 	val = *ptr & ~RB_FLAG_MASK;
1368 	val |= RB_PAGE_HEAD;
1369 
1370 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1371 }
1372 
1373 /*
1374  * rb_tail_page_update - move the tail page forward
1375  */
1376 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1377 			       struct buffer_page *tail_page,
1378 			       struct buffer_page *next_page)
1379 {
1380 	unsigned long old_entries;
1381 	unsigned long old_write;
1382 
1383 	/*
1384 	 * The tail page now needs to be moved forward.
1385 	 *
1386 	 * We need to reset the tail page, but without messing
1387 	 * with possible erasing of data brought in by interrupts
1388 	 * that have moved the tail page and are currently on it.
1389 	 *
1390 	 * We add a counter to the write field to denote this.
1391 	 */
1392 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1393 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1394 
1395 	/*
1396 	 * Just make sure we have seen our old_write and synchronize
1397 	 * with any interrupts that come in.
1398 	 */
1399 	barrier();
1400 
1401 	/*
1402 	 * If the tail page is still the same as what we think
1403 	 * it is, then it is up to us to update the tail
1404 	 * pointer.
1405 	 */
1406 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1407 		/* Zero the write counter */
1408 		unsigned long val = old_write & ~RB_WRITE_MASK;
1409 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1410 
1411 		/*
1412 		 * This will only succeed if an interrupt did
1413 		 * not come in and change it. In which case, we
1414 		 * do not want to modify it.
1415 		 *
1416 		 * We add (void) to let the compiler know that we do not care
1417 		 * about the return value of these functions. We use the
1418 		 * cmpxchg to only update if an interrupt did not already
1419 		 * do it for us. If the cmpxchg fails, we don't care.
1420 		 */
1421 		(void)local_cmpxchg(&next_page->write, old_write, val);
1422 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1423 
1424 		/*
1425 		 * No need to worry about races with clearing out the commit.
1426 		 * it only can increment when a commit takes place. But that
1427 		 * only happens in the outer most nested commit.
1428 		 */
1429 		local_set(&next_page->page->commit, 0);
1430 
1431 		/* Either we update tail_page or an interrupt does */
1432 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1433 			local_inc(&cpu_buffer->pages_touched);
1434 	}
1435 }
1436 
1437 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1438 			  struct buffer_page *bpage)
1439 {
1440 	unsigned long val = (unsigned long)bpage;
1441 
1442 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1443 }
1444 
1445 /**
1446  * rb_check_pages - integrity check of buffer pages
1447  * @cpu_buffer: CPU buffer with pages to test
1448  *
1449  * As a safety measure we check to make sure the data pages have not
1450  * been corrupted.
1451  *
1452  * Callers of this function need to guarantee that the list of pages doesn't get
1453  * modified during the check. In particular, if it's possible that the function
1454  * is invoked with concurrent readers which can swap in a new reader page then
1455  * the caller should take cpu_buffer->reader_lock.
1456  */
1457 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1458 {
1459 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1460 	struct list_head *tmp;
1461 
1462 	if (RB_WARN_ON(cpu_buffer,
1463 			rb_list_head(rb_list_head(head->next)->prev) != head))
1464 		return;
1465 
1466 	if (RB_WARN_ON(cpu_buffer,
1467 			rb_list_head(rb_list_head(head->prev)->next) != head))
1468 		return;
1469 
1470 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1471 		if (RB_WARN_ON(cpu_buffer,
1472 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1473 			return;
1474 
1475 		if (RB_WARN_ON(cpu_buffer,
1476 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1477 			return;
1478 	}
1479 }
1480 
1481 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1482 		long nr_pages, struct list_head *pages)
1483 {
1484 	struct buffer_page *bpage, *tmp;
1485 	bool user_thread = current->mm != NULL;
1486 	gfp_t mflags;
1487 	long i;
1488 
1489 	/*
1490 	 * Check if the available memory is there first.
1491 	 * Note, si_mem_available() only gives us a rough estimate of available
1492 	 * memory. It may not be accurate. But we don't care, we just want
1493 	 * to prevent doing any allocation when it is obvious that it is
1494 	 * not going to succeed.
1495 	 */
1496 	i = si_mem_available();
1497 	if (i < nr_pages)
1498 		return -ENOMEM;
1499 
1500 	/*
1501 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1502 	 * gracefully without invoking oom-killer and the system is not
1503 	 * destabilized.
1504 	 */
1505 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1506 
1507 	/*
1508 	 * If a user thread allocates too much, and si_mem_available()
1509 	 * reports there's enough memory, even though there is not.
1510 	 * Make sure the OOM killer kills this thread. This can happen
1511 	 * even with RETRY_MAYFAIL because another task may be doing
1512 	 * an allocation after this task has taken all memory.
1513 	 * This is the task the OOM killer needs to take out during this
1514 	 * loop, even if it was triggered by an allocation somewhere else.
1515 	 */
1516 	if (user_thread)
1517 		set_current_oom_origin();
1518 	for (i = 0; i < nr_pages; i++) {
1519 		struct page *page;
1520 
1521 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1522 				    mflags, cpu_to_node(cpu_buffer->cpu));
1523 		if (!bpage)
1524 			goto free_pages;
1525 
1526 		rb_check_bpage(cpu_buffer, bpage);
1527 
1528 		list_add(&bpage->list, pages);
1529 
1530 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1531 					mflags | __GFP_COMP | __GFP_ZERO,
1532 					cpu_buffer->buffer->subbuf_order);
1533 		if (!page)
1534 			goto free_pages;
1535 		bpage->page = page_address(page);
1536 		bpage->order = cpu_buffer->buffer->subbuf_order;
1537 		rb_init_page(bpage->page);
1538 
1539 		if (user_thread && fatal_signal_pending(current))
1540 			goto free_pages;
1541 	}
1542 	if (user_thread)
1543 		clear_current_oom_origin();
1544 
1545 	return 0;
1546 
1547 free_pages:
1548 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1549 		list_del_init(&bpage->list);
1550 		free_buffer_page(bpage);
1551 	}
1552 	if (user_thread)
1553 		clear_current_oom_origin();
1554 
1555 	return -ENOMEM;
1556 }
1557 
1558 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1559 			     unsigned long nr_pages)
1560 {
1561 	LIST_HEAD(pages);
1562 
1563 	WARN_ON(!nr_pages);
1564 
1565 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1566 		return -ENOMEM;
1567 
1568 	/*
1569 	 * The ring buffer page list is a circular list that does not
1570 	 * start and end with a list head. All page list items point to
1571 	 * other pages.
1572 	 */
1573 	cpu_buffer->pages = pages.next;
1574 	list_del(&pages);
1575 
1576 	cpu_buffer->nr_pages = nr_pages;
1577 
1578 	rb_check_pages(cpu_buffer);
1579 
1580 	return 0;
1581 }
1582 
1583 static struct ring_buffer_per_cpu *
1584 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1585 {
1586 	struct ring_buffer_per_cpu *cpu_buffer;
1587 	struct buffer_page *bpage;
1588 	struct page *page;
1589 	int ret;
1590 
1591 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1592 				  GFP_KERNEL, cpu_to_node(cpu));
1593 	if (!cpu_buffer)
1594 		return NULL;
1595 
1596 	cpu_buffer->cpu = cpu;
1597 	cpu_buffer->buffer = buffer;
1598 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1599 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1600 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1601 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1602 	init_completion(&cpu_buffer->update_done);
1603 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1604 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1605 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1606 	mutex_init(&cpu_buffer->mapping_lock);
1607 
1608 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1609 			    GFP_KERNEL, cpu_to_node(cpu));
1610 	if (!bpage)
1611 		goto fail_free_buffer;
1612 
1613 	rb_check_bpage(cpu_buffer, bpage);
1614 
1615 	cpu_buffer->reader_page = bpage;
1616 
1617 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
1618 				cpu_buffer->buffer->subbuf_order);
1619 	if (!page)
1620 		goto fail_free_reader;
1621 	bpage->page = page_address(page);
1622 	rb_init_page(bpage->page);
1623 
1624 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1625 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1626 
1627 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1628 	if (ret < 0)
1629 		goto fail_free_reader;
1630 
1631 	cpu_buffer->head_page
1632 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1633 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1634 
1635 	rb_head_page_activate(cpu_buffer);
1636 
1637 	return cpu_buffer;
1638 
1639  fail_free_reader:
1640 	free_buffer_page(cpu_buffer->reader_page);
1641 
1642  fail_free_buffer:
1643 	kfree(cpu_buffer);
1644 	return NULL;
1645 }
1646 
1647 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1648 {
1649 	struct list_head *head = cpu_buffer->pages;
1650 	struct buffer_page *bpage, *tmp;
1651 
1652 	irq_work_sync(&cpu_buffer->irq_work.work);
1653 
1654 	free_buffer_page(cpu_buffer->reader_page);
1655 
1656 	if (head) {
1657 		rb_head_page_deactivate(cpu_buffer);
1658 
1659 		list_for_each_entry_safe(bpage, tmp, head, list) {
1660 			list_del_init(&bpage->list);
1661 			free_buffer_page(bpage);
1662 		}
1663 		bpage = list_entry(head, struct buffer_page, list);
1664 		free_buffer_page(bpage);
1665 	}
1666 
1667 	free_page((unsigned long)cpu_buffer->free_page);
1668 
1669 	kfree(cpu_buffer);
1670 }
1671 
1672 /**
1673  * __ring_buffer_alloc - allocate a new ring_buffer
1674  * @size: the size in bytes per cpu that is needed.
1675  * @flags: attributes to set for the ring buffer.
1676  * @key: ring buffer reader_lock_key.
1677  *
1678  * Currently the only flag that is available is the RB_FL_OVERWRITE
1679  * flag. This flag means that the buffer will overwrite old data
1680  * when the buffer wraps. If this flag is not set, the buffer will
1681  * drop data when the tail hits the head.
1682  */
1683 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1684 					struct lock_class_key *key)
1685 {
1686 	struct trace_buffer *buffer;
1687 	long nr_pages;
1688 	int bsize;
1689 	int cpu;
1690 	int ret;
1691 
1692 	/* keep it in its own cache line */
1693 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1694 			 GFP_KERNEL);
1695 	if (!buffer)
1696 		return NULL;
1697 
1698 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1699 		goto fail_free_buffer;
1700 
1701 	/* Default buffer page size - one system page */
1702 	buffer->subbuf_order = 0;
1703 	buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1704 
1705 	/* Max payload is buffer page size - header (8bytes) */
1706 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1707 
1708 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1709 	buffer->flags = flags;
1710 	buffer->clock = trace_clock_local;
1711 	buffer->reader_lock_key = key;
1712 
1713 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1714 	init_waitqueue_head(&buffer->irq_work.waiters);
1715 
1716 	/* need at least two pages */
1717 	if (nr_pages < 2)
1718 		nr_pages = 2;
1719 
1720 	buffer->cpus = nr_cpu_ids;
1721 
1722 	bsize = sizeof(void *) * nr_cpu_ids;
1723 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1724 				  GFP_KERNEL);
1725 	if (!buffer->buffers)
1726 		goto fail_free_cpumask;
1727 
1728 	cpu = raw_smp_processor_id();
1729 	cpumask_set_cpu(cpu, buffer->cpumask);
1730 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1731 	if (!buffer->buffers[cpu])
1732 		goto fail_free_buffers;
1733 
1734 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1735 	if (ret < 0)
1736 		goto fail_free_buffers;
1737 
1738 	mutex_init(&buffer->mutex);
1739 
1740 	return buffer;
1741 
1742  fail_free_buffers:
1743 	for_each_buffer_cpu(buffer, cpu) {
1744 		if (buffer->buffers[cpu])
1745 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1746 	}
1747 	kfree(buffer->buffers);
1748 
1749  fail_free_cpumask:
1750 	free_cpumask_var(buffer->cpumask);
1751 
1752  fail_free_buffer:
1753 	kfree(buffer);
1754 	return NULL;
1755 }
1756 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1757 
1758 /**
1759  * ring_buffer_free - free a ring buffer.
1760  * @buffer: the buffer to free.
1761  */
1762 void
1763 ring_buffer_free(struct trace_buffer *buffer)
1764 {
1765 	int cpu;
1766 
1767 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1768 
1769 	irq_work_sync(&buffer->irq_work.work);
1770 
1771 	for_each_buffer_cpu(buffer, cpu)
1772 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1773 
1774 	kfree(buffer->buffers);
1775 	free_cpumask_var(buffer->cpumask);
1776 
1777 	kfree(buffer);
1778 }
1779 EXPORT_SYMBOL_GPL(ring_buffer_free);
1780 
1781 void ring_buffer_set_clock(struct trace_buffer *buffer,
1782 			   u64 (*clock)(void))
1783 {
1784 	buffer->clock = clock;
1785 }
1786 
1787 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1788 {
1789 	buffer->time_stamp_abs = abs;
1790 }
1791 
1792 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1793 {
1794 	return buffer->time_stamp_abs;
1795 }
1796 
1797 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1798 {
1799 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1800 }
1801 
1802 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1803 {
1804 	return local_read(&bpage->write) & RB_WRITE_MASK;
1805 }
1806 
1807 static bool
1808 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1809 {
1810 	struct list_head *tail_page, *to_remove, *next_page;
1811 	struct buffer_page *to_remove_page, *tmp_iter_page;
1812 	struct buffer_page *last_page, *first_page;
1813 	unsigned long nr_removed;
1814 	unsigned long head_bit;
1815 	int page_entries;
1816 
1817 	head_bit = 0;
1818 
1819 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1820 	atomic_inc(&cpu_buffer->record_disabled);
1821 	/*
1822 	 * We don't race with the readers since we have acquired the reader
1823 	 * lock. We also don't race with writers after disabling recording.
1824 	 * This makes it easy to figure out the first and the last page to be
1825 	 * removed from the list. We unlink all the pages in between including
1826 	 * the first and last pages. This is done in a busy loop so that we
1827 	 * lose the least number of traces.
1828 	 * The pages are freed after we restart recording and unlock readers.
1829 	 */
1830 	tail_page = &cpu_buffer->tail_page->list;
1831 
1832 	/*
1833 	 * tail page might be on reader page, we remove the next page
1834 	 * from the ring buffer
1835 	 */
1836 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1837 		tail_page = rb_list_head(tail_page->next);
1838 	to_remove = tail_page;
1839 
1840 	/* start of pages to remove */
1841 	first_page = list_entry(rb_list_head(to_remove->next),
1842 				struct buffer_page, list);
1843 
1844 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1845 		to_remove = rb_list_head(to_remove)->next;
1846 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1847 	}
1848 	/* Read iterators need to reset themselves when some pages removed */
1849 	cpu_buffer->pages_removed += nr_removed;
1850 
1851 	next_page = rb_list_head(to_remove)->next;
1852 
1853 	/*
1854 	 * Now we remove all pages between tail_page and next_page.
1855 	 * Make sure that we have head_bit value preserved for the
1856 	 * next page
1857 	 */
1858 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1859 						head_bit);
1860 	next_page = rb_list_head(next_page);
1861 	next_page->prev = tail_page;
1862 
1863 	/* make sure pages points to a valid page in the ring buffer */
1864 	cpu_buffer->pages = next_page;
1865 
1866 	/* update head page */
1867 	if (head_bit)
1868 		cpu_buffer->head_page = list_entry(next_page,
1869 						struct buffer_page, list);
1870 
1871 	/* pages are removed, resume tracing and then free the pages */
1872 	atomic_dec(&cpu_buffer->record_disabled);
1873 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1874 
1875 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1876 
1877 	/* last buffer page to remove */
1878 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1879 				list);
1880 	tmp_iter_page = first_page;
1881 
1882 	do {
1883 		cond_resched();
1884 
1885 		to_remove_page = tmp_iter_page;
1886 		rb_inc_page(&tmp_iter_page);
1887 
1888 		/* update the counters */
1889 		page_entries = rb_page_entries(to_remove_page);
1890 		if (page_entries) {
1891 			/*
1892 			 * If something was added to this page, it was full
1893 			 * since it is not the tail page. So we deduct the
1894 			 * bytes consumed in ring buffer from here.
1895 			 * Increment overrun to account for the lost events.
1896 			 */
1897 			local_add(page_entries, &cpu_buffer->overrun);
1898 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1899 			local_inc(&cpu_buffer->pages_lost);
1900 		}
1901 
1902 		/*
1903 		 * We have already removed references to this list item, just
1904 		 * free up the buffer_page and its page
1905 		 */
1906 		free_buffer_page(to_remove_page);
1907 		nr_removed--;
1908 
1909 	} while (to_remove_page != last_page);
1910 
1911 	RB_WARN_ON(cpu_buffer, nr_removed);
1912 
1913 	return nr_removed == 0;
1914 }
1915 
1916 static bool
1917 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1918 {
1919 	struct list_head *pages = &cpu_buffer->new_pages;
1920 	unsigned long flags;
1921 	bool success;
1922 	int retries;
1923 
1924 	/* Can be called at early boot up, where interrupts must not been enabled */
1925 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1926 	/*
1927 	 * We are holding the reader lock, so the reader page won't be swapped
1928 	 * in the ring buffer. Now we are racing with the writer trying to
1929 	 * move head page and the tail page.
1930 	 * We are going to adapt the reader page update process where:
1931 	 * 1. We first splice the start and end of list of new pages between
1932 	 *    the head page and its previous page.
1933 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1934 	 *    start of new pages list.
1935 	 * 3. Finally, we update the head->prev to the end of new list.
1936 	 *
1937 	 * We will try this process 10 times, to make sure that we don't keep
1938 	 * spinning.
1939 	 */
1940 	retries = 10;
1941 	success = false;
1942 	while (retries--) {
1943 		struct list_head *head_page, *prev_page;
1944 		struct list_head *last_page, *first_page;
1945 		struct list_head *head_page_with_bit;
1946 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1947 
1948 		if (!hpage)
1949 			break;
1950 		head_page = &hpage->list;
1951 		prev_page = head_page->prev;
1952 
1953 		first_page = pages->next;
1954 		last_page  = pages->prev;
1955 
1956 		head_page_with_bit = (struct list_head *)
1957 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1958 
1959 		last_page->next = head_page_with_bit;
1960 		first_page->prev = prev_page;
1961 
1962 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
1963 		if (try_cmpxchg(&prev_page->next,
1964 				&head_page_with_bit, first_page)) {
1965 			/*
1966 			 * yay, we replaced the page pointer to our new list,
1967 			 * now, we just have to update to head page's prev
1968 			 * pointer to point to end of list
1969 			 */
1970 			head_page->prev = last_page;
1971 			success = true;
1972 			break;
1973 		}
1974 	}
1975 
1976 	if (success)
1977 		INIT_LIST_HEAD(pages);
1978 	/*
1979 	 * If we weren't successful in adding in new pages, warn and stop
1980 	 * tracing
1981 	 */
1982 	RB_WARN_ON(cpu_buffer, !success);
1983 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1984 
1985 	/* free pages if they weren't inserted */
1986 	if (!success) {
1987 		struct buffer_page *bpage, *tmp;
1988 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1989 					 list) {
1990 			list_del_init(&bpage->list);
1991 			free_buffer_page(bpage);
1992 		}
1993 	}
1994 	return success;
1995 }
1996 
1997 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1998 {
1999 	bool success;
2000 
2001 	if (cpu_buffer->nr_pages_to_update > 0)
2002 		success = rb_insert_pages(cpu_buffer);
2003 	else
2004 		success = rb_remove_pages(cpu_buffer,
2005 					-cpu_buffer->nr_pages_to_update);
2006 
2007 	if (success)
2008 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2009 }
2010 
2011 static void update_pages_handler(struct work_struct *work)
2012 {
2013 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2014 			struct ring_buffer_per_cpu, update_pages_work);
2015 	rb_update_pages(cpu_buffer);
2016 	complete(&cpu_buffer->update_done);
2017 }
2018 
2019 /**
2020  * ring_buffer_resize - resize the ring buffer
2021  * @buffer: the buffer to resize.
2022  * @size: the new size.
2023  * @cpu_id: the cpu buffer to resize
2024  *
2025  * Minimum size is 2 * buffer->subbuf_size.
2026  *
2027  * Returns 0 on success and < 0 on failure.
2028  */
2029 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2030 			int cpu_id)
2031 {
2032 	struct ring_buffer_per_cpu *cpu_buffer;
2033 	unsigned long nr_pages;
2034 	int cpu, err;
2035 
2036 	/*
2037 	 * Always succeed at resizing a non-existent buffer:
2038 	 */
2039 	if (!buffer)
2040 		return 0;
2041 
2042 	/* Make sure the requested buffer exists */
2043 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2044 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2045 		return 0;
2046 
2047 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2048 
2049 	/* we need a minimum of two pages */
2050 	if (nr_pages < 2)
2051 		nr_pages = 2;
2052 
2053 	/* prevent another thread from changing buffer sizes */
2054 	mutex_lock(&buffer->mutex);
2055 	atomic_inc(&buffer->resizing);
2056 
2057 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2058 		/*
2059 		 * Don't succeed if resizing is disabled, as a reader might be
2060 		 * manipulating the ring buffer and is expecting a sane state while
2061 		 * this is true.
2062 		 */
2063 		for_each_buffer_cpu(buffer, cpu) {
2064 			cpu_buffer = buffer->buffers[cpu];
2065 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2066 				err = -EBUSY;
2067 				goto out_err_unlock;
2068 			}
2069 		}
2070 
2071 		/* calculate the pages to update */
2072 		for_each_buffer_cpu(buffer, cpu) {
2073 			cpu_buffer = buffer->buffers[cpu];
2074 
2075 			cpu_buffer->nr_pages_to_update = nr_pages -
2076 							cpu_buffer->nr_pages;
2077 			/*
2078 			 * nothing more to do for removing pages or no update
2079 			 */
2080 			if (cpu_buffer->nr_pages_to_update <= 0)
2081 				continue;
2082 			/*
2083 			 * to add pages, make sure all new pages can be
2084 			 * allocated without receiving ENOMEM
2085 			 */
2086 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2087 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2088 						&cpu_buffer->new_pages)) {
2089 				/* not enough memory for new pages */
2090 				err = -ENOMEM;
2091 				goto out_err;
2092 			}
2093 
2094 			cond_resched();
2095 		}
2096 
2097 		cpus_read_lock();
2098 		/*
2099 		 * Fire off all the required work handlers
2100 		 * We can't schedule on offline CPUs, but it's not necessary
2101 		 * since we can change their buffer sizes without any race.
2102 		 */
2103 		for_each_buffer_cpu(buffer, cpu) {
2104 			cpu_buffer = buffer->buffers[cpu];
2105 			if (!cpu_buffer->nr_pages_to_update)
2106 				continue;
2107 
2108 			/* Can't run something on an offline CPU. */
2109 			if (!cpu_online(cpu)) {
2110 				rb_update_pages(cpu_buffer);
2111 				cpu_buffer->nr_pages_to_update = 0;
2112 			} else {
2113 				/* Run directly if possible. */
2114 				migrate_disable();
2115 				if (cpu != smp_processor_id()) {
2116 					migrate_enable();
2117 					schedule_work_on(cpu,
2118 							 &cpu_buffer->update_pages_work);
2119 				} else {
2120 					update_pages_handler(&cpu_buffer->update_pages_work);
2121 					migrate_enable();
2122 				}
2123 			}
2124 		}
2125 
2126 		/* wait for all the updates to complete */
2127 		for_each_buffer_cpu(buffer, cpu) {
2128 			cpu_buffer = buffer->buffers[cpu];
2129 			if (!cpu_buffer->nr_pages_to_update)
2130 				continue;
2131 
2132 			if (cpu_online(cpu))
2133 				wait_for_completion(&cpu_buffer->update_done);
2134 			cpu_buffer->nr_pages_to_update = 0;
2135 		}
2136 
2137 		cpus_read_unlock();
2138 	} else {
2139 		cpu_buffer = buffer->buffers[cpu_id];
2140 
2141 		if (nr_pages == cpu_buffer->nr_pages)
2142 			goto out;
2143 
2144 		/*
2145 		 * Don't succeed if resizing is disabled, as a reader might be
2146 		 * manipulating the ring buffer and is expecting a sane state while
2147 		 * this is true.
2148 		 */
2149 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2150 			err = -EBUSY;
2151 			goto out_err_unlock;
2152 		}
2153 
2154 		cpu_buffer->nr_pages_to_update = nr_pages -
2155 						cpu_buffer->nr_pages;
2156 
2157 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2158 		if (cpu_buffer->nr_pages_to_update > 0 &&
2159 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2160 					    &cpu_buffer->new_pages)) {
2161 			err = -ENOMEM;
2162 			goto out_err;
2163 		}
2164 
2165 		cpus_read_lock();
2166 
2167 		/* Can't run something on an offline CPU. */
2168 		if (!cpu_online(cpu_id))
2169 			rb_update_pages(cpu_buffer);
2170 		else {
2171 			/* Run directly if possible. */
2172 			migrate_disable();
2173 			if (cpu_id == smp_processor_id()) {
2174 				rb_update_pages(cpu_buffer);
2175 				migrate_enable();
2176 			} else {
2177 				migrate_enable();
2178 				schedule_work_on(cpu_id,
2179 						 &cpu_buffer->update_pages_work);
2180 				wait_for_completion(&cpu_buffer->update_done);
2181 			}
2182 		}
2183 
2184 		cpu_buffer->nr_pages_to_update = 0;
2185 		cpus_read_unlock();
2186 	}
2187 
2188  out:
2189 	/*
2190 	 * The ring buffer resize can happen with the ring buffer
2191 	 * enabled, so that the update disturbs the tracing as little
2192 	 * as possible. But if the buffer is disabled, we do not need
2193 	 * to worry about that, and we can take the time to verify
2194 	 * that the buffer is not corrupt.
2195 	 */
2196 	if (atomic_read(&buffer->record_disabled)) {
2197 		atomic_inc(&buffer->record_disabled);
2198 		/*
2199 		 * Even though the buffer was disabled, we must make sure
2200 		 * that it is truly disabled before calling rb_check_pages.
2201 		 * There could have been a race between checking
2202 		 * record_disable and incrementing it.
2203 		 */
2204 		synchronize_rcu();
2205 		for_each_buffer_cpu(buffer, cpu) {
2206 			unsigned long flags;
2207 
2208 			cpu_buffer = buffer->buffers[cpu];
2209 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2210 			rb_check_pages(cpu_buffer);
2211 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2212 		}
2213 		atomic_dec(&buffer->record_disabled);
2214 	}
2215 
2216 	atomic_dec(&buffer->resizing);
2217 	mutex_unlock(&buffer->mutex);
2218 	return 0;
2219 
2220  out_err:
2221 	for_each_buffer_cpu(buffer, cpu) {
2222 		struct buffer_page *bpage, *tmp;
2223 
2224 		cpu_buffer = buffer->buffers[cpu];
2225 		cpu_buffer->nr_pages_to_update = 0;
2226 
2227 		if (list_empty(&cpu_buffer->new_pages))
2228 			continue;
2229 
2230 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2231 					list) {
2232 			list_del_init(&bpage->list);
2233 			free_buffer_page(bpage);
2234 		}
2235 	}
2236  out_err_unlock:
2237 	atomic_dec(&buffer->resizing);
2238 	mutex_unlock(&buffer->mutex);
2239 	return err;
2240 }
2241 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2242 
2243 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2244 {
2245 	mutex_lock(&buffer->mutex);
2246 	if (val)
2247 		buffer->flags |= RB_FL_OVERWRITE;
2248 	else
2249 		buffer->flags &= ~RB_FL_OVERWRITE;
2250 	mutex_unlock(&buffer->mutex);
2251 }
2252 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2253 
2254 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2255 {
2256 	return bpage->page->data + index;
2257 }
2258 
2259 static __always_inline struct ring_buffer_event *
2260 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2261 {
2262 	return __rb_page_index(cpu_buffer->reader_page,
2263 			       cpu_buffer->reader_page->read);
2264 }
2265 
2266 static struct ring_buffer_event *
2267 rb_iter_head_event(struct ring_buffer_iter *iter)
2268 {
2269 	struct ring_buffer_event *event;
2270 	struct buffer_page *iter_head_page = iter->head_page;
2271 	unsigned long commit;
2272 	unsigned length;
2273 
2274 	if (iter->head != iter->next_event)
2275 		return iter->event;
2276 
2277 	/*
2278 	 * When the writer goes across pages, it issues a cmpxchg which
2279 	 * is a mb(), which will synchronize with the rmb here.
2280 	 * (see rb_tail_page_update() and __rb_reserve_next())
2281 	 */
2282 	commit = rb_page_commit(iter_head_page);
2283 	smp_rmb();
2284 
2285 	/* An event needs to be at least 8 bytes in size */
2286 	if (iter->head > commit - 8)
2287 		goto reset;
2288 
2289 	event = __rb_page_index(iter_head_page, iter->head);
2290 	length = rb_event_length(event);
2291 
2292 	/*
2293 	 * READ_ONCE() doesn't work on functions and we don't want the
2294 	 * compiler doing any crazy optimizations with length.
2295 	 */
2296 	barrier();
2297 
2298 	if ((iter->head + length) > commit || length > iter->event_size)
2299 		/* Writer corrupted the read? */
2300 		goto reset;
2301 
2302 	memcpy(iter->event, event, length);
2303 	/*
2304 	 * If the page stamp is still the same after this rmb() then the
2305 	 * event was safely copied without the writer entering the page.
2306 	 */
2307 	smp_rmb();
2308 
2309 	/* Make sure the page didn't change since we read this */
2310 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2311 	    commit > rb_page_commit(iter_head_page))
2312 		goto reset;
2313 
2314 	iter->next_event = iter->head + length;
2315 	return iter->event;
2316  reset:
2317 	/* Reset to the beginning */
2318 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2319 	iter->head = 0;
2320 	iter->next_event = 0;
2321 	iter->missed_events = 1;
2322 	return NULL;
2323 }
2324 
2325 /* Size is determined by what has been committed */
2326 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2327 {
2328 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
2329 }
2330 
2331 static __always_inline unsigned
2332 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2333 {
2334 	return rb_page_commit(cpu_buffer->commit_page);
2335 }
2336 
2337 static __always_inline unsigned
2338 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2339 {
2340 	unsigned long addr = (unsigned long)event;
2341 
2342 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2343 
2344 	return addr - BUF_PAGE_HDR_SIZE;
2345 }
2346 
2347 static void rb_inc_iter(struct ring_buffer_iter *iter)
2348 {
2349 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2350 
2351 	/*
2352 	 * The iterator could be on the reader page (it starts there).
2353 	 * But the head could have moved, since the reader was
2354 	 * found. Check for this case and assign the iterator
2355 	 * to the head page instead of next.
2356 	 */
2357 	if (iter->head_page == cpu_buffer->reader_page)
2358 		iter->head_page = rb_set_head_page(cpu_buffer);
2359 	else
2360 		rb_inc_page(&iter->head_page);
2361 
2362 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2363 	iter->head = 0;
2364 	iter->next_event = 0;
2365 }
2366 
2367 /*
2368  * rb_handle_head_page - writer hit the head page
2369  *
2370  * Returns: +1 to retry page
2371  *           0 to continue
2372  *          -1 on error
2373  */
2374 static int
2375 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2376 		    struct buffer_page *tail_page,
2377 		    struct buffer_page *next_page)
2378 {
2379 	struct buffer_page *new_head;
2380 	int entries;
2381 	int type;
2382 	int ret;
2383 
2384 	entries = rb_page_entries(next_page);
2385 
2386 	/*
2387 	 * The hard part is here. We need to move the head
2388 	 * forward, and protect against both readers on
2389 	 * other CPUs and writers coming in via interrupts.
2390 	 */
2391 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2392 				       RB_PAGE_HEAD);
2393 
2394 	/*
2395 	 * type can be one of four:
2396 	 *  NORMAL - an interrupt already moved it for us
2397 	 *  HEAD   - we are the first to get here.
2398 	 *  UPDATE - we are the interrupt interrupting
2399 	 *           a current move.
2400 	 *  MOVED  - a reader on another CPU moved the next
2401 	 *           pointer to its reader page. Give up
2402 	 *           and try again.
2403 	 */
2404 
2405 	switch (type) {
2406 	case RB_PAGE_HEAD:
2407 		/*
2408 		 * We changed the head to UPDATE, thus
2409 		 * it is our responsibility to update
2410 		 * the counters.
2411 		 */
2412 		local_add(entries, &cpu_buffer->overrun);
2413 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2414 		local_inc(&cpu_buffer->pages_lost);
2415 
2416 		/*
2417 		 * The entries will be zeroed out when we move the
2418 		 * tail page.
2419 		 */
2420 
2421 		/* still more to do */
2422 		break;
2423 
2424 	case RB_PAGE_UPDATE:
2425 		/*
2426 		 * This is an interrupt that interrupt the
2427 		 * previous update. Still more to do.
2428 		 */
2429 		break;
2430 	case RB_PAGE_NORMAL:
2431 		/*
2432 		 * An interrupt came in before the update
2433 		 * and processed this for us.
2434 		 * Nothing left to do.
2435 		 */
2436 		return 1;
2437 	case RB_PAGE_MOVED:
2438 		/*
2439 		 * The reader is on another CPU and just did
2440 		 * a swap with our next_page.
2441 		 * Try again.
2442 		 */
2443 		return 1;
2444 	default:
2445 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2446 		return -1;
2447 	}
2448 
2449 	/*
2450 	 * Now that we are here, the old head pointer is
2451 	 * set to UPDATE. This will keep the reader from
2452 	 * swapping the head page with the reader page.
2453 	 * The reader (on another CPU) will spin till
2454 	 * we are finished.
2455 	 *
2456 	 * We just need to protect against interrupts
2457 	 * doing the job. We will set the next pointer
2458 	 * to HEAD. After that, we set the old pointer
2459 	 * to NORMAL, but only if it was HEAD before.
2460 	 * otherwise we are an interrupt, and only
2461 	 * want the outer most commit to reset it.
2462 	 */
2463 	new_head = next_page;
2464 	rb_inc_page(&new_head);
2465 
2466 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2467 				    RB_PAGE_NORMAL);
2468 
2469 	/*
2470 	 * Valid returns are:
2471 	 *  HEAD   - an interrupt came in and already set it.
2472 	 *  NORMAL - One of two things:
2473 	 *            1) We really set it.
2474 	 *            2) A bunch of interrupts came in and moved
2475 	 *               the page forward again.
2476 	 */
2477 	switch (ret) {
2478 	case RB_PAGE_HEAD:
2479 	case RB_PAGE_NORMAL:
2480 		/* OK */
2481 		break;
2482 	default:
2483 		RB_WARN_ON(cpu_buffer, 1);
2484 		return -1;
2485 	}
2486 
2487 	/*
2488 	 * It is possible that an interrupt came in,
2489 	 * set the head up, then more interrupts came in
2490 	 * and moved it again. When we get back here,
2491 	 * the page would have been set to NORMAL but we
2492 	 * just set it back to HEAD.
2493 	 *
2494 	 * How do you detect this? Well, if that happened
2495 	 * the tail page would have moved.
2496 	 */
2497 	if (ret == RB_PAGE_NORMAL) {
2498 		struct buffer_page *buffer_tail_page;
2499 
2500 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2501 		/*
2502 		 * If the tail had moved passed next, then we need
2503 		 * to reset the pointer.
2504 		 */
2505 		if (buffer_tail_page != tail_page &&
2506 		    buffer_tail_page != next_page)
2507 			rb_head_page_set_normal(cpu_buffer, new_head,
2508 						next_page,
2509 						RB_PAGE_HEAD);
2510 	}
2511 
2512 	/*
2513 	 * If this was the outer most commit (the one that
2514 	 * changed the original pointer from HEAD to UPDATE),
2515 	 * then it is up to us to reset it to NORMAL.
2516 	 */
2517 	if (type == RB_PAGE_HEAD) {
2518 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2519 					      tail_page,
2520 					      RB_PAGE_UPDATE);
2521 		if (RB_WARN_ON(cpu_buffer,
2522 			       ret != RB_PAGE_UPDATE))
2523 			return -1;
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 static inline void
2530 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2531 	      unsigned long tail, struct rb_event_info *info)
2532 {
2533 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2534 	struct buffer_page *tail_page = info->tail_page;
2535 	struct ring_buffer_event *event;
2536 	unsigned long length = info->length;
2537 
2538 	/*
2539 	 * Only the event that crossed the page boundary
2540 	 * must fill the old tail_page with padding.
2541 	 */
2542 	if (tail >= bsize) {
2543 		/*
2544 		 * If the page was filled, then we still need
2545 		 * to update the real_end. Reset it to zero
2546 		 * and the reader will ignore it.
2547 		 */
2548 		if (tail == bsize)
2549 			tail_page->real_end = 0;
2550 
2551 		local_sub(length, &tail_page->write);
2552 		return;
2553 	}
2554 
2555 	event = __rb_page_index(tail_page, tail);
2556 
2557 	/*
2558 	 * Save the original length to the meta data.
2559 	 * This will be used by the reader to add lost event
2560 	 * counter.
2561 	 */
2562 	tail_page->real_end = tail;
2563 
2564 	/*
2565 	 * If this event is bigger than the minimum size, then
2566 	 * we need to be careful that we don't subtract the
2567 	 * write counter enough to allow another writer to slip
2568 	 * in on this page.
2569 	 * We put in a discarded commit instead, to make sure
2570 	 * that this space is not used again, and this space will
2571 	 * not be accounted into 'entries_bytes'.
2572 	 *
2573 	 * If we are less than the minimum size, we don't need to
2574 	 * worry about it.
2575 	 */
2576 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2577 		/* No room for any events */
2578 
2579 		/* Mark the rest of the page with padding */
2580 		rb_event_set_padding(event);
2581 
2582 		/* Make sure the padding is visible before the write update */
2583 		smp_wmb();
2584 
2585 		/* Set the write back to the previous setting */
2586 		local_sub(length, &tail_page->write);
2587 		return;
2588 	}
2589 
2590 	/* Put in a discarded event */
2591 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2592 	event->type_len = RINGBUF_TYPE_PADDING;
2593 	/* time delta must be non zero */
2594 	event->time_delta = 1;
2595 
2596 	/* account for padding bytes */
2597 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
2598 
2599 	/* Make sure the padding is visible before the tail_page->write update */
2600 	smp_wmb();
2601 
2602 	/* Set write to end of buffer */
2603 	length = (tail + length) - bsize;
2604 	local_sub(length, &tail_page->write);
2605 }
2606 
2607 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2608 
2609 /*
2610  * This is the slow path, force gcc not to inline it.
2611  */
2612 static noinline struct ring_buffer_event *
2613 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2614 	     unsigned long tail, struct rb_event_info *info)
2615 {
2616 	struct buffer_page *tail_page = info->tail_page;
2617 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2618 	struct trace_buffer *buffer = cpu_buffer->buffer;
2619 	struct buffer_page *next_page;
2620 	int ret;
2621 
2622 	next_page = tail_page;
2623 
2624 	rb_inc_page(&next_page);
2625 
2626 	/*
2627 	 * If for some reason, we had an interrupt storm that made
2628 	 * it all the way around the buffer, bail, and warn
2629 	 * about it.
2630 	 */
2631 	if (unlikely(next_page == commit_page)) {
2632 		local_inc(&cpu_buffer->commit_overrun);
2633 		goto out_reset;
2634 	}
2635 
2636 	/*
2637 	 * This is where the fun begins!
2638 	 *
2639 	 * We are fighting against races between a reader that
2640 	 * could be on another CPU trying to swap its reader
2641 	 * page with the buffer head.
2642 	 *
2643 	 * We are also fighting against interrupts coming in and
2644 	 * moving the head or tail on us as well.
2645 	 *
2646 	 * If the next page is the head page then we have filled
2647 	 * the buffer, unless the commit page is still on the
2648 	 * reader page.
2649 	 */
2650 	if (rb_is_head_page(next_page, &tail_page->list)) {
2651 
2652 		/*
2653 		 * If the commit is not on the reader page, then
2654 		 * move the header page.
2655 		 */
2656 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2657 			/*
2658 			 * If we are not in overwrite mode,
2659 			 * this is easy, just stop here.
2660 			 */
2661 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2662 				local_inc(&cpu_buffer->dropped_events);
2663 				goto out_reset;
2664 			}
2665 
2666 			ret = rb_handle_head_page(cpu_buffer,
2667 						  tail_page,
2668 						  next_page);
2669 			if (ret < 0)
2670 				goto out_reset;
2671 			if (ret)
2672 				goto out_again;
2673 		} else {
2674 			/*
2675 			 * We need to be careful here too. The
2676 			 * commit page could still be on the reader
2677 			 * page. We could have a small buffer, and
2678 			 * have filled up the buffer with events
2679 			 * from interrupts and such, and wrapped.
2680 			 *
2681 			 * Note, if the tail page is also on the
2682 			 * reader_page, we let it move out.
2683 			 */
2684 			if (unlikely((cpu_buffer->commit_page !=
2685 				      cpu_buffer->tail_page) &&
2686 				     (cpu_buffer->commit_page ==
2687 				      cpu_buffer->reader_page))) {
2688 				local_inc(&cpu_buffer->commit_overrun);
2689 				goto out_reset;
2690 			}
2691 		}
2692 	}
2693 
2694 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2695 
2696  out_again:
2697 
2698 	rb_reset_tail(cpu_buffer, tail, info);
2699 
2700 	/* Commit what we have for now. */
2701 	rb_end_commit(cpu_buffer);
2702 	/* rb_end_commit() decs committing */
2703 	local_inc(&cpu_buffer->committing);
2704 
2705 	/* fail and let the caller try again */
2706 	return ERR_PTR(-EAGAIN);
2707 
2708  out_reset:
2709 	/* reset write */
2710 	rb_reset_tail(cpu_buffer, tail, info);
2711 
2712 	return NULL;
2713 }
2714 
2715 /* Slow path */
2716 static struct ring_buffer_event *
2717 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2718 		  struct ring_buffer_event *event, u64 delta, bool abs)
2719 {
2720 	if (abs)
2721 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2722 	else
2723 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2724 
2725 	/* Not the first event on the page, or not delta? */
2726 	if (abs || rb_event_index(cpu_buffer, event)) {
2727 		event->time_delta = delta & TS_MASK;
2728 		event->array[0] = delta >> TS_SHIFT;
2729 	} else {
2730 		/* nope, just zero it */
2731 		event->time_delta = 0;
2732 		event->array[0] = 0;
2733 	}
2734 
2735 	return skip_time_extend(event);
2736 }
2737 
2738 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2739 static inline bool sched_clock_stable(void)
2740 {
2741 	return true;
2742 }
2743 #endif
2744 
2745 static void
2746 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2747 		   struct rb_event_info *info)
2748 {
2749 	u64 write_stamp;
2750 
2751 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2752 		  (unsigned long long)info->delta,
2753 		  (unsigned long long)info->ts,
2754 		  (unsigned long long)info->before,
2755 		  (unsigned long long)info->after,
2756 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2757 		  sched_clock_stable() ? "" :
2758 		  "If you just came from a suspend/resume,\n"
2759 		  "please switch to the trace global clock:\n"
2760 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2761 		  "or add trace_clock=global to the kernel command line\n");
2762 }
2763 
2764 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2765 				      struct ring_buffer_event **event,
2766 				      struct rb_event_info *info,
2767 				      u64 *delta,
2768 				      unsigned int *length)
2769 {
2770 	bool abs = info->add_timestamp &
2771 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2772 
2773 	if (unlikely(info->delta > (1ULL << 59))) {
2774 		/*
2775 		 * Some timers can use more than 59 bits, and when a timestamp
2776 		 * is added to the buffer, it will lose those bits.
2777 		 */
2778 		if (abs && (info->ts & TS_MSB)) {
2779 			info->delta &= ABS_TS_MASK;
2780 
2781 		/* did the clock go backwards */
2782 		} else if (info->before == info->after && info->before > info->ts) {
2783 			/* not interrupted */
2784 			static int once;
2785 
2786 			/*
2787 			 * This is possible with a recalibrating of the TSC.
2788 			 * Do not produce a call stack, but just report it.
2789 			 */
2790 			if (!once) {
2791 				once++;
2792 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2793 					info->before, info->ts);
2794 			}
2795 		} else
2796 			rb_check_timestamp(cpu_buffer, info);
2797 		if (!abs)
2798 			info->delta = 0;
2799 	}
2800 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2801 	*length -= RB_LEN_TIME_EXTEND;
2802 	*delta = 0;
2803 }
2804 
2805 /**
2806  * rb_update_event - update event type and data
2807  * @cpu_buffer: The per cpu buffer of the @event
2808  * @event: the event to update
2809  * @info: The info to update the @event with (contains length and delta)
2810  *
2811  * Update the type and data fields of the @event. The length
2812  * is the actual size that is written to the ring buffer,
2813  * and with this, we can determine what to place into the
2814  * data field.
2815  */
2816 static void
2817 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2818 		struct ring_buffer_event *event,
2819 		struct rb_event_info *info)
2820 {
2821 	unsigned length = info->length;
2822 	u64 delta = info->delta;
2823 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2824 
2825 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2826 		cpu_buffer->event_stamp[nest] = info->ts;
2827 
2828 	/*
2829 	 * If we need to add a timestamp, then we
2830 	 * add it to the start of the reserved space.
2831 	 */
2832 	if (unlikely(info->add_timestamp))
2833 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2834 
2835 	event->time_delta = delta;
2836 	length -= RB_EVNT_HDR_SIZE;
2837 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2838 		event->type_len = 0;
2839 		event->array[0] = length;
2840 	} else
2841 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2842 }
2843 
2844 static unsigned rb_calculate_event_length(unsigned length)
2845 {
2846 	struct ring_buffer_event event; /* Used only for sizeof array */
2847 
2848 	/* zero length can cause confusions */
2849 	if (!length)
2850 		length++;
2851 
2852 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2853 		length += sizeof(event.array[0]);
2854 
2855 	length += RB_EVNT_HDR_SIZE;
2856 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2857 
2858 	/*
2859 	 * In case the time delta is larger than the 27 bits for it
2860 	 * in the header, we need to add a timestamp. If another
2861 	 * event comes in when trying to discard this one to increase
2862 	 * the length, then the timestamp will be added in the allocated
2863 	 * space of this event. If length is bigger than the size needed
2864 	 * for the TIME_EXTEND, then padding has to be used. The events
2865 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2866 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2867 	 * As length is a multiple of 4, we only need to worry if it
2868 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2869 	 */
2870 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2871 		length += RB_ALIGNMENT;
2872 
2873 	return length;
2874 }
2875 
2876 static inline bool
2877 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2878 		  struct ring_buffer_event *event)
2879 {
2880 	unsigned long new_index, old_index;
2881 	struct buffer_page *bpage;
2882 	unsigned long addr;
2883 
2884 	new_index = rb_event_index(cpu_buffer, event);
2885 	old_index = new_index + rb_event_ts_length(event);
2886 	addr = (unsigned long)event;
2887 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2888 
2889 	bpage = READ_ONCE(cpu_buffer->tail_page);
2890 
2891 	/*
2892 	 * Make sure the tail_page is still the same and
2893 	 * the next write location is the end of this event
2894 	 */
2895 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2896 		unsigned long write_mask =
2897 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2898 		unsigned long event_length = rb_event_length(event);
2899 
2900 		/*
2901 		 * For the before_stamp to be different than the write_stamp
2902 		 * to make sure that the next event adds an absolute
2903 		 * value and does not rely on the saved write stamp, which
2904 		 * is now going to be bogus.
2905 		 *
2906 		 * By setting the before_stamp to zero, the next event
2907 		 * is not going to use the write_stamp and will instead
2908 		 * create an absolute timestamp. This means there's no
2909 		 * reason to update the wirte_stamp!
2910 		 */
2911 		rb_time_set(&cpu_buffer->before_stamp, 0);
2912 
2913 		/*
2914 		 * If an event were to come in now, it would see that the
2915 		 * write_stamp and the before_stamp are different, and assume
2916 		 * that this event just added itself before updating
2917 		 * the write stamp. The interrupting event will fix the
2918 		 * write stamp for us, and use an absolute timestamp.
2919 		 */
2920 
2921 		/*
2922 		 * This is on the tail page. It is possible that
2923 		 * a write could come in and move the tail page
2924 		 * and write to the next page. That is fine
2925 		 * because we just shorten what is on this page.
2926 		 */
2927 		old_index += write_mask;
2928 		new_index += write_mask;
2929 
2930 		/* caution: old_index gets updated on cmpxchg failure */
2931 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2932 			/* update counters */
2933 			local_sub(event_length, &cpu_buffer->entries_bytes);
2934 			return true;
2935 		}
2936 	}
2937 
2938 	/* could not discard */
2939 	return false;
2940 }
2941 
2942 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2943 {
2944 	local_inc(&cpu_buffer->committing);
2945 	local_inc(&cpu_buffer->commits);
2946 }
2947 
2948 static __always_inline void
2949 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2950 {
2951 	unsigned long max_count;
2952 
2953 	/*
2954 	 * We only race with interrupts and NMIs on this CPU.
2955 	 * If we own the commit event, then we can commit
2956 	 * all others that interrupted us, since the interruptions
2957 	 * are in stack format (they finish before they come
2958 	 * back to us). This allows us to do a simple loop to
2959 	 * assign the commit to the tail.
2960 	 */
2961  again:
2962 	max_count = cpu_buffer->nr_pages * 100;
2963 
2964 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2965 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2966 			return;
2967 		if (RB_WARN_ON(cpu_buffer,
2968 			       rb_is_reader_page(cpu_buffer->tail_page)))
2969 			return;
2970 		/*
2971 		 * No need for a memory barrier here, as the update
2972 		 * of the tail_page did it for this page.
2973 		 */
2974 		local_set(&cpu_buffer->commit_page->page->commit,
2975 			  rb_page_write(cpu_buffer->commit_page));
2976 		rb_inc_page(&cpu_buffer->commit_page);
2977 		/* add barrier to keep gcc from optimizing too much */
2978 		barrier();
2979 	}
2980 	while (rb_commit_index(cpu_buffer) !=
2981 	       rb_page_write(cpu_buffer->commit_page)) {
2982 
2983 		/* Make sure the readers see the content of what is committed. */
2984 		smp_wmb();
2985 		local_set(&cpu_buffer->commit_page->page->commit,
2986 			  rb_page_write(cpu_buffer->commit_page));
2987 		RB_WARN_ON(cpu_buffer,
2988 			   local_read(&cpu_buffer->commit_page->page->commit) &
2989 			   ~RB_WRITE_MASK);
2990 		barrier();
2991 	}
2992 
2993 	/* again, keep gcc from optimizing */
2994 	barrier();
2995 
2996 	/*
2997 	 * If an interrupt came in just after the first while loop
2998 	 * and pushed the tail page forward, we will be left with
2999 	 * a dangling commit that will never go forward.
3000 	 */
3001 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3002 		goto again;
3003 }
3004 
3005 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3006 {
3007 	unsigned long commits;
3008 
3009 	if (RB_WARN_ON(cpu_buffer,
3010 		       !local_read(&cpu_buffer->committing)))
3011 		return;
3012 
3013  again:
3014 	commits = local_read(&cpu_buffer->commits);
3015 	/* synchronize with interrupts */
3016 	barrier();
3017 	if (local_read(&cpu_buffer->committing) == 1)
3018 		rb_set_commit_to_write(cpu_buffer);
3019 
3020 	local_dec(&cpu_buffer->committing);
3021 
3022 	/* synchronize with interrupts */
3023 	barrier();
3024 
3025 	/*
3026 	 * Need to account for interrupts coming in between the
3027 	 * updating of the commit page and the clearing of the
3028 	 * committing counter.
3029 	 */
3030 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3031 	    !local_read(&cpu_buffer->committing)) {
3032 		local_inc(&cpu_buffer->committing);
3033 		goto again;
3034 	}
3035 }
3036 
3037 static inline void rb_event_discard(struct ring_buffer_event *event)
3038 {
3039 	if (extended_time(event))
3040 		event = skip_time_extend(event);
3041 
3042 	/* array[0] holds the actual length for the discarded event */
3043 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3044 	event->type_len = RINGBUF_TYPE_PADDING;
3045 	/* time delta must be non zero */
3046 	if (!event->time_delta)
3047 		event->time_delta = 1;
3048 }
3049 
3050 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3051 {
3052 	local_inc(&cpu_buffer->entries);
3053 	rb_end_commit(cpu_buffer);
3054 }
3055 
3056 static __always_inline void
3057 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3058 {
3059 	if (buffer->irq_work.waiters_pending) {
3060 		buffer->irq_work.waiters_pending = false;
3061 		/* irq_work_queue() supplies it's own memory barriers */
3062 		irq_work_queue(&buffer->irq_work.work);
3063 	}
3064 
3065 	if (cpu_buffer->irq_work.waiters_pending) {
3066 		cpu_buffer->irq_work.waiters_pending = false;
3067 		/* irq_work_queue() supplies it's own memory barriers */
3068 		irq_work_queue(&cpu_buffer->irq_work.work);
3069 	}
3070 
3071 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3072 		return;
3073 
3074 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3075 		return;
3076 
3077 	if (!cpu_buffer->irq_work.full_waiters_pending)
3078 		return;
3079 
3080 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3081 
3082 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3083 		return;
3084 
3085 	cpu_buffer->irq_work.wakeup_full = true;
3086 	cpu_buffer->irq_work.full_waiters_pending = false;
3087 	/* irq_work_queue() supplies it's own memory barriers */
3088 	irq_work_queue(&cpu_buffer->irq_work.work);
3089 }
3090 
3091 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3092 # define do_ring_buffer_record_recursion()	\
3093 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3094 #else
3095 # define do_ring_buffer_record_recursion() do { } while (0)
3096 #endif
3097 
3098 /*
3099  * The lock and unlock are done within a preempt disable section.
3100  * The current_context per_cpu variable can only be modified
3101  * by the current task between lock and unlock. But it can
3102  * be modified more than once via an interrupt. To pass this
3103  * information from the lock to the unlock without having to
3104  * access the 'in_interrupt()' functions again (which do show
3105  * a bit of overhead in something as critical as function tracing,
3106  * we use a bitmask trick.
3107  *
3108  *  bit 1 =  NMI context
3109  *  bit 2 =  IRQ context
3110  *  bit 3 =  SoftIRQ context
3111  *  bit 4 =  normal context.
3112  *
3113  * This works because this is the order of contexts that can
3114  * preempt other contexts. A SoftIRQ never preempts an IRQ
3115  * context.
3116  *
3117  * When the context is determined, the corresponding bit is
3118  * checked and set (if it was set, then a recursion of that context
3119  * happened).
3120  *
3121  * On unlock, we need to clear this bit. To do so, just subtract
3122  * 1 from the current_context and AND it to itself.
3123  *
3124  * (binary)
3125  *  101 - 1 = 100
3126  *  101 & 100 = 100 (clearing bit zero)
3127  *
3128  *  1010 - 1 = 1001
3129  *  1010 & 1001 = 1000 (clearing bit 1)
3130  *
3131  * The least significant bit can be cleared this way, and it
3132  * just so happens that it is the same bit corresponding to
3133  * the current context.
3134  *
3135  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3136  * is set when a recursion is detected at the current context, and if
3137  * the TRANSITION bit is already set, it will fail the recursion.
3138  * This is needed because there's a lag between the changing of
3139  * interrupt context and updating the preempt count. In this case,
3140  * a false positive will be found. To handle this, one extra recursion
3141  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3142  * bit is already set, then it is considered a recursion and the function
3143  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3144  *
3145  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3146  * to be cleared. Even if it wasn't the context that set it. That is,
3147  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3148  * is called before preempt_count() is updated, since the check will
3149  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3150  * NMI then comes in, it will set the NMI bit, but when the NMI code
3151  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3152  * and leave the NMI bit set. But this is fine, because the interrupt
3153  * code that set the TRANSITION bit will then clear the NMI bit when it
3154  * calls trace_recursive_unlock(). If another NMI comes in, it will
3155  * set the TRANSITION bit and continue.
3156  *
3157  * Note: The TRANSITION bit only handles a single transition between context.
3158  */
3159 
3160 static __always_inline bool
3161 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3162 {
3163 	unsigned int val = cpu_buffer->current_context;
3164 	int bit = interrupt_context_level();
3165 
3166 	bit = RB_CTX_NORMAL - bit;
3167 
3168 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3169 		/*
3170 		 * It is possible that this was called by transitioning
3171 		 * between interrupt context, and preempt_count() has not
3172 		 * been updated yet. In this case, use the TRANSITION bit.
3173 		 */
3174 		bit = RB_CTX_TRANSITION;
3175 		if (val & (1 << (bit + cpu_buffer->nest))) {
3176 			do_ring_buffer_record_recursion();
3177 			return true;
3178 		}
3179 	}
3180 
3181 	val |= (1 << (bit + cpu_buffer->nest));
3182 	cpu_buffer->current_context = val;
3183 
3184 	return false;
3185 }
3186 
3187 static __always_inline void
3188 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3189 {
3190 	cpu_buffer->current_context &=
3191 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3192 }
3193 
3194 /* The recursive locking above uses 5 bits */
3195 #define NESTED_BITS 5
3196 
3197 /**
3198  * ring_buffer_nest_start - Allow to trace while nested
3199  * @buffer: The ring buffer to modify
3200  *
3201  * The ring buffer has a safety mechanism to prevent recursion.
3202  * But there may be a case where a trace needs to be done while
3203  * tracing something else. In this case, calling this function
3204  * will allow this function to nest within a currently active
3205  * ring_buffer_lock_reserve().
3206  *
3207  * Call this function before calling another ring_buffer_lock_reserve() and
3208  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3209  */
3210 void ring_buffer_nest_start(struct trace_buffer *buffer)
3211 {
3212 	struct ring_buffer_per_cpu *cpu_buffer;
3213 	int cpu;
3214 
3215 	/* Enabled by ring_buffer_nest_end() */
3216 	preempt_disable_notrace();
3217 	cpu = raw_smp_processor_id();
3218 	cpu_buffer = buffer->buffers[cpu];
3219 	/* This is the shift value for the above recursive locking */
3220 	cpu_buffer->nest += NESTED_BITS;
3221 }
3222 
3223 /**
3224  * ring_buffer_nest_end - Allow to trace while nested
3225  * @buffer: The ring buffer to modify
3226  *
3227  * Must be called after ring_buffer_nest_start() and after the
3228  * ring_buffer_unlock_commit().
3229  */
3230 void ring_buffer_nest_end(struct trace_buffer *buffer)
3231 {
3232 	struct ring_buffer_per_cpu *cpu_buffer;
3233 	int cpu;
3234 
3235 	/* disabled by ring_buffer_nest_start() */
3236 	cpu = raw_smp_processor_id();
3237 	cpu_buffer = buffer->buffers[cpu];
3238 	/* This is the shift value for the above recursive locking */
3239 	cpu_buffer->nest -= NESTED_BITS;
3240 	preempt_enable_notrace();
3241 }
3242 
3243 /**
3244  * ring_buffer_unlock_commit - commit a reserved
3245  * @buffer: The buffer to commit to
3246  *
3247  * This commits the data to the ring buffer, and releases any locks held.
3248  *
3249  * Must be paired with ring_buffer_lock_reserve.
3250  */
3251 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3252 {
3253 	struct ring_buffer_per_cpu *cpu_buffer;
3254 	int cpu = raw_smp_processor_id();
3255 
3256 	cpu_buffer = buffer->buffers[cpu];
3257 
3258 	rb_commit(cpu_buffer);
3259 
3260 	rb_wakeups(buffer, cpu_buffer);
3261 
3262 	trace_recursive_unlock(cpu_buffer);
3263 
3264 	preempt_enable_notrace();
3265 
3266 	return 0;
3267 }
3268 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3269 
3270 /* Special value to validate all deltas on a page. */
3271 #define CHECK_FULL_PAGE		1L
3272 
3273 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3274 
3275 static const char *show_irq_str(int bits)
3276 {
3277 	const char *type[] = {
3278 		".",	// 0
3279 		"s",	// 1
3280 		"h",	// 2
3281 		"Hs",	// 3
3282 		"n",	// 4
3283 		"Ns",	// 5
3284 		"Nh",	// 6
3285 		"NHs",	// 7
3286 	};
3287 
3288 	return type[bits];
3289 }
3290 
3291 /* Assume this is an trace event */
3292 static const char *show_flags(struct ring_buffer_event *event)
3293 {
3294 	struct trace_entry *entry;
3295 	int bits = 0;
3296 
3297 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3298 		return "X";
3299 
3300 	entry = ring_buffer_event_data(event);
3301 
3302 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
3303 		bits |= 1;
3304 
3305 	if (entry->flags & TRACE_FLAG_HARDIRQ)
3306 		bits |= 2;
3307 
3308 	if (entry->flags & TRACE_FLAG_NMI)
3309 		bits |= 4;
3310 
3311 	return show_irq_str(bits);
3312 }
3313 
3314 static const char *show_irq(struct ring_buffer_event *event)
3315 {
3316 	struct trace_entry *entry;
3317 
3318 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3319 		return "";
3320 
3321 	entry = ring_buffer_event_data(event);
3322 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
3323 		return "d";
3324 	return "";
3325 }
3326 
3327 static const char *show_interrupt_level(void)
3328 {
3329 	unsigned long pc = preempt_count();
3330 	unsigned char level = 0;
3331 
3332 	if (pc & SOFTIRQ_OFFSET)
3333 		level |= 1;
3334 
3335 	if (pc & HARDIRQ_MASK)
3336 		level |= 2;
3337 
3338 	if (pc & NMI_MASK)
3339 		level |= 4;
3340 
3341 	return show_irq_str(level);
3342 }
3343 
3344 static void dump_buffer_page(struct buffer_data_page *bpage,
3345 			     struct rb_event_info *info,
3346 			     unsigned long tail)
3347 {
3348 	struct ring_buffer_event *event;
3349 	u64 ts, delta;
3350 	int e;
3351 
3352 	ts = bpage->time_stamp;
3353 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3354 
3355 	for (e = 0; e < tail; e += rb_event_length(event)) {
3356 
3357 		event = (struct ring_buffer_event *)(bpage->data + e);
3358 
3359 		switch (event->type_len) {
3360 
3361 		case RINGBUF_TYPE_TIME_EXTEND:
3362 			delta = rb_event_time_stamp(event);
3363 			ts += delta;
3364 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3365 				e, ts, delta);
3366 			break;
3367 
3368 		case RINGBUF_TYPE_TIME_STAMP:
3369 			delta = rb_event_time_stamp(event);
3370 			ts = rb_fix_abs_ts(delta, ts);
3371 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3372 				e, ts, delta);
3373 			break;
3374 
3375 		case RINGBUF_TYPE_PADDING:
3376 			ts += event->time_delta;
3377 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3378 				e, ts, event->time_delta);
3379 			break;
3380 
3381 		case RINGBUF_TYPE_DATA:
3382 			ts += event->time_delta;
3383 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3384 				e, ts, event->time_delta,
3385 				show_flags(event), show_irq(event));
3386 			break;
3387 
3388 		default:
3389 			break;
3390 		}
3391 	}
3392 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3393 }
3394 
3395 static DEFINE_PER_CPU(atomic_t, checking);
3396 static atomic_t ts_dump;
3397 
3398 #define buffer_warn_return(fmt, ...)					\
3399 	do {								\
3400 		/* If another report is happening, ignore this one */	\
3401 		if (atomic_inc_return(&ts_dump) != 1) {			\
3402 			atomic_dec(&ts_dump);				\
3403 			goto out;					\
3404 		}							\
3405 		atomic_inc(&cpu_buffer->record_disabled);		\
3406 		pr_warn(fmt, ##__VA_ARGS__);				\
3407 		dump_buffer_page(bpage, info, tail);			\
3408 		atomic_dec(&ts_dump);					\
3409 		/* There's some cases in boot up that this can happen */ \
3410 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
3411 			/* Do not re-enable checking */			\
3412 			return;						\
3413 	} while (0)
3414 
3415 /*
3416  * Check if the current event time stamp matches the deltas on
3417  * the buffer page.
3418  */
3419 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3420 			 struct rb_event_info *info,
3421 			 unsigned long tail)
3422 {
3423 	struct ring_buffer_event *event;
3424 	struct buffer_data_page *bpage;
3425 	u64 ts, delta;
3426 	bool full = false;
3427 	int e;
3428 
3429 	bpage = info->tail_page->page;
3430 
3431 	if (tail == CHECK_FULL_PAGE) {
3432 		full = true;
3433 		tail = local_read(&bpage->commit);
3434 	} else if (info->add_timestamp &
3435 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3436 		/* Ignore events with absolute time stamps */
3437 		return;
3438 	}
3439 
3440 	/*
3441 	 * Do not check the first event (skip possible extends too).
3442 	 * Also do not check if previous events have not been committed.
3443 	 */
3444 	if (tail <= 8 || tail > local_read(&bpage->commit))
3445 		return;
3446 
3447 	/*
3448 	 * If this interrupted another event,
3449 	 */
3450 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3451 		goto out;
3452 
3453 	ts = bpage->time_stamp;
3454 
3455 	for (e = 0; e < tail; e += rb_event_length(event)) {
3456 
3457 		event = (struct ring_buffer_event *)(bpage->data + e);
3458 
3459 		switch (event->type_len) {
3460 
3461 		case RINGBUF_TYPE_TIME_EXTEND:
3462 			delta = rb_event_time_stamp(event);
3463 			ts += delta;
3464 			break;
3465 
3466 		case RINGBUF_TYPE_TIME_STAMP:
3467 			delta = rb_event_time_stamp(event);
3468 			delta = rb_fix_abs_ts(delta, ts);
3469 			if (delta < ts) {
3470 				buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3471 						   cpu_buffer->cpu, ts, delta);
3472 			}
3473 			ts = delta;
3474 			break;
3475 
3476 		case RINGBUF_TYPE_PADDING:
3477 			if (event->time_delta == 1)
3478 				break;
3479 			fallthrough;
3480 		case RINGBUF_TYPE_DATA:
3481 			ts += event->time_delta;
3482 			break;
3483 
3484 		default:
3485 			RB_WARN_ON(cpu_buffer, 1);
3486 		}
3487 	}
3488 	if ((full && ts > info->ts) ||
3489 	    (!full && ts + info->delta != info->ts)) {
3490 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3491 				   cpu_buffer->cpu,
3492 				   ts + info->delta, info->ts, info->delta,
3493 				   info->before, info->after,
3494 				   full ? " (full)" : "", show_interrupt_level());
3495 	}
3496 out:
3497 	atomic_dec(this_cpu_ptr(&checking));
3498 }
3499 #else
3500 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3501 			 struct rb_event_info *info,
3502 			 unsigned long tail)
3503 {
3504 }
3505 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3506 
3507 static struct ring_buffer_event *
3508 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3509 		  struct rb_event_info *info)
3510 {
3511 	struct ring_buffer_event *event;
3512 	struct buffer_page *tail_page;
3513 	unsigned long tail, write, w;
3514 
3515 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3516 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3517 
3518  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3519 	barrier();
3520 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
3521 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
3522 	barrier();
3523 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3524 
3525 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3526 		info->delta = info->ts;
3527 	} else {
3528 		/*
3529 		 * If interrupting an event time update, we may need an
3530 		 * absolute timestamp.
3531 		 * Don't bother if this is the start of a new page (w == 0).
3532 		 */
3533 		if (!w) {
3534 			/* Use the sub-buffer timestamp */
3535 			info->delta = 0;
3536 		} else if (unlikely(info->before != info->after)) {
3537 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3538 			info->length += RB_LEN_TIME_EXTEND;
3539 		} else {
3540 			info->delta = info->ts - info->after;
3541 			if (unlikely(test_time_stamp(info->delta))) {
3542 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3543 				info->length += RB_LEN_TIME_EXTEND;
3544 			}
3545 		}
3546 	}
3547 
3548  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3549 
3550  /*C*/	write = local_add_return(info->length, &tail_page->write);
3551 
3552 	/* set write to only the index of the write */
3553 	write &= RB_WRITE_MASK;
3554 
3555 	tail = write - info->length;
3556 
3557 	/* See if we shot pass the end of this buffer page */
3558 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3559 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3560 		return rb_move_tail(cpu_buffer, tail, info);
3561 	}
3562 
3563 	if (likely(tail == w)) {
3564 		/* Nothing interrupted us between A and C */
3565  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3566 		/*
3567 		 * If something came in between C and D, the write stamp
3568 		 * may now not be in sync. But that's fine as the before_stamp
3569 		 * will be different and then next event will just be forced
3570 		 * to use an absolute timestamp.
3571 		 */
3572 		if (likely(!(info->add_timestamp &
3573 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3574 			/* This did not interrupt any time update */
3575 			info->delta = info->ts - info->after;
3576 		else
3577 			/* Just use full timestamp for interrupting event */
3578 			info->delta = info->ts;
3579 		check_buffer(cpu_buffer, info, tail);
3580 	} else {
3581 		u64 ts;
3582 		/* SLOW PATH - Interrupted between A and C */
3583 
3584 		/* Save the old before_stamp */
3585 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
3586 
3587 		/*
3588 		 * Read a new timestamp and update the before_stamp to make
3589 		 * the next event after this one force using an absolute
3590 		 * timestamp. This is in case an interrupt were to come in
3591 		 * between E and F.
3592 		 */
3593 		ts = rb_time_stamp(cpu_buffer->buffer);
3594 		rb_time_set(&cpu_buffer->before_stamp, ts);
3595 
3596 		barrier();
3597  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
3598 		barrier();
3599  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3600 		    info->after == info->before && info->after < ts) {
3601 			/*
3602 			 * Nothing came after this event between C and F, it is
3603 			 * safe to use info->after for the delta as it
3604 			 * matched info->before and is still valid.
3605 			 */
3606 			info->delta = ts - info->after;
3607 		} else {
3608 			/*
3609 			 * Interrupted between C and F:
3610 			 * Lost the previous events time stamp. Just set the
3611 			 * delta to zero, and this will be the same time as
3612 			 * the event this event interrupted. And the events that
3613 			 * came after this will still be correct (as they would
3614 			 * have built their delta on the previous event.
3615 			 */
3616 			info->delta = 0;
3617 		}
3618 		info->ts = ts;
3619 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3620 	}
3621 
3622 	/*
3623 	 * If this is the first commit on the page, then it has the same
3624 	 * timestamp as the page itself.
3625 	 */
3626 	if (unlikely(!tail && !(info->add_timestamp &
3627 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3628 		info->delta = 0;
3629 
3630 	/* We reserved something on the buffer */
3631 
3632 	event = __rb_page_index(tail_page, tail);
3633 	rb_update_event(cpu_buffer, event, info);
3634 
3635 	local_inc(&tail_page->entries);
3636 
3637 	/*
3638 	 * If this is the first commit on the page, then update
3639 	 * its timestamp.
3640 	 */
3641 	if (unlikely(!tail))
3642 		tail_page->page->time_stamp = info->ts;
3643 
3644 	/* account for these added bytes */
3645 	local_add(info->length, &cpu_buffer->entries_bytes);
3646 
3647 	return event;
3648 }
3649 
3650 static __always_inline struct ring_buffer_event *
3651 rb_reserve_next_event(struct trace_buffer *buffer,
3652 		      struct ring_buffer_per_cpu *cpu_buffer,
3653 		      unsigned long length)
3654 {
3655 	struct ring_buffer_event *event;
3656 	struct rb_event_info info;
3657 	int nr_loops = 0;
3658 	int add_ts_default;
3659 
3660 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3661 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3662 	    (unlikely(in_nmi()))) {
3663 		return NULL;
3664 	}
3665 
3666 	rb_start_commit(cpu_buffer);
3667 	/* The commit page can not change after this */
3668 
3669 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3670 	/*
3671 	 * Due to the ability to swap a cpu buffer from a buffer
3672 	 * it is possible it was swapped before we committed.
3673 	 * (committing stops a swap). We check for it here and
3674 	 * if it happened, we have to fail the write.
3675 	 */
3676 	barrier();
3677 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3678 		local_dec(&cpu_buffer->committing);
3679 		local_dec(&cpu_buffer->commits);
3680 		return NULL;
3681 	}
3682 #endif
3683 
3684 	info.length = rb_calculate_event_length(length);
3685 
3686 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3687 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3688 		info.length += RB_LEN_TIME_EXTEND;
3689 		if (info.length > cpu_buffer->buffer->max_data_size)
3690 			goto out_fail;
3691 	} else {
3692 		add_ts_default = RB_ADD_STAMP_NONE;
3693 	}
3694 
3695  again:
3696 	info.add_timestamp = add_ts_default;
3697 	info.delta = 0;
3698 
3699 	/*
3700 	 * We allow for interrupts to reenter here and do a trace.
3701 	 * If one does, it will cause this original code to loop
3702 	 * back here. Even with heavy interrupts happening, this
3703 	 * should only happen a few times in a row. If this happens
3704 	 * 1000 times in a row, there must be either an interrupt
3705 	 * storm or we have something buggy.
3706 	 * Bail!
3707 	 */
3708 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3709 		goto out_fail;
3710 
3711 	event = __rb_reserve_next(cpu_buffer, &info);
3712 
3713 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3714 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3715 			info.length -= RB_LEN_TIME_EXTEND;
3716 		goto again;
3717 	}
3718 
3719 	if (likely(event))
3720 		return event;
3721  out_fail:
3722 	rb_end_commit(cpu_buffer);
3723 	return NULL;
3724 }
3725 
3726 /**
3727  * ring_buffer_lock_reserve - reserve a part of the buffer
3728  * @buffer: the ring buffer to reserve from
3729  * @length: the length of the data to reserve (excluding event header)
3730  *
3731  * Returns a reserved event on the ring buffer to copy directly to.
3732  * The user of this interface will need to get the body to write into
3733  * and can use the ring_buffer_event_data() interface.
3734  *
3735  * The length is the length of the data needed, not the event length
3736  * which also includes the event header.
3737  *
3738  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3739  * If NULL is returned, then nothing has been allocated or locked.
3740  */
3741 struct ring_buffer_event *
3742 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3743 {
3744 	struct ring_buffer_per_cpu *cpu_buffer;
3745 	struct ring_buffer_event *event;
3746 	int cpu;
3747 
3748 	/* If we are tracing schedule, we don't want to recurse */
3749 	preempt_disable_notrace();
3750 
3751 	if (unlikely(atomic_read(&buffer->record_disabled)))
3752 		goto out;
3753 
3754 	cpu = raw_smp_processor_id();
3755 
3756 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3757 		goto out;
3758 
3759 	cpu_buffer = buffer->buffers[cpu];
3760 
3761 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3762 		goto out;
3763 
3764 	if (unlikely(length > buffer->max_data_size))
3765 		goto out;
3766 
3767 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3768 		goto out;
3769 
3770 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3771 	if (!event)
3772 		goto out_unlock;
3773 
3774 	return event;
3775 
3776  out_unlock:
3777 	trace_recursive_unlock(cpu_buffer);
3778  out:
3779 	preempt_enable_notrace();
3780 	return NULL;
3781 }
3782 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3783 
3784 /*
3785  * Decrement the entries to the page that an event is on.
3786  * The event does not even need to exist, only the pointer
3787  * to the page it is on. This may only be called before the commit
3788  * takes place.
3789  */
3790 static inline void
3791 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3792 		   struct ring_buffer_event *event)
3793 {
3794 	unsigned long addr = (unsigned long)event;
3795 	struct buffer_page *bpage = cpu_buffer->commit_page;
3796 	struct buffer_page *start;
3797 
3798 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3799 
3800 	/* Do the likely case first */
3801 	if (likely(bpage->page == (void *)addr)) {
3802 		local_dec(&bpage->entries);
3803 		return;
3804 	}
3805 
3806 	/*
3807 	 * Because the commit page may be on the reader page we
3808 	 * start with the next page and check the end loop there.
3809 	 */
3810 	rb_inc_page(&bpage);
3811 	start = bpage;
3812 	do {
3813 		if (bpage->page == (void *)addr) {
3814 			local_dec(&bpage->entries);
3815 			return;
3816 		}
3817 		rb_inc_page(&bpage);
3818 	} while (bpage != start);
3819 
3820 	/* commit not part of this buffer?? */
3821 	RB_WARN_ON(cpu_buffer, 1);
3822 }
3823 
3824 /**
3825  * ring_buffer_discard_commit - discard an event that has not been committed
3826  * @buffer: the ring buffer
3827  * @event: non committed event to discard
3828  *
3829  * Sometimes an event that is in the ring buffer needs to be ignored.
3830  * This function lets the user discard an event in the ring buffer
3831  * and then that event will not be read later.
3832  *
3833  * This function only works if it is called before the item has been
3834  * committed. It will try to free the event from the ring buffer
3835  * if another event has not been added behind it.
3836  *
3837  * If another event has been added behind it, it will set the event
3838  * up as discarded, and perform the commit.
3839  *
3840  * If this function is called, do not call ring_buffer_unlock_commit on
3841  * the event.
3842  */
3843 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3844 				struct ring_buffer_event *event)
3845 {
3846 	struct ring_buffer_per_cpu *cpu_buffer;
3847 	int cpu;
3848 
3849 	/* The event is discarded regardless */
3850 	rb_event_discard(event);
3851 
3852 	cpu = smp_processor_id();
3853 	cpu_buffer = buffer->buffers[cpu];
3854 
3855 	/*
3856 	 * This must only be called if the event has not been
3857 	 * committed yet. Thus we can assume that preemption
3858 	 * is still disabled.
3859 	 */
3860 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3861 
3862 	rb_decrement_entry(cpu_buffer, event);
3863 	if (rb_try_to_discard(cpu_buffer, event))
3864 		goto out;
3865 
3866  out:
3867 	rb_end_commit(cpu_buffer);
3868 
3869 	trace_recursive_unlock(cpu_buffer);
3870 
3871 	preempt_enable_notrace();
3872 
3873 }
3874 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3875 
3876 /**
3877  * ring_buffer_write - write data to the buffer without reserving
3878  * @buffer: The ring buffer to write to.
3879  * @length: The length of the data being written (excluding the event header)
3880  * @data: The data to write to the buffer.
3881  *
3882  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3883  * one function. If you already have the data to write to the buffer, it
3884  * may be easier to simply call this function.
3885  *
3886  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3887  * and not the length of the event which would hold the header.
3888  */
3889 int ring_buffer_write(struct trace_buffer *buffer,
3890 		      unsigned long length,
3891 		      void *data)
3892 {
3893 	struct ring_buffer_per_cpu *cpu_buffer;
3894 	struct ring_buffer_event *event;
3895 	void *body;
3896 	int ret = -EBUSY;
3897 	int cpu;
3898 
3899 	preempt_disable_notrace();
3900 
3901 	if (atomic_read(&buffer->record_disabled))
3902 		goto out;
3903 
3904 	cpu = raw_smp_processor_id();
3905 
3906 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3907 		goto out;
3908 
3909 	cpu_buffer = buffer->buffers[cpu];
3910 
3911 	if (atomic_read(&cpu_buffer->record_disabled))
3912 		goto out;
3913 
3914 	if (length > buffer->max_data_size)
3915 		goto out;
3916 
3917 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3918 		goto out;
3919 
3920 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3921 	if (!event)
3922 		goto out_unlock;
3923 
3924 	body = rb_event_data(event);
3925 
3926 	memcpy(body, data, length);
3927 
3928 	rb_commit(cpu_buffer);
3929 
3930 	rb_wakeups(buffer, cpu_buffer);
3931 
3932 	ret = 0;
3933 
3934  out_unlock:
3935 	trace_recursive_unlock(cpu_buffer);
3936 
3937  out:
3938 	preempt_enable_notrace();
3939 
3940 	return ret;
3941 }
3942 EXPORT_SYMBOL_GPL(ring_buffer_write);
3943 
3944 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3945 {
3946 	struct buffer_page *reader = cpu_buffer->reader_page;
3947 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3948 	struct buffer_page *commit = cpu_buffer->commit_page;
3949 
3950 	/* In case of error, head will be NULL */
3951 	if (unlikely(!head))
3952 		return true;
3953 
3954 	/* Reader should exhaust content in reader page */
3955 	if (reader->read != rb_page_size(reader))
3956 		return false;
3957 
3958 	/*
3959 	 * If writers are committing on the reader page, knowing all
3960 	 * committed content has been read, the ring buffer is empty.
3961 	 */
3962 	if (commit == reader)
3963 		return true;
3964 
3965 	/*
3966 	 * If writers are committing on a page other than reader page
3967 	 * and head page, there should always be content to read.
3968 	 */
3969 	if (commit != head)
3970 		return false;
3971 
3972 	/*
3973 	 * Writers are committing on the head page, we just need
3974 	 * to care about there're committed data, and the reader will
3975 	 * swap reader page with head page when it is to read data.
3976 	 */
3977 	return rb_page_commit(commit) == 0;
3978 }
3979 
3980 /**
3981  * ring_buffer_record_disable - stop all writes into the buffer
3982  * @buffer: The ring buffer to stop writes to.
3983  *
3984  * This prevents all writes to the buffer. Any attempt to write
3985  * to the buffer after this will fail and return NULL.
3986  *
3987  * The caller should call synchronize_rcu() after this.
3988  */
3989 void ring_buffer_record_disable(struct trace_buffer *buffer)
3990 {
3991 	atomic_inc(&buffer->record_disabled);
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3994 
3995 /**
3996  * ring_buffer_record_enable - enable writes to the buffer
3997  * @buffer: The ring buffer to enable writes
3998  *
3999  * Note, multiple disables will need the same number of enables
4000  * to truly enable the writing (much like preempt_disable).
4001  */
4002 void ring_buffer_record_enable(struct trace_buffer *buffer)
4003 {
4004 	atomic_dec(&buffer->record_disabled);
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4007 
4008 /**
4009  * ring_buffer_record_off - stop all writes into the buffer
4010  * @buffer: The ring buffer to stop writes to.
4011  *
4012  * This prevents all writes to the buffer. Any attempt to write
4013  * to the buffer after this will fail and return NULL.
4014  *
4015  * This is different than ring_buffer_record_disable() as
4016  * it works like an on/off switch, where as the disable() version
4017  * must be paired with a enable().
4018  */
4019 void ring_buffer_record_off(struct trace_buffer *buffer)
4020 {
4021 	unsigned int rd;
4022 	unsigned int new_rd;
4023 
4024 	rd = atomic_read(&buffer->record_disabled);
4025 	do {
4026 		new_rd = rd | RB_BUFFER_OFF;
4027 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4028 }
4029 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4030 
4031 /**
4032  * ring_buffer_record_on - restart writes into the buffer
4033  * @buffer: The ring buffer to start writes to.
4034  *
4035  * This enables all writes to the buffer that was disabled by
4036  * ring_buffer_record_off().
4037  *
4038  * This is different than ring_buffer_record_enable() as
4039  * it works like an on/off switch, where as the enable() version
4040  * must be paired with a disable().
4041  */
4042 void ring_buffer_record_on(struct trace_buffer *buffer)
4043 {
4044 	unsigned int rd;
4045 	unsigned int new_rd;
4046 
4047 	rd = atomic_read(&buffer->record_disabled);
4048 	do {
4049 		new_rd = rd & ~RB_BUFFER_OFF;
4050 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4051 }
4052 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4053 
4054 /**
4055  * ring_buffer_record_is_on - return true if the ring buffer can write
4056  * @buffer: The ring buffer to see if write is enabled
4057  *
4058  * Returns true if the ring buffer is in a state that it accepts writes.
4059  */
4060 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4061 {
4062 	return !atomic_read(&buffer->record_disabled);
4063 }
4064 
4065 /**
4066  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4067  * @buffer: The ring buffer to see if write is set enabled
4068  *
4069  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4070  * Note that this does NOT mean it is in a writable state.
4071  *
4072  * It may return true when the ring buffer has been disabled by
4073  * ring_buffer_record_disable(), as that is a temporary disabling of
4074  * the ring buffer.
4075  */
4076 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4077 {
4078 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4079 }
4080 
4081 /**
4082  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4083  * @buffer: The ring buffer to stop writes to.
4084  * @cpu: The CPU buffer to stop
4085  *
4086  * This prevents all writes to the buffer. Any attempt to write
4087  * to the buffer after this will fail and return NULL.
4088  *
4089  * The caller should call synchronize_rcu() after this.
4090  */
4091 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4092 {
4093 	struct ring_buffer_per_cpu *cpu_buffer;
4094 
4095 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4096 		return;
4097 
4098 	cpu_buffer = buffer->buffers[cpu];
4099 	atomic_inc(&cpu_buffer->record_disabled);
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4102 
4103 /**
4104  * ring_buffer_record_enable_cpu - enable writes to the buffer
4105  * @buffer: The ring buffer to enable writes
4106  * @cpu: The CPU to enable.
4107  *
4108  * Note, multiple disables will need the same number of enables
4109  * to truly enable the writing (much like preempt_disable).
4110  */
4111 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4112 {
4113 	struct ring_buffer_per_cpu *cpu_buffer;
4114 
4115 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116 		return;
4117 
4118 	cpu_buffer = buffer->buffers[cpu];
4119 	atomic_dec(&cpu_buffer->record_disabled);
4120 }
4121 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4122 
4123 /*
4124  * The total entries in the ring buffer is the running counter
4125  * of entries entered into the ring buffer, minus the sum of
4126  * the entries read from the ring buffer and the number of
4127  * entries that were overwritten.
4128  */
4129 static inline unsigned long
4130 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4131 {
4132 	return local_read(&cpu_buffer->entries) -
4133 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4134 }
4135 
4136 /**
4137  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4138  * @buffer: The ring buffer
4139  * @cpu: The per CPU buffer to read from.
4140  */
4141 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4142 {
4143 	unsigned long flags;
4144 	struct ring_buffer_per_cpu *cpu_buffer;
4145 	struct buffer_page *bpage;
4146 	u64 ret = 0;
4147 
4148 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4149 		return 0;
4150 
4151 	cpu_buffer = buffer->buffers[cpu];
4152 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4153 	/*
4154 	 * if the tail is on reader_page, oldest time stamp is on the reader
4155 	 * page
4156 	 */
4157 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4158 		bpage = cpu_buffer->reader_page;
4159 	else
4160 		bpage = rb_set_head_page(cpu_buffer);
4161 	if (bpage)
4162 		ret = bpage->page->time_stamp;
4163 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4164 
4165 	return ret;
4166 }
4167 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4168 
4169 /**
4170  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4171  * @buffer: The ring buffer
4172  * @cpu: The per CPU buffer to read from.
4173  */
4174 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4175 {
4176 	struct ring_buffer_per_cpu *cpu_buffer;
4177 	unsigned long ret;
4178 
4179 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4180 		return 0;
4181 
4182 	cpu_buffer = buffer->buffers[cpu];
4183 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4184 
4185 	return ret;
4186 }
4187 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4188 
4189 /**
4190  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4191  * @buffer: The ring buffer
4192  * @cpu: The per CPU buffer to get the entries from.
4193  */
4194 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4195 {
4196 	struct ring_buffer_per_cpu *cpu_buffer;
4197 
4198 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4199 		return 0;
4200 
4201 	cpu_buffer = buffer->buffers[cpu];
4202 
4203 	return rb_num_of_entries(cpu_buffer);
4204 }
4205 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4206 
4207 /**
4208  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4209  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4210  * @buffer: The ring buffer
4211  * @cpu: The per CPU buffer to get the number of overruns from
4212  */
4213 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4214 {
4215 	struct ring_buffer_per_cpu *cpu_buffer;
4216 	unsigned long ret;
4217 
4218 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4219 		return 0;
4220 
4221 	cpu_buffer = buffer->buffers[cpu];
4222 	ret = local_read(&cpu_buffer->overrun);
4223 
4224 	return ret;
4225 }
4226 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4227 
4228 /**
4229  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4230  * commits failing due to the buffer wrapping around while there are uncommitted
4231  * events, such as during an interrupt storm.
4232  * @buffer: The ring buffer
4233  * @cpu: The per CPU buffer to get the number of overruns from
4234  */
4235 unsigned long
4236 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4237 {
4238 	struct ring_buffer_per_cpu *cpu_buffer;
4239 	unsigned long ret;
4240 
4241 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4242 		return 0;
4243 
4244 	cpu_buffer = buffer->buffers[cpu];
4245 	ret = local_read(&cpu_buffer->commit_overrun);
4246 
4247 	return ret;
4248 }
4249 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4250 
4251 /**
4252  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4253  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4254  * @buffer: The ring buffer
4255  * @cpu: The per CPU buffer to get the number of overruns from
4256  */
4257 unsigned long
4258 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4259 {
4260 	struct ring_buffer_per_cpu *cpu_buffer;
4261 	unsigned long ret;
4262 
4263 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4264 		return 0;
4265 
4266 	cpu_buffer = buffer->buffers[cpu];
4267 	ret = local_read(&cpu_buffer->dropped_events);
4268 
4269 	return ret;
4270 }
4271 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4272 
4273 /**
4274  * ring_buffer_read_events_cpu - get the number of events successfully read
4275  * @buffer: The ring buffer
4276  * @cpu: The per CPU buffer to get the number of events read
4277  */
4278 unsigned long
4279 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4280 {
4281 	struct ring_buffer_per_cpu *cpu_buffer;
4282 
4283 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4284 		return 0;
4285 
4286 	cpu_buffer = buffer->buffers[cpu];
4287 	return cpu_buffer->read;
4288 }
4289 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4290 
4291 /**
4292  * ring_buffer_entries - get the number of entries in a buffer
4293  * @buffer: The ring buffer
4294  *
4295  * Returns the total number of entries in the ring buffer
4296  * (all CPU entries)
4297  */
4298 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4299 {
4300 	struct ring_buffer_per_cpu *cpu_buffer;
4301 	unsigned long entries = 0;
4302 	int cpu;
4303 
4304 	/* if you care about this being correct, lock the buffer */
4305 	for_each_buffer_cpu(buffer, cpu) {
4306 		cpu_buffer = buffer->buffers[cpu];
4307 		entries += rb_num_of_entries(cpu_buffer);
4308 	}
4309 
4310 	return entries;
4311 }
4312 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4313 
4314 /**
4315  * ring_buffer_overruns - get the number of overruns in buffer
4316  * @buffer: The ring buffer
4317  *
4318  * Returns the total number of overruns in the ring buffer
4319  * (all CPU entries)
4320  */
4321 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4322 {
4323 	struct ring_buffer_per_cpu *cpu_buffer;
4324 	unsigned long overruns = 0;
4325 	int cpu;
4326 
4327 	/* if you care about this being correct, lock the buffer */
4328 	for_each_buffer_cpu(buffer, cpu) {
4329 		cpu_buffer = buffer->buffers[cpu];
4330 		overruns += local_read(&cpu_buffer->overrun);
4331 	}
4332 
4333 	return overruns;
4334 }
4335 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4336 
4337 static void rb_iter_reset(struct ring_buffer_iter *iter)
4338 {
4339 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4340 
4341 	/* Iterator usage is expected to have record disabled */
4342 	iter->head_page = cpu_buffer->reader_page;
4343 	iter->head = cpu_buffer->reader_page->read;
4344 	iter->next_event = iter->head;
4345 
4346 	iter->cache_reader_page = iter->head_page;
4347 	iter->cache_read = cpu_buffer->read;
4348 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4349 
4350 	if (iter->head) {
4351 		iter->read_stamp = cpu_buffer->read_stamp;
4352 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4353 	} else {
4354 		iter->read_stamp = iter->head_page->page->time_stamp;
4355 		iter->page_stamp = iter->read_stamp;
4356 	}
4357 }
4358 
4359 /**
4360  * ring_buffer_iter_reset - reset an iterator
4361  * @iter: The iterator to reset
4362  *
4363  * Resets the iterator, so that it will start from the beginning
4364  * again.
4365  */
4366 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4367 {
4368 	struct ring_buffer_per_cpu *cpu_buffer;
4369 	unsigned long flags;
4370 
4371 	if (!iter)
4372 		return;
4373 
4374 	cpu_buffer = iter->cpu_buffer;
4375 
4376 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4377 	rb_iter_reset(iter);
4378 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4379 }
4380 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4381 
4382 /**
4383  * ring_buffer_iter_empty - check if an iterator has no more to read
4384  * @iter: The iterator to check
4385  */
4386 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4387 {
4388 	struct ring_buffer_per_cpu *cpu_buffer;
4389 	struct buffer_page *reader;
4390 	struct buffer_page *head_page;
4391 	struct buffer_page *commit_page;
4392 	struct buffer_page *curr_commit_page;
4393 	unsigned commit;
4394 	u64 curr_commit_ts;
4395 	u64 commit_ts;
4396 
4397 	cpu_buffer = iter->cpu_buffer;
4398 	reader = cpu_buffer->reader_page;
4399 	head_page = cpu_buffer->head_page;
4400 	commit_page = READ_ONCE(cpu_buffer->commit_page);
4401 	commit_ts = commit_page->page->time_stamp;
4402 
4403 	/*
4404 	 * When the writer goes across pages, it issues a cmpxchg which
4405 	 * is a mb(), which will synchronize with the rmb here.
4406 	 * (see rb_tail_page_update())
4407 	 */
4408 	smp_rmb();
4409 	commit = rb_page_commit(commit_page);
4410 	/* We want to make sure that the commit page doesn't change */
4411 	smp_rmb();
4412 
4413 	/* Make sure commit page didn't change */
4414 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4415 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4416 
4417 	/* If the commit page changed, then there's more data */
4418 	if (curr_commit_page != commit_page ||
4419 	    curr_commit_ts != commit_ts)
4420 		return 0;
4421 
4422 	/* Still racy, as it may return a false positive, but that's OK */
4423 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4424 		(iter->head_page == reader && commit_page == head_page &&
4425 		 head_page->read == commit &&
4426 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
4427 }
4428 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4429 
4430 static void
4431 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4432 		     struct ring_buffer_event *event)
4433 {
4434 	u64 delta;
4435 
4436 	switch (event->type_len) {
4437 	case RINGBUF_TYPE_PADDING:
4438 		return;
4439 
4440 	case RINGBUF_TYPE_TIME_EXTEND:
4441 		delta = rb_event_time_stamp(event);
4442 		cpu_buffer->read_stamp += delta;
4443 		return;
4444 
4445 	case RINGBUF_TYPE_TIME_STAMP:
4446 		delta = rb_event_time_stamp(event);
4447 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4448 		cpu_buffer->read_stamp = delta;
4449 		return;
4450 
4451 	case RINGBUF_TYPE_DATA:
4452 		cpu_buffer->read_stamp += event->time_delta;
4453 		return;
4454 
4455 	default:
4456 		RB_WARN_ON(cpu_buffer, 1);
4457 	}
4458 }
4459 
4460 static void
4461 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4462 			  struct ring_buffer_event *event)
4463 {
4464 	u64 delta;
4465 
4466 	switch (event->type_len) {
4467 	case RINGBUF_TYPE_PADDING:
4468 		return;
4469 
4470 	case RINGBUF_TYPE_TIME_EXTEND:
4471 		delta = rb_event_time_stamp(event);
4472 		iter->read_stamp += delta;
4473 		return;
4474 
4475 	case RINGBUF_TYPE_TIME_STAMP:
4476 		delta = rb_event_time_stamp(event);
4477 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4478 		iter->read_stamp = delta;
4479 		return;
4480 
4481 	case RINGBUF_TYPE_DATA:
4482 		iter->read_stamp += event->time_delta;
4483 		return;
4484 
4485 	default:
4486 		RB_WARN_ON(iter->cpu_buffer, 1);
4487 	}
4488 }
4489 
4490 static struct buffer_page *
4491 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4492 {
4493 	struct buffer_page *reader = NULL;
4494 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4495 	unsigned long overwrite;
4496 	unsigned long flags;
4497 	int nr_loops = 0;
4498 	bool ret;
4499 
4500 	local_irq_save(flags);
4501 	arch_spin_lock(&cpu_buffer->lock);
4502 
4503  again:
4504 	/*
4505 	 * This should normally only loop twice. But because the
4506 	 * start of the reader inserts an empty page, it causes
4507 	 * a case where we will loop three times. There should be no
4508 	 * reason to loop four times (that I know of).
4509 	 */
4510 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4511 		reader = NULL;
4512 		goto out;
4513 	}
4514 
4515 	reader = cpu_buffer->reader_page;
4516 
4517 	/* If there's more to read, return this page */
4518 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4519 		goto out;
4520 
4521 	/* Never should we have an index greater than the size */
4522 	if (RB_WARN_ON(cpu_buffer,
4523 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4524 		goto out;
4525 
4526 	/* check if we caught up to the tail */
4527 	reader = NULL;
4528 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4529 		goto out;
4530 
4531 	/* Don't bother swapping if the ring buffer is empty */
4532 	if (rb_num_of_entries(cpu_buffer) == 0)
4533 		goto out;
4534 
4535 	/*
4536 	 * Reset the reader page to size zero.
4537 	 */
4538 	local_set(&cpu_buffer->reader_page->write, 0);
4539 	local_set(&cpu_buffer->reader_page->entries, 0);
4540 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4541 	cpu_buffer->reader_page->real_end = 0;
4542 
4543  spin:
4544 	/*
4545 	 * Splice the empty reader page into the list around the head.
4546 	 */
4547 	reader = rb_set_head_page(cpu_buffer);
4548 	if (!reader)
4549 		goto out;
4550 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4551 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4552 
4553 	/*
4554 	 * cpu_buffer->pages just needs to point to the buffer, it
4555 	 *  has no specific buffer page to point to. Lets move it out
4556 	 *  of our way so we don't accidentally swap it.
4557 	 */
4558 	cpu_buffer->pages = reader->list.prev;
4559 
4560 	/* The reader page will be pointing to the new head */
4561 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4562 
4563 	/*
4564 	 * We want to make sure we read the overruns after we set up our
4565 	 * pointers to the next object. The writer side does a
4566 	 * cmpxchg to cross pages which acts as the mb on the writer
4567 	 * side. Note, the reader will constantly fail the swap
4568 	 * while the writer is updating the pointers, so this
4569 	 * guarantees that the overwrite recorded here is the one we
4570 	 * want to compare with the last_overrun.
4571 	 */
4572 	smp_mb();
4573 	overwrite = local_read(&(cpu_buffer->overrun));
4574 
4575 	/*
4576 	 * Here's the tricky part.
4577 	 *
4578 	 * We need to move the pointer past the header page.
4579 	 * But we can only do that if a writer is not currently
4580 	 * moving it. The page before the header page has the
4581 	 * flag bit '1' set if it is pointing to the page we want.
4582 	 * but if the writer is in the process of moving it
4583 	 * than it will be '2' or already moved '0'.
4584 	 */
4585 
4586 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4587 
4588 	/*
4589 	 * If we did not convert it, then we must try again.
4590 	 */
4591 	if (!ret)
4592 		goto spin;
4593 
4594 	/*
4595 	 * Yay! We succeeded in replacing the page.
4596 	 *
4597 	 * Now make the new head point back to the reader page.
4598 	 */
4599 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4600 	rb_inc_page(&cpu_buffer->head_page);
4601 
4602 	local_inc(&cpu_buffer->pages_read);
4603 
4604 	/* Finally update the reader page to the new head */
4605 	cpu_buffer->reader_page = reader;
4606 	cpu_buffer->reader_page->read = 0;
4607 
4608 	if (overwrite != cpu_buffer->last_overrun) {
4609 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4610 		cpu_buffer->last_overrun = overwrite;
4611 	}
4612 
4613 	goto again;
4614 
4615  out:
4616 	/* Update the read_stamp on the first event */
4617 	if (reader && reader->read == 0)
4618 		cpu_buffer->read_stamp = reader->page->time_stamp;
4619 
4620 	arch_spin_unlock(&cpu_buffer->lock);
4621 	local_irq_restore(flags);
4622 
4623 	/*
4624 	 * The writer has preempt disable, wait for it. But not forever
4625 	 * Although, 1 second is pretty much "forever"
4626 	 */
4627 #define USECS_WAIT	1000000
4628         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4629 		/* If the write is past the end of page, a writer is still updating it */
4630 		if (likely(!reader || rb_page_write(reader) <= bsize))
4631 			break;
4632 
4633 		udelay(1);
4634 
4635 		/* Get the latest version of the reader write value */
4636 		smp_rmb();
4637 	}
4638 
4639 	/* The writer is not moving forward? Something is wrong */
4640 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4641 		reader = NULL;
4642 
4643 	/*
4644 	 * Make sure we see any padding after the write update
4645 	 * (see rb_reset_tail()).
4646 	 *
4647 	 * In addition, a writer may be writing on the reader page
4648 	 * if the page has not been fully filled, so the read barrier
4649 	 * is also needed to make sure we see the content of what is
4650 	 * committed by the writer (see rb_set_commit_to_write()).
4651 	 */
4652 	smp_rmb();
4653 
4654 
4655 	return reader;
4656 }
4657 
4658 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4659 {
4660 	struct ring_buffer_event *event;
4661 	struct buffer_page *reader;
4662 	unsigned length;
4663 
4664 	reader = rb_get_reader_page(cpu_buffer);
4665 
4666 	/* This function should not be called when buffer is empty */
4667 	if (RB_WARN_ON(cpu_buffer, !reader))
4668 		return;
4669 
4670 	event = rb_reader_event(cpu_buffer);
4671 
4672 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4673 		cpu_buffer->read++;
4674 
4675 	rb_update_read_stamp(cpu_buffer, event);
4676 
4677 	length = rb_event_length(event);
4678 	cpu_buffer->reader_page->read += length;
4679 	cpu_buffer->read_bytes += length;
4680 }
4681 
4682 static void rb_advance_iter(struct ring_buffer_iter *iter)
4683 {
4684 	struct ring_buffer_per_cpu *cpu_buffer;
4685 
4686 	cpu_buffer = iter->cpu_buffer;
4687 
4688 	/* If head == next_event then we need to jump to the next event */
4689 	if (iter->head == iter->next_event) {
4690 		/* If the event gets overwritten again, there's nothing to do */
4691 		if (rb_iter_head_event(iter) == NULL)
4692 			return;
4693 	}
4694 
4695 	iter->head = iter->next_event;
4696 
4697 	/*
4698 	 * Check if we are at the end of the buffer.
4699 	 */
4700 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4701 		/* discarded commits can make the page empty */
4702 		if (iter->head_page == cpu_buffer->commit_page)
4703 			return;
4704 		rb_inc_iter(iter);
4705 		return;
4706 	}
4707 
4708 	rb_update_iter_read_stamp(iter, iter->event);
4709 }
4710 
4711 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4712 {
4713 	return cpu_buffer->lost_events;
4714 }
4715 
4716 static struct ring_buffer_event *
4717 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4718 	       unsigned long *lost_events)
4719 {
4720 	struct ring_buffer_event *event;
4721 	struct buffer_page *reader;
4722 	int nr_loops = 0;
4723 
4724 	if (ts)
4725 		*ts = 0;
4726  again:
4727 	/*
4728 	 * We repeat when a time extend is encountered.
4729 	 * Since the time extend is always attached to a data event,
4730 	 * we should never loop more than once.
4731 	 * (We never hit the following condition more than twice).
4732 	 */
4733 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4734 		return NULL;
4735 
4736 	reader = rb_get_reader_page(cpu_buffer);
4737 	if (!reader)
4738 		return NULL;
4739 
4740 	event = rb_reader_event(cpu_buffer);
4741 
4742 	switch (event->type_len) {
4743 	case RINGBUF_TYPE_PADDING:
4744 		if (rb_null_event(event))
4745 			RB_WARN_ON(cpu_buffer, 1);
4746 		/*
4747 		 * Because the writer could be discarding every
4748 		 * event it creates (which would probably be bad)
4749 		 * if we were to go back to "again" then we may never
4750 		 * catch up, and will trigger the warn on, or lock
4751 		 * the box. Return the padding, and we will release
4752 		 * the current locks, and try again.
4753 		 */
4754 		return event;
4755 
4756 	case RINGBUF_TYPE_TIME_EXTEND:
4757 		/* Internal data, OK to advance */
4758 		rb_advance_reader(cpu_buffer);
4759 		goto again;
4760 
4761 	case RINGBUF_TYPE_TIME_STAMP:
4762 		if (ts) {
4763 			*ts = rb_event_time_stamp(event);
4764 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4765 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4766 							 cpu_buffer->cpu, ts);
4767 		}
4768 		/* Internal data, OK to advance */
4769 		rb_advance_reader(cpu_buffer);
4770 		goto again;
4771 
4772 	case RINGBUF_TYPE_DATA:
4773 		if (ts && !(*ts)) {
4774 			*ts = cpu_buffer->read_stamp + event->time_delta;
4775 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4776 							 cpu_buffer->cpu, ts);
4777 		}
4778 		if (lost_events)
4779 			*lost_events = rb_lost_events(cpu_buffer);
4780 		return event;
4781 
4782 	default:
4783 		RB_WARN_ON(cpu_buffer, 1);
4784 	}
4785 
4786 	return NULL;
4787 }
4788 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4789 
4790 static struct ring_buffer_event *
4791 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4792 {
4793 	struct trace_buffer *buffer;
4794 	struct ring_buffer_per_cpu *cpu_buffer;
4795 	struct ring_buffer_event *event;
4796 	int nr_loops = 0;
4797 
4798 	if (ts)
4799 		*ts = 0;
4800 
4801 	cpu_buffer = iter->cpu_buffer;
4802 	buffer = cpu_buffer->buffer;
4803 
4804 	/*
4805 	 * Check if someone performed a consuming read to the buffer
4806 	 * or removed some pages from the buffer. In these cases,
4807 	 * iterator was invalidated and we need to reset it.
4808 	 */
4809 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4810 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4811 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4812 		rb_iter_reset(iter);
4813 
4814  again:
4815 	if (ring_buffer_iter_empty(iter))
4816 		return NULL;
4817 
4818 	/*
4819 	 * As the writer can mess with what the iterator is trying
4820 	 * to read, just give up if we fail to get an event after
4821 	 * three tries. The iterator is not as reliable when reading
4822 	 * the ring buffer with an active write as the consumer is.
4823 	 * Do not warn if the three failures is reached.
4824 	 */
4825 	if (++nr_loops > 3)
4826 		return NULL;
4827 
4828 	if (rb_per_cpu_empty(cpu_buffer))
4829 		return NULL;
4830 
4831 	if (iter->head >= rb_page_size(iter->head_page)) {
4832 		rb_inc_iter(iter);
4833 		goto again;
4834 	}
4835 
4836 	event = rb_iter_head_event(iter);
4837 	if (!event)
4838 		goto again;
4839 
4840 	switch (event->type_len) {
4841 	case RINGBUF_TYPE_PADDING:
4842 		if (rb_null_event(event)) {
4843 			rb_inc_iter(iter);
4844 			goto again;
4845 		}
4846 		rb_advance_iter(iter);
4847 		return event;
4848 
4849 	case RINGBUF_TYPE_TIME_EXTEND:
4850 		/* Internal data, OK to advance */
4851 		rb_advance_iter(iter);
4852 		goto again;
4853 
4854 	case RINGBUF_TYPE_TIME_STAMP:
4855 		if (ts) {
4856 			*ts = rb_event_time_stamp(event);
4857 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4858 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4859 							 cpu_buffer->cpu, ts);
4860 		}
4861 		/* Internal data, OK to advance */
4862 		rb_advance_iter(iter);
4863 		goto again;
4864 
4865 	case RINGBUF_TYPE_DATA:
4866 		if (ts && !(*ts)) {
4867 			*ts = iter->read_stamp + event->time_delta;
4868 			ring_buffer_normalize_time_stamp(buffer,
4869 							 cpu_buffer->cpu, ts);
4870 		}
4871 		return event;
4872 
4873 	default:
4874 		RB_WARN_ON(cpu_buffer, 1);
4875 	}
4876 
4877 	return NULL;
4878 }
4879 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4880 
4881 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4882 {
4883 	if (likely(!in_nmi())) {
4884 		raw_spin_lock(&cpu_buffer->reader_lock);
4885 		return true;
4886 	}
4887 
4888 	/*
4889 	 * If an NMI die dumps out the content of the ring buffer
4890 	 * trylock must be used to prevent a deadlock if the NMI
4891 	 * preempted a task that holds the ring buffer locks. If
4892 	 * we get the lock then all is fine, if not, then continue
4893 	 * to do the read, but this can corrupt the ring buffer,
4894 	 * so it must be permanently disabled from future writes.
4895 	 * Reading from NMI is a oneshot deal.
4896 	 */
4897 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4898 		return true;
4899 
4900 	/* Continue without locking, but disable the ring buffer */
4901 	atomic_inc(&cpu_buffer->record_disabled);
4902 	return false;
4903 }
4904 
4905 static inline void
4906 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4907 {
4908 	if (likely(locked))
4909 		raw_spin_unlock(&cpu_buffer->reader_lock);
4910 }
4911 
4912 /**
4913  * ring_buffer_peek - peek at the next event to be read
4914  * @buffer: The ring buffer to read
4915  * @cpu: The cpu to peak at
4916  * @ts: The timestamp counter of this event.
4917  * @lost_events: a variable to store if events were lost (may be NULL)
4918  *
4919  * This will return the event that will be read next, but does
4920  * not consume the data.
4921  */
4922 struct ring_buffer_event *
4923 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4924 		 unsigned long *lost_events)
4925 {
4926 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4927 	struct ring_buffer_event *event;
4928 	unsigned long flags;
4929 	bool dolock;
4930 
4931 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4932 		return NULL;
4933 
4934  again:
4935 	local_irq_save(flags);
4936 	dolock = rb_reader_lock(cpu_buffer);
4937 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4938 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4939 		rb_advance_reader(cpu_buffer);
4940 	rb_reader_unlock(cpu_buffer, dolock);
4941 	local_irq_restore(flags);
4942 
4943 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4944 		goto again;
4945 
4946 	return event;
4947 }
4948 
4949 /** ring_buffer_iter_dropped - report if there are dropped events
4950  * @iter: The ring buffer iterator
4951  *
4952  * Returns true if there was dropped events since the last peek.
4953  */
4954 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4955 {
4956 	bool ret = iter->missed_events != 0;
4957 
4958 	iter->missed_events = 0;
4959 	return ret;
4960 }
4961 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4962 
4963 /**
4964  * ring_buffer_iter_peek - peek at the next event to be read
4965  * @iter: The ring buffer iterator
4966  * @ts: The timestamp counter of this event.
4967  *
4968  * This will return the event that will be read next, but does
4969  * not increment the iterator.
4970  */
4971 struct ring_buffer_event *
4972 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4973 {
4974 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4975 	struct ring_buffer_event *event;
4976 	unsigned long flags;
4977 
4978  again:
4979 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4980 	event = rb_iter_peek(iter, ts);
4981 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4982 
4983 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4984 		goto again;
4985 
4986 	return event;
4987 }
4988 
4989 /**
4990  * ring_buffer_consume - return an event and consume it
4991  * @buffer: The ring buffer to get the next event from
4992  * @cpu: the cpu to read the buffer from
4993  * @ts: a variable to store the timestamp (may be NULL)
4994  * @lost_events: a variable to store if events were lost (may be NULL)
4995  *
4996  * Returns the next event in the ring buffer, and that event is consumed.
4997  * Meaning, that sequential reads will keep returning a different event,
4998  * and eventually empty the ring buffer if the producer is slower.
4999  */
5000 struct ring_buffer_event *
5001 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5002 		    unsigned long *lost_events)
5003 {
5004 	struct ring_buffer_per_cpu *cpu_buffer;
5005 	struct ring_buffer_event *event = NULL;
5006 	unsigned long flags;
5007 	bool dolock;
5008 
5009  again:
5010 	/* might be called in atomic */
5011 	preempt_disable();
5012 
5013 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5014 		goto out;
5015 
5016 	cpu_buffer = buffer->buffers[cpu];
5017 	local_irq_save(flags);
5018 	dolock = rb_reader_lock(cpu_buffer);
5019 
5020 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5021 	if (event) {
5022 		cpu_buffer->lost_events = 0;
5023 		rb_advance_reader(cpu_buffer);
5024 	}
5025 
5026 	rb_reader_unlock(cpu_buffer, dolock);
5027 	local_irq_restore(flags);
5028 
5029  out:
5030 	preempt_enable();
5031 
5032 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5033 		goto again;
5034 
5035 	return event;
5036 }
5037 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5038 
5039 /**
5040  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5041  * @buffer: The ring buffer to read from
5042  * @cpu: The cpu buffer to iterate over
5043  * @flags: gfp flags to use for memory allocation
5044  *
5045  * This performs the initial preparations necessary to iterate
5046  * through the buffer.  Memory is allocated, buffer resizing
5047  * is disabled, and the iterator pointer is returned to the caller.
5048  *
5049  * After a sequence of ring_buffer_read_prepare calls, the user is
5050  * expected to make at least one call to ring_buffer_read_prepare_sync.
5051  * Afterwards, ring_buffer_read_start is invoked to get things going
5052  * for real.
5053  *
5054  * This overall must be paired with ring_buffer_read_finish.
5055  */
5056 struct ring_buffer_iter *
5057 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5058 {
5059 	struct ring_buffer_per_cpu *cpu_buffer;
5060 	struct ring_buffer_iter *iter;
5061 
5062 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5063 		return NULL;
5064 
5065 	iter = kzalloc(sizeof(*iter), flags);
5066 	if (!iter)
5067 		return NULL;
5068 
5069 	/* Holds the entire event: data and meta data */
5070 	iter->event_size = buffer->subbuf_size;
5071 	iter->event = kmalloc(iter->event_size, flags);
5072 	if (!iter->event) {
5073 		kfree(iter);
5074 		return NULL;
5075 	}
5076 
5077 	cpu_buffer = buffer->buffers[cpu];
5078 
5079 	iter->cpu_buffer = cpu_buffer;
5080 
5081 	atomic_inc(&cpu_buffer->resize_disabled);
5082 
5083 	return iter;
5084 }
5085 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5086 
5087 /**
5088  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5089  *
5090  * All previously invoked ring_buffer_read_prepare calls to prepare
5091  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5092  * calls on those iterators are allowed.
5093  */
5094 void
5095 ring_buffer_read_prepare_sync(void)
5096 {
5097 	synchronize_rcu();
5098 }
5099 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5100 
5101 /**
5102  * ring_buffer_read_start - start a non consuming read of the buffer
5103  * @iter: The iterator returned by ring_buffer_read_prepare
5104  *
5105  * This finalizes the startup of an iteration through the buffer.
5106  * The iterator comes from a call to ring_buffer_read_prepare and
5107  * an intervening ring_buffer_read_prepare_sync must have been
5108  * performed.
5109  *
5110  * Must be paired with ring_buffer_read_finish.
5111  */
5112 void
5113 ring_buffer_read_start(struct ring_buffer_iter *iter)
5114 {
5115 	struct ring_buffer_per_cpu *cpu_buffer;
5116 	unsigned long flags;
5117 
5118 	if (!iter)
5119 		return;
5120 
5121 	cpu_buffer = iter->cpu_buffer;
5122 
5123 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5124 	arch_spin_lock(&cpu_buffer->lock);
5125 	rb_iter_reset(iter);
5126 	arch_spin_unlock(&cpu_buffer->lock);
5127 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5128 }
5129 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5130 
5131 /**
5132  * ring_buffer_read_finish - finish reading the iterator of the buffer
5133  * @iter: The iterator retrieved by ring_buffer_start
5134  *
5135  * This re-enables resizing of the buffer, and frees the iterator.
5136  */
5137 void
5138 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5139 {
5140 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5141 	unsigned long flags;
5142 
5143 	/* Use this opportunity to check the integrity of the ring buffer. */
5144 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5145 	rb_check_pages(cpu_buffer);
5146 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5147 
5148 	atomic_dec(&cpu_buffer->resize_disabled);
5149 	kfree(iter->event);
5150 	kfree(iter);
5151 }
5152 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5153 
5154 /**
5155  * ring_buffer_iter_advance - advance the iterator to the next location
5156  * @iter: The ring buffer iterator
5157  *
5158  * Move the location of the iterator such that the next read will
5159  * be the next location of the iterator.
5160  */
5161 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5162 {
5163 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5164 	unsigned long flags;
5165 
5166 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5167 
5168 	rb_advance_iter(iter);
5169 
5170 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5171 }
5172 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5173 
5174 /**
5175  * ring_buffer_size - return the size of the ring buffer (in bytes)
5176  * @buffer: The ring buffer.
5177  * @cpu: The CPU to get ring buffer size from.
5178  */
5179 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5180 {
5181 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5182 		return 0;
5183 
5184 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5185 }
5186 EXPORT_SYMBOL_GPL(ring_buffer_size);
5187 
5188 /**
5189  * ring_buffer_max_event_size - return the max data size of an event
5190  * @buffer: The ring buffer.
5191  *
5192  * Returns the maximum size an event can be.
5193  */
5194 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5195 {
5196 	/* If abs timestamp is requested, events have a timestamp too */
5197 	if (ring_buffer_time_stamp_abs(buffer))
5198 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5199 	return buffer->max_data_size;
5200 }
5201 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5202 
5203 static void rb_clear_buffer_page(struct buffer_page *page)
5204 {
5205 	local_set(&page->write, 0);
5206 	local_set(&page->entries, 0);
5207 	rb_init_page(page->page);
5208 	page->read = 0;
5209 }
5210 
5211 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5212 {
5213 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5214 
5215 	meta->reader.read = cpu_buffer->reader_page->read;
5216 	meta->reader.id = cpu_buffer->reader_page->id;
5217 	meta->reader.lost_events = cpu_buffer->lost_events;
5218 
5219 	meta->entries = local_read(&cpu_buffer->entries);
5220 	meta->overrun = local_read(&cpu_buffer->overrun);
5221 	meta->read = cpu_buffer->read;
5222 
5223 	/* Some archs do not have data cache coherency between kernel and user-space */
5224 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5225 }
5226 
5227 static void
5228 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5229 {
5230 	struct buffer_page *page;
5231 
5232 	rb_head_page_deactivate(cpu_buffer);
5233 
5234 	cpu_buffer->head_page
5235 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5236 	rb_clear_buffer_page(cpu_buffer->head_page);
5237 	list_for_each_entry(page, cpu_buffer->pages, list) {
5238 		rb_clear_buffer_page(page);
5239 	}
5240 
5241 	cpu_buffer->tail_page = cpu_buffer->head_page;
5242 	cpu_buffer->commit_page = cpu_buffer->head_page;
5243 
5244 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5245 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5246 	rb_clear_buffer_page(cpu_buffer->reader_page);
5247 
5248 	local_set(&cpu_buffer->entries_bytes, 0);
5249 	local_set(&cpu_buffer->overrun, 0);
5250 	local_set(&cpu_buffer->commit_overrun, 0);
5251 	local_set(&cpu_buffer->dropped_events, 0);
5252 	local_set(&cpu_buffer->entries, 0);
5253 	local_set(&cpu_buffer->committing, 0);
5254 	local_set(&cpu_buffer->commits, 0);
5255 	local_set(&cpu_buffer->pages_touched, 0);
5256 	local_set(&cpu_buffer->pages_lost, 0);
5257 	local_set(&cpu_buffer->pages_read, 0);
5258 	cpu_buffer->last_pages_touch = 0;
5259 	cpu_buffer->shortest_full = 0;
5260 	cpu_buffer->read = 0;
5261 	cpu_buffer->read_bytes = 0;
5262 
5263 	rb_time_set(&cpu_buffer->write_stamp, 0);
5264 	rb_time_set(&cpu_buffer->before_stamp, 0);
5265 
5266 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5267 
5268 	cpu_buffer->lost_events = 0;
5269 	cpu_buffer->last_overrun = 0;
5270 
5271 	if (cpu_buffer->mapped)
5272 		rb_update_meta_page(cpu_buffer);
5273 
5274 	rb_head_page_activate(cpu_buffer);
5275 	cpu_buffer->pages_removed = 0;
5276 }
5277 
5278 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5279 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5280 {
5281 	unsigned long flags;
5282 
5283 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5284 
5285 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5286 		goto out;
5287 
5288 	arch_spin_lock(&cpu_buffer->lock);
5289 
5290 	rb_reset_cpu(cpu_buffer);
5291 
5292 	arch_spin_unlock(&cpu_buffer->lock);
5293 
5294  out:
5295 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5296 }
5297 
5298 /**
5299  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5300  * @buffer: The ring buffer to reset a per cpu buffer of
5301  * @cpu: The CPU buffer to be reset
5302  */
5303 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5304 {
5305 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5306 
5307 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5308 		return;
5309 
5310 	/* prevent another thread from changing buffer sizes */
5311 	mutex_lock(&buffer->mutex);
5312 
5313 	atomic_inc(&cpu_buffer->resize_disabled);
5314 	atomic_inc(&cpu_buffer->record_disabled);
5315 
5316 	/* Make sure all commits have finished */
5317 	synchronize_rcu();
5318 
5319 	reset_disabled_cpu_buffer(cpu_buffer);
5320 
5321 	atomic_dec(&cpu_buffer->record_disabled);
5322 	atomic_dec(&cpu_buffer->resize_disabled);
5323 
5324 	mutex_unlock(&buffer->mutex);
5325 }
5326 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5327 
5328 /* Flag to ensure proper resetting of atomic variables */
5329 #define RESET_BIT	(1 << 30)
5330 
5331 /**
5332  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5333  * @buffer: The ring buffer to reset a per cpu buffer of
5334  */
5335 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5336 {
5337 	struct ring_buffer_per_cpu *cpu_buffer;
5338 	int cpu;
5339 
5340 	/* prevent another thread from changing buffer sizes */
5341 	mutex_lock(&buffer->mutex);
5342 
5343 	for_each_online_buffer_cpu(buffer, cpu) {
5344 		cpu_buffer = buffer->buffers[cpu];
5345 
5346 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5347 		atomic_inc(&cpu_buffer->record_disabled);
5348 	}
5349 
5350 	/* Make sure all commits have finished */
5351 	synchronize_rcu();
5352 
5353 	for_each_buffer_cpu(buffer, cpu) {
5354 		cpu_buffer = buffer->buffers[cpu];
5355 
5356 		/*
5357 		 * If a CPU came online during the synchronize_rcu(), then
5358 		 * ignore it.
5359 		 */
5360 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5361 			continue;
5362 
5363 		reset_disabled_cpu_buffer(cpu_buffer);
5364 
5365 		atomic_dec(&cpu_buffer->record_disabled);
5366 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5367 	}
5368 
5369 	mutex_unlock(&buffer->mutex);
5370 }
5371 
5372 /**
5373  * ring_buffer_reset - reset a ring buffer
5374  * @buffer: The ring buffer to reset all cpu buffers
5375  */
5376 void ring_buffer_reset(struct trace_buffer *buffer)
5377 {
5378 	struct ring_buffer_per_cpu *cpu_buffer;
5379 	int cpu;
5380 
5381 	/* prevent another thread from changing buffer sizes */
5382 	mutex_lock(&buffer->mutex);
5383 
5384 	for_each_buffer_cpu(buffer, cpu) {
5385 		cpu_buffer = buffer->buffers[cpu];
5386 
5387 		atomic_inc(&cpu_buffer->resize_disabled);
5388 		atomic_inc(&cpu_buffer->record_disabled);
5389 	}
5390 
5391 	/* Make sure all commits have finished */
5392 	synchronize_rcu();
5393 
5394 	for_each_buffer_cpu(buffer, cpu) {
5395 		cpu_buffer = buffer->buffers[cpu];
5396 
5397 		reset_disabled_cpu_buffer(cpu_buffer);
5398 
5399 		atomic_dec(&cpu_buffer->record_disabled);
5400 		atomic_dec(&cpu_buffer->resize_disabled);
5401 	}
5402 
5403 	mutex_unlock(&buffer->mutex);
5404 }
5405 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5406 
5407 /**
5408  * ring_buffer_empty - is the ring buffer empty?
5409  * @buffer: The ring buffer to test
5410  */
5411 bool ring_buffer_empty(struct trace_buffer *buffer)
5412 {
5413 	struct ring_buffer_per_cpu *cpu_buffer;
5414 	unsigned long flags;
5415 	bool dolock;
5416 	bool ret;
5417 	int cpu;
5418 
5419 	/* yes this is racy, but if you don't like the race, lock the buffer */
5420 	for_each_buffer_cpu(buffer, cpu) {
5421 		cpu_buffer = buffer->buffers[cpu];
5422 		local_irq_save(flags);
5423 		dolock = rb_reader_lock(cpu_buffer);
5424 		ret = rb_per_cpu_empty(cpu_buffer);
5425 		rb_reader_unlock(cpu_buffer, dolock);
5426 		local_irq_restore(flags);
5427 
5428 		if (!ret)
5429 			return false;
5430 	}
5431 
5432 	return true;
5433 }
5434 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5435 
5436 /**
5437  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5438  * @buffer: The ring buffer
5439  * @cpu: The CPU buffer to test
5440  */
5441 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5442 {
5443 	struct ring_buffer_per_cpu *cpu_buffer;
5444 	unsigned long flags;
5445 	bool dolock;
5446 	bool ret;
5447 
5448 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5449 		return true;
5450 
5451 	cpu_buffer = buffer->buffers[cpu];
5452 	local_irq_save(flags);
5453 	dolock = rb_reader_lock(cpu_buffer);
5454 	ret = rb_per_cpu_empty(cpu_buffer);
5455 	rb_reader_unlock(cpu_buffer, dolock);
5456 	local_irq_restore(flags);
5457 
5458 	return ret;
5459 }
5460 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5461 
5462 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5463 /**
5464  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5465  * @buffer_a: One buffer to swap with
5466  * @buffer_b: The other buffer to swap with
5467  * @cpu: the CPU of the buffers to swap
5468  *
5469  * This function is useful for tracers that want to take a "snapshot"
5470  * of a CPU buffer and has another back up buffer lying around.
5471  * it is expected that the tracer handles the cpu buffer not being
5472  * used at the moment.
5473  */
5474 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5475 			 struct trace_buffer *buffer_b, int cpu)
5476 {
5477 	struct ring_buffer_per_cpu *cpu_buffer_a;
5478 	struct ring_buffer_per_cpu *cpu_buffer_b;
5479 	int ret = -EINVAL;
5480 
5481 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5482 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5483 		goto out;
5484 
5485 	cpu_buffer_a = buffer_a->buffers[cpu];
5486 	cpu_buffer_b = buffer_b->buffers[cpu];
5487 
5488 	/* It's up to the callers to not try to swap mapped buffers */
5489 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
5490 		ret = -EBUSY;
5491 		goto out;
5492 	}
5493 
5494 	/* At least make sure the two buffers are somewhat the same */
5495 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5496 		goto out;
5497 
5498 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5499 		goto out;
5500 
5501 	ret = -EAGAIN;
5502 
5503 	if (atomic_read(&buffer_a->record_disabled))
5504 		goto out;
5505 
5506 	if (atomic_read(&buffer_b->record_disabled))
5507 		goto out;
5508 
5509 	if (atomic_read(&cpu_buffer_a->record_disabled))
5510 		goto out;
5511 
5512 	if (atomic_read(&cpu_buffer_b->record_disabled))
5513 		goto out;
5514 
5515 	/*
5516 	 * We can't do a synchronize_rcu here because this
5517 	 * function can be called in atomic context.
5518 	 * Normally this will be called from the same CPU as cpu.
5519 	 * If not it's up to the caller to protect this.
5520 	 */
5521 	atomic_inc(&cpu_buffer_a->record_disabled);
5522 	atomic_inc(&cpu_buffer_b->record_disabled);
5523 
5524 	ret = -EBUSY;
5525 	if (local_read(&cpu_buffer_a->committing))
5526 		goto out_dec;
5527 	if (local_read(&cpu_buffer_b->committing))
5528 		goto out_dec;
5529 
5530 	/*
5531 	 * When resize is in progress, we cannot swap it because
5532 	 * it will mess the state of the cpu buffer.
5533 	 */
5534 	if (atomic_read(&buffer_a->resizing))
5535 		goto out_dec;
5536 	if (atomic_read(&buffer_b->resizing))
5537 		goto out_dec;
5538 
5539 	buffer_a->buffers[cpu] = cpu_buffer_b;
5540 	buffer_b->buffers[cpu] = cpu_buffer_a;
5541 
5542 	cpu_buffer_b->buffer = buffer_a;
5543 	cpu_buffer_a->buffer = buffer_b;
5544 
5545 	ret = 0;
5546 
5547 out_dec:
5548 	atomic_dec(&cpu_buffer_a->record_disabled);
5549 	atomic_dec(&cpu_buffer_b->record_disabled);
5550 out:
5551 	return ret;
5552 }
5553 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5554 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5555 
5556 /**
5557  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5558  * @buffer: the buffer to allocate for.
5559  * @cpu: the cpu buffer to allocate.
5560  *
5561  * This function is used in conjunction with ring_buffer_read_page.
5562  * When reading a full page from the ring buffer, these functions
5563  * can be used to speed up the process. The calling function should
5564  * allocate a few pages first with this function. Then when it
5565  * needs to get pages from the ring buffer, it passes the result
5566  * of this function into ring_buffer_read_page, which will swap
5567  * the page that was allocated, with the read page of the buffer.
5568  *
5569  * Returns:
5570  *  The page allocated, or ERR_PTR
5571  */
5572 struct buffer_data_read_page *
5573 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5574 {
5575 	struct ring_buffer_per_cpu *cpu_buffer;
5576 	struct buffer_data_read_page *bpage = NULL;
5577 	unsigned long flags;
5578 	struct page *page;
5579 
5580 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5581 		return ERR_PTR(-ENODEV);
5582 
5583 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5584 	if (!bpage)
5585 		return ERR_PTR(-ENOMEM);
5586 
5587 	bpage->order = buffer->subbuf_order;
5588 	cpu_buffer = buffer->buffers[cpu];
5589 	local_irq_save(flags);
5590 	arch_spin_lock(&cpu_buffer->lock);
5591 
5592 	if (cpu_buffer->free_page) {
5593 		bpage->data = cpu_buffer->free_page;
5594 		cpu_buffer->free_page = NULL;
5595 	}
5596 
5597 	arch_spin_unlock(&cpu_buffer->lock);
5598 	local_irq_restore(flags);
5599 
5600 	if (bpage->data)
5601 		goto out;
5602 
5603 	page = alloc_pages_node(cpu_to_node(cpu),
5604 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
5605 				cpu_buffer->buffer->subbuf_order);
5606 	if (!page) {
5607 		kfree(bpage);
5608 		return ERR_PTR(-ENOMEM);
5609 	}
5610 
5611 	bpage->data = page_address(page);
5612 
5613  out:
5614 	rb_init_page(bpage->data);
5615 
5616 	return bpage;
5617 }
5618 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5619 
5620 /**
5621  * ring_buffer_free_read_page - free an allocated read page
5622  * @buffer: the buffer the page was allocate for
5623  * @cpu: the cpu buffer the page came from
5624  * @data_page: the page to free
5625  *
5626  * Free a page allocated from ring_buffer_alloc_read_page.
5627  */
5628 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5629 				struct buffer_data_read_page *data_page)
5630 {
5631 	struct ring_buffer_per_cpu *cpu_buffer;
5632 	struct buffer_data_page *bpage = data_page->data;
5633 	struct page *page = virt_to_page(bpage);
5634 	unsigned long flags;
5635 
5636 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5637 		return;
5638 
5639 	cpu_buffer = buffer->buffers[cpu];
5640 
5641 	/*
5642 	 * If the page is still in use someplace else, or order of the page
5643 	 * is different from the subbuffer order of the buffer -
5644 	 * we can't reuse it
5645 	 */
5646 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5647 		goto out;
5648 
5649 	local_irq_save(flags);
5650 	arch_spin_lock(&cpu_buffer->lock);
5651 
5652 	if (!cpu_buffer->free_page) {
5653 		cpu_buffer->free_page = bpage;
5654 		bpage = NULL;
5655 	}
5656 
5657 	arch_spin_unlock(&cpu_buffer->lock);
5658 	local_irq_restore(flags);
5659 
5660  out:
5661 	free_pages((unsigned long)bpage, data_page->order);
5662 	kfree(data_page);
5663 }
5664 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5665 
5666 /**
5667  * ring_buffer_read_page - extract a page from the ring buffer
5668  * @buffer: buffer to extract from
5669  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5670  * @len: amount to extract
5671  * @cpu: the cpu of the buffer to extract
5672  * @full: should the extraction only happen when the page is full.
5673  *
5674  * This function will pull out a page from the ring buffer and consume it.
5675  * @data_page must be the address of the variable that was returned
5676  * from ring_buffer_alloc_read_page. This is because the page might be used
5677  * to swap with a page in the ring buffer.
5678  *
5679  * for example:
5680  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5681  *	if (IS_ERR(rpage))
5682  *		return PTR_ERR(rpage);
5683  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5684  *	if (ret >= 0)
5685  *		process_page(ring_buffer_read_page_data(rpage), ret);
5686  *	ring_buffer_free_read_page(buffer, cpu, rpage);
5687  *
5688  * When @full is set, the function will not return true unless
5689  * the writer is off the reader page.
5690  *
5691  * Note: it is up to the calling functions to handle sleeps and wakeups.
5692  *  The ring buffer can be used anywhere in the kernel and can not
5693  *  blindly call wake_up. The layer that uses the ring buffer must be
5694  *  responsible for that.
5695  *
5696  * Returns:
5697  *  >=0 if data has been transferred, returns the offset of consumed data.
5698  *  <0 if no data has been transferred.
5699  */
5700 int ring_buffer_read_page(struct trace_buffer *buffer,
5701 			  struct buffer_data_read_page *data_page,
5702 			  size_t len, int cpu, int full)
5703 {
5704 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5705 	struct ring_buffer_event *event;
5706 	struct buffer_data_page *bpage;
5707 	struct buffer_page *reader;
5708 	unsigned long missed_events;
5709 	unsigned long flags;
5710 	unsigned int commit;
5711 	unsigned int read;
5712 	u64 save_timestamp;
5713 	int ret = -1;
5714 
5715 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5716 		goto out;
5717 
5718 	/*
5719 	 * If len is not big enough to hold the page header, then
5720 	 * we can not copy anything.
5721 	 */
5722 	if (len <= BUF_PAGE_HDR_SIZE)
5723 		goto out;
5724 
5725 	len -= BUF_PAGE_HDR_SIZE;
5726 
5727 	if (!data_page || !data_page->data)
5728 		goto out;
5729 	if (data_page->order != buffer->subbuf_order)
5730 		goto out;
5731 
5732 	bpage = data_page->data;
5733 	if (!bpage)
5734 		goto out;
5735 
5736 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5737 
5738 	reader = rb_get_reader_page(cpu_buffer);
5739 	if (!reader)
5740 		goto out_unlock;
5741 
5742 	event = rb_reader_event(cpu_buffer);
5743 
5744 	read = reader->read;
5745 	commit = rb_page_size(reader);
5746 
5747 	/* Check if any events were dropped */
5748 	missed_events = cpu_buffer->lost_events;
5749 
5750 	/*
5751 	 * If this page has been partially read or
5752 	 * if len is not big enough to read the rest of the page or
5753 	 * a writer is still on the page, then
5754 	 * we must copy the data from the page to the buffer.
5755 	 * Otherwise, we can simply swap the page with the one passed in.
5756 	 */
5757 	if (read || (len < (commit - read)) ||
5758 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
5759 	    cpu_buffer->mapped) {
5760 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5761 		unsigned int rpos = read;
5762 		unsigned int pos = 0;
5763 		unsigned int size;
5764 
5765 		/*
5766 		 * If a full page is expected, this can still be returned
5767 		 * if there's been a previous partial read and the
5768 		 * rest of the page can be read and the commit page is off
5769 		 * the reader page.
5770 		 */
5771 		if (full &&
5772 		    (!read || (len < (commit - read)) ||
5773 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5774 			goto out_unlock;
5775 
5776 		if (len > (commit - read))
5777 			len = (commit - read);
5778 
5779 		/* Always keep the time extend and data together */
5780 		size = rb_event_ts_length(event);
5781 
5782 		if (len < size)
5783 			goto out_unlock;
5784 
5785 		/* save the current timestamp, since the user will need it */
5786 		save_timestamp = cpu_buffer->read_stamp;
5787 
5788 		/* Need to copy one event at a time */
5789 		do {
5790 			/* We need the size of one event, because
5791 			 * rb_advance_reader only advances by one event,
5792 			 * whereas rb_event_ts_length may include the size of
5793 			 * one or two events.
5794 			 * We have already ensured there's enough space if this
5795 			 * is a time extend. */
5796 			size = rb_event_length(event);
5797 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5798 
5799 			len -= size;
5800 
5801 			rb_advance_reader(cpu_buffer);
5802 			rpos = reader->read;
5803 			pos += size;
5804 
5805 			if (rpos >= commit)
5806 				break;
5807 
5808 			event = rb_reader_event(cpu_buffer);
5809 			/* Always keep the time extend and data together */
5810 			size = rb_event_ts_length(event);
5811 		} while (len >= size);
5812 
5813 		/* update bpage */
5814 		local_set(&bpage->commit, pos);
5815 		bpage->time_stamp = save_timestamp;
5816 
5817 		/* we copied everything to the beginning */
5818 		read = 0;
5819 	} else {
5820 		/* update the entry counter */
5821 		cpu_buffer->read += rb_page_entries(reader);
5822 		cpu_buffer->read_bytes += rb_page_size(reader);
5823 
5824 		/* swap the pages */
5825 		rb_init_page(bpage);
5826 		bpage = reader->page;
5827 		reader->page = data_page->data;
5828 		local_set(&reader->write, 0);
5829 		local_set(&reader->entries, 0);
5830 		reader->read = 0;
5831 		data_page->data = bpage;
5832 
5833 		/*
5834 		 * Use the real_end for the data size,
5835 		 * This gives us a chance to store the lost events
5836 		 * on the page.
5837 		 */
5838 		if (reader->real_end)
5839 			local_set(&bpage->commit, reader->real_end);
5840 	}
5841 	ret = read;
5842 
5843 	cpu_buffer->lost_events = 0;
5844 
5845 	commit = local_read(&bpage->commit);
5846 	/*
5847 	 * Set a flag in the commit field if we lost events
5848 	 */
5849 	if (missed_events) {
5850 		/* If there is room at the end of the page to save the
5851 		 * missed events, then record it there.
5852 		 */
5853 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5854 			memcpy(&bpage->data[commit], &missed_events,
5855 			       sizeof(missed_events));
5856 			local_add(RB_MISSED_STORED, &bpage->commit);
5857 			commit += sizeof(missed_events);
5858 		}
5859 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5860 	}
5861 
5862 	/*
5863 	 * This page may be off to user land. Zero it out here.
5864 	 */
5865 	if (commit < buffer->subbuf_size)
5866 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5867 
5868  out_unlock:
5869 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5870 
5871  out:
5872 	return ret;
5873 }
5874 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5875 
5876 /**
5877  * ring_buffer_read_page_data - get pointer to the data in the page.
5878  * @page:  the page to get the data from
5879  *
5880  * Returns pointer to the actual data in this page.
5881  */
5882 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5883 {
5884 	return page->data;
5885 }
5886 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5887 
5888 /**
5889  * ring_buffer_subbuf_size_get - get size of the sub buffer.
5890  * @buffer: the buffer to get the sub buffer size from
5891  *
5892  * Returns size of the sub buffer, in bytes.
5893  */
5894 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5895 {
5896 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5897 }
5898 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5899 
5900 /**
5901  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5902  * @buffer: The ring_buffer to get the system sub page order from
5903  *
5904  * By default, one ring buffer sub page equals to one system page. This parameter
5905  * is configurable, per ring buffer. The size of the ring buffer sub page can be
5906  * extended, but must be an order of system page size.
5907  *
5908  * Returns the order of buffer sub page size, in system pages:
5909  * 0 means the sub buffer size is 1 system page and so forth.
5910  * In case of an error < 0 is returned.
5911  */
5912 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5913 {
5914 	if (!buffer)
5915 		return -EINVAL;
5916 
5917 	return buffer->subbuf_order;
5918 }
5919 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5920 
5921 /**
5922  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5923  * @buffer: The ring_buffer to set the new page size.
5924  * @order: Order of the system pages in one sub buffer page
5925  *
5926  * By default, one ring buffer pages equals to one system page. This API can be
5927  * used to set new size of the ring buffer page. The size must be order of
5928  * system page size, that's why the input parameter @order is the order of
5929  * system pages that are allocated for one ring buffer page:
5930  *  0 - 1 system page
5931  *  1 - 2 system pages
5932  *  3 - 4 system pages
5933  *  ...
5934  *
5935  * Returns 0 on success or < 0 in case of an error.
5936  */
5937 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5938 {
5939 	struct ring_buffer_per_cpu *cpu_buffer;
5940 	struct buffer_page *bpage, *tmp;
5941 	int old_order, old_size;
5942 	int nr_pages;
5943 	int psize;
5944 	int err;
5945 	int cpu;
5946 
5947 	if (!buffer || order < 0)
5948 		return -EINVAL;
5949 
5950 	if (buffer->subbuf_order == order)
5951 		return 0;
5952 
5953 	psize = (1 << order) * PAGE_SIZE;
5954 	if (psize <= BUF_PAGE_HDR_SIZE)
5955 		return -EINVAL;
5956 
5957 	/* Size of a subbuf cannot be greater than the write counter */
5958 	if (psize > RB_WRITE_MASK + 1)
5959 		return -EINVAL;
5960 
5961 	old_order = buffer->subbuf_order;
5962 	old_size = buffer->subbuf_size;
5963 
5964 	/* prevent another thread from changing buffer sizes */
5965 	mutex_lock(&buffer->mutex);
5966 	atomic_inc(&buffer->record_disabled);
5967 
5968 	/* Make sure all commits have finished */
5969 	synchronize_rcu();
5970 
5971 	buffer->subbuf_order = order;
5972 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5973 
5974 	/* Make sure all new buffers are allocated, before deleting the old ones */
5975 	for_each_buffer_cpu(buffer, cpu) {
5976 
5977 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5978 			continue;
5979 
5980 		cpu_buffer = buffer->buffers[cpu];
5981 
5982 		if (cpu_buffer->mapped) {
5983 			err = -EBUSY;
5984 			goto error;
5985 		}
5986 
5987 		/* Update the number of pages to match the new size */
5988 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5989 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5990 
5991 		/* we need a minimum of two pages */
5992 		if (nr_pages < 2)
5993 			nr_pages = 2;
5994 
5995 		cpu_buffer->nr_pages_to_update = nr_pages;
5996 
5997 		/* Include the reader page */
5998 		nr_pages++;
5999 
6000 		/* Allocate the new size buffer */
6001 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6002 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6003 					&cpu_buffer->new_pages)) {
6004 			/* not enough memory for new pages */
6005 			err = -ENOMEM;
6006 			goto error;
6007 		}
6008 	}
6009 
6010 	for_each_buffer_cpu(buffer, cpu) {
6011 
6012 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6013 			continue;
6014 
6015 		cpu_buffer = buffer->buffers[cpu];
6016 
6017 		/* Clear the head bit to make the link list normal to read */
6018 		rb_head_page_deactivate(cpu_buffer);
6019 
6020 		/* Now walk the list and free all the old sub buffers */
6021 		list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
6022 			list_del_init(&bpage->list);
6023 			free_buffer_page(bpage);
6024 		}
6025 		/* The above loop stopped an the last page needing to be freed */
6026 		bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
6027 		free_buffer_page(bpage);
6028 
6029 		/* Free the current reader page */
6030 		free_buffer_page(cpu_buffer->reader_page);
6031 
6032 		/* One page was allocated for the reader page */
6033 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6034 						     struct buffer_page, list);
6035 		list_del_init(&cpu_buffer->reader_page->list);
6036 
6037 		/* The cpu_buffer pages are a link list with no head */
6038 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6039 		cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
6040 		cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
6041 
6042 		/* Clear the new_pages list */
6043 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6044 
6045 		cpu_buffer->head_page
6046 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6047 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6048 
6049 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6050 		cpu_buffer->nr_pages_to_update = 0;
6051 
6052 		free_pages((unsigned long)cpu_buffer->free_page, old_order);
6053 		cpu_buffer->free_page = NULL;
6054 
6055 		rb_head_page_activate(cpu_buffer);
6056 
6057 		rb_check_pages(cpu_buffer);
6058 	}
6059 
6060 	atomic_dec(&buffer->record_disabled);
6061 	mutex_unlock(&buffer->mutex);
6062 
6063 	return 0;
6064 
6065 error:
6066 	buffer->subbuf_order = old_order;
6067 	buffer->subbuf_size = old_size;
6068 
6069 	atomic_dec(&buffer->record_disabled);
6070 	mutex_unlock(&buffer->mutex);
6071 
6072 	for_each_buffer_cpu(buffer, cpu) {
6073 		cpu_buffer = buffer->buffers[cpu];
6074 
6075 		if (!cpu_buffer->nr_pages_to_update)
6076 			continue;
6077 
6078 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6079 			list_del_init(&bpage->list);
6080 			free_buffer_page(bpage);
6081 		}
6082 	}
6083 
6084 	return err;
6085 }
6086 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6087 
6088 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6089 {
6090 	struct page *page;
6091 
6092 	if (cpu_buffer->meta_page)
6093 		return 0;
6094 
6095 	page = alloc_page(GFP_USER | __GFP_ZERO);
6096 	if (!page)
6097 		return -ENOMEM;
6098 
6099 	cpu_buffer->meta_page = page_to_virt(page);
6100 
6101 	return 0;
6102 }
6103 
6104 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6105 {
6106 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6107 
6108 	free_page(addr);
6109 	cpu_buffer->meta_page = NULL;
6110 }
6111 
6112 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6113 				   unsigned long *subbuf_ids)
6114 {
6115 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6116 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6117 	struct buffer_page *first_subbuf, *subbuf;
6118 	int id = 0;
6119 
6120 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6121 	cpu_buffer->reader_page->id = id++;
6122 
6123 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6124 	do {
6125 		if (WARN_ON(id >= nr_subbufs))
6126 			break;
6127 
6128 		subbuf_ids[id] = (unsigned long)subbuf->page;
6129 		subbuf->id = id;
6130 
6131 		rb_inc_page(&subbuf);
6132 		id++;
6133 	} while (subbuf != first_subbuf);
6134 
6135 	/* install subbuf ID to kern VA translation */
6136 	cpu_buffer->subbuf_ids = subbuf_ids;
6137 
6138 	meta->meta_page_size = PAGE_SIZE;
6139 	meta->meta_struct_len = sizeof(*meta);
6140 	meta->nr_subbufs = nr_subbufs;
6141 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6142 
6143 	rb_update_meta_page(cpu_buffer);
6144 }
6145 
6146 static struct ring_buffer_per_cpu *
6147 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6148 {
6149 	struct ring_buffer_per_cpu *cpu_buffer;
6150 
6151 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6152 		return ERR_PTR(-EINVAL);
6153 
6154 	cpu_buffer = buffer->buffers[cpu];
6155 
6156 	mutex_lock(&cpu_buffer->mapping_lock);
6157 
6158 	if (!cpu_buffer->mapped) {
6159 		mutex_unlock(&cpu_buffer->mapping_lock);
6160 		return ERR_PTR(-ENODEV);
6161 	}
6162 
6163 	return cpu_buffer;
6164 }
6165 
6166 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6167 {
6168 	mutex_unlock(&cpu_buffer->mapping_lock);
6169 }
6170 
6171 /*
6172  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6173  * to be set-up or torn-down.
6174  */
6175 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6176 			       bool inc)
6177 {
6178 	unsigned long flags;
6179 
6180 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6181 
6182 	if (inc && cpu_buffer->mapped == UINT_MAX)
6183 		return -EBUSY;
6184 
6185 	if (WARN_ON(!inc && cpu_buffer->mapped == 0))
6186 		return -EINVAL;
6187 
6188 	mutex_lock(&cpu_buffer->buffer->mutex);
6189 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6190 
6191 	if (inc)
6192 		cpu_buffer->mapped++;
6193 	else
6194 		cpu_buffer->mapped--;
6195 
6196 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6197 	mutex_unlock(&cpu_buffer->buffer->mutex);
6198 
6199 	return 0;
6200 }
6201 
6202 /*
6203  *   +--------------+  pgoff == 0
6204  *   |   meta page  |
6205  *   +--------------+  pgoff == 1
6206  *   | subbuffer 0  |
6207  *   |              |
6208  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6209  *   | subbuffer 1  |
6210  *   |              |
6211  *         ...
6212  */
6213 #ifdef CONFIG_MMU
6214 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6215 			struct vm_area_struct *vma)
6216 {
6217 	unsigned long nr_subbufs, nr_pages, vma_pages, pgoff = vma->vm_pgoff;
6218 	unsigned int subbuf_pages, subbuf_order;
6219 	struct page **pages;
6220 	int p = 0, s = 0;
6221 	int err;
6222 
6223 	/* Refuse MP_PRIVATE or writable mappings */
6224 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6225 	    !(vma->vm_flags & VM_MAYSHARE))
6226 		return -EPERM;
6227 
6228 	/*
6229 	 * Make sure the mapping cannot become writable later. Also tell the VM
6230 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
6231 	 */
6232 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
6233 		     VM_MAYWRITE);
6234 
6235 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6236 
6237 	subbuf_order = cpu_buffer->buffer->subbuf_order;
6238 	subbuf_pages = 1 << subbuf_order;
6239 
6240 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
6241 	nr_pages = ((nr_subbufs) << subbuf_order) - pgoff + 1; /* + meta-page */
6242 
6243 	vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
6244 	if (!vma_pages || vma_pages > nr_pages)
6245 		return -EINVAL;
6246 
6247 	nr_pages = vma_pages;
6248 
6249 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
6250 	if (!pages)
6251 		return -ENOMEM;
6252 
6253 	if (!pgoff) {
6254 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
6255 
6256 		/*
6257 		 * TODO: Align sub-buffers on their size, once
6258 		 * vm_insert_pages() supports the zero-page.
6259 		 */
6260 	} else {
6261 		/* Skip the meta-page */
6262 		pgoff--;
6263 
6264 		if (pgoff % subbuf_pages) {
6265 			err = -EINVAL;
6266 			goto out;
6267 		}
6268 
6269 		s += pgoff / subbuf_pages;
6270 	}
6271 
6272 	while (p < nr_pages) {
6273 		struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
6274 		int off = 0;
6275 
6276 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
6277 			err = -EINVAL;
6278 			goto out;
6279 		}
6280 
6281 		for (; off < (1 << (subbuf_order)); off++, page++) {
6282 			if (p >= nr_pages)
6283 				break;
6284 
6285 			pages[p++] = page;
6286 		}
6287 		s++;
6288 	}
6289 
6290 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
6291 
6292 out:
6293 	kfree(pages);
6294 
6295 	return err;
6296 }
6297 #else
6298 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6299 			struct vm_area_struct *vma)
6300 {
6301 	return -EOPNOTSUPP;
6302 }
6303 #endif
6304 
6305 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
6306 		    struct vm_area_struct *vma)
6307 {
6308 	struct ring_buffer_per_cpu *cpu_buffer;
6309 	unsigned long flags, *subbuf_ids;
6310 	int err = 0;
6311 
6312 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6313 		return -EINVAL;
6314 
6315 	cpu_buffer = buffer->buffers[cpu];
6316 
6317 	mutex_lock(&cpu_buffer->mapping_lock);
6318 
6319 	if (cpu_buffer->mapped) {
6320 		err = __rb_map_vma(cpu_buffer, vma);
6321 		if (!err)
6322 			err = __rb_inc_dec_mapped(cpu_buffer, true);
6323 		mutex_unlock(&cpu_buffer->mapping_lock);
6324 		return err;
6325 	}
6326 
6327 	/* prevent another thread from changing buffer/sub-buffer sizes */
6328 	mutex_lock(&buffer->mutex);
6329 
6330 	err = rb_alloc_meta_page(cpu_buffer);
6331 	if (err)
6332 		goto unlock;
6333 
6334 	/* subbuf_ids include the reader while nr_pages does not */
6335 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
6336 	if (!subbuf_ids) {
6337 		rb_free_meta_page(cpu_buffer);
6338 		err = -ENOMEM;
6339 		goto unlock;
6340 	}
6341 
6342 	atomic_inc(&cpu_buffer->resize_disabled);
6343 
6344 	/*
6345 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
6346 	 * assigned.
6347 	 */
6348 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6349 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
6350 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6351 
6352 	err = __rb_map_vma(cpu_buffer, vma);
6353 	if (!err) {
6354 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6355 		cpu_buffer->mapped = 1;
6356 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6357 	} else {
6358 		kfree(cpu_buffer->subbuf_ids);
6359 		cpu_buffer->subbuf_ids = NULL;
6360 		rb_free_meta_page(cpu_buffer);
6361 	}
6362 
6363 unlock:
6364 	mutex_unlock(&buffer->mutex);
6365 	mutex_unlock(&cpu_buffer->mapping_lock);
6366 
6367 	return err;
6368 }
6369 
6370 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
6371 {
6372 	struct ring_buffer_per_cpu *cpu_buffer;
6373 	unsigned long flags;
6374 	int err = 0;
6375 
6376 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6377 		return -EINVAL;
6378 
6379 	cpu_buffer = buffer->buffers[cpu];
6380 
6381 	mutex_lock(&cpu_buffer->mapping_lock);
6382 
6383 	if (!cpu_buffer->mapped) {
6384 		err = -ENODEV;
6385 		goto out;
6386 	} else if (cpu_buffer->mapped > 1) {
6387 		__rb_inc_dec_mapped(cpu_buffer, false);
6388 		goto out;
6389 	}
6390 
6391 	mutex_lock(&buffer->mutex);
6392 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6393 
6394 	cpu_buffer->mapped = 0;
6395 
6396 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6397 
6398 	kfree(cpu_buffer->subbuf_ids);
6399 	cpu_buffer->subbuf_ids = NULL;
6400 	rb_free_meta_page(cpu_buffer);
6401 	atomic_dec(&cpu_buffer->resize_disabled);
6402 
6403 	mutex_unlock(&buffer->mutex);
6404 
6405 out:
6406 	mutex_unlock(&cpu_buffer->mapping_lock);
6407 
6408 	return err;
6409 }
6410 
6411 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
6412 {
6413 	struct ring_buffer_per_cpu *cpu_buffer;
6414 	struct buffer_page *reader;
6415 	unsigned long missed_events;
6416 	unsigned long reader_size;
6417 	unsigned long flags;
6418 
6419 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
6420 	if (IS_ERR(cpu_buffer))
6421 		return (int)PTR_ERR(cpu_buffer);
6422 
6423 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6424 
6425 consume:
6426 	if (rb_per_cpu_empty(cpu_buffer))
6427 		goto out;
6428 
6429 	reader_size = rb_page_size(cpu_buffer->reader_page);
6430 
6431 	/*
6432 	 * There are data to be read on the current reader page, we can
6433 	 * return to the caller. But before that, we assume the latter will read
6434 	 * everything. Let's update the kernel reader accordingly.
6435 	 */
6436 	if (cpu_buffer->reader_page->read < reader_size) {
6437 		while (cpu_buffer->reader_page->read < reader_size)
6438 			rb_advance_reader(cpu_buffer);
6439 		goto out;
6440 	}
6441 
6442 	reader = rb_get_reader_page(cpu_buffer);
6443 	if (WARN_ON(!reader))
6444 		goto out;
6445 
6446 	/* Check if any events were dropped */
6447 	missed_events = cpu_buffer->lost_events;
6448 
6449 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
6450 		if (missed_events) {
6451 			struct buffer_data_page *bpage = reader->page;
6452 			unsigned int commit;
6453 			/*
6454 			 * Use the real_end for the data size,
6455 			 * This gives us a chance to store the lost events
6456 			 * on the page.
6457 			 */
6458 			if (reader->real_end)
6459 				local_set(&bpage->commit, reader->real_end);
6460 			/*
6461 			 * If there is room at the end of the page to save the
6462 			 * missed events, then record it there.
6463 			 */
6464 			commit = rb_page_size(reader);
6465 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6466 				memcpy(&bpage->data[commit], &missed_events,
6467 				       sizeof(missed_events));
6468 				local_add(RB_MISSED_STORED, &bpage->commit);
6469 			}
6470 			local_add(RB_MISSED_EVENTS, &bpage->commit);
6471 		}
6472 	} else {
6473 		/*
6474 		 * There really shouldn't be any missed events if the commit
6475 		 * is on the reader page.
6476 		 */
6477 		WARN_ON_ONCE(missed_events);
6478 	}
6479 
6480 	cpu_buffer->lost_events = 0;
6481 
6482 	goto consume;
6483 
6484 out:
6485 	/* Some archs do not have data cache coherency between kernel and user-space */
6486 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
6487 
6488 	rb_update_meta_page(cpu_buffer);
6489 
6490 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6491 	rb_put_mapped_buffer(cpu_buffer);
6492 
6493 	return 0;
6494 }
6495 
6496 /*
6497  * We only allocate new buffers, never free them if the CPU goes down.
6498  * If we were to free the buffer, then the user would lose any trace that was in
6499  * the buffer.
6500  */
6501 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6502 {
6503 	struct trace_buffer *buffer;
6504 	long nr_pages_same;
6505 	int cpu_i;
6506 	unsigned long nr_pages;
6507 
6508 	buffer = container_of(node, struct trace_buffer, node);
6509 	if (cpumask_test_cpu(cpu, buffer->cpumask))
6510 		return 0;
6511 
6512 	nr_pages = 0;
6513 	nr_pages_same = 1;
6514 	/* check if all cpu sizes are same */
6515 	for_each_buffer_cpu(buffer, cpu_i) {
6516 		/* fill in the size from first enabled cpu */
6517 		if (nr_pages == 0)
6518 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
6519 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6520 			nr_pages_same = 0;
6521 			break;
6522 		}
6523 	}
6524 	/* allocate minimum pages, user can later expand it */
6525 	if (!nr_pages_same)
6526 		nr_pages = 2;
6527 	buffer->buffers[cpu] =
6528 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6529 	if (!buffer->buffers[cpu]) {
6530 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
6531 		     cpu);
6532 		return -ENOMEM;
6533 	}
6534 	smp_wmb();
6535 	cpumask_set_cpu(cpu, buffer->cpumask);
6536 	return 0;
6537 }
6538 
6539 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6540 /*
6541  * This is a basic integrity check of the ring buffer.
6542  * Late in the boot cycle this test will run when configured in.
6543  * It will kick off a thread per CPU that will go into a loop
6544  * writing to the per cpu ring buffer various sizes of data.
6545  * Some of the data will be large items, some small.
6546  *
6547  * Another thread is created that goes into a spin, sending out
6548  * IPIs to the other CPUs to also write into the ring buffer.
6549  * this is to test the nesting ability of the buffer.
6550  *
6551  * Basic stats are recorded and reported. If something in the
6552  * ring buffer should happen that's not expected, a big warning
6553  * is displayed and all ring buffers are disabled.
6554  */
6555 static struct task_struct *rb_threads[NR_CPUS] __initdata;
6556 
6557 struct rb_test_data {
6558 	struct trace_buffer *buffer;
6559 	unsigned long		events;
6560 	unsigned long		bytes_written;
6561 	unsigned long		bytes_alloc;
6562 	unsigned long		bytes_dropped;
6563 	unsigned long		events_nested;
6564 	unsigned long		bytes_written_nested;
6565 	unsigned long		bytes_alloc_nested;
6566 	unsigned long		bytes_dropped_nested;
6567 	int			min_size_nested;
6568 	int			max_size_nested;
6569 	int			max_size;
6570 	int			min_size;
6571 	int			cpu;
6572 	int			cnt;
6573 };
6574 
6575 static struct rb_test_data rb_data[NR_CPUS] __initdata;
6576 
6577 /* 1 meg per cpu */
6578 #define RB_TEST_BUFFER_SIZE	1048576
6579 
6580 static char rb_string[] __initdata =
6581 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6582 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6583 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6584 
6585 static bool rb_test_started __initdata;
6586 
6587 struct rb_item {
6588 	int size;
6589 	char str[];
6590 };
6591 
6592 static __init int rb_write_something(struct rb_test_data *data, bool nested)
6593 {
6594 	struct ring_buffer_event *event;
6595 	struct rb_item *item;
6596 	bool started;
6597 	int event_len;
6598 	int size;
6599 	int len;
6600 	int cnt;
6601 
6602 	/* Have nested writes different that what is written */
6603 	cnt = data->cnt + (nested ? 27 : 0);
6604 
6605 	/* Multiply cnt by ~e, to make some unique increment */
6606 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6607 
6608 	len = size + sizeof(struct rb_item);
6609 
6610 	started = rb_test_started;
6611 	/* read rb_test_started before checking buffer enabled */
6612 	smp_rmb();
6613 
6614 	event = ring_buffer_lock_reserve(data->buffer, len);
6615 	if (!event) {
6616 		/* Ignore dropped events before test starts. */
6617 		if (started) {
6618 			if (nested)
6619 				data->bytes_dropped += len;
6620 			else
6621 				data->bytes_dropped_nested += len;
6622 		}
6623 		return len;
6624 	}
6625 
6626 	event_len = ring_buffer_event_length(event);
6627 
6628 	if (RB_WARN_ON(data->buffer, event_len < len))
6629 		goto out;
6630 
6631 	item = ring_buffer_event_data(event);
6632 	item->size = size;
6633 	memcpy(item->str, rb_string, size);
6634 
6635 	if (nested) {
6636 		data->bytes_alloc_nested += event_len;
6637 		data->bytes_written_nested += len;
6638 		data->events_nested++;
6639 		if (!data->min_size_nested || len < data->min_size_nested)
6640 			data->min_size_nested = len;
6641 		if (len > data->max_size_nested)
6642 			data->max_size_nested = len;
6643 	} else {
6644 		data->bytes_alloc += event_len;
6645 		data->bytes_written += len;
6646 		data->events++;
6647 		if (!data->min_size || len < data->min_size)
6648 			data->max_size = len;
6649 		if (len > data->max_size)
6650 			data->max_size = len;
6651 	}
6652 
6653  out:
6654 	ring_buffer_unlock_commit(data->buffer);
6655 
6656 	return 0;
6657 }
6658 
6659 static __init int rb_test(void *arg)
6660 {
6661 	struct rb_test_data *data = arg;
6662 
6663 	while (!kthread_should_stop()) {
6664 		rb_write_something(data, false);
6665 		data->cnt++;
6666 
6667 		set_current_state(TASK_INTERRUPTIBLE);
6668 		/* Now sleep between a min of 100-300us and a max of 1ms */
6669 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6670 	}
6671 
6672 	return 0;
6673 }
6674 
6675 static __init void rb_ipi(void *ignore)
6676 {
6677 	struct rb_test_data *data;
6678 	int cpu = smp_processor_id();
6679 
6680 	data = &rb_data[cpu];
6681 	rb_write_something(data, true);
6682 }
6683 
6684 static __init int rb_hammer_test(void *arg)
6685 {
6686 	while (!kthread_should_stop()) {
6687 
6688 		/* Send an IPI to all cpus to write data! */
6689 		smp_call_function(rb_ipi, NULL, 1);
6690 		/* No sleep, but for non preempt, let others run */
6691 		schedule();
6692 	}
6693 
6694 	return 0;
6695 }
6696 
6697 static __init int test_ringbuffer(void)
6698 {
6699 	struct task_struct *rb_hammer;
6700 	struct trace_buffer *buffer;
6701 	int cpu;
6702 	int ret = 0;
6703 
6704 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6705 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6706 		return 0;
6707 	}
6708 
6709 	pr_info("Running ring buffer tests...\n");
6710 
6711 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6712 	if (WARN_ON(!buffer))
6713 		return 0;
6714 
6715 	/* Disable buffer so that threads can't write to it yet */
6716 	ring_buffer_record_off(buffer);
6717 
6718 	for_each_online_cpu(cpu) {
6719 		rb_data[cpu].buffer = buffer;
6720 		rb_data[cpu].cpu = cpu;
6721 		rb_data[cpu].cnt = cpu;
6722 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6723 						     cpu, "rbtester/%u");
6724 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6725 			pr_cont("FAILED\n");
6726 			ret = PTR_ERR(rb_threads[cpu]);
6727 			goto out_free;
6728 		}
6729 	}
6730 
6731 	/* Now create the rb hammer! */
6732 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6733 	if (WARN_ON(IS_ERR(rb_hammer))) {
6734 		pr_cont("FAILED\n");
6735 		ret = PTR_ERR(rb_hammer);
6736 		goto out_free;
6737 	}
6738 
6739 	ring_buffer_record_on(buffer);
6740 	/*
6741 	 * Show buffer is enabled before setting rb_test_started.
6742 	 * Yes there's a small race window where events could be
6743 	 * dropped and the thread wont catch it. But when a ring
6744 	 * buffer gets enabled, there will always be some kind of
6745 	 * delay before other CPUs see it. Thus, we don't care about
6746 	 * those dropped events. We care about events dropped after
6747 	 * the threads see that the buffer is active.
6748 	 */
6749 	smp_wmb();
6750 	rb_test_started = true;
6751 
6752 	set_current_state(TASK_INTERRUPTIBLE);
6753 	/* Just run for 10 seconds */;
6754 	schedule_timeout(10 * HZ);
6755 
6756 	kthread_stop(rb_hammer);
6757 
6758  out_free:
6759 	for_each_online_cpu(cpu) {
6760 		if (!rb_threads[cpu])
6761 			break;
6762 		kthread_stop(rb_threads[cpu]);
6763 	}
6764 	if (ret) {
6765 		ring_buffer_free(buffer);
6766 		return ret;
6767 	}
6768 
6769 	/* Report! */
6770 	pr_info("finished\n");
6771 	for_each_online_cpu(cpu) {
6772 		struct ring_buffer_event *event;
6773 		struct rb_test_data *data = &rb_data[cpu];
6774 		struct rb_item *item;
6775 		unsigned long total_events;
6776 		unsigned long total_dropped;
6777 		unsigned long total_written;
6778 		unsigned long total_alloc;
6779 		unsigned long total_read = 0;
6780 		unsigned long total_size = 0;
6781 		unsigned long total_len = 0;
6782 		unsigned long total_lost = 0;
6783 		unsigned long lost;
6784 		int big_event_size;
6785 		int small_event_size;
6786 
6787 		ret = -1;
6788 
6789 		total_events = data->events + data->events_nested;
6790 		total_written = data->bytes_written + data->bytes_written_nested;
6791 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6792 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6793 
6794 		big_event_size = data->max_size + data->max_size_nested;
6795 		small_event_size = data->min_size + data->min_size_nested;
6796 
6797 		pr_info("CPU %d:\n", cpu);
6798 		pr_info("              events:    %ld\n", total_events);
6799 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6800 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6801 		pr_info("       written bytes:    %ld\n", total_written);
6802 		pr_info("       biggest event:    %d\n", big_event_size);
6803 		pr_info("      smallest event:    %d\n", small_event_size);
6804 
6805 		if (RB_WARN_ON(buffer, total_dropped))
6806 			break;
6807 
6808 		ret = 0;
6809 
6810 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6811 			total_lost += lost;
6812 			item = ring_buffer_event_data(event);
6813 			total_len += ring_buffer_event_length(event);
6814 			total_size += item->size + sizeof(struct rb_item);
6815 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6816 				pr_info("FAILED!\n");
6817 				pr_info("buffer had: %.*s\n", item->size, item->str);
6818 				pr_info("expected:   %.*s\n", item->size, rb_string);
6819 				RB_WARN_ON(buffer, 1);
6820 				ret = -1;
6821 				break;
6822 			}
6823 			total_read++;
6824 		}
6825 		if (ret)
6826 			break;
6827 
6828 		ret = -1;
6829 
6830 		pr_info("         read events:   %ld\n", total_read);
6831 		pr_info("         lost events:   %ld\n", total_lost);
6832 		pr_info("        total events:   %ld\n", total_lost + total_read);
6833 		pr_info("  recorded len bytes:   %ld\n", total_len);
6834 		pr_info(" recorded size bytes:   %ld\n", total_size);
6835 		if (total_lost) {
6836 			pr_info(" With dropped events, record len and size may not match\n"
6837 				" alloced and written from above\n");
6838 		} else {
6839 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6840 				       total_size != total_written))
6841 				break;
6842 		}
6843 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6844 			break;
6845 
6846 		ret = 0;
6847 	}
6848 	if (!ret)
6849 		pr_info("Ring buffer PASSED!\n");
6850 
6851 	ring_buffer_free(buffer);
6852 	return 0;
6853 }
6854 
6855 late_initcall(test_ringbuffer);
6856 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6857