xref: /linux/kernel/trace/ring_buffer.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>	/* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18 
19 #include "trace.h"
20 
21 /* Global flag to disable all recording to ring buffers */
22 static int ring_buffers_off __read_mostly;
23 
24 /**
25  * tracing_on - enable all tracing buffers
26  *
27  * This function enables all tracing buffers that may have been
28  * disabled with tracing_off.
29  */
30 void tracing_on(void)
31 {
32 	ring_buffers_off = 0;
33 }
34 
35 /**
36  * tracing_off - turn off all tracing buffers
37  *
38  * This function stops all tracing buffers from recording data.
39  * It does not disable any overhead the tracers themselves may
40  * be causing. This function simply causes all recording to
41  * the ring buffers to fail.
42  */
43 void tracing_off(void)
44 {
45 	ring_buffers_off = 1;
46 }
47 
48 /* Up this if you want to test the TIME_EXTENTS and normalization */
49 #define DEBUG_SHIFT 0
50 
51 /* FIXME!!! */
52 u64 ring_buffer_time_stamp(int cpu)
53 {
54 	u64 time;
55 
56 	preempt_disable_notrace();
57 	/* shift to debug/test normalization and TIME_EXTENTS */
58 	time = sched_clock() << DEBUG_SHIFT;
59 	preempt_enable_notrace();
60 
61 	return time;
62 }
63 
64 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
65 {
66 	/* Just stupid testing the normalize function and deltas */
67 	*ts >>= DEBUG_SHIFT;
68 }
69 
70 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
71 #define RB_ALIGNMENT_SHIFT	2
72 #define RB_ALIGNMENT		(1 << RB_ALIGNMENT_SHIFT)
73 #define RB_MAX_SMALL_DATA	28
74 
75 enum {
76 	RB_LEN_TIME_EXTEND = 8,
77 	RB_LEN_TIME_STAMP = 16,
78 };
79 
80 /* inline for ring buffer fast paths */
81 static inline unsigned
82 rb_event_length(struct ring_buffer_event *event)
83 {
84 	unsigned length;
85 
86 	switch (event->type) {
87 	case RINGBUF_TYPE_PADDING:
88 		/* undefined */
89 		return -1;
90 
91 	case RINGBUF_TYPE_TIME_EXTEND:
92 		return RB_LEN_TIME_EXTEND;
93 
94 	case RINGBUF_TYPE_TIME_STAMP:
95 		return RB_LEN_TIME_STAMP;
96 
97 	case RINGBUF_TYPE_DATA:
98 		if (event->len)
99 			length = event->len << RB_ALIGNMENT_SHIFT;
100 		else
101 			length = event->array[0];
102 		return length + RB_EVNT_HDR_SIZE;
103 	default:
104 		BUG();
105 	}
106 	/* not hit */
107 	return 0;
108 }
109 
110 /**
111  * ring_buffer_event_length - return the length of the event
112  * @event: the event to get the length of
113  */
114 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
115 {
116 	return rb_event_length(event);
117 }
118 
119 /* inline for ring buffer fast paths */
120 static inline void *
121 rb_event_data(struct ring_buffer_event *event)
122 {
123 	BUG_ON(event->type != RINGBUF_TYPE_DATA);
124 	/* If length is in len field, then array[0] has the data */
125 	if (event->len)
126 		return (void *)&event->array[0];
127 	/* Otherwise length is in array[0] and array[1] has the data */
128 	return (void *)&event->array[1];
129 }
130 
131 /**
132  * ring_buffer_event_data - return the data of the event
133  * @event: the event to get the data from
134  */
135 void *ring_buffer_event_data(struct ring_buffer_event *event)
136 {
137 	return rb_event_data(event);
138 }
139 
140 #define for_each_buffer_cpu(buffer, cpu)		\
141 	for_each_cpu_mask(cpu, buffer->cpumask)
142 
143 #define TS_SHIFT	27
144 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
145 #define TS_DELTA_TEST	(~TS_MASK)
146 
147 /*
148  * This hack stolen from mm/slob.c.
149  * We can store per page timing information in the page frame of the page.
150  * Thanks to Peter Zijlstra for suggesting this idea.
151  */
152 struct buffer_page {
153 	u64		 time_stamp;	/* page time stamp */
154 	local_t		 write;		/* index for next write */
155 	local_t		 commit;	/* write commited index */
156 	unsigned	 read;		/* index for next read */
157 	struct list_head list;		/* list of free pages */
158 	void *page;			/* Actual data page */
159 };
160 
161 /*
162  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
163  * this issue out.
164  */
165 static inline void free_buffer_page(struct buffer_page *bpage)
166 {
167 	if (bpage->page)
168 		free_page((unsigned long)bpage->page);
169 	kfree(bpage);
170 }
171 
172 /*
173  * We need to fit the time_stamp delta into 27 bits.
174  */
175 static inline int test_time_stamp(u64 delta)
176 {
177 	if (delta & TS_DELTA_TEST)
178 		return 1;
179 	return 0;
180 }
181 
182 #define BUF_PAGE_SIZE PAGE_SIZE
183 
184 /*
185  * head_page == tail_page && head == tail then buffer is empty.
186  */
187 struct ring_buffer_per_cpu {
188 	int				cpu;
189 	struct ring_buffer		*buffer;
190 	spinlock_t			lock;
191 	struct lock_class_key		lock_key;
192 	struct list_head		pages;
193 	struct buffer_page		*head_page;	/* read from head */
194 	struct buffer_page		*tail_page;	/* write to tail */
195 	struct buffer_page		*commit_page;	/* commited pages */
196 	struct buffer_page		*reader_page;
197 	unsigned long			overrun;
198 	unsigned long			entries;
199 	u64				write_stamp;
200 	u64				read_stamp;
201 	atomic_t			record_disabled;
202 };
203 
204 struct ring_buffer {
205 	unsigned long			size;
206 	unsigned			pages;
207 	unsigned			flags;
208 	int				cpus;
209 	cpumask_t			cpumask;
210 	atomic_t			record_disabled;
211 
212 	struct mutex			mutex;
213 
214 	struct ring_buffer_per_cpu	**buffers;
215 };
216 
217 struct ring_buffer_iter {
218 	struct ring_buffer_per_cpu	*cpu_buffer;
219 	unsigned long			head;
220 	struct buffer_page		*head_page;
221 	u64				read_stamp;
222 };
223 
224 #define RB_WARN_ON(buffer, cond)				\
225 	do {							\
226 		if (unlikely(cond)) {				\
227 			atomic_inc(&buffer->record_disabled);	\
228 			WARN_ON(1);				\
229 		}						\
230 	} while (0)
231 
232 #define RB_WARN_ON_RET(buffer, cond)				\
233 	do {							\
234 		if (unlikely(cond)) {				\
235 			atomic_inc(&buffer->record_disabled);	\
236 			WARN_ON(1);				\
237 			return -1;				\
238 		}						\
239 	} while (0)
240 
241 #define RB_WARN_ON_ONCE(buffer, cond)				\
242 	do {							\
243 		static int once;				\
244 		if (unlikely(cond) && !once) {			\
245 			once++;					\
246 			atomic_inc(&buffer->record_disabled);	\
247 			WARN_ON(1);				\
248 		}						\
249 	} while (0)
250 
251 /**
252  * check_pages - integrity check of buffer pages
253  * @cpu_buffer: CPU buffer with pages to test
254  *
255  * As a safty measure we check to make sure the data pages have not
256  * been corrupted.
257  */
258 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
259 {
260 	struct list_head *head = &cpu_buffer->pages;
261 	struct buffer_page *page, *tmp;
262 
263 	RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
264 	RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
265 
266 	list_for_each_entry_safe(page, tmp, head, list) {
267 		RB_WARN_ON_RET(cpu_buffer,
268 			       page->list.next->prev != &page->list);
269 		RB_WARN_ON_RET(cpu_buffer,
270 			       page->list.prev->next != &page->list);
271 	}
272 
273 	return 0;
274 }
275 
276 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
277 			     unsigned nr_pages)
278 {
279 	struct list_head *head = &cpu_buffer->pages;
280 	struct buffer_page *page, *tmp;
281 	unsigned long addr;
282 	LIST_HEAD(pages);
283 	unsigned i;
284 
285 	for (i = 0; i < nr_pages; i++) {
286 		page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
287 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
288 		if (!page)
289 			goto free_pages;
290 		list_add(&page->list, &pages);
291 
292 		addr = __get_free_page(GFP_KERNEL);
293 		if (!addr)
294 			goto free_pages;
295 		page->page = (void *)addr;
296 	}
297 
298 	list_splice(&pages, head);
299 
300 	rb_check_pages(cpu_buffer);
301 
302 	return 0;
303 
304  free_pages:
305 	list_for_each_entry_safe(page, tmp, &pages, list) {
306 		list_del_init(&page->list);
307 		free_buffer_page(page);
308 	}
309 	return -ENOMEM;
310 }
311 
312 static struct ring_buffer_per_cpu *
313 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
314 {
315 	struct ring_buffer_per_cpu *cpu_buffer;
316 	struct buffer_page *page;
317 	unsigned long addr;
318 	int ret;
319 
320 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
321 				  GFP_KERNEL, cpu_to_node(cpu));
322 	if (!cpu_buffer)
323 		return NULL;
324 
325 	cpu_buffer->cpu = cpu;
326 	cpu_buffer->buffer = buffer;
327 	spin_lock_init(&cpu_buffer->lock);
328 	INIT_LIST_HEAD(&cpu_buffer->pages);
329 
330 	page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
331 			    GFP_KERNEL, cpu_to_node(cpu));
332 	if (!page)
333 		goto fail_free_buffer;
334 
335 	cpu_buffer->reader_page = page;
336 	addr = __get_free_page(GFP_KERNEL);
337 	if (!addr)
338 		goto fail_free_reader;
339 	page->page = (void *)addr;
340 
341 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
342 
343 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
344 	if (ret < 0)
345 		goto fail_free_reader;
346 
347 	cpu_buffer->head_page
348 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
349 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
350 
351 	return cpu_buffer;
352 
353  fail_free_reader:
354 	free_buffer_page(cpu_buffer->reader_page);
355 
356  fail_free_buffer:
357 	kfree(cpu_buffer);
358 	return NULL;
359 }
360 
361 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
362 {
363 	struct list_head *head = &cpu_buffer->pages;
364 	struct buffer_page *page, *tmp;
365 
366 	list_del_init(&cpu_buffer->reader_page->list);
367 	free_buffer_page(cpu_buffer->reader_page);
368 
369 	list_for_each_entry_safe(page, tmp, head, list) {
370 		list_del_init(&page->list);
371 		free_buffer_page(page);
372 	}
373 	kfree(cpu_buffer);
374 }
375 
376 /*
377  * Causes compile errors if the struct buffer_page gets bigger
378  * than the struct page.
379  */
380 extern int ring_buffer_page_too_big(void);
381 
382 /**
383  * ring_buffer_alloc - allocate a new ring_buffer
384  * @size: the size in bytes that is needed.
385  * @flags: attributes to set for the ring buffer.
386  *
387  * Currently the only flag that is available is the RB_FL_OVERWRITE
388  * flag. This flag means that the buffer will overwrite old data
389  * when the buffer wraps. If this flag is not set, the buffer will
390  * drop data when the tail hits the head.
391  */
392 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
393 {
394 	struct ring_buffer *buffer;
395 	int bsize;
396 	int cpu;
397 
398 	/* Paranoid! Optimizes out when all is well */
399 	if (sizeof(struct buffer_page) > sizeof(struct page))
400 		ring_buffer_page_too_big();
401 
402 
403 	/* keep it in its own cache line */
404 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
405 			 GFP_KERNEL);
406 	if (!buffer)
407 		return NULL;
408 
409 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
410 	buffer->flags = flags;
411 
412 	/* need at least two pages */
413 	if (buffer->pages == 1)
414 		buffer->pages++;
415 
416 	buffer->cpumask = cpu_possible_map;
417 	buffer->cpus = nr_cpu_ids;
418 
419 	bsize = sizeof(void *) * nr_cpu_ids;
420 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
421 				  GFP_KERNEL);
422 	if (!buffer->buffers)
423 		goto fail_free_buffer;
424 
425 	for_each_buffer_cpu(buffer, cpu) {
426 		buffer->buffers[cpu] =
427 			rb_allocate_cpu_buffer(buffer, cpu);
428 		if (!buffer->buffers[cpu])
429 			goto fail_free_buffers;
430 	}
431 
432 	mutex_init(&buffer->mutex);
433 
434 	return buffer;
435 
436  fail_free_buffers:
437 	for_each_buffer_cpu(buffer, cpu) {
438 		if (buffer->buffers[cpu])
439 			rb_free_cpu_buffer(buffer->buffers[cpu]);
440 	}
441 	kfree(buffer->buffers);
442 
443  fail_free_buffer:
444 	kfree(buffer);
445 	return NULL;
446 }
447 
448 /**
449  * ring_buffer_free - free a ring buffer.
450  * @buffer: the buffer to free.
451  */
452 void
453 ring_buffer_free(struct ring_buffer *buffer)
454 {
455 	int cpu;
456 
457 	for_each_buffer_cpu(buffer, cpu)
458 		rb_free_cpu_buffer(buffer->buffers[cpu]);
459 
460 	kfree(buffer);
461 }
462 
463 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
464 
465 static void
466 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
467 {
468 	struct buffer_page *page;
469 	struct list_head *p;
470 	unsigned i;
471 
472 	atomic_inc(&cpu_buffer->record_disabled);
473 	synchronize_sched();
474 
475 	for (i = 0; i < nr_pages; i++) {
476 		BUG_ON(list_empty(&cpu_buffer->pages));
477 		p = cpu_buffer->pages.next;
478 		page = list_entry(p, struct buffer_page, list);
479 		list_del_init(&page->list);
480 		free_buffer_page(page);
481 	}
482 	BUG_ON(list_empty(&cpu_buffer->pages));
483 
484 	rb_reset_cpu(cpu_buffer);
485 
486 	rb_check_pages(cpu_buffer);
487 
488 	atomic_dec(&cpu_buffer->record_disabled);
489 
490 }
491 
492 static void
493 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
494 		struct list_head *pages, unsigned nr_pages)
495 {
496 	struct buffer_page *page;
497 	struct list_head *p;
498 	unsigned i;
499 
500 	atomic_inc(&cpu_buffer->record_disabled);
501 	synchronize_sched();
502 
503 	for (i = 0; i < nr_pages; i++) {
504 		BUG_ON(list_empty(pages));
505 		p = pages->next;
506 		page = list_entry(p, struct buffer_page, list);
507 		list_del_init(&page->list);
508 		list_add_tail(&page->list, &cpu_buffer->pages);
509 	}
510 	rb_reset_cpu(cpu_buffer);
511 
512 	rb_check_pages(cpu_buffer);
513 
514 	atomic_dec(&cpu_buffer->record_disabled);
515 }
516 
517 /**
518  * ring_buffer_resize - resize the ring buffer
519  * @buffer: the buffer to resize.
520  * @size: the new size.
521  *
522  * The tracer is responsible for making sure that the buffer is
523  * not being used while changing the size.
524  * Note: We may be able to change the above requirement by using
525  *  RCU synchronizations.
526  *
527  * Minimum size is 2 * BUF_PAGE_SIZE.
528  *
529  * Returns -1 on failure.
530  */
531 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
532 {
533 	struct ring_buffer_per_cpu *cpu_buffer;
534 	unsigned nr_pages, rm_pages, new_pages;
535 	struct buffer_page *page, *tmp;
536 	unsigned long buffer_size;
537 	unsigned long addr;
538 	LIST_HEAD(pages);
539 	int i, cpu;
540 
541 	/*
542 	 * Always succeed at resizing a non-existent buffer:
543 	 */
544 	if (!buffer)
545 		return size;
546 
547 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
548 	size *= BUF_PAGE_SIZE;
549 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
550 
551 	/* we need a minimum of two pages */
552 	if (size < BUF_PAGE_SIZE * 2)
553 		size = BUF_PAGE_SIZE * 2;
554 
555 	if (size == buffer_size)
556 		return size;
557 
558 	mutex_lock(&buffer->mutex);
559 
560 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
561 
562 	if (size < buffer_size) {
563 
564 		/* easy case, just free pages */
565 		BUG_ON(nr_pages >= buffer->pages);
566 
567 		rm_pages = buffer->pages - nr_pages;
568 
569 		for_each_buffer_cpu(buffer, cpu) {
570 			cpu_buffer = buffer->buffers[cpu];
571 			rb_remove_pages(cpu_buffer, rm_pages);
572 		}
573 		goto out;
574 	}
575 
576 	/*
577 	 * This is a bit more difficult. We only want to add pages
578 	 * when we can allocate enough for all CPUs. We do this
579 	 * by allocating all the pages and storing them on a local
580 	 * link list. If we succeed in our allocation, then we
581 	 * add these pages to the cpu_buffers. Otherwise we just free
582 	 * them all and return -ENOMEM;
583 	 */
584 	BUG_ON(nr_pages <= buffer->pages);
585 	new_pages = nr_pages - buffer->pages;
586 
587 	for_each_buffer_cpu(buffer, cpu) {
588 		for (i = 0; i < new_pages; i++) {
589 			page = kzalloc_node(ALIGN(sizeof(*page),
590 						  cache_line_size()),
591 					    GFP_KERNEL, cpu_to_node(cpu));
592 			if (!page)
593 				goto free_pages;
594 			list_add(&page->list, &pages);
595 			addr = __get_free_page(GFP_KERNEL);
596 			if (!addr)
597 				goto free_pages;
598 			page->page = (void *)addr;
599 		}
600 	}
601 
602 	for_each_buffer_cpu(buffer, cpu) {
603 		cpu_buffer = buffer->buffers[cpu];
604 		rb_insert_pages(cpu_buffer, &pages, new_pages);
605 	}
606 
607 	BUG_ON(!list_empty(&pages));
608 
609  out:
610 	buffer->pages = nr_pages;
611 	mutex_unlock(&buffer->mutex);
612 
613 	return size;
614 
615  free_pages:
616 	list_for_each_entry_safe(page, tmp, &pages, list) {
617 		list_del_init(&page->list);
618 		free_buffer_page(page);
619 	}
620 	mutex_unlock(&buffer->mutex);
621 	return -ENOMEM;
622 }
623 
624 static inline int rb_null_event(struct ring_buffer_event *event)
625 {
626 	return event->type == RINGBUF_TYPE_PADDING;
627 }
628 
629 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
630 {
631 	return page->page + index;
632 }
633 
634 static inline struct ring_buffer_event *
635 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
636 {
637 	return __rb_page_index(cpu_buffer->reader_page,
638 			       cpu_buffer->reader_page->read);
639 }
640 
641 static inline struct ring_buffer_event *
642 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
643 {
644 	return __rb_page_index(cpu_buffer->head_page,
645 			       cpu_buffer->head_page->read);
646 }
647 
648 static inline struct ring_buffer_event *
649 rb_iter_head_event(struct ring_buffer_iter *iter)
650 {
651 	return __rb_page_index(iter->head_page, iter->head);
652 }
653 
654 static inline unsigned rb_page_write(struct buffer_page *bpage)
655 {
656 	return local_read(&bpage->write);
657 }
658 
659 static inline unsigned rb_page_commit(struct buffer_page *bpage)
660 {
661 	return local_read(&bpage->commit);
662 }
663 
664 /* Size is determined by what has been commited */
665 static inline unsigned rb_page_size(struct buffer_page *bpage)
666 {
667 	return rb_page_commit(bpage);
668 }
669 
670 static inline unsigned
671 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
672 {
673 	return rb_page_commit(cpu_buffer->commit_page);
674 }
675 
676 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
677 {
678 	return rb_page_commit(cpu_buffer->head_page);
679 }
680 
681 /*
682  * When the tail hits the head and the buffer is in overwrite mode,
683  * the head jumps to the next page and all content on the previous
684  * page is discarded. But before doing so, we update the overrun
685  * variable of the buffer.
686  */
687 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
688 {
689 	struct ring_buffer_event *event;
690 	unsigned long head;
691 
692 	for (head = 0; head < rb_head_size(cpu_buffer);
693 	     head += rb_event_length(event)) {
694 
695 		event = __rb_page_index(cpu_buffer->head_page, head);
696 		BUG_ON(rb_null_event(event));
697 		/* Only count data entries */
698 		if (event->type != RINGBUF_TYPE_DATA)
699 			continue;
700 		cpu_buffer->overrun++;
701 		cpu_buffer->entries--;
702 	}
703 }
704 
705 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
706 			       struct buffer_page **page)
707 {
708 	struct list_head *p = (*page)->list.next;
709 
710 	if (p == &cpu_buffer->pages)
711 		p = p->next;
712 
713 	*page = list_entry(p, struct buffer_page, list);
714 }
715 
716 static inline unsigned
717 rb_event_index(struct ring_buffer_event *event)
718 {
719 	unsigned long addr = (unsigned long)event;
720 
721 	return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
722 }
723 
724 static inline int
725 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
726 	     struct ring_buffer_event *event)
727 {
728 	unsigned long addr = (unsigned long)event;
729 	unsigned long index;
730 
731 	index = rb_event_index(event);
732 	addr &= PAGE_MASK;
733 
734 	return cpu_buffer->commit_page->page == (void *)addr &&
735 		rb_commit_index(cpu_buffer) == index;
736 }
737 
738 static inline void
739 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
740 		    struct ring_buffer_event *event)
741 {
742 	unsigned long addr = (unsigned long)event;
743 	unsigned long index;
744 
745 	index = rb_event_index(event);
746 	addr &= PAGE_MASK;
747 
748 	while (cpu_buffer->commit_page->page != (void *)addr) {
749 		RB_WARN_ON(cpu_buffer,
750 			   cpu_buffer->commit_page == cpu_buffer->tail_page);
751 		cpu_buffer->commit_page->commit =
752 			cpu_buffer->commit_page->write;
753 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
754 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
755 	}
756 
757 	/* Now set the commit to the event's index */
758 	local_set(&cpu_buffer->commit_page->commit, index);
759 }
760 
761 static inline void
762 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
763 {
764 	/*
765 	 * We only race with interrupts and NMIs on this CPU.
766 	 * If we own the commit event, then we can commit
767 	 * all others that interrupted us, since the interruptions
768 	 * are in stack format (they finish before they come
769 	 * back to us). This allows us to do a simple loop to
770 	 * assign the commit to the tail.
771 	 */
772 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
773 		cpu_buffer->commit_page->commit =
774 			cpu_buffer->commit_page->write;
775 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
776 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
777 		/* add barrier to keep gcc from optimizing too much */
778 		barrier();
779 	}
780 	while (rb_commit_index(cpu_buffer) !=
781 	       rb_page_write(cpu_buffer->commit_page)) {
782 		cpu_buffer->commit_page->commit =
783 			cpu_buffer->commit_page->write;
784 		barrier();
785 	}
786 }
787 
788 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790 	cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
791 	cpu_buffer->reader_page->read = 0;
792 }
793 
794 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
795 {
796 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
797 
798 	/*
799 	 * The iterator could be on the reader page (it starts there).
800 	 * But the head could have moved, since the reader was
801 	 * found. Check for this case and assign the iterator
802 	 * to the head page instead of next.
803 	 */
804 	if (iter->head_page == cpu_buffer->reader_page)
805 		iter->head_page = cpu_buffer->head_page;
806 	else
807 		rb_inc_page(cpu_buffer, &iter->head_page);
808 
809 	iter->read_stamp = iter->head_page->time_stamp;
810 	iter->head = 0;
811 }
812 
813 /**
814  * ring_buffer_update_event - update event type and data
815  * @event: the even to update
816  * @type: the type of event
817  * @length: the size of the event field in the ring buffer
818  *
819  * Update the type and data fields of the event. The length
820  * is the actual size that is written to the ring buffer,
821  * and with this, we can determine what to place into the
822  * data field.
823  */
824 static inline void
825 rb_update_event(struct ring_buffer_event *event,
826 			 unsigned type, unsigned length)
827 {
828 	event->type = type;
829 
830 	switch (type) {
831 
832 	case RINGBUF_TYPE_PADDING:
833 		break;
834 
835 	case RINGBUF_TYPE_TIME_EXTEND:
836 		event->len =
837 			(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
838 			>> RB_ALIGNMENT_SHIFT;
839 		break;
840 
841 	case RINGBUF_TYPE_TIME_STAMP:
842 		event->len =
843 			(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
844 			>> RB_ALIGNMENT_SHIFT;
845 		break;
846 
847 	case RINGBUF_TYPE_DATA:
848 		length -= RB_EVNT_HDR_SIZE;
849 		if (length > RB_MAX_SMALL_DATA) {
850 			event->len = 0;
851 			event->array[0] = length;
852 		} else
853 			event->len =
854 				(length + (RB_ALIGNMENT-1))
855 				>> RB_ALIGNMENT_SHIFT;
856 		break;
857 	default:
858 		BUG();
859 	}
860 }
861 
862 static inline unsigned rb_calculate_event_length(unsigned length)
863 {
864 	struct ring_buffer_event event; /* Used only for sizeof array */
865 
866 	/* zero length can cause confusions */
867 	if (!length)
868 		length = 1;
869 
870 	if (length > RB_MAX_SMALL_DATA)
871 		length += sizeof(event.array[0]);
872 
873 	length += RB_EVNT_HDR_SIZE;
874 	length = ALIGN(length, RB_ALIGNMENT);
875 
876 	return length;
877 }
878 
879 static struct ring_buffer_event *
880 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
881 		  unsigned type, unsigned long length, u64 *ts)
882 {
883 	struct buffer_page *tail_page, *head_page, *reader_page;
884 	unsigned long tail, write;
885 	struct ring_buffer *buffer = cpu_buffer->buffer;
886 	struct ring_buffer_event *event;
887 	unsigned long flags;
888 
889 	tail_page = cpu_buffer->tail_page;
890 	write = local_add_return(length, &tail_page->write);
891 	tail = write - length;
892 
893 	/* See if we shot pass the end of this buffer page */
894 	if (write > BUF_PAGE_SIZE) {
895 		struct buffer_page *next_page = tail_page;
896 
897 		spin_lock_irqsave(&cpu_buffer->lock, flags);
898 
899 		rb_inc_page(cpu_buffer, &next_page);
900 
901 		head_page = cpu_buffer->head_page;
902 		reader_page = cpu_buffer->reader_page;
903 
904 		/* we grabbed the lock before incrementing */
905 		RB_WARN_ON(cpu_buffer, next_page == reader_page);
906 
907 		/*
908 		 * If for some reason, we had an interrupt storm that made
909 		 * it all the way around the buffer, bail, and warn
910 		 * about it.
911 		 */
912 		if (unlikely(next_page == cpu_buffer->commit_page)) {
913 			WARN_ON_ONCE(1);
914 			goto out_unlock;
915 		}
916 
917 		if (next_page == head_page) {
918 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
919 				/* reset write */
920 				if (tail <= BUF_PAGE_SIZE)
921 					local_set(&tail_page->write, tail);
922 				goto out_unlock;
923 			}
924 
925 			/* tail_page has not moved yet? */
926 			if (tail_page == cpu_buffer->tail_page) {
927 				/* count overflows */
928 				rb_update_overflow(cpu_buffer);
929 
930 				rb_inc_page(cpu_buffer, &head_page);
931 				cpu_buffer->head_page = head_page;
932 				cpu_buffer->head_page->read = 0;
933 			}
934 		}
935 
936 		/*
937 		 * If the tail page is still the same as what we think
938 		 * it is, then it is up to us to update the tail
939 		 * pointer.
940 		 */
941 		if (tail_page == cpu_buffer->tail_page) {
942 			local_set(&next_page->write, 0);
943 			local_set(&next_page->commit, 0);
944 			cpu_buffer->tail_page = next_page;
945 
946 			/* reread the time stamp */
947 			*ts = ring_buffer_time_stamp(cpu_buffer->cpu);
948 			cpu_buffer->tail_page->time_stamp = *ts;
949 		}
950 
951 		/*
952 		 * The actual tail page has moved forward.
953 		 */
954 		if (tail < BUF_PAGE_SIZE) {
955 			/* Mark the rest of the page with padding */
956 			event = __rb_page_index(tail_page, tail);
957 			event->type = RINGBUF_TYPE_PADDING;
958 		}
959 
960 		if (tail <= BUF_PAGE_SIZE)
961 			/* Set the write back to the previous setting */
962 			local_set(&tail_page->write, tail);
963 
964 		/*
965 		 * If this was a commit entry that failed,
966 		 * increment that too
967 		 */
968 		if (tail_page == cpu_buffer->commit_page &&
969 		    tail == rb_commit_index(cpu_buffer)) {
970 			rb_set_commit_to_write(cpu_buffer);
971 		}
972 
973 		spin_unlock_irqrestore(&cpu_buffer->lock, flags);
974 
975 		/* fail and let the caller try again */
976 		return ERR_PTR(-EAGAIN);
977 	}
978 
979 	/* We reserved something on the buffer */
980 
981 	BUG_ON(write > BUF_PAGE_SIZE);
982 
983 	event = __rb_page_index(tail_page, tail);
984 	rb_update_event(event, type, length);
985 
986 	/*
987 	 * If this is a commit and the tail is zero, then update
988 	 * this page's time stamp.
989 	 */
990 	if (!tail && rb_is_commit(cpu_buffer, event))
991 		cpu_buffer->commit_page->time_stamp = *ts;
992 
993 	return event;
994 
995  out_unlock:
996 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
997 	return NULL;
998 }
999 
1000 static int
1001 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1002 		  u64 *ts, u64 *delta)
1003 {
1004 	struct ring_buffer_event *event;
1005 	static int once;
1006 	int ret;
1007 
1008 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1009 		printk(KERN_WARNING "Delta way too big! %llu"
1010 		       " ts=%llu write stamp = %llu\n",
1011 		       (unsigned long long)*delta,
1012 		       (unsigned long long)*ts,
1013 		       (unsigned long long)cpu_buffer->write_stamp);
1014 		WARN_ON(1);
1015 	}
1016 
1017 	/*
1018 	 * The delta is too big, we to add a
1019 	 * new timestamp.
1020 	 */
1021 	event = __rb_reserve_next(cpu_buffer,
1022 				  RINGBUF_TYPE_TIME_EXTEND,
1023 				  RB_LEN_TIME_EXTEND,
1024 				  ts);
1025 	if (!event)
1026 		return -EBUSY;
1027 
1028 	if (PTR_ERR(event) == -EAGAIN)
1029 		return -EAGAIN;
1030 
1031 	/* Only a commited time event can update the write stamp */
1032 	if (rb_is_commit(cpu_buffer, event)) {
1033 		/*
1034 		 * If this is the first on the page, then we need to
1035 		 * update the page itself, and just put in a zero.
1036 		 */
1037 		if (rb_event_index(event)) {
1038 			event->time_delta = *delta & TS_MASK;
1039 			event->array[0] = *delta >> TS_SHIFT;
1040 		} else {
1041 			cpu_buffer->commit_page->time_stamp = *ts;
1042 			event->time_delta = 0;
1043 			event->array[0] = 0;
1044 		}
1045 		cpu_buffer->write_stamp = *ts;
1046 		/* let the caller know this was the commit */
1047 		ret = 1;
1048 	} else {
1049 		/* Darn, this is just wasted space */
1050 		event->time_delta = 0;
1051 		event->array[0] = 0;
1052 		ret = 0;
1053 	}
1054 
1055 	*delta = 0;
1056 
1057 	return ret;
1058 }
1059 
1060 static struct ring_buffer_event *
1061 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1062 		      unsigned type, unsigned long length)
1063 {
1064 	struct ring_buffer_event *event;
1065 	u64 ts, delta;
1066 	int commit = 0;
1067 	int nr_loops = 0;
1068 
1069  again:
1070 	/*
1071 	 * We allow for interrupts to reenter here and do a trace.
1072 	 * If one does, it will cause this original code to loop
1073 	 * back here. Even with heavy interrupts happening, this
1074 	 * should only happen a few times in a row. If this happens
1075 	 * 1000 times in a row, there must be either an interrupt
1076 	 * storm or we have something buggy.
1077 	 * Bail!
1078 	 */
1079 	if (unlikely(++nr_loops > 1000)) {
1080 		RB_WARN_ON(cpu_buffer, 1);
1081 		return NULL;
1082 	}
1083 
1084 	ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1085 
1086 	/*
1087 	 * Only the first commit can update the timestamp.
1088 	 * Yes there is a race here. If an interrupt comes in
1089 	 * just after the conditional and it traces too, then it
1090 	 * will also check the deltas. More than one timestamp may
1091 	 * also be made. But only the entry that did the actual
1092 	 * commit will be something other than zero.
1093 	 */
1094 	if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1095 	    rb_page_write(cpu_buffer->tail_page) ==
1096 	    rb_commit_index(cpu_buffer)) {
1097 
1098 		delta = ts - cpu_buffer->write_stamp;
1099 
1100 		/* make sure this delta is calculated here */
1101 		barrier();
1102 
1103 		/* Did the write stamp get updated already? */
1104 		if (unlikely(ts < cpu_buffer->write_stamp))
1105 			delta = 0;
1106 
1107 		if (test_time_stamp(delta)) {
1108 
1109 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1110 
1111 			if (commit == -EBUSY)
1112 				return NULL;
1113 
1114 			if (commit == -EAGAIN)
1115 				goto again;
1116 
1117 			RB_WARN_ON(cpu_buffer, commit < 0);
1118 		}
1119 	} else
1120 		/* Non commits have zero deltas */
1121 		delta = 0;
1122 
1123 	event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1124 	if (PTR_ERR(event) == -EAGAIN)
1125 		goto again;
1126 
1127 	if (!event) {
1128 		if (unlikely(commit))
1129 			/*
1130 			 * Ouch! We needed a timestamp and it was commited. But
1131 			 * we didn't get our event reserved.
1132 			 */
1133 			rb_set_commit_to_write(cpu_buffer);
1134 		return NULL;
1135 	}
1136 
1137 	/*
1138 	 * If the timestamp was commited, make the commit our entry
1139 	 * now so that we will update it when needed.
1140 	 */
1141 	if (commit)
1142 		rb_set_commit_event(cpu_buffer, event);
1143 	else if (!rb_is_commit(cpu_buffer, event))
1144 		delta = 0;
1145 
1146 	event->time_delta = delta;
1147 
1148 	return event;
1149 }
1150 
1151 static DEFINE_PER_CPU(int, rb_need_resched);
1152 
1153 /**
1154  * ring_buffer_lock_reserve - reserve a part of the buffer
1155  * @buffer: the ring buffer to reserve from
1156  * @length: the length of the data to reserve (excluding event header)
1157  * @flags: a pointer to save the interrupt flags
1158  *
1159  * Returns a reseverd event on the ring buffer to copy directly to.
1160  * The user of this interface will need to get the body to write into
1161  * and can use the ring_buffer_event_data() interface.
1162  *
1163  * The length is the length of the data needed, not the event length
1164  * which also includes the event header.
1165  *
1166  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1167  * If NULL is returned, then nothing has been allocated or locked.
1168  */
1169 struct ring_buffer_event *
1170 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1171 			 unsigned long length,
1172 			 unsigned long *flags)
1173 {
1174 	struct ring_buffer_per_cpu *cpu_buffer;
1175 	struct ring_buffer_event *event;
1176 	int cpu, resched;
1177 
1178 	if (ring_buffers_off)
1179 		return NULL;
1180 
1181 	if (atomic_read(&buffer->record_disabled))
1182 		return NULL;
1183 
1184 	/* If we are tracing schedule, we don't want to recurse */
1185 	resched = need_resched();
1186 	preempt_disable_notrace();
1187 
1188 	cpu = raw_smp_processor_id();
1189 
1190 	if (!cpu_isset(cpu, buffer->cpumask))
1191 		goto out;
1192 
1193 	cpu_buffer = buffer->buffers[cpu];
1194 
1195 	if (atomic_read(&cpu_buffer->record_disabled))
1196 		goto out;
1197 
1198 	length = rb_calculate_event_length(length);
1199 	if (length > BUF_PAGE_SIZE)
1200 		goto out;
1201 
1202 	event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1203 	if (!event)
1204 		goto out;
1205 
1206 	/*
1207 	 * Need to store resched state on this cpu.
1208 	 * Only the first needs to.
1209 	 */
1210 
1211 	if (preempt_count() == 1)
1212 		per_cpu(rb_need_resched, cpu) = resched;
1213 
1214 	return event;
1215 
1216  out:
1217 	if (resched)
1218 		preempt_enable_no_resched_notrace();
1219 	else
1220 		preempt_enable_notrace();
1221 	return NULL;
1222 }
1223 
1224 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1225 		      struct ring_buffer_event *event)
1226 {
1227 	cpu_buffer->entries++;
1228 
1229 	/* Only process further if we own the commit */
1230 	if (!rb_is_commit(cpu_buffer, event))
1231 		return;
1232 
1233 	cpu_buffer->write_stamp += event->time_delta;
1234 
1235 	rb_set_commit_to_write(cpu_buffer);
1236 }
1237 
1238 /**
1239  * ring_buffer_unlock_commit - commit a reserved
1240  * @buffer: The buffer to commit to
1241  * @event: The event pointer to commit.
1242  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1243  *
1244  * This commits the data to the ring buffer, and releases any locks held.
1245  *
1246  * Must be paired with ring_buffer_lock_reserve.
1247  */
1248 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1249 			      struct ring_buffer_event *event,
1250 			      unsigned long flags)
1251 {
1252 	struct ring_buffer_per_cpu *cpu_buffer;
1253 	int cpu = raw_smp_processor_id();
1254 
1255 	cpu_buffer = buffer->buffers[cpu];
1256 
1257 	rb_commit(cpu_buffer, event);
1258 
1259 	/*
1260 	 * Only the last preempt count needs to restore preemption.
1261 	 */
1262 	if (preempt_count() == 1) {
1263 		if (per_cpu(rb_need_resched, cpu))
1264 			preempt_enable_no_resched_notrace();
1265 		else
1266 			preempt_enable_notrace();
1267 	} else
1268 		preempt_enable_no_resched_notrace();
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  * ring_buffer_write - write data to the buffer without reserving
1275  * @buffer: The ring buffer to write to.
1276  * @length: The length of the data being written (excluding the event header)
1277  * @data: The data to write to the buffer.
1278  *
1279  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1280  * one function. If you already have the data to write to the buffer, it
1281  * may be easier to simply call this function.
1282  *
1283  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1284  * and not the length of the event which would hold the header.
1285  */
1286 int ring_buffer_write(struct ring_buffer *buffer,
1287 			unsigned long length,
1288 			void *data)
1289 {
1290 	struct ring_buffer_per_cpu *cpu_buffer;
1291 	struct ring_buffer_event *event;
1292 	unsigned long event_length;
1293 	void *body;
1294 	int ret = -EBUSY;
1295 	int cpu, resched;
1296 
1297 	if (ring_buffers_off)
1298 		return -EBUSY;
1299 
1300 	if (atomic_read(&buffer->record_disabled))
1301 		return -EBUSY;
1302 
1303 	resched = need_resched();
1304 	preempt_disable_notrace();
1305 
1306 	cpu = raw_smp_processor_id();
1307 
1308 	if (!cpu_isset(cpu, buffer->cpumask))
1309 		goto out;
1310 
1311 	cpu_buffer = buffer->buffers[cpu];
1312 
1313 	if (atomic_read(&cpu_buffer->record_disabled))
1314 		goto out;
1315 
1316 	event_length = rb_calculate_event_length(length);
1317 	event = rb_reserve_next_event(cpu_buffer,
1318 				      RINGBUF_TYPE_DATA, event_length);
1319 	if (!event)
1320 		goto out;
1321 
1322 	body = rb_event_data(event);
1323 
1324 	memcpy(body, data, length);
1325 
1326 	rb_commit(cpu_buffer, event);
1327 
1328 	ret = 0;
1329  out:
1330 	if (resched)
1331 		preempt_enable_no_resched_notrace();
1332 	else
1333 		preempt_enable_notrace();
1334 
1335 	return ret;
1336 }
1337 
1338 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1339 {
1340 	struct buffer_page *reader = cpu_buffer->reader_page;
1341 	struct buffer_page *head = cpu_buffer->head_page;
1342 	struct buffer_page *commit = cpu_buffer->commit_page;
1343 
1344 	return reader->read == rb_page_commit(reader) &&
1345 		(commit == reader ||
1346 		 (commit == head &&
1347 		  head->read == rb_page_commit(commit)));
1348 }
1349 
1350 /**
1351  * ring_buffer_record_disable - stop all writes into the buffer
1352  * @buffer: The ring buffer to stop writes to.
1353  *
1354  * This prevents all writes to the buffer. Any attempt to write
1355  * to the buffer after this will fail and return NULL.
1356  *
1357  * The caller should call synchronize_sched() after this.
1358  */
1359 void ring_buffer_record_disable(struct ring_buffer *buffer)
1360 {
1361 	atomic_inc(&buffer->record_disabled);
1362 }
1363 
1364 /**
1365  * ring_buffer_record_enable - enable writes to the buffer
1366  * @buffer: The ring buffer to enable writes
1367  *
1368  * Note, multiple disables will need the same number of enables
1369  * to truely enable the writing (much like preempt_disable).
1370  */
1371 void ring_buffer_record_enable(struct ring_buffer *buffer)
1372 {
1373 	atomic_dec(&buffer->record_disabled);
1374 }
1375 
1376 /**
1377  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1378  * @buffer: The ring buffer to stop writes to.
1379  * @cpu: The CPU buffer to stop
1380  *
1381  * This prevents all writes to the buffer. Any attempt to write
1382  * to the buffer after this will fail and return NULL.
1383  *
1384  * The caller should call synchronize_sched() after this.
1385  */
1386 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1387 {
1388 	struct ring_buffer_per_cpu *cpu_buffer;
1389 
1390 	if (!cpu_isset(cpu, buffer->cpumask))
1391 		return;
1392 
1393 	cpu_buffer = buffer->buffers[cpu];
1394 	atomic_inc(&cpu_buffer->record_disabled);
1395 }
1396 
1397 /**
1398  * ring_buffer_record_enable_cpu - enable writes to the buffer
1399  * @buffer: The ring buffer to enable writes
1400  * @cpu: The CPU to enable.
1401  *
1402  * Note, multiple disables will need the same number of enables
1403  * to truely enable the writing (much like preempt_disable).
1404  */
1405 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1406 {
1407 	struct ring_buffer_per_cpu *cpu_buffer;
1408 
1409 	if (!cpu_isset(cpu, buffer->cpumask))
1410 		return;
1411 
1412 	cpu_buffer = buffer->buffers[cpu];
1413 	atomic_dec(&cpu_buffer->record_disabled);
1414 }
1415 
1416 /**
1417  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1418  * @buffer: The ring buffer
1419  * @cpu: The per CPU buffer to get the entries from.
1420  */
1421 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1422 {
1423 	struct ring_buffer_per_cpu *cpu_buffer;
1424 
1425 	if (!cpu_isset(cpu, buffer->cpumask))
1426 		return 0;
1427 
1428 	cpu_buffer = buffer->buffers[cpu];
1429 	return cpu_buffer->entries;
1430 }
1431 
1432 /**
1433  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1434  * @buffer: The ring buffer
1435  * @cpu: The per CPU buffer to get the number of overruns from
1436  */
1437 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1438 {
1439 	struct ring_buffer_per_cpu *cpu_buffer;
1440 
1441 	if (!cpu_isset(cpu, buffer->cpumask))
1442 		return 0;
1443 
1444 	cpu_buffer = buffer->buffers[cpu];
1445 	return cpu_buffer->overrun;
1446 }
1447 
1448 /**
1449  * ring_buffer_entries - get the number of entries in a buffer
1450  * @buffer: The ring buffer
1451  *
1452  * Returns the total number of entries in the ring buffer
1453  * (all CPU entries)
1454  */
1455 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1456 {
1457 	struct ring_buffer_per_cpu *cpu_buffer;
1458 	unsigned long entries = 0;
1459 	int cpu;
1460 
1461 	/* if you care about this being correct, lock the buffer */
1462 	for_each_buffer_cpu(buffer, cpu) {
1463 		cpu_buffer = buffer->buffers[cpu];
1464 		entries += cpu_buffer->entries;
1465 	}
1466 
1467 	return entries;
1468 }
1469 
1470 /**
1471  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1472  * @buffer: The ring buffer
1473  *
1474  * Returns the total number of overruns in the ring buffer
1475  * (all CPU entries)
1476  */
1477 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1478 {
1479 	struct ring_buffer_per_cpu *cpu_buffer;
1480 	unsigned long overruns = 0;
1481 	int cpu;
1482 
1483 	/* if you care about this being correct, lock the buffer */
1484 	for_each_buffer_cpu(buffer, cpu) {
1485 		cpu_buffer = buffer->buffers[cpu];
1486 		overruns += cpu_buffer->overrun;
1487 	}
1488 
1489 	return overruns;
1490 }
1491 
1492 /**
1493  * ring_buffer_iter_reset - reset an iterator
1494  * @iter: The iterator to reset
1495  *
1496  * Resets the iterator, so that it will start from the beginning
1497  * again.
1498  */
1499 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1500 {
1501 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1502 
1503 	/* Iterator usage is expected to have record disabled */
1504 	if (list_empty(&cpu_buffer->reader_page->list)) {
1505 		iter->head_page = cpu_buffer->head_page;
1506 		iter->head = cpu_buffer->head_page->read;
1507 	} else {
1508 		iter->head_page = cpu_buffer->reader_page;
1509 		iter->head = cpu_buffer->reader_page->read;
1510 	}
1511 	if (iter->head)
1512 		iter->read_stamp = cpu_buffer->read_stamp;
1513 	else
1514 		iter->read_stamp = iter->head_page->time_stamp;
1515 }
1516 
1517 /**
1518  * ring_buffer_iter_empty - check if an iterator has no more to read
1519  * @iter: The iterator to check
1520  */
1521 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1522 {
1523 	struct ring_buffer_per_cpu *cpu_buffer;
1524 
1525 	cpu_buffer = iter->cpu_buffer;
1526 
1527 	return iter->head_page == cpu_buffer->commit_page &&
1528 		iter->head == rb_commit_index(cpu_buffer);
1529 }
1530 
1531 static void
1532 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1533 		     struct ring_buffer_event *event)
1534 {
1535 	u64 delta;
1536 
1537 	switch (event->type) {
1538 	case RINGBUF_TYPE_PADDING:
1539 		return;
1540 
1541 	case RINGBUF_TYPE_TIME_EXTEND:
1542 		delta = event->array[0];
1543 		delta <<= TS_SHIFT;
1544 		delta += event->time_delta;
1545 		cpu_buffer->read_stamp += delta;
1546 		return;
1547 
1548 	case RINGBUF_TYPE_TIME_STAMP:
1549 		/* FIXME: not implemented */
1550 		return;
1551 
1552 	case RINGBUF_TYPE_DATA:
1553 		cpu_buffer->read_stamp += event->time_delta;
1554 		return;
1555 
1556 	default:
1557 		BUG();
1558 	}
1559 	return;
1560 }
1561 
1562 static void
1563 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1564 			  struct ring_buffer_event *event)
1565 {
1566 	u64 delta;
1567 
1568 	switch (event->type) {
1569 	case RINGBUF_TYPE_PADDING:
1570 		return;
1571 
1572 	case RINGBUF_TYPE_TIME_EXTEND:
1573 		delta = event->array[0];
1574 		delta <<= TS_SHIFT;
1575 		delta += event->time_delta;
1576 		iter->read_stamp += delta;
1577 		return;
1578 
1579 	case RINGBUF_TYPE_TIME_STAMP:
1580 		/* FIXME: not implemented */
1581 		return;
1582 
1583 	case RINGBUF_TYPE_DATA:
1584 		iter->read_stamp += event->time_delta;
1585 		return;
1586 
1587 	default:
1588 		BUG();
1589 	}
1590 	return;
1591 }
1592 
1593 static struct buffer_page *
1594 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1595 {
1596 	struct buffer_page *reader = NULL;
1597 	unsigned long flags;
1598 	int nr_loops = 0;
1599 
1600 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1601 
1602  again:
1603 	/*
1604 	 * This should normally only loop twice. But because the
1605 	 * start of the reader inserts an empty page, it causes
1606 	 * a case where we will loop three times. There should be no
1607 	 * reason to loop four times (that I know of).
1608 	 */
1609 	if (unlikely(++nr_loops > 3)) {
1610 		RB_WARN_ON(cpu_buffer, 1);
1611 		reader = NULL;
1612 		goto out;
1613 	}
1614 
1615 	reader = cpu_buffer->reader_page;
1616 
1617 	/* If there's more to read, return this page */
1618 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
1619 		goto out;
1620 
1621 	/* Never should we have an index greater than the size */
1622 	RB_WARN_ON(cpu_buffer,
1623 		   cpu_buffer->reader_page->read > rb_page_size(reader));
1624 
1625 	/* check if we caught up to the tail */
1626 	reader = NULL;
1627 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1628 		goto out;
1629 
1630 	/*
1631 	 * Splice the empty reader page into the list around the head.
1632 	 * Reset the reader page to size zero.
1633 	 */
1634 
1635 	reader = cpu_buffer->head_page;
1636 	cpu_buffer->reader_page->list.next = reader->list.next;
1637 	cpu_buffer->reader_page->list.prev = reader->list.prev;
1638 
1639 	local_set(&cpu_buffer->reader_page->write, 0);
1640 	local_set(&cpu_buffer->reader_page->commit, 0);
1641 
1642 	/* Make the reader page now replace the head */
1643 	reader->list.prev->next = &cpu_buffer->reader_page->list;
1644 	reader->list.next->prev = &cpu_buffer->reader_page->list;
1645 
1646 	/*
1647 	 * If the tail is on the reader, then we must set the head
1648 	 * to the inserted page, otherwise we set it one before.
1649 	 */
1650 	cpu_buffer->head_page = cpu_buffer->reader_page;
1651 
1652 	if (cpu_buffer->commit_page != reader)
1653 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1654 
1655 	/* Finally update the reader page to the new head */
1656 	cpu_buffer->reader_page = reader;
1657 	rb_reset_reader_page(cpu_buffer);
1658 
1659 	goto again;
1660 
1661  out:
1662 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1663 
1664 	return reader;
1665 }
1666 
1667 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1668 {
1669 	struct ring_buffer_event *event;
1670 	struct buffer_page *reader;
1671 	unsigned length;
1672 
1673 	reader = rb_get_reader_page(cpu_buffer);
1674 
1675 	/* This function should not be called when buffer is empty */
1676 	BUG_ON(!reader);
1677 
1678 	event = rb_reader_event(cpu_buffer);
1679 
1680 	if (event->type == RINGBUF_TYPE_DATA)
1681 		cpu_buffer->entries--;
1682 
1683 	rb_update_read_stamp(cpu_buffer, event);
1684 
1685 	length = rb_event_length(event);
1686 	cpu_buffer->reader_page->read += length;
1687 }
1688 
1689 static void rb_advance_iter(struct ring_buffer_iter *iter)
1690 {
1691 	struct ring_buffer *buffer;
1692 	struct ring_buffer_per_cpu *cpu_buffer;
1693 	struct ring_buffer_event *event;
1694 	unsigned length;
1695 
1696 	cpu_buffer = iter->cpu_buffer;
1697 	buffer = cpu_buffer->buffer;
1698 
1699 	/*
1700 	 * Check if we are at the end of the buffer.
1701 	 */
1702 	if (iter->head >= rb_page_size(iter->head_page)) {
1703 		BUG_ON(iter->head_page == cpu_buffer->commit_page);
1704 		rb_inc_iter(iter);
1705 		return;
1706 	}
1707 
1708 	event = rb_iter_head_event(iter);
1709 
1710 	length = rb_event_length(event);
1711 
1712 	/*
1713 	 * This should not be called to advance the header if we are
1714 	 * at the tail of the buffer.
1715 	 */
1716 	BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1717 	       (iter->head + length > rb_commit_index(cpu_buffer)));
1718 
1719 	rb_update_iter_read_stamp(iter, event);
1720 
1721 	iter->head += length;
1722 
1723 	/* check for end of page padding */
1724 	if ((iter->head >= rb_page_size(iter->head_page)) &&
1725 	    (iter->head_page != cpu_buffer->commit_page))
1726 		rb_advance_iter(iter);
1727 }
1728 
1729 /**
1730  * ring_buffer_peek - peek at the next event to be read
1731  * @buffer: The ring buffer to read
1732  * @cpu: The cpu to peak at
1733  * @ts: The timestamp counter of this event.
1734  *
1735  * This will return the event that will be read next, but does
1736  * not consume the data.
1737  */
1738 struct ring_buffer_event *
1739 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1740 {
1741 	struct ring_buffer_per_cpu *cpu_buffer;
1742 	struct ring_buffer_event *event;
1743 	struct buffer_page *reader;
1744 	int nr_loops = 0;
1745 
1746 	if (!cpu_isset(cpu, buffer->cpumask))
1747 		return NULL;
1748 
1749 	cpu_buffer = buffer->buffers[cpu];
1750 
1751  again:
1752 	/*
1753 	 * We repeat when a timestamp is encountered. It is possible
1754 	 * to get multiple timestamps from an interrupt entering just
1755 	 * as one timestamp is about to be written. The max times
1756 	 * that this can happen is the number of nested interrupts we
1757 	 * can have.  Nesting 10 deep of interrupts is clearly
1758 	 * an anomaly.
1759 	 */
1760 	if (unlikely(++nr_loops > 10)) {
1761 		RB_WARN_ON(cpu_buffer, 1);
1762 		return NULL;
1763 	}
1764 
1765 	reader = rb_get_reader_page(cpu_buffer);
1766 	if (!reader)
1767 		return NULL;
1768 
1769 	event = rb_reader_event(cpu_buffer);
1770 
1771 	switch (event->type) {
1772 	case RINGBUF_TYPE_PADDING:
1773 		RB_WARN_ON(cpu_buffer, 1);
1774 		rb_advance_reader(cpu_buffer);
1775 		return NULL;
1776 
1777 	case RINGBUF_TYPE_TIME_EXTEND:
1778 		/* Internal data, OK to advance */
1779 		rb_advance_reader(cpu_buffer);
1780 		goto again;
1781 
1782 	case RINGBUF_TYPE_TIME_STAMP:
1783 		/* FIXME: not implemented */
1784 		rb_advance_reader(cpu_buffer);
1785 		goto again;
1786 
1787 	case RINGBUF_TYPE_DATA:
1788 		if (ts) {
1789 			*ts = cpu_buffer->read_stamp + event->time_delta;
1790 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1791 		}
1792 		return event;
1793 
1794 	default:
1795 		BUG();
1796 	}
1797 
1798 	return NULL;
1799 }
1800 
1801 /**
1802  * ring_buffer_iter_peek - peek at the next event to be read
1803  * @iter: The ring buffer iterator
1804  * @ts: The timestamp counter of this event.
1805  *
1806  * This will return the event that will be read next, but does
1807  * not increment the iterator.
1808  */
1809 struct ring_buffer_event *
1810 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1811 {
1812 	struct ring_buffer *buffer;
1813 	struct ring_buffer_per_cpu *cpu_buffer;
1814 	struct ring_buffer_event *event;
1815 	int nr_loops = 0;
1816 
1817 	if (ring_buffer_iter_empty(iter))
1818 		return NULL;
1819 
1820 	cpu_buffer = iter->cpu_buffer;
1821 	buffer = cpu_buffer->buffer;
1822 
1823  again:
1824 	/*
1825 	 * We repeat when a timestamp is encountered. It is possible
1826 	 * to get multiple timestamps from an interrupt entering just
1827 	 * as one timestamp is about to be written. The max times
1828 	 * that this can happen is the number of nested interrupts we
1829 	 * can have. Nesting 10 deep of interrupts is clearly
1830 	 * an anomaly.
1831 	 */
1832 	if (unlikely(++nr_loops > 10)) {
1833 		RB_WARN_ON(cpu_buffer, 1);
1834 		return NULL;
1835 	}
1836 
1837 	if (rb_per_cpu_empty(cpu_buffer))
1838 		return NULL;
1839 
1840 	event = rb_iter_head_event(iter);
1841 
1842 	switch (event->type) {
1843 	case RINGBUF_TYPE_PADDING:
1844 		rb_inc_iter(iter);
1845 		goto again;
1846 
1847 	case RINGBUF_TYPE_TIME_EXTEND:
1848 		/* Internal data, OK to advance */
1849 		rb_advance_iter(iter);
1850 		goto again;
1851 
1852 	case RINGBUF_TYPE_TIME_STAMP:
1853 		/* FIXME: not implemented */
1854 		rb_advance_iter(iter);
1855 		goto again;
1856 
1857 	case RINGBUF_TYPE_DATA:
1858 		if (ts) {
1859 			*ts = iter->read_stamp + event->time_delta;
1860 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1861 		}
1862 		return event;
1863 
1864 	default:
1865 		BUG();
1866 	}
1867 
1868 	return NULL;
1869 }
1870 
1871 /**
1872  * ring_buffer_consume - return an event and consume it
1873  * @buffer: The ring buffer to get the next event from
1874  *
1875  * Returns the next event in the ring buffer, and that event is consumed.
1876  * Meaning, that sequential reads will keep returning a different event,
1877  * and eventually empty the ring buffer if the producer is slower.
1878  */
1879 struct ring_buffer_event *
1880 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1881 {
1882 	struct ring_buffer_per_cpu *cpu_buffer;
1883 	struct ring_buffer_event *event;
1884 
1885 	if (!cpu_isset(cpu, buffer->cpumask))
1886 		return NULL;
1887 
1888 	event = ring_buffer_peek(buffer, cpu, ts);
1889 	if (!event)
1890 		return NULL;
1891 
1892 	cpu_buffer = buffer->buffers[cpu];
1893 	rb_advance_reader(cpu_buffer);
1894 
1895 	return event;
1896 }
1897 
1898 /**
1899  * ring_buffer_read_start - start a non consuming read of the buffer
1900  * @buffer: The ring buffer to read from
1901  * @cpu: The cpu buffer to iterate over
1902  *
1903  * This starts up an iteration through the buffer. It also disables
1904  * the recording to the buffer until the reading is finished.
1905  * This prevents the reading from being corrupted. This is not
1906  * a consuming read, so a producer is not expected.
1907  *
1908  * Must be paired with ring_buffer_finish.
1909  */
1910 struct ring_buffer_iter *
1911 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1912 {
1913 	struct ring_buffer_per_cpu *cpu_buffer;
1914 	struct ring_buffer_iter *iter;
1915 	unsigned long flags;
1916 
1917 	if (!cpu_isset(cpu, buffer->cpumask))
1918 		return NULL;
1919 
1920 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1921 	if (!iter)
1922 		return NULL;
1923 
1924 	cpu_buffer = buffer->buffers[cpu];
1925 
1926 	iter->cpu_buffer = cpu_buffer;
1927 
1928 	atomic_inc(&cpu_buffer->record_disabled);
1929 	synchronize_sched();
1930 
1931 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1932 	ring_buffer_iter_reset(iter);
1933 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1934 
1935 	return iter;
1936 }
1937 
1938 /**
1939  * ring_buffer_finish - finish reading the iterator of the buffer
1940  * @iter: The iterator retrieved by ring_buffer_start
1941  *
1942  * This re-enables the recording to the buffer, and frees the
1943  * iterator.
1944  */
1945 void
1946 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1947 {
1948 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1949 
1950 	atomic_dec(&cpu_buffer->record_disabled);
1951 	kfree(iter);
1952 }
1953 
1954 /**
1955  * ring_buffer_read - read the next item in the ring buffer by the iterator
1956  * @iter: The ring buffer iterator
1957  * @ts: The time stamp of the event read.
1958  *
1959  * This reads the next event in the ring buffer and increments the iterator.
1960  */
1961 struct ring_buffer_event *
1962 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1963 {
1964 	struct ring_buffer_event *event;
1965 
1966 	event = ring_buffer_iter_peek(iter, ts);
1967 	if (!event)
1968 		return NULL;
1969 
1970 	rb_advance_iter(iter);
1971 
1972 	return event;
1973 }
1974 
1975 /**
1976  * ring_buffer_size - return the size of the ring buffer (in bytes)
1977  * @buffer: The ring buffer.
1978  */
1979 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1980 {
1981 	return BUF_PAGE_SIZE * buffer->pages;
1982 }
1983 
1984 static void
1985 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1986 {
1987 	cpu_buffer->head_page
1988 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1989 	local_set(&cpu_buffer->head_page->write, 0);
1990 	local_set(&cpu_buffer->head_page->commit, 0);
1991 
1992 	cpu_buffer->head_page->read = 0;
1993 
1994 	cpu_buffer->tail_page = cpu_buffer->head_page;
1995 	cpu_buffer->commit_page = cpu_buffer->head_page;
1996 
1997 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1998 	local_set(&cpu_buffer->reader_page->write, 0);
1999 	local_set(&cpu_buffer->reader_page->commit, 0);
2000 	cpu_buffer->reader_page->read = 0;
2001 
2002 	cpu_buffer->overrun = 0;
2003 	cpu_buffer->entries = 0;
2004 }
2005 
2006 /**
2007  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2008  * @buffer: The ring buffer to reset a per cpu buffer of
2009  * @cpu: The CPU buffer to be reset
2010  */
2011 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2012 {
2013 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2014 	unsigned long flags;
2015 
2016 	if (!cpu_isset(cpu, buffer->cpumask))
2017 		return;
2018 
2019 	spin_lock_irqsave(&cpu_buffer->lock, flags);
2020 
2021 	rb_reset_cpu(cpu_buffer);
2022 
2023 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
2024 }
2025 
2026 /**
2027  * ring_buffer_reset - reset a ring buffer
2028  * @buffer: The ring buffer to reset all cpu buffers
2029  */
2030 void ring_buffer_reset(struct ring_buffer *buffer)
2031 {
2032 	int cpu;
2033 
2034 	for_each_buffer_cpu(buffer, cpu)
2035 		ring_buffer_reset_cpu(buffer, cpu);
2036 }
2037 
2038 /**
2039  * rind_buffer_empty - is the ring buffer empty?
2040  * @buffer: The ring buffer to test
2041  */
2042 int ring_buffer_empty(struct ring_buffer *buffer)
2043 {
2044 	struct ring_buffer_per_cpu *cpu_buffer;
2045 	int cpu;
2046 
2047 	/* yes this is racy, but if you don't like the race, lock the buffer */
2048 	for_each_buffer_cpu(buffer, cpu) {
2049 		cpu_buffer = buffer->buffers[cpu];
2050 		if (!rb_per_cpu_empty(cpu_buffer))
2051 			return 0;
2052 	}
2053 	return 1;
2054 }
2055 
2056 /**
2057  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2058  * @buffer: The ring buffer
2059  * @cpu: The CPU buffer to test
2060  */
2061 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2062 {
2063 	struct ring_buffer_per_cpu *cpu_buffer;
2064 
2065 	if (!cpu_isset(cpu, buffer->cpumask))
2066 		return 1;
2067 
2068 	cpu_buffer = buffer->buffers[cpu];
2069 	return rb_per_cpu_empty(cpu_buffer);
2070 }
2071 
2072 /**
2073  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2074  * @buffer_a: One buffer to swap with
2075  * @buffer_b: The other buffer to swap with
2076  *
2077  * This function is useful for tracers that want to take a "snapshot"
2078  * of a CPU buffer and has another back up buffer lying around.
2079  * it is expected that the tracer handles the cpu buffer not being
2080  * used at the moment.
2081  */
2082 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2083 			 struct ring_buffer *buffer_b, int cpu)
2084 {
2085 	struct ring_buffer_per_cpu *cpu_buffer_a;
2086 	struct ring_buffer_per_cpu *cpu_buffer_b;
2087 
2088 	if (!cpu_isset(cpu, buffer_a->cpumask) ||
2089 	    !cpu_isset(cpu, buffer_b->cpumask))
2090 		return -EINVAL;
2091 
2092 	/* At least make sure the two buffers are somewhat the same */
2093 	if (buffer_a->size != buffer_b->size ||
2094 	    buffer_a->pages != buffer_b->pages)
2095 		return -EINVAL;
2096 
2097 	cpu_buffer_a = buffer_a->buffers[cpu];
2098 	cpu_buffer_b = buffer_b->buffers[cpu];
2099 
2100 	/*
2101 	 * We can't do a synchronize_sched here because this
2102 	 * function can be called in atomic context.
2103 	 * Normally this will be called from the same CPU as cpu.
2104 	 * If not it's up to the caller to protect this.
2105 	 */
2106 	atomic_inc(&cpu_buffer_a->record_disabled);
2107 	atomic_inc(&cpu_buffer_b->record_disabled);
2108 
2109 	buffer_a->buffers[cpu] = cpu_buffer_b;
2110 	buffer_b->buffers[cpu] = cpu_buffer_a;
2111 
2112 	cpu_buffer_b->buffer = buffer_a;
2113 	cpu_buffer_a->buffer = buffer_b;
2114 
2115 	atomic_dec(&cpu_buffer_a->record_disabled);
2116 	atomic_dec(&cpu_buffer_b->record_disabled);
2117 
2118 	return 0;
2119 }
2120 
2121 static ssize_t
2122 rb_simple_read(struct file *filp, char __user *ubuf,
2123 	       size_t cnt, loff_t *ppos)
2124 {
2125 	int *p = filp->private_data;
2126 	char buf[64];
2127 	int r;
2128 
2129 	/* !ring_buffers_off == tracing_on */
2130 	r = sprintf(buf, "%d\n", !*p);
2131 
2132 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2133 }
2134 
2135 static ssize_t
2136 rb_simple_write(struct file *filp, const char __user *ubuf,
2137 		size_t cnt, loff_t *ppos)
2138 {
2139 	int *p = filp->private_data;
2140 	char buf[64];
2141 	long val;
2142 	int ret;
2143 
2144 	if (cnt >= sizeof(buf))
2145 		return -EINVAL;
2146 
2147 	if (copy_from_user(&buf, ubuf, cnt))
2148 		return -EFAULT;
2149 
2150 	buf[cnt] = 0;
2151 
2152 	ret = strict_strtoul(buf, 10, &val);
2153 	if (ret < 0)
2154 		return ret;
2155 
2156 	/* !ring_buffers_off == tracing_on */
2157 	*p = !val;
2158 
2159 	(*ppos)++;
2160 
2161 	return cnt;
2162 }
2163 
2164 static struct file_operations rb_simple_fops = {
2165 	.open		= tracing_open_generic,
2166 	.read		= rb_simple_read,
2167 	.write		= rb_simple_write,
2168 };
2169 
2170 
2171 static __init int rb_init_debugfs(void)
2172 {
2173 	struct dentry *d_tracer;
2174 	struct dentry *entry;
2175 
2176 	d_tracer = tracing_init_dentry();
2177 
2178 	entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2179 				    &ring_buffers_off, &rb_simple_fops);
2180 	if (!entry)
2181 		pr_warning("Could not create debugfs 'tracing_on' entry\n");
2182 
2183 	return 0;
2184 }
2185 
2186 fs_initcall(rb_init_debugfs);
2187