xref: /linux/kernel/trace/ring_buffer.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 #include "trace.h"
36 
37 /*
38  * The "absolute" timestamp in the buffer is only 59 bits.
39  * If a clock has the 5 MSBs set, it needs to be saved and
40  * reinserted.
41  */
42 #define TS_MSB		(0xf8ULL << 56)
43 #define ABS_TS_MASK	(~TS_MSB)
44 
45 static void update_pages_handler(struct work_struct *work);
46 
47 #define RING_BUFFER_META_MAGIC	0xBADFEED
48 
49 struct ring_buffer_meta {
50 	int		magic;
51 	int		struct_size;
52 	unsigned long	text_addr;
53 	unsigned long	data_addr;
54 	unsigned long	first_buffer;
55 	unsigned long	head_buffer;
56 	unsigned long	commit_buffer;
57 	__u32		subbuf_size;
58 	__u32		nr_subbufs;
59 	int		buffers[];
60 };
61 
62 /*
63  * The ring buffer header is special. We must manually up keep it.
64  */
65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 	trace_seq_puts(s, "# compressed entry header\n");
68 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70 	trace_seq_puts(s, "\tarray       :   32 bits\n");
71 	trace_seq_putc(s, '\n');
72 	trace_seq_printf(s, "\tpadding     : type == %d\n",
73 			 RINGBUF_TYPE_PADDING);
74 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 			 RINGBUF_TYPE_TIME_EXTEND);
76 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 			 RINGBUF_TYPE_TIME_STAMP);
78 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80 
81 	return !trace_seq_has_overflowed(s);
82 }
83 
84 /*
85  * The ring buffer is made up of a list of pages. A separate list of pages is
86  * allocated for each CPU. A writer may only write to a buffer that is
87  * associated with the CPU it is currently executing on.  A reader may read
88  * from any per cpu buffer.
89  *
90  * The reader is special. For each per cpu buffer, the reader has its own
91  * reader page. When a reader has read the entire reader page, this reader
92  * page is swapped with another page in the ring buffer.
93  *
94  * Now, as long as the writer is off the reader page, the reader can do what
95  * ever it wants with that page. The writer will never write to that page
96  * again (as long as it is out of the ring buffer).
97  *
98  * Here's some silly ASCII art.
99  *
100  *   +------+
101  *   |reader|          RING BUFFER
102  *   |page  |
103  *   +------+        +---+   +---+   +---+
104  *                   |   |-->|   |-->|   |
105  *                   +---+   +---+   +---+
106  *                     ^               |
107  *                     |               |
108  *                     +---------------+
109  *
110  *
111  *   +------+
112  *   |reader|          RING BUFFER
113  *   |page  |------------------v
114  *   +------+        +---+   +---+   +---+
115  *                   |   |-->|   |-->|   |
116  *                   +---+   +---+   +---+
117  *                     ^               |
118  *                     |               |
119  *                     +---------------+
120  *
121  *
122  *   +------+
123  *   |reader|          RING BUFFER
124  *   |page  |------------------v
125  *   +------+        +---+   +---+   +---+
126  *      ^            |   |-->|   |-->|   |
127  *      |            +---+   +---+   +---+
128  *      |                              |
129  *      |                              |
130  *      +------------------------------+
131  *
132  *
133  *   +------+
134  *   |buffer|          RING BUFFER
135  *   |page  |------------------v
136  *   +------+        +---+   +---+   +---+
137  *      ^            |   |   |   |-->|   |
138  *      |   New      +---+   +---+   +---+
139  *      |  Reader------^               |
140  *      |   page                       |
141  *      +------------------------------+
142  *
143  *
144  * After we make this swap, the reader can hand this page off to the splice
145  * code and be done with it. It can even allocate a new page if it needs to
146  * and swap that into the ring buffer.
147  *
148  * We will be using cmpxchg soon to make all this lockless.
149  *
150  */
151 
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF		(1 << 20)
154 
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156 
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT		4U
159 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
161 
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT	0
164 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT	1
167 # define RB_ARCH_ALIGNMENT		8U
168 #endif
169 
170 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
171 
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174 
175 enum {
176 	RB_LEN_TIME_EXTEND = 8,
177 	RB_LEN_TIME_STAMP =  8,
178 };
179 
180 #define skip_time_extend(event) \
181 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182 
183 #define extended_time(event) \
184 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185 
186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190 
191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193 	/* padding has a NULL time_delta */
194 	event->type_len = RINGBUF_TYPE_PADDING;
195 	event->time_delta = 0;
196 }
197 
198 static unsigned
199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201 	unsigned length;
202 
203 	if (event->type_len)
204 		length = event->type_len * RB_ALIGNMENT;
205 	else
206 		length = event->array[0];
207 	return length + RB_EVNT_HDR_SIZE;
208 }
209 
210 /*
211  * Return the length of the given event. Will return
212  * the length of the time extend if the event is a
213  * time extend.
214  */
215 static inline unsigned
216 rb_event_length(struct ring_buffer_event *event)
217 {
218 	switch (event->type_len) {
219 	case RINGBUF_TYPE_PADDING:
220 		if (rb_null_event(event))
221 			/* undefined */
222 			return -1;
223 		return  event->array[0] + RB_EVNT_HDR_SIZE;
224 
225 	case RINGBUF_TYPE_TIME_EXTEND:
226 		return RB_LEN_TIME_EXTEND;
227 
228 	case RINGBUF_TYPE_TIME_STAMP:
229 		return RB_LEN_TIME_STAMP;
230 
231 	case RINGBUF_TYPE_DATA:
232 		return rb_event_data_length(event);
233 	default:
234 		WARN_ON_ONCE(1);
235 	}
236 	/* not hit */
237 	return 0;
238 }
239 
240 /*
241  * Return total length of time extend and data,
242  *   or just the event length for all other events.
243  */
244 static inline unsigned
245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247 	unsigned len = 0;
248 
249 	if (extended_time(event)) {
250 		/* time extends include the data event after it */
251 		len = RB_LEN_TIME_EXTEND;
252 		event = skip_time_extend(event);
253 	}
254 	return len + rb_event_length(event);
255 }
256 
257 /**
258  * ring_buffer_event_length - return the length of the event
259  * @event: the event to get the length of
260  *
261  * Returns the size of the data load of a data event.
262  * If the event is something other than a data event, it
263  * returns the size of the event itself. With the exception
264  * of a TIME EXTEND, where it still returns the size of the
265  * data load of the data event after it.
266  */
267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269 	unsigned length;
270 
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 
274 	length = rb_event_length(event);
275 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 		return length;
277 	length -= RB_EVNT_HDR_SIZE;
278 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280 	return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288 	if (extended_time(event))
289 		event = skip_time_extend(event);
290 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 	/* If length is in len field, then array[0] has the data */
292 	if (event->type_len)
293 		return (void *)&event->array[0];
294 	/* Otherwise length is in array[0] and array[1] has the data */
295 	return (void *)&event->array[1];
296 }
297 
298 /**
299  * ring_buffer_event_data - return the data of the event
300  * @event: the event to get the data from
301  */
302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304 	return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307 
308 #define for_each_buffer_cpu(buffer, cpu)		\
309 	for_each_cpu(cpu, buffer->cpumask)
310 
311 #define for_each_online_buffer_cpu(buffer, cpu)		\
312 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313 
314 #define TS_SHIFT	27
315 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST	(~TS_MASK)
317 
318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320 	u64 ts;
321 
322 	ts = event->array[0];
323 	ts <<= TS_SHIFT;
324 	ts += event->time_delta;
325 
326 	return ts;
327 }
328 
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS	(1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED	(1 << 30)
333 
334 #define RB_MISSED_MASK		(3 << 30)
335 
336 struct buffer_data_page {
337 	u64		 time_stamp;	/* page time stamp */
338 	local_t		 commit;	/* write committed index */
339 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340 };
341 
342 struct buffer_data_read_page {
343 	unsigned		order;	/* order of the page */
344 	struct buffer_data_page	*data;	/* actual data, stored in this page */
345 };
346 
347 /*
348  * Note, the buffer_page list must be first. The buffer pages
349  * are allocated in cache lines, which means that each buffer
350  * page will be at the beginning of a cache line, and thus
351  * the least significant bits will be zero. We use this to
352  * add flags in the list struct pointers, to make the ring buffer
353  * lockless.
354  */
355 struct buffer_page {
356 	struct list_head list;		/* list of buffer pages */
357 	local_t		 write;		/* index for next write */
358 	unsigned	 read;		/* index for next read */
359 	local_t		 entries;	/* entries on this page */
360 	unsigned long	 real_end;	/* real end of data */
361 	unsigned	 order;		/* order of the page */
362 	u32		 id:30;		/* ID for external mapping */
363 	u32		 range:1;	/* Mapped via a range */
364 	struct buffer_data_page *page;	/* Actual data page */
365 };
366 
367 /*
368  * The buffer page counters, write and entries, must be reset
369  * atomically when crossing page boundaries. To synchronize this
370  * update, two counters are inserted into the number. One is
371  * the actual counter for the write position or count on the page.
372  *
373  * The other is a counter of updaters. Before an update happens
374  * the update partition of the counter is incremented. This will
375  * allow the updater to update the counter atomically.
376  *
377  * The counter is 20 bits, and the state data is 12.
378  */
379 #define RB_WRITE_MASK		0xfffff
380 #define RB_WRITE_INTCNT		(1 << 20)
381 
382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 	local_set(&bpage->commit, 0);
385 }
386 
387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389 	return local_read(&bpage->page->commit);
390 }
391 
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	/* Range pages are not to be freed */
395 	if (!bpage->range)
396 		free_pages((unsigned long)bpage->page, bpage->order);
397 	kfree(bpage);
398 }
399 
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline bool test_time_stamp(u64 delta)
404 {
405 	return !!(delta & TS_DELTA_TEST);
406 }
407 
408 struct rb_irq_work {
409 	struct irq_work			work;
410 	wait_queue_head_t		waiters;
411 	wait_queue_head_t		full_waiters;
412 	atomic_t			seq;
413 	bool				waiters_pending;
414 	bool				full_waiters_pending;
415 	bool				wakeup_full;
416 };
417 
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422 	u64			ts;
423 	u64			delta;
424 	u64			before;
425 	u64			after;
426 	unsigned long		length;
427 	struct buffer_page	*tail_page;
428 	int			add_timestamp;
429 };
430 
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439 	RB_ADD_STAMP_NONE		= 0,
440 	RB_ADD_STAMP_EXTEND		= BIT(1),
441 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442 	RB_ADD_STAMP_FORCE		= BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_TRANSITION,
456 	RB_CTX_NMI,
457 	RB_CTX_IRQ,
458 	RB_CTX_SOFTIRQ,
459 	RB_CTX_NORMAL,
460 	RB_CTX_MAX
461 };
462 
463 struct rb_time_struct {
464 	local64_t	time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467 
468 #define MAX_NEST	5
469 
470 /*
471  * head_page == tail_page && head == tail then buffer is empty.
472  */
473 struct ring_buffer_per_cpu {
474 	int				cpu;
475 	atomic_t			record_disabled;
476 	atomic_t			resize_disabled;
477 	struct trace_buffer	*buffer;
478 	raw_spinlock_t			reader_lock;	/* serialize readers */
479 	arch_spinlock_t			lock;
480 	struct lock_class_key		lock_key;
481 	struct buffer_data_page		*free_page;
482 	unsigned long			nr_pages;
483 	unsigned int			current_context;
484 	struct list_head		*pages;
485 	/* pages generation counter, incremented when the list changes */
486 	unsigned long			cnt;
487 	struct buffer_page		*head_page;	/* read from head */
488 	struct buffer_page		*tail_page;	/* write to tail */
489 	struct buffer_page		*commit_page;	/* committed pages */
490 	struct buffer_page		*reader_page;
491 	unsigned long			lost_events;
492 	unsigned long			last_overrun;
493 	unsigned long			nest;
494 	local_t				entries_bytes;
495 	local_t				entries;
496 	local_t				overrun;
497 	local_t				commit_overrun;
498 	local_t				dropped_events;
499 	local_t				committing;
500 	local_t				commits;
501 	local_t				pages_touched;
502 	local_t				pages_lost;
503 	local_t				pages_read;
504 	long				last_pages_touch;
505 	size_t				shortest_full;
506 	unsigned long			read;
507 	unsigned long			read_bytes;
508 	rb_time_t			write_stamp;
509 	rb_time_t			before_stamp;
510 	u64				event_stamp[MAX_NEST];
511 	u64				read_stamp;
512 	/* pages removed since last reset */
513 	unsigned long			pages_removed;
514 
515 	unsigned int			mapped;
516 	unsigned int			user_mapped;	/* user space mapping */
517 	struct mutex			mapping_lock;
518 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
519 	struct trace_buffer_meta	*meta_page;
520 	struct ring_buffer_meta		*ring_meta;
521 
522 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
523 	long				nr_pages_to_update;
524 	struct list_head		new_pages; /* new pages to add */
525 	struct work_struct		update_pages_work;
526 	struct completion		update_done;
527 
528 	struct rb_irq_work		irq_work;
529 };
530 
531 struct trace_buffer {
532 	unsigned			flags;
533 	int				cpus;
534 	atomic_t			record_disabled;
535 	atomic_t			resizing;
536 	cpumask_var_t			cpumask;
537 
538 	struct lock_class_key		*reader_lock_key;
539 
540 	struct mutex			mutex;
541 
542 	struct ring_buffer_per_cpu	**buffers;
543 
544 	struct hlist_node		node;
545 	u64				(*clock)(void);
546 
547 	struct rb_irq_work		irq_work;
548 	bool				time_stamp_abs;
549 
550 	unsigned long			range_addr_start;
551 	unsigned long			range_addr_end;
552 
553 	long				last_text_delta;
554 	long				last_data_delta;
555 
556 	unsigned int			subbuf_size;
557 	unsigned int			subbuf_order;
558 	unsigned int			max_data_size;
559 };
560 
561 struct ring_buffer_iter {
562 	struct ring_buffer_per_cpu	*cpu_buffer;
563 	unsigned long			head;
564 	unsigned long			next_event;
565 	struct buffer_page		*head_page;
566 	struct buffer_page		*cache_reader_page;
567 	unsigned long			cache_read;
568 	unsigned long			cache_pages_removed;
569 	u64				read_stamp;
570 	u64				page_stamp;
571 	struct ring_buffer_event	*event;
572 	size_t				event_size;
573 	int				missed_events;
574 };
575 
576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577 {
578 	struct buffer_data_page field;
579 
580 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 			 (unsigned int)sizeof(field.time_stamp),
583 			 (unsigned int)is_signed_type(u64));
584 
585 	trace_seq_printf(s, "\tfield: local_t commit;\t"
586 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 			 (unsigned int)offsetof(typeof(field), commit),
588 			 (unsigned int)sizeof(field.commit),
589 			 (unsigned int)is_signed_type(long));
590 
591 	trace_seq_printf(s, "\tfield: int overwrite;\t"
592 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 			 (unsigned int)offsetof(typeof(field), commit),
594 			 1,
595 			 (unsigned int)is_signed_type(long));
596 
597 	trace_seq_printf(s, "\tfield: char data;\t"
598 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 			 (unsigned int)offsetof(typeof(field), data),
600 			 (unsigned int)buffer->subbuf_size,
601 			 (unsigned int)is_signed_type(char));
602 
603 	return !trace_seq_has_overflowed(s);
604 }
605 
606 static inline void rb_time_read(rb_time_t *t, u64 *ret)
607 {
608 	*ret = local64_read(&t->time);
609 }
610 static void rb_time_set(rb_time_t *t, u64 val)
611 {
612 	local64_set(&t->time, val);
613 }
614 
615 /*
616  * Enable this to make sure that the event passed to
617  * ring_buffer_event_time_stamp() is not committed and also
618  * is on the buffer that it passed in.
619  */
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head *rb_list_head(struct list_head *list);
623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624 			 void *event)
625 {
626 	struct buffer_page *page = cpu_buffer->commit_page;
627 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628 	struct list_head *next;
629 	long commit, write;
630 	unsigned long addr = (unsigned long)event;
631 	bool done = false;
632 	int stop = 0;
633 
634 	/* Make sure the event exists and is not committed yet */
635 	do {
636 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637 			done = true;
638 		commit = local_read(&page->page->commit);
639 		write = local_read(&page->write);
640 		if (addr >= (unsigned long)&page->page->data[commit] &&
641 		    addr < (unsigned long)&page->page->data[write])
642 			return;
643 
644 		next = rb_list_head(page->list.next);
645 		page = list_entry(next, struct buffer_page, list);
646 	} while (!done);
647 	WARN_ON_ONCE(1);
648 }
649 #else
650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651 			 void *event)
652 {
653 }
654 #endif
655 
656 /*
657  * The absolute time stamp drops the 5 MSBs and some clocks may
658  * require them. The rb_fix_abs_ts() will take a previous full
659  * time stamp, and add the 5 MSB of that time stamp on to the
660  * saved absolute time stamp. Then they are compared in case of
661  * the unlikely event that the latest time stamp incremented
662  * the 5 MSB.
663  */
664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665 {
666 	if (save_ts & TS_MSB) {
667 		abs |= save_ts & TS_MSB;
668 		/* Check for overflow */
669 		if (unlikely(abs < save_ts))
670 			abs += 1ULL << 59;
671 	}
672 	return abs;
673 }
674 
675 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676 
677 /**
678  * ring_buffer_event_time_stamp - return the event's current time stamp
679  * @buffer: The buffer that the event is on
680  * @event: the event to get the time stamp of
681  *
682  * Note, this must be called after @event is reserved, and before it is
683  * committed to the ring buffer. And must be called from the same
684  * context where the event was reserved (normal, softirq, irq, etc).
685  *
686  * Returns the time stamp associated with the current event.
687  * If the event has an extended time stamp, then that is used as
688  * the time stamp to return.
689  * In the highly unlikely case that the event was nested more than
690  * the max nesting, then the write_stamp of the buffer is returned,
691  * otherwise  current time is returned, but that really neither of
692  * the last two cases should ever happen.
693  */
694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695 				 struct ring_buffer_event *event)
696 {
697 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698 	unsigned int nest;
699 	u64 ts;
700 
701 	/* If the event includes an absolute time, then just use that */
702 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703 		ts = rb_event_time_stamp(event);
704 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705 	}
706 
707 	nest = local_read(&cpu_buffer->committing);
708 	verify_event(cpu_buffer, event);
709 	if (WARN_ON_ONCE(!nest))
710 		goto fail;
711 
712 	/* Read the current saved nesting level time stamp */
713 	if (likely(--nest < MAX_NEST))
714 		return cpu_buffer->event_stamp[nest];
715 
716 	/* Shouldn't happen, warn if it does */
717 	WARN_ONCE(1, "nest (%d) greater than max", nest);
718 
719  fail:
720 	rb_time_read(&cpu_buffer->write_stamp, &ts);
721 
722 	return ts;
723 }
724 
725 /**
726  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727  * @buffer: The ring_buffer to get the number of pages from
728  * @cpu: The cpu of the ring_buffer to get the number of pages from
729  *
730  * Returns the number of pages that have content in the ring buffer.
731  */
732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733 {
734 	size_t read;
735 	size_t lost;
736 	size_t cnt;
737 
738 	read = local_read(&buffer->buffers[cpu]->pages_read);
739 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
740 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741 
742 	if (WARN_ON_ONCE(cnt < lost))
743 		return 0;
744 
745 	cnt -= lost;
746 
747 	/* The reader can read an empty page, but not more than that */
748 	if (cnt < read) {
749 		WARN_ON_ONCE(read > cnt + 1);
750 		return 0;
751 	}
752 
753 	return cnt - read;
754 }
755 
756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757 {
758 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759 	size_t nr_pages;
760 	size_t dirty;
761 
762 	nr_pages = cpu_buffer->nr_pages;
763 	if (!nr_pages || !full)
764 		return true;
765 
766 	/*
767 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 	 * that the writer is on is not counted as dirty.
769 	 * This is needed if "buffer_percent" is set to 100.
770 	 */
771 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772 
773 	return (dirty * 100) >= (full * nr_pages);
774 }
775 
776 /*
777  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778  *
779  * Schedules a delayed work to wake up any task that is blocked on the
780  * ring buffer waiters queue.
781  */
782 static void rb_wake_up_waiters(struct irq_work *work)
783 {
784 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785 
786 	/* For waiters waiting for the first wake up */
787 	(void)atomic_fetch_inc_release(&rbwork->seq);
788 
789 	wake_up_all(&rbwork->waiters);
790 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791 		/* Only cpu_buffer sets the above flags */
792 		struct ring_buffer_per_cpu *cpu_buffer =
793 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794 
795 		/* Called from interrupt context */
796 		raw_spin_lock(&cpu_buffer->reader_lock);
797 		rbwork->wakeup_full = false;
798 		rbwork->full_waiters_pending = false;
799 
800 		/* Waking up all waiters, they will reset the shortest full */
801 		cpu_buffer->shortest_full = 0;
802 		raw_spin_unlock(&cpu_buffer->reader_lock);
803 
804 		wake_up_all(&rbwork->full_waiters);
805 	}
806 }
807 
808 /**
809  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810  * @buffer: The ring buffer to wake waiters on
811  * @cpu: The CPU buffer to wake waiters on
812  *
813  * In the case of a file that represents a ring buffer is closing,
814  * it is prudent to wake up any waiters that are on this.
815  */
816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817 {
818 	struct ring_buffer_per_cpu *cpu_buffer;
819 	struct rb_irq_work *rbwork;
820 
821 	if (!buffer)
822 		return;
823 
824 	if (cpu == RING_BUFFER_ALL_CPUS) {
825 
826 		/* Wake up individual ones too. One level recursion */
827 		for_each_buffer_cpu(buffer, cpu)
828 			ring_buffer_wake_waiters(buffer, cpu);
829 
830 		rbwork = &buffer->irq_work;
831 	} else {
832 		if (WARN_ON_ONCE(!buffer->buffers))
833 			return;
834 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835 			return;
836 
837 		cpu_buffer = buffer->buffers[cpu];
838 		/* The CPU buffer may not have been initialized yet */
839 		if (!cpu_buffer)
840 			return;
841 		rbwork = &cpu_buffer->irq_work;
842 	}
843 
844 	/* This can be called in any context */
845 	irq_work_queue(&rbwork->work);
846 }
847 
848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849 {
850 	struct ring_buffer_per_cpu *cpu_buffer;
851 	bool ret = false;
852 
853 	/* Reads of all CPUs always waits for any data */
854 	if (cpu == RING_BUFFER_ALL_CPUS)
855 		return !ring_buffer_empty(buffer);
856 
857 	cpu_buffer = buffer->buffers[cpu];
858 
859 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
860 		unsigned long flags;
861 		bool pagebusy;
862 
863 		if (!full)
864 			return true;
865 
866 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868 		ret = !pagebusy && full_hit(buffer, cpu, full);
869 
870 		if (!ret && (!cpu_buffer->shortest_full ||
871 			     cpu_buffer->shortest_full > full)) {
872 		    cpu_buffer->shortest_full = full;
873 		}
874 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875 	}
876 	return ret;
877 }
878 
879 static inline bool
880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
882 {
883 	if (rb_watermark_hit(buffer, cpu, full))
884 		return true;
885 
886 	if (cond(data))
887 		return true;
888 
889 	/*
890 	 * The events can happen in critical sections where
891 	 * checking a work queue can cause deadlocks.
892 	 * After adding a task to the queue, this flag is set
893 	 * only to notify events to try to wake up the queue
894 	 * using irq_work.
895 	 *
896 	 * We don't clear it even if the buffer is no longer
897 	 * empty. The flag only causes the next event to run
898 	 * irq_work to do the work queue wake up. The worse
899 	 * that can happen if we race with !trace_empty() is that
900 	 * an event will cause an irq_work to try to wake up
901 	 * an empty queue.
902 	 *
903 	 * There's no reason to protect this flag either, as
904 	 * the work queue and irq_work logic will do the necessary
905 	 * synchronization for the wake ups. The only thing
906 	 * that is necessary is that the wake up happens after
907 	 * a task has been queued. It's OK for spurious wake ups.
908 	 */
909 	if (full)
910 		rbwork->full_waiters_pending = true;
911 	else
912 		rbwork->waiters_pending = true;
913 
914 	return false;
915 }
916 
917 struct rb_wait_data {
918 	struct rb_irq_work		*irq_work;
919 	int				seq;
920 };
921 
922 /*
923  * The default wait condition for ring_buffer_wait() is to just to exit the
924  * wait loop the first time it is woken up.
925  */
926 static bool rb_wait_once(void *data)
927 {
928 	struct rb_wait_data *rdata = data;
929 	struct rb_irq_work *rbwork = rdata->irq_work;
930 
931 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932 }
933 
934 /**
935  * ring_buffer_wait - wait for input to the ring buffer
936  * @buffer: buffer to wait on
937  * @cpu: the cpu buffer to wait on
938  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939  * @cond: condition function to break out of wait (NULL to run once)
940  * @data: the data to pass to @cond.
941  *
942  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943  * as data is added to any of the @buffer's cpu buffers. Otherwise
944  * it will wait for data to be added to a specific cpu buffer.
945  */
946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947 		     ring_buffer_cond_fn cond, void *data)
948 {
949 	struct ring_buffer_per_cpu *cpu_buffer;
950 	struct wait_queue_head *waitq;
951 	struct rb_irq_work *rbwork;
952 	struct rb_wait_data rdata;
953 	int ret = 0;
954 
955 	/*
956 	 * Depending on what the caller is waiting for, either any
957 	 * data in any cpu buffer, or a specific buffer, put the
958 	 * caller on the appropriate wait queue.
959 	 */
960 	if (cpu == RING_BUFFER_ALL_CPUS) {
961 		rbwork = &buffer->irq_work;
962 		/* Full only makes sense on per cpu reads */
963 		full = 0;
964 	} else {
965 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
966 			return -ENODEV;
967 		cpu_buffer = buffer->buffers[cpu];
968 		rbwork = &cpu_buffer->irq_work;
969 	}
970 
971 	if (full)
972 		waitq = &rbwork->full_waiters;
973 	else
974 		waitq = &rbwork->waiters;
975 
976 	/* Set up to exit loop as soon as it is woken */
977 	if (!cond) {
978 		cond = rb_wait_once;
979 		rdata.irq_work = rbwork;
980 		rdata.seq = atomic_read_acquire(&rbwork->seq);
981 		data = &rdata;
982 	}
983 
984 	ret = wait_event_interruptible((*waitq),
985 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986 
987 	return ret;
988 }
989 
990 /**
991  * ring_buffer_poll_wait - poll on buffer input
992  * @buffer: buffer to wait on
993  * @cpu: the cpu buffer to wait on
994  * @filp: the file descriptor
995  * @poll_table: The poll descriptor
996  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997  *
998  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999  * as data is added to any of the @buffer's cpu buffers. Otherwise
1000  * it will wait for data to be added to a specific cpu buffer.
1001  *
1002  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003  * zero otherwise.
1004  */
1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006 			  struct file *filp, poll_table *poll_table, int full)
1007 {
1008 	struct ring_buffer_per_cpu *cpu_buffer;
1009 	struct rb_irq_work *rbwork;
1010 
1011 	if (cpu == RING_BUFFER_ALL_CPUS) {
1012 		rbwork = &buffer->irq_work;
1013 		full = 0;
1014 	} else {
1015 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016 			return EPOLLERR;
1017 
1018 		cpu_buffer = buffer->buffers[cpu];
1019 		rbwork = &cpu_buffer->irq_work;
1020 	}
1021 
1022 	if (full) {
1023 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024 
1025 		if (rb_watermark_hit(buffer, cpu, full))
1026 			return EPOLLIN | EPOLLRDNORM;
1027 		/*
1028 		 * Only allow full_waiters_pending update to be seen after
1029 		 * the shortest_full is set (in rb_watermark_hit). If the
1030 		 * writer sees the full_waiters_pending flag set, it will
1031 		 * compare the amount in the ring buffer to shortest_full.
1032 		 * If the amount in the ring buffer is greater than the
1033 		 * shortest_full percent, it will call the irq_work handler
1034 		 * to wake up this list. The irq_handler will reset shortest_full
1035 		 * back to zero. That's done under the reader_lock, but
1036 		 * the below smp_mb() makes sure that the update to
1037 		 * full_waiters_pending doesn't leak up into the above.
1038 		 */
1039 		smp_mb();
1040 		rbwork->full_waiters_pending = true;
1041 		return 0;
1042 	}
1043 
1044 	poll_wait(filp, &rbwork->waiters, poll_table);
1045 	rbwork->waiters_pending = true;
1046 
1047 	/*
1048 	 * There's a tight race between setting the waiters_pending and
1049 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050 	 * is set, the next event will wake the task up, but we can get stuck
1051 	 * if there's only a single event in.
1052 	 *
1053 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 	 * but adding a memory barrier to all events will cause too much of a
1055 	 * performance hit in the fast path.  We only need a memory barrier when
1056 	 * the buffer goes from empty to having content.  But as this race is
1057 	 * extremely small, and it's not a problem if another event comes in, we
1058 	 * will fix it later.
1059 	 */
1060 	smp_mb();
1061 
1062 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064 		return EPOLLIN | EPOLLRDNORM;
1065 	return 0;
1066 }
1067 
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond)						\
1070 	({								\
1071 		int _____ret = unlikely(cond);				\
1072 		if (_____ret) {						\
1073 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 				struct ring_buffer_per_cpu *__b =	\
1075 					(void *)b;			\
1076 				atomic_inc(&__b->buffer->record_disabled); \
1077 			} else						\
1078 				atomic_inc(&b->record_disabled);	\
1079 			WARN_ON(1);					\
1080 		}							\
1081 		_____ret;						\
1082 	})
1083 
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1086 
1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088 {
1089 	u64 ts;
1090 
1091 	/* Skip retpolines :-( */
1092 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093 		ts = trace_clock_local();
1094 	else
1095 		ts = buffer->clock();
1096 
1097 	/* shift to debug/test normalization and TIME_EXTENTS */
1098 	return ts << DEBUG_SHIFT;
1099 }
1100 
1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102 {
1103 	u64 time;
1104 
1105 	preempt_disable_notrace();
1106 	time = rb_time_stamp(buffer);
1107 	preempt_enable_notrace();
1108 
1109 	return time;
1110 }
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112 
1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114 				      int cpu, u64 *ts)
1115 {
1116 	/* Just stupid testing the normalize function and deltas */
1117 	*ts >>= DEBUG_SHIFT;
1118 }
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120 
1121 /*
1122  * Making the ring buffer lockless makes things tricky.
1123  * Although writes only happen on the CPU that they are on,
1124  * and they only need to worry about interrupts. Reads can
1125  * happen on any CPU.
1126  *
1127  * The reader page is always off the ring buffer, but when the
1128  * reader finishes with a page, it needs to swap its page with
1129  * a new one from the buffer. The reader needs to take from
1130  * the head (writes go to the tail). But if a writer is in overwrite
1131  * mode and wraps, it must push the head page forward.
1132  *
1133  * Here lies the problem.
1134  *
1135  * The reader must be careful to replace only the head page, and
1136  * not another one. As described at the top of the file in the
1137  * ASCII art, the reader sets its old page to point to the next
1138  * page after head. It then sets the page after head to point to
1139  * the old reader page. But if the writer moves the head page
1140  * during this operation, the reader could end up with the tail.
1141  *
1142  * We use cmpxchg to help prevent this race. We also do something
1143  * special with the page before head. We set the LSB to 1.
1144  *
1145  * When the writer must push the page forward, it will clear the
1146  * bit that points to the head page, move the head, and then set
1147  * the bit that points to the new head page.
1148  *
1149  * We also don't want an interrupt coming in and moving the head
1150  * page on another writer. Thus we use the second LSB to catch
1151  * that too. Thus:
1152  *
1153  * head->list->prev->next        bit 1          bit 0
1154  *                              -------        -------
1155  * Normal page                     0              0
1156  * Points to head page             0              1
1157  * New head page                   1              0
1158  *
1159  * Note we can not trust the prev pointer of the head page, because:
1160  *
1161  * +----+       +-----+        +-----+
1162  * |    |------>|  T  |---X--->|  N  |
1163  * |    |<------|     |        |     |
1164  * +----+       +-----+        +-----+
1165  *   ^                           ^ |
1166  *   |          +-----+          | |
1167  *   +----------|  R  |----------+ |
1168  *              |     |<-----------+
1169  *              +-----+
1170  *
1171  * Key:  ---X-->  HEAD flag set in pointer
1172  *         T      Tail page
1173  *         R      Reader page
1174  *         N      Next page
1175  *
1176  * (see __rb_reserve_next() to see where this happens)
1177  *
1178  *  What the above shows is that the reader just swapped out
1179  *  the reader page with a page in the buffer, but before it
1180  *  could make the new header point back to the new page added
1181  *  it was preempted by a writer. The writer moved forward onto
1182  *  the new page added by the reader and is about to move forward
1183  *  again.
1184  *
1185  *  You can see, it is legitimate for the previous pointer of
1186  *  the head (or any page) not to point back to itself. But only
1187  *  temporarily.
1188  */
1189 
1190 #define RB_PAGE_NORMAL		0UL
1191 #define RB_PAGE_HEAD		1UL
1192 #define RB_PAGE_UPDATE		2UL
1193 
1194 
1195 #define RB_FLAG_MASK		3UL
1196 
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED		4UL
1199 
1200 /*
1201  * rb_list_head - remove any bit
1202  */
1203 static struct list_head *rb_list_head(struct list_head *list)
1204 {
1205 	unsigned long val = (unsigned long)list;
1206 
1207 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208 }
1209 
1210 /*
1211  * rb_is_head_page - test if the given page is the head page
1212  *
1213  * Because the reader may move the head_page pointer, we can
1214  * not trust what the head page is (it may be pointing to
1215  * the reader page). But if the next page is a header page,
1216  * its flags will be non zero.
1217  */
1218 static inline int
1219 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220 {
1221 	unsigned long val;
1222 
1223 	val = (unsigned long)list->next;
1224 
1225 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226 		return RB_PAGE_MOVED;
1227 
1228 	return val & RB_FLAG_MASK;
1229 }
1230 
1231 /*
1232  * rb_is_reader_page
1233  *
1234  * The unique thing about the reader page, is that, if the
1235  * writer is ever on it, the previous pointer never points
1236  * back to the reader page.
1237  */
1238 static bool rb_is_reader_page(struct buffer_page *page)
1239 {
1240 	struct list_head *list = page->list.prev;
1241 
1242 	return rb_list_head(list->next) != &page->list;
1243 }
1244 
1245 /*
1246  * rb_set_list_to_head - set a list_head to be pointing to head.
1247  */
1248 static void rb_set_list_to_head(struct list_head *list)
1249 {
1250 	unsigned long *ptr;
1251 
1252 	ptr = (unsigned long *)&list->next;
1253 	*ptr |= RB_PAGE_HEAD;
1254 	*ptr &= ~RB_PAGE_UPDATE;
1255 }
1256 
1257 /*
1258  * rb_head_page_activate - sets up head page
1259  */
1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261 {
1262 	struct buffer_page *head;
1263 
1264 	head = cpu_buffer->head_page;
1265 	if (!head)
1266 		return;
1267 
1268 	/*
1269 	 * Set the previous list pointer to have the HEAD flag.
1270 	 */
1271 	rb_set_list_to_head(head->list.prev);
1272 
1273 	if (cpu_buffer->ring_meta) {
1274 		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275 		meta->head_buffer = (unsigned long)head->page;
1276 	}
1277 }
1278 
1279 static void rb_list_head_clear(struct list_head *list)
1280 {
1281 	unsigned long *ptr = (unsigned long *)&list->next;
1282 
1283 	*ptr &= ~RB_FLAG_MASK;
1284 }
1285 
1286 /*
1287  * rb_head_page_deactivate - clears head page ptr (for free list)
1288  */
1289 static void
1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292 	struct list_head *hd;
1293 
1294 	/* Go through the whole list and clear any pointers found. */
1295 	rb_list_head_clear(cpu_buffer->pages);
1296 
1297 	list_for_each(hd, cpu_buffer->pages)
1298 		rb_list_head_clear(hd);
1299 }
1300 
1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302 			    struct buffer_page *head,
1303 			    struct buffer_page *prev,
1304 			    int old_flag, int new_flag)
1305 {
1306 	struct list_head *list;
1307 	unsigned long val = (unsigned long)&head->list;
1308 	unsigned long ret;
1309 
1310 	list = &prev->list;
1311 
1312 	val &= ~RB_FLAG_MASK;
1313 
1314 	ret = cmpxchg((unsigned long *)&list->next,
1315 		      val | old_flag, val | new_flag);
1316 
1317 	/* check if the reader took the page */
1318 	if ((ret & ~RB_FLAG_MASK) != val)
1319 		return RB_PAGE_MOVED;
1320 
1321 	return ret & RB_FLAG_MASK;
1322 }
1323 
1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325 				   struct buffer_page *head,
1326 				   struct buffer_page *prev,
1327 				   int old_flag)
1328 {
1329 	return rb_head_page_set(cpu_buffer, head, prev,
1330 				old_flag, RB_PAGE_UPDATE);
1331 }
1332 
1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334 				 struct buffer_page *head,
1335 				 struct buffer_page *prev,
1336 				 int old_flag)
1337 {
1338 	return rb_head_page_set(cpu_buffer, head, prev,
1339 				old_flag, RB_PAGE_HEAD);
1340 }
1341 
1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343 				   struct buffer_page *head,
1344 				   struct buffer_page *prev,
1345 				   int old_flag)
1346 {
1347 	return rb_head_page_set(cpu_buffer, head, prev,
1348 				old_flag, RB_PAGE_NORMAL);
1349 }
1350 
1351 static inline void rb_inc_page(struct buffer_page **bpage)
1352 {
1353 	struct list_head *p = rb_list_head((*bpage)->list.next);
1354 
1355 	*bpage = list_entry(p, struct buffer_page, list);
1356 }
1357 
1358 static struct buffer_page *
1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360 {
1361 	struct buffer_page *head;
1362 	struct buffer_page *page;
1363 	struct list_head *list;
1364 	int i;
1365 
1366 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367 		return NULL;
1368 
1369 	/* sanity check */
1370 	list = cpu_buffer->pages;
1371 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372 		return NULL;
1373 
1374 	page = head = cpu_buffer->head_page;
1375 	/*
1376 	 * It is possible that the writer moves the header behind
1377 	 * where we started, and we miss in one loop.
1378 	 * A second loop should grab the header, but we'll do
1379 	 * three loops just because I'm paranoid.
1380 	 */
1381 	for (i = 0; i < 3; i++) {
1382 		do {
1383 			if (rb_is_head_page(page, page->list.prev)) {
1384 				cpu_buffer->head_page = page;
1385 				return page;
1386 			}
1387 			rb_inc_page(&page);
1388 		} while (page != head);
1389 	}
1390 
1391 	RB_WARN_ON(cpu_buffer, 1);
1392 
1393 	return NULL;
1394 }
1395 
1396 static bool rb_head_page_replace(struct buffer_page *old,
1397 				struct buffer_page *new)
1398 {
1399 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400 	unsigned long val;
1401 
1402 	val = *ptr & ~RB_FLAG_MASK;
1403 	val |= RB_PAGE_HEAD;
1404 
1405 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406 }
1407 
1408 /*
1409  * rb_tail_page_update - move the tail page forward
1410  */
1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412 			       struct buffer_page *tail_page,
1413 			       struct buffer_page *next_page)
1414 {
1415 	unsigned long old_entries;
1416 	unsigned long old_write;
1417 
1418 	/*
1419 	 * The tail page now needs to be moved forward.
1420 	 *
1421 	 * We need to reset the tail page, but without messing
1422 	 * with possible erasing of data brought in by interrupts
1423 	 * that have moved the tail page and are currently on it.
1424 	 *
1425 	 * We add a counter to the write field to denote this.
1426 	 */
1427 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429 
1430 	/*
1431 	 * Just make sure we have seen our old_write and synchronize
1432 	 * with any interrupts that come in.
1433 	 */
1434 	barrier();
1435 
1436 	/*
1437 	 * If the tail page is still the same as what we think
1438 	 * it is, then it is up to us to update the tail
1439 	 * pointer.
1440 	 */
1441 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442 		/* Zero the write counter */
1443 		unsigned long val = old_write & ~RB_WRITE_MASK;
1444 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445 
1446 		/*
1447 		 * This will only succeed if an interrupt did
1448 		 * not come in and change it. In which case, we
1449 		 * do not want to modify it.
1450 		 *
1451 		 * We add (void) to let the compiler know that we do not care
1452 		 * about the return value of these functions. We use the
1453 		 * cmpxchg to only update if an interrupt did not already
1454 		 * do it for us. If the cmpxchg fails, we don't care.
1455 		 */
1456 		(void)local_cmpxchg(&next_page->write, old_write, val);
1457 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458 
1459 		/*
1460 		 * No need to worry about races with clearing out the commit.
1461 		 * it only can increment when a commit takes place. But that
1462 		 * only happens in the outer most nested commit.
1463 		 */
1464 		local_set(&next_page->page->commit, 0);
1465 
1466 		/* Either we update tail_page or an interrupt does */
1467 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468 			local_inc(&cpu_buffer->pages_touched);
1469 	}
1470 }
1471 
1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473 			  struct buffer_page *bpage)
1474 {
1475 	unsigned long val = (unsigned long)bpage;
1476 
1477 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478 }
1479 
1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481 			   struct list_head *list)
1482 {
1483 	if (RB_WARN_ON(cpu_buffer,
1484 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485 		return false;
1486 
1487 	if (RB_WARN_ON(cpu_buffer,
1488 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489 		return false;
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * rb_check_pages - integrity check of buffer pages
1496  * @cpu_buffer: CPU buffer with pages to test
1497  *
1498  * As a safety measure we check to make sure the data pages have not
1499  * been corrupted.
1500  */
1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502 {
1503 	struct list_head *head, *tmp;
1504 	unsigned long buffer_cnt;
1505 	unsigned long flags;
1506 	int nr_loops = 0;
1507 
1508 	/*
1509 	 * Walk the linked list underpinning the ring buffer and validate all
1510 	 * its next and prev links.
1511 	 *
1512 	 * The check acquires the reader_lock to avoid concurrent processing
1513 	 * with code that could be modifying the list. However, the lock cannot
1514 	 * be held for the entire duration of the walk, as this would make the
1515 	 * time when interrupts are disabled non-deterministic, dependent on the
1516 	 * ring buffer size. Therefore, the code releases and re-acquires the
1517 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 	 * is then used to detect if the list was modified while the lock was
1519 	 * not held, in which case the check needs to be restarted.
1520 	 *
1521 	 * The code attempts to perform the check at most three times before
1522 	 * giving up. This is acceptable because this is only a self-validation
1523 	 * to detect problems early on. In practice, the list modification
1524 	 * operations are fairly spaced, and so this check typically succeeds at
1525 	 * most on the second try.
1526 	 */
1527 again:
1528 	if (++nr_loops > 3)
1529 		return;
1530 
1531 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532 	head = rb_list_head(cpu_buffer->pages);
1533 	if (!rb_check_links(cpu_buffer, head))
1534 		goto out_locked;
1535 	buffer_cnt = cpu_buffer->cnt;
1536 	tmp = head;
1537 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538 
1539 	while (true) {
1540 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541 
1542 		if (buffer_cnt != cpu_buffer->cnt) {
1543 			/* The list was updated, try again. */
1544 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545 			goto again;
1546 		}
1547 
1548 		tmp = rb_list_head(tmp->next);
1549 		if (tmp == head)
1550 			/* The iteration circled back, all is done. */
1551 			goto out_locked;
1552 
1553 		if (!rb_check_links(cpu_buffer, tmp))
1554 			goto out_locked;
1555 
1556 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557 	}
1558 
1559 out_locked:
1560 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561 }
1562 
1563 /*
1564  * Take an address, add the meta data size as well as the array of
1565  * array subbuffer indexes, then align it to a subbuffer size.
1566  *
1567  * This is used to help find the next per cpu subbuffer within a mapped range.
1568  */
1569 static unsigned long
1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571 {
1572 	addr += sizeof(struct ring_buffer_meta) +
1573 		sizeof(int) * nr_subbufs;
1574 	return ALIGN(addr, subbuf_size);
1575 }
1576 
1577 /*
1578  * Return the ring_buffer_meta for a given @cpu.
1579  */
1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581 {
1582 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583 	unsigned long ptr = buffer->range_addr_start;
1584 	struct ring_buffer_meta *meta;
1585 	int nr_subbufs;
1586 
1587 	if (!ptr)
1588 		return NULL;
1589 
1590 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591 	if (!nr_pages) {
1592 		meta = (struct ring_buffer_meta *)ptr;
1593 		nr_subbufs = meta->nr_subbufs;
1594 	} else {
1595 		meta = NULL;
1596 		/* Include the reader page */
1597 		nr_subbufs = nr_pages + 1;
1598 	}
1599 
1600 	/*
1601 	 * The first chunk may not be subbuffer aligned, where as
1602 	 * the rest of the chunks are.
1603 	 */
1604 	if (cpu) {
1605 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606 		ptr += subbuf_size * nr_subbufs;
1607 
1608 		/* We can use multiplication to find chunks greater than 1 */
1609 		if (cpu > 1) {
1610 			unsigned long size;
1611 			unsigned long p;
1612 
1613 			/* Save the beginning of this CPU chunk */
1614 			p = ptr;
1615 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616 			ptr += subbuf_size * nr_subbufs;
1617 
1618 			/* Now all chunks after this are the same size */
1619 			size = ptr - p;
1620 			ptr += size * (cpu - 2);
1621 		}
1622 	}
1623 	return (void *)ptr;
1624 }
1625 
1626 /* Return the start of subbufs given the meta pointer */
1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628 {
1629 	int subbuf_size = meta->subbuf_size;
1630 	unsigned long ptr;
1631 
1632 	ptr = (unsigned long)meta;
1633 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634 
1635 	return (void *)ptr;
1636 }
1637 
1638 /*
1639  * Return a specific sub-buffer for a given @cpu defined by @idx.
1640  */
1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642 {
1643 	struct ring_buffer_meta *meta;
1644 	unsigned long ptr;
1645 	int subbuf_size;
1646 
1647 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648 	if (!meta)
1649 		return NULL;
1650 
1651 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652 		return NULL;
1653 
1654 	subbuf_size = meta->subbuf_size;
1655 
1656 	/* Map this buffer to the order that's in meta->buffers[] */
1657 	idx = meta->buffers[idx];
1658 
1659 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660 
1661 	ptr += subbuf_size * idx;
1662 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663 		return NULL;
1664 
1665 	return (void *)ptr;
1666 }
1667 
1668 /*
1669  * See if the existing memory contains valid ring buffer data.
1670  * As the previous kernel must be the same as this kernel, all
1671  * the calculations (size of buffers and number of buffers)
1672  * must be the same.
1673  */
1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675 			  struct trace_buffer *buffer, int nr_pages)
1676 {
1677 	int subbuf_size = PAGE_SIZE;
1678 	struct buffer_data_page *subbuf;
1679 	unsigned long buffers_start;
1680 	unsigned long buffers_end;
1681 	int i;
1682 
1683 	/* Check the meta magic and meta struct size */
1684 	if (meta->magic != RING_BUFFER_META_MAGIC ||
1685 	    meta->struct_size != sizeof(*meta)) {
1686 		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1687 		return false;
1688 	}
1689 
1690 	/* The subbuffer's size and number of subbuffers must match */
1691 	if (meta->subbuf_size != subbuf_size ||
1692 	    meta->nr_subbufs != nr_pages + 1) {
1693 		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1694 		return false;
1695 	}
1696 
1697 	buffers_start = meta->first_buffer;
1698 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1699 
1700 	/* Is the head and commit buffers within the range of buffers? */
1701 	if (meta->head_buffer < buffers_start ||
1702 	    meta->head_buffer >= buffers_end) {
1703 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1704 		return false;
1705 	}
1706 
1707 	if (meta->commit_buffer < buffers_start ||
1708 	    meta->commit_buffer >= buffers_end) {
1709 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1710 		return false;
1711 	}
1712 
1713 	subbuf = rb_subbufs_from_meta(meta);
1714 
1715 	/* Is the meta buffers and the subbufs themselves have correct data? */
1716 	for (i = 0; i < meta->nr_subbufs; i++) {
1717 		if (meta->buffers[i] < 0 ||
1718 		    meta->buffers[i] >= meta->nr_subbufs) {
1719 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1720 			return false;
1721 		}
1722 
1723 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1724 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1725 			return false;
1726 		}
1727 
1728 		subbuf = (void *)subbuf + subbuf_size;
1729 	}
1730 
1731 	return true;
1732 }
1733 
1734 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1735 
1736 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1737 			       unsigned long long *timestamp, u64 *delta_ptr)
1738 {
1739 	struct ring_buffer_event *event;
1740 	u64 ts, delta;
1741 	int events = 0;
1742 	int e;
1743 
1744 	*delta_ptr = 0;
1745 	*timestamp = 0;
1746 
1747 	ts = dpage->time_stamp;
1748 
1749 	for (e = 0; e < tail; e += rb_event_length(event)) {
1750 
1751 		event = (struct ring_buffer_event *)(dpage->data + e);
1752 
1753 		switch (event->type_len) {
1754 
1755 		case RINGBUF_TYPE_TIME_EXTEND:
1756 			delta = rb_event_time_stamp(event);
1757 			ts += delta;
1758 			break;
1759 
1760 		case RINGBUF_TYPE_TIME_STAMP:
1761 			delta = rb_event_time_stamp(event);
1762 			delta = rb_fix_abs_ts(delta, ts);
1763 			if (delta < ts) {
1764 				*delta_ptr = delta;
1765 				*timestamp = ts;
1766 				return -1;
1767 			}
1768 			ts = delta;
1769 			break;
1770 
1771 		case RINGBUF_TYPE_PADDING:
1772 			if (event->time_delta == 1)
1773 				break;
1774 			fallthrough;
1775 		case RINGBUF_TYPE_DATA:
1776 			events++;
1777 			ts += event->time_delta;
1778 			break;
1779 
1780 		default:
1781 			return -1;
1782 		}
1783 	}
1784 	*timestamp = ts;
1785 	return events;
1786 }
1787 
1788 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1789 {
1790 	unsigned long long ts;
1791 	u64 delta;
1792 	int tail;
1793 
1794 	tail = local_read(&dpage->commit);
1795 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1796 }
1797 
1798 /* If the meta data has been validated, now validate the events */
1799 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1800 {
1801 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1802 	struct buffer_page *head_page;
1803 	unsigned long entry_bytes = 0;
1804 	unsigned long entries = 0;
1805 	int ret;
1806 	int i;
1807 
1808 	if (!meta || !meta->head_buffer)
1809 		return;
1810 
1811 	/* Do the reader page first */
1812 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1813 	if (ret < 0) {
1814 		pr_info("Ring buffer reader page is invalid\n");
1815 		goto invalid;
1816 	}
1817 	entries += ret;
1818 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1819 	local_set(&cpu_buffer->reader_page->entries, ret);
1820 
1821 	head_page = cpu_buffer->head_page;
1822 
1823 	/* If both the head and commit are on the reader_page then we are done. */
1824 	if (head_page == cpu_buffer->reader_page &&
1825 	    head_page == cpu_buffer->commit_page)
1826 		goto done;
1827 
1828 	/* Iterate until finding the commit page */
1829 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1830 
1831 		/* Reader page has already been done */
1832 		if (head_page == cpu_buffer->reader_page)
1833 			continue;
1834 
1835 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1836 		if (ret < 0) {
1837 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1838 				cpu_buffer->cpu);
1839 			goto invalid;
1840 		}
1841 		entries += ret;
1842 		entry_bytes += local_read(&head_page->page->commit);
1843 		local_set(&cpu_buffer->head_page->entries, ret);
1844 
1845 		if (head_page == cpu_buffer->commit_page)
1846 			break;
1847 	}
1848 
1849 	if (head_page != cpu_buffer->commit_page) {
1850 		pr_info("Ring buffer meta [%d] commit page not found\n",
1851 			cpu_buffer->cpu);
1852 		goto invalid;
1853 	}
1854  done:
1855 	local_set(&cpu_buffer->entries, entries);
1856 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1857 
1858 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1859 	return;
1860 
1861  invalid:
1862 	/* The content of the buffers are invalid, reset the meta data */
1863 	meta->head_buffer = 0;
1864 	meta->commit_buffer = 0;
1865 
1866 	/* Reset the reader page */
1867 	local_set(&cpu_buffer->reader_page->entries, 0);
1868 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1869 
1870 	/* Reset all the subbuffers */
1871 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1872 		local_set(&head_page->entries, 0);
1873 		local_set(&head_page->page->commit, 0);
1874 	}
1875 }
1876 
1877 /* Used to calculate data delta */
1878 static char rb_data_ptr[] = "";
1879 
1880 #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1881 #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1882 
1883 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1884 {
1885 	meta->text_addr = THIS_TEXT_PTR;
1886 	meta->data_addr = THIS_DATA_PTR;
1887 }
1888 
1889 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1890 {
1891 	struct ring_buffer_meta *meta;
1892 	unsigned long delta;
1893 	void *subbuf;
1894 	int cpu;
1895 	int i;
1896 
1897 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1898 		void *next_meta;
1899 
1900 		meta = rb_range_meta(buffer, nr_pages, cpu);
1901 
1902 		if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1903 			/* Make the mappings match the current address */
1904 			subbuf = rb_subbufs_from_meta(meta);
1905 			delta = (unsigned long)subbuf - meta->first_buffer;
1906 			meta->first_buffer += delta;
1907 			meta->head_buffer += delta;
1908 			meta->commit_buffer += delta;
1909 			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1910 			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1911 			continue;
1912 		}
1913 
1914 		if (cpu < nr_cpu_ids - 1)
1915 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1916 		else
1917 			next_meta = (void *)buffer->range_addr_end;
1918 
1919 		memset(meta, 0, next_meta - (void *)meta);
1920 
1921 		meta->magic = RING_BUFFER_META_MAGIC;
1922 		meta->struct_size = sizeof(*meta);
1923 
1924 		meta->nr_subbufs = nr_pages + 1;
1925 		meta->subbuf_size = PAGE_SIZE;
1926 
1927 		subbuf = rb_subbufs_from_meta(meta);
1928 
1929 		meta->first_buffer = (unsigned long)subbuf;
1930 		rb_meta_init_text_addr(meta);
1931 
1932 		/*
1933 		 * The buffers[] array holds the order of the sub-buffers
1934 		 * that are after the meta data. The sub-buffers may
1935 		 * be swapped out when read and inserted into a different
1936 		 * location of the ring buffer. Although their addresses
1937 		 * remain the same, the buffers[] array contains the
1938 		 * index into the sub-buffers holding their actual order.
1939 		 */
1940 		for (i = 0; i < meta->nr_subbufs; i++) {
1941 			meta->buffers[i] = i;
1942 			rb_init_page(subbuf);
1943 			subbuf += meta->subbuf_size;
1944 		}
1945 	}
1946 }
1947 
1948 static void *rbm_start(struct seq_file *m, loff_t *pos)
1949 {
1950 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1951 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1952 	unsigned long val;
1953 
1954 	if (!meta)
1955 		return NULL;
1956 
1957 	if (*pos > meta->nr_subbufs)
1958 		return NULL;
1959 
1960 	val = *pos;
1961 	val++;
1962 
1963 	return (void *)val;
1964 }
1965 
1966 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1967 {
1968 	(*pos)++;
1969 
1970 	return rbm_start(m, pos);
1971 }
1972 
1973 static int rbm_show(struct seq_file *m, void *v)
1974 {
1975 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1976 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977 	unsigned long val = (unsigned long)v;
1978 
1979 	if (val == 1) {
1980 		seq_printf(m, "head_buffer:   %d\n",
1981 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1982 		seq_printf(m, "commit_buffer: %d\n",
1983 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1984 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
1985 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
1986 		return 0;
1987 	}
1988 
1989 	val -= 2;
1990 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
1991 
1992 	return 0;
1993 }
1994 
1995 static void rbm_stop(struct seq_file *m, void *p)
1996 {
1997 }
1998 
1999 static const struct seq_operations rb_meta_seq_ops = {
2000 	.start		= rbm_start,
2001 	.next		= rbm_next,
2002 	.show		= rbm_show,
2003 	.stop		= rbm_stop,
2004 };
2005 
2006 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2007 {
2008 	struct seq_file *m;
2009 	int ret;
2010 
2011 	ret = seq_open(file, &rb_meta_seq_ops);
2012 	if (ret)
2013 		return ret;
2014 
2015 	m = file->private_data;
2016 	m->private = buffer->buffers[cpu];
2017 
2018 	return 0;
2019 }
2020 
2021 /* Map the buffer_pages to the previous head and commit pages */
2022 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2023 				  struct buffer_page *bpage)
2024 {
2025 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2026 
2027 	if (meta->head_buffer == (unsigned long)bpage->page)
2028 		cpu_buffer->head_page = bpage;
2029 
2030 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2031 		cpu_buffer->commit_page = bpage;
2032 		cpu_buffer->tail_page = bpage;
2033 	}
2034 }
2035 
2036 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2037 		long nr_pages, struct list_head *pages)
2038 {
2039 	struct trace_buffer *buffer = cpu_buffer->buffer;
2040 	struct ring_buffer_meta *meta = NULL;
2041 	struct buffer_page *bpage, *tmp;
2042 	bool user_thread = current->mm != NULL;
2043 	gfp_t mflags;
2044 	long i;
2045 
2046 	/*
2047 	 * Check if the available memory is there first.
2048 	 * Note, si_mem_available() only gives us a rough estimate of available
2049 	 * memory. It may not be accurate. But we don't care, we just want
2050 	 * to prevent doing any allocation when it is obvious that it is
2051 	 * not going to succeed.
2052 	 */
2053 	i = si_mem_available();
2054 	if (i < nr_pages)
2055 		return -ENOMEM;
2056 
2057 	/*
2058 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2059 	 * gracefully without invoking oom-killer and the system is not
2060 	 * destabilized.
2061 	 */
2062 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2063 
2064 	/*
2065 	 * If a user thread allocates too much, and si_mem_available()
2066 	 * reports there's enough memory, even though there is not.
2067 	 * Make sure the OOM killer kills this thread. This can happen
2068 	 * even with RETRY_MAYFAIL because another task may be doing
2069 	 * an allocation after this task has taken all memory.
2070 	 * This is the task the OOM killer needs to take out during this
2071 	 * loop, even if it was triggered by an allocation somewhere else.
2072 	 */
2073 	if (user_thread)
2074 		set_current_oom_origin();
2075 
2076 	if (buffer->range_addr_start)
2077 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2078 
2079 	for (i = 0; i < nr_pages; i++) {
2080 		struct page *page;
2081 
2082 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2083 				    mflags, cpu_to_node(cpu_buffer->cpu));
2084 		if (!bpage)
2085 			goto free_pages;
2086 
2087 		rb_check_bpage(cpu_buffer, bpage);
2088 
2089 		/*
2090 		 * Append the pages as for mapped buffers we want to keep
2091 		 * the order
2092 		 */
2093 		list_add_tail(&bpage->list, pages);
2094 
2095 		if (meta) {
2096 			/* A range was given. Use that for the buffer page */
2097 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2098 			if (!bpage->page)
2099 				goto free_pages;
2100 			/* If this is valid from a previous boot */
2101 			if (meta->head_buffer)
2102 				rb_meta_buffer_update(cpu_buffer, bpage);
2103 			bpage->range = 1;
2104 			bpage->id = i + 1;
2105 		} else {
2106 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2107 						mflags | __GFP_COMP | __GFP_ZERO,
2108 						cpu_buffer->buffer->subbuf_order);
2109 			if (!page)
2110 				goto free_pages;
2111 			bpage->page = page_address(page);
2112 			rb_init_page(bpage->page);
2113 		}
2114 		bpage->order = cpu_buffer->buffer->subbuf_order;
2115 
2116 		if (user_thread && fatal_signal_pending(current))
2117 			goto free_pages;
2118 	}
2119 	if (user_thread)
2120 		clear_current_oom_origin();
2121 
2122 	return 0;
2123 
2124 free_pages:
2125 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2126 		list_del_init(&bpage->list);
2127 		free_buffer_page(bpage);
2128 	}
2129 	if (user_thread)
2130 		clear_current_oom_origin();
2131 
2132 	return -ENOMEM;
2133 }
2134 
2135 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2136 			     unsigned long nr_pages)
2137 {
2138 	LIST_HEAD(pages);
2139 
2140 	WARN_ON(!nr_pages);
2141 
2142 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2143 		return -ENOMEM;
2144 
2145 	/*
2146 	 * The ring buffer page list is a circular list that does not
2147 	 * start and end with a list head. All page list items point to
2148 	 * other pages.
2149 	 */
2150 	cpu_buffer->pages = pages.next;
2151 	list_del(&pages);
2152 
2153 	cpu_buffer->nr_pages = nr_pages;
2154 
2155 	rb_check_pages(cpu_buffer);
2156 
2157 	return 0;
2158 }
2159 
2160 static struct ring_buffer_per_cpu *
2161 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2162 {
2163 	struct ring_buffer_per_cpu *cpu_buffer;
2164 	struct ring_buffer_meta *meta;
2165 	struct buffer_page *bpage;
2166 	struct page *page;
2167 	int ret;
2168 
2169 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2170 				  GFP_KERNEL, cpu_to_node(cpu));
2171 	if (!cpu_buffer)
2172 		return NULL;
2173 
2174 	cpu_buffer->cpu = cpu;
2175 	cpu_buffer->buffer = buffer;
2176 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2177 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2178 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2179 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2180 	init_completion(&cpu_buffer->update_done);
2181 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2182 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2183 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2184 	mutex_init(&cpu_buffer->mapping_lock);
2185 
2186 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2187 			    GFP_KERNEL, cpu_to_node(cpu));
2188 	if (!bpage)
2189 		goto fail_free_buffer;
2190 
2191 	rb_check_bpage(cpu_buffer, bpage);
2192 
2193 	cpu_buffer->reader_page = bpage;
2194 
2195 	if (buffer->range_addr_start) {
2196 		/*
2197 		 * Range mapped buffers have the same restrictions as memory
2198 		 * mapped ones do.
2199 		 */
2200 		cpu_buffer->mapped = 1;
2201 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2202 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2203 		if (!bpage->page)
2204 			goto fail_free_reader;
2205 		if (cpu_buffer->ring_meta->head_buffer)
2206 			rb_meta_buffer_update(cpu_buffer, bpage);
2207 		bpage->range = 1;
2208 	} else {
2209 		page = alloc_pages_node(cpu_to_node(cpu),
2210 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2211 					cpu_buffer->buffer->subbuf_order);
2212 		if (!page)
2213 			goto fail_free_reader;
2214 		bpage->page = page_address(page);
2215 		rb_init_page(bpage->page);
2216 	}
2217 
2218 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2219 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2220 
2221 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2222 	if (ret < 0)
2223 		goto fail_free_reader;
2224 
2225 	rb_meta_validate_events(cpu_buffer);
2226 
2227 	/* If the boot meta was valid then this has already been updated */
2228 	meta = cpu_buffer->ring_meta;
2229 	if (!meta || !meta->head_buffer ||
2230 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2231 		if (meta && meta->head_buffer &&
2232 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2233 			pr_warn("Ring buffer meta buffers not all mapped\n");
2234 			if (!cpu_buffer->head_page)
2235 				pr_warn("   Missing head_page\n");
2236 			if (!cpu_buffer->commit_page)
2237 				pr_warn("   Missing commit_page\n");
2238 			if (!cpu_buffer->tail_page)
2239 				pr_warn("   Missing tail_page\n");
2240 		}
2241 
2242 		cpu_buffer->head_page
2243 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2244 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2245 
2246 		rb_head_page_activate(cpu_buffer);
2247 
2248 		if (cpu_buffer->ring_meta)
2249 			meta->commit_buffer = meta->head_buffer;
2250 	} else {
2251 		/* The valid meta buffer still needs to activate the head page */
2252 		rb_head_page_activate(cpu_buffer);
2253 	}
2254 
2255 	return cpu_buffer;
2256 
2257  fail_free_reader:
2258 	free_buffer_page(cpu_buffer->reader_page);
2259 
2260  fail_free_buffer:
2261 	kfree(cpu_buffer);
2262 	return NULL;
2263 }
2264 
2265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2266 {
2267 	struct list_head *head = cpu_buffer->pages;
2268 	struct buffer_page *bpage, *tmp;
2269 
2270 	irq_work_sync(&cpu_buffer->irq_work.work);
2271 
2272 	free_buffer_page(cpu_buffer->reader_page);
2273 
2274 	if (head) {
2275 		rb_head_page_deactivate(cpu_buffer);
2276 
2277 		list_for_each_entry_safe(bpage, tmp, head, list) {
2278 			list_del_init(&bpage->list);
2279 			free_buffer_page(bpage);
2280 		}
2281 		bpage = list_entry(head, struct buffer_page, list);
2282 		free_buffer_page(bpage);
2283 	}
2284 
2285 	free_page((unsigned long)cpu_buffer->free_page);
2286 
2287 	kfree(cpu_buffer);
2288 }
2289 
2290 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2291 					 int order, unsigned long start,
2292 					 unsigned long end,
2293 					 struct lock_class_key *key)
2294 {
2295 	struct trace_buffer *buffer;
2296 	long nr_pages;
2297 	int subbuf_size;
2298 	int bsize;
2299 	int cpu;
2300 	int ret;
2301 
2302 	/* keep it in its own cache line */
2303 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2304 			 GFP_KERNEL);
2305 	if (!buffer)
2306 		return NULL;
2307 
2308 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2309 		goto fail_free_buffer;
2310 
2311 	buffer->subbuf_order = order;
2312 	subbuf_size = (PAGE_SIZE << order);
2313 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2314 
2315 	/* Max payload is buffer page size - header (8bytes) */
2316 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2317 
2318 	buffer->flags = flags;
2319 	buffer->clock = trace_clock_local;
2320 	buffer->reader_lock_key = key;
2321 
2322 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2323 	init_waitqueue_head(&buffer->irq_work.waiters);
2324 
2325 	buffer->cpus = nr_cpu_ids;
2326 
2327 	bsize = sizeof(void *) * nr_cpu_ids;
2328 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2329 				  GFP_KERNEL);
2330 	if (!buffer->buffers)
2331 		goto fail_free_cpumask;
2332 
2333 	/* If start/end are specified, then that overrides size */
2334 	if (start && end) {
2335 		unsigned long ptr;
2336 		int n;
2337 
2338 		size = end - start;
2339 		size = size / nr_cpu_ids;
2340 
2341 		/*
2342 		 * The number of sub-buffers (nr_pages) is determined by the
2343 		 * total size allocated minus the meta data size.
2344 		 * Then that is divided by the number of per CPU buffers
2345 		 * needed, plus account for the integer array index that
2346 		 * will be appended to the meta data.
2347 		 */
2348 		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2349 			(subbuf_size + sizeof(int));
2350 		/* Need at least two pages plus the reader page */
2351 		if (nr_pages < 3)
2352 			goto fail_free_buffers;
2353 
2354  again:
2355 		/* Make sure that the size fits aligned */
2356 		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2357 			ptr += sizeof(struct ring_buffer_meta) +
2358 				sizeof(int) * nr_pages;
2359 			ptr = ALIGN(ptr, subbuf_size);
2360 			ptr += subbuf_size * nr_pages;
2361 		}
2362 		if (ptr > end) {
2363 			if (nr_pages <= 3)
2364 				goto fail_free_buffers;
2365 			nr_pages--;
2366 			goto again;
2367 		}
2368 
2369 		/* nr_pages should not count the reader page */
2370 		nr_pages--;
2371 		buffer->range_addr_start = start;
2372 		buffer->range_addr_end = end;
2373 
2374 		rb_range_meta_init(buffer, nr_pages);
2375 	} else {
2376 
2377 		/* need at least two pages */
2378 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2379 		if (nr_pages < 2)
2380 			nr_pages = 2;
2381 	}
2382 
2383 	cpu = raw_smp_processor_id();
2384 	cpumask_set_cpu(cpu, buffer->cpumask);
2385 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2386 	if (!buffer->buffers[cpu])
2387 		goto fail_free_buffers;
2388 
2389 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2390 	if (ret < 0)
2391 		goto fail_free_buffers;
2392 
2393 	mutex_init(&buffer->mutex);
2394 
2395 	return buffer;
2396 
2397  fail_free_buffers:
2398 	for_each_buffer_cpu(buffer, cpu) {
2399 		if (buffer->buffers[cpu])
2400 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2401 	}
2402 	kfree(buffer->buffers);
2403 
2404  fail_free_cpumask:
2405 	free_cpumask_var(buffer->cpumask);
2406 
2407  fail_free_buffer:
2408 	kfree(buffer);
2409 	return NULL;
2410 }
2411 
2412 /**
2413  * __ring_buffer_alloc - allocate a new ring_buffer
2414  * @size: the size in bytes per cpu that is needed.
2415  * @flags: attributes to set for the ring buffer.
2416  * @key: ring buffer reader_lock_key.
2417  *
2418  * Currently the only flag that is available is the RB_FL_OVERWRITE
2419  * flag. This flag means that the buffer will overwrite old data
2420  * when the buffer wraps. If this flag is not set, the buffer will
2421  * drop data when the tail hits the head.
2422  */
2423 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2424 					struct lock_class_key *key)
2425 {
2426 	/* Default buffer page size - one system page */
2427 	return alloc_buffer(size, flags, 0, 0, 0,key);
2428 
2429 }
2430 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2431 
2432 /**
2433  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2434  * @size: the size in bytes per cpu that is needed.
2435  * @flags: attributes to set for the ring buffer.
2436  * @order: sub-buffer order
2437  * @start: start of allocated range
2438  * @range_size: size of allocated range
2439  * @key: ring buffer reader_lock_key.
2440  *
2441  * Currently the only flag that is available is the RB_FL_OVERWRITE
2442  * flag. This flag means that the buffer will overwrite old data
2443  * when the buffer wraps. If this flag is not set, the buffer will
2444  * drop data when the tail hits the head.
2445  */
2446 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2447 					       int order, unsigned long start,
2448 					       unsigned long range_size,
2449 					       struct lock_class_key *key)
2450 {
2451 	return alloc_buffer(size, flags, order, start, start + range_size, key);
2452 }
2453 
2454 /**
2455  * ring_buffer_last_boot_delta - return the delta offset from last boot
2456  * @buffer: The buffer to return the delta from
2457  * @text: Return text delta
2458  * @data: Return data delta
2459  *
2460  * Returns: The true if the delta is non zero
2461  */
2462 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2463 				 long *data)
2464 {
2465 	if (!buffer)
2466 		return false;
2467 
2468 	if (!buffer->last_text_delta)
2469 		return false;
2470 
2471 	*text = buffer->last_text_delta;
2472 	*data = buffer->last_data_delta;
2473 
2474 	return true;
2475 }
2476 
2477 /**
2478  * ring_buffer_free - free a ring buffer.
2479  * @buffer: the buffer to free.
2480  */
2481 void
2482 ring_buffer_free(struct trace_buffer *buffer)
2483 {
2484 	int cpu;
2485 
2486 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2487 
2488 	irq_work_sync(&buffer->irq_work.work);
2489 
2490 	for_each_buffer_cpu(buffer, cpu)
2491 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2492 
2493 	kfree(buffer->buffers);
2494 	free_cpumask_var(buffer->cpumask);
2495 
2496 	kfree(buffer);
2497 }
2498 EXPORT_SYMBOL_GPL(ring_buffer_free);
2499 
2500 void ring_buffer_set_clock(struct trace_buffer *buffer,
2501 			   u64 (*clock)(void))
2502 {
2503 	buffer->clock = clock;
2504 }
2505 
2506 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2507 {
2508 	buffer->time_stamp_abs = abs;
2509 }
2510 
2511 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2512 {
2513 	return buffer->time_stamp_abs;
2514 }
2515 
2516 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2517 {
2518 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2519 }
2520 
2521 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2522 {
2523 	return local_read(&bpage->write) & RB_WRITE_MASK;
2524 }
2525 
2526 static bool
2527 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2528 {
2529 	struct list_head *tail_page, *to_remove, *next_page;
2530 	struct buffer_page *to_remove_page, *tmp_iter_page;
2531 	struct buffer_page *last_page, *first_page;
2532 	unsigned long nr_removed;
2533 	unsigned long head_bit;
2534 	int page_entries;
2535 
2536 	head_bit = 0;
2537 
2538 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2539 	atomic_inc(&cpu_buffer->record_disabled);
2540 	/*
2541 	 * We don't race with the readers since we have acquired the reader
2542 	 * lock. We also don't race with writers after disabling recording.
2543 	 * This makes it easy to figure out the first and the last page to be
2544 	 * removed from the list. We unlink all the pages in between including
2545 	 * the first and last pages. This is done in a busy loop so that we
2546 	 * lose the least number of traces.
2547 	 * The pages are freed after we restart recording and unlock readers.
2548 	 */
2549 	tail_page = &cpu_buffer->tail_page->list;
2550 
2551 	/*
2552 	 * tail page might be on reader page, we remove the next page
2553 	 * from the ring buffer
2554 	 */
2555 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2556 		tail_page = rb_list_head(tail_page->next);
2557 	to_remove = tail_page;
2558 
2559 	/* start of pages to remove */
2560 	first_page = list_entry(rb_list_head(to_remove->next),
2561 				struct buffer_page, list);
2562 
2563 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2564 		to_remove = rb_list_head(to_remove)->next;
2565 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2566 	}
2567 	/* Read iterators need to reset themselves when some pages removed */
2568 	cpu_buffer->pages_removed += nr_removed;
2569 
2570 	next_page = rb_list_head(to_remove)->next;
2571 
2572 	/*
2573 	 * Now we remove all pages between tail_page and next_page.
2574 	 * Make sure that we have head_bit value preserved for the
2575 	 * next page
2576 	 */
2577 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2578 						head_bit);
2579 	next_page = rb_list_head(next_page);
2580 	next_page->prev = tail_page;
2581 
2582 	/* make sure pages points to a valid page in the ring buffer */
2583 	cpu_buffer->pages = next_page;
2584 	cpu_buffer->cnt++;
2585 
2586 	/* update head page */
2587 	if (head_bit)
2588 		cpu_buffer->head_page = list_entry(next_page,
2589 						struct buffer_page, list);
2590 
2591 	/* pages are removed, resume tracing and then free the pages */
2592 	atomic_dec(&cpu_buffer->record_disabled);
2593 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2594 
2595 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2596 
2597 	/* last buffer page to remove */
2598 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2599 				list);
2600 	tmp_iter_page = first_page;
2601 
2602 	do {
2603 		cond_resched();
2604 
2605 		to_remove_page = tmp_iter_page;
2606 		rb_inc_page(&tmp_iter_page);
2607 
2608 		/* update the counters */
2609 		page_entries = rb_page_entries(to_remove_page);
2610 		if (page_entries) {
2611 			/*
2612 			 * If something was added to this page, it was full
2613 			 * since it is not the tail page. So we deduct the
2614 			 * bytes consumed in ring buffer from here.
2615 			 * Increment overrun to account for the lost events.
2616 			 */
2617 			local_add(page_entries, &cpu_buffer->overrun);
2618 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2619 			local_inc(&cpu_buffer->pages_lost);
2620 		}
2621 
2622 		/*
2623 		 * We have already removed references to this list item, just
2624 		 * free up the buffer_page and its page
2625 		 */
2626 		free_buffer_page(to_remove_page);
2627 		nr_removed--;
2628 
2629 	} while (to_remove_page != last_page);
2630 
2631 	RB_WARN_ON(cpu_buffer, nr_removed);
2632 
2633 	return nr_removed == 0;
2634 }
2635 
2636 static bool
2637 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2638 {
2639 	struct list_head *pages = &cpu_buffer->new_pages;
2640 	unsigned long flags;
2641 	bool success;
2642 	int retries;
2643 
2644 	/* Can be called at early boot up, where interrupts must not been enabled */
2645 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2646 	/*
2647 	 * We are holding the reader lock, so the reader page won't be swapped
2648 	 * in the ring buffer. Now we are racing with the writer trying to
2649 	 * move head page and the tail page.
2650 	 * We are going to adapt the reader page update process where:
2651 	 * 1. We first splice the start and end of list of new pages between
2652 	 *    the head page and its previous page.
2653 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2654 	 *    start of new pages list.
2655 	 * 3. Finally, we update the head->prev to the end of new list.
2656 	 *
2657 	 * We will try this process 10 times, to make sure that we don't keep
2658 	 * spinning.
2659 	 */
2660 	retries = 10;
2661 	success = false;
2662 	while (retries--) {
2663 		struct list_head *head_page, *prev_page;
2664 		struct list_head *last_page, *first_page;
2665 		struct list_head *head_page_with_bit;
2666 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2667 
2668 		if (!hpage)
2669 			break;
2670 		head_page = &hpage->list;
2671 		prev_page = head_page->prev;
2672 
2673 		first_page = pages->next;
2674 		last_page  = pages->prev;
2675 
2676 		head_page_with_bit = (struct list_head *)
2677 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2678 
2679 		last_page->next = head_page_with_bit;
2680 		first_page->prev = prev_page;
2681 
2682 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2683 		if (try_cmpxchg(&prev_page->next,
2684 				&head_page_with_bit, first_page)) {
2685 			/*
2686 			 * yay, we replaced the page pointer to our new list,
2687 			 * now, we just have to update to head page's prev
2688 			 * pointer to point to end of list
2689 			 */
2690 			head_page->prev = last_page;
2691 			cpu_buffer->cnt++;
2692 			success = true;
2693 			break;
2694 		}
2695 	}
2696 
2697 	if (success)
2698 		INIT_LIST_HEAD(pages);
2699 	/*
2700 	 * If we weren't successful in adding in new pages, warn and stop
2701 	 * tracing
2702 	 */
2703 	RB_WARN_ON(cpu_buffer, !success);
2704 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2705 
2706 	/* free pages if they weren't inserted */
2707 	if (!success) {
2708 		struct buffer_page *bpage, *tmp;
2709 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2710 					 list) {
2711 			list_del_init(&bpage->list);
2712 			free_buffer_page(bpage);
2713 		}
2714 	}
2715 	return success;
2716 }
2717 
2718 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2719 {
2720 	bool success;
2721 
2722 	if (cpu_buffer->nr_pages_to_update > 0)
2723 		success = rb_insert_pages(cpu_buffer);
2724 	else
2725 		success = rb_remove_pages(cpu_buffer,
2726 					-cpu_buffer->nr_pages_to_update);
2727 
2728 	if (success)
2729 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2730 }
2731 
2732 static void update_pages_handler(struct work_struct *work)
2733 {
2734 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2735 			struct ring_buffer_per_cpu, update_pages_work);
2736 	rb_update_pages(cpu_buffer);
2737 	complete(&cpu_buffer->update_done);
2738 }
2739 
2740 /**
2741  * ring_buffer_resize - resize the ring buffer
2742  * @buffer: the buffer to resize.
2743  * @size: the new size.
2744  * @cpu_id: the cpu buffer to resize
2745  *
2746  * Minimum size is 2 * buffer->subbuf_size.
2747  *
2748  * Returns 0 on success and < 0 on failure.
2749  */
2750 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2751 			int cpu_id)
2752 {
2753 	struct ring_buffer_per_cpu *cpu_buffer;
2754 	unsigned long nr_pages;
2755 	int cpu, err;
2756 
2757 	/*
2758 	 * Always succeed at resizing a non-existent buffer:
2759 	 */
2760 	if (!buffer)
2761 		return 0;
2762 
2763 	/* Make sure the requested buffer exists */
2764 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2765 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2766 		return 0;
2767 
2768 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2769 
2770 	/* we need a minimum of two pages */
2771 	if (nr_pages < 2)
2772 		nr_pages = 2;
2773 
2774 	/* prevent another thread from changing buffer sizes */
2775 	mutex_lock(&buffer->mutex);
2776 	atomic_inc(&buffer->resizing);
2777 
2778 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2779 		/*
2780 		 * Don't succeed if resizing is disabled, as a reader might be
2781 		 * manipulating the ring buffer and is expecting a sane state while
2782 		 * this is true.
2783 		 */
2784 		for_each_buffer_cpu(buffer, cpu) {
2785 			cpu_buffer = buffer->buffers[cpu];
2786 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2787 				err = -EBUSY;
2788 				goto out_err_unlock;
2789 			}
2790 		}
2791 
2792 		/* calculate the pages to update */
2793 		for_each_buffer_cpu(buffer, cpu) {
2794 			cpu_buffer = buffer->buffers[cpu];
2795 
2796 			cpu_buffer->nr_pages_to_update = nr_pages -
2797 							cpu_buffer->nr_pages;
2798 			/*
2799 			 * nothing more to do for removing pages or no update
2800 			 */
2801 			if (cpu_buffer->nr_pages_to_update <= 0)
2802 				continue;
2803 			/*
2804 			 * to add pages, make sure all new pages can be
2805 			 * allocated without receiving ENOMEM
2806 			 */
2807 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2808 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2809 						&cpu_buffer->new_pages)) {
2810 				/* not enough memory for new pages */
2811 				err = -ENOMEM;
2812 				goto out_err;
2813 			}
2814 
2815 			cond_resched();
2816 		}
2817 
2818 		cpus_read_lock();
2819 		/*
2820 		 * Fire off all the required work handlers
2821 		 * We can't schedule on offline CPUs, but it's not necessary
2822 		 * since we can change their buffer sizes without any race.
2823 		 */
2824 		for_each_buffer_cpu(buffer, cpu) {
2825 			cpu_buffer = buffer->buffers[cpu];
2826 			if (!cpu_buffer->nr_pages_to_update)
2827 				continue;
2828 
2829 			/* Can't run something on an offline CPU. */
2830 			if (!cpu_online(cpu)) {
2831 				rb_update_pages(cpu_buffer);
2832 				cpu_buffer->nr_pages_to_update = 0;
2833 			} else {
2834 				/* Run directly if possible. */
2835 				migrate_disable();
2836 				if (cpu != smp_processor_id()) {
2837 					migrate_enable();
2838 					schedule_work_on(cpu,
2839 							 &cpu_buffer->update_pages_work);
2840 				} else {
2841 					update_pages_handler(&cpu_buffer->update_pages_work);
2842 					migrate_enable();
2843 				}
2844 			}
2845 		}
2846 
2847 		/* wait for all the updates to complete */
2848 		for_each_buffer_cpu(buffer, cpu) {
2849 			cpu_buffer = buffer->buffers[cpu];
2850 			if (!cpu_buffer->nr_pages_to_update)
2851 				continue;
2852 
2853 			if (cpu_online(cpu))
2854 				wait_for_completion(&cpu_buffer->update_done);
2855 			cpu_buffer->nr_pages_to_update = 0;
2856 		}
2857 
2858 		cpus_read_unlock();
2859 	} else {
2860 		cpu_buffer = buffer->buffers[cpu_id];
2861 
2862 		if (nr_pages == cpu_buffer->nr_pages)
2863 			goto out;
2864 
2865 		/*
2866 		 * Don't succeed if resizing is disabled, as a reader might be
2867 		 * manipulating the ring buffer and is expecting a sane state while
2868 		 * this is true.
2869 		 */
2870 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2871 			err = -EBUSY;
2872 			goto out_err_unlock;
2873 		}
2874 
2875 		cpu_buffer->nr_pages_to_update = nr_pages -
2876 						cpu_buffer->nr_pages;
2877 
2878 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2879 		if (cpu_buffer->nr_pages_to_update > 0 &&
2880 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2881 					    &cpu_buffer->new_pages)) {
2882 			err = -ENOMEM;
2883 			goto out_err;
2884 		}
2885 
2886 		cpus_read_lock();
2887 
2888 		/* Can't run something on an offline CPU. */
2889 		if (!cpu_online(cpu_id))
2890 			rb_update_pages(cpu_buffer);
2891 		else {
2892 			/* Run directly if possible. */
2893 			migrate_disable();
2894 			if (cpu_id == smp_processor_id()) {
2895 				rb_update_pages(cpu_buffer);
2896 				migrate_enable();
2897 			} else {
2898 				migrate_enable();
2899 				schedule_work_on(cpu_id,
2900 						 &cpu_buffer->update_pages_work);
2901 				wait_for_completion(&cpu_buffer->update_done);
2902 			}
2903 		}
2904 
2905 		cpu_buffer->nr_pages_to_update = 0;
2906 		cpus_read_unlock();
2907 	}
2908 
2909  out:
2910 	/*
2911 	 * The ring buffer resize can happen with the ring buffer
2912 	 * enabled, so that the update disturbs the tracing as little
2913 	 * as possible. But if the buffer is disabled, we do not need
2914 	 * to worry about that, and we can take the time to verify
2915 	 * that the buffer is not corrupt.
2916 	 */
2917 	if (atomic_read(&buffer->record_disabled)) {
2918 		atomic_inc(&buffer->record_disabled);
2919 		/*
2920 		 * Even though the buffer was disabled, we must make sure
2921 		 * that it is truly disabled before calling rb_check_pages.
2922 		 * There could have been a race between checking
2923 		 * record_disable and incrementing it.
2924 		 */
2925 		synchronize_rcu();
2926 		for_each_buffer_cpu(buffer, cpu) {
2927 			cpu_buffer = buffer->buffers[cpu];
2928 			rb_check_pages(cpu_buffer);
2929 		}
2930 		atomic_dec(&buffer->record_disabled);
2931 	}
2932 
2933 	atomic_dec(&buffer->resizing);
2934 	mutex_unlock(&buffer->mutex);
2935 	return 0;
2936 
2937  out_err:
2938 	for_each_buffer_cpu(buffer, cpu) {
2939 		struct buffer_page *bpage, *tmp;
2940 
2941 		cpu_buffer = buffer->buffers[cpu];
2942 		cpu_buffer->nr_pages_to_update = 0;
2943 
2944 		if (list_empty(&cpu_buffer->new_pages))
2945 			continue;
2946 
2947 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2948 					list) {
2949 			list_del_init(&bpage->list);
2950 			free_buffer_page(bpage);
2951 		}
2952 	}
2953  out_err_unlock:
2954 	atomic_dec(&buffer->resizing);
2955 	mutex_unlock(&buffer->mutex);
2956 	return err;
2957 }
2958 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2959 
2960 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2961 {
2962 	mutex_lock(&buffer->mutex);
2963 	if (val)
2964 		buffer->flags |= RB_FL_OVERWRITE;
2965 	else
2966 		buffer->flags &= ~RB_FL_OVERWRITE;
2967 	mutex_unlock(&buffer->mutex);
2968 }
2969 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2970 
2971 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2972 {
2973 	return bpage->page->data + index;
2974 }
2975 
2976 static __always_inline struct ring_buffer_event *
2977 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2978 {
2979 	return __rb_page_index(cpu_buffer->reader_page,
2980 			       cpu_buffer->reader_page->read);
2981 }
2982 
2983 static struct ring_buffer_event *
2984 rb_iter_head_event(struct ring_buffer_iter *iter)
2985 {
2986 	struct ring_buffer_event *event;
2987 	struct buffer_page *iter_head_page = iter->head_page;
2988 	unsigned long commit;
2989 	unsigned length;
2990 
2991 	if (iter->head != iter->next_event)
2992 		return iter->event;
2993 
2994 	/*
2995 	 * When the writer goes across pages, it issues a cmpxchg which
2996 	 * is a mb(), which will synchronize with the rmb here.
2997 	 * (see rb_tail_page_update() and __rb_reserve_next())
2998 	 */
2999 	commit = rb_page_commit(iter_head_page);
3000 	smp_rmb();
3001 
3002 	/* An event needs to be at least 8 bytes in size */
3003 	if (iter->head > commit - 8)
3004 		goto reset;
3005 
3006 	event = __rb_page_index(iter_head_page, iter->head);
3007 	length = rb_event_length(event);
3008 
3009 	/*
3010 	 * READ_ONCE() doesn't work on functions and we don't want the
3011 	 * compiler doing any crazy optimizations with length.
3012 	 */
3013 	barrier();
3014 
3015 	if ((iter->head + length) > commit || length > iter->event_size)
3016 		/* Writer corrupted the read? */
3017 		goto reset;
3018 
3019 	memcpy(iter->event, event, length);
3020 	/*
3021 	 * If the page stamp is still the same after this rmb() then the
3022 	 * event was safely copied without the writer entering the page.
3023 	 */
3024 	smp_rmb();
3025 
3026 	/* Make sure the page didn't change since we read this */
3027 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3028 	    commit > rb_page_commit(iter_head_page))
3029 		goto reset;
3030 
3031 	iter->next_event = iter->head + length;
3032 	return iter->event;
3033  reset:
3034 	/* Reset to the beginning */
3035 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3036 	iter->head = 0;
3037 	iter->next_event = 0;
3038 	iter->missed_events = 1;
3039 	return NULL;
3040 }
3041 
3042 /* Size is determined by what has been committed */
3043 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3044 {
3045 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3046 }
3047 
3048 static __always_inline unsigned
3049 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3050 {
3051 	return rb_page_commit(cpu_buffer->commit_page);
3052 }
3053 
3054 static __always_inline unsigned
3055 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3056 {
3057 	unsigned long addr = (unsigned long)event;
3058 
3059 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3060 
3061 	return addr - BUF_PAGE_HDR_SIZE;
3062 }
3063 
3064 static void rb_inc_iter(struct ring_buffer_iter *iter)
3065 {
3066 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3067 
3068 	/*
3069 	 * The iterator could be on the reader page (it starts there).
3070 	 * But the head could have moved, since the reader was
3071 	 * found. Check for this case and assign the iterator
3072 	 * to the head page instead of next.
3073 	 */
3074 	if (iter->head_page == cpu_buffer->reader_page)
3075 		iter->head_page = rb_set_head_page(cpu_buffer);
3076 	else
3077 		rb_inc_page(&iter->head_page);
3078 
3079 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3080 	iter->head = 0;
3081 	iter->next_event = 0;
3082 }
3083 
3084 /* Return the index into the sub-buffers for a given sub-buffer */
3085 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3086 {
3087 	void *subbuf_array;
3088 
3089 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3090 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3091 	return (subbuf - subbuf_array) / meta->subbuf_size;
3092 }
3093 
3094 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3095 				struct buffer_page *next_page)
3096 {
3097 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3098 	unsigned long old_head = (unsigned long)next_page->page;
3099 	unsigned long new_head;
3100 
3101 	rb_inc_page(&next_page);
3102 	new_head = (unsigned long)next_page->page;
3103 
3104 	/*
3105 	 * Only move it forward once, if something else came in and
3106 	 * moved it forward, then we don't want to touch it.
3107 	 */
3108 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3109 }
3110 
3111 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3112 				  struct buffer_page *reader)
3113 {
3114 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3115 	void *old_reader = cpu_buffer->reader_page->page;
3116 	void *new_reader = reader->page;
3117 	int id;
3118 
3119 	id = reader->id;
3120 	cpu_buffer->reader_page->id = id;
3121 	reader->id = 0;
3122 
3123 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3124 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3125 
3126 	/* The head pointer is the one after the reader */
3127 	rb_update_meta_head(cpu_buffer, reader);
3128 }
3129 
3130 /*
3131  * rb_handle_head_page - writer hit the head page
3132  *
3133  * Returns: +1 to retry page
3134  *           0 to continue
3135  *          -1 on error
3136  */
3137 static int
3138 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3139 		    struct buffer_page *tail_page,
3140 		    struct buffer_page *next_page)
3141 {
3142 	struct buffer_page *new_head;
3143 	int entries;
3144 	int type;
3145 	int ret;
3146 
3147 	entries = rb_page_entries(next_page);
3148 
3149 	/*
3150 	 * The hard part is here. We need to move the head
3151 	 * forward, and protect against both readers on
3152 	 * other CPUs and writers coming in via interrupts.
3153 	 */
3154 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3155 				       RB_PAGE_HEAD);
3156 
3157 	/*
3158 	 * type can be one of four:
3159 	 *  NORMAL - an interrupt already moved it for us
3160 	 *  HEAD   - we are the first to get here.
3161 	 *  UPDATE - we are the interrupt interrupting
3162 	 *           a current move.
3163 	 *  MOVED  - a reader on another CPU moved the next
3164 	 *           pointer to its reader page. Give up
3165 	 *           and try again.
3166 	 */
3167 
3168 	switch (type) {
3169 	case RB_PAGE_HEAD:
3170 		/*
3171 		 * We changed the head to UPDATE, thus
3172 		 * it is our responsibility to update
3173 		 * the counters.
3174 		 */
3175 		local_add(entries, &cpu_buffer->overrun);
3176 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3177 		local_inc(&cpu_buffer->pages_lost);
3178 
3179 		if (cpu_buffer->ring_meta)
3180 			rb_update_meta_head(cpu_buffer, next_page);
3181 		/*
3182 		 * The entries will be zeroed out when we move the
3183 		 * tail page.
3184 		 */
3185 
3186 		/* still more to do */
3187 		break;
3188 
3189 	case RB_PAGE_UPDATE:
3190 		/*
3191 		 * This is an interrupt that interrupt the
3192 		 * previous update. Still more to do.
3193 		 */
3194 		break;
3195 	case RB_PAGE_NORMAL:
3196 		/*
3197 		 * An interrupt came in before the update
3198 		 * and processed this for us.
3199 		 * Nothing left to do.
3200 		 */
3201 		return 1;
3202 	case RB_PAGE_MOVED:
3203 		/*
3204 		 * The reader is on another CPU and just did
3205 		 * a swap with our next_page.
3206 		 * Try again.
3207 		 */
3208 		return 1;
3209 	default:
3210 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3211 		return -1;
3212 	}
3213 
3214 	/*
3215 	 * Now that we are here, the old head pointer is
3216 	 * set to UPDATE. This will keep the reader from
3217 	 * swapping the head page with the reader page.
3218 	 * The reader (on another CPU) will spin till
3219 	 * we are finished.
3220 	 *
3221 	 * We just need to protect against interrupts
3222 	 * doing the job. We will set the next pointer
3223 	 * to HEAD. After that, we set the old pointer
3224 	 * to NORMAL, but only if it was HEAD before.
3225 	 * otherwise we are an interrupt, and only
3226 	 * want the outer most commit to reset it.
3227 	 */
3228 	new_head = next_page;
3229 	rb_inc_page(&new_head);
3230 
3231 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3232 				    RB_PAGE_NORMAL);
3233 
3234 	/*
3235 	 * Valid returns are:
3236 	 *  HEAD   - an interrupt came in and already set it.
3237 	 *  NORMAL - One of two things:
3238 	 *            1) We really set it.
3239 	 *            2) A bunch of interrupts came in and moved
3240 	 *               the page forward again.
3241 	 */
3242 	switch (ret) {
3243 	case RB_PAGE_HEAD:
3244 	case RB_PAGE_NORMAL:
3245 		/* OK */
3246 		break;
3247 	default:
3248 		RB_WARN_ON(cpu_buffer, 1);
3249 		return -1;
3250 	}
3251 
3252 	/*
3253 	 * It is possible that an interrupt came in,
3254 	 * set the head up, then more interrupts came in
3255 	 * and moved it again. When we get back here,
3256 	 * the page would have been set to NORMAL but we
3257 	 * just set it back to HEAD.
3258 	 *
3259 	 * How do you detect this? Well, if that happened
3260 	 * the tail page would have moved.
3261 	 */
3262 	if (ret == RB_PAGE_NORMAL) {
3263 		struct buffer_page *buffer_tail_page;
3264 
3265 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3266 		/*
3267 		 * If the tail had moved passed next, then we need
3268 		 * to reset the pointer.
3269 		 */
3270 		if (buffer_tail_page != tail_page &&
3271 		    buffer_tail_page != next_page)
3272 			rb_head_page_set_normal(cpu_buffer, new_head,
3273 						next_page,
3274 						RB_PAGE_HEAD);
3275 	}
3276 
3277 	/*
3278 	 * If this was the outer most commit (the one that
3279 	 * changed the original pointer from HEAD to UPDATE),
3280 	 * then it is up to us to reset it to NORMAL.
3281 	 */
3282 	if (type == RB_PAGE_HEAD) {
3283 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3284 					      tail_page,
3285 					      RB_PAGE_UPDATE);
3286 		if (RB_WARN_ON(cpu_buffer,
3287 			       ret != RB_PAGE_UPDATE))
3288 			return -1;
3289 	}
3290 
3291 	return 0;
3292 }
3293 
3294 static inline void
3295 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3296 	      unsigned long tail, struct rb_event_info *info)
3297 {
3298 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3299 	struct buffer_page *tail_page = info->tail_page;
3300 	struct ring_buffer_event *event;
3301 	unsigned long length = info->length;
3302 
3303 	/*
3304 	 * Only the event that crossed the page boundary
3305 	 * must fill the old tail_page with padding.
3306 	 */
3307 	if (tail >= bsize) {
3308 		/*
3309 		 * If the page was filled, then we still need
3310 		 * to update the real_end. Reset it to zero
3311 		 * and the reader will ignore it.
3312 		 */
3313 		if (tail == bsize)
3314 			tail_page->real_end = 0;
3315 
3316 		local_sub(length, &tail_page->write);
3317 		return;
3318 	}
3319 
3320 	event = __rb_page_index(tail_page, tail);
3321 
3322 	/*
3323 	 * Save the original length to the meta data.
3324 	 * This will be used by the reader to add lost event
3325 	 * counter.
3326 	 */
3327 	tail_page->real_end = tail;
3328 
3329 	/*
3330 	 * If this event is bigger than the minimum size, then
3331 	 * we need to be careful that we don't subtract the
3332 	 * write counter enough to allow another writer to slip
3333 	 * in on this page.
3334 	 * We put in a discarded commit instead, to make sure
3335 	 * that this space is not used again, and this space will
3336 	 * not be accounted into 'entries_bytes'.
3337 	 *
3338 	 * If we are less than the minimum size, we don't need to
3339 	 * worry about it.
3340 	 */
3341 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3342 		/* No room for any events */
3343 
3344 		/* Mark the rest of the page with padding */
3345 		rb_event_set_padding(event);
3346 
3347 		/* Make sure the padding is visible before the write update */
3348 		smp_wmb();
3349 
3350 		/* Set the write back to the previous setting */
3351 		local_sub(length, &tail_page->write);
3352 		return;
3353 	}
3354 
3355 	/* Put in a discarded event */
3356 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3357 	event->type_len = RINGBUF_TYPE_PADDING;
3358 	/* time delta must be non zero */
3359 	event->time_delta = 1;
3360 
3361 	/* account for padding bytes */
3362 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3363 
3364 	/* Make sure the padding is visible before the tail_page->write update */
3365 	smp_wmb();
3366 
3367 	/* Set write to end of buffer */
3368 	length = (tail + length) - bsize;
3369 	local_sub(length, &tail_page->write);
3370 }
3371 
3372 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3373 
3374 /*
3375  * This is the slow path, force gcc not to inline it.
3376  */
3377 static noinline struct ring_buffer_event *
3378 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3379 	     unsigned long tail, struct rb_event_info *info)
3380 {
3381 	struct buffer_page *tail_page = info->tail_page;
3382 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3383 	struct trace_buffer *buffer = cpu_buffer->buffer;
3384 	struct buffer_page *next_page;
3385 	int ret;
3386 
3387 	next_page = tail_page;
3388 
3389 	rb_inc_page(&next_page);
3390 
3391 	/*
3392 	 * If for some reason, we had an interrupt storm that made
3393 	 * it all the way around the buffer, bail, and warn
3394 	 * about it.
3395 	 */
3396 	if (unlikely(next_page == commit_page)) {
3397 		local_inc(&cpu_buffer->commit_overrun);
3398 		goto out_reset;
3399 	}
3400 
3401 	/*
3402 	 * This is where the fun begins!
3403 	 *
3404 	 * We are fighting against races between a reader that
3405 	 * could be on another CPU trying to swap its reader
3406 	 * page with the buffer head.
3407 	 *
3408 	 * We are also fighting against interrupts coming in and
3409 	 * moving the head or tail on us as well.
3410 	 *
3411 	 * If the next page is the head page then we have filled
3412 	 * the buffer, unless the commit page is still on the
3413 	 * reader page.
3414 	 */
3415 	if (rb_is_head_page(next_page, &tail_page->list)) {
3416 
3417 		/*
3418 		 * If the commit is not on the reader page, then
3419 		 * move the header page.
3420 		 */
3421 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3422 			/*
3423 			 * If we are not in overwrite mode,
3424 			 * this is easy, just stop here.
3425 			 */
3426 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3427 				local_inc(&cpu_buffer->dropped_events);
3428 				goto out_reset;
3429 			}
3430 
3431 			ret = rb_handle_head_page(cpu_buffer,
3432 						  tail_page,
3433 						  next_page);
3434 			if (ret < 0)
3435 				goto out_reset;
3436 			if (ret)
3437 				goto out_again;
3438 		} else {
3439 			/*
3440 			 * We need to be careful here too. The
3441 			 * commit page could still be on the reader
3442 			 * page. We could have a small buffer, and
3443 			 * have filled up the buffer with events
3444 			 * from interrupts and such, and wrapped.
3445 			 *
3446 			 * Note, if the tail page is also on the
3447 			 * reader_page, we let it move out.
3448 			 */
3449 			if (unlikely((cpu_buffer->commit_page !=
3450 				      cpu_buffer->tail_page) &&
3451 				     (cpu_buffer->commit_page ==
3452 				      cpu_buffer->reader_page))) {
3453 				local_inc(&cpu_buffer->commit_overrun);
3454 				goto out_reset;
3455 			}
3456 		}
3457 	}
3458 
3459 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3460 
3461  out_again:
3462 
3463 	rb_reset_tail(cpu_buffer, tail, info);
3464 
3465 	/* Commit what we have for now. */
3466 	rb_end_commit(cpu_buffer);
3467 	/* rb_end_commit() decs committing */
3468 	local_inc(&cpu_buffer->committing);
3469 
3470 	/* fail and let the caller try again */
3471 	return ERR_PTR(-EAGAIN);
3472 
3473  out_reset:
3474 	/* reset write */
3475 	rb_reset_tail(cpu_buffer, tail, info);
3476 
3477 	return NULL;
3478 }
3479 
3480 /* Slow path */
3481 static struct ring_buffer_event *
3482 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3483 		  struct ring_buffer_event *event, u64 delta, bool abs)
3484 {
3485 	if (abs)
3486 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3487 	else
3488 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3489 
3490 	/* Not the first event on the page, or not delta? */
3491 	if (abs || rb_event_index(cpu_buffer, event)) {
3492 		event->time_delta = delta & TS_MASK;
3493 		event->array[0] = delta >> TS_SHIFT;
3494 	} else {
3495 		/* nope, just zero it */
3496 		event->time_delta = 0;
3497 		event->array[0] = 0;
3498 	}
3499 
3500 	return skip_time_extend(event);
3501 }
3502 
3503 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3504 static inline bool sched_clock_stable(void)
3505 {
3506 	return true;
3507 }
3508 #endif
3509 
3510 static void
3511 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3512 		   struct rb_event_info *info)
3513 {
3514 	u64 write_stamp;
3515 
3516 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3517 		  (unsigned long long)info->delta,
3518 		  (unsigned long long)info->ts,
3519 		  (unsigned long long)info->before,
3520 		  (unsigned long long)info->after,
3521 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3522 		  sched_clock_stable() ? "" :
3523 		  "If you just came from a suspend/resume,\n"
3524 		  "please switch to the trace global clock:\n"
3525 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3526 		  "or add trace_clock=global to the kernel command line\n");
3527 }
3528 
3529 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3530 				      struct ring_buffer_event **event,
3531 				      struct rb_event_info *info,
3532 				      u64 *delta,
3533 				      unsigned int *length)
3534 {
3535 	bool abs = info->add_timestamp &
3536 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3537 
3538 	if (unlikely(info->delta > (1ULL << 59))) {
3539 		/*
3540 		 * Some timers can use more than 59 bits, and when a timestamp
3541 		 * is added to the buffer, it will lose those bits.
3542 		 */
3543 		if (abs && (info->ts & TS_MSB)) {
3544 			info->delta &= ABS_TS_MASK;
3545 
3546 		/* did the clock go backwards */
3547 		} else if (info->before == info->after && info->before > info->ts) {
3548 			/* not interrupted */
3549 			static int once;
3550 
3551 			/*
3552 			 * This is possible with a recalibrating of the TSC.
3553 			 * Do not produce a call stack, but just report it.
3554 			 */
3555 			if (!once) {
3556 				once++;
3557 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3558 					info->before, info->ts);
3559 			}
3560 		} else
3561 			rb_check_timestamp(cpu_buffer, info);
3562 		if (!abs)
3563 			info->delta = 0;
3564 	}
3565 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3566 	*length -= RB_LEN_TIME_EXTEND;
3567 	*delta = 0;
3568 }
3569 
3570 /**
3571  * rb_update_event - update event type and data
3572  * @cpu_buffer: The per cpu buffer of the @event
3573  * @event: the event to update
3574  * @info: The info to update the @event with (contains length and delta)
3575  *
3576  * Update the type and data fields of the @event. The length
3577  * is the actual size that is written to the ring buffer,
3578  * and with this, we can determine what to place into the
3579  * data field.
3580  */
3581 static void
3582 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3583 		struct ring_buffer_event *event,
3584 		struct rb_event_info *info)
3585 {
3586 	unsigned length = info->length;
3587 	u64 delta = info->delta;
3588 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3589 
3590 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3591 		cpu_buffer->event_stamp[nest] = info->ts;
3592 
3593 	/*
3594 	 * If we need to add a timestamp, then we
3595 	 * add it to the start of the reserved space.
3596 	 */
3597 	if (unlikely(info->add_timestamp))
3598 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3599 
3600 	event->time_delta = delta;
3601 	length -= RB_EVNT_HDR_SIZE;
3602 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3603 		event->type_len = 0;
3604 		event->array[0] = length;
3605 	} else
3606 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3607 }
3608 
3609 static unsigned rb_calculate_event_length(unsigned length)
3610 {
3611 	struct ring_buffer_event event; /* Used only for sizeof array */
3612 
3613 	/* zero length can cause confusions */
3614 	if (!length)
3615 		length++;
3616 
3617 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3618 		length += sizeof(event.array[0]);
3619 
3620 	length += RB_EVNT_HDR_SIZE;
3621 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3622 
3623 	/*
3624 	 * In case the time delta is larger than the 27 bits for it
3625 	 * in the header, we need to add a timestamp. If another
3626 	 * event comes in when trying to discard this one to increase
3627 	 * the length, then the timestamp will be added in the allocated
3628 	 * space of this event. If length is bigger than the size needed
3629 	 * for the TIME_EXTEND, then padding has to be used. The events
3630 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3631 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3632 	 * As length is a multiple of 4, we only need to worry if it
3633 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3634 	 */
3635 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3636 		length += RB_ALIGNMENT;
3637 
3638 	return length;
3639 }
3640 
3641 static inline bool
3642 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3643 		  struct ring_buffer_event *event)
3644 {
3645 	unsigned long new_index, old_index;
3646 	struct buffer_page *bpage;
3647 	unsigned long addr;
3648 
3649 	new_index = rb_event_index(cpu_buffer, event);
3650 	old_index = new_index + rb_event_ts_length(event);
3651 	addr = (unsigned long)event;
3652 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3653 
3654 	bpage = READ_ONCE(cpu_buffer->tail_page);
3655 
3656 	/*
3657 	 * Make sure the tail_page is still the same and
3658 	 * the next write location is the end of this event
3659 	 */
3660 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3661 		unsigned long write_mask =
3662 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3663 		unsigned long event_length = rb_event_length(event);
3664 
3665 		/*
3666 		 * For the before_stamp to be different than the write_stamp
3667 		 * to make sure that the next event adds an absolute
3668 		 * value and does not rely on the saved write stamp, which
3669 		 * is now going to be bogus.
3670 		 *
3671 		 * By setting the before_stamp to zero, the next event
3672 		 * is not going to use the write_stamp and will instead
3673 		 * create an absolute timestamp. This means there's no
3674 		 * reason to update the wirte_stamp!
3675 		 */
3676 		rb_time_set(&cpu_buffer->before_stamp, 0);
3677 
3678 		/*
3679 		 * If an event were to come in now, it would see that the
3680 		 * write_stamp and the before_stamp are different, and assume
3681 		 * that this event just added itself before updating
3682 		 * the write stamp. The interrupting event will fix the
3683 		 * write stamp for us, and use an absolute timestamp.
3684 		 */
3685 
3686 		/*
3687 		 * This is on the tail page. It is possible that
3688 		 * a write could come in and move the tail page
3689 		 * and write to the next page. That is fine
3690 		 * because we just shorten what is on this page.
3691 		 */
3692 		old_index += write_mask;
3693 		new_index += write_mask;
3694 
3695 		/* caution: old_index gets updated on cmpxchg failure */
3696 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3697 			/* update counters */
3698 			local_sub(event_length, &cpu_buffer->entries_bytes);
3699 			return true;
3700 		}
3701 	}
3702 
3703 	/* could not discard */
3704 	return false;
3705 }
3706 
3707 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3708 {
3709 	local_inc(&cpu_buffer->committing);
3710 	local_inc(&cpu_buffer->commits);
3711 }
3712 
3713 static __always_inline void
3714 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3715 {
3716 	unsigned long max_count;
3717 
3718 	/*
3719 	 * We only race with interrupts and NMIs on this CPU.
3720 	 * If we own the commit event, then we can commit
3721 	 * all others that interrupted us, since the interruptions
3722 	 * are in stack format (they finish before they come
3723 	 * back to us). This allows us to do a simple loop to
3724 	 * assign the commit to the tail.
3725 	 */
3726  again:
3727 	max_count = cpu_buffer->nr_pages * 100;
3728 
3729 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3730 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3731 			return;
3732 		if (RB_WARN_ON(cpu_buffer,
3733 			       rb_is_reader_page(cpu_buffer->tail_page)))
3734 			return;
3735 		/*
3736 		 * No need for a memory barrier here, as the update
3737 		 * of the tail_page did it for this page.
3738 		 */
3739 		local_set(&cpu_buffer->commit_page->page->commit,
3740 			  rb_page_write(cpu_buffer->commit_page));
3741 		rb_inc_page(&cpu_buffer->commit_page);
3742 		if (cpu_buffer->ring_meta) {
3743 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3744 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3745 		}
3746 		/* add barrier to keep gcc from optimizing too much */
3747 		barrier();
3748 	}
3749 	while (rb_commit_index(cpu_buffer) !=
3750 	       rb_page_write(cpu_buffer->commit_page)) {
3751 
3752 		/* Make sure the readers see the content of what is committed. */
3753 		smp_wmb();
3754 		local_set(&cpu_buffer->commit_page->page->commit,
3755 			  rb_page_write(cpu_buffer->commit_page));
3756 		RB_WARN_ON(cpu_buffer,
3757 			   local_read(&cpu_buffer->commit_page->page->commit) &
3758 			   ~RB_WRITE_MASK);
3759 		barrier();
3760 	}
3761 
3762 	/* again, keep gcc from optimizing */
3763 	barrier();
3764 
3765 	/*
3766 	 * If an interrupt came in just after the first while loop
3767 	 * and pushed the tail page forward, we will be left with
3768 	 * a dangling commit that will never go forward.
3769 	 */
3770 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3771 		goto again;
3772 }
3773 
3774 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3775 {
3776 	unsigned long commits;
3777 
3778 	if (RB_WARN_ON(cpu_buffer,
3779 		       !local_read(&cpu_buffer->committing)))
3780 		return;
3781 
3782  again:
3783 	commits = local_read(&cpu_buffer->commits);
3784 	/* synchronize with interrupts */
3785 	barrier();
3786 	if (local_read(&cpu_buffer->committing) == 1)
3787 		rb_set_commit_to_write(cpu_buffer);
3788 
3789 	local_dec(&cpu_buffer->committing);
3790 
3791 	/* synchronize with interrupts */
3792 	barrier();
3793 
3794 	/*
3795 	 * Need to account for interrupts coming in between the
3796 	 * updating of the commit page and the clearing of the
3797 	 * committing counter.
3798 	 */
3799 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3800 	    !local_read(&cpu_buffer->committing)) {
3801 		local_inc(&cpu_buffer->committing);
3802 		goto again;
3803 	}
3804 }
3805 
3806 static inline void rb_event_discard(struct ring_buffer_event *event)
3807 {
3808 	if (extended_time(event))
3809 		event = skip_time_extend(event);
3810 
3811 	/* array[0] holds the actual length for the discarded event */
3812 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3813 	event->type_len = RINGBUF_TYPE_PADDING;
3814 	/* time delta must be non zero */
3815 	if (!event->time_delta)
3816 		event->time_delta = 1;
3817 }
3818 
3819 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3820 {
3821 	local_inc(&cpu_buffer->entries);
3822 	rb_end_commit(cpu_buffer);
3823 }
3824 
3825 static __always_inline void
3826 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3827 {
3828 	if (buffer->irq_work.waiters_pending) {
3829 		buffer->irq_work.waiters_pending = false;
3830 		/* irq_work_queue() supplies it's own memory barriers */
3831 		irq_work_queue(&buffer->irq_work.work);
3832 	}
3833 
3834 	if (cpu_buffer->irq_work.waiters_pending) {
3835 		cpu_buffer->irq_work.waiters_pending = false;
3836 		/* irq_work_queue() supplies it's own memory barriers */
3837 		irq_work_queue(&cpu_buffer->irq_work.work);
3838 	}
3839 
3840 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3841 		return;
3842 
3843 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3844 		return;
3845 
3846 	if (!cpu_buffer->irq_work.full_waiters_pending)
3847 		return;
3848 
3849 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3850 
3851 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3852 		return;
3853 
3854 	cpu_buffer->irq_work.wakeup_full = true;
3855 	cpu_buffer->irq_work.full_waiters_pending = false;
3856 	/* irq_work_queue() supplies it's own memory barriers */
3857 	irq_work_queue(&cpu_buffer->irq_work.work);
3858 }
3859 
3860 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3861 # define do_ring_buffer_record_recursion()	\
3862 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3863 #else
3864 # define do_ring_buffer_record_recursion() do { } while (0)
3865 #endif
3866 
3867 /*
3868  * The lock and unlock are done within a preempt disable section.
3869  * The current_context per_cpu variable can only be modified
3870  * by the current task between lock and unlock. But it can
3871  * be modified more than once via an interrupt. To pass this
3872  * information from the lock to the unlock without having to
3873  * access the 'in_interrupt()' functions again (which do show
3874  * a bit of overhead in something as critical as function tracing,
3875  * we use a bitmask trick.
3876  *
3877  *  bit 1 =  NMI context
3878  *  bit 2 =  IRQ context
3879  *  bit 3 =  SoftIRQ context
3880  *  bit 4 =  normal context.
3881  *
3882  * This works because this is the order of contexts that can
3883  * preempt other contexts. A SoftIRQ never preempts an IRQ
3884  * context.
3885  *
3886  * When the context is determined, the corresponding bit is
3887  * checked and set (if it was set, then a recursion of that context
3888  * happened).
3889  *
3890  * On unlock, we need to clear this bit. To do so, just subtract
3891  * 1 from the current_context and AND it to itself.
3892  *
3893  * (binary)
3894  *  101 - 1 = 100
3895  *  101 & 100 = 100 (clearing bit zero)
3896  *
3897  *  1010 - 1 = 1001
3898  *  1010 & 1001 = 1000 (clearing bit 1)
3899  *
3900  * The least significant bit can be cleared this way, and it
3901  * just so happens that it is the same bit corresponding to
3902  * the current context.
3903  *
3904  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3905  * is set when a recursion is detected at the current context, and if
3906  * the TRANSITION bit is already set, it will fail the recursion.
3907  * This is needed because there's a lag between the changing of
3908  * interrupt context and updating the preempt count. In this case,
3909  * a false positive will be found. To handle this, one extra recursion
3910  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3911  * bit is already set, then it is considered a recursion and the function
3912  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3913  *
3914  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3915  * to be cleared. Even if it wasn't the context that set it. That is,
3916  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3917  * is called before preempt_count() is updated, since the check will
3918  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3919  * NMI then comes in, it will set the NMI bit, but when the NMI code
3920  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3921  * and leave the NMI bit set. But this is fine, because the interrupt
3922  * code that set the TRANSITION bit will then clear the NMI bit when it
3923  * calls trace_recursive_unlock(). If another NMI comes in, it will
3924  * set the TRANSITION bit and continue.
3925  *
3926  * Note: The TRANSITION bit only handles a single transition between context.
3927  */
3928 
3929 static __always_inline bool
3930 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3931 {
3932 	unsigned int val = cpu_buffer->current_context;
3933 	int bit = interrupt_context_level();
3934 
3935 	bit = RB_CTX_NORMAL - bit;
3936 
3937 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3938 		/*
3939 		 * It is possible that this was called by transitioning
3940 		 * between interrupt context, and preempt_count() has not
3941 		 * been updated yet. In this case, use the TRANSITION bit.
3942 		 */
3943 		bit = RB_CTX_TRANSITION;
3944 		if (val & (1 << (bit + cpu_buffer->nest))) {
3945 			do_ring_buffer_record_recursion();
3946 			return true;
3947 		}
3948 	}
3949 
3950 	val |= (1 << (bit + cpu_buffer->nest));
3951 	cpu_buffer->current_context = val;
3952 
3953 	return false;
3954 }
3955 
3956 static __always_inline void
3957 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3958 {
3959 	cpu_buffer->current_context &=
3960 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3961 }
3962 
3963 /* The recursive locking above uses 5 bits */
3964 #define NESTED_BITS 5
3965 
3966 /**
3967  * ring_buffer_nest_start - Allow to trace while nested
3968  * @buffer: The ring buffer to modify
3969  *
3970  * The ring buffer has a safety mechanism to prevent recursion.
3971  * But there may be a case where a trace needs to be done while
3972  * tracing something else. In this case, calling this function
3973  * will allow this function to nest within a currently active
3974  * ring_buffer_lock_reserve().
3975  *
3976  * Call this function before calling another ring_buffer_lock_reserve() and
3977  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3978  */
3979 void ring_buffer_nest_start(struct trace_buffer *buffer)
3980 {
3981 	struct ring_buffer_per_cpu *cpu_buffer;
3982 	int cpu;
3983 
3984 	/* Enabled by ring_buffer_nest_end() */
3985 	preempt_disable_notrace();
3986 	cpu = raw_smp_processor_id();
3987 	cpu_buffer = buffer->buffers[cpu];
3988 	/* This is the shift value for the above recursive locking */
3989 	cpu_buffer->nest += NESTED_BITS;
3990 }
3991 
3992 /**
3993  * ring_buffer_nest_end - Allow to trace while nested
3994  * @buffer: The ring buffer to modify
3995  *
3996  * Must be called after ring_buffer_nest_start() and after the
3997  * ring_buffer_unlock_commit().
3998  */
3999 void ring_buffer_nest_end(struct trace_buffer *buffer)
4000 {
4001 	struct ring_buffer_per_cpu *cpu_buffer;
4002 	int cpu;
4003 
4004 	/* disabled by ring_buffer_nest_start() */
4005 	cpu = raw_smp_processor_id();
4006 	cpu_buffer = buffer->buffers[cpu];
4007 	/* This is the shift value for the above recursive locking */
4008 	cpu_buffer->nest -= NESTED_BITS;
4009 	preempt_enable_notrace();
4010 }
4011 
4012 /**
4013  * ring_buffer_unlock_commit - commit a reserved
4014  * @buffer: The buffer to commit to
4015  *
4016  * This commits the data to the ring buffer, and releases any locks held.
4017  *
4018  * Must be paired with ring_buffer_lock_reserve.
4019  */
4020 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4021 {
4022 	struct ring_buffer_per_cpu *cpu_buffer;
4023 	int cpu = raw_smp_processor_id();
4024 
4025 	cpu_buffer = buffer->buffers[cpu];
4026 
4027 	rb_commit(cpu_buffer);
4028 
4029 	rb_wakeups(buffer, cpu_buffer);
4030 
4031 	trace_recursive_unlock(cpu_buffer);
4032 
4033 	preempt_enable_notrace();
4034 
4035 	return 0;
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4038 
4039 /* Special value to validate all deltas on a page. */
4040 #define CHECK_FULL_PAGE		1L
4041 
4042 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4043 
4044 static const char *show_irq_str(int bits)
4045 {
4046 	const char *type[] = {
4047 		".",	// 0
4048 		"s",	// 1
4049 		"h",	// 2
4050 		"Hs",	// 3
4051 		"n",	// 4
4052 		"Ns",	// 5
4053 		"Nh",	// 6
4054 		"NHs",	// 7
4055 	};
4056 
4057 	return type[bits];
4058 }
4059 
4060 /* Assume this is a trace event */
4061 static const char *show_flags(struct ring_buffer_event *event)
4062 {
4063 	struct trace_entry *entry;
4064 	int bits = 0;
4065 
4066 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4067 		return "X";
4068 
4069 	entry = ring_buffer_event_data(event);
4070 
4071 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4072 		bits |= 1;
4073 
4074 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4075 		bits |= 2;
4076 
4077 	if (entry->flags & TRACE_FLAG_NMI)
4078 		bits |= 4;
4079 
4080 	return show_irq_str(bits);
4081 }
4082 
4083 static const char *show_irq(struct ring_buffer_event *event)
4084 {
4085 	struct trace_entry *entry;
4086 
4087 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4088 		return "";
4089 
4090 	entry = ring_buffer_event_data(event);
4091 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4092 		return "d";
4093 	return "";
4094 }
4095 
4096 static const char *show_interrupt_level(void)
4097 {
4098 	unsigned long pc = preempt_count();
4099 	unsigned char level = 0;
4100 
4101 	if (pc & SOFTIRQ_OFFSET)
4102 		level |= 1;
4103 
4104 	if (pc & HARDIRQ_MASK)
4105 		level |= 2;
4106 
4107 	if (pc & NMI_MASK)
4108 		level |= 4;
4109 
4110 	return show_irq_str(level);
4111 }
4112 
4113 static void dump_buffer_page(struct buffer_data_page *bpage,
4114 			     struct rb_event_info *info,
4115 			     unsigned long tail)
4116 {
4117 	struct ring_buffer_event *event;
4118 	u64 ts, delta;
4119 	int e;
4120 
4121 	ts = bpage->time_stamp;
4122 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4123 
4124 	for (e = 0; e < tail; e += rb_event_length(event)) {
4125 
4126 		event = (struct ring_buffer_event *)(bpage->data + e);
4127 
4128 		switch (event->type_len) {
4129 
4130 		case RINGBUF_TYPE_TIME_EXTEND:
4131 			delta = rb_event_time_stamp(event);
4132 			ts += delta;
4133 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4134 				e, ts, delta);
4135 			break;
4136 
4137 		case RINGBUF_TYPE_TIME_STAMP:
4138 			delta = rb_event_time_stamp(event);
4139 			ts = rb_fix_abs_ts(delta, ts);
4140 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4141 				e, ts, delta);
4142 			break;
4143 
4144 		case RINGBUF_TYPE_PADDING:
4145 			ts += event->time_delta;
4146 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4147 				e, ts, event->time_delta);
4148 			break;
4149 
4150 		case RINGBUF_TYPE_DATA:
4151 			ts += event->time_delta;
4152 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4153 				e, ts, event->time_delta,
4154 				show_flags(event), show_irq(event));
4155 			break;
4156 
4157 		default:
4158 			break;
4159 		}
4160 	}
4161 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4162 }
4163 
4164 static DEFINE_PER_CPU(atomic_t, checking);
4165 static atomic_t ts_dump;
4166 
4167 #define buffer_warn_return(fmt, ...)					\
4168 	do {								\
4169 		/* If another report is happening, ignore this one */	\
4170 		if (atomic_inc_return(&ts_dump) != 1) {			\
4171 			atomic_dec(&ts_dump);				\
4172 			goto out;					\
4173 		}							\
4174 		atomic_inc(&cpu_buffer->record_disabled);		\
4175 		pr_warn(fmt, ##__VA_ARGS__);				\
4176 		dump_buffer_page(bpage, info, tail);			\
4177 		atomic_dec(&ts_dump);					\
4178 		/* There's some cases in boot up that this can happen */ \
4179 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4180 			/* Do not re-enable checking */			\
4181 			return;						\
4182 	} while (0)
4183 
4184 /*
4185  * Check if the current event time stamp matches the deltas on
4186  * the buffer page.
4187  */
4188 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4189 			 struct rb_event_info *info,
4190 			 unsigned long tail)
4191 {
4192 	struct buffer_data_page *bpage;
4193 	u64 ts, delta;
4194 	bool full = false;
4195 	int ret;
4196 
4197 	bpage = info->tail_page->page;
4198 
4199 	if (tail == CHECK_FULL_PAGE) {
4200 		full = true;
4201 		tail = local_read(&bpage->commit);
4202 	} else if (info->add_timestamp &
4203 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4204 		/* Ignore events with absolute time stamps */
4205 		return;
4206 	}
4207 
4208 	/*
4209 	 * Do not check the first event (skip possible extends too).
4210 	 * Also do not check if previous events have not been committed.
4211 	 */
4212 	if (tail <= 8 || tail > local_read(&bpage->commit))
4213 		return;
4214 
4215 	/*
4216 	 * If this interrupted another event,
4217 	 */
4218 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4219 		goto out;
4220 
4221 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4222 	if (ret < 0) {
4223 		if (delta < ts) {
4224 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4225 					   cpu_buffer->cpu, ts, delta);
4226 			goto out;
4227 		}
4228 	}
4229 	if ((full && ts > info->ts) ||
4230 	    (!full && ts + info->delta != info->ts)) {
4231 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4232 				   cpu_buffer->cpu,
4233 				   ts + info->delta, info->ts, info->delta,
4234 				   info->before, info->after,
4235 				   full ? " (full)" : "", show_interrupt_level());
4236 	}
4237 out:
4238 	atomic_dec(this_cpu_ptr(&checking));
4239 }
4240 #else
4241 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4242 			 struct rb_event_info *info,
4243 			 unsigned long tail)
4244 {
4245 }
4246 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4247 
4248 static struct ring_buffer_event *
4249 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4250 		  struct rb_event_info *info)
4251 {
4252 	struct ring_buffer_event *event;
4253 	struct buffer_page *tail_page;
4254 	unsigned long tail, write, w;
4255 
4256 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4257 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4258 
4259  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4260 	barrier();
4261 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4262 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4263 	barrier();
4264 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4265 
4266 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4267 		info->delta = info->ts;
4268 	} else {
4269 		/*
4270 		 * If interrupting an event time update, we may need an
4271 		 * absolute timestamp.
4272 		 * Don't bother if this is the start of a new page (w == 0).
4273 		 */
4274 		if (!w) {
4275 			/* Use the sub-buffer timestamp */
4276 			info->delta = 0;
4277 		} else if (unlikely(info->before != info->after)) {
4278 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4279 			info->length += RB_LEN_TIME_EXTEND;
4280 		} else {
4281 			info->delta = info->ts - info->after;
4282 			if (unlikely(test_time_stamp(info->delta))) {
4283 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4284 				info->length += RB_LEN_TIME_EXTEND;
4285 			}
4286 		}
4287 	}
4288 
4289  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4290 
4291  /*C*/	write = local_add_return(info->length, &tail_page->write);
4292 
4293 	/* set write to only the index of the write */
4294 	write &= RB_WRITE_MASK;
4295 
4296 	tail = write - info->length;
4297 
4298 	/* See if we shot pass the end of this buffer page */
4299 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4300 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4301 		return rb_move_tail(cpu_buffer, tail, info);
4302 	}
4303 
4304 	if (likely(tail == w)) {
4305 		/* Nothing interrupted us between A and C */
4306  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4307 		/*
4308 		 * If something came in between C and D, the write stamp
4309 		 * may now not be in sync. But that's fine as the before_stamp
4310 		 * will be different and then next event will just be forced
4311 		 * to use an absolute timestamp.
4312 		 */
4313 		if (likely(!(info->add_timestamp &
4314 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4315 			/* This did not interrupt any time update */
4316 			info->delta = info->ts - info->after;
4317 		else
4318 			/* Just use full timestamp for interrupting event */
4319 			info->delta = info->ts;
4320 		check_buffer(cpu_buffer, info, tail);
4321 	} else {
4322 		u64 ts;
4323 		/* SLOW PATH - Interrupted between A and C */
4324 
4325 		/* Save the old before_stamp */
4326 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4327 
4328 		/*
4329 		 * Read a new timestamp and update the before_stamp to make
4330 		 * the next event after this one force using an absolute
4331 		 * timestamp. This is in case an interrupt were to come in
4332 		 * between E and F.
4333 		 */
4334 		ts = rb_time_stamp(cpu_buffer->buffer);
4335 		rb_time_set(&cpu_buffer->before_stamp, ts);
4336 
4337 		barrier();
4338  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4339 		barrier();
4340  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4341 		    info->after == info->before && info->after < ts) {
4342 			/*
4343 			 * Nothing came after this event between C and F, it is
4344 			 * safe to use info->after for the delta as it
4345 			 * matched info->before and is still valid.
4346 			 */
4347 			info->delta = ts - info->after;
4348 		} else {
4349 			/*
4350 			 * Interrupted between C and F:
4351 			 * Lost the previous events time stamp. Just set the
4352 			 * delta to zero, and this will be the same time as
4353 			 * the event this event interrupted. And the events that
4354 			 * came after this will still be correct (as they would
4355 			 * have built their delta on the previous event.
4356 			 */
4357 			info->delta = 0;
4358 		}
4359 		info->ts = ts;
4360 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4361 	}
4362 
4363 	/*
4364 	 * If this is the first commit on the page, then it has the same
4365 	 * timestamp as the page itself.
4366 	 */
4367 	if (unlikely(!tail && !(info->add_timestamp &
4368 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4369 		info->delta = 0;
4370 
4371 	/* We reserved something on the buffer */
4372 
4373 	event = __rb_page_index(tail_page, tail);
4374 	rb_update_event(cpu_buffer, event, info);
4375 
4376 	local_inc(&tail_page->entries);
4377 
4378 	/*
4379 	 * If this is the first commit on the page, then update
4380 	 * its timestamp.
4381 	 */
4382 	if (unlikely(!tail))
4383 		tail_page->page->time_stamp = info->ts;
4384 
4385 	/* account for these added bytes */
4386 	local_add(info->length, &cpu_buffer->entries_bytes);
4387 
4388 	return event;
4389 }
4390 
4391 static __always_inline struct ring_buffer_event *
4392 rb_reserve_next_event(struct trace_buffer *buffer,
4393 		      struct ring_buffer_per_cpu *cpu_buffer,
4394 		      unsigned long length)
4395 {
4396 	struct ring_buffer_event *event;
4397 	struct rb_event_info info;
4398 	int nr_loops = 0;
4399 	int add_ts_default;
4400 
4401 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
4402 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
4403 	    (unlikely(in_nmi()))) {
4404 		return NULL;
4405 	}
4406 
4407 	rb_start_commit(cpu_buffer);
4408 	/* The commit page can not change after this */
4409 
4410 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4411 	/*
4412 	 * Due to the ability to swap a cpu buffer from a buffer
4413 	 * it is possible it was swapped before we committed.
4414 	 * (committing stops a swap). We check for it here and
4415 	 * if it happened, we have to fail the write.
4416 	 */
4417 	barrier();
4418 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4419 		local_dec(&cpu_buffer->committing);
4420 		local_dec(&cpu_buffer->commits);
4421 		return NULL;
4422 	}
4423 #endif
4424 
4425 	info.length = rb_calculate_event_length(length);
4426 
4427 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4428 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4429 		info.length += RB_LEN_TIME_EXTEND;
4430 		if (info.length > cpu_buffer->buffer->max_data_size)
4431 			goto out_fail;
4432 	} else {
4433 		add_ts_default = RB_ADD_STAMP_NONE;
4434 	}
4435 
4436  again:
4437 	info.add_timestamp = add_ts_default;
4438 	info.delta = 0;
4439 
4440 	/*
4441 	 * We allow for interrupts to reenter here and do a trace.
4442 	 * If one does, it will cause this original code to loop
4443 	 * back here. Even with heavy interrupts happening, this
4444 	 * should only happen a few times in a row. If this happens
4445 	 * 1000 times in a row, there must be either an interrupt
4446 	 * storm or we have something buggy.
4447 	 * Bail!
4448 	 */
4449 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4450 		goto out_fail;
4451 
4452 	event = __rb_reserve_next(cpu_buffer, &info);
4453 
4454 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4455 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4456 			info.length -= RB_LEN_TIME_EXTEND;
4457 		goto again;
4458 	}
4459 
4460 	if (likely(event))
4461 		return event;
4462  out_fail:
4463 	rb_end_commit(cpu_buffer);
4464 	return NULL;
4465 }
4466 
4467 /**
4468  * ring_buffer_lock_reserve - reserve a part of the buffer
4469  * @buffer: the ring buffer to reserve from
4470  * @length: the length of the data to reserve (excluding event header)
4471  *
4472  * Returns a reserved event on the ring buffer to copy directly to.
4473  * The user of this interface will need to get the body to write into
4474  * and can use the ring_buffer_event_data() interface.
4475  *
4476  * The length is the length of the data needed, not the event length
4477  * which also includes the event header.
4478  *
4479  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4480  * If NULL is returned, then nothing has been allocated or locked.
4481  */
4482 struct ring_buffer_event *
4483 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4484 {
4485 	struct ring_buffer_per_cpu *cpu_buffer;
4486 	struct ring_buffer_event *event;
4487 	int cpu;
4488 
4489 	/* If we are tracing schedule, we don't want to recurse */
4490 	preempt_disable_notrace();
4491 
4492 	if (unlikely(atomic_read(&buffer->record_disabled)))
4493 		goto out;
4494 
4495 	cpu = raw_smp_processor_id();
4496 
4497 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4498 		goto out;
4499 
4500 	cpu_buffer = buffer->buffers[cpu];
4501 
4502 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4503 		goto out;
4504 
4505 	if (unlikely(length > buffer->max_data_size))
4506 		goto out;
4507 
4508 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4509 		goto out;
4510 
4511 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4512 	if (!event)
4513 		goto out_unlock;
4514 
4515 	return event;
4516 
4517  out_unlock:
4518 	trace_recursive_unlock(cpu_buffer);
4519  out:
4520 	preempt_enable_notrace();
4521 	return NULL;
4522 }
4523 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4524 
4525 /*
4526  * Decrement the entries to the page that an event is on.
4527  * The event does not even need to exist, only the pointer
4528  * to the page it is on. This may only be called before the commit
4529  * takes place.
4530  */
4531 static inline void
4532 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4533 		   struct ring_buffer_event *event)
4534 {
4535 	unsigned long addr = (unsigned long)event;
4536 	struct buffer_page *bpage = cpu_buffer->commit_page;
4537 	struct buffer_page *start;
4538 
4539 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4540 
4541 	/* Do the likely case first */
4542 	if (likely(bpage->page == (void *)addr)) {
4543 		local_dec(&bpage->entries);
4544 		return;
4545 	}
4546 
4547 	/*
4548 	 * Because the commit page may be on the reader page we
4549 	 * start with the next page and check the end loop there.
4550 	 */
4551 	rb_inc_page(&bpage);
4552 	start = bpage;
4553 	do {
4554 		if (bpage->page == (void *)addr) {
4555 			local_dec(&bpage->entries);
4556 			return;
4557 		}
4558 		rb_inc_page(&bpage);
4559 	} while (bpage != start);
4560 
4561 	/* commit not part of this buffer?? */
4562 	RB_WARN_ON(cpu_buffer, 1);
4563 }
4564 
4565 /**
4566  * ring_buffer_discard_commit - discard an event that has not been committed
4567  * @buffer: the ring buffer
4568  * @event: non committed event to discard
4569  *
4570  * Sometimes an event that is in the ring buffer needs to be ignored.
4571  * This function lets the user discard an event in the ring buffer
4572  * and then that event will not be read later.
4573  *
4574  * This function only works if it is called before the item has been
4575  * committed. It will try to free the event from the ring buffer
4576  * if another event has not been added behind it.
4577  *
4578  * If another event has been added behind it, it will set the event
4579  * up as discarded, and perform the commit.
4580  *
4581  * If this function is called, do not call ring_buffer_unlock_commit on
4582  * the event.
4583  */
4584 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4585 				struct ring_buffer_event *event)
4586 {
4587 	struct ring_buffer_per_cpu *cpu_buffer;
4588 	int cpu;
4589 
4590 	/* The event is discarded regardless */
4591 	rb_event_discard(event);
4592 
4593 	cpu = smp_processor_id();
4594 	cpu_buffer = buffer->buffers[cpu];
4595 
4596 	/*
4597 	 * This must only be called if the event has not been
4598 	 * committed yet. Thus we can assume that preemption
4599 	 * is still disabled.
4600 	 */
4601 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4602 
4603 	rb_decrement_entry(cpu_buffer, event);
4604 	if (rb_try_to_discard(cpu_buffer, event))
4605 		goto out;
4606 
4607  out:
4608 	rb_end_commit(cpu_buffer);
4609 
4610 	trace_recursive_unlock(cpu_buffer);
4611 
4612 	preempt_enable_notrace();
4613 
4614 }
4615 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4616 
4617 /**
4618  * ring_buffer_write - write data to the buffer without reserving
4619  * @buffer: The ring buffer to write to.
4620  * @length: The length of the data being written (excluding the event header)
4621  * @data: The data to write to the buffer.
4622  *
4623  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4624  * one function. If you already have the data to write to the buffer, it
4625  * may be easier to simply call this function.
4626  *
4627  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4628  * and not the length of the event which would hold the header.
4629  */
4630 int ring_buffer_write(struct trace_buffer *buffer,
4631 		      unsigned long length,
4632 		      void *data)
4633 {
4634 	struct ring_buffer_per_cpu *cpu_buffer;
4635 	struct ring_buffer_event *event;
4636 	void *body;
4637 	int ret = -EBUSY;
4638 	int cpu;
4639 
4640 	preempt_disable_notrace();
4641 
4642 	if (atomic_read(&buffer->record_disabled))
4643 		goto out;
4644 
4645 	cpu = raw_smp_processor_id();
4646 
4647 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4648 		goto out;
4649 
4650 	cpu_buffer = buffer->buffers[cpu];
4651 
4652 	if (atomic_read(&cpu_buffer->record_disabled))
4653 		goto out;
4654 
4655 	if (length > buffer->max_data_size)
4656 		goto out;
4657 
4658 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4659 		goto out;
4660 
4661 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4662 	if (!event)
4663 		goto out_unlock;
4664 
4665 	body = rb_event_data(event);
4666 
4667 	memcpy(body, data, length);
4668 
4669 	rb_commit(cpu_buffer);
4670 
4671 	rb_wakeups(buffer, cpu_buffer);
4672 
4673 	ret = 0;
4674 
4675  out_unlock:
4676 	trace_recursive_unlock(cpu_buffer);
4677 
4678  out:
4679 	preempt_enable_notrace();
4680 
4681 	return ret;
4682 }
4683 EXPORT_SYMBOL_GPL(ring_buffer_write);
4684 
4685 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4686 {
4687 	struct buffer_page *reader = cpu_buffer->reader_page;
4688 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4689 	struct buffer_page *commit = cpu_buffer->commit_page;
4690 
4691 	/* In case of error, head will be NULL */
4692 	if (unlikely(!head))
4693 		return true;
4694 
4695 	/* Reader should exhaust content in reader page */
4696 	if (reader->read != rb_page_size(reader))
4697 		return false;
4698 
4699 	/*
4700 	 * If writers are committing on the reader page, knowing all
4701 	 * committed content has been read, the ring buffer is empty.
4702 	 */
4703 	if (commit == reader)
4704 		return true;
4705 
4706 	/*
4707 	 * If writers are committing on a page other than reader page
4708 	 * and head page, there should always be content to read.
4709 	 */
4710 	if (commit != head)
4711 		return false;
4712 
4713 	/*
4714 	 * Writers are committing on the head page, we just need
4715 	 * to care about there're committed data, and the reader will
4716 	 * swap reader page with head page when it is to read data.
4717 	 */
4718 	return rb_page_commit(commit) == 0;
4719 }
4720 
4721 /**
4722  * ring_buffer_record_disable - stop all writes into the buffer
4723  * @buffer: The ring buffer to stop writes to.
4724  *
4725  * This prevents all writes to the buffer. Any attempt to write
4726  * to the buffer after this will fail and return NULL.
4727  *
4728  * The caller should call synchronize_rcu() after this.
4729  */
4730 void ring_buffer_record_disable(struct trace_buffer *buffer)
4731 {
4732 	atomic_inc(&buffer->record_disabled);
4733 }
4734 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4735 
4736 /**
4737  * ring_buffer_record_enable - enable writes to the buffer
4738  * @buffer: The ring buffer to enable writes
4739  *
4740  * Note, multiple disables will need the same number of enables
4741  * to truly enable the writing (much like preempt_disable).
4742  */
4743 void ring_buffer_record_enable(struct trace_buffer *buffer)
4744 {
4745 	atomic_dec(&buffer->record_disabled);
4746 }
4747 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4748 
4749 /**
4750  * ring_buffer_record_off - stop all writes into the buffer
4751  * @buffer: The ring buffer to stop writes to.
4752  *
4753  * This prevents all writes to the buffer. Any attempt to write
4754  * to the buffer after this will fail and return NULL.
4755  *
4756  * This is different than ring_buffer_record_disable() as
4757  * it works like an on/off switch, where as the disable() version
4758  * must be paired with a enable().
4759  */
4760 void ring_buffer_record_off(struct trace_buffer *buffer)
4761 {
4762 	unsigned int rd;
4763 	unsigned int new_rd;
4764 
4765 	rd = atomic_read(&buffer->record_disabled);
4766 	do {
4767 		new_rd = rd | RB_BUFFER_OFF;
4768 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4769 }
4770 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4771 
4772 /**
4773  * ring_buffer_record_on - restart writes into the buffer
4774  * @buffer: The ring buffer to start writes to.
4775  *
4776  * This enables all writes to the buffer that was disabled by
4777  * ring_buffer_record_off().
4778  *
4779  * This is different than ring_buffer_record_enable() as
4780  * it works like an on/off switch, where as the enable() version
4781  * must be paired with a disable().
4782  */
4783 void ring_buffer_record_on(struct trace_buffer *buffer)
4784 {
4785 	unsigned int rd;
4786 	unsigned int new_rd;
4787 
4788 	rd = atomic_read(&buffer->record_disabled);
4789 	do {
4790 		new_rd = rd & ~RB_BUFFER_OFF;
4791 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4792 }
4793 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4794 
4795 /**
4796  * ring_buffer_record_is_on - return true if the ring buffer can write
4797  * @buffer: The ring buffer to see if write is enabled
4798  *
4799  * Returns true if the ring buffer is in a state that it accepts writes.
4800  */
4801 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4802 {
4803 	return !atomic_read(&buffer->record_disabled);
4804 }
4805 
4806 /**
4807  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4808  * @buffer: The ring buffer to see if write is set enabled
4809  *
4810  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4811  * Note that this does NOT mean it is in a writable state.
4812  *
4813  * It may return true when the ring buffer has been disabled by
4814  * ring_buffer_record_disable(), as that is a temporary disabling of
4815  * the ring buffer.
4816  */
4817 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4818 {
4819 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4820 }
4821 
4822 /**
4823  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4824  * @buffer: The ring buffer to stop writes to.
4825  * @cpu: The CPU buffer to stop
4826  *
4827  * This prevents all writes to the buffer. Any attempt to write
4828  * to the buffer after this will fail and return NULL.
4829  *
4830  * The caller should call synchronize_rcu() after this.
4831  */
4832 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4833 {
4834 	struct ring_buffer_per_cpu *cpu_buffer;
4835 
4836 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4837 		return;
4838 
4839 	cpu_buffer = buffer->buffers[cpu];
4840 	atomic_inc(&cpu_buffer->record_disabled);
4841 }
4842 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4843 
4844 /**
4845  * ring_buffer_record_enable_cpu - enable writes to the buffer
4846  * @buffer: The ring buffer to enable writes
4847  * @cpu: The CPU to enable.
4848  *
4849  * Note, multiple disables will need the same number of enables
4850  * to truly enable the writing (much like preempt_disable).
4851  */
4852 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4853 {
4854 	struct ring_buffer_per_cpu *cpu_buffer;
4855 
4856 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4857 		return;
4858 
4859 	cpu_buffer = buffer->buffers[cpu];
4860 	atomic_dec(&cpu_buffer->record_disabled);
4861 }
4862 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4863 
4864 /*
4865  * The total entries in the ring buffer is the running counter
4866  * of entries entered into the ring buffer, minus the sum of
4867  * the entries read from the ring buffer and the number of
4868  * entries that were overwritten.
4869  */
4870 static inline unsigned long
4871 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4872 {
4873 	return local_read(&cpu_buffer->entries) -
4874 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4875 }
4876 
4877 /**
4878  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4879  * @buffer: The ring buffer
4880  * @cpu: The per CPU buffer to read from.
4881  */
4882 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4883 {
4884 	unsigned long flags;
4885 	struct ring_buffer_per_cpu *cpu_buffer;
4886 	struct buffer_page *bpage;
4887 	u64 ret = 0;
4888 
4889 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4890 		return 0;
4891 
4892 	cpu_buffer = buffer->buffers[cpu];
4893 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4894 	/*
4895 	 * if the tail is on reader_page, oldest time stamp is on the reader
4896 	 * page
4897 	 */
4898 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4899 		bpage = cpu_buffer->reader_page;
4900 	else
4901 		bpage = rb_set_head_page(cpu_buffer);
4902 	if (bpage)
4903 		ret = bpage->page->time_stamp;
4904 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4905 
4906 	return ret;
4907 }
4908 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4909 
4910 /**
4911  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4912  * @buffer: The ring buffer
4913  * @cpu: The per CPU buffer to read from.
4914  */
4915 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4916 {
4917 	struct ring_buffer_per_cpu *cpu_buffer;
4918 	unsigned long ret;
4919 
4920 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4921 		return 0;
4922 
4923 	cpu_buffer = buffer->buffers[cpu];
4924 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4925 
4926 	return ret;
4927 }
4928 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4929 
4930 /**
4931  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4932  * @buffer: The ring buffer
4933  * @cpu: The per CPU buffer to get the entries from.
4934  */
4935 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4936 {
4937 	struct ring_buffer_per_cpu *cpu_buffer;
4938 
4939 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4940 		return 0;
4941 
4942 	cpu_buffer = buffer->buffers[cpu];
4943 
4944 	return rb_num_of_entries(cpu_buffer);
4945 }
4946 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4947 
4948 /**
4949  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4950  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4951  * @buffer: The ring buffer
4952  * @cpu: The per CPU buffer to get the number of overruns from
4953  */
4954 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4955 {
4956 	struct ring_buffer_per_cpu *cpu_buffer;
4957 	unsigned long ret;
4958 
4959 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4960 		return 0;
4961 
4962 	cpu_buffer = buffer->buffers[cpu];
4963 	ret = local_read(&cpu_buffer->overrun);
4964 
4965 	return ret;
4966 }
4967 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4968 
4969 /**
4970  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4971  * commits failing due to the buffer wrapping around while there are uncommitted
4972  * events, such as during an interrupt storm.
4973  * @buffer: The ring buffer
4974  * @cpu: The per CPU buffer to get the number of overruns from
4975  */
4976 unsigned long
4977 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4978 {
4979 	struct ring_buffer_per_cpu *cpu_buffer;
4980 	unsigned long ret;
4981 
4982 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4983 		return 0;
4984 
4985 	cpu_buffer = buffer->buffers[cpu];
4986 	ret = local_read(&cpu_buffer->commit_overrun);
4987 
4988 	return ret;
4989 }
4990 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4991 
4992 /**
4993  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4994  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4995  * @buffer: The ring buffer
4996  * @cpu: The per CPU buffer to get the number of overruns from
4997  */
4998 unsigned long
4999 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5000 {
5001 	struct ring_buffer_per_cpu *cpu_buffer;
5002 	unsigned long ret;
5003 
5004 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5005 		return 0;
5006 
5007 	cpu_buffer = buffer->buffers[cpu];
5008 	ret = local_read(&cpu_buffer->dropped_events);
5009 
5010 	return ret;
5011 }
5012 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5013 
5014 /**
5015  * ring_buffer_read_events_cpu - get the number of events successfully read
5016  * @buffer: The ring buffer
5017  * @cpu: The per CPU buffer to get the number of events read
5018  */
5019 unsigned long
5020 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5021 {
5022 	struct ring_buffer_per_cpu *cpu_buffer;
5023 
5024 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5025 		return 0;
5026 
5027 	cpu_buffer = buffer->buffers[cpu];
5028 	return cpu_buffer->read;
5029 }
5030 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5031 
5032 /**
5033  * ring_buffer_entries - get the number of entries in a buffer
5034  * @buffer: The ring buffer
5035  *
5036  * Returns the total number of entries in the ring buffer
5037  * (all CPU entries)
5038  */
5039 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5040 {
5041 	struct ring_buffer_per_cpu *cpu_buffer;
5042 	unsigned long entries = 0;
5043 	int cpu;
5044 
5045 	/* if you care about this being correct, lock the buffer */
5046 	for_each_buffer_cpu(buffer, cpu) {
5047 		cpu_buffer = buffer->buffers[cpu];
5048 		entries += rb_num_of_entries(cpu_buffer);
5049 	}
5050 
5051 	return entries;
5052 }
5053 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5054 
5055 /**
5056  * ring_buffer_overruns - get the number of overruns in buffer
5057  * @buffer: The ring buffer
5058  *
5059  * Returns the total number of overruns in the ring buffer
5060  * (all CPU entries)
5061  */
5062 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5063 {
5064 	struct ring_buffer_per_cpu *cpu_buffer;
5065 	unsigned long overruns = 0;
5066 	int cpu;
5067 
5068 	/* if you care about this being correct, lock the buffer */
5069 	for_each_buffer_cpu(buffer, cpu) {
5070 		cpu_buffer = buffer->buffers[cpu];
5071 		overruns += local_read(&cpu_buffer->overrun);
5072 	}
5073 
5074 	return overruns;
5075 }
5076 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5077 
5078 static void rb_iter_reset(struct ring_buffer_iter *iter)
5079 {
5080 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5081 
5082 	/* Iterator usage is expected to have record disabled */
5083 	iter->head_page = cpu_buffer->reader_page;
5084 	iter->head = cpu_buffer->reader_page->read;
5085 	iter->next_event = iter->head;
5086 
5087 	iter->cache_reader_page = iter->head_page;
5088 	iter->cache_read = cpu_buffer->read;
5089 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5090 
5091 	if (iter->head) {
5092 		iter->read_stamp = cpu_buffer->read_stamp;
5093 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5094 	} else {
5095 		iter->read_stamp = iter->head_page->page->time_stamp;
5096 		iter->page_stamp = iter->read_stamp;
5097 	}
5098 }
5099 
5100 /**
5101  * ring_buffer_iter_reset - reset an iterator
5102  * @iter: The iterator to reset
5103  *
5104  * Resets the iterator, so that it will start from the beginning
5105  * again.
5106  */
5107 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5108 {
5109 	struct ring_buffer_per_cpu *cpu_buffer;
5110 	unsigned long flags;
5111 
5112 	if (!iter)
5113 		return;
5114 
5115 	cpu_buffer = iter->cpu_buffer;
5116 
5117 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5118 	rb_iter_reset(iter);
5119 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5120 }
5121 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5122 
5123 /**
5124  * ring_buffer_iter_empty - check if an iterator has no more to read
5125  * @iter: The iterator to check
5126  */
5127 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5128 {
5129 	struct ring_buffer_per_cpu *cpu_buffer;
5130 	struct buffer_page *reader;
5131 	struct buffer_page *head_page;
5132 	struct buffer_page *commit_page;
5133 	struct buffer_page *curr_commit_page;
5134 	unsigned commit;
5135 	u64 curr_commit_ts;
5136 	u64 commit_ts;
5137 
5138 	cpu_buffer = iter->cpu_buffer;
5139 	reader = cpu_buffer->reader_page;
5140 	head_page = cpu_buffer->head_page;
5141 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5142 	commit_ts = commit_page->page->time_stamp;
5143 
5144 	/*
5145 	 * When the writer goes across pages, it issues a cmpxchg which
5146 	 * is a mb(), which will synchronize with the rmb here.
5147 	 * (see rb_tail_page_update())
5148 	 */
5149 	smp_rmb();
5150 	commit = rb_page_commit(commit_page);
5151 	/* We want to make sure that the commit page doesn't change */
5152 	smp_rmb();
5153 
5154 	/* Make sure commit page didn't change */
5155 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5156 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5157 
5158 	/* If the commit page changed, then there's more data */
5159 	if (curr_commit_page != commit_page ||
5160 	    curr_commit_ts != commit_ts)
5161 		return 0;
5162 
5163 	/* Still racy, as it may return a false positive, but that's OK */
5164 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5165 		(iter->head_page == reader && commit_page == head_page &&
5166 		 head_page->read == commit &&
5167 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5168 }
5169 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5170 
5171 static void
5172 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5173 		     struct ring_buffer_event *event)
5174 {
5175 	u64 delta;
5176 
5177 	switch (event->type_len) {
5178 	case RINGBUF_TYPE_PADDING:
5179 		return;
5180 
5181 	case RINGBUF_TYPE_TIME_EXTEND:
5182 		delta = rb_event_time_stamp(event);
5183 		cpu_buffer->read_stamp += delta;
5184 		return;
5185 
5186 	case RINGBUF_TYPE_TIME_STAMP:
5187 		delta = rb_event_time_stamp(event);
5188 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5189 		cpu_buffer->read_stamp = delta;
5190 		return;
5191 
5192 	case RINGBUF_TYPE_DATA:
5193 		cpu_buffer->read_stamp += event->time_delta;
5194 		return;
5195 
5196 	default:
5197 		RB_WARN_ON(cpu_buffer, 1);
5198 	}
5199 }
5200 
5201 static void
5202 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5203 			  struct ring_buffer_event *event)
5204 {
5205 	u64 delta;
5206 
5207 	switch (event->type_len) {
5208 	case RINGBUF_TYPE_PADDING:
5209 		return;
5210 
5211 	case RINGBUF_TYPE_TIME_EXTEND:
5212 		delta = rb_event_time_stamp(event);
5213 		iter->read_stamp += delta;
5214 		return;
5215 
5216 	case RINGBUF_TYPE_TIME_STAMP:
5217 		delta = rb_event_time_stamp(event);
5218 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5219 		iter->read_stamp = delta;
5220 		return;
5221 
5222 	case RINGBUF_TYPE_DATA:
5223 		iter->read_stamp += event->time_delta;
5224 		return;
5225 
5226 	default:
5227 		RB_WARN_ON(iter->cpu_buffer, 1);
5228 	}
5229 }
5230 
5231 static struct buffer_page *
5232 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5233 {
5234 	struct buffer_page *reader = NULL;
5235 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5236 	unsigned long overwrite;
5237 	unsigned long flags;
5238 	int nr_loops = 0;
5239 	bool ret;
5240 
5241 	local_irq_save(flags);
5242 	arch_spin_lock(&cpu_buffer->lock);
5243 
5244  again:
5245 	/*
5246 	 * This should normally only loop twice. But because the
5247 	 * start of the reader inserts an empty page, it causes
5248 	 * a case where we will loop three times. There should be no
5249 	 * reason to loop four times (that I know of).
5250 	 */
5251 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5252 		reader = NULL;
5253 		goto out;
5254 	}
5255 
5256 	reader = cpu_buffer->reader_page;
5257 
5258 	/* If there's more to read, return this page */
5259 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5260 		goto out;
5261 
5262 	/* Never should we have an index greater than the size */
5263 	if (RB_WARN_ON(cpu_buffer,
5264 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5265 		goto out;
5266 
5267 	/* check if we caught up to the tail */
5268 	reader = NULL;
5269 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5270 		goto out;
5271 
5272 	/* Don't bother swapping if the ring buffer is empty */
5273 	if (rb_num_of_entries(cpu_buffer) == 0)
5274 		goto out;
5275 
5276 	/*
5277 	 * Reset the reader page to size zero.
5278 	 */
5279 	local_set(&cpu_buffer->reader_page->write, 0);
5280 	local_set(&cpu_buffer->reader_page->entries, 0);
5281 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5282 	cpu_buffer->reader_page->real_end = 0;
5283 
5284  spin:
5285 	/*
5286 	 * Splice the empty reader page into the list around the head.
5287 	 */
5288 	reader = rb_set_head_page(cpu_buffer);
5289 	if (!reader)
5290 		goto out;
5291 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5292 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5293 
5294 	/*
5295 	 * cpu_buffer->pages just needs to point to the buffer, it
5296 	 *  has no specific buffer page to point to. Lets move it out
5297 	 *  of our way so we don't accidentally swap it.
5298 	 */
5299 	cpu_buffer->pages = reader->list.prev;
5300 
5301 	/* The reader page will be pointing to the new head */
5302 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5303 
5304 	/*
5305 	 * We want to make sure we read the overruns after we set up our
5306 	 * pointers to the next object. The writer side does a
5307 	 * cmpxchg to cross pages which acts as the mb on the writer
5308 	 * side. Note, the reader will constantly fail the swap
5309 	 * while the writer is updating the pointers, so this
5310 	 * guarantees that the overwrite recorded here is the one we
5311 	 * want to compare with the last_overrun.
5312 	 */
5313 	smp_mb();
5314 	overwrite = local_read(&(cpu_buffer->overrun));
5315 
5316 	/*
5317 	 * Here's the tricky part.
5318 	 *
5319 	 * We need to move the pointer past the header page.
5320 	 * But we can only do that if a writer is not currently
5321 	 * moving it. The page before the header page has the
5322 	 * flag bit '1' set if it is pointing to the page we want.
5323 	 * but if the writer is in the process of moving it
5324 	 * than it will be '2' or already moved '0'.
5325 	 */
5326 
5327 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5328 
5329 	/*
5330 	 * If we did not convert it, then we must try again.
5331 	 */
5332 	if (!ret)
5333 		goto spin;
5334 
5335 	if (cpu_buffer->ring_meta)
5336 		rb_update_meta_reader(cpu_buffer, reader);
5337 
5338 	/*
5339 	 * Yay! We succeeded in replacing the page.
5340 	 *
5341 	 * Now make the new head point back to the reader page.
5342 	 */
5343 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5344 	rb_inc_page(&cpu_buffer->head_page);
5345 
5346 	cpu_buffer->cnt++;
5347 	local_inc(&cpu_buffer->pages_read);
5348 
5349 	/* Finally update the reader page to the new head */
5350 	cpu_buffer->reader_page = reader;
5351 	cpu_buffer->reader_page->read = 0;
5352 
5353 	if (overwrite != cpu_buffer->last_overrun) {
5354 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5355 		cpu_buffer->last_overrun = overwrite;
5356 	}
5357 
5358 	goto again;
5359 
5360  out:
5361 	/* Update the read_stamp on the first event */
5362 	if (reader && reader->read == 0)
5363 		cpu_buffer->read_stamp = reader->page->time_stamp;
5364 
5365 	arch_spin_unlock(&cpu_buffer->lock);
5366 	local_irq_restore(flags);
5367 
5368 	/*
5369 	 * The writer has preempt disable, wait for it. But not forever
5370 	 * Although, 1 second is pretty much "forever"
5371 	 */
5372 #define USECS_WAIT	1000000
5373         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5374 		/* If the write is past the end of page, a writer is still updating it */
5375 		if (likely(!reader || rb_page_write(reader) <= bsize))
5376 			break;
5377 
5378 		udelay(1);
5379 
5380 		/* Get the latest version of the reader write value */
5381 		smp_rmb();
5382 	}
5383 
5384 	/* The writer is not moving forward? Something is wrong */
5385 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5386 		reader = NULL;
5387 
5388 	/*
5389 	 * Make sure we see any padding after the write update
5390 	 * (see rb_reset_tail()).
5391 	 *
5392 	 * In addition, a writer may be writing on the reader page
5393 	 * if the page has not been fully filled, so the read barrier
5394 	 * is also needed to make sure we see the content of what is
5395 	 * committed by the writer (see rb_set_commit_to_write()).
5396 	 */
5397 	smp_rmb();
5398 
5399 
5400 	return reader;
5401 }
5402 
5403 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5404 {
5405 	struct ring_buffer_event *event;
5406 	struct buffer_page *reader;
5407 	unsigned length;
5408 
5409 	reader = rb_get_reader_page(cpu_buffer);
5410 
5411 	/* This function should not be called when buffer is empty */
5412 	if (RB_WARN_ON(cpu_buffer, !reader))
5413 		return;
5414 
5415 	event = rb_reader_event(cpu_buffer);
5416 
5417 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5418 		cpu_buffer->read++;
5419 
5420 	rb_update_read_stamp(cpu_buffer, event);
5421 
5422 	length = rb_event_length(event);
5423 	cpu_buffer->reader_page->read += length;
5424 	cpu_buffer->read_bytes += length;
5425 }
5426 
5427 static void rb_advance_iter(struct ring_buffer_iter *iter)
5428 {
5429 	struct ring_buffer_per_cpu *cpu_buffer;
5430 
5431 	cpu_buffer = iter->cpu_buffer;
5432 
5433 	/* If head == next_event then we need to jump to the next event */
5434 	if (iter->head == iter->next_event) {
5435 		/* If the event gets overwritten again, there's nothing to do */
5436 		if (rb_iter_head_event(iter) == NULL)
5437 			return;
5438 	}
5439 
5440 	iter->head = iter->next_event;
5441 
5442 	/*
5443 	 * Check if we are at the end of the buffer.
5444 	 */
5445 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5446 		/* discarded commits can make the page empty */
5447 		if (iter->head_page == cpu_buffer->commit_page)
5448 			return;
5449 		rb_inc_iter(iter);
5450 		return;
5451 	}
5452 
5453 	rb_update_iter_read_stamp(iter, iter->event);
5454 }
5455 
5456 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5457 {
5458 	return cpu_buffer->lost_events;
5459 }
5460 
5461 static struct ring_buffer_event *
5462 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5463 	       unsigned long *lost_events)
5464 {
5465 	struct ring_buffer_event *event;
5466 	struct buffer_page *reader;
5467 	int nr_loops = 0;
5468 
5469 	if (ts)
5470 		*ts = 0;
5471  again:
5472 	/*
5473 	 * We repeat when a time extend is encountered.
5474 	 * Since the time extend is always attached to a data event,
5475 	 * we should never loop more than once.
5476 	 * (We never hit the following condition more than twice).
5477 	 */
5478 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5479 		return NULL;
5480 
5481 	reader = rb_get_reader_page(cpu_buffer);
5482 	if (!reader)
5483 		return NULL;
5484 
5485 	event = rb_reader_event(cpu_buffer);
5486 
5487 	switch (event->type_len) {
5488 	case RINGBUF_TYPE_PADDING:
5489 		if (rb_null_event(event))
5490 			RB_WARN_ON(cpu_buffer, 1);
5491 		/*
5492 		 * Because the writer could be discarding every
5493 		 * event it creates (which would probably be bad)
5494 		 * if we were to go back to "again" then we may never
5495 		 * catch up, and will trigger the warn on, or lock
5496 		 * the box. Return the padding, and we will release
5497 		 * the current locks, and try again.
5498 		 */
5499 		return event;
5500 
5501 	case RINGBUF_TYPE_TIME_EXTEND:
5502 		/* Internal data, OK to advance */
5503 		rb_advance_reader(cpu_buffer);
5504 		goto again;
5505 
5506 	case RINGBUF_TYPE_TIME_STAMP:
5507 		if (ts) {
5508 			*ts = rb_event_time_stamp(event);
5509 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5510 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5511 							 cpu_buffer->cpu, ts);
5512 		}
5513 		/* Internal data, OK to advance */
5514 		rb_advance_reader(cpu_buffer);
5515 		goto again;
5516 
5517 	case RINGBUF_TYPE_DATA:
5518 		if (ts && !(*ts)) {
5519 			*ts = cpu_buffer->read_stamp + event->time_delta;
5520 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5521 							 cpu_buffer->cpu, ts);
5522 		}
5523 		if (lost_events)
5524 			*lost_events = rb_lost_events(cpu_buffer);
5525 		return event;
5526 
5527 	default:
5528 		RB_WARN_ON(cpu_buffer, 1);
5529 	}
5530 
5531 	return NULL;
5532 }
5533 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5534 
5535 static struct ring_buffer_event *
5536 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5537 {
5538 	struct trace_buffer *buffer;
5539 	struct ring_buffer_per_cpu *cpu_buffer;
5540 	struct ring_buffer_event *event;
5541 	int nr_loops = 0;
5542 
5543 	if (ts)
5544 		*ts = 0;
5545 
5546 	cpu_buffer = iter->cpu_buffer;
5547 	buffer = cpu_buffer->buffer;
5548 
5549 	/*
5550 	 * Check if someone performed a consuming read to the buffer
5551 	 * or removed some pages from the buffer. In these cases,
5552 	 * iterator was invalidated and we need to reset it.
5553 	 */
5554 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5555 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5556 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5557 		rb_iter_reset(iter);
5558 
5559  again:
5560 	if (ring_buffer_iter_empty(iter))
5561 		return NULL;
5562 
5563 	/*
5564 	 * As the writer can mess with what the iterator is trying
5565 	 * to read, just give up if we fail to get an event after
5566 	 * three tries. The iterator is not as reliable when reading
5567 	 * the ring buffer with an active write as the consumer is.
5568 	 * Do not warn if the three failures is reached.
5569 	 */
5570 	if (++nr_loops > 3)
5571 		return NULL;
5572 
5573 	if (rb_per_cpu_empty(cpu_buffer))
5574 		return NULL;
5575 
5576 	if (iter->head >= rb_page_size(iter->head_page)) {
5577 		rb_inc_iter(iter);
5578 		goto again;
5579 	}
5580 
5581 	event = rb_iter_head_event(iter);
5582 	if (!event)
5583 		goto again;
5584 
5585 	switch (event->type_len) {
5586 	case RINGBUF_TYPE_PADDING:
5587 		if (rb_null_event(event)) {
5588 			rb_inc_iter(iter);
5589 			goto again;
5590 		}
5591 		rb_advance_iter(iter);
5592 		return event;
5593 
5594 	case RINGBUF_TYPE_TIME_EXTEND:
5595 		/* Internal data, OK to advance */
5596 		rb_advance_iter(iter);
5597 		goto again;
5598 
5599 	case RINGBUF_TYPE_TIME_STAMP:
5600 		if (ts) {
5601 			*ts = rb_event_time_stamp(event);
5602 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5603 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5604 							 cpu_buffer->cpu, ts);
5605 		}
5606 		/* Internal data, OK to advance */
5607 		rb_advance_iter(iter);
5608 		goto again;
5609 
5610 	case RINGBUF_TYPE_DATA:
5611 		if (ts && !(*ts)) {
5612 			*ts = iter->read_stamp + event->time_delta;
5613 			ring_buffer_normalize_time_stamp(buffer,
5614 							 cpu_buffer->cpu, ts);
5615 		}
5616 		return event;
5617 
5618 	default:
5619 		RB_WARN_ON(cpu_buffer, 1);
5620 	}
5621 
5622 	return NULL;
5623 }
5624 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5625 
5626 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5627 {
5628 	if (likely(!in_nmi())) {
5629 		raw_spin_lock(&cpu_buffer->reader_lock);
5630 		return true;
5631 	}
5632 
5633 	/*
5634 	 * If an NMI die dumps out the content of the ring buffer
5635 	 * trylock must be used to prevent a deadlock if the NMI
5636 	 * preempted a task that holds the ring buffer locks. If
5637 	 * we get the lock then all is fine, if not, then continue
5638 	 * to do the read, but this can corrupt the ring buffer,
5639 	 * so it must be permanently disabled from future writes.
5640 	 * Reading from NMI is a oneshot deal.
5641 	 */
5642 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5643 		return true;
5644 
5645 	/* Continue without locking, but disable the ring buffer */
5646 	atomic_inc(&cpu_buffer->record_disabled);
5647 	return false;
5648 }
5649 
5650 static inline void
5651 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5652 {
5653 	if (likely(locked))
5654 		raw_spin_unlock(&cpu_buffer->reader_lock);
5655 }
5656 
5657 /**
5658  * ring_buffer_peek - peek at the next event to be read
5659  * @buffer: The ring buffer to read
5660  * @cpu: The cpu to peak at
5661  * @ts: The timestamp counter of this event.
5662  * @lost_events: a variable to store if events were lost (may be NULL)
5663  *
5664  * This will return the event that will be read next, but does
5665  * not consume the data.
5666  */
5667 struct ring_buffer_event *
5668 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5669 		 unsigned long *lost_events)
5670 {
5671 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5672 	struct ring_buffer_event *event;
5673 	unsigned long flags;
5674 	bool dolock;
5675 
5676 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5677 		return NULL;
5678 
5679  again:
5680 	local_irq_save(flags);
5681 	dolock = rb_reader_lock(cpu_buffer);
5682 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5683 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5684 		rb_advance_reader(cpu_buffer);
5685 	rb_reader_unlock(cpu_buffer, dolock);
5686 	local_irq_restore(flags);
5687 
5688 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5689 		goto again;
5690 
5691 	return event;
5692 }
5693 
5694 /** ring_buffer_iter_dropped - report if there are dropped events
5695  * @iter: The ring buffer iterator
5696  *
5697  * Returns true if there was dropped events since the last peek.
5698  */
5699 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5700 {
5701 	bool ret = iter->missed_events != 0;
5702 
5703 	iter->missed_events = 0;
5704 	return ret;
5705 }
5706 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5707 
5708 /**
5709  * ring_buffer_iter_peek - peek at the next event to be read
5710  * @iter: The ring buffer iterator
5711  * @ts: The timestamp counter of this event.
5712  *
5713  * This will return the event that will be read next, but does
5714  * not increment the iterator.
5715  */
5716 struct ring_buffer_event *
5717 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5718 {
5719 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5720 	struct ring_buffer_event *event;
5721 	unsigned long flags;
5722 
5723  again:
5724 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5725 	event = rb_iter_peek(iter, ts);
5726 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5727 
5728 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5729 		goto again;
5730 
5731 	return event;
5732 }
5733 
5734 /**
5735  * ring_buffer_consume - return an event and consume it
5736  * @buffer: The ring buffer to get the next event from
5737  * @cpu: the cpu to read the buffer from
5738  * @ts: a variable to store the timestamp (may be NULL)
5739  * @lost_events: a variable to store if events were lost (may be NULL)
5740  *
5741  * Returns the next event in the ring buffer, and that event is consumed.
5742  * Meaning, that sequential reads will keep returning a different event,
5743  * and eventually empty the ring buffer if the producer is slower.
5744  */
5745 struct ring_buffer_event *
5746 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5747 		    unsigned long *lost_events)
5748 {
5749 	struct ring_buffer_per_cpu *cpu_buffer;
5750 	struct ring_buffer_event *event = NULL;
5751 	unsigned long flags;
5752 	bool dolock;
5753 
5754  again:
5755 	/* might be called in atomic */
5756 	preempt_disable();
5757 
5758 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5759 		goto out;
5760 
5761 	cpu_buffer = buffer->buffers[cpu];
5762 	local_irq_save(flags);
5763 	dolock = rb_reader_lock(cpu_buffer);
5764 
5765 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5766 	if (event) {
5767 		cpu_buffer->lost_events = 0;
5768 		rb_advance_reader(cpu_buffer);
5769 	}
5770 
5771 	rb_reader_unlock(cpu_buffer, dolock);
5772 	local_irq_restore(flags);
5773 
5774  out:
5775 	preempt_enable();
5776 
5777 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5778 		goto again;
5779 
5780 	return event;
5781 }
5782 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5783 
5784 /**
5785  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5786  * @buffer: The ring buffer to read from
5787  * @cpu: The cpu buffer to iterate over
5788  * @flags: gfp flags to use for memory allocation
5789  *
5790  * This performs the initial preparations necessary to iterate
5791  * through the buffer.  Memory is allocated, buffer resizing
5792  * is disabled, and the iterator pointer is returned to the caller.
5793  *
5794  * After a sequence of ring_buffer_read_prepare calls, the user is
5795  * expected to make at least one call to ring_buffer_read_prepare_sync.
5796  * Afterwards, ring_buffer_read_start is invoked to get things going
5797  * for real.
5798  *
5799  * This overall must be paired with ring_buffer_read_finish.
5800  */
5801 struct ring_buffer_iter *
5802 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5803 {
5804 	struct ring_buffer_per_cpu *cpu_buffer;
5805 	struct ring_buffer_iter *iter;
5806 
5807 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5808 		return NULL;
5809 
5810 	iter = kzalloc(sizeof(*iter), flags);
5811 	if (!iter)
5812 		return NULL;
5813 
5814 	/* Holds the entire event: data and meta data */
5815 	iter->event_size = buffer->subbuf_size;
5816 	iter->event = kmalloc(iter->event_size, flags);
5817 	if (!iter->event) {
5818 		kfree(iter);
5819 		return NULL;
5820 	}
5821 
5822 	cpu_buffer = buffer->buffers[cpu];
5823 
5824 	iter->cpu_buffer = cpu_buffer;
5825 
5826 	atomic_inc(&cpu_buffer->resize_disabled);
5827 
5828 	return iter;
5829 }
5830 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5831 
5832 /**
5833  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5834  *
5835  * All previously invoked ring_buffer_read_prepare calls to prepare
5836  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5837  * calls on those iterators are allowed.
5838  */
5839 void
5840 ring_buffer_read_prepare_sync(void)
5841 {
5842 	synchronize_rcu();
5843 }
5844 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5845 
5846 /**
5847  * ring_buffer_read_start - start a non consuming read of the buffer
5848  * @iter: The iterator returned by ring_buffer_read_prepare
5849  *
5850  * This finalizes the startup of an iteration through the buffer.
5851  * The iterator comes from a call to ring_buffer_read_prepare and
5852  * an intervening ring_buffer_read_prepare_sync must have been
5853  * performed.
5854  *
5855  * Must be paired with ring_buffer_read_finish.
5856  */
5857 void
5858 ring_buffer_read_start(struct ring_buffer_iter *iter)
5859 {
5860 	struct ring_buffer_per_cpu *cpu_buffer;
5861 	unsigned long flags;
5862 
5863 	if (!iter)
5864 		return;
5865 
5866 	cpu_buffer = iter->cpu_buffer;
5867 
5868 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5869 	arch_spin_lock(&cpu_buffer->lock);
5870 	rb_iter_reset(iter);
5871 	arch_spin_unlock(&cpu_buffer->lock);
5872 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5873 }
5874 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5875 
5876 /**
5877  * ring_buffer_read_finish - finish reading the iterator of the buffer
5878  * @iter: The iterator retrieved by ring_buffer_start
5879  *
5880  * This re-enables resizing of the buffer, and frees the iterator.
5881  */
5882 void
5883 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5884 {
5885 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5886 
5887 	/* Use this opportunity to check the integrity of the ring buffer. */
5888 	rb_check_pages(cpu_buffer);
5889 
5890 	atomic_dec(&cpu_buffer->resize_disabled);
5891 	kfree(iter->event);
5892 	kfree(iter);
5893 }
5894 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5895 
5896 /**
5897  * ring_buffer_iter_advance - advance the iterator to the next location
5898  * @iter: The ring buffer iterator
5899  *
5900  * Move the location of the iterator such that the next read will
5901  * be the next location of the iterator.
5902  */
5903 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5904 {
5905 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5906 	unsigned long flags;
5907 
5908 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5909 
5910 	rb_advance_iter(iter);
5911 
5912 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5913 }
5914 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5915 
5916 /**
5917  * ring_buffer_size - return the size of the ring buffer (in bytes)
5918  * @buffer: The ring buffer.
5919  * @cpu: The CPU to get ring buffer size from.
5920  */
5921 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5922 {
5923 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5924 		return 0;
5925 
5926 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5927 }
5928 EXPORT_SYMBOL_GPL(ring_buffer_size);
5929 
5930 /**
5931  * ring_buffer_max_event_size - return the max data size of an event
5932  * @buffer: The ring buffer.
5933  *
5934  * Returns the maximum size an event can be.
5935  */
5936 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5937 {
5938 	/* If abs timestamp is requested, events have a timestamp too */
5939 	if (ring_buffer_time_stamp_abs(buffer))
5940 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5941 	return buffer->max_data_size;
5942 }
5943 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5944 
5945 static void rb_clear_buffer_page(struct buffer_page *page)
5946 {
5947 	local_set(&page->write, 0);
5948 	local_set(&page->entries, 0);
5949 	rb_init_page(page->page);
5950 	page->read = 0;
5951 }
5952 
5953 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5954 {
5955 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5956 
5957 	if (!meta)
5958 		return;
5959 
5960 	meta->reader.read = cpu_buffer->reader_page->read;
5961 	meta->reader.id = cpu_buffer->reader_page->id;
5962 	meta->reader.lost_events = cpu_buffer->lost_events;
5963 
5964 	meta->entries = local_read(&cpu_buffer->entries);
5965 	meta->overrun = local_read(&cpu_buffer->overrun);
5966 	meta->read = cpu_buffer->read;
5967 
5968 	/* Some archs do not have data cache coherency between kernel and user-space */
5969 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5970 }
5971 
5972 static void
5973 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5974 {
5975 	struct buffer_page *page;
5976 
5977 	rb_head_page_deactivate(cpu_buffer);
5978 
5979 	cpu_buffer->head_page
5980 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5981 	rb_clear_buffer_page(cpu_buffer->head_page);
5982 	list_for_each_entry(page, cpu_buffer->pages, list) {
5983 		rb_clear_buffer_page(page);
5984 	}
5985 
5986 	cpu_buffer->tail_page = cpu_buffer->head_page;
5987 	cpu_buffer->commit_page = cpu_buffer->head_page;
5988 
5989 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5990 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5991 	rb_clear_buffer_page(cpu_buffer->reader_page);
5992 
5993 	local_set(&cpu_buffer->entries_bytes, 0);
5994 	local_set(&cpu_buffer->overrun, 0);
5995 	local_set(&cpu_buffer->commit_overrun, 0);
5996 	local_set(&cpu_buffer->dropped_events, 0);
5997 	local_set(&cpu_buffer->entries, 0);
5998 	local_set(&cpu_buffer->committing, 0);
5999 	local_set(&cpu_buffer->commits, 0);
6000 	local_set(&cpu_buffer->pages_touched, 0);
6001 	local_set(&cpu_buffer->pages_lost, 0);
6002 	local_set(&cpu_buffer->pages_read, 0);
6003 	cpu_buffer->last_pages_touch = 0;
6004 	cpu_buffer->shortest_full = 0;
6005 	cpu_buffer->read = 0;
6006 	cpu_buffer->read_bytes = 0;
6007 
6008 	rb_time_set(&cpu_buffer->write_stamp, 0);
6009 	rb_time_set(&cpu_buffer->before_stamp, 0);
6010 
6011 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6012 
6013 	cpu_buffer->lost_events = 0;
6014 	cpu_buffer->last_overrun = 0;
6015 
6016 	rb_head_page_activate(cpu_buffer);
6017 	cpu_buffer->pages_removed = 0;
6018 
6019 	if (cpu_buffer->mapped) {
6020 		rb_update_meta_page(cpu_buffer);
6021 		if (cpu_buffer->ring_meta) {
6022 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6023 			meta->commit_buffer = meta->head_buffer;
6024 		}
6025 	}
6026 }
6027 
6028 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6029 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6030 {
6031 	unsigned long flags;
6032 
6033 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6034 
6035 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6036 		goto out;
6037 
6038 	arch_spin_lock(&cpu_buffer->lock);
6039 
6040 	rb_reset_cpu(cpu_buffer);
6041 
6042 	arch_spin_unlock(&cpu_buffer->lock);
6043 
6044  out:
6045 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6046 }
6047 
6048 /**
6049  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6050  * @buffer: The ring buffer to reset a per cpu buffer of
6051  * @cpu: The CPU buffer to be reset
6052  */
6053 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6054 {
6055 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6056 	struct ring_buffer_meta *meta;
6057 
6058 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6059 		return;
6060 
6061 	/* prevent another thread from changing buffer sizes */
6062 	mutex_lock(&buffer->mutex);
6063 
6064 	atomic_inc(&cpu_buffer->resize_disabled);
6065 	atomic_inc(&cpu_buffer->record_disabled);
6066 
6067 	/* Make sure all commits have finished */
6068 	synchronize_rcu();
6069 
6070 	reset_disabled_cpu_buffer(cpu_buffer);
6071 
6072 	atomic_dec(&cpu_buffer->record_disabled);
6073 	atomic_dec(&cpu_buffer->resize_disabled);
6074 
6075 	/* Make sure persistent meta now uses this buffer's addresses */
6076 	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6077 	if (meta)
6078 		rb_meta_init_text_addr(meta);
6079 
6080 	mutex_unlock(&buffer->mutex);
6081 }
6082 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6083 
6084 /* Flag to ensure proper resetting of atomic variables */
6085 #define RESET_BIT	(1 << 30)
6086 
6087 /**
6088  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6089  * @buffer: The ring buffer to reset a per cpu buffer of
6090  */
6091 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6092 {
6093 	struct ring_buffer_per_cpu *cpu_buffer;
6094 	struct ring_buffer_meta *meta;
6095 	int cpu;
6096 
6097 	/* prevent another thread from changing buffer sizes */
6098 	mutex_lock(&buffer->mutex);
6099 
6100 	for_each_online_buffer_cpu(buffer, cpu) {
6101 		cpu_buffer = buffer->buffers[cpu];
6102 
6103 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6104 		atomic_inc(&cpu_buffer->record_disabled);
6105 	}
6106 
6107 	/* Make sure all commits have finished */
6108 	synchronize_rcu();
6109 
6110 	for_each_buffer_cpu(buffer, cpu) {
6111 		cpu_buffer = buffer->buffers[cpu];
6112 
6113 		/*
6114 		 * If a CPU came online during the synchronize_rcu(), then
6115 		 * ignore it.
6116 		 */
6117 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6118 			continue;
6119 
6120 		reset_disabled_cpu_buffer(cpu_buffer);
6121 
6122 		/* Make sure persistent meta now uses this buffer's addresses */
6123 		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6124 		if (meta)
6125 			rb_meta_init_text_addr(meta);
6126 
6127 		atomic_dec(&cpu_buffer->record_disabled);
6128 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6129 	}
6130 
6131 	mutex_unlock(&buffer->mutex);
6132 }
6133 
6134 /**
6135  * ring_buffer_reset - reset a ring buffer
6136  * @buffer: The ring buffer to reset all cpu buffers
6137  */
6138 void ring_buffer_reset(struct trace_buffer *buffer)
6139 {
6140 	struct ring_buffer_per_cpu *cpu_buffer;
6141 	int cpu;
6142 
6143 	/* prevent another thread from changing buffer sizes */
6144 	mutex_lock(&buffer->mutex);
6145 
6146 	for_each_buffer_cpu(buffer, cpu) {
6147 		cpu_buffer = buffer->buffers[cpu];
6148 
6149 		atomic_inc(&cpu_buffer->resize_disabled);
6150 		atomic_inc(&cpu_buffer->record_disabled);
6151 	}
6152 
6153 	/* Make sure all commits have finished */
6154 	synchronize_rcu();
6155 
6156 	for_each_buffer_cpu(buffer, cpu) {
6157 		cpu_buffer = buffer->buffers[cpu];
6158 
6159 		reset_disabled_cpu_buffer(cpu_buffer);
6160 
6161 		atomic_dec(&cpu_buffer->record_disabled);
6162 		atomic_dec(&cpu_buffer->resize_disabled);
6163 	}
6164 
6165 	mutex_unlock(&buffer->mutex);
6166 }
6167 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6168 
6169 /**
6170  * ring_buffer_empty - is the ring buffer empty?
6171  * @buffer: The ring buffer to test
6172  */
6173 bool ring_buffer_empty(struct trace_buffer *buffer)
6174 {
6175 	struct ring_buffer_per_cpu *cpu_buffer;
6176 	unsigned long flags;
6177 	bool dolock;
6178 	bool ret;
6179 	int cpu;
6180 
6181 	/* yes this is racy, but if you don't like the race, lock the buffer */
6182 	for_each_buffer_cpu(buffer, cpu) {
6183 		cpu_buffer = buffer->buffers[cpu];
6184 		local_irq_save(flags);
6185 		dolock = rb_reader_lock(cpu_buffer);
6186 		ret = rb_per_cpu_empty(cpu_buffer);
6187 		rb_reader_unlock(cpu_buffer, dolock);
6188 		local_irq_restore(flags);
6189 
6190 		if (!ret)
6191 			return false;
6192 	}
6193 
6194 	return true;
6195 }
6196 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6197 
6198 /**
6199  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6200  * @buffer: The ring buffer
6201  * @cpu: The CPU buffer to test
6202  */
6203 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6204 {
6205 	struct ring_buffer_per_cpu *cpu_buffer;
6206 	unsigned long flags;
6207 	bool dolock;
6208 	bool ret;
6209 
6210 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6211 		return true;
6212 
6213 	cpu_buffer = buffer->buffers[cpu];
6214 	local_irq_save(flags);
6215 	dolock = rb_reader_lock(cpu_buffer);
6216 	ret = rb_per_cpu_empty(cpu_buffer);
6217 	rb_reader_unlock(cpu_buffer, dolock);
6218 	local_irq_restore(flags);
6219 
6220 	return ret;
6221 }
6222 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6223 
6224 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6225 /**
6226  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6227  * @buffer_a: One buffer to swap with
6228  * @buffer_b: The other buffer to swap with
6229  * @cpu: the CPU of the buffers to swap
6230  *
6231  * This function is useful for tracers that want to take a "snapshot"
6232  * of a CPU buffer and has another back up buffer lying around.
6233  * it is expected that the tracer handles the cpu buffer not being
6234  * used at the moment.
6235  */
6236 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6237 			 struct trace_buffer *buffer_b, int cpu)
6238 {
6239 	struct ring_buffer_per_cpu *cpu_buffer_a;
6240 	struct ring_buffer_per_cpu *cpu_buffer_b;
6241 	int ret = -EINVAL;
6242 
6243 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6244 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6245 		goto out;
6246 
6247 	cpu_buffer_a = buffer_a->buffers[cpu];
6248 	cpu_buffer_b = buffer_b->buffers[cpu];
6249 
6250 	/* It's up to the callers to not try to swap mapped buffers */
6251 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6252 		ret = -EBUSY;
6253 		goto out;
6254 	}
6255 
6256 	/* At least make sure the two buffers are somewhat the same */
6257 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6258 		goto out;
6259 
6260 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6261 		goto out;
6262 
6263 	ret = -EAGAIN;
6264 
6265 	if (atomic_read(&buffer_a->record_disabled))
6266 		goto out;
6267 
6268 	if (atomic_read(&buffer_b->record_disabled))
6269 		goto out;
6270 
6271 	if (atomic_read(&cpu_buffer_a->record_disabled))
6272 		goto out;
6273 
6274 	if (atomic_read(&cpu_buffer_b->record_disabled))
6275 		goto out;
6276 
6277 	/*
6278 	 * We can't do a synchronize_rcu here because this
6279 	 * function can be called in atomic context.
6280 	 * Normally this will be called from the same CPU as cpu.
6281 	 * If not it's up to the caller to protect this.
6282 	 */
6283 	atomic_inc(&cpu_buffer_a->record_disabled);
6284 	atomic_inc(&cpu_buffer_b->record_disabled);
6285 
6286 	ret = -EBUSY;
6287 	if (local_read(&cpu_buffer_a->committing))
6288 		goto out_dec;
6289 	if (local_read(&cpu_buffer_b->committing))
6290 		goto out_dec;
6291 
6292 	/*
6293 	 * When resize is in progress, we cannot swap it because
6294 	 * it will mess the state of the cpu buffer.
6295 	 */
6296 	if (atomic_read(&buffer_a->resizing))
6297 		goto out_dec;
6298 	if (atomic_read(&buffer_b->resizing))
6299 		goto out_dec;
6300 
6301 	buffer_a->buffers[cpu] = cpu_buffer_b;
6302 	buffer_b->buffers[cpu] = cpu_buffer_a;
6303 
6304 	cpu_buffer_b->buffer = buffer_a;
6305 	cpu_buffer_a->buffer = buffer_b;
6306 
6307 	ret = 0;
6308 
6309 out_dec:
6310 	atomic_dec(&cpu_buffer_a->record_disabled);
6311 	atomic_dec(&cpu_buffer_b->record_disabled);
6312 out:
6313 	return ret;
6314 }
6315 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6316 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6317 
6318 /**
6319  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6320  * @buffer: the buffer to allocate for.
6321  * @cpu: the cpu buffer to allocate.
6322  *
6323  * This function is used in conjunction with ring_buffer_read_page.
6324  * When reading a full page from the ring buffer, these functions
6325  * can be used to speed up the process. The calling function should
6326  * allocate a few pages first with this function. Then when it
6327  * needs to get pages from the ring buffer, it passes the result
6328  * of this function into ring_buffer_read_page, which will swap
6329  * the page that was allocated, with the read page of the buffer.
6330  *
6331  * Returns:
6332  *  The page allocated, or ERR_PTR
6333  */
6334 struct buffer_data_read_page *
6335 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6336 {
6337 	struct ring_buffer_per_cpu *cpu_buffer;
6338 	struct buffer_data_read_page *bpage = NULL;
6339 	unsigned long flags;
6340 	struct page *page;
6341 
6342 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6343 		return ERR_PTR(-ENODEV);
6344 
6345 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6346 	if (!bpage)
6347 		return ERR_PTR(-ENOMEM);
6348 
6349 	bpage->order = buffer->subbuf_order;
6350 	cpu_buffer = buffer->buffers[cpu];
6351 	local_irq_save(flags);
6352 	arch_spin_lock(&cpu_buffer->lock);
6353 
6354 	if (cpu_buffer->free_page) {
6355 		bpage->data = cpu_buffer->free_page;
6356 		cpu_buffer->free_page = NULL;
6357 	}
6358 
6359 	arch_spin_unlock(&cpu_buffer->lock);
6360 	local_irq_restore(flags);
6361 
6362 	if (bpage->data)
6363 		goto out;
6364 
6365 	page = alloc_pages_node(cpu_to_node(cpu),
6366 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6367 				cpu_buffer->buffer->subbuf_order);
6368 	if (!page) {
6369 		kfree(bpage);
6370 		return ERR_PTR(-ENOMEM);
6371 	}
6372 
6373 	bpage->data = page_address(page);
6374 
6375  out:
6376 	rb_init_page(bpage->data);
6377 
6378 	return bpage;
6379 }
6380 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6381 
6382 /**
6383  * ring_buffer_free_read_page - free an allocated read page
6384  * @buffer: the buffer the page was allocate for
6385  * @cpu: the cpu buffer the page came from
6386  * @data_page: the page to free
6387  *
6388  * Free a page allocated from ring_buffer_alloc_read_page.
6389  */
6390 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6391 				struct buffer_data_read_page *data_page)
6392 {
6393 	struct ring_buffer_per_cpu *cpu_buffer;
6394 	struct buffer_data_page *bpage = data_page->data;
6395 	struct page *page = virt_to_page(bpage);
6396 	unsigned long flags;
6397 
6398 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6399 		return;
6400 
6401 	cpu_buffer = buffer->buffers[cpu];
6402 
6403 	/*
6404 	 * If the page is still in use someplace else, or order of the page
6405 	 * is different from the subbuffer order of the buffer -
6406 	 * we can't reuse it
6407 	 */
6408 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6409 		goto out;
6410 
6411 	local_irq_save(flags);
6412 	arch_spin_lock(&cpu_buffer->lock);
6413 
6414 	if (!cpu_buffer->free_page) {
6415 		cpu_buffer->free_page = bpage;
6416 		bpage = NULL;
6417 	}
6418 
6419 	arch_spin_unlock(&cpu_buffer->lock);
6420 	local_irq_restore(flags);
6421 
6422  out:
6423 	free_pages((unsigned long)bpage, data_page->order);
6424 	kfree(data_page);
6425 }
6426 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6427 
6428 /**
6429  * ring_buffer_read_page - extract a page from the ring buffer
6430  * @buffer: buffer to extract from
6431  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6432  * @len: amount to extract
6433  * @cpu: the cpu of the buffer to extract
6434  * @full: should the extraction only happen when the page is full.
6435  *
6436  * This function will pull out a page from the ring buffer and consume it.
6437  * @data_page must be the address of the variable that was returned
6438  * from ring_buffer_alloc_read_page. This is because the page might be used
6439  * to swap with a page in the ring buffer.
6440  *
6441  * for example:
6442  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6443  *	if (IS_ERR(rpage))
6444  *		return PTR_ERR(rpage);
6445  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6446  *	if (ret >= 0)
6447  *		process_page(ring_buffer_read_page_data(rpage), ret);
6448  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6449  *
6450  * When @full is set, the function will not return true unless
6451  * the writer is off the reader page.
6452  *
6453  * Note: it is up to the calling functions to handle sleeps and wakeups.
6454  *  The ring buffer can be used anywhere in the kernel and can not
6455  *  blindly call wake_up. The layer that uses the ring buffer must be
6456  *  responsible for that.
6457  *
6458  * Returns:
6459  *  >=0 if data has been transferred, returns the offset of consumed data.
6460  *  <0 if no data has been transferred.
6461  */
6462 int ring_buffer_read_page(struct trace_buffer *buffer,
6463 			  struct buffer_data_read_page *data_page,
6464 			  size_t len, int cpu, int full)
6465 {
6466 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6467 	struct ring_buffer_event *event;
6468 	struct buffer_data_page *bpage;
6469 	struct buffer_page *reader;
6470 	unsigned long missed_events;
6471 	unsigned long flags;
6472 	unsigned int commit;
6473 	unsigned int read;
6474 	u64 save_timestamp;
6475 	int ret = -1;
6476 
6477 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6478 		goto out;
6479 
6480 	/*
6481 	 * If len is not big enough to hold the page header, then
6482 	 * we can not copy anything.
6483 	 */
6484 	if (len <= BUF_PAGE_HDR_SIZE)
6485 		goto out;
6486 
6487 	len -= BUF_PAGE_HDR_SIZE;
6488 
6489 	if (!data_page || !data_page->data)
6490 		goto out;
6491 	if (data_page->order != buffer->subbuf_order)
6492 		goto out;
6493 
6494 	bpage = data_page->data;
6495 	if (!bpage)
6496 		goto out;
6497 
6498 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6499 
6500 	reader = rb_get_reader_page(cpu_buffer);
6501 	if (!reader)
6502 		goto out_unlock;
6503 
6504 	event = rb_reader_event(cpu_buffer);
6505 
6506 	read = reader->read;
6507 	commit = rb_page_size(reader);
6508 
6509 	/* Check if any events were dropped */
6510 	missed_events = cpu_buffer->lost_events;
6511 
6512 	/*
6513 	 * If this page has been partially read or
6514 	 * if len is not big enough to read the rest of the page or
6515 	 * a writer is still on the page, then
6516 	 * we must copy the data from the page to the buffer.
6517 	 * Otherwise, we can simply swap the page with the one passed in.
6518 	 */
6519 	if (read || (len < (commit - read)) ||
6520 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6521 	    cpu_buffer->mapped) {
6522 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6523 		unsigned int rpos = read;
6524 		unsigned int pos = 0;
6525 		unsigned int size;
6526 
6527 		/*
6528 		 * If a full page is expected, this can still be returned
6529 		 * if there's been a previous partial read and the
6530 		 * rest of the page can be read and the commit page is off
6531 		 * the reader page.
6532 		 */
6533 		if (full &&
6534 		    (!read || (len < (commit - read)) ||
6535 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6536 			goto out_unlock;
6537 
6538 		if (len > (commit - read))
6539 			len = (commit - read);
6540 
6541 		/* Always keep the time extend and data together */
6542 		size = rb_event_ts_length(event);
6543 
6544 		if (len < size)
6545 			goto out_unlock;
6546 
6547 		/* save the current timestamp, since the user will need it */
6548 		save_timestamp = cpu_buffer->read_stamp;
6549 
6550 		/* Need to copy one event at a time */
6551 		do {
6552 			/* We need the size of one event, because
6553 			 * rb_advance_reader only advances by one event,
6554 			 * whereas rb_event_ts_length may include the size of
6555 			 * one or two events.
6556 			 * We have already ensured there's enough space if this
6557 			 * is a time extend. */
6558 			size = rb_event_length(event);
6559 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6560 
6561 			len -= size;
6562 
6563 			rb_advance_reader(cpu_buffer);
6564 			rpos = reader->read;
6565 			pos += size;
6566 
6567 			if (rpos >= commit)
6568 				break;
6569 
6570 			event = rb_reader_event(cpu_buffer);
6571 			/* Always keep the time extend and data together */
6572 			size = rb_event_ts_length(event);
6573 		} while (len >= size);
6574 
6575 		/* update bpage */
6576 		local_set(&bpage->commit, pos);
6577 		bpage->time_stamp = save_timestamp;
6578 
6579 		/* we copied everything to the beginning */
6580 		read = 0;
6581 	} else {
6582 		/* update the entry counter */
6583 		cpu_buffer->read += rb_page_entries(reader);
6584 		cpu_buffer->read_bytes += rb_page_size(reader);
6585 
6586 		/* swap the pages */
6587 		rb_init_page(bpage);
6588 		bpage = reader->page;
6589 		reader->page = data_page->data;
6590 		local_set(&reader->write, 0);
6591 		local_set(&reader->entries, 0);
6592 		reader->read = 0;
6593 		data_page->data = bpage;
6594 
6595 		/*
6596 		 * Use the real_end for the data size,
6597 		 * This gives us a chance to store the lost events
6598 		 * on the page.
6599 		 */
6600 		if (reader->real_end)
6601 			local_set(&bpage->commit, reader->real_end);
6602 	}
6603 	ret = read;
6604 
6605 	cpu_buffer->lost_events = 0;
6606 
6607 	commit = local_read(&bpage->commit);
6608 	/*
6609 	 * Set a flag in the commit field if we lost events
6610 	 */
6611 	if (missed_events) {
6612 		/* If there is room at the end of the page to save the
6613 		 * missed events, then record it there.
6614 		 */
6615 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6616 			memcpy(&bpage->data[commit], &missed_events,
6617 			       sizeof(missed_events));
6618 			local_add(RB_MISSED_STORED, &bpage->commit);
6619 			commit += sizeof(missed_events);
6620 		}
6621 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6622 	}
6623 
6624 	/*
6625 	 * This page may be off to user land. Zero it out here.
6626 	 */
6627 	if (commit < buffer->subbuf_size)
6628 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6629 
6630  out_unlock:
6631 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6632 
6633  out:
6634 	return ret;
6635 }
6636 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6637 
6638 /**
6639  * ring_buffer_read_page_data - get pointer to the data in the page.
6640  * @page:  the page to get the data from
6641  *
6642  * Returns pointer to the actual data in this page.
6643  */
6644 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6645 {
6646 	return page->data;
6647 }
6648 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6649 
6650 /**
6651  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6652  * @buffer: the buffer to get the sub buffer size from
6653  *
6654  * Returns size of the sub buffer, in bytes.
6655  */
6656 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6657 {
6658 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6659 }
6660 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6661 
6662 /**
6663  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6664  * @buffer: The ring_buffer to get the system sub page order from
6665  *
6666  * By default, one ring buffer sub page equals to one system page. This parameter
6667  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6668  * extended, but must be an order of system page size.
6669  *
6670  * Returns the order of buffer sub page size, in system pages:
6671  * 0 means the sub buffer size is 1 system page and so forth.
6672  * In case of an error < 0 is returned.
6673  */
6674 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6675 {
6676 	if (!buffer)
6677 		return -EINVAL;
6678 
6679 	return buffer->subbuf_order;
6680 }
6681 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6682 
6683 /**
6684  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6685  * @buffer: The ring_buffer to set the new page size.
6686  * @order: Order of the system pages in one sub buffer page
6687  *
6688  * By default, one ring buffer pages equals to one system page. This API can be
6689  * used to set new size of the ring buffer page. The size must be order of
6690  * system page size, that's why the input parameter @order is the order of
6691  * system pages that are allocated for one ring buffer page:
6692  *  0 - 1 system page
6693  *  1 - 2 system pages
6694  *  3 - 4 system pages
6695  *  ...
6696  *
6697  * Returns 0 on success or < 0 in case of an error.
6698  */
6699 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6700 {
6701 	struct ring_buffer_per_cpu *cpu_buffer;
6702 	struct buffer_page *bpage, *tmp;
6703 	int old_order, old_size;
6704 	int nr_pages;
6705 	int psize;
6706 	int err;
6707 	int cpu;
6708 
6709 	if (!buffer || order < 0)
6710 		return -EINVAL;
6711 
6712 	if (buffer->subbuf_order == order)
6713 		return 0;
6714 
6715 	psize = (1 << order) * PAGE_SIZE;
6716 	if (psize <= BUF_PAGE_HDR_SIZE)
6717 		return -EINVAL;
6718 
6719 	/* Size of a subbuf cannot be greater than the write counter */
6720 	if (psize > RB_WRITE_MASK + 1)
6721 		return -EINVAL;
6722 
6723 	old_order = buffer->subbuf_order;
6724 	old_size = buffer->subbuf_size;
6725 
6726 	/* prevent another thread from changing buffer sizes */
6727 	mutex_lock(&buffer->mutex);
6728 	atomic_inc(&buffer->record_disabled);
6729 
6730 	/* Make sure all commits have finished */
6731 	synchronize_rcu();
6732 
6733 	buffer->subbuf_order = order;
6734 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6735 
6736 	/* Make sure all new buffers are allocated, before deleting the old ones */
6737 	for_each_buffer_cpu(buffer, cpu) {
6738 
6739 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6740 			continue;
6741 
6742 		cpu_buffer = buffer->buffers[cpu];
6743 
6744 		if (cpu_buffer->mapped) {
6745 			err = -EBUSY;
6746 			goto error;
6747 		}
6748 
6749 		/* Update the number of pages to match the new size */
6750 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6751 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6752 
6753 		/* we need a minimum of two pages */
6754 		if (nr_pages < 2)
6755 			nr_pages = 2;
6756 
6757 		cpu_buffer->nr_pages_to_update = nr_pages;
6758 
6759 		/* Include the reader page */
6760 		nr_pages++;
6761 
6762 		/* Allocate the new size buffer */
6763 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6764 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6765 					&cpu_buffer->new_pages)) {
6766 			/* not enough memory for new pages */
6767 			err = -ENOMEM;
6768 			goto error;
6769 		}
6770 	}
6771 
6772 	for_each_buffer_cpu(buffer, cpu) {
6773 		struct buffer_data_page *old_free_data_page;
6774 		struct list_head old_pages;
6775 		unsigned long flags;
6776 
6777 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6778 			continue;
6779 
6780 		cpu_buffer = buffer->buffers[cpu];
6781 
6782 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6783 
6784 		/* Clear the head bit to make the link list normal to read */
6785 		rb_head_page_deactivate(cpu_buffer);
6786 
6787 		/*
6788 		 * Collect buffers from the cpu_buffer pages list and the
6789 		 * reader_page on old_pages, so they can be freed later when not
6790 		 * under a spinlock. The pages list is a linked list with no
6791 		 * head, adding old_pages turns it into a regular list with
6792 		 * old_pages being the head.
6793 		 */
6794 		list_add(&old_pages, cpu_buffer->pages);
6795 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6796 
6797 		/* One page was allocated for the reader page */
6798 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6799 						     struct buffer_page, list);
6800 		list_del_init(&cpu_buffer->reader_page->list);
6801 
6802 		/* Install the new pages, remove the head from the list */
6803 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6804 		list_del_init(&cpu_buffer->new_pages);
6805 		cpu_buffer->cnt++;
6806 
6807 		cpu_buffer->head_page
6808 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6809 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6810 
6811 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6812 		cpu_buffer->nr_pages_to_update = 0;
6813 
6814 		old_free_data_page = cpu_buffer->free_page;
6815 		cpu_buffer->free_page = NULL;
6816 
6817 		rb_head_page_activate(cpu_buffer);
6818 
6819 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6820 
6821 		/* Free old sub buffers */
6822 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6823 			list_del_init(&bpage->list);
6824 			free_buffer_page(bpage);
6825 		}
6826 		free_pages((unsigned long)old_free_data_page, old_order);
6827 
6828 		rb_check_pages(cpu_buffer);
6829 	}
6830 
6831 	atomic_dec(&buffer->record_disabled);
6832 	mutex_unlock(&buffer->mutex);
6833 
6834 	return 0;
6835 
6836 error:
6837 	buffer->subbuf_order = old_order;
6838 	buffer->subbuf_size = old_size;
6839 
6840 	atomic_dec(&buffer->record_disabled);
6841 	mutex_unlock(&buffer->mutex);
6842 
6843 	for_each_buffer_cpu(buffer, cpu) {
6844 		cpu_buffer = buffer->buffers[cpu];
6845 
6846 		if (!cpu_buffer->nr_pages_to_update)
6847 			continue;
6848 
6849 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6850 			list_del_init(&bpage->list);
6851 			free_buffer_page(bpage);
6852 		}
6853 	}
6854 
6855 	return err;
6856 }
6857 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6858 
6859 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6860 {
6861 	struct page *page;
6862 
6863 	if (cpu_buffer->meta_page)
6864 		return 0;
6865 
6866 	page = alloc_page(GFP_USER | __GFP_ZERO);
6867 	if (!page)
6868 		return -ENOMEM;
6869 
6870 	cpu_buffer->meta_page = page_to_virt(page);
6871 
6872 	return 0;
6873 }
6874 
6875 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6876 {
6877 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6878 
6879 	free_page(addr);
6880 	cpu_buffer->meta_page = NULL;
6881 }
6882 
6883 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6884 				   unsigned long *subbuf_ids)
6885 {
6886 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6887 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6888 	struct buffer_page *first_subbuf, *subbuf;
6889 	int id = 0;
6890 
6891 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6892 	cpu_buffer->reader_page->id = id++;
6893 
6894 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6895 	do {
6896 		if (WARN_ON(id >= nr_subbufs))
6897 			break;
6898 
6899 		subbuf_ids[id] = (unsigned long)subbuf->page;
6900 		subbuf->id = id;
6901 
6902 		rb_inc_page(&subbuf);
6903 		id++;
6904 	} while (subbuf != first_subbuf);
6905 
6906 	/* install subbuf ID to kern VA translation */
6907 	cpu_buffer->subbuf_ids = subbuf_ids;
6908 
6909 	meta->meta_struct_len = sizeof(*meta);
6910 	meta->nr_subbufs = nr_subbufs;
6911 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6912 	meta->meta_page_size = meta->subbuf_size;
6913 
6914 	rb_update_meta_page(cpu_buffer);
6915 }
6916 
6917 static struct ring_buffer_per_cpu *
6918 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6919 {
6920 	struct ring_buffer_per_cpu *cpu_buffer;
6921 
6922 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6923 		return ERR_PTR(-EINVAL);
6924 
6925 	cpu_buffer = buffer->buffers[cpu];
6926 
6927 	mutex_lock(&cpu_buffer->mapping_lock);
6928 
6929 	if (!cpu_buffer->user_mapped) {
6930 		mutex_unlock(&cpu_buffer->mapping_lock);
6931 		return ERR_PTR(-ENODEV);
6932 	}
6933 
6934 	return cpu_buffer;
6935 }
6936 
6937 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6938 {
6939 	mutex_unlock(&cpu_buffer->mapping_lock);
6940 }
6941 
6942 /*
6943  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6944  * to be set-up or torn-down.
6945  */
6946 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6947 			       bool inc)
6948 {
6949 	unsigned long flags;
6950 
6951 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6952 
6953 	/* mapped is always greater or equal to user_mapped */
6954 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6955 		return -EINVAL;
6956 
6957 	if (inc && cpu_buffer->mapped == UINT_MAX)
6958 		return -EBUSY;
6959 
6960 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6961 		return -EINVAL;
6962 
6963 	mutex_lock(&cpu_buffer->buffer->mutex);
6964 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6965 
6966 	if (inc) {
6967 		cpu_buffer->user_mapped++;
6968 		cpu_buffer->mapped++;
6969 	} else {
6970 		cpu_buffer->user_mapped--;
6971 		cpu_buffer->mapped--;
6972 	}
6973 
6974 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6975 	mutex_unlock(&cpu_buffer->buffer->mutex);
6976 
6977 	return 0;
6978 }
6979 
6980 /*
6981  *   +--------------+  pgoff == 0
6982  *   |   meta page  |
6983  *   +--------------+  pgoff == 1
6984  *   | subbuffer 0  |
6985  *   |              |
6986  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6987  *   | subbuffer 1  |
6988  *   |              |
6989  *         ...
6990  */
6991 #ifdef CONFIG_MMU
6992 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6993 			struct vm_area_struct *vma)
6994 {
6995 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6996 	unsigned int subbuf_pages, subbuf_order;
6997 	struct page **pages;
6998 	int p = 0, s = 0;
6999 	int err;
7000 
7001 	/* Refuse MP_PRIVATE or writable mappings */
7002 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7003 	    !(vma->vm_flags & VM_MAYSHARE))
7004 		return -EPERM;
7005 
7006 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7007 	subbuf_pages = 1 << subbuf_order;
7008 
7009 	if (subbuf_order && pgoff % subbuf_pages)
7010 		return -EINVAL;
7011 
7012 	/*
7013 	 * Make sure the mapping cannot become writable later. Also tell the VM
7014 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7015 	 */
7016 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7017 		     VM_MAYWRITE);
7018 
7019 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7020 
7021 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7022 	nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */
7023 
7024 	nr_vma_pages = vma_pages(vma);
7025 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7026 		return -EINVAL;
7027 
7028 	nr_pages = nr_vma_pages;
7029 
7030 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7031 	if (!pages)
7032 		return -ENOMEM;
7033 
7034 	if (!pgoff) {
7035 		unsigned long meta_page_padding;
7036 
7037 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7038 
7039 		/*
7040 		 * Pad with the zero-page to align the meta-page with the
7041 		 * sub-buffers.
7042 		 */
7043 		meta_page_padding = subbuf_pages - 1;
7044 		while (meta_page_padding-- && p < nr_pages) {
7045 			unsigned long __maybe_unused zero_addr =
7046 				vma->vm_start + (PAGE_SIZE * p);
7047 
7048 			pages[p++] = ZERO_PAGE(zero_addr);
7049 		}
7050 	} else {
7051 		/* Skip the meta-page */
7052 		pgoff -= subbuf_pages;
7053 
7054 		s += pgoff / subbuf_pages;
7055 	}
7056 
7057 	while (p < nr_pages) {
7058 		struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7059 		int off = 0;
7060 
7061 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7062 			err = -EINVAL;
7063 			goto out;
7064 		}
7065 
7066 		for (; off < (1 << (subbuf_order)); off++, page++) {
7067 			if (p >= nr_pages)
7068 				break;
7069 
7070 			pages[p++] = page;
7071 		}
7072 		s++;
7073 	}
7074 
7075 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7076 
7077 out:
7078 	kfree(pages);
7079 
7080 	return err;
7081 }
7082 #else
7083 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7084 			struct vm_area_struct *vma)
7085 {
7086 	return -EOPNOTSUPP;
7087 }
7088 #endif
7089 
7090 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7091 		    struct vm_area_struct *vma)
7092 {
7093 	struct ring_buffer_per_cpu *cpu_buffer;
7094 	unsigned long flags, *subbuf_ids;
7095 	int err = 0;
7096 
7097 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7098 		return -EINVAL;
7099 
7100 	cpu_buffer = buffer->buffers[cpu];
7101 
7102 	mutex_lock(&cpu_buffer->mapping_lock);
7103 
7104 	if (cpu_buffer->user_mapped) {
7105 		err = __rb_map_vma(cpu_buffer, vma);
7106 		if (!err)
7107 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7108 		mutex_unlock(&cpu_buffer->mapping_lock);
7109 		return err;
7110 	}
7111 
7112 	/* prevent another thread from changing buffer/sub-buffer sizes */
7113 	mutex_lock(&buffer->mutex);
7114 
7115 	err = rb_alloc_meta_page(cpu_buffer);
7116 	if (err)
7117 		goto unlock;
7118 
7119 	/* subbuf_ids include the reader while nr_pages does not */
7120 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7121 	if (!subbuf_ids) {
7122 		rb_free_meta_page(cpu_buffer);
7123 		err = -ENOMEM;
7124 		goto unlock;
7125 	}
7126 
7127 	atomic_inc(&cpu_buffer->resize_disabled);
7128 
7129 	/*
7130 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7131 	 * assigned.
7132 	 */
7133 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7134 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7135 
7136 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7137 
7138 	err = __rb_map_vma(cpu_buffer, vma);
7139 	if (!err) {
7140 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7141 		/* This is the first time it is mapped by user */
7142 		cpu_buffer->mapped++;
7143 		cpu_buffer->user_mapped = 1;
7144 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7145 	} else {
7146 		kfree(cpu_buffer->subbuf_ids);
7147 		cpu_buffer->subbuf_ids = NULL;
7148 		rb_free_meta_page(cpu_buffer);
7149 	}
7150 
7151 unlock:
7152 	mutex_unlock(&buffer->mutex);
7153 	mutex_unlock(&cpu_buffer->mapping_lock);
7154 
7155 	return err;
7156 }
7157 
7158 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7159 {
7160 	struct ring_buffer_per_cpu *cpu_buffer;
7161 	unsigned long flags;
7162 	int err = 0;
7163 
7164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7165 		return -EINVAL;
7166 
7167 	cpu_buffer = buffer->buffers[cpu];
7168 
7169 	mutex_lock(&cpu_buffer->mapping_lock);
7170 
7171 	if (!cpu_buffer->user_mapped) {
7172 		err = -ENODEV;
7173 		goto out;
7174 	} else if (cpu_buffer->user_mapped > 1) {
7175 		__rb_inc_dec_mapped(cpu_buffer, false);
7176 		goto out;
7177 	}
7178 
7179 	mutex_lock(&buffer->mutex);
7180 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7181 
7182 	/* This is the last user space mapping */
7183 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7184 		cpu_buffer->mapped--;
7185 	cpu_buffer->user_mapped = 0;
7186 
7187 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7188 
7189 	kfree(cpu_buffer->subbuf_ids);
7190 	cpu_buffer->subbuf_ids = NULL;
7191 	rb_free_meta_page(cpu_buffer);
7192 	atomic_dec(&cpu_buffer->resize_disabled);
7193 
7194 	mutex_unlock(&buffer->mutex);
7195 
7196 out:
7197 	mutex_unlock(&cpu_buffer->mapping_lock);
7198 
7199 	return err;
7200 }
7201 
7202 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7203 {
7204 	struct ring_buffer_per_cpu *cpu_buffer;
7205 	struct buffer_page *reader;
7206 	unsigned long missed_events;
7207 	unsigned long reader_size;
7208 	unsigned long flags;
7209 
7210 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7211 	if (IS_ERR(cpu_buffer))
7212 		return (int)PTR_ERR(cpu_buffer);
7213 
7214 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7215 
7216 consume:
7217 	if (rb_per_cpu_empty(cpu_buffer))
7218 		goto out;
7219 
7220 	reader_size = rb_page_size(cpu_buffer->reader_page);
7221 
7222 	/*
7223 	 * There are data to be read on the current reader page, we can
7224 	 * return to the caller. But before that, we assume the latter will read
7225 	 * everything. Let's update the kernel reader accordingly.
7226 	 */
7227 	if (cpu_buffer->reader_page->read < reader_size) {
7228 		while (cpu_buffer->reader_page->read < reader_size)
7229 			rb_advance_reader(cpu_buffer);
7230 		goto out;
7231 	}
7232 
7233 	reader = rb_get_reader_page(cpu_buffer);
7234 	if (WARN_ON(!reader))
7235 		goto out;
7236 
7237 	/* Check if any events were dropped */
7238 	missed_events = cpu_buffer->lost_events;
7239 
7240 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7241 		if (missed_events) {
7242 			struct buffer_data_page *bpage = reader->page;
7243 			unsigned int commit;
7244 			/*
7245 			 * Use the real_end for the data size,
7246 			 * This gives us a chance to store the lost events
7247 			 * on the page.
7248 			 */
7249 			if (reader->real_end)
7250 				local_set(&bpage->commit, reader->real_end);
7251 			/*
7252 			 * If there is room at the end of the page to save the
7253 			 * missed events, then record it there.
7254 			 */
7255 			commit = rb_page_size(reader);
7256 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7257 				memcpy(&bpage->data[commit], &missed_events,
7258 				       sizeof(missed_events));
7259 				local_add(RB_MISSED_STORED, &bpage->commit);
7260 			}
7261 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7262 		}
7263 	} else {
7264 		/*
7265 		 * There really shouldn't be any missed events if the commit
7266 		 * is on the reader page.
7267 		 */
7268 		WARN_ON_ONCE(missed_events);
7269 	}
7270 
7271 	cpu_buffer->lost_events = 0;
7272 
7273 	goto consume;
7274 
7275 out:
7276 	/* Some archs do not have data cache coherency between kernel and user-space */
7277 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7278 
7279 	rb_update_meta_page(cpu_buffer);
7280 
7281 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7282 	rb_put_mapped_buffer(cpu_buffer);
7283 
7284 	return 0;
7285 }
7286 
7287 /*
7288  * We only allocate new buffers, never free them if the CPU goes down.
7289  * If we were to free the buffer, then the user would lose any trace that was in
7290  * the buffer.
7291  */
7292 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7293 {
7294 	struct trace_buffer *buffer;
7295 	long nr_pages_same;
7296 	int cpu_i;
7297 	unsigned long nr_pages;
7298 
7299 	buffer = container_of(node, struct trace_buffer, node);
7300 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7301 		return 0;
7302 
7303 	nr_pages = 0;
7304 	nr_pages_same = 1;
7305 	/* check if all cpu sizes are same */
7306 	for_each_buffer_cpu(buffer, cpu_i) {
7307 		/* fill in the size from first enabled cpu */
7308 		if (nr_pages == 0)
7309 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7310 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7311 			nr_pages_same = 0;
7312 			break;
7313 		}
7314 	}
7315 	/* allocate minimum pages, user can later expand it */
7316 	if (!nr_pages_same)
7317 		nr_pages = 2;
7318 	buffer->buffers[cpu] =
7319 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7320 	if (!buffer->buffers[cpu]) {
7321 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7322 		     cpu);
7323 		return -ENOMEM;
7324 	}
7325 	smp_wmb();
7326 	cpumask_set_cpu(cpu, buffer->cpumask);
7327 	return 0;
7328 }
7329 
7330 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7331 /*
7332  * This is a basic integrity check of the ring buffer.
7333  * Late in the boot cycle this test will run when configured in.
7334  * It will kick off a thread per CPU that will go into a loop
7335  * writing to the per cpu ring buffer various sizes of data.
7336  * Some of the data will be large items, some small.
7337  *
7338  * Another thread is created that goes into a spin, sending out
7339  * IPIs to the other CPUs to also write into the ring buffer.
7340  * this is to test the nesting ability of the buffer.
7341  *
7342  * Basic stats are recorded and reported. If something in the
7343  * ring buffer should happen that's not expected, a big warning
7344  * is displayed and all ring buffers are disabled.
7345  */
7346 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7347 
7348 struct rb_test_data {
7349 	struct trace_buffer *buffer;
7350 	unsigned long		events;
7351 	unsigned long		bytes_written;
7352 	unsigned long		bytes_alloc;
7353 	unsigned long		bytes_dropped;
7354 	unsigned long		events_nested;
7355 	unsigned long		bytes_written_nested;
7356 	unsigned long		bytes_alloc_nested;
7357 	unsigned long		bytes_dropped_nested;
7358 	int			min_size_nested;
7359 	int			max_size_nested;
7360 	int			max_size;
7361 	int			min_size;
7362 	int			cpu;
7363 	int			cnt;
7364 };
7365 
7366 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7367 
7368 /* 1 meg per cpu */
7369 #define RB_TEST_BUFFER_SIZE	1048576
7370 
7371 static char rb_string[] __initdata =
7372 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7373 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7374 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7375 
7376 static bool rb_test_started __initdata;
7377 
7378 struct rb_item {
7379 	int size;
7380 	char str[];
7381 };
7382 
7383 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7384 {
7385 	struct ring_buffer_event *event;
7386 	struct rb_item *item;
7387 	bool started;
7388 	int event_len;
7389 	int size;
7390 	int len;
7391 	int cnt;
7392 
7393 	/* Have nested writes different that what is written */
7394 	cnt = data->cnt + (nested ? 27 : 0);
7395 
7396 	/* Multiply cnt by ~e, to make some unique increment */
7397 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7398 
7399 	len = size + sizeof(struct rb_item);
7400 
7401 	started = rb_test_started;
7402 	/* read rb_test_started before checking buffer enabled */
7403 	smp_rmb();
7404 
7405 	event = ring_buffer_lock_reserve(data->buffer, len);
7406 	if (!event) {
7407 		/* Ignore dropped events before test starts. */
7408 		if (started) {
7409 			if (nested)
7410 				data->bytes_dropped += len;
7411 			else
7412 				data->bytes_dropped_nested += len;
7413 		}
7414 		return len;
7415 	}
7416 
7417 	event_len = ring_buffer_event_length(event);
7418 
7419 	if (RB_WARN_ON(data->buffer, event_len < len))
7420 		goto out;
7421 
7422 	item = ring_buffer_event_data(event);
7423 	item->size = size;
7424 	memcpy(item->str, rb_string, size);
7425 
7426 	if (nested) {
7427 		data->bytes_alloc_nested += event_len;
7428 		data->bytes_written_nested += len;
7429 		data->events_nested++;
7430 		if (!data->min_size_nested || len < data->min_size_nested)
7431 			data->min_size_nested = len;
7432 		if (len > data->max_size_nested)
7433 			data->max_size_nested = len;
7434 	} else {
7435 		data->bytes_alloc += event_len;
7436 		data->bytes_written += len;
7437 		data->events++;
7438 		if (!data->min_size || len < data->min_size)
7439 			data->max_size = len;
7440 		if (len > data->max_size)
7441 			data->max_size = len;
7442 	}
7443 
7444  out:
7445 	ring_buffer_unlock_commit(data->buffer);
7446 
7447 	return 0;
7448 }
7449 
7450 static __init int rb_test(void *arg)
7451 {
7452 	struct rb_test_data *data = arg;
7453 
7454 	while (!kthread_should_stop()) {
7455 		rb_write_something(data, false);
7456 		data->cnt++;
7457 
7458 		set_current_state(TASK_INTERRUPTIBLE);
7459 		/* Now sleep between a min of 100-300us and a max of 1ms */
7460 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7461 	}
7462 
7463 	return 0;
7464 }
7465 
7466 static __init void rb_ipi(void *ignore)
7467 {
7468 	struct rb_test_data *data;
7469 	int cpu = smp_processor_id();
7470 
7471 	data = &rb_data[cpu];
7472 	rb_write_something(data, true);
7473 }
7474 
7475 static __init int rb_hammer_test(void *arg)
7476 {
7477 	while (!kthread_should_stop()) {
7478 
7479 		/* Send an IPI to all cpus to write data! */
7480 		smp_call_function(rb_ipi, NULL, 1);
7481 		/* No sleep, but for non preempt, let others run */
7482 		schedule();
7483 	}
7484 
7485 	return 0;
7486 }
7487 
7488 static __init int test_ringbuffer(void)
7489 {
7490 	struct task_struct *rb_hammer;
7491 	struct trace_buffer *buffer;
7492 	int cpu;
7493 	int ret = 0;
7494 
7495 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7496 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7497 		return 0;
7498 	}
7499 
7500 	pr_info("Running ring buffer tests...\n");
7501 
7502 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7503 	if (WARN_ON(!buffer))
7504 		return 0;
7505 
7506 	/* Disable buffer so that threads can't write to it yet */
7507 	ring_buffer_record_off(buffer);
7508 
7509 	for_each_online_cpu(cpu) {
7510 		rb_data[cpu].buffer = buffer;
7511 		rb_data[cpu].cpu = cpu;
7512 		rb_data[cpu].cnt = cpu;
7513 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7514 						     cpu, "rbtester/%u");
7515 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7516 			pr_cont("FAILED\n");
7517 			ret = PTR_ERR(rb_threads[cpu]);
7518 			goto out_free;
7519 		}
7520 	}
7521 
7522 	/* Now create the rb hammer! */
7523 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7524 	if (WARN_ON(IS_ERR(rb_hammer))) {
7525 		pr_cont("FAILED\n");
7526 		ret = PTR_ERR(rb_hammer);
7527 		goto out_free;
7528 	}
7529 
7530 	ring_buffer_record_on(buffer);
7531 	/*
7532 	 * Show buffer is enabled before setting rb_test_started.
7533 	 * Yes there's a small race window where events could be
7534 	 * dropped and the thread wont catch it. But when a ring
7535 	 * buffer gets enabled, there will always be some kind of
7536 	 * delay before other CPUs see it. Thus, we don't care about
7537 	 * those dropped events. We care about events dropped after
7538 	 * the threads see that the buffer is active.
7539 	 */
7540 	smp_wmb();
7541 	rb_test_started = true;
7542 
7543 	set_current_state(TASK_INTERRUPTIBLE);
7544 	/* Just run for 10 seconds */;
7545 	schedule_timeout(10 * HZ);
7546 
7547 	kthread_stop(rb_hammer);
7548 
7549  out_free:
7550 	for_each_online_cpu(cpu) {
7551 		if (!rb_threads[cpu])
7552 			break;
7553 		kthread_stop(rb_threads[cpu]);
7554 	}
7555 	if (ret) {
7556 		ring_buffer_free(buffer);
7557 		return ret;
7558 	}
7559 
7560 	/* Report! */
7561 	pr_info("finished\n");
7562 	for_each_online_cpu(cpu) {
7563 		struct ring_buffer_event *event;
7564 		struct rb_test_data *data = &rb_data[cpu];
7565 		struct rb_item *item;
7566 		unsigned long total_events;
7567 		unsigned long total_dropped;
7568 		unsigned long total_written;
7569 		unsigned long total_alloc;
7570 		unsigned long total_read = 0;
7571 		unsigned long total_size = 0;
7572 		unsigned long total_len = 0;
7573 		unsigned long total_lost = 0;
7574 		unsigned long lost;
7575 		int big_event_size;
7576 		int small_event_size;
7577 
7578 		ret = -1;
7579 
7580 		total_events = data->events + data->events_nested;
7581 		total_written = data->bytes_written + data->bytes_written_nested;
7582 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7583 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7584 
7585 		big_event_size = data->max_size + data->max_size_nested;
7586 		small_event_size = data->min_size + data->min_size_nested;
7587 
7588 		pr_info("CPU %d:\n", cpu);
7589 		pr_info("              events:    %ld\n", total_events);
7590 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7591 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7592 		pr_info("       written bytes:    %ld\n", total_written);
7593 		pr_info("       biggest event:    %d\n", big_event_size);
7594 		pr_info("      smallest event:    %d\n", small_event_size);
7595 
7596 		if (RB_WARN_ON(buffer, total_dropped))
7597 			break;
7598 
7599 		ret = 0;
7600 
7601 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7602 			total_lost += lost;
7603 			item = ring_buffer_event_data(event);
7604 			total_len += ring_buffer_event_length(event);
7605 			total_size += item->size + sizeof(struct rb_item);
7606 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7607 				pr_info("FAILED!\n");
7608 				pr_info("buffer had: %.*s\n", item->size, item->str);
7609 				pr_info("expected:   %.*s\n", item->size, rb_string);
7610 				RB_WARN_ON(buffer, 1);
7611 				ret = -1;
7612 				break;
7613 			}
7614 			total_read++;
7615 		}
7616 		if (ret)
7617 			break;
7618 
7619 		ret = -1;
7620 
7621 		pr_info("         read events:   %ld\n", total_read);
7622 		pr_info("         lost events:   %ld\n", total_lost);
7623 		pr_info("        total events:   %ld\n", total_lost + total_read);
7624 		pr_info("  recorded len bytes:   %ld\n", total_len);
7625 		pr_info(" recorded size bytes:   %ld\n", total_size);
7626 		if (total_lost) {
7627 			pr_info(" With dropped events, record len and size may not match\n"
7628 				" alloced and written from above\n");
7629 		} else {
7630 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7631 				       total_size != total_written))
7632 				break;
7633 		}
7634 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7635 			break;
7636 
7637 		ret = 0;
7638 	}
7639 	if (!ret)
7640 		pr_info("Ring buffer PASSED!\n");
7641 
7642 	ring_buffer_free(buffer);
7643 	return 0;
7644 }
7645 
7646 late_initcall(test_ringbuffer);
7647 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7648