xref: /linux/kernel/trace/ring_buffer.c (revision 7a3a401874bea02f568aa416ac29170d8cde0dc2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 static void free_buffer_page(struct buffer_page *bpage)
358 {
359 	free_page((unsigned long)bpage->page);
360 	kfree(bpage);
361 }
362 
363 /*
364  * We need to fit the time_stamp delta into 27 bits.
365  */
366 static inline int test_time_stamp(u64 delta)
367 {
368 	if (delta & TS_DELTA_TEST)
369 		return 1;
370 	return 0;
371 }
372 
373 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
374 
375 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
376 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
377 
378 int ring_buffer_print_page_header(struct trace_seq *s)
379 {
380 	struct buffer_data_page field;
381 
382 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
383 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
384 			 (unsigned int)sizeof(field.time_stamp),
385 			 (unsigned int)is_signed_type(u64));
386 
387 	trace_seq_printf(s, "\tfield: local_t commit;\t"
388 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
389 			 (unsigned int)offsetof(typeof(field), commit),
390 			 (unsigned int)sizeof(field.commit),
391 			 (unsigned int)is_signed_type(long));
392 
393 	trace_seq_printf(s, "\tfield: int overwrite;\t"
394 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 			 (unsigned int)offsetof(typeof(field), commit),
396 			 1,
397 			 (unsigned int)is_signed_type(long));
398 
399 	trace_seq_printf(s, "\tfield: char data;\t"
400 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)offsetof(typeof(field), data),
402 			 (unsigned int)BUF_PAGE_SIZE,
403 			 (unsigned int)is_signed_type(char));
404 
405 	return !trace_seq_has_overflowed(s);
406 }
407 
408 struct rb_irq_work {
409 	struct irq_work			work;
410 	wait_queue_head_t		waiters;
411 	wait_queue_head_t		full_waiters;
412 	long				wait_index;
413 	bool				waiters_pending;
414 	bool				full_waiters_pending;
415 	bool				wakeup_full;
416 };
417 
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422 	u64			ts;
423 	u64			delta;
424 	u64			before;
425 	u64			after;
426 	unsigned long		length;
427 	struct buffer_page	*tail_page;
428 	int			add_timestamp;
429 };
430 
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439 	RB_ADD_STAMP_NONE		= 0,
440 	RB_ADD_STAMP_EXTEND		= BIT(1),
441 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442 	RB_ADD_STAMP_FORCE		= BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_TRANSITION,
456 	RB_CTX_NMI,
457 	RB_CTX_IRQ,
458 	RB_CTX_SOFTIRQ,
459 	RB_CTX_NORMAL,
460 	RB_CTX_MAX
461 };
462 
463 #if BITS_PER_LONG == 32
464 #define RB_TIME_32
465 #endif
466 
467 /* To test on 64 bit machines */
468 //#define RB_TIME_32
469 
470 #ifdef RB_TIME_32
471 
472 struct rb_time_struct {
473 	local_t		cnt;
474 	local_t		top;
475 	local_t		bottom;
476 	local_t		msb;
477 };
478 #else
479 #include <asm/local64.h>
480 struct rb_time_struct {
481 	local64_t	time;
482 };
483 #endif
484 typedef struct rb_time_struct rb_time_t;
485 
486 #define MAX_NEST	5
487 
488 /*
489  * head_page == tail_page && head == tail then buffer is empty.
490  */
491 struct ring_buffer_per_cpu {
492 	int				cpu;
493 	atomic_t			record_disabled;
494 	atomic_t			resize_disabled;
495 	struct trace_buffer	*buffer;
496 	raw_spinlock_t			reader_lock;	/* serialize readers */
497 	arch_spinlock_t			lock;
498 	struct lock_class_key		lock_key;
499 	struct buffer_data_page		*free_page;
500 	unsigned long			nr_pages;
501 	unsigned int			current_context;
502 	struct list_head		*pages;
503 	struct buffer_page		*head_page;	/* read from head */
504 	struct buffer_page		*tail_page;	/* write to tail */
505 	struct buffer_page		*commit_page;	/* committed pages */
506 	struct buffer_page		*reader_page;
507 	unsigned long			lost_events;
508 	unsigned long			last_overrun;
509 	unsigned long			nest;
510 	local_t				entries_bytes;
511 	local_t				entries;
512 	local_t				overrun;
513 	local_t				commit_overrun;
514 	local_t				dropped_events;
515 	local_t				committing;
516 	local_t				commits;
517 	local_t				pages_touched;
518 	local_t				pages_lost;
519 	local_t				pages_read;
520 	long				last_pages_touch;
521 	size_t				shortest_full;
522 	unsigned long			read;
523 	unsigned long			read_bytes;
524 	rb_time_t			write_stamp;
525 	rb_time_t			before_stamp;
526 	u64				event_stamp[MAX_NEST];
527 	u64				read_stamp;
528 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
529 	long				nr_pages_to_update;
530 	struct list_head		new_pages; /* new pages to add */
531 	struct work_struct		update_pages_work;
532 	struct completion		update_done;
533 
534 	struct rb_irq_work		irq_work;
535 };
536 
537 struct trace_buffer {
538 	unsigned			flags;
539 	int				cpus;
540 	atomic_t			record_disabled;
541 	cpumask_var_t			cpumask;
542 
543 	struct lock_class_key		*reader_lock_key;
544 
545 	struct mutex			mutex;
546 
547 	struct ring_buffer_per_cpu	**buffers;
548 
549 	struct hlist_node		node;
550 	u64				(*clock)(void);
551 
552 	struct rb_irq_work		irq_work;
553 	bool				time_stamp_abs;
554 };
555 
556 struct ring_buffer_iter {
557 	struct ring_buffer_per_cpu	*cpu_buffer;
558 	unsigned long			head;
559 	unsigned long			next_event;
560 	struct buffer_page		*head_page;
561 	struct buffer_page		*cache_reader_page;
562 	unsigned long			cache_read;
563 	u64				read_stamp;
564 	u64				page_stamp;
565 	struct ring_buffer_event	*event;
566 	int				missed_events;
567 };
568 
569 #ifdef RB_TIME_32
570 
571 /*
572  * On 32 bit machines, local64_t is very expensive. As the ring
573  * buffer doesn't need all the features of a true 64 bit atomic,
574  * on 32 bit, it uses these functions (64 still uses local64_t).
575  *
576  * For the ring buffer, 64 bit required operations for the time is
577  * the following:
578  *
579  *  - Reads may fail if it interrupted a modification of the time stamp.
580  *      It will succeed if it did not interrupt another write even if
581  *      the read itself is interrupted by a write.
582  *      It returns whether it was successful or not.
583  *
584  *  - Writes always succeed and will overwrite other writes and writes
585  *      that were done by events interrupting the current write.
586  *
587  *  - A write followed by a read of the same time stamp will always succeed,
588  *      but may not contain the same value.
589  *
590  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
591  *      Other than that, it acts like a normal cmpxchg.
592  *
593  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
594  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
595  *
596  * The two most significant bits of each half holds a 2 bit counter (0-3).
597  * Each update will increment this counter by one.
598  * When reading the top and bottom, if the two counter bits match then the
599  *  top and bottom together make a valid 60 bit number.
600  */
601 #define RB_TIME_SHIFT	30
602 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
603 #define RB_TIME_MSB_SHIFT	 60
604 
605 static inline int rb_time_cnt(unsigned long val)
606 {
607 	return (val >> RB_TIME_SHIFT) & 3;
608 }
609 
610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
611 {
612 	u64 val;
613 
614 	val = top & RB_TIME_VAL_MASK;
615 	val <<= RB_TIME_SHIFT;
616 	val |= bottom & RB_TIME_VAL_MASK;
617 
618 	return val;
619 }
620 
621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
622 {
623 	unsigned long top, bottom, msb;
624 	unsigned long c;
625 
626 	/*
627 	 * If the read is interrupted by a write, then the cnt will
628 	 * be different. Loop until both top and bottom have been read
629 	 * without interruption.
630 	 */
631 	do {
632 		c = local_read(&t->cnt);
633 		top = local_read(&t->top);
634 		bottom = local_read(&t->bottom);
635 		msb = local_read(&t->msb);
636 	} while (c != local_read(&t->cnt));
637 
638 	*cnt = rb_time_cnt(top);
639 
640 	/* If top and bottom counts don't match, this interrupted a write */
641 	if (*cnt != rb_time_cnt(bottom))
642 		return false;
643 
644 	/* The shift to msb will lose its cnt bits */
645 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
646 	return true;
647 }
648 
649 static bool rb_time_read(rb_time_t *t, u64 *ret)
650 {
651 	unsigned long cnt;
652 
653 	return __rb_time_read(t, ret, &cnt);
654 }
655 
656 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
657 {
658 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
659 }
660 
661 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
662 				 unsigned long *msb)
663 {
664 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
665 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
666 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
667 }
668 
669 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
670 {
671 	val = rb_time_val_cnt(val, cnt);
672 	local_set(t, val);
673 }
674 
675 static void rb_time_set(rb_time_t *t, u64 val)
676 {
677 	unsigned long cnt, top, bottom, msb;
678 
679 	rb_time_split(val, &top, &bottom, &msb);
680 
681 	/* Writes always succeed with a valid number even if it gets interrupted. */
682 	do {
683 		cnt = local_inc_return(&t->cnt);
684 		rb_time_val_set(&t->top, top, cnt);
685 		rb_time_val_set(&t->bottom, bottom, cnt);
686 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
687 	} while (cnt != local_read(&t->cnt));
688 }
689 
690 static inline bool
691 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
692 {
693 	unsigned long ret;
694 
695 	ret = local_cmpxchg(l, expect, set);
696 	return ret == expect;
697 }
698 
699 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
700 {
701 	unsigned long cnt, top, bottom, msb;
702 	unsigned long cnt2, top2, bottom2, msb2;
703 	u64 val;
704 
705 	/* The cmpxchg always fails if it interrupted an update */
706 	 if (!__rb_time_read(t, &val, &cnt2))
707 		 return false;
708 
709 	 if (val != expect)
710 		 return false;
711 
712 	 cnt = local_read(&t->cnt);
713 	 if ((cnt & 3) != cnt2)
714 		 return false;
715 
716 	 cnt2 = cnt + 1;
717 
718 	 rb_time_split(val, &top, &bottom, &msb);
719 	 top = rb_time_val_cnt(top, cnt);
720 	 bottom = rb_time_val_cnt(bottom, cnt);
721 
722 	 rb_time_split(set, &top2, &bottom2, &msb2);
723 	 top2 = rb_time_val_cnt(top2, cnt2);
724 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
725 
726 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
727 		return false;
728 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
729 		return false;
730 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
731 		return false;
732 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
733 		return false;
734 	return true;
735 }
736 
737 #else /* 64 bits */
738 
739 /* local64_t always succeeds */
740 
741 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
742 {
743 	*ret = local64_read(&t->time);
744 	return true;
745 }
746 static void rb_time_set(rb_time_t *t, u64 val)
747 {
748 	local64_set(&t->time, val);
749 }
750 
751 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
752 {
753 	u64 val;
754 	val = local64_cmpxchg(&t->time, expect, set);
755 	return val == expect;
756 }
757 #endif
758 
759 /*
760  * Enable this to make sure that the event passed to
761  * ring_buffer_event_time_stamp() is not committed and also
762  * is on the buffer that it passed in.
763  */
764 //#define RB_VERIFY_EVENT
765 #ifdef RB_VERIFY_EVENT
766 static struct list_head *rb_list_head(struct list_head *list);
767 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
768 			 void *event)
769 {
770 	struct buffer_page *page = cpu_buffer->commit_page;
771 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
772 	struct list_head *next;
773 	long commit, write;
774 	unsigned long addr = (unsigned long)event;
775 	bool done = false;
776 	int stop = 0;
777 
778 	/* Make sure the event exists and is not committed yet */
779 	do {
780 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
781 			done = true;
782 		commit = local_read(&page->page->commit);
783 		write = local_read(&page->write);
784 		if (addr >= (unsigned long)&page->page->data[commit] &&
785 		    addr < (unsigned long)&page->page->data[write])
786 			return;
787 
788 		next = rb_list_head(page->list.next);
789 		page = list_entry(next, struct buffer_page, list);
790 	} while (!done);
791 	WARN_ON_ONCE(1);
792 }
793 #else
794 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
795 			 void *event)
796 {
797 }
798 #endif
799 
800 /*
801  * The absolute time stamp drops the 5 MSBs and some clocks may
802  * require them. The rb_fix_abs_ts() will take a previous full
803  * time stamp, and add the 5 MSB of that time stamp on to the
804  * saved absolute time stamp. Then they are compared in case of
805  * the unlikely event that the latest time stamp incremented
806  * the 5 MSB.
807  */
808 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
809 {
810 	if (save_ts & TS_MSB) {
811 		abs |= save_ts & TS_MSB;
812 		/* Check for overflow */
813 		if (unlikely(abs < save_ts))
814 			abs += 1ULL << 59;
815 	}
816 	return abs;
817 }
818 
819 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
820 
821 /**
822  * ring_buffer_event_time_stamp - return the event's current time stamp
823  * @buffer: The buffer that the event is on
824  * @event: the event to get the time stamp of
825  *
826  * Note, this must be called after @event is reserved, and before it is
827  * committed to the ring buffer. And must be called from the same
828  * context where the event was reserved (normal, softirq, irq, etc).
829  *
830  * Returns the time stamp associated with the current event.
831  * If the event has an extended time stamp, then that is used as
832  * the time stamp to return.
833  * In the highly unlikely case that the event was nested more than
834  * the max nesting, then the write_stamp of the buffer is returned,
835  * otherwise  current time is returned, but that really neither of
836  * the last two cases should ever happen.
837  */
838 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
839 				 struct ring_buffer_event *event)
840 {
841 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
842 	unsigned int nest;
843 	u64 ts;
844 
845 	/* If the event includes an absolute time, then just use that */
846 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
847 		ts = rb_event_time_stamp(event);
848 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
849 	}
850 
851 	nest = local_read(&cpu_buffer->committing);
852 	verify_event(cpu_buffer, event);
853 	if (WARN_ON_ONCE(!nest))
854 		goto fail;
855 
856 	/* Read the current saved nesting level time stamp */
857 	if (likely(--nest < MAX_NEST))
858 		return cpu_buffer->event_stamp[nest];
859 
860 	/* Shouldn't happen, warn if it does */
861 	WARN_ONCE(1, "nest (%d) greater than max", nest);
862 
863  fail:
864 	/* Can only fail on 32 bit */
865 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
866 		/* Screw it, just read the current time */
867 		ts = rb_time_stamp(cpu_buffer->buffer);
868 
869 	return ts;
870 }
871 
872 /**
873  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
874  * @buffer: The ring_buffer to get the number of pages from
875  * @cpu: The cpu of the ring_buffer to get the number of pages from
876  *
877  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
878  */
879 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
880 {
881 	return buffer->buffers[cpu]->nr_pages;
882 }
883 
884 /**
885  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
886  * @buffer: The ring_buffer to get the number of pages from
887  * @cpu: The cpu of the ring_buffer to get the number of pages from
888  *
889  * Returns the number of pages that have content in the ring buffer.
890  */
891 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
892 {
893 	size_t read;
894 	size_t lost;
895 	size_t cnt;
896 
897 	read = local_read(&buffer->buffers[cpu]->pages_read);
898 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
899 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
900 
901 	if (WARN_ON_ONCE(cnt < lost))
902 		return 0;
903 
904 	cnt -= lost;
905 
906 	/* The reader can read an empty page, but not more than that */
907 	if (cnt < read) {
908 		WARN_ON_ONCE(read > cnt + 1);
909 		return 0;
910 	}
911 
912 	return cnt - read;
913 }
914 
915 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
916 {
917 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
918 	size_t nr_pages;
919 	size_t dirty;
920 
921 	nr_pages = cpu_buffer->nr_pages;
922 	if (!nr_pages || !full)
923 		return true;
924 
925 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
926 
927 	return (dirty * 100) > (full * nr_pages);
928 }
929 
930 /*
931  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
932  *
933  * Schedules a delayed work to wake up any task that is blocked on the
934  * ring buffer waiters queue.
935  */
936 static void rb_wake_up_waiters(struct irq_work *work)
937 {
938 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
939 
940 	wake_up_all(&rbwork->waiters);
941 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
942 		rbwork->wakeup_full = false;
943 		rbwork->full_waiters_pending = false;
944 		wake_up_all(&rbwork->full_waiters);
945 	}
946 }
947 
948 /**
949  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
950  * @buffer: The ring buffer to wake waiters on
951  *
952  * In the case of a file that represents a ring buffer is closing,
953  * it is prudent to wake up any waiters that are on this.
954  */
955 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
956 {
957 	struct ring_buffer_per_cpu *cpu_buffer;
958 	struct rb_irq_work *rbwork;
959 
960 	if (!buffer)
961 		return;
962 
963 	if (cpu == RING_BUFFER_ALL_CPUS) {
964 
965 		/* Wake up individual ones too. One level recursion */
966 		for_each_buffer_cpu(buffer, cpu)
967 			ring_buffer_wake_waiters(buffer, cpu);
968 
969 		rbwork = &buffer->irq_work;
970 	} else {
971 		if (WARN_ON_ONCE(!buffer->buffers))
972 			return;
973 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
974 			return;
975 
976 		cpu_buffer = buffer->buffers[cpu];
977 		/* The CPU buffer may not have been initialized yet */
978 		if (!cpu_buffer)
979 			return;
980 		rbwork = &cpu_buffer->irq_work;
981 	}
982 
983 	rbwork->wait_index++;
984 	/* make sure the waiters see the new index */
985 	smp_wmb();
986 
987 	rb_wake_up_waiters(&rbwork->work);
988 }
989 
990 /**
991  * ring_buffer_wait - wait for input to the ring buffer
992  * @buffer: buffer to wait on
993  * @cpu: the cpu buffer to wait on
994  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
995  *
996  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
997  * as data is added to any of the @buffer's cpu buffers. Otherwise
998  * it will wait for data to be added to a specific cpu buffer.
999  */
1000 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1001 {
1002 	struct ring_buffer_per_cpu *cpu_buffer;
1003 	DEFINE_WAIT(wait);
1004 	struct rb_irq_work *work;
1005 	long wait_index;
1006 	int ret = 0;
1007 
1008 	/*
1009 	 * Depending on what the caller is waiting for, either any
1010 	 * data in any cpu buffer, or a specific buffer, put the
1011 	 * caller on the appropriate wait queue.
1012 	 */
1013 	if (cpu == RING_BUFFER_ALL_CPUS) {
1014 		work = &buffer->irq_work;
1015 		/* Full only makes sense on per cpu reads */
1016 		full = 0;
1017 	} else {
1018 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1019 			return -ENODEV;
1020 		cpu_buffer = buffer->buffers[cpu];
1021 		work = &cpu_buffer->irq_work;
1022 	}
1023 
1024 	wait_index = READ_ONCE(work->wait_index);
1025 
1026 	while (true) {
1027 		if (full)
1028 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1029 		else
1030 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1031 
1032 		/*
1033 		 * The events can happen in critical sections where
1034 		 * checking a work queue can cause deadlocks.
1035 		 * After adding a task to the queue, this flag is set
1036 		 * only to notify events to try to wake up the queue
1037 		 * using irq_work.
1038 		 *
1039 		 * We don't clear it even if the buffer is no longer
1040 		 * empty. The flag only causes the next event to run
1041 		 * irq_work to do the work queue wake up. The worse
1042 		 * that can happen if we race with !trace_empty() is that
1043 		 * an event will cause an irq_work to try to wake up
1044 		 * an empty queue.
1045 		 *
1046 		 * There's no reason to protect this flag either, as
1047 		 * the work queue and irq_work logic will do the necessary
1048 		 * synchronization for the wake ups. The only thing
1049 		 * that is necessary is that the wake up happens after
1050 		 * a task has been queued. It's OK for spurious wake ups.
1051 		 */
1052 		if (full)
1053 			work->full_waiters_pending = true;
1054 		else
1055 			work->waiters_pending = true;
1056 
1057 		if (signal_pending(current)) {
1058 			ret = -EINTR;
1059 			break;
1060 		}
1061 
1062 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1063 			break;
1064 
1065 		if (cpu != RING_BUFFER_ALL_CPUS &&
1066 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1067 			unsigned long flags;
1068 			bool pagebusy;
1069 			bool done;
1070 
1071 			if (!full)
1072 				break;
1073 
1074 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1075 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1076 			done = !pagebusy && full_hit(buffer, cpu, full);
1077 
1078 			if (!cpu_buffer->shortest_full ||
1079 			    cpu_buffer->shortest_full > full)
1080 				cpu_buffer->shortest_full = full;
1081 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1082 			if (done)
1083 				break;
1084 		}
1085 
1086 		schedule();
1087 
1088 		/* Make sure to see the new wait index */
1089 		smp_rmb();
1090 		if (wait_index != work->wait_index)
1091 			break;
1092 	}
1093 
1094 	if (full)
1095 		finish_wait(&work->full_waiters, &wait);
1096 	else
1097 		finish_wait(&work->waiters, &wait);
1098 
1099 	return ret;
1100 }
1101 
1102 /**
1103  * ring_buffer_poll_wait - poll on buffer input
1104  * @buffer: buffer to wait on
1105  * @cpu: the cpu buffer to wait on
1106  * @filp: the file descriptor
1107  * @poll_table: The poll descriptor
1108  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1109  *
1110  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1111  * as data is added to any of the @buffer's cpu buffers. Otherwise
1112  * it will wait for data to be added to a specific cpu buffer.
1113  *
1114  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1115  * zero otherwise.
1116  */
1117 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1118 			  struct file *filp, poll_table *poll_table, int full)
1119 {
1120 	struct ring_buffer_per_cpu *cpu_buffer;
1121 	struct rb_irq_work *work;
1122 
1123 	if (cpu == RING_BUFFER_ALL_CPUS) {
1124 		work = &buffer->irq_work;
1125 		full = 0;
1126 	} else {
1127 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1128 			return -EINVAL;
1129 
1130 		cpu_buffer = buffer->buffers[cpu];
1131 		work = &cpu_buffer->irq_work;
1132 	}
1133 
1134 	if (full) {
1135 		poll_wait(filp, &work->full_waiters, poll_table);
1136 		work->full_waiters_pending = true;
1137 	} else {
1138 		poll_wait(filp, &work->waiters, poll_table);
1139 		work->waiters_pending = true;
1140 	}
1141 
1142 	/*
1143 	 * There's a tight race between setting the waiters_pending and
1144 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1145 	 * is set, the next event will wake the task up, but we can get stuck
1146 	 * if there's only a single event in.
1147 	 *
1148 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1149 	 * but adding a memory barrier to all events will cause too much of a
1150 	 * performance hit in the fast path.  We only need a memory barrier when
1151 	 * the buffer goes from empty to having content.  But as this race is
1152 	 * extremely small, and it's not a problem if another event comes in, we
1153 	 * will fix it later.
1154 	 */
1155 	smp_mb();
1156 
1157 	if (full)
1158 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1159 
1160 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1161 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1162 		return EPOLLIN | EPOLLRDNORM;
1163 	return 0;
1164 }
1165 
1166 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1167 #define RB_WARN_ON(b, cond)						\
1168 	({								\
1169 		int _____ret = unlikely(cond);				\
1170 		if (_____ret) {						\
1171 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1172 				struct ring_buffer_per_cpu *__b =	\
1173 					(void *)b;			\
1174 				atomic_inc(&__b->buffer->record_disabled); \
1175 			} else						\
1176 				atomic_inc(&b->record_disabled);	\
1177 			WARN_ON(1);					\
1178 		}							\
1179 		_____ret;						\
1180 	})
1181 
1182 /* Up this if you want to test the TIME_EXTENTS and normalization */
1183 #define DEBUG_SHIFT 0
1184 
1185 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1186 {
1187 	u64 ts;
1188 
1189 	/* Skip retpolines :-( */
1190 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1191 		ts = trace_clock_local();
1192 	else
1193 		ts = buffer->clock();
1194 
1195 	/* shift to debug/test normalization and TIME_EXTENTS */
1196 	return ts << DEBUG_SHIFT;
1197 }
1198 
1199 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1200 {
1201 	u64 time;
1202 
1203 	preempt_disable_notrace();
1204 	time = rb_time_stamp(buffer);
1205 	preempt_enable_notrace();
1206 
1207 	return time;
1208 }
1209 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1210 
1211 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1212 				      int cpu, u64 *ts)
1213 {
1214 	/* Just stupid testing the normalize function and deltas */
1215 	*ts >>= DEBUG_SHIFT;
1216 }
1217 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1218 
1219 /*
1220  * Making the ring buffer lockless makes things tricky.
1221  * Although writes only happen on the CPU that they are on,
1222  * and they only need to worry about interrupts. Reads can
1223  * happen on any CPU.
1224  *
1225  * The reader page is always off the ring buffer, but when the
1226  * reader finishes with a page, it needs to swap its page with
1227  * a new one from the buffer. The reader needs to take from
1228  * the head (writes go to the tail). But if a writer is in overwrite
1229  * mode and wraps, it must push the head page forward.
1230  *
1231  * Here lies the problem.
1232  *
1233  * The reader must be careful to replace only the head page, and
1234  * not another one. As described at the top of the file in the
1235  * ASCII art, the reader sets its old page to point to the next
1236  * page after head. It then sets the page after head to point to
1237  * the old reader page. But if the writer moves the head page
1238  * during this operation, the reader could end up with the tail.
1239  *
1240  * We use cmpxchg to help prevent this race. We also do something
1241  * special with the page before head. We set the LSB to 1.
1242  *
1243  * When the writer must push the page forward, it will clear the
1244  * bit that points to the head page, move the head, and then set
1245  * the bit that points to the new head page.
1246  *
1247  * We also don't want an interrupt coming in and moving the head
1248  * page on another writer. Thus we use the second LSB to catch
1249  * that too. Thus:
1250  *
1251  * head->list->prev->next        bit 1          bit 0
1252  *                              -------        -------
1253  * Normal page                     0              0
1254  * Points to head page             0              1
1255  * New head page                   1              0
1256  *
1257  * Note we can not trust the prev pointer of the head page, because:
1258  *
1259  * +----+       +-----+        +-----+
1260  * |    |------>|  T  |---X--->|  N  |
1261  * |    |<------|     |        |     |
1262  * +----+       +-----+        +-----+
1263  *   ^                           ^ |
1264  *   |          +-----+          | |
1265  *   +----------|  R  |----------+ |
1266  *              |     |<-----------+
1267  *              +-----+
1268  *
1269  * Key:  ---X-->  HEAD flag set in pointer
1270  *         T      Tail page
1271  *         R      Reader page
1272  *         N      Next page
1273  *
1274  * (see __rb_reserve_next() to see where this happens)
1275  *
1276  *  What the above shows is that the reader just swapped out
1277  *  the reader page with a page in the buffer, but before it
1278  *  could make the new header point back to the new page added
1279  *  it was preempted by a writer. The writer moved forward onto
1280  *  the new page added by the reader and is about to move forward
1281  *  again.
1282  *
1283  *  You can see, it is legitimate for the previous pointer of
1284  *  the head (or any page) not to point back to itself. But only
1285  *  temporarily.
1286  */
1287 
1288 #define RB_PAGE_NORMAL		0UL
1289 #define RB_PAGE_HEAD		1UL
1290 #define RB_PAGE_UPDATE		2UL
1291 
1292 
1293 #define RB_FLAG_MASK		3UL
1294 
1295 /* PAGE_MOVED is not part of the mask */
1296 #define RB_PAGE_MOVED		4UL
1297 
1298 /*
1299  * rb_list_head - remove any bit
1300  */
1301 static struct list_head *rb_list_head(struct list_head *list)
1302 {
1303 	unsigned long val = (unsigned long)list;
1304 
1305 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1306 }
1307 
1308 /*
1309  * rb_is_head_page - test if the given page is the head page
1310  *
1311  * Because the reader may move the head_page pointer, we can
1312  * not trust what the head page is (it may be pointing to
1313  * the reader page). But if the next page is a header page,
1314  * its flags will be non zero.
1315  */
1316 static inline int
1317 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1318 {
1319 	unsigned long val;
1320 
1321 	val = (unsigned long)list->next;
1322 
1323 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1324 		return RB_PAGE_MOVED;
1325 
1326 	return val & RB_FLAG_MASK;
1327 }
1328 
1329 /*
1330  * rb_is_reader_page
1331  *
1332  * The unique thing about the reader page, is that, if the
1333  * writer is ever on it, the previous pointer never points
1334  * back to the reader page.
1335  */
1336 static bool rb_is_reader_page(struct buffer_page *page)
1337 {
1338 	struct list_head *list = page->list.prev;
1339 
1340 	return rb_list_head(list->next) != &page->list;
1341 }
1342 
1343 /*
1344  * rb_set_list_to_head - set a list_head to be pointing to head.
1345  */
1346 static void rb_set_list_to_head(struct list_head *list)
1347 {
1348 	unsigned long *ptr;
1349 
1350 	ptr = (unsigned long *)&list->next;
1351 	*ptr |= RB_PAGE_HEAD;
1352 	*ptr &= ~RB_PAGE_UPDATE;
1353 }
1354 
1355 /*
1356  * rb_head_page_activate - sets up head page
1357  */
1358 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1359 {
1360 	struct buffer_page *head;
1361 
1362 	head = cpu_buffer->head_page;
1363 	if (!head)
1364 		return;
1365 
1366 	/*
1367 	 * Set the previous list pointer to have the HEAD flag.
1368 	 */
1369 	rb_set_list_to_head(head->list.prev);
1370 }
1371 
1372 static void rb_list_head_clear(struct list_head *list)
1373 {
1374 	unsigned long *ptr = (unsigned long *)&list->next;
1375 
1376 	*ptr &= ~RB_FLAG_MASK;
1377 }
1378 
1379 /*
1380  * rb_head_page_deactivate - clears head page ptr (for free list)
1381  */
1382 static void
1383 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1384 {
1385 	struct list_head *hd;
1386 
1387 	/* Go through the whole list and clear any pointers found. */
1388 	rb_list_head_clear(cpu_buffer->pages);
1389 
1390 	list_for_each(hd, cpu_buffer->pages)
1391 		rb_list_head_clear(hd);
1392 }
1393 
1394 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1395 			    struct buffer_page *head,
1396 			    struct buffer_page *prev,
1397 			    int old_flag, int new_flag)
1398 {
1399 	struct list_head *list;
1400 	unsigned long val = (unsigned long)&head->list;
1401 	unsigned long ret;
1402 
1403 	list = &prev->list;
1404 
1405 	val &= ~RB_FLAG_MASK;
1406 
1407 	ret = cmpxchg((unsigned long *)&list->next,
1408 		      val | old_flag, val | new_flag);
1409 
1410 	/* check if the reader took the page */
1411 	if ((ret & ~RB_FLAG_MASK) != val)
1412 		return RB_PAGE_MOVED;
1413 
1414 	return ret & RB_FLAG_MASK;
1415 }
1416 
1417 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1418 				   struct buffer_page *head,
1419 				   struct buffer_page *prev,
1420 				   int old_flag)
1421 {
1422 	return rb_head_page_set(cpu_buffer, head, prev,
1423 				old_flag, RB_PAGE_UPDATE);
1424 }
1425 
1426 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1427 				 struct buffer_page *head,
1428 				 struct buffer_page *prev,
1429 				 int old_flag)
1430 {
1431 	return rb_head_page_set(cpu_buffer, head, prev,
1432 				old_flag, RB_PAGE_HEAD);
1433 }
1434 
1435 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1436 				   struct buffer_page *head,
1437 				   struct buffer_page *prev,
1438 				   int old_flag)
1439 {
1440 	return rb_head_page_set(cpu_buffer, head, prev,
1441 				old_flag, RB_PAGE_NORMAL);
1442 }
1443 
1444 static inline void rb_inc_page(struct buffer_page **bpage)
1445 {
1446 	struct list_head *p = rb_list_head((*bpage)->list.next);
1447 
1448 	*bpage = list_entry(p, struct buffer_page, list);
1449 }
1450 
1451 static struct buffer_page *
1452 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1453 {
1454 	struct buffer_page *head;
1455 	struct buffer_page *page;
1456 	struct list_head *list;
1457 	int i;
1458 
1459 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1460 		return NULL;
1461 
1462 	/* sanity check */
1463 	list = cpu_buffer->pages;
1464 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1465 		return NULL;
1466 
1467 	page = head = cpu_buffer->head_page;
1468 	/*
1469 	 * It is possible that the writer moves the header behind
1470 	 * where we started, and we miss in one loop.
1471 	 * A second loop should grab the header, but we'll do
1472 	 * three loops just because I'm paranoid.
1473 	 */
1474 	for (i = 0; i < 3; i++) {
1475 		do {
1476 			if (rb_is_head_page(page, page->list.prev)) {
1477 				cpu_buffer->head_page = page;
1478 				return page;
1479 			}
1480 			rb_inc_page(&page);
1481 		} while (page != head);
1482 	}
1483 
1484 	RB_WARN_ON(cpu_buffer, 1);
1485 
1486 	return NULL;
1487 }
1488 
1489 static int rb_head_page_replace(struct buffer_page *old,
1490 				struct buffer_page *new)
1491 {
1492 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1493 	unsigned long val;
1494 	unsigned long ret;
1495 
1496 	val = *ptr & ~RB_FLAG_MASK;
1497 	val |= RB_PAGE_HEAD;
1498 
1499 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1500 
1501 	return ret == val;
1502 }
1503 
1504 /*
1505  * rb_tail_page_update - move the tail page forward
1506  */
1507 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1508 			       struct buffer_page *tail_page,
1509 			       struct buffer_page *next_page)
1510 {
1511 	unsigned long old_entries;
1512 	unsigned long old_write;
1513 
1514 	/*
1515 	 * The tail page now needs to be moved forward.
1516 	 *
1517 	 * We need to reset the tail page, but without messing
1518 	 * with possible erasing of data brought in by interrupts
1519 	 * that have moved the tail page and are currently on it.
1520 	 *
1521 	 * We add a counter to the write field to denote this.
1522 	 */
1523 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1524 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1525 
1526 	local_inc(&cpu_buffer->pages_touched);
1527 	/*
1528 	 * Just make sure we have seen our old_write and synchronize
1529 	 * with any interrupts that come in.
1530 	 */
1531 	barrier();
1532 
1533 	/*
1534 	 * If the tail page is still the same as what we think
1535 	 * it is, then it is up to us to update the tail
1536 	 * pointer.
1537 	 */
1538 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1539 		/* Zero the write counter */
1540 		unsigned long val = old_write & ~RB_WRITE_MASK;
1541 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1542 
1543 		/*
1544 		 * This will only succeed if an interrupt did
1545 		 * not come in and change it. In which case, we
1546 		 * do not want to modify it.
1547 		 *
1548 		 * We add (void) to let the compiler know that we do not care
1549 		 * about the return value of these functions. We use the
1550 		 * cmpxchg to only update if an interrupt did not already
1551 		 * do it for us. If the cmpxchg fails, we don't care.
1552 		 */
1553 		(void)local_cmpxchg(&next_page->write, old_write, val);
1554 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1555 
1556 		/*
1557 		 * No need to worry about races with clearing out the commit.
1558 		 * it only can increment when a commit takes place. But that
1559 		 * only happens in the outer most nested commit.
1560 		 */
1561 		local_set(&next_page->page->commit, 0);
1562 
1563 		/* Again, either we update tail_page or an interrupt does */
1564 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1565 	}
1566 }
1567 
1568 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1569 			  struct buffer_page *bpage)
1570 {
1571 	unsigned long val = (unsigned long)bpage;
1572 
1573 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1574 		return 1;
1575 
1576 	return 0;
1577 }
1578 
1579 /**
1580  * rb_check_pages - integrity check of buffer pages
1581  * @cpu_buffer: CPU buffer with pages to test
1582  *
1583  * As a safety measure we check to make sure the data pages have not
1584  * been corrupted.
1585  */
1586 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1589 	struct list_head *tmp;
1590 
1591 	if (RB_WARN_ON(cpu_buffer,
1592 			rb_list_head(rb_list_head(head->next)->prev) != head))
1593 		return -1;
1594 
1595 	if (RB_WARN_ON(cpu_buffer,
1596 			rb_list_head(rb_list_head(head->prev)->next) != head))
1597 		return -1;
1598 
1599 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1600 		if (RB_WARN_ON(cpu_buffer,
1601 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1602 			return -1;
1603 
1604 		if (RB_WARN_ON(cpu_buffer,
1605 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1606 			return -1;
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1613 		long nr_pages, struct list_head *pages)
1614 {
1615 	struct buffer_page *bpage, *tmp;
1616 	bool user_thread = current->mm != NULL;
1617 	gfp_t mflags;
1618 	long i;
1619 
1620 	/*
1621 	 * Check if the available memory is there first.
1622 	 * Note, si_mem_available() only gives us a rough estimate of available
1623 	 * memory. It may not be accurate. But we don't care, we just want
1624 	 * to prevent doing any allocation when it is obvious that it is
1625 	 * not going to succeed.
1626 	 */
1627 	i = si_mem_available();
1628 	if (i < nr_pages)
1629 		return -ENOMEM;
1630 
1631 	/*
1632 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1633 	 * gracefully without invoking oom-killer and the system is not
1634 	 * destabilized.
1635 	 */
1636 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1637 
1638 	/*
1639 	 * If a user thread allocates too much, and si_mem_available()
1640 	 * reports there's enough memory, even though there is not.
1641 	 * Make sure the OOM killer kills this thread. This can happen
1642 	 * even with RETRY_MAYFAIL because another task may be doing
1643 	 * an allocation after this task has taken all memory.
1644 	 * This is the task the OOM killer needs to take out during this
1645 	 * loop, even if it was triggered by an allocation somewhere else.
1646 	 */
1647 	if (user_thread)
1648 		set_current_oom_origin();
1649 	for (i = 0; i < nr_pages; i++) {
1650 		struct page *page;
1651 
1652 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1653 				    mflags, cpu_to_node(cpu_buffer->cpu));
1654 		if (!bpage)
1655 			goto free_pages;
1656 
1657 		rb_check_bpage(cpu_buffer, bpage);
1658 
1659 		list_add(&bpage->list, pages);
1660 
1661 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1662 		if (!page)
1663 			goto free_pages;
1664 		bpage->page = page_address(page);
1665 		rb_init_page(bpage->page);
1666 
1667 		if (user_thread && fatal_signal_pending(current))
1668 			goto free_pages;
1669 	}
1670 	if (user_thread)
1671 		clear_current_oom_origin();
1672 
1673 	return 0;
1674 
1675 free_pages:
1676 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1677 		list_del_init(&bpage->list);
1678 		free_buffer_page(bpage);
1679 	}
1680 	if (user_thread)
1681 		clear_current_oom_origin();
1682 
1683 	return -ENOMEM;
1684 }
1685 
1686 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1687 			     unsigned long nr_pages)
1688 {
1689 	LIST_HEAD(pages);
1690 
1691 	WARN_ON(!nr_pages);
1692 
1693 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1694 		return -ENOMEM;
1695 
1696 	/*
1697 	 * The ring buffer page list is a circular list that does not
1698 	 * start and end with a list head. All page list items point to
1699 	 * other pages.
1700 	 */
1701 	cpu_buffer->pages = pages.next;
1702 	list_del(&pages);
1703 
1704 	cpu_buffer->nr_pages = nr_pages;
1705 
1706 	rb_check_pages(cpu_buffer);
1707 
1708 	return 0;
1709 }
1710 
1711 static struct ring_buffer_per_cpu *
1712 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1713 {
1714 	struct ring_buffer_per_cpu *cpu_buffer;
1715 	struct buffer_page *bpage;
1716 	struct page *page;
1717 	int ret;
1718 
1719 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1720 				  GFP_KERNEL, cpu_to_node(cpu));
1721 	if (!cpu_buffer)
1722 		return NULL;
1723 
1724 	cpu_buffer->cpu = cpu;
1725 	cpu_buffer->buffer = buffer;
1726 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1727 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1728 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1729 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1730 	init_completion(&cpu_buffer->update_done);
1731 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1732 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1733 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1734 
1735 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1736 			    GFP_KERNEL, cpu_to_node(cpu));
1737 	if (!bpage)
1738 		goto fail_free_buffer;
1739 
1740 	rb_check_bpage(cpu_buffer, bpage);
1741 
1742 	cpu_buffer->reader_page = bpage;
1743 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1744 	if (!page)
1745 		goto fail_free_reader;
1746 	bpage->page = page_address(page);
1747 	rb_init_page(bpage->page);
1748 
1749 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1750 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1751 
1752 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1753 	if (ret < 0)
1754 		goto fail_free_reader;
1755 
1756 	cpu_buffer->head_page
1757 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1758 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1759 
1760 	rb_head_page_activate(cpu_buffer);
1761 
1762 	return cpu_buffer;
1763 
1764  fail_free_reader:
1765 	free_buffer_page(cpu_buffer->reader_page);
1766 
1767  fail_free_buffer:
1768 	kfree(cpu_buffer);
1769 	return NULL;
1770 }
1771 
1772 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1773 {
1774 	struct list_head *head = cpu_buffer->pages;
1775 	struct buffer_page *bpage, *tmp;
1776 
1777 	free_buffer_page(cpu_buffer->reader_page);
1778 
1779 	if (head) {
1780 		rb_head_page_deactivate(cpu_buffer);
1781 
1782 		list_for_each_entry_safe(bpage, tmp, head, list) {
1783 			list_del_init(&bpage->list);
1784 			free_buffer_page(bpage);
1785 		}
1786 		bpage = list_entry(head, struct buffer_page, list);
1787 		free_buffer_page(bpage);
1788 	}
1789 
1790 	kfree(cpu_buffer);
1791 }
1792 
1793 /**
1794  * __ring_buffer_alloc - allocate a new ring_buffer
1795  * @size: the size in bytes per cpu that is needed.
1796  * @flags: attributes to set for the ring buffer.
1797  * @key: ring buffer reader_lock_key.
1798  *
1799  * Currently the only flag that is available is the RB_FL_OVERWRITE
1800  * flag. This flag means that the buffer will overwrite old data
1801  * when the buffer wraps. If this flag is not set, the buffer will
1802  * drop data when the tail hits the head.
1803  */
1804 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1805 					struct lock_class_key *key)
1806 {
1807 	struct trace_buffer *buffer;
1808 	long nr_pages;
1809 	int bsize;
1810 	int cpu;
1811 	int ret;
1812 
1813 	/* keep it in its own cache line */
1814 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1815 			 GFP_KERNEL);
1816 	if (!buffer)
1817 		return NULL;
1818 
1819 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1820 		goto fail_free_buffer;
1821 
1822 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1823 	buffer->flags = flags;
1824 	buffer->clock = trace_clock_local;
1825 	buffer->reader_lock_key = key;
1826 
1827 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1828 	init_waitqueue_head(&buffer->irq_work.waiters);
1829 
1830 	/* need at least two pages */
1831 	if (nr_pages < 2)
1832 		nr_pages = 2;
1833 
1834 	buffer->cpus = nr_cpu_ids;
1835 
1836 	bsize = sizeof(void *) * nr_cpu_ids;
1837 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1838 				  GFP_KERNEL);
1839 	if (!buffer->buffers)
1840 		goto fail_free_cpumask;
1841 
1842 	cpu = raw_smp_processor_id();
1843 	cpumask_set_cpu(cpu, buffer->cpumask);
1844 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1845 	if (!buffer->buffers[cpu])
1846 		goto fail_free_buffers;
1847 
1848 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1849 	if (ret < 0)
1850 		goto fail_free_buffers;
1851 
1852 	mutex_init(&buffer->mutex);
1853 
1854 	return buffer;
1855 
1856  fail_free_buffers:
1857 	for_each_buffer_cpu(buffer, cpu) {
1858 		if (buffer->buffers[cpu])
1859 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1860 	}
1861 	kfree(buffer->buffers);
1862 
1863  fail_free_cpumask:
1864 	free_cpumask_var(buffer->cpumask);
1865 
1866  fail_free_buffer:
1867 	kfree(buffer);
1868 	return NULL;
1869 }
1870 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1871 
1872 /**
1873  * ring_buffer_free - free a ring buffer.
1874  * @buffer: the buffer to free.
1875  */
1876 void
1877 ring_buffer_free(struct trace_buffer *buffer)
1878 {
1879 	int cpu;
1880 
1881 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1882 
1883 	for_each_buffer_cpu(buffer, cpu)
1884 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1885 
1886 	kfree(buffer->buffers);
1887 	free_cpumask_var(buffer->cpumask);
1888 
1889 	kfree(buffer);
1890 }
1891 EXPORT_SYMBOL_GPL(ring_buffer_free);
1892 
1893 void ring_buffer_set_clock(struct trace_buffer *buffer,
1894 			   u64 (*clock)(void))
1895 {
1896 	buffer->clock = clock;
1897 }
1898 
1899 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1900 {
1901 	buffer->time_stamp_abs = abs;
1902 }
1903 
1904 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1905 {
1906 	return buffer->time_stamp_abs;
1907 }
1908 
1909 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1910 
1911 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1912 {
1913 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1914 }
1915 
1916 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1917 {
1918 	return local_read(&bpage->write) & RB_WRITE_MASK;
1919 }
1920 
1921 static int
1922 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1923 {
1924 	struct list_head *tail_page, *to_remove, *next_page;
1925 	struct buffer_page *to_remove_page, *tmp_iter_page;
1926 	struct buffer_page *last_page, *first_page;
1927 	unsigned long nr_removed;
1928 	unsigned long head_bit;
1929 	int page_entries;
1930 
1931 	head_bit = 0;
1932 
1933 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1934 	atomic_inc(&cpu_buffer->record_disabled);
1935 	/*
1936 	 * We don't race with the readers since we have acquired the reader
1937 	 * lock. We also don't race with writers after disabling recording.
1938 	 * This makes it easy to figure out the first and the last page to be
1939 	 * removed from the list. We unlink all the pages in between including
1940 	 * the first and last pages. This is done in a busy loop so that we
1941 	 * lose the least number of traces.
1942 	 * The pages are freed after we restart recording and unlock readers.
1943 	 */
1944 	tail_page = &cpu_buffer->tail_page->list;
1945 
1946 	/*
1947 	 * tail page might be on reader page, we remove the next page
1948 	 * from the ring buffer
1949 	 */
1950 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1951 		tail_page = rb_list_head(tail_page->next);
1952 	to_remove = tail_page;
1953 
1954 	/* start of pages to remove */
1955 	first_page = list_entry(rb_list_head(to_remove->next),
1956 				struct buffer_page, list);
1957 
1958 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1959 		to_remove = rb_list_head(to_remove)->next;
1960 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1961 	}
1962 
1963 	next_page = rb_list_head(to_remove)->next;
1964 
1965 	/*
1966 	 * Now we remove all pages between tail_page and next_page.
1967 	 * Make sure that we have head_bit value preserved for the
1968 	 * next page
1969 	 */
1970 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1971 						head_bit);
1972 	next_page = rb_list_head(next_page);
1973 	next_page->prev = tail_page;
1974 
1975 	/* make sure pages points to a valid page in the ring buffer */
1976 	cpu_buffer->pages = next_page;
1977 
1978 	/* update head page */
1979 	if (head_bit)
1980 		cpu_buffer->head_page = list_entry(next_page,
1981 						struct buffer_page, list);
1982 
1983 	/*
1984 	 * change read pointer to make sure any read iterators reset
1985 	 * themselves
1986 	 */
1987 	cpu_buffer->read = 0;
1988 
1989 	/* pages are removed, resume tracing and then free the pages */
1990 	atomic_dec(&cpu_buffer->record_disabled);
1991 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1992 
1993 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1994 
1995 	/* last buffer page to remove */
1996 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1997 				list);
1998 	tmp_iter_page = first_page;
1999 
2000 	do {
2001 		cond_resched();
2002 
2003 		to_remove_page = tmp_iter_page;
2004 		rb_inc_page(&tmp_iter_page);
2005 
2006 		/* update the counters */
2007 		page_entries = rb_page_entries(to_remove_page);
2008 		if (page_entries) {
2009 			/*
2010 			 * If something was added to this page, it was full
2011 			 * since it is not the tail page. So we deduct the
2012 			 * bytes consumed in ring buffer from here.
2013 			 * Increment overrun to account for the lost events.
2014 			 */
2015 			local_add(page_entries, &cpu_buffer->overrun);
2016 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2017 			local_inc(&cpu_buffer->pages_lost);
2018 		}
2019 
2020 		/*
2021 		 * We have already removed references to this list item, just
2022 		 * free up the buffer_page and its page
2023 		 */
2024 		free_buffer_page(to_remove_page);
2025 		nr_removed--;
2026 
2027 	} while (to_remove_page != last_page);
2028 
2029 	RB_WARN_ON(cpu_buffer, nr_removed);
2030 
2031 	return nr_removed == 0;
2032 }
2033 
2034 static int
2035 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2036 {
2037 	struct list_head *pages = &cpu_buffer->new_pages;
2038 	int retries, success;
2039 	unsigned long flags;
2040 
2041 	/* Can be called at early boot up, where interrupts must not been enabled */
2042 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2043 	/*
2044 	 * We are holding the reader lock, so the reader page won't be swapped
2045 	 * in the ring buffer. Now we are racing with the writer trying to
2046 	 * move head page and the tail page.
2047 	 * We are going to adapt the reader page update process where:
2048 	 * 1. We first splice the start and end of list of new pages between
2049 	 *    the head page and its previous page.
2050 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2051 	 *    start of new pages list.
2052 	 * 3. Finally, we update the head->prev to the end of new list.
2053 	 *
2054 	 * We will try this process 10 times, to make sure that we don't keep
2055 	 * spinning.
2056 	 */
2057 	retries = 10;
2058 	success = 0;
2059 	while (retries--) {
2060 		struct list_head *head_page, *prev_page, *r;
2061 		struct list_head *last_page, *first_page;
2062 		struct list_head *head_page_with_bit;
2063 
2064 		head_page = &rb_set_head_page(cpu_buffer)->list;
2065 		if (!head_page)
2066 			break;
2067 		prev_page = head_page->prev;
2068 
2069 		first_page = pages->next;
2070 		last_page  = pages->prev;
2071 
2072 		head_page_with_bit = (struct list_head *)
2073 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2074 
2075 		last_page->next = head_page_with_bit;
2076 		first_page->prev = prev_page;
2077 
2078 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2079 
2080 		if (r == head_page_with_bit) {
2081 			/*
2082 			 * yay, we replaced the page pointer to our new list,
2083 			 * now, we just have to update to head page's prev
2084 			 * pointer to point to end of list
2085 			 */
2086 			head_page->prev = last_page;
2087 			success = 1;
2088 			break;
2089 		}
2090 	}
2091 
2092 	if (success)
2093 		INIT_LIST_HEAD(pages);
2094 	/*
2095 	 * If we weren't successful in adding in new pages, warn and stop
2096 	 * tracing
2097 	 */
2098 	RB_WARN_ON(cpu_buffer, !success);
2099 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2100 
2101 	/* free pages if they weren't inserted */
2102 	if (!success) {
2103 		struct buffer_page *bpage, *tmp;
2104 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2105 					 list) {
2106 			list_del_init(&bpage->list);
2107 			free_buffer_page(bpage);
2108 		}
2109 	}
2110 	return success;
2111 }
2112 
2113 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2114 {
2115 	int success;
2116 
2117 	if (cpu_buffer->nr_pages_to_update > 0)
2118 		success = rb_insert_pages(cpu_buffer);
2119 	else
2120 		success = rb_remove_pages(cpu_buffer,
2121 					-cpu_buffer->nr_pages_to_update);
2122 
2123 	if (success)
2124 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2125 }
2126 
2127 static void update_pages_handler(struct work_struct *work)
2128 {
2129 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2130 			struct ring_buffer_per_cpu, update_pages_work);
2131 	rb_update_pages(cpu_buffer);
2132 	complete(&cpu_buffer->update_done);
2133 }
2134 
2135 /**
2136  * ring_buffer_resize - resize the ring buffer
2137  * @buffer: the buffer to resize.
2138  * @size: the new size.
2139  * @cpu_id: the cpu buffer to resize
2140  *
2141  * Minimum size is 2 * BUF_PAGE_SIZE.
2142  *
2143  * Returns 0 on success and < 0 on failure.
2144  */
2145 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2146 			int cpu_id)
2147 {
2148 	struct ring_buffer_per_cpu *cpu_buffer;
2149 	unsigned long nr_pages;
2150 	int cpu, err;
2151 
2152 	/*
2153 	 * Always succeed at resizing a non-existent buffer:
2154 	 */
2155 	if (!buffer)
2156 		return 0;
2157 
2158 	/* Make sure the requested buffer exists */
2159 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2160 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2161 		return 0;
2162 
2163 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2164 
2165 	/* we need a minimum of two pages */
2166 	if (nr_pages < 2)
2167 		nr_pages = 2;
2168 
2169 	/* prevent another thread from changing buffer sizes */
2170 	mutex_lock(&buffer->mutex);
2171 
2172 
2173 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2174 		/*
2175 		 * Don't succeed if resizing is disabled, as a reader might be
2176 		 * manipulating the ring buffer and is expecting a sane state while
2177 		 * this is true.
2178 		 */
2179 		for_each_buffer_cpu(buffer, cpu) {
2180 			cpu_buffer = buffer->buffers[cpu];
2181 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2182 				err = -EBUSY;
2183 				goto out_err_unlock;
2184 			}
2185 		}
2186 
2187 		/* calculate the pages to update */
2188 		for_each_buffer_cpu(buffer, cpu) {
2189 			cpu_buffer = buffer->buffers[cpu];
2190 
2191 			cpu_buffer->nr_pages_to_update = nr_pages -
2192 							cpu_buffer->nr_pages;
2193 			/*
2194 			 * nothing more to do for removing pages or no update
2195 			 */
2196 			if (cpu_buffer->nr_pages_to_update <= 0)
2197 				continue;
2198 			/*
2199 			 * to add pages, make sure all new pages can be
2200 			 * allocated without receiving ENOMEM
2201 			 */
2202 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2204 						&cpu_buffer->new_pages)) {
2205 				/* not enough memory for new pages */
2206 				err = -ENOMEM;
2207 				goto out_err;
2208 			}
2209 		}
2210 
2211 		cpus_read_lock();
2212 		/*
2213 		 * Fire off all the required work handlers
2214 		 * We can't schedule on offline CPUs, but it's not necessary
2215 		 * since we can change their buffer sizes without any race.
2216 		 */
2217 		for_each_buffer_cpu(buffer, cpu) {
2218 			cpu_buffer = buffer->buffers[cpu];
2219 			if (!cpu_buffer->nr_pages_to_update)
2220 				continue;
2221 
2222 			/* Can't run something on an offline CPU. */
2223 			if (!cpu_online(cpu)) {
2224 				rb_update_pages(cpu_buffer);
2225 				cpu_buffer->nr_pages_to_update = 0;
2226 			} else {
2227 				/* Run directly if possible. */
2228 				migrate_disable();
2229 				if (cpu != smp_processor_id()) {
2230 					migrate_enable();
2231 					schedule_work_on(cpu,
2232 							 &cpu_buffer->update_pages_work);
2233 				} else {
2234 					update_pages_handler(&cpu_buffer->update_pages_work);
2235 					migrate_enable();
2236 				}
2237 			}
2238 		}
2239 
2240 		/* wait for all the updates to complete */
2241 		for_each_buffer_cpu(buffer, cpu) {
2242 			cpu_buffer = buffer->buffers[cpu];
2243 			if (!cpu_buffer->nr_pages_to_update)
2244 				continue;
2245 
2246 			if (cpu_online(cpu))
2247 				wait_for_completion(&cpu_buffer->update_done);
2248 			cpu_buffer->nr_pages_to_update = 0;
2249 		}
2250 
2251 		cpus_read_unlock();
2252 	} else {
2253 		cpu_buffer = buffer->buffers[cpu_id];
2254 
2255 		if (nr_pages == cpu_buffer->nr_pages)
2256 			goto out;
2257 
2258 		/*
2259 		 * Don't succeed if resizing is disabled, as a reader might be
2260 		 * manipulating the ring buffer and is expecting a sane state while
2261 		 * this is true.
2262 		 */
2263 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2264 			err = -EBUSY;
2265 			goto out_err_unlock;
2266 		}
2267 
2268 		cpu_buffer->nr_pages_to_update = nr_pages -
2269 						cpu_buffer->nr_pages;
2270 
2271 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2272 		if (cpu_buffer->nr_pages_to_update > 0 &&
2273 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2274 					    &cpu_buffer->new_pages)) {
2275 			err = -ENOMEM;
2276 			goto out_err;
2277 		}
2278 
2279 		cpus_read_lock();
2280 
2281 		/* Can't run something on an offline CPU. */
2282 		if (!cpu_online(cpu_id))
2283 			rb_update_pages(cpu_buffer);
2284 		else {
2285 			/* Run directly if possible. */
2286 			migrate_disable();
2287 			if (cpu_id == smp_processor_id()) {
2288 				rb_update_pages(cpu_buffer);
2289 				migrate_enable();
2290 			} else {
2291 				migrate_enable();
2292 				schedule_work_on(cpu_id,
2293 						 &cpu_buffer->update_pages_work);
2294 				wait_for_completion(&cpu_buffer->update_done);
2295 			}
2296 		}
2297 
2298 		cpu_buffer->nr_pages_to_update = 0;
2299 		cpus_read_unlock();
2300 	}
2301 
2302  out:
2303 	/*
2304 	 * The ring buffer resize can happen with the ring buffer
2305 	 * enabled, so that the update disturbs the tracing as little
2306 	 * as possible. But if the buffer is disabled, we do not need
2307 	 * to worry about that, and we can take the time to verify
2308 	 * that the buffer is not corrupt.
2309 	 */
2310 	if (atomic_read(&buffer->record_disabled)) {
2311 		atomic_inc(&buffer->record_disabled);
2312 		/*
2313 		 * Even though the buffer was disabled, we must make sure
2314 		 * that it is truly disabled before calling rb_check_pages.
2315 		 * There could have been a race between checking
2316 		 * record_disable and incrementing it.
2317 		 */
2318 		synchronize_rcu();
2319 		for_each_buffer_cpu(buffer, cpu) {
2320 			cpu_buffer = buffer->buffers[cpu];
2321 			rb_check_pages(cpu_buffer);
2322 		}
2323 		atomic_dec(&buffer->record_disabled);
2324 	}
2325 
2326 	mutex_unlock(&buffer->mutex);
2327 	return 0;
2328 
2329  out_err:
2330 	for_each_buffer_cpu(buffer, cpu) {
2331 		struct buffer_page *bpage, *tmp;
2332 
2333 		cpu_buffer = buffer->buffers[cpu];
2334 		cpu_buffer->nr_pages_to_update = 0;
2335 
2336 		if (list_empty(&cpu_buffer->new_pages))
2337 			continue;
2338 
2339 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2340 					list) {
2341 			list_del_init(&bpage->list);
2342 			free_buffer_page(bpage);
2343 		}
2344 	}
2345  out_err_unlock:
2346 	mutex_unlock(&buffer->mutex);
2347 	return err;
2348 }
2349 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2350 
2351 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2352 {
2353 	mutex_lock(&buffer->mutex);
2354 	if (val)
2355 		buffer->flags |= RB_FL_OVERWRITE;
2356 	else
2357 		buffer->flags &= ~RB_FL_OVERWRITE;
2358 	mutex_unlock(&buffer->mutex);
2359 }
2360 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2361 
2362 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2363 {
2364 	return bpage->page->data + index;
2365 }
2366 
2367 static __always_inline struct ring_buffer_event *
2368 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2369 {
2370 	return __rb_page_index(cpu_buffer->reader_page,
2371 			       cpu_buffer->reader_page->read);
2372 }
2373 
2374 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2375 {
2376 	return local_read(&bpage->page->commit);
2377 }
2378 
2379 static struct ring_buffer_event *
2380 rb_iter_head_event(struct ring_buffer_iter *iter)
2381 {
2382 	struct ring_buffer_event *event;
2383 	struct buffer_page *iter_head_page = iter->head_page;
2384 	unsigned long commit;
2385 	unsigned length;
2386 
2387 	if (iter->head != iter->next_event)
2388 		return iter->event;
2389 
2390 	/*
2391 	 * When the writer goes across pages, it issues a cmpxchg which
2392 	 * is a mb(), which will synchronize with the rmb here.
2393 	 * (see rb_tail_page_update() and __rb_reserve_next())
2394 	 */
2395 	commit = rb_page_commit(iter_head_page);
2396 	smp_rmb();
2397 	event = __rb_page_index(iter_head_page, iter->head);
2398 	length = rb_event_length(event);
2399 
2400 	/*
2401 	 * READ_ONCE() doesn't work on functions and we don't want the
2402 	 * compiler doing any crazy optimizations with length.
2403 	 */
2404 	barrier();
2405 
2406 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2407 		/* Writer corrupted the read? */
2408 		goto reset;
2409 
2410 	memcpy(iter->event, event, length);
2411 	/*
2412 	 * If the page stamp is still the same after this rmb() then the
2413 	 * event was safely copied without the writer entering the page.
2414 	 */
2415 	smp_rmb();
2416 
2417 	/* Make sure the page didn't change since we read this */
2418 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2419 	    commit > rb_page_commit(iter_head_page))
2420 		goto reset;
2421 
2422 	iter->next_event = iter->head + length;
2423 	return iter->event;
2424  reset:
2425 	/* Reset to the beginning */
2426 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2427 	iter->head = 0;
2428 	iter->next_event = 0;
2429 	iter->missed_events = 1;
2430 	return NULL;
2431 }
2432 
2433 /* Size is determined by what has been committed */
2434 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2435 {
2436 	return rb_page_commit(bpage);
2437 }
2438 
2439 static __always_inline unsigned
2440 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2441 {
2442 	return rb_page_commit(cpu_buffer->commit_page);
2443 }
2444 
2445 static __always_inline unsigned
2446 rb_event_index(struct ring_buffer_event *event)
2447 {
2448 	unsigned long addr = (unsigned long)event;
2449 
2450 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2451 }
2452 
2453 static void rb_inc_iter(struct ring_buffer_iter *iter)
2454 {
2455 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2456 
2457 	/*
2458 	 * The iterator could be on the reader page (it starts there).
2459 	 * But the head could have moved, since the reader was
2460 	 * found. Check for this case and assign the iterator
2461 	 * to the head page instead of next.
2462 	 */
2463 	if (iter->head_page == cpu_buffer->reader_page)
2464 		iter->head_page = rb_set_head_page(cpu_buffer);
2465 	else
2466 		rb_inc_page(&iter->head_page);
2467 
2468 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2469 	iter->head = 0;
2470 	iter->next_event = 0;
2471 }
2472 
2473 /*
2474  * rb_handle_head_page - writer hit the head page
2475  *
2476  * Returns: +1 to retry page
2477  *           0 to continue
2478  *          -1 on error
2479  */
2480 static int
2481 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2482 		    struct buffer_page *tail_page,
2483 		    struct buffer_page *next_page)
2484 {
2485 	struct buffer_page *new_head;
2486 	int entries;
2487 	int type;
2488 	int ret;
2489 
2490 	entries = rb_page_entries(next_page);
2491 
2492 	/*
2493 	 * The hard part is here. We need to move the head
2494 	 * forward, and protect against both readers on
2495 	 * other CPUs and writers coming in via interrupts.
2496 	 */
2497 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2498 				       RB_PAGE_HEAD);
2499 
2500 	/*
2501 	 * type can be one of four:
2502 	 *  NORMAL - an interrupt already moved it for us
2503 	 *  HEAD   - we are the first to get here.
2504 	 *  UPDATE - we are the interrupt interrupting
2505 	 *           a current move.
2506 	 *  MOVED  - a reader on another CPU moved the next
2507 	 *           pointer to its reader page. Give up
2508 	 *           and try again.
2509 	 */
2510 
2511 	switch (type) {
2512 	case RB_PAGE_HEAD:
2513 		/*
2514 		 * We changed the head to UPDATE, thus
2515 		 * it is our responsibility to update
2516 		 * the counters.
2517 		 */
2518 		local_add(entries, &cpu_buffer->overrun);
2519 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2520 		local_inc(&cpu_buffer->pages_lost);
2521 
2522 		/*
2523 		 * The entries will be zeroed out when we move the
2524 		 * tail page.
2525 		 */
2526 
2527 		/* still more to do */
2528 		break;
2529 
2530 	case RB_PAGE_UPDATE:
2531 		/*
2532 		 * This is an interrupt that interrupt the
2533 		 * previous update. Still more to do.
2534 		 */
2535 		break;
2536 	case RB_PAGE_NORMAL:
2537 		/*
2538 		 * An interrupt came in before the update
2539 		 * and processed this for us.
2540 		 * Nothing left to do.
2541 		 */
2542 		return 1;
2543 	case RB_PAGE_MOVED:
2544 		/*
2545 		 * The reader is on another CPU and just did
2546 		 * a swap with our next_page.
2547 		 * Try again.
2548 		 */
2549 		return 1;
2550 	default:
2551 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2552 		return -1;
2553 	}
2554 
2555 	/*
2556 	 * Now that we are here, the old head pointer is
2557 	 * set to UPDATE. This will keep the reader from
2558 	 * swapping the head page with the reader page.
2559 	 * The reader (on another CPU) will spin till
2560 	 * we are finished.
2561 	 *
2562 	 * We just need to protect against interrupts
2563 	 * doing the job. We will set the next pointer
2564 	 * to HEAD. After that, we set the old pointer
2565 	 * to NORMAL, but only if it was HEAD before.
2566 	 * otherwise we are an interrupt, and only
2567 	 * want the outer most commit to reset it.
2568 	 */
2569 	new_head = next_page;
2570 	rb_inc_page(&new_head);
2571 
2572 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2573 				    RB_PAGE_NORMAL);
2574 
2575 	/*
2576 	 * Valid returns are:
2577 	 *  HEAD   - an interrupt came in and already set it.
2578 	 *  NORMAL - One of two things:
2579 	 *            1) We really set it.
2580 	 *            2) A bunch of interrupts came in and moved
2581 	 *               the page forward again.
2582 	 */
2583 	switch (ret) {
2584 	case RB_PAGE_HEAD:
2585 	case RB_PAGE_NORMAL:
2586 		/* OK */
2587 		break;
2588 	default:
2589 		RB_WARN_ON(cpu_buffer, 1);
2590 		return -1;
2591 	}
2592 
2593 	/*
2594 	 * It is possible that an interrupt came in,
2595 	 * set the head up, then more interrupts came in
2596 	 * and moved it again. When we get back here,
2597 	 * the page would have been set to NORMAL but we
2598 	 * just set it back to HEAD.
2599 	 *
2600 	 * How do you detect this? Well, if that happened
2601 	 * the tail page would have moved.
2602 	 */
2603 	if (ret == RB_PAGE_NORMAL) {
2604 		struct buffer_page *buffer_tail_page;
2605 
2606 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2607 		/*
2608 		 * If the tail had moved passed next, then we need
2609 		 * to reset the pointer.
2610 		 */
2611 		if (buffer_tail_page != tail_page &&
2612 		    buffer_tail_page != next_page)
2613 			rb_head_page_set_normal(cpu_buffer, new_head,
2614 						next_page,
2615 						RB_PAGE_HEAD);
2616 	}
2617 
2618 	/*
2619 	 * If this was the outer most commit (the one that
2620 	 * changed the original pointer from HEAD to UPDATE),
2621 	 * then it is up to us to reset it to NORMAL.
2622 	 */
2623 	if (type == RB_PAGE_HEAD) {
2624 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2625 					      tail_page,
2626 					      RB_PAGE_UPDATE);
2627 		if (RB_WARN_ON(cpu_buffer,
2628 			       ret != RB_PAGE_UPDATE))
2629 			return -1;
2630 	}
2631 
2632 	return 0;
2633 }
2634 
2635 static inline void
2636 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2637 	      unsigned long tail, struct rb_event_info *info)
2638 {
2639 	struct buffer_page *tail_page = info->tail_page;
2640 	struct ring_buffer_event *event;
2641 	unsigned long length = info->length;
2642 
2643 	/*
2644 	 * Only the event that crossed the page boundary
2645 	 * must fill the old tail_page with padding.
2646 	 */
2647 	if (tail >= BUF_PAGE_SIZE) {
2648 		/*
2649 		 * If the page was filled, then we still need
2650 		 * to update the real_end. Reset it to zero
2651 		 * and the reader will ignore it.
2652 		 */
2653 		if (tail == BUF_PAGE_SIZE)
2654 			tail_page->real_end = 0;
2655 
2656 		local_sub(length, &tail_page->write);
2657 		return;
2658 	}
2659 
2660 	event = __rb_page_index(tail_page, tail);
2661 
2662 	/* account for padding bytes */
2663 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2664 
2665 	/*
2666 	 * Save the original length to the meta data.
2667 	 * This will be used by the reader to add lost event
2668 	 * counter.
2669 	 */
2670 	tail_page->real_end = tail;
2671 
2672 	/*
2673 	 * If this event is bigger than the minimum size, then
2674 	 * we need to be careful that we don't subtract the
2675 	 * write counter enough to allow another writer to slip
2676 	 * in on this page.
2677 	 * We put in a discarded commit instead, to make sure
2678 	 * that this space is not used again.
2679 	 *
2680 	 * If we are less than the minimum size, we don't need to
2681 	 * worry about it.
2682 	 */
2683 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2684 		/* No room for any events */
2685 
2686 		/* Mark the rest of the page with padding */
2687 		rb_event_set_padding(event);
2688 
2689 		/* Make sure the padding is visible before the write update */
2690 		smp_wmb();
2691 
2692 		/* Set the write back to the previous setting */
2693 		local_sub(length, &tail_page->write);
2694 		return;
2695 	}
2696 
2697 	/* Put in a discarded event */
2698 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2699 	event->type_len = RINGBUF_TYPE_PADDING;
2700 	/* time delta must be non zero */
2701 	event->time_delta = 1;
2702 
2703 	/* Make sure the padding is visible before the tail_page->write update */
2704 	smp_wmb();
2705 
2706 	/* Set write to end of buffer */
2707 	length = (tail + length) - BUF_PAGE_SIZE;
2708 	local_sub(length, &tail_page->write);
2709 }
2710 
2711 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2712 
2713 /*
2714  * This is the slow path, force gcc not to inline it.
2715  */
2716 static noinline struct ring_buffer_event *
2717 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2718 	     unsigned long tail, struct rb_event_info *info)
2719 {
2720 	struct buffer_page *tail_page = info->tail_page;
2721 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2722 	struct trace_buffer *buffer = cpu_buffer->buffer;
2723 	struct buffer_page *next_page;
2724 	int ret;
2725 
2726 	next_page = tail_page;
2727 
2728 	rb_inc_page(&next_page);
2729 
2730 	/*
2731 	 * If for some reason, we had an interrupt storm that made
2732 	 * it all the way around the buffer, bail, and warn
2733 	 * about it.
2734 	 */
2735 	if (unlikely(next_page == commit_page)) {
2736 		local_inc(&cpu_buffer->commit_overrun);
2737 		goto out_reset;
2738 	}
2739 
2740 	/*
2741 	 * This is where the fun begins!
2742 	 *
2743 	 * We are fighting against races between a reader that
2744 	 * could be on another CPU trying to swap its reader
2745 	 * page with the buffer head.
2746 	 *
2747 	 * We are also fighting against interrupts coming in and
2748 	 * moving the head or tail on us as well.
2749 	 *
2750 	 * If the next page is the head page then we have filled
2751 	 * the buffer, unless the commit page is still on the
2752 	 * reader page.
2753 	 */
2754 	if (rb_is_head_page(next_page, &tail_page->list)) {
2755 
2756 		/*
2757 		 * If the commit is not on the reader page, then
2758 		 * move the header page.
2759 		 */
2760 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2761 			/*
2762 			 * If we are not in overwrite mode,
2763 			 * this is easy, just stop here.
2764 			 */
2765 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2766 				local_inc(&cpu_buffer->dropped_events);
2767 				goto out_reset;
2768 			}
2769 
2770 			ret = rb_handle_head_page(cpu_buffer,
2771 						  tail_page,
2772 						  next_page);
2773 			if (ret < 0)
2774 				goto out_reset;
2775 			if (ret)
2776 				goto out_again;
2777 		} else {
2778 			/*
2779 			 * We need to be careful here too. The
2780 			 * commit page could still be on the reader
2781 			 * page. We could have a small buffer, and
2782 			 * have filled up the buffer with events
2783 			 * from interrupts and such, and wrapped.
2784 			 *
2785 			 * Note, if the tail page is also on the
2786 			 * reader_page, we let it move out.
2787 			 */
2788 			if (unlikely((cpu_buffer->commit_page !=
2789 				      cpu_buffer->tail_page) &&
2790 				     (cpu_buffer->commit_page ==
2791 				      cpu_buffer->reader_page))) {
2792 				local_inc(&cpu_buffer->commit_overrun);
2793 				goto out_reset;
2794 			}
2795 		}
2796 	}
2797 
2798 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2799 
2800  out_again:
2801 
2802 	rb_reset_tail(cpu_buffer, tail, info);
2803 
2804 	/* Commit what we have for now. */
2805 	rb_end_commit(cpu_buffer);
2806 	/* rb_end_commit() decs committing */
2807 	local_inc(&cpu_buffer->committing);
2808 
2809 	/* fail and let the caller try again */
2810 	return ERR_PTR(-EAGAIN);
2811 
2812  out_reset:
2813 	/* reset write */
2814 	rb_reset_tail(cpu_buffer, tail, info);
2815 
2816 	return NULL;
2817 }
2818 
2819 /* Slow path */
2820 static struct ring_buffer_event *
2821 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2822 {
2823 	if (abs)
2824 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2825 	else
2826 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2827 
2828 	/* Not the first event on the page, or not delta? */
2829 	if (abs || rb_event_index(event)) {
2830 		event->time_delta = delta & TS_MASK;
2831 		event->array[0] = delta >> TS_SHIFT;
2832 	} else {
2833 		/* nope, just zero it */
2834 		event->time_delta = 0;
2835 		event->array[0] = 0;
2836 	}
2837 
2838 	return skip_time_extend(event);
2839 }
2840 
2841 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2842 static inline bool sched_clock_stable(void)
2843 {
2844 	return true;
2845 }
2846 #endif
2847 
2848 static void
2849 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2850 		   struct rb_event_info *info)
2851 {
2852 	u64 write_stamp;
2853 
2854 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2855 		  (unsigned long long)info->delta,
2856 		  (unsigned long long)info->ts,
2857 		  (unsigned long long)info->before,
2858 		  (unsigned long long)info->after,
2859 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2860 		  sched_clock_stable() ? "" :
2861 		  "If you just came from a suspend/resume,\n"
2862 		  "please switch to the trace global clock:\n"
2863 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2864 		  "or add trace_clock=global to the kernel command line\n");
2865 }
2866 
2867 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2868 				      struct ring_buffer_event **event,
2869 				      struct rb_event_info *info,
2870 				      u64 *delta,
2871 				      unsigned int *length)
2872 {
2873 	bool abs = info->add_timestamp &
2874 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2875 
2876 	if (unlikely(info->delta > (1ULL << 59))) {
2877 		/*
2878 		 * Some timers can use more than 59 bits, and when a timestamp
2879 		 * is added to the buffer, it will lose those bits.
2880 		 */
2881 		if (abs && (info->ts & TS_MSB)) {
2882 			info->delta &= ABS_TS_MASK;
2883 
2884 		/* did the clock go backwards */
2885 		} else if (info->before == info->after && info->before > info->ts) {
2886 			/* not interrupted */
2887 			static int once;
2888 
2889 			/*
2890 			 * This is possible with a recalibrating of the TSC.
2891 			 * Do not produce a call stack, but just report it.
2892 			 */
2893 			if (!once) {
2894 				once++;
2895 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2896 					info->before, info->ts);
2897 			}
2898 		} else
2899 			rb_check_timestamp(cpu_buffer, info);
2900 		if (!abs)
2901 			info->delta = 0;
2902 	}
2903 	*event = rb_add_time_stamp(*event, info->delta, abs);
2904 	*length -= RB_LEN_TIME_EXTEND;
2905 	*delta = 0;
2906 }
2907 
2908 /**
2909  * rb_update_event - update event type and data
2910  * @cpu_buffer: The per cpu buffer of the @event
2911  * @event: the event to update
2912  * @info: The info to update the @event with (contains length and delta)
2913  *
2914  * Update the type and data fields of the @event. The length
2915  * is the actual size that is written to the ring buffer,
2916  * and with this, we can determine what to place into the
2917  * data field.
2918  */
2919 static void
2920 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2921 		struct ring_buffer_event *event,
2922 		struct rb_event_info *info)
2923 {
2924 	unsigned length = info->length;
2925 	u64 delta = info->delta;
2926 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2927 
2928 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2929 		cpu_buffer->event_stamp[nest] = info->ts;
2930 
2931 	/*
2932 	 * If we need to add a timestamp, then we
2933 	 * add it to the start of the reserved space.
2934 	 */
2935 	if (unlikely(info->add_timestamp))
2936 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2937 
2938 	event->time_delta = delta;
2939 	length -= RB_EVNT_HDR_SIZE;
2940 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2941 		event->type_len = 0;
2942 		event->array[0] = length;
2943 	} else
2944 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2945 }
2946 
2947 static unsigned rb_calculate_event_length(unsigned length)
2948 {
2949 	struct ring_buffer_event event; /* Used only for sizeof array */
2950 
2951 	/* zero length can cause confusions */
2952 	if (!length)
2953 		length++;
2954 
2955 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2956 		length += sizeof(event.array[0]);
2957 
2958 	length += RB_EVNT_HDR_SIZE;
2959 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2960 
2961 	/*
2962 	 * In case the time delta is larger than the 27 bits for it
2963 	 * in the header, we need to add a timestamp. If another
2964 	 * event comes in when trying to discard this one to increase
2965 	 * the length, then the timestamp will be added in the allocated
2966 	 * space of this event. If length is bigger than the size needed
2967 	 * for the TIME_EXTEND, then padding has to be used. The events
2968 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2969 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2970 	 * As length is a multiple of 4, we only need to worry if it
2971 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2972 	 */
2973 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2974 		length += RB_ALIGNMENT;
2975 
2976 	return length;
2977 }
2978 
2979 static u64 rb_time_delta(struct ring_buffer_event *event)
2980 {
2981 	switch (event->type_len) {
2982 	case RINGBUF_TYPE_PADDING:
2983 		return 0;
2984 
2985 	case RINGBUF_TYPE_TIME_EXTEND:
2986 		return rb_event_time_stamp(event);
2987 
2988 	case RINGBUF_TYPE_TIME_STAMP:
2989 		return 0;
2990 
2991 	case RINGBUF_TYPE_DATA:
2992 		return event->time_delta;
2993 	default:
2994 		return 0;
2995 	}
2996 }
2997 
2998 static inline int
2999 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3000 		  struct ring_buffer_event *event)
3001 {
3002 	unsigned long new_index, old_index;
3003 	struct buffer_page *bpage;
3004 	unsigned long index;
3005 	unsigned long addr;
3006 	u64 write_stamp;
3007 	u64 delta;
3008 
3009 	new_index = rb_event_index(event);
3010 	old_index = new_index + rb_event_ts_length(event);
3011 	addr = (unsigned long)event;
3012 	addr &= PAGE_MASK;
3013 
3014 	bpage = READ_ONCE(cpu_buffer->tail_page);
3015 
3016 	delta = rb_time_delta(event);
3017 
3018 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3019 		return 0;
3020 
3021 	/* Make sure the write stamp is read before testing the location */
3022 	barrier();
3023 
3024 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3025 		unsigned long write_mask =
3026 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3027 		unsigned long event_length = rb_event_length(event);
3028 
3029 		/* Something came in, can't discard */
3030 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3031 				       write_stamp, write_stamp - delta))
3032 			return 0;
3033 
3034 		/*
3035 		 * It's possible that the event time delta is zero
3036 		 * (has the same time stamp as the previous event)
3037 		 * in which case write_stamp and before_stamp could
3038 		 * be the same. In such a case, force before_stamp
3039 		 * to be different than write_stamp. It doesn't
3040 		 * matter what it is, as long as its different.
3041 		 */
3042 		if (!delta)
3043 			rb_time_set(&cpu_buffer->before_stamp, 0);
3044 
3045 		/*
3046 		 * If an event were to come in now, it would see that the
3047 		 * write_stamp and the before_stamp are different, and assume
3048 		 * that this event just added itself before updating
3049 		 * the write stamp. The interrupting event will fix the
3050 		 * write stamp for us, and use the before stamp as its delta.
3051 		 */
3052 
3053 		/*
3054 		 * This is on the tail page. It is possible that
3055 		 * a write could come in and move the tail page
3056 		 * and write to the next page. That is fine
3057 		 * because we just shorten what is on this page.
3058 		 */
3059 		old_index += write_mask;
3060 		new_index += write_mask;
3061 		index = local_cmpxchg(&bpage->write, old_index, new_index);
3062 		if (index == old_index) {
3063 			/* update counters */
3064 			local_sub(event_length, &cpu_buffer->entries_bytes);
3065 			return 1;
3066 		}
3067 	}
3068 
3069 	/* could not discard */
3070 	return 0;
3071 }
3072 
3073 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3074 {
3075 	local_inc(&cpu_buffer->committing);
3076 	local_inc(&cpu_buffer->commits);
3077 }
3078 
3079 static __always_inline void
3080 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3081 {
3082 	unsigned long max_count;
3083 
3084 	/*
3085 	 * We only race with interrupts and NMIs on this CPU.
3086 	 * If we own the commit event, then we can commit
3087 	 * all others that interrupted us, since the interruptions
3088 	 * are in stack format (they finish before they come
3089 	 * back to us). This allows us to do a simple loop to
3090 	 * assign the commit to the tail.
3091 	 */
3092  again:
3093 	max_count = cpu_buffer->nr_pages * 100;
3094 
3095 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3096 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3097 			return;
3098 		if (RB_WARN_ON(cpu_buffer,
3099 			       rb_is_reader_page(cpu_buffer->tail_page)))
3100 			return;
3101 		local_set(&cpu_buffer->commit_page->page->commit,
3102 			  rb_page_write(cpu_buffer->commit_page));
3103 		rb_inc_page(&cpu_buffer->commit_page);
3104 		/* add barrier to keep gcc from optimizing too much */
3105 		barrier();
3106 	}
3107 	while (rb_commit_index(cpu_buffer) !=
3108 	       rb_page_write(cpu_buffer->commit_page)) {
3109 
3110 		local_set(&cpu_buffer->commit_page->page->commit,
3111 			  rb_page_write(cpu_buffer->commit_page));
3112 		RB_WARN_ON(cpu_buffer,
3113 			   local_read(&cpu_buffer->commit_page->page->commit) &
3114 			   ~RB_WRITE_MASK);
3115 		barrier();
3116 	}
3117 
3118 	/* again, keep gcc from optimizing */
3119 	barrier();
3120 
3121 	/*
3122 	 * If an interrupt came in just after the first while loop
3123 	 * and pushed the tail page forward, we will be left with
3124 	 * a dangling commit that will never go forward.
3125 	 */
3126 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3127 		goto again;
3128 }
3129 
3130 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3131 {
3132 	unsigned long commits;
3133 
3134 	if (RB_WARN_ON(cpu_buffer,
3135 		       !local_read(&cpu_buffer->committing)))
3136 		return;
3137 
3138  again:
3139 	commits = local_read(&cpu_buffer->commits);
3140 	/* synchronize with interrupts */
3141 	barrier();
3142 	if (local_read(&cpu_buffer->committing) == 1)
3143 		rb_set_commit_to_write(cpu_buffer);
3144 
3145 	local_dec(&cpu_buffer->committing);
3146 
3147 	/* synchronize with interrupts */
3148 	barrier();
3149 
3150 	/*
3151 	 * Need to account for interrupts coming in between the
3152 	 * updating of the commit page and the clearing of the
3153 	 * committing counter.
3154 	 */
3155 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3156 	    !local_read(&cpu_buffer->committing)) {
3157 		local_inc(&cpu_buffer->committing);
3158 		goto again;
3159 	}
3160 }
3161 
3162 static inline void rb_event_discard(struct ring_buffer_event *event)
3163 {
3164 	if (extended_time(event))
3165 		event = skip_time_extend(event);
3166 
3167 	/* array[0] holds the actual length for the discarded event */
3168 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3169 	event->type_len = RINGBUF_TYPE_PADDING;
3170 	/* time delta must be non zero */
3171 	if (!event->time_delta)
3172 		event->time_delta = 1;
3173 }
3174 
3175 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3176 {
3177 	local_inc(&cpu_buffer->entries);
3178 	rb_end_commit(cpu_buffer);
3179 }
3180 
3181 static __always_inline void
3182 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3183 {
3184 	if (buffer->irq_work.waiters_pending) {
3185 		buffer->irq_work.waiters_pending = false;
3186 		/* irq_work_queue() supplies it's own memory barriers */
3187 		irq_work_queue(&buffer->irq_work.work);
3188 	}
3189 
3190 	if (cpu_buffer->irq_work.waiters_pending) {
3191 		cpu_buffer->irq_work.waiters_pending = false;
3192 		/* irq_work_queue() supplies it's own memory barriers */
3193 		irq_work_queue(&cpu_buffer->irq_work.work);
3194 	}
3195 
3196 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3197 		return;
3198 
3199 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3200 		return;
3201 
3202 	if (!cpu_buffer->irq_work.full_waiters_pending)
3203 		return;
3204 
3205 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3206 
3207 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3208 		return;
3209 
3210 	cpu_buffer->irq_work.wakeup_full = true;
3211 	cpu_buffer->irq_work.full_waiters_pending = false;
3212 	/* irq_work_queue() supplies it's own memory barriers */
3213 	irq_work_queue(&cpu_buffer->irq_work.work);
3214 }
3215 
3216 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3217 # define do_ring_buffer_record_recursion()	\
3218 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3219 #else
3220 # define do_ring_buffer_record_recursion() do { } while (0)
3221 #endif
3222 
3223 /*
3224  * The lock and unlock are done within a preempt disable section.
3225  * The current_context per_cpu variable can only be modified
3226  * by the current task between lock and unlock. But it can
3227  * be modified more than once via an interrupt. To pass this
3228  * information from the lock to the unlock without having to
3229  * access the 'in_interrupt()' functions again (which do show
3230  * a bit of overhead in something as critical as function tracing,
3231  * we use a bitmask trick.
3232  *
3233  *  bit 1 =  NMI context
3234  *  bit 2 =  IRQ context
3235  *  bit 3 =  SoftIRQ context
3236  *  bit 4 =  normal context.
3237  *
3238  * This works because this is the order of contexts that can
3239  * preempt other contexts. A SoftIRQ never preempts an IRQ
3240  * context.
3241  *
3242  * When the context is determined, the corresponding bit is
3243  * checked and set (if it was set, then a recursion of that context
3244  * happened).
3245  *
3246  * On unlock, we need to clear this bit. To do so, just subtract
3247  * 1 from the current_context and AND it to itself.
3248  *
3249  * (binary)
3250  *  101 - 1 = 100
3251  *  101 & 100 = 100 (clearing bit zero)
3252  *
3253  *  1010 - 1 = 1001
3254  *  1010 & 1001 = 1000 (clearing bit 1)
3255  *
3256  * The least significant bit can be cleared this way, and it
3257  * just so happens that it is the same bit corresponding to
3258  * the current context.
3259  *
3260  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3261  * is set when a recursion is detected at the current context, and if
3262  * the TRANSITION bit is already set, it will fail the recursion.
3263  * This is needed because there's a lag between the changing of
3264  * interrupt context and updating the preempt count. In this case,
3265  * a false positive will be found. To handle this, one extra recursion
3266  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3267  * bit is already set, then it is considered a recursion and the function
3268  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3269  *
3270  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3271  * to be cleared. Even if it wasn't the context that set it. That is,
3272  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3273  * is called before preempt_count() is updated, since the check will
3274  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3275  * NMI then comes in, it will set the NMI bit, but when the NMI code
3276  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3277  * and leave the NMI bit set. But this is fine, because the interrupt
3278  * code that set the TRANSITION bit will then clear the NMI bit when it
3279  * calls trace_recursive_unlock(). If another NMI comes in, it will
3280  * set the TRANSITION bit and continue.
3281  *
3282  * Note: The TRANSITION bit only handles a single transition between context.
3283  */
3284 
3285 static __always_inline int
3286 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3287 {
3288 	unsigned int val = cpu_buffer->current_context;
3289 	int bit = interrupt_context_level();
3290 
3291 	bit = RB_CTX_NORMAL - bit;
3292 
3293 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3294 		/*
3295 		 * It is possible that this was called by transitioning
3296 		 * between interrupt context, and preempt_count() has not
3297 		 * been updated yet. In this case, use the TRANSITION bit.
3298 		 */
3299 		bit = RB_CTX_TRANSITION;
3300 		if (val & (1 << (bit + cpu_buffer->nest))) {
3301 			do_ring_buffer_record_recursion();
3302 			return 1;
3303 		}
3304 	}
3305 
3306 	val |= (1 << (bit + cpu_buffer->nest));
3307 	cpu_buffer->current_context = val;
3308 
3309 	return 0;
3310 }
3311 
3312 static __always_inline void
3313 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3314 {
3315 	cpu_buffer->current_context &=
3316 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3317 }
3318 
3319 /* The recursive locking above uses 5 bits */
3320 #define NESTED_BITS 5
3321 
3322 /**
3323  * ring_buffer_nest_start - Allow to trace while nested
3324  * @buffer: The ring buffer to modify
3325  *
3326  * The ring buffer has a safety mechanism to prevent recursion.
3327  * But there may be a case where a trace needs to be done while
3328  * tracing something else. In this case, calling this function
3329  * will allow this function to nest within a currently active
3330  * ring_buffer_lock_reserve().
3331  *
3332  * Call this function before calling another ring_buffer_lock_reserve() and
3333  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3334  */
3335 void ring_buffer_nest_start(struct trace_buffer *buffer)
3336 {
3337 	struct ring_buffer_per_cpu *cpu_buffer;
3338 	int cpu;
3339 
3340 	/* Enabled by ring_buffer_nest_end() */
3341 	preempt_disable_notrace();
3342 	cpu = raw_smp_processor_id();
3343 	cpu_buffer = buffer->buffers[cpu];
3344 	/* This is the shift value for the above recursive locking */
3345 	cpu_buffer->nest += NESTED_BITS;
3346 }
3347 
3348 /**
3349  * ring_buffer_nest_end - Allow to trace while nested
3350  * @buffer: The ring buffer to modify
3351  *
3352  * Must be called after ring_buffer_nest_start() and after the
3353  * ring_buffer_unlock_commit().
3354  */
3355 void ring_buffer_nest_end(struct trace_buffer *buffer)
3356 {
3357 	struct ring_buffer_per_cpu *cpu_buffer;
3358 	int cpu;
3359 
3360 	/* disabled by ring_buffer_nest_start() */
3361 	cpu = raw_smp_processor_id();
3362 	cpu_buffer = buffer->buffers[cpu];
3363 	/* This is the shift value for the above recursive locking */
3364 	cpu_buffer->nest -= NESTED_BITS;
3365 	preempt_enable_notrace();
3366 }
3367 
3368 /**
3369  * ring_buffer_unlock_commit - commit a reserved
3370  * @buffer: The buffer to commit to
3371  * @event: The event pointer to commit.
3372  *
3373  * This commits the data to the ring buffer, and releases any locks held.
3374  *
3375  * Must be paired with ring_buffer_lock_reserve.
3376  */
3377 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3378 {
3379 	struct ring_buffer_per_cpu *cpu_buffer;
3380 	int cpu = raw_smp_processor_id();
3381 
3382 	cpu_buffer = buffer->buffers[cpu];
3383 
3384 	rb_commit(cpu_buffer);
3385 
3386 	rb_wakeups(buffer, cpu_buffer);
3387 
3388 	trace_recursive_unlock(cpu_buffer);
3389 
3390 	preempt_enable_notrace();
3391 
3392 	return 0;
3393 }
3394 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3395 
3396 /* Special value to validate all deltas on a page. */
3397 #define CHECK_FULL_PAGE		1L
3398 
3399 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3400 static void dump_buffer_page(struct buffer_data_page *bpage,
3401 			     struct rb_event_info *info,
3402 			     unsigned long tail)
3403 {
3404 	struct ring_buffer_event *event;
3405 	u64 ts, delta;
3406 	int e;
3407 
3408 	ts = bpage->time_stamp;
3409 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3410 
3411 	for (e = 0; e < tail; e += rb_event_length(event)) {
3412 
3413 		event = (struct ring_buffer_event *)(bpage->data + e);
3414 
3415 		switch (event->type_len) {
3416 
3417 		case RINGBUF_TYPE_TIME_EXTEND:
3418 			delta = rb_event_time_stamp(event);
3419 			ts += delta;
3420 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3421 			break;
3422 
3423 		case RINGBUF_TYPE_TIME_STAMP:
3424 			delta = rb_event_time_stamp(event);
3425 			ts = rb_fix_abs_ts(delta, ts);
3426 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3427 			break;
3428 
3429 		case RINGBUF_TYPE_PADDING:
3430 			ts += event->time_delta;
3431 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3432 			break;
3433 
3434 		case RINGBUF_TYPE_DATA:
3435 			ts += event->time_delta;
3436 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3437 			break;
3438 
3439 		default:
3440 			break;
3441 		}
3442 	}
3443 }
3444 
3445 static DEFINE_PER_CPU(atomic_t, checking);
3446 static atomic_t ts_dump;
3447 
3448 /*
3449  * Check if the current event time stamp matches the deltas on
3450  * the buffer page.
3451  */
3452 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3453 			 struct rb_event_info *info,
3454 			 unsigned long tail)
3455 {
3456 	struct ring_buffer_event *event;
3457 	struct buffer_data_page *bpage;
3458 	u64 ts, delta;
3459 	bool full = false;
3460 	int e;
3461 
3462 	bpage = info->tail_page->page;
3463 
3464 	if (tail == CHECK_FULL_PAGE) {
3465 		full = true;
3466 		tail = local_read(&bpage->commit);
3467 	} else if (info->add_timestamp &
3468 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3469 		/* Ignore events with absolute time stamps */
3470 		return;
3471 	}
3472 
3473 	/*
3474 	 * Do not check the first event (skip possible extends too).
3475 	 * Also do not check if previous events have not been committed.
3476 	 */
3477 	if (tail <= 8 || tail > local_read(&bpage->commit))
3478 		return;
3479 
3480 	/*
3481 	 * If this interrupted another event,
3482 	 */
3483 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3484 		goto out;
3485 
3486 	ts = bpage->time_stamp;
3487 
3488 	for (e = 0; e < tail; e += rb_event_length(event)) {
3489 
3490 		event = (struct ring_buffer_event *)(bpage->data + e);
3491 
3492 		switch (event->type_len) {
3493 
3494 		case RINGBUF_TYPE_TIME_EXTEND:
3495 			delta = rb_event_time_stamp(event);
3496 			ts += delta;
3497 			break;
3498 
3499 		case RINGBUF_TYPE_TIME_STAMP:
3500 			delta = rb_event_time_stamp(event);
3501 			ts = rb_fix_abs_ts(delta, ts);
3502 			break;
3503 
3504 		case RINGBUF_TYPE_PADDING:
3505 			if (event->time_delta == 1)
3506 				break;
3507 			fallthrough;
3508 		case RINGBUF_TYPE_DATA:
3509 			ts += event->time_delta;
3510 			break;
3511 
3512 		default:
3513 			RB_WARN_ON(cpu_buffer, 1);
3514 		}
3515 	}
3516 	if ((full && ts > info->ts) ||
3517 	    (!full && ts + info->delta != info->ts)) {
3518 		/* If another report is happening, ignore this one */
3519 		if (atomic_inc_return(&ts_dump) != 1) {
3520 			atomic_dec(&ts_dump);
3521 			goto out;
3522 		}
3523 		atomic_inc(&cpu_buffer->record_disabled);
3524 		/* There's some cases in boot up that this can happen */
3525 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3526 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3527 			cpu_buffer->cpu,
3528 			ts + info->delta, info->ts, info->delta,
3529 			info->before, info->after,
3530 			full ? " (full)" : "");
3531 		dump_buffer_page(bpage, info, tail);
3532 		atomic_dec(&ts_dump);
3533 		/* Do not re-enable checking */
3534 		return;
3535 	}
3536 out:
3537 	atomic_dec(this_cpu_ptr(&checking));
3538 }
3539 #else
3540 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3541 			 struct rb_event_info *info,
3542 			 unsigned long tail)
3543 {
3544 }
3545 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3546 
3547 static struct ring_buffer_event *
3548 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3549 		  struct rb_event_info *info)
3550 {
3551 	struct ring_buffer_event *event;
3552 	struct buffer_page *tail_page;
3553 	unsigned long tail, write, w;
3554 	bool a_ok;
3555 	bool b_ok;
3556 
3557 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3558 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3559 
3560  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3561 	barrier();
3562 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3563 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3564 	barrier();
3565 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3566 
3567 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3568 		info->delta = info->ts;
3569 	} else {
3570 		/*
3571 		 * If interrupting an event time update, we may need an
3572 		 * absolute timestamp.
3573 		 * Don't bother if this is the start of a new page (w == 0).
3574 		 */
3575 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3576 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3577 			info->length += RB_LEN_TIME_EXTEND;
3578 		} else {
3579 			info->delta = info->ts - info->after;
3580 			if (unlikely(test_time_stamp(info->delta))) {
3581 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3582 				info->length += RB_LEN_TIME_EXTEND;
3583 			}
3584 		}
3585 	}
3586 
3587  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3588 
3589  /*C*/	write = local_add_return(info->length, &tail_page->write);
3590 
3591 	/* set write to only the index of the write */
3592 	write &= RB_WRITE_MASK;
3593 
3594 	tail = write - info->length;
3595 
3596 	/* See if we shot pass the end of this buffer page */
3597 	if (unlikely(write > BUF_PAGE_SIZE)) {
3598 		/* before and after may now different, fix it up*/
3599 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3600 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3601 		if (a_ok && b_ok && info->before != info->after)
3602 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3603 					      info->before, info->after);
3604 		if (a_ok && b_ok)
3605 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3606 		return rb_move_tail(cpu_buffer, tail, info);
3607 	}
3608 
3609 	if (likely(tail == w)) {
3610 		u64 save_before;
3611 		bool s_ok;
3612 
3613 		/* Nothing interrupted us between A and C */
3614  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3615 		barrier();
3616  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3617 		RB_WARN_ON(cpu_buffer, !s_ok);
3618 		if (likely(!(info->add_timestamp &
3619 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3620 			/* This did not interrupt any time update */
3621 			info->delta = info->ts - info->after;
3622 		else
3623 			/* Just use full timestamp for interrupting event */
3624 			info->delta = info->ts;
3625 		barrier();
3626 		check_buffer(cpu_buffer, info, tail);
3627 		if (unlikely(info->ts != save_before)) {
3628 			/* SLOW PATH - Interrupted between C and E */
3629 
3630 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3631 			RB_WARN_ON(cpu_buffer, !a_ok);
3632 
3633 			/* Write stamp must only go forward */
3634 			if (save_before > info->after) {
3635 				/*
3636 				 * We do not care about the result, only that
3637 				 * it gets updated atomically.
3638 				 */
3639 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3640 						      info->after, save_before);
3641 			}
3642 		}
3643 	} else {
3644 		u64 ts;
3645 		/* SLOW PATH - Interrupted between A and C */
3646 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3647 		/* Was interrupted before here, write_stamp must be valid */
3648 		RB_WARN_ON(cpu_buffer, !a_ok);
3649 		ts = rb_time_stamp(cpu_buffer->buffer);
3650 		barrier();
3651  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3652 		    info->after < ts &&
3653 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3654 				    info->after, ts)) {
3655 			/* Nothing came after this event between C and E */
3656 			info->delta = ts - info->after;
3657 		} else {
3658 			/*
3659 			 * Interrupted between C and E:
3660 			 * Lost the previous events time stamp. Just set the
3661 			 * delta to zero, and this will be the same time as
3662 			 * the event this event interrupted. And the events that
3663 			 * came after this will still be correct (as they would
3664 			 * have built their delta on the previous event.
3665 			 */
3666 			info->delta = 0;
3667 		}
3668 		info->ts = ts;
3669 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3670 	}
3671 
3672 	/*
3673 	 * If this is the first commit on the page, then it has the same
3674 	 * timestamp as the page itself.
3675 	 */
3676 	if (unlikely(!tail && !(info->add_timestamp &
3677 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3678 		info->delta = 0;
3679 
3680 	/* We reserved something on the buffer */
3681 
3682 	event = __rb_page_index(tail_page, tail);
3683 	rb_update_event(cpu_buffer, event, info);
3684 
3685 	local_inc(&tail_page->entries);
3686 
3687 	/*
3688 	 * If this is the first commit on the page, then update
3689 	 * its timestamp.
3690 	 */
3691 	if (unlikely(!tail))
3692 		tail_page->page->time_stamp = info->ts;
3693 
3694 	/* account for these added bytes */
3695 	local_add(info->length, &cpu_buffer->entries_bytes);
3696 
3697 	return event;
3698 }
3699 
3700 static __always_inline struct ring_buffer_event *
3701 rb_reserve_next_event(struct trace_buffer *buffer,
3702 		      struct ring_buffer_per_cpu *cpu_buffer,
3703 		      unsigned long length)
3704 {
3705 	struct ring_buffer_event *event;
3706 	struct rb_event_info info;
3707 	int nr_loops = 0;
3708 	int add_ts_default;
3709 
3710 	rb_start_commit(cpu_buffer);
3711 	/* The commit page can not change after this */
3712 
3713 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3714 	/*
3715 	 * Due to the ability to swap a cpu buffer from a buffer
3716 	 * it is possible it was swapped before we committed.
3717 	 * (committing stops a swap). We check for it here and
3718 	 * if it happened, we have to fail the write.
3719 	 */
3720 	barrier();
3721 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3722 		local_dec(&cpu_buffer->committing);
3723 		local_dec(&cpu_buffer->commits);
3724 		return NULL;
3725 	}
3726 #endif
3727 
3728 	info.length = rb_calculate_event_length(length);
3729 
3730 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3731 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3732 		info.length += RB_LEN_TIME_EXTEND;
3733 	} else {
3734 		add_ts_default = RB_ADD_STAMP_NONE;
3735 	}
3736 
3737  again:
3738 	info.add_timestamp = add_ts_default;
3739 	info.delta = 0;
3740 
3741 	/*
3742 	 * We allow for interrupts to reenter here and do a trace.
3743 	 * If one does, it will cause this original code to loop
3744 	 * back here. Even with heavy interrupts happening, this
3745 	 * should only happen a few times in a row. If this happens
3746 	 * 1000 times in a row, there must be either an interrupt
3747 	 * storm or we have something buggy.
3748 	 * Bail!
3749 	 */
3750 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3751 		goto out_fail;
3752 
3753 	event = __rb_reserve_next(cpu_buffer, &info);
3754 
3755 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3756 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3757 			info.length -= RB_LEN_TIME_EXTEND;
3758 		goto again;
3759 	}
3760 
3761 	if (likely(event))
3762 		return event;
3763  out_fail:
3764 	rb_end_commit(cpu_buffer);
3765 	return NULL;
3766 }
3767 
3768 /**
3769  * ring_buffer_lock_reserve - reserve a part of the buffer
3770  * @buffer: the ring buffer to reserve from
3771  * @length: the length of the data to reserve (excluding event header)
3772  *
3773  * Returns a reserved event on the ring buffer to copy directly to.
3774  * The user of this interface will need to get the body to write into
3775  * and can use the ring_buffer_event_data() interface.
3776  *
3777  * The length is the length of the data needed, not the event length
3778  * which also includes the event header.
3779  *
3780  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3781  * If NULL is returned, then nothing has been allocated or locked.
3782  */
3783 struct ring_buffer_event *
3784 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3785 {
3786 	struct ring_buffer_per_cpu *cpu_buffer;
3787 	struct ring_buffer_event *event;
3788 	int cpu;
3789 
3790 	/* If we are tracing schedule, we don't want to recurse */
3791 	preempt_disable_notrace();
3792 
3793 	if (unlikely(atomic_read(&buffer->record_disabled)))
3794 		goto out;
3795 
3796 	cpu = raw_smp_processor_id();
3797 
3798 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3799 		goto out;
3800 
3801 	cpu_buffer = buffer->buffers[cpu];
3802 
3803 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3804 		goto out;
3805 
3806 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3807 		goto out;
3808 
3809 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3810 		goto out;
3811 
3812 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3813 	if (!event)
3814 		goto out_unlock;
3815 
3816 	return event;
3817 
3818  out_unlock:
3819 	trace_recursive_unlock(cpu_buffer);
3820  out:
3821 	preempt_enable_notrace();
3822 	return NULL;
3823 }
3824 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3825 
3826 /*
3827  * Decrement the entries to the page that an event is on.
3828  * The event does not even need to exist, only the pointer
3829  * to the page it is on. This may only be called before the commit
3830  * takes place.
3831  */
3832 static inline void
3833 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3834 		   struct ring_buffer_event *event)
3835 {
3836 	unsigned long addr = (unsigned long)event;
3837 	struct buffer_page *bpage = cpu_buffer->commit_page;
3838 	struct buffer_page *start;
3839 
3840 	addr &= PAGE_MASK;
3841 
3842 	/* Do the likely case first */
3843 	if (likely(bpage->page == (void *)addr)) {
3844 		local_dec(&bpage->entries);
3845 		return;
3846 	}
3847 
3848 	/*
3849 	 * Because the commit page may be on the reader page we
3850 	 * start with the next page and check the end loop there.
3851 	 */
3852 	rb_inc_page(&bpage);
3853 	start = bpage;
3854 	do {
3855 		if (bpage->page == (void *)addr) {
3856 			local_dec(&bpage->entries);
3857 			return;
3858 		}
3859 		rb_inc_page(&bpage);
3860 	} while (bpage != start);
3861 
3862 	/* commit not part of this buffer?? */
3863 	RB_WARN_ON(cpu_buffer, 1);
3864 }
3865 
3866 /**
3867  * ring_buffer_discard_commit - discard an event that has not been committed
3868  * @buffer: the ring buffer
3869  * @event: non committed event to discard
3870  *
3871  * Sometimes an event that is in the ring buffer needs to be ignored.
3872  * This function lets the user discard an event in the ring buffer
3873  * and then that event will not be read later.
3874  *
3875  * This function only works if it is called before the item has been
3876  * committed. It will try to free the event from the ring buffer
3877  * if another event has not been added behind it.
3878  *
3879  * If another event has been added behind it, it will set the event
3880  * up as discarded, and perform the commit.
3881  *
3882  * If this function is called, do not call ring_buffer_unlock_commit on
3883  * the event.
3884  */
3885 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3886 				struct ring_buffer_event *event)
3887 {
3888 	struct ring_buffer_per_cpu *cpu_buffer;
3889 	int cpu;
3890 
3891 	/* The event is discarded regardless */
3892 	rb_event_discard(event);
3893 
3894 	cpu = smp_processor_id();
3895 	cpu_buffer = buffer->buffers[cpu];
3896 
3897 	/*
3898 	 * This must only be called if the event has not been
3899 	 * committed yet. Thus we can assume that preemption
3900 	 * is still disabled.
3901 	 */
3902 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3903 
3904 	rb_decrement_entry(cpu_buffer, event);
3905 	if (rb_try_to_discard(cpu_buffer, event))
3906 		goto out;
3907 
3908  out:
3909 	rb_end_commit(cpu_buffer);
3910 
3911 	trace_recursive_unlock(cpu_buffer);
3912 
3913 	preempt_enable_notrace();
3914 
3915 }
3916 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3917 
3918 /**
3919  * ring_buffer_write - write data to the buffer without reserving
3920  * @buffer: The ring buffer to write to.
3921  * @length: The length of the data being written (excluding the event header)
3922  * @data: The data to write to the buffer.
3923  *
3924  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3925  * one function. If you already have the data to write to the buffer, it
3926  * may be easier to simply call this function.
3927  *
3928  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3929  * and not the length of the event which would hold the header.
3930  */
3931 int ring_buffer_write(struct trace_buffer *buffer,
3932 		      unsigned long length,
3933 		      void *data)
3934 {
3935 	struct ring_buffer_per_cpu *cpu_buffer;
3936 	struct ring_buffer_event *event;
3937 	void *body;
3938 	int ret = -EBUSY;
3939 	int cpu;
3940 
3941 	preempt_disable_notrace();
3942 
3943 	if (atomic_read(&buffer->record_disabled))
3944 		goto out;
3945 
3946 	cpu = raw_smp_processor_id();
3947 
3948 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3949 		goto out;
3950 
3951 	cpu_buffer = buffer->buffers[cpu];
3952 
3953 	if (atomic_read(&cpu_buffer->record_disabled))
3954 		goto out;
3955 
3956 	if (length > BUF_MAX_DATA_SIZE)
3957 		goto out;
3958 
3959 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3960 		goto out;
3961 
3962 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3963 	if (!event)
3964 		goto out_unlock;
3965 
3966 	body = rb_event_data(event);
3967 
3968 	memcpy(body, data, length);
3969 
3970 	rb_commit(cpu_buffer);
3971 
3972 	rb_wakeups(buffer, cpu_buffer);
3973 
3974 	ret = 0;
3975 
3976  out_unlock:
3977 	trace_recursive_unlock(cpu_buffer);
3978 
3979  out:
3980 	preempt_enable_notrace();
3981 
3982 	return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(ring_buffer_write);
3985 
3986 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3987 {
3988 	struct buffer_page *reader = cpu_buffer->reader_page;
3989 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3990 	struct buffer_page *commit = cpu_buffer->commit_page;
3991 
3992 	/* In case of error, head will be NULL */
3993 	if (unlikely(!head))
3994 		return true;
3995 
3996 	/* Reader should exhaust content in reader page */
3997 	if (reader->read != rb_page_commit(reader))
3998 		return false;
3999 
4000 	/*
4001 	 * If writers are committing on the reader page, knowing all
4002 	 * committed content has been read, the ring buffer is empty.
4003 	 */
4004 	if (commit == reader)
4005 		return true;
4006 
4007 	/*
4008 	 * If writers are committing on a page other than reader page
4009 	 * and head page, there should always be content to read.
4010 	 */
4011 	if (commit != head)
4012 		return false;
4013 
4014 	/*
4015 	 * Writers are committing on the head page, we just need
4016 	 * to care about there're committed data, and the reader will
4017 	 * swap reader page with head page when it is to read data.
4018 	 */
4019 	return rb_page_commit(commit) == 0;
4020 }
4021 
4022 /**
4023  * ring_buffer_record_disable - stop all writes into the buffer
4024  * @buffer: The ring buffer to stop writes to.
4025  *
4026  * This prevents all writes to the buffer. Any attempt to write
4027  * to the buffer after this will fail and return NULL.
4028  *
4029  * The caller should call synchronize_rcu() after this.
4030  */
4031 void ring_buffer_record_disable(struct trace_buffer *buffer)
4032 {
4033 	atomic_inc(&buffer->record_disabled);
4034 }
4035 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4036 
4037 /**
4038  * ring_buffer_record_enable - enable writes to the buffer
4039  * @buffer: The ring buffer to enable writes
4040  *
4041  * Note, multiple disables will need the same number of enables
4042  * to truly enable the writing (much like preempt_disable).
4043  */
4044 void ring_buffer_record_enable(struct trace_buffer *buffer)
4045 {
4046 	atomic_dec(&buffer->record_disabled);
4047 }
4048 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4049 
4050 /**
4051  * ring_buffer_record_off - stop all writes into the buffer
4052  * @buffer: The ring buffer to stop writes to.
4053  *
4054  * This prevents all writes to the buffer. Any attempt to write
4055  * to the buffer after this will fail and return NULL.
4056  *
4057  * This is different than ring_buffer_record_disable() as
4058  * it works like an on/off switch, where as the disable() version
4059  * must be paired with a enable().
4060  */
4061 void ring_buffer_record_off(struct trace_buffer *buffer)
4062 {
4063 	unsigned int rd;
4064 	unsigned int new_rd;
4065 
4066 	do {
4067 		rd = atomic_read(&buffer->record_disabled);
4068 		new_rd = rd | RB_BUFFER_OFF;
4069 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4070 }
4071 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4072 
4073 /**
4074  * ring_buffer_record_on - restart writes into the buffer
4075  * @buffer: The ring buffer to start writes to.
4076  *
4077  * This enables all writes to the buffer that was disabled by
4078  * ring_buffer_record_off().
4079  *
4080  * This is different than ring_buffer_record_enable() as
4081  * it works like an on/off switch, where as the enable() version
4082  * must be paired with a disable().
4083  */
4084 void ring_buffer_record_on(struct trace_buffer *buffer)
4085 {
4086 	unsigned int rd;
4087 	unsigned int new_rd;
4088 
4089 	do {
4090 		rd = atomic_read(&buffer->record_disabled);
4091 		new_rd = rd & ~RB_BUFFER_OFF;
4092 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4093 }
4094 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4095 
4096 /**
4097  * ring_buffer_record_is_on - return true if the ring buffer can write
4098  * @buffer: The ring buffer to see if write is enabled
4099  *
4100  * Returns true if the ring buffer is in a state that it accepts writes.
4101  */
4102 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4103 {
4104 	return !atomic_read(&buffer->record_disabled);
4105 }
4106 
4107 /**
4108  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4109  * @buffer: The ring buffer to see if write is set enabled
4110  *
4111  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4112  * Note that this does NOT mean it is in a writable state.
4113  *
4114  * It may return true when the ring buffer has been disabled by
4115  * ring_buffer_record_disable(), as that is a temporary disabling of
4116  * the ring buffer.
4117  */
4118 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4119 {
4120 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4121 }
4122 
4123 /**
4124  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4125  * @buffer: The ring buffer to stop writes to.
4126  * @cpu: The CPU buffer to stop
4127  *
4128  * This prevents all writes to the buffer. Any attempt to write
4129  * to the buffer after this will fail and return NULL.
4130  *
4131  * The caller should call synchronize_rcu() after this.
4132  */
4133 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4134 {
4135 	struct ring_buffer_per_cpu *cpu_buffer;
4136 
4137 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138 		return;
4139 
4140 	cpu_buffer = buffer->buffers[cpu];
4141 	atomic_inc(&cpu_buffer->record_disabled);
4142 }
4143 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4144 
4145 /**
4146  * ring_buffer_record_enable_cpu - enable writes to the buffer
4147  * @buffer: The ring buffer to enable writes
4148  * @cpu: The CPU to enable.
4149  *
4150  * Note, multiple disables will need the same number of enables
4151  * to truly enable the writing (much like preempt_disable).
4152  */
4153 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4154 {
4155 	struct ring_buffer_per_cpu *cpu_buffer;
4156 
4157 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4158 		return;
4159 
4160 	cpu_buffer = buffer->buffers[cpu];
4161 	atomic_dec(&cpu_buffer->record_disabled);
4162 }
4163 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4164 
4165 /*
4166  * The total entries in the ring buffer is the running counter
4167  * of entries entered into the ring buffer, minus the sum of
4168  * the entries read from the ring buffer and the number of
4169  * entries that were overwritten.
4170  */
4171 static inline unsigned long
4172 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4173 {
4174 	return local_read(&cpu_buffer->entries) -
4175 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4176 }
4177 
4178 /**
4179  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4180  * @buffer: The ring buffer
4181  * @cpu: The per CPU buffer to read from.
4182  */
4183 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4184 {
4185 	unsigned long flags;
4186 	struct ring_buffer_per_cpu *cpu_buffer;
4187 	struct buffer_page *bpage;
4188 	u64 ret = 0;
4189 
4190 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4191 		return 0;
4192 
4193 	cpu_buffer = buffer->buffers[cpu];
4194 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4195 	/*
4196 	 * if the tail is on reader_page, oldest time stamp is on the reader
4197 	 * page
4198 	 */
4199 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4200 		bpage = cpu_buffer->reader_page;
4201 	else
4202 		bpage = rb_set_head_page(cpu_buffer);
4203 	if (bpage)
4204 		ret = bpage->page->time_stamp;
4205 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4206 
4207 	return ret;
4208 }
4209 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4210 
4211 /**
4212  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4213  * @buffer: The ring buffer
4214  * @cpu: The per CPU buffer to read from.
4215  */
4216 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4217 {
4218 	struct ring_buffer_per_cpu *cpu_buffer;
4219 	unsigned long ret;
4220 
4221 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222 		return 0;
4223 
4224 	cpu_buffer = buffer->buffers[cpu];
4225 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4226 
4227 	return ret;
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4230 
4231 /**
4232  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4233  * @buffer: The ring buffer
4234  * @cpu: The per CPU buffer to get the entries from.
4235  */
4236 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4237 {
4238 	struct ring_buffer_per_cpu *cpu_buffer;
4239 
4240 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4241 		return 0;
4242 
4243 	cpu_buffer = buffer->buffers[cpu];
4244 
4245 	return rb_num_of_entries(cpu_buffer);
4246 }
4247 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4248 
4249 /**
4250  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4251  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4252  * @buffer: The ring buffer
4253  * @cpu: The per CPU buffer to get the number of overruns from
4254  */
4255 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4256 {
4257 	struct ring_buffer_per_cpu *cpu_buffer;
4258 	unsigned long ret;
4259 
4260 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261 		return 0;
4262 
4263 	cpu_buffer = buffer->buffers[cpu];
4264 	ret = local_read(&cpu_buffer->overrun);
4265 
4266 	return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4269 
4270 /**
4271  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4272  * commits failing due to the buffer wrapping around while there are uncommitted
4273  * events, such as during an interrupt storm.
4274  * @buffer: The ring buffer
4275  * @cpu: The per CPU buffer to get the number of overruns from
4276  */
4277 unsigned long
4278 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4279 {
4280 	struct ring_buffer_per_cpu *cpu_buffer;
4281 	unsigned long ret;
4282 
4283 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4284 		return 0;
4285 
4286 	cpu_buffer = buffer->buffers[cpu];
4287 	ret = local_read(&cpu_buffer->commit_overrun);
4288 
4289 	return ret;
4290 }
4291 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4292 
4293 /**
4294  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4295  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4296  * @buffer: The ring buffer
4297  * @cpu: The per CPU buffer to get the number of overruns from
4298  */
4299 unsigned long
4300 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4301 {
4302 	struct ring_buffer_per_cpu *cpu_buffer;
4303 	unsigned long ret;
4304 
4305 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4306 		return 0;
4307 
4308 	cpu_buffer = buffer->buffers[cpu];
4309 	ret = local_read(&cpu_buffer->dropped_events);
4310 
4311 	return ret;
4312 }
4313 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4314 
4315 /**
4316  * ring_buffer_read_events_cpu - get the number of events successfully read
4317  * @buffer: The ring buffer
4318  * @cpu: The per CPU buffer to get the number of events read
4319  */
4320 unsigned long
4321 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4322 {
4323 	struct ring_buffer_per_cpu *cpu_buffer;
4324 
4325 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4326 		return 0;
4327 
4328 	cpu_buffer = buffer->buffers[cpu];
4329 	return cpu_buffer->read;
4330 }
4331 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4332 
4333 /**
4334  * ring_buffer_entries - get the number of entries in a buffer
4335  * @buffer: The ring buffer
4336  *
4337  * Returns the total number of entries in the ring buffer
4338  * (all CPU entries)
4339  */
4340 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4341 {
4342 	struct ring_buffer_per_cpu *cpu_buffer;
4343 	unsigned long entries = 0;
4344 	int cpu;
4345 
4346 	/* if you care about this being correct, lock the buffer */
4347 	for_each_buffer_cpu(buffer, cpu) {
4348 		cpu_buffer = buffer->buffers[cpu];
4349 		entries += rb_num_of_entries(cpu_buffer);
4350 	}
4351 
4352 	return entries;
4353 }
4354 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4355 
4356 /**
4357  * ring_buffer_overruns - get the number of overruns in buffer
4358  * @buffer: The ring buffer
4359  *
4360  * Returns the total number of overruns in the ring buffer
4361  * (all CPU entries)
4362  */
4363 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4364 {
4365 	struct ring_buffer_per_cpu *cpu_buffer;
4366 	unsigned long overruns = 0;
4367 	int cpu;
4368 
4369 	/* if you care about this being correct, lock the buffer */
4370 	for_each_buffer_cpu(buffer, cpu) {
4371 		cpu_buffer = buffer->buffers[cpu];
4372 		overruns += local_read(&cpu_buffer->overrun);
4373 	}
4374 
4375 	return overruns;
4376 }
4377 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4378 
4379 static void rb_iter_reset(struct ring_buffer_iter *iter)
4380 {
4381 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4382 
4383 	/* Iterator usage is expected to have record disabled */
4384 	iter->head_page = cpu_buffer->reader_page;
4385 	iter->head = cpu_buffer->reader_page->read;
4386 	iter->next_event = iter->head;
4387 
4388 	iter->cache_reader_page = iter->head_page;
4389 	iter->cache_read = cpu_buffer->read;
4390 
4391 	if (iter->head) {
4392 		iter->read_stamp = cpu_buffer->read_stamp;
4393 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4394 	} else {
4395 		iter->read_stamp = iter->head_page->page->time_stamp;
4396 		iter->page_stamp = iter->read_stamp;
4397 	}
4398 }
4399 
4400 /**
4401  * ring_buffer_iter_reset - reset an iterator
4402  * @iter: The iterator to reset
4403  *
4404  * Resets the iterator, so that it will start from the beginning
4405  * again.
4406  */
4407 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4408 {
4409 	struct ring_buffer_per_cpu *cpu_buffer;
4410 	unsigned long flags;
4411 
4412 	if (!iter)
4413 		return;
4414 
4415 	cpu_buffer = iter->cpu_buffer;
4416 
4417 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4418 	rb_iter_reset(iter);
4419 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4420 }
4421 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4422 
4423 /**
4424  * ring_buffer_iter_empty - check if an iterator has no more to read
4425  * @iter: The iterator to check
4426  */
4427 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4428 {
4429 	struct ring_buffer_per_cpu *cpu_buffer;
4430 	struct buffer_page *reader;
4431 	struct buffer_page *head_page;
4432 	struct buffer_page *commit_page;
4433 	struct buffer_page *curr_commit_page;
4434 	unsigned commit;
4435 	u64 curr_commit_ts;
4436 	u64 commit_ts;
4437 
4438 	cpu_buffer = iter->cpu_buffer;
4439 	reader = cpu_buffer->reader_page;
4440 	head_page = cpu_buffer->head_page;
4441 	commit_page = cpu_buffer->commit_page;
4442 	commit_ts = commit_page->page->time_stamp;
4443 
4444 	/*
4445 	 * When the writer goes across pages, it issues a cmpxchg which
4446 	 * is a mb(), which will synchronize with the rmb here.
4447 	 * (see rb_tail_page_update())
4448 	 */
4449 	smp_rmb();
4450 	commit = rb_page_commit(commit_page);
4451 	/* We want to make sure that the commit page doesn't change */
4452 	smp_rmb();
4453 
4454 	/* Make sure commit page didn't change */
4455 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4456 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4457 
4458 	/* If the commit page changed, then there's more data */
4459 	if (curr_commit_page != commit_page ||
4460 	    curr_commit_ts != commit_ts)
4461 		return 0;
4462 
4463 	/* Still racy, as it may return a false positive, but that's OK */
4464 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4465 		(iter->head_page == reader && commit_page == head_page &&
4466 		 head_page->read == commit &&
4467 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4468 }
4469 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4470 
4471 static void
4472 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4473 		     struct ring_buffer_event *event)
4474 {
4475 	u64 delta;
4476 
4477 	switch (event->type_len) {
4478 	case RINGBUF_TYPE_PADDING:
4479 		return;
4480 
4481 	case RINGBUF_TYPE_TIME_EXTEND:
4482 		delta = rb_event_time_stamp(event);
4483 		cpu_buffer->read_stamp += delta;
4484 		return;
4485 
4486 	case RINGBUF_TYPE_TIME_STAMP:
4487 		delta = rb_event_time_stamp(event);
4488 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4489 		cpu_buffer->read_stamp = delta;
4490 		return;
4491 
4492 	case RINGBUF_TYPE_DATA:
4493 		cpu_buffer->read_stamp += event->time_delta;
4494 		return;
4495 
4496 	default:
4497 		RB_WARN_ON(cpu_buffer, 1);
4498 	}
4499 	return;
4500 }
4501 
4502 static void
4503 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4504 			  struct ring_buffer_event *event)
4505 {
4506 	u64 delta;
4507 
4508 	switch (event->type_len) {
4509 	case RINGBUF_TYPE_PADDING:
4510 		return;
4511 
4512 	case RINGBUF_TYPE_TIME_EXTEND:
4513 		delta = rb_event_time_stamp(event);
4514 		iter->read_stamp += delta;
4515 		return;
4516 
4517 	case RINGBUF_TYPE_TIME_STAMP:
4518 		delta = rb_event_time_stamp(event);
4519 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4520 		iter->read_stamp = delta;
4521 		return;
4522 
4523 	case RINGBUF_TYPE_DATA:
4524 		iter->read_stamp += event->time_delta;
4525 		return;
4526 
4527 	default:
4528 		RB_WARN_ON(iter->cpu_buffer, 1);
4529 	}
4530 	return;
4531 }
4532 
4533 static struct buffer_page *
4534 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4535 {
4536 	struct buffer_page *reader = NULL;
4537 	unsigned long overwrite;
4538 	unsigned long flags;
4539 	int nr_loops = 0;
4540 	int ret;
4541 
4542 	local_irq_save(flags);
4543 	arch_spin_lock(&cpu_buffer->lock);
4544 
4545  again:
4546 	/*
4547 	 * This should normally only loop twice. But because the
4548 	 * start of the reader inserts an empty page, it causes
4549 	 * a case where we will loop three times. There should be no
4550 	 * reason to loop four times (that I know of).
4551 	 */
4552 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4553 		reader = NULL;
4554 		goto out;
4555 	}
4556 
4557 	reader = cpu_buffer->reader_page;
4558 
4559 	/* If there's more to read, return this page */
4560 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4561 		goto out;
4562 
4563 	/* Never should we have an index greater than the size */
4564 	if (RB_WARN_ON(cpu_buffer,
4565 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4566 		goto out;
4567 
4568 	/* check if we caught up to the tail */
4569 	reader = NULL;
4570 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4571 		goto out;
4572 
4573 	/* Don't bother swapping if the ring buffer is empty */
4574 	if (rb_num_of_entries(cpu_buffer) == 0)
4575 		goto out;
4576 
4577 	/*
4578 	 * Reset the reader page to size zero.
4579 	 */
4580 	local_set(&cpu_buffer->reader_page->write, 0);
4581 	local_set(&cpu_buffer->reader_page->entries, 0);
4582 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4583 	cpu_buffer->reader_page->real_end = 0;
4584 
4585  spin:
4586 	/*
4587 	 * Splice the empty reader page into the list around the head.
4588 	 */
4589 	reader = rb_set_head_page(cpu_buffer);
4590 	if (!reader)
4591 		goto out;
4592 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4593 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4594 
4595 	/*
4596 	 * cpu_buffer->pages just needs to point to the buffer, it
4597 	 *  has no specific buffer page to point to. Lets move it out
4598 	 *  of our way so we don't accidentally swap it.
4599 	 */
4600 	cpu_buffer->pages = reader->list.prev;
4601 
4602 	/* The reader page will be pointing to the new head */
4603 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4604 
4605 	/*
4606 	 * We want to make sure we read the overruns after we set up our
4607 	 * pointers to the next object. The writer side does a
4608 	 * cmpxchg to cross pages which acts as the mb on the writer
4609 	 * side. Note, the reader will constantly fail the swap
4610 	 * while the writer is updating the pointers, so this
4611 	 * guarantees that the overwrite recorded here is the one we
4612 	 * want to compare with the last_overrun.
4613 	 */
4614 	smp_mb();
4615 	overwrite = local_read(&(cpu_buffer->overrun));
4616 
4617 	/*
4618 	 * Here's the tricky part.
4619 	 *
4620 	 * We need to move the pointer past the header page.
4621 	 * But we can only do that if a writer is not currently
4622 	 * moving it. The page before the header page has the
4623 	 * flag bit '1' set if it is pointing to the page we want.
4624 	 * but if the writer is in the process of moving it
4625 	 * than it will be '2' or already moved '0'.
4626 	 */
4627 
4628 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4629 
4630 	/*
4631 	 * If we did not convert it, then we must try again.
4632 	 */
4633 	if (!ret)
4634 		goto spin;
4635 
4636 	/*
4637 	 * Yay! We succeeded in replacing the page.
4638 	 *
4639 	 * Now make the new head point back to the reader page.
4640 	 */
4641 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4642 	rb_inc_page(&cpu_buffer->head_page);
4643 
4644 	local_inc(&cpu_buffer->pages_read);
4645 
4646 	/* Finally update the reader page to the new head */
4647 	cpu_buffer->reader_page = reader;
4648 	cpu_buffer->reader_page->read = 0;
4649 
4650 	if (overwrite != cpu_buffer->last_overrun) {
4651 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4652 		cpu_buffer->last_overrun = overwrite;
4653 	}
4654 
4655 	goto again;
4656 
4657  out:
4658 	/* Update the read_stamp on the first event */
4659 	if (reader && reader->read == 0)
4660 		cpu_buffer->read_stamp = reader->page->time_stamp;
4661 
4662 	arch_spin_unlock(&cpu_buffer->lock);
4663 	local_irq_restore(flags);
4664 
4665 	/*
4666 	 * The writer has preempt disable, wait for it. But not forever
4667 	 * Although, 1 second is pretty much "forever"
4668 	 */
4669 #define USECS_WAIT	1000000
4670         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4671 		/* If the write is past the end of page, a writer is still updating it */
4672 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4673 			break;
4674 
4675 		udelay(1);
4676 
4677 		/* Get the latest version of the reader write value */
4678 		smp_rmb();
4679 	}
4680 
4681 	/* The writer is not moving forward? Something is wrong */
4682 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4683 		reader = NULL;
4684 
4685 	/*
4686 	 * Make sure we see any padding after the write update
4687 	 * (see rb_reset_tail())
4688 	 */
4689 	smp_rmb();
4690 
4691 
4692 	return reader;
4693 }
4694 
4695 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4696 {
4697 	struct ring_buffer_event *event;
4698 	struct buffer_page *reader;
4699 	unsigned length;
4700 
4701 	reader = rb_get_reader_page(cpu_buffer);
4702 
4703 	/* This function should not be called when buffer is empty */
4704 	if (RB_WARN_ON(cpu_buffer, !reader))
4705 		return;
4706 
4707 	event = rb_reader_event(cpu_buffer);
4708 
4709 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4710 		cpu_buffer->read++;
4711 
4712 	rb_update_read_stamp(cpu_buffer, event);
4713 
4714 	length = rb_event_length(event);
4715 	cpu_buffer->reader_page->read += length;
4716 }
4717 
4718 static void rb_advance_iter(struct ring_buffer_iter *iter)
4719 {
4720 	struct ring_buffer_per_cpu *cpu_buffer;
4721 
4722 	cpu_buffer = iter->cpu_buffer;
4723 
4724 	/* If head == next_event then we need to jump to the next event */
4725 	if (iter->head == iter->next_event) {
4726 		/* If the event gets overwritten again, there's nothing to do */
4727 		if (rb_iter_head_event(iter) == NULL)
4728 			return;
4729 	}
4730 
4731 	iter->head = iter->next_event;
4732 
4733 	/*
4734 	 * Check if we are at the end of the buffer.
4735 	 */
4736 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4737 		/* discarded commits can make the page empty */
4738 		if (iter->head_page == cpu_buffer->commit_page)
4739 			return;
4740 		rb_inc_iter(iter);
4741 		return;
4742 	}
4743 
4744 	rb_update_iter_read_stamp(iter, iter->event);
4745 }
4746 
4747 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4748 {
4749 	return cpu_buffer->lost_events;
4750 }
4751 
4752 static struct ring_buffer_event *
4753 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4754 	       unsigned long *lost_events)
4755 {
4756 	struct ring_buffer_event *event;
4757 	struct buffer_page *reader;
4758 	int nr_loops = 0;
4759 
4760 	if (ts)
4761 		*ts = 0;
4762  again:
4763 	/*
4764 	 * We repeat when a time extend is encountered.
4765 	 * Since the time extend is always attached to a data event,
4766 	 * we should never loop more than once.
4767 	 * (We never hit the following condition more than twice).
4768 	 */
4769 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4770 		return NULL;
4771 
4772 	reader = rb_get_reader_page(cpu_buffer);
4773 	if (!reader)
4774 		return NULL;
4775 
4776 	event = rb_reader_event(cpu_buffer);
4777 
4778 	switch (event->type_len) {
4779 	case RINGBUF_TYPE_PADDING:
4780 		if (rb_null_event(event))
4781 			RB_WARN_ON(cpu_buffer, 1);
4782 		/*
4783 		 * Because the writer could be discarding every
4784 		 * event it creates (which would probably be bad)
4785 		 * if we were to go back to "again" then we may never
4786 		 * catch up, and will trigger the warn on, or lock
4787 		 * the box. Return the padding, and we will release
4788 		 * the current locks, and try again.
4789 		 */
4790 		return event;
4791 
4792 	case RINGBUF_TYPE_TIME_EXTEND:
4793 		/* Internal data, OK to advance */
4794 		rb_advance_reader(cpu_buffer);
4795 		goto again;
4796 
4797 	case RINGBUF_TYPE_TIME_STAMP:
4798 		if (ts) {
4799 			*ts = rb_event_time_stamp(event);
4800 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4801 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4802 							 cpu_buffer->cpu, ts);
4803 		}
4804 		/* Internal data, OK to advance */
4805 		rb_advance_reader(cpu_buffer);
4806 		goto again;
4807 
4808 	case RINGBUF_TYPE_DATA:
4809 		if (ts && !(*ts)) {
4810 			*ts = cpu_buffer->read_stamp + event->time_delta;
4811 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812 							 cpu_buffer->cpu, ts);
4813 		}
4814 		if (lost_events)
4815 			*lost_events = rb_lost_events(cpu_buffer);
4816 		return event;
4817 
4818 	default:
4819 		RB_WARN_ON(cpu_buffer, 1);
4820 	}
4821 
4822 	return NULL;
4823 }
4824 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4825 
4826 static struct ring_buffer_event *
4827 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4828 {
4829 	struct trace_buffer *buffer;
4830 	struct ring_buffer_per_cpu *cpu_buffer;
4831 	struct ring_buffer_event *event;
4832 	int nr_loops = 0;
4833 
4834 	if (ts)
4835 		*ts = 0;
4836 
4837 	cpu_buffer = iter->cpu_buffer;
4838 	buffer = cpu_buffer->buffer;
4839 
4840 	/*
4841 	 * Check if someone performed a consuming read to
4842 	 * the buffer. A consuming read invalidates the iterator
4843 	 * and we need to reset the iterator in this case.
4844 	 */
4845 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4846 		     iter->cache_reader_page != cpu_buffer->reader_page))
4847 		rb_iter_reset(iter);
4848 
4849  again:
4850 	if (ring_buffer_iter_empty(iter))
4851 		return NULL;
4852 
4853 	/*
4854 	 * As the writer can mess with what the iterator is trying
4855 	 * to read, just give up if we fail to get an event after
4856 	 * three tries. The iterator is not as reliable when reading
4857 	 * the ring buffer with an active write as the consumer is.
4858 	 * Do not warn if the three failures is reached.
4859 	 */
4860 	if (++nr_loops > 3)
4861 		return NULL;
4862 
4863 	if (rb_per_cpu_empty(cpu_buffer))
4864 		return NULL;
4865 
4866 	if (iter->head >= rb_page_size(iter->head_page)) {
4867 		rb_inc_iter(iter);
4868 		goto again;
4869 	}
4870 
4871 	event = rb_iter_head_event(iter);
4872 	if (!event)
4873 		goto again;
4874 
4875 	switch (event->type_len) {
4876 	case RINGBUF_TYPE_PADDING:
4877 		if (rb_null_event(event)) {
4878 			rb_inc_iter(iter);
4879 			goto again;
4880 		}
4881 		rb_advance_iter(iter);
4882 		return event;
4883 
4884 	case RINGBUF_TYPE_TIME_EXTEND:
4885 		/* Internal data, OK to advance */
4886 		rb_advance_iter(iter);
4887 		goto again;
4888 
4889 	case RINGBUF_TYPE_TIME_STAMP:
4890 		if (ts) {
4891 			*ts = rb_event_time_stamp(event);
4892 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4893 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4894 							 cpu_buffer->cpu, ts);
4895 		}
4896 		/* Internal data, OK to advance */
4897 		rb_advance_iter(iter);
4898 		goto again;
4899 
4900 	case RINGBUF_TYPE_DATA:
4901 		if (ts && !(*ts)) {
4902 			*ts = iter->read_stamp + event->time_delta;
4903 			ring_buffer_normalize_time_stamp(buffer,
4904 							 cpu_buffer->cpu, ts);
4905 		}
4906 		return event;
4907 
4908 	default:
4909 		RB_WARN_ON(cpu_buffer, 1);
4910 	}
4911 
4912 	return NULL;
4913 }
4914 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4915 
4916 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4917 {
4918 	if (likely(!in_nmi())) {
4919 		raw_spin_lock(&cpu_buffer->reader_lock);
4920 		return true;
4921 	}
4922 
4923 	/*
4924 	 * If an NMI die dumps out the content of the ring buffer
4925 	 * trylock must be used to prevent a deadlock if the NMI
4926 	 * preempted a task that holds the ring buffer locks. If
4927 	 * we get the lock then all is fine, if not, then continue
4928 	 * to do the read, but this can corrupt the ring buffer,
4929 	 * so it must be permanently disabled from future writes.
4930 	 * Reading from NMI is a oneshot deal.
4931 	 */
4932 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4933 		return true;
4934 
4935 	/* Continue without locking, but disable the ring buffer */
4936 	atomic_inc(&cpu_buffer->record_disabled);
4937 	return false;
4938 }
4939 
4940 static inline void
4941 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4942 {
4943 	if (likely(locked))
4944 		raw_spin_unlock(&cpu_buffer->reader_lock);
4945 	return;
4946 }
4947 
4948 /**
4949  * ring_buffer_peek - peek at the next event to be read
4950  * @buffer: The ring buffer to read
4951  * @cpu: The cpu to peak at
4952  * @ts: The timestamp counter of this event.
4953  * @lost_events: a variable to store if events were lost (may be NULL)
4954  *
4955  * This will return the event that will be read next, but does
4956  * not consume the data.
4957  */
4958 struct ring_buffer_event *
4959 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4960 		 unsigned long *lost_events)
4961 {
4962 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4963 	struct ring_buffer_event *event;
4964 	unsigned long flags;
4965 	bool dolock;
4966 
4967 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4968 		return NULL;
4969 
4970  again:
4971 	local_irq_save(flags);
4972 	dolock = rb_reader_lock(cpu_buffer);
4973 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4974 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4975 		rb_advance_reader(cpu_buffer);
4976 	rb_reader_unlock(cpu_buffer, dolock);
4977 	local_irq_restore(flags);
4978 
4979 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4980 		goto again;
4981 
4982 	return event;
4983 }
4984 
4985 /** ring_buffer_iter_dropped - report if there are dropped events
4986  * @iter: The ring buffer iterator
4987  *
4988  * Returns true if there was dropped events since the last peek.
4989  */
4990 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4991 {
4992 	bool ret = iter->missed_events != 0;
4993 
4994 	iter->missed_events = 0;
4995 	return ret;
4996 }
4997 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4998 
4999 /**
5000  * ring_buffer_iter_peek - peek at the next event to be read
5001  * @iter: The ring buffer iterator
5002  * @ts: The timestamp counter of this event.
5003  *
5004  * This will return the event that will be read next, but does
5005  * not increment the iterator.
5006  */
5007 struct ring_buffer_event *
5008 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5009 {
5010 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5011 	struct ring_buffer_event *event;
5012 	unsigned long flags;
5013 
5014  again:
5015 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5016 	event = rb_iter_peek(iter, ts);
5017 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5018 
5019 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5020 		goto again;
5021 
5022 	return event;
5023 }
5024 
5025 /**
5026  * ring_buffer_consume - return an event and consume it
5027  * @buffer: The ring buffer to get the next event from
5028  * @cpu: the cpu to read the buffer from
5029  * @ts: a variable to store the timestamp (may be NULL)
5030  * @lost_events: a variable to store if events were lost (may be NULL)
5031  *
5032  * Returns the next event in the ring buffer, and that event is consumed.
5033  * Meaning, that sequential reads will keep returning a different event,
5034  * and eventually empty the ring buffer if the producer is slower.
5035  */
5036 struct ring_buffer_event *
5037 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5038 		    unsigned long *lost_events)
5039 {
5040 	struct ring_buffer_per_cpu *cpu_buffer;
5041 	struct ring_buffer_event *event = NULL;
5042 	unsigned long flags;
5043 	bool dolock;
5044 
5045  again:
5046 	/* might be called in atomic */
5047 	preempt_disable();
5048 
5049 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5050 		goto out;
5051 
5052 	cpu_buffer = buffer->buffers[cpu];
5053 	local_irq_save(flags);
5054 	dolock = rb_reader_lock(cpu_buffer);
5055 
5056 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5057 	if (event) {
5058 		cpu_buffer->lost_events = 0;
5059 		rb_advance_reader(cpu_buffer);
5060 	}
5061 
5062 	rb_reader_unlock(cpu_buffer, dolock);
5063 	local_irq_restore(flags);
5064 
5065  out:
5066 	preempt_enable();
5067 
5068 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5069 		goto again;
5070 
5071 	return event;
5072 }
5073 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5074 
5075 /**
5076  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5077  * @buffer: The ring buffer to read from
5078  * @cpu: The cpu buffer to iterate over
5079  * @flags: gfp flags to use for memory allocation
5080  *
5081  * This performs the initial preparations necessary to iterate
5082  * through the buffer.  Memory is allocated, buffer recording
5083  * is disabled, and the iterator pointer is returned to the caller.
5084  *
5085  * Disabling buffer recording prevents the reading from being
5086  * corrupted. This is not a consuming read, so a producer is not
5087  * expected.
5088  *
5089  * After a sequence of ring_buffer_read_prepare calls, the user is
5090  * expected to make at least one call to ring_buffer_read_prepare_sync.
5091  * Afterwards, ring_buffer_read_start is invoked to get things going
5092  * for real.
5093  *
5094  * This overall must be paired with ring_buffer_read_finish.
5095  */
5096 struct ring_buffer_iter *
5097 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5098 {
5099 	struct ring_buffer_per_cpu *cpu_buffer;
5100 	struct ring_buffer_iter *iter;
5101 
5102 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5103 		return NULL;
5104 
5105 	iter = kzalloc(sizeof(*iter), flags);
5106 	if (!iter)
5107 		return NULL;
5108 
5109 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5110 	if (!iter->event) {
5111 		kfree(iter);
5112 		return NULL;
5113 	}
5114 
5115 	cpu_buffer = buffer->buffers[cpu];
5116 
5117 	iter->cpu_buffer = cpu_buffer;
5118 
5119 	atomic_inc(&cpu_buffer->resize_disabled);
5120 
5121 	return iter;
5122 }
5123 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5124 
5125 /**
5126  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5127  *
5128  * All previously invoked ring_buffer_read_prepare calls to prepare
5129  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5130  * calls on those iterators are allowed.
5131  */
5132 void
5133 ring_buffer_read_prepare_sync(void)
5134 {
5135 	synchronize_rcu();
5136 }
5137 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5138 
5139 /**
5140  * ring_buffer_read_start - start a non consuming read of the buffer
5141  * @iter: The iterator returned by ring_buffer_read_prepare
5142  *
5143  * This finalizes the startup of an iteration through the buffer.
5144  * The iterator comes from a call to ring_buffer_read_prepare and
5145  * an intervening ring_buffer_read_prepare_sync must have been
5146  * performed.
5147  *
5148  * Must be paired with ring_buffer_read_finish.
5149  */
5150 void
5151 ring_buffer_read_start(struct ring_buffer_iter *iter)
5152 {
5153 	struct ring_buffer_per_cpu *cpu_buffer;
5154 	unsigned long flags;
5155 
5156 	if (!iter)
5157 		return;
5158 
5159 	cpu_buffer = iter->cpu_buffer;
5160 
5161 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5162 	arch_spin_lock(&cpu_buffer->lock);
5163 	rb_iter_reset(iter);
5164 	arch_spin_unlock(&cpu_buffer->lock);
5165 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5166 }
5167 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5168 
5169 /**
5170  * ring_buffer_read_finish - finish reading the iterator of the buffer
5171  * @iter: The iterator retrieved by ring_buffer_start
5172  *
5173  * This re-enables the recording to the buffer, and frees the
5174  * iterator.
5175  */
5176 void
5177 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5178 {
5179 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5180 	unsigned long flags;
5181 
5182 	/*
5183 	 * Ring buffer is disabled from recording, here's a good place
5184 	 * to check the integrity of the ring buffer.
5185 	 * Must prevent readers from trying to read, as the check
5186 	 * clears the HEAD page and readers require it.
5187 	 */
5188 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5189 	rb_check_pages(cpu_buffer);
5190 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5191 
5192 	atomic_dec(&cpu_buffer->resize_disabled);
5193 	kfree(iter->event);
5194 	kfree(iter);
5195 }
5196 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5197 
5198 /**
5199  * ring_buffer_iter_advance - advance the iterator to the next location
5200  * @iter: The ring buffer iterator
5201  *
5202  * Move the location of the iterator such that the next read will
5203  * be the next location of the iterator.
5204  */
5205 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5206 {
5207 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5208 	unsigned long flags;
5209 
5210 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5211 
5212 	rb_advance_iter(iter);
5213 
5214 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5215 }
5216 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5217 
5218 /**
5219  * ring_buffer_size - return the size of the ring buffer (in bytes)
5220  * @buffer: The ring buffer.
5221  * @cpu: The CPU to get ring buffer size from.
5222  */
5223 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5224 {
5225 	/*
5226 	 * Earlier, this method returned
5227 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5228 	 * Since the nr_pages field is now removed, we have converted this to
5229 	 * return the per cpu buffer value.
5230 	 */
5231 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5232 		return 0;
5233 
5234 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5235 }
5236 EXPORT_SYMBOL_GPL(ring_buffer_size);
5237 
5238 static void
5239 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5240 {
5241 	rb_head_page_deactivate(cpu_buffer);
5242 
5243 	cpu_buffer->head_page
5244 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5245 	local_set(&cpu_buffer->head_page->write, 0);
5246 	local_set(&cpu_buffer->head_page->entries, 0);
5247 	local_set(&cpu_buffer->head_page->page->commit, 0);
5248 
5249 	cpu_buffer->head_page->read = 0;
5250 
5251 	cpu_buffer->tail_page = cpu_buffer->head_page;
5252 	cpu_buffer->commit_page = cpu_buffer->head_page;
5253 
5254 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5255 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5256 	local_set(&cpu_buffer->reader_page->write, 0);
5257 	local_set(&cpu_buffer->reader_page->entries, 0);
5258 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5259 	cpu_buffer->reader_page->read = 0;
5260 
5261 	local_set(&cpu_buffer->entries_bytes, 0);
5262 	local_set(&cpu_buffer->overrun, 0);
5263 	local_set(&cpu_buffer->commit_overrun, 0);
5264 	local_set(&cpu_buffer->dropped_events, 0);
5265 	local_set(&cpu_buffer->entries, 0);
5266 	local_set(&cpu_buffer->committing, 0);
5267 	local_set(&cpu_buffer->commits, 0);
5268 	local_set(&cpu_buffer->pages_touched, 0);
5269 	local_set(&cpu_buffer->pages_lost, 0);
5270 	local_set(&cpu_buffer->pages_read, 0);
5271 	cpu_buffer->last_pages_touch = 0;
5272 	cpu_buffer->shortest_full = 0;
5273 	cpu_buffer->read = 0;
5274 	cpu_buffer->read_bytes = 0;
5275 
5276 	rb_time_set(&cpu_buffer->write_stamp, 0);
5277 	rb_time_set(&cpu_buffer->before_stamp, 0);
5278 
5279 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5280 
5281 	cpu_buffer->lost_events = 0;
5282 	cpu_buffer->last_overrun = 0;
5283 
5284 	rb_head_page_activate(cpu_buffer);
5285 }
5286 
5287 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5288 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5289 {
5290 	unsigned long flags;
5291 
5292 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5293 
5294 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5295 		goto out;
5296 
5297 	arch_spin_lock(&cpu_buffer->lock);
5298 
5299 	rb_reset_cpu(cpu_buffer);
5300 
5301 	arch_spin_unlock(&cpu_buffer->lock);
5302 
5303  out:
5304 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5305 }
5306 
5307 /**
5308  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5309  * @buffer: The ring buffer to reset a per cpu buffer of
5310  * @cpu: The CPU buffer to be reset
5311  */
5312 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5313 {
5314 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5315 
5316 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5317 		return;
5318 
5319 	/* prevent another thread from changing buffer sizes */
5320 	mutex_lock(&buffer->mutex);
5321 
5322 	atomic_inc(&cpu_buffer->resize_disabled);
5323 	atomic_inc(&cpu_buffer->record_disabled);
5324 
5325 	/* Make sure all commits have finished */
5326 	synchronize_rcu();
5327 
5328 	reset_disabled_cpu_buffer(cpu_buffer);
5329 
5330 	atomic_dec(&cpu_buffer->record_disabled);
5331 	atomic_dec(&cpu_buffer->resize_disabled);
5332 
5333 	mutex_unlock(&buffer->mutex);
5334 }
5335 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5336 
5337 /**
5338  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5339  * @buffer: The ring buffer to reset a per cpu buffer of
5340  * @cpu: The CPU buffer to be reset
5341  */
5342 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5343 {
5344 	struct ring_buffer_per_cpu *cpu_buffer;
5345 	int cpu;
5346 
5347 	/* prevent another thread from changing buffer sizes */
5348 	mutex_lock(&buffer->mutex);
5349 
5350 	for_each_online_buffer_cpu(buffer, cpu) {
5351 		cpu_buffer = buffer->buffers[cpu];
5352 
5353 		atomic_inc(&cpu_buffer->resize_disabled);
5354 		atomic_inc(&cpu_buffer->record_disabled);
5355 	}
5356 
5357 	/* Make sure all commits have finished */
5358 	synchronize_rcu();
5359 
5360 	for_each_online_buffer_cpu(buffer, cpu) {
5361 		cpu_buffer = buffer->buffers[cpu];
5362 
5363 		reset_disabled_cpu_buffer(cpu_buffer);
5364 
5365 		atomic_dec(&cpu_buffer->record_disabled);
5366 		atomic_dec(&cpu_buffer->resize_disabled);
5367 	}
5368 
5369 	mutex_unlock(&buffer->mutex);
5370 }
5371 
5372 /**
5373  * ring_buffer_reset - reset a ring buffer
5374  * @buffer: The ring buffer to reset all cpu buffers
5375  */
5376 void ring_buffer_reset(struct trace_buffer *buffer)
5377 {
5378 	struct ring_buffer_per_cpu *cpu_buffer;
5379 	int cpu;
5380 
5381 	/* prevent another thread from changing buffer sizes */
5382 	mutex_lock(&buffer->mutex);
5383 
5384 	for_each_buffer_cpu(buffer, cpu) {
5385 		cpu_buffer = buffer->buffers[cpu];
5386 
5387 		atomic_inc(&cpu_buffer->resize_disabled);
5388 		atomic_inc(&cpu_buffer->record_disabled);
5389 	}
5390 
5391 	/* Make sure all commits have finished */
5392 	synchronize_rcu();
5393 
5394 	for_each_buffer_cpu(buffer, cpu) {
5395 		cpu_buffer = buffer->buffers[cpu];
5396 
5397 		reset_disabled_cpu_buffer(cpu_buffer);
5398 
5399 		atomic_dec(&cpu_buffer->record_disabled);
5400 		atomic_dec(&cpu_buffer->resize_disabled);
5401 	}
5402 
5403 	mutex_unlock(&buffer->mutex);
5404 }
5405 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5406 
5407 /**
5408  * ring_buffer_empty - is the ring buffer empty?
5409  * @buffer: The ring buffer to test
5410  */
5411 bool ring_buffer_empty(struct trace_buffer *buffer)
5412 {
5413 	struct ring_buffer_per_cpu *cpu_buffer;
5414 	unsigned long flags;
5415 	bool dolock;
5416 	int cpu;
5417 	int ret;
5418 
5419 	/* yes this is racy, but if you don't like the race, lock the buffer */
5420 	for_each_buffer_cpu(buffer, cpu) {
5421 		cpu_buffer = buffer->buffers[cpu];
5422 		local_irq_save(flags);
5423 		dolock = rb_reader_lock(cpu_buffer);
5424 		ret = rb_per_cpu_empty(cpu_buffer);
5425 		rb_reader_unlock(cpu_buffer, dolock);
5426 		local_irq_restore(flags);
5427 
5428 		if (!ret)
5429 			return false;
5430 	}
5431 
5432 	return true;
5433 }
5434 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5435 
5436 /**
5437  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5438  * @buffer: The ring buffer
5439  * @cpu: The CPU buffer to test
5440  */
5441 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5442 {
5443 	struct ring_buffer_per_cpu *cpu_buffer;
5444 	unsigned long flags;
5445 	bool dolock;
5446 	int ret;
5447 
5448 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5449 		return true;
5450 
5451 	cpu_buffer = buffer->buffers[cpu];
5452 	local_irq_save(flags);
5453 	dolock = rb_reader_lock(cpu_buffer);
5454 	ret = rb_per_cpu_empty(cpu_buffer);
5455 	rb_reader_unlock(cpu_buffer, dolock);
5456 	local_irq_restore(flags);
5457 
5458 	return ret;
5459 }
5460 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5461 
5462 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5463 /**
5464  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5465  * @buffer_a: One buffer to swap with
5466  * @buffer_b: The other buffer to swap with
5467  * @cpu: the CPU of the buffers to swap
5468  *
5469  * This function is useful for tracers that want to take a "snapshot"
5470  * of a CPU buffer and has another back up buffer lying around.
5471  * it is expected that the tracer handles the cpu buffer not being
5472  * used at the moment.
5473  */
5474 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5475 			 struct trace_buffer *buffer_b, int cpu)
5476 {
5477 	struct ring_buffer_per_cpu *cpu_buffer_a;
5478 	struct ring_buffer_per_cpu *cpu_buffer_b;
5479 	int ret = -EINVAL;
5480 
5481 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5482 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5483 		goto out;
5484 
5485 	cpu_buffer_a = buffer_a->buffers[cpu];
5486 	cpu_buffer_b = buffer_b->buffers[cpu];
5487 
5488 	/* At least make sure the two buffers are somewhat the same */
5489 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5490 		goto out;
5491 
5492 	ret = -EAGAIN;
5493 
5494 	if (atomic_read(&buffer_a->record_disabled))
5495 		goto out;
5496 
5497 	if (atomic_read(&buffer_b->record_disabled))
5498 		goto out;
5499 
5500 	if (atomic_read(&cpu_buffer_a->record_disabled))
5501 		goto out;
5502 
5503 	if (atomic_read(&cpu_buffer_b->record_disabled))
5504 		goto out;
5505 
5506 	/*
5507 	 * We can't do a synchronize_rcu here because this
5508 	 * function can be called in atomic context.
5509 	 * Normally this will be called from the same CPU as cpu.
5510 	 * If not it's up to the caller to protect this.
5511 	 */
5512 	atomic_inc(&cpu_buffer_a->record_disabled);
5513 	atomic_inc(&cpu_buffer_b->record_disabled);
5514 
5515 	ret = -EBUSY;
5516 	if (local_read(&cpu_buffer_a->committing))
5517 		goto out_dec;
5518 	if (local_read(&cpu_buffer_b->committing))
5519 		goto out_dec;
5520 
5521 	buffer_a->buffers[cpu] = cpu_buffer_b;
5522 	buffer_b->buffers[cpu] = cpu_buffer_a;
5523 
5524 	cpu_buffer_b->buffer = buffer_a;
5525 	cpu_buffer_a->buffer = buffer_b;
5526 
5527 	ret = 0;
5528 
5529 out_dec:
5530 	atomic_dec(&cpu_buffer_a->record_disabled);
5531 	atomic_dec(&cpu_buffer_b->record_disabled);
5532 out:
5533 	return ret;
5534 }
5535 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5536 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5537 
5538 /**
5539  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5540  * @buffer: the buffer to allocate for.
5541  * @cpu: the cpu buffer to allocate.
5542  *
5543  * This function is used in conjunction with ring_buffer_read_page.
5544  * When reading a full page from the ring buffer, these functions
5545  * can be used to speed up the process. The calling function should
5546  * allocate a few pages first with this function. Then when it
5547  * needs to get pages from the ring buffer, it passes the result
5548  * of this function into ring_buffer_read_page, which will swap
5549  * the page that was allocated, with the read page of the buffer.
5550  *
5551  * Returns:
5552  *  The page allocated, or ERR_PTR
5553  */
5554 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5555 {
5556 	struct ring_buffer_per_cpu *cpu_buffer;
5557 	struct buffer_data_page *bpage = NULL;
5558 	unsigned long flags;
5559 	struct page *page;
5560 
5561 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5562 		return ERR_PTR(-ENODEV);
5563 
5564 	cpu_buffer = buffer->buffers[cpu];
5565 	local_irq_save(flags);
5566 	arch_spin_lock(&cpu_buffer->lock);
5567 
5568 	if (cpu_buffer->free_page) {
5569 		bpage = cpu_buffer->free_page;
5570 		cpu_buffer->free_page = NULL;
5571 	}
5572 
5573 	arch_spin_unlock(&cpu_buffer->lock);
5574 	local_irq_restore(flags);
5575 
5576 	if (bpage)
5577 		goto out;
5578 
5579 	page = alloc_pages_node(cpu_to_node(cpu),
5580 				GFP_KERNEL | __GFP_NORETRY, 0);
5581 	if (!page)
5582 		return ERR_PTR(-ENOMEM);
5583 
5584 	bpage = page_address(page);
5585 
5586  out:
5587 	rb_init_page(bpage);
5588 
5589 	return bpage;
5590 }
5591 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5592 
5593 /**
5594  * ring_buffer_free_read_page - free an allocated read page
5595  * @buffer: the buffer the page was allocate for
5596  * @cpu: the cpu buffer the page came from
5597  * @data: the page to free
5598  *
5599  * Free a page allocated from ring_buffer_alloc_read_page.
5600  */
5601 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5602 {
5603 	struct ring_buffer_per_cpu *cpu_buffer;
5604 	struct buffer_data_page *bpage = data;
5605 	struct page *page = virt_to_page(bpage);
5606 	unsigned long flags;
5607 
5608 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5609 		return;
5610 
5611 	cpu_buffer = buffer->buffers[cpu];
5612 
5613 	/* If the page is still in use someplace else, we can't reuse it */
5614 	if (page_ref_count(page) > 1)
5615 		goto out;
5616 
5617 	local_irq_save(flags);
5618 	arch_spin_lock(&cpu_buffer->lock);
5619 
5620 	if (!cpu_buffer->free_page) {
5621 		cpu_buffer->free_page = bpage;
5622 		bpage = NULL;
5623 	}
5624 
5625 	arch_spin_unlock(&cpu_buffer->lock);
5626 	local_irq_restore(flags);
5627 
5628  out:
5629 	free_page((unsigned long)bpage);
5630 }
5631 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5632 
5633 /**
5634  * ring_buffer_read_page - extract a page from the ring buffer
5635  * @buffer: buffer to extract from
5636  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5637  * @len: amount to extract
5638  * @cpu: the cpu of the buffer to extract
5639  * @full: should the extraction only happen when the page is full.
5640  *
5641  * This function will pull out a page from the ring buffer and consume it.
5642  * @data_page must be the address of the variable that was returned
5643  * from ring_buffer_alloc_read_page. This is because the page might be used
5644  * to swap with a page in the ring buffer.
5645  *
5646  * for example:
5647  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5648  *	if (IS_ERR(rpage))
5649  *		return PTR_ERR(rpage);
5650  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5651  *	if (ret >= 0)
5652  *		process_page(rpage, ret);
5653  *
5654  * When @full is set, the function will not return true unless
5655  * the writer is off the reader page.
5656  *
5657  * Note: it is up to the calling functions to handle sleeps and wakeups.
5658  *  The ring buffer can be used anywhere in the kernel and can not
5659  *  blindly call wake_up. The layer that uses the ring buffer must be
5660  *  responsible for that.
5661  *
5662  * Returns:
5663  *  >=0 if data has been transferred, returns the offset of consumed data.
5664  *  <0 if no data has been transferred.
5665  */
5666 int ring_buffer_read_page(struct trace_buffer *buffer,
5667 			  void **data_page, size_t len, int cpu, int full)
5668 {
5669 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5670 	struct ring_buffer_event *event;
5671 	struct buffer_data_page *bpage;
5672 	struct buffer_page *reader;
5673 	unsigned long missed_events;
5674 	unsigned long flags;
5675 	unsigned int commit;
5676 	unsigned int read;
5677 	u64 save_timestamp;
5678 	int ret = -1;
5679 
5680 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5681 		goto out;
5682 
5683 	/*
5684 	 * If len is not big enough to hold the page header, then
5685 	 * we can not copy anything.
5686 	 */
5687 	if (len <= BUF_PAGE_HDR_SIZE)
5688 		goto out;
5689 
5690 	len -= BUF_PAGE_HDR_SIZE;
5691 
5692 	if (!data_page)
5693 		goto out;
5694 
5695 	bpage = *data_page;
5696 	if (!bpage)
5697 		goto out;
5698 
5699 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5700 
5701 	reader = rb_get_reader_page(cpu_buffer);
5702 	if (!reader)
5703 		goto out_unlock;
5704 
5705 	event = rb_reader_event(cpu_buffer);
5706 
5707 	read = reader->read;
5708 	commit = rb_page_commit(reader);
5709 
5710 	/* Check if any events were dropped */
5711 	missed_events = cpu_buffer->lost_events;
5712 
5713 	/*
5714 	 * If this page has been partially read or
5715 	 * if len is not big enough to read the rest of the page or
5716 	 * a writer is still on the page, then
5717 	 * we must copy the data from the page to the buffer.
5718 	 * Otherwise, we can simply swap the page with the one passed in.
5719 	 */
5720 	if (read || (len < (commit - read)) ||
5721 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5722 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5723 		unsigned int rpos = read;
5724 		unsigned int pos = 0;
5725 		unsigned int size;
5726 
5727 		/*
5728 		 * If a full page is expected, this can still be returned
5729 		 * if there's been a previous partial read and the
5730 		 * rest of the page can be read and the commit page is off
5731 		 * the reader page.
5732 		 */
5733 		if (full &&
5734 		    (!read || (len < (commit - read)) ||
5735 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5736 			goto out_unlock;
5737 
5738 		if (len > (commit - read))
5739 			len = (commit - read);
5740 
5741 		/* Always keep the time extend and data together */
5742 		size = rb_event_ts_length(event);
5743 
5744 		if (len < size)
5745 			goto out_unlock;
5746 
5747 		/* save the current timestamp, since the user will need it */
5748 		save_timestamp = cpu_buffer->read_stamp;
5749 
5750 		/* Need to copy one event at a time */
5751 		do {
5752 			/* We need the size of one event, because
5753 			 * rb_advance_reader only advances by one event,
5754 			 * whereas rb_event_ts_length may include the size of
5755 			 * one or two events.
5756 			 * We have already ensured there's enough space if this
5757 			 * is a time extend. */
5758 			size = rb_event_length(event);
5759 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5760 
5761 			len -= size;
5762 
5763 			rb_advance_reader(cpu_buffer);
5764 			rpos = reader->read;
5765 			pos += size;
5766 
5767 			if (rpos >= commit)
5768 				break;
5769 
5770 			event = rb_reader_event(cpu_buffer);
5771 			/* Always keep the time extend and data together */
5772 			size = rb_event_ts_length(event);
5773 		} while (len >= size);
5774 
5775 		/* update bpage */
5776 		local_set(&bpage->commit, pos);
5777 		bpage->time_stamp = save_timestamp;
5778 
5779 		/* we copied everything to the beginning */
5780 		read = 0;
5781 	} else {
5782 		/* update the entry counter */
5783 		cpu_buffer->read += rb_page_entries(reader);
5784 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5785 
5786 		/* swap the pages */
5787 		rb_init_page(bpage);
5788 		bpage = reader->page;
5789 		reader->page = *data_page;
5790 		local_set(&reader->write, 0);
5791 		local_set(&reader->entries, 0);
5792 		reader->read = 0;
5793 		*data_page = bpage;
5794 
5795 		/*
5796 		 * Use the real_end for the data size,
5797 		 * This gives us a chance to store the lost events
5798 		 * on the page.
5799 		 */
5800 		if (reader->real_end)
5801 			local_set(&bpage->commit, reader->real_end);
5802 	}
5803 	ret = read;
5804 
5805 	cpu_buffer->lost_events = 0;
5806 
5807 	commit = local_read(&bpage->commit);
5808 	/*
5809 	 * Set a flag in the commit field if we lost events
5810 	 */
5811 	if (missed_events) {
5812 		/* If there is room at the end of the page to save the
5813 		 * missed events, then record it there.
5814 		 */
5815 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5816 			memcpy(&bpage->data[commit], &missed_events,
5817 			       sizeof(missed_events));
5818 			local_add(RB_MISSED_STORED, &bpage->commit);
5819 			commit += sizeof(missed_events);
5820 		}
5821 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5822 	}
5823 
5824 	/*
5825 	 * This page may be off to user land. Zero it out here.
5826 	 */
5827 	if (commit < BUF_PAGE_SIZE)
5828 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5829 
5830  out_unlock:
5831 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5832 
5833  out:
5834 	return ret;
5835 }
5836 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5837 
5838 /*
5839  * We only allocate new buffers, never free them if the CPU goes down.
5840  * If we were to free the buffer, then the user would lose any trace that was in
5841  * the buffer.
5842  */
5843 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5844 {
5845 	struct trace_buffer *buffer;
5846 	long nr_pages_same;
5847 	int cpu_i;
5848 	unsigned long nr_pages;
5849 
5850 	buffer = container_of(node, struct trace_buffer, node);
5851 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5852 		return 0;
5853 
5854 	nr_pages = 0;
5855 	nr_pages_same = 1;
5856 	/* check if all cpu sizes are same */
5857 	for_each_buffer_cpu(buffer, cpu_i) {
5858 		/* fill in the size from first enabled cpu */
5859 		if (nr_pages == 0)
5860 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5861 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5862 			nr_pages_same = 0;
5863 			break;
5864 		}
5865 	}
5866 	/* allocate minimum pages, user can later expand it */
5867 	if (!nr_pages_same)
5868 		nr_pages = 2;
5869 	buffer->buffers[cpu] =
5870 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5871 	if (!buffer->buffers[cpu]) {
5872 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5873 		     cpu);
5874 		return -ENOMEM;
5875 	}
5876 	smp_wmb();
5877 	cpumask_set_cpu(cpu, buffer->cpumask);
5878 	return 0;
5879 }
5880 
5881 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5882 /*
5883  * This is a basic integrity check of the ring buffer.
5884  * Late in the boot cycle this test will run when configured in.
5885  * It will kick off a thread per CPU that will go into a loop
5886  * writing to the per cpu ring buffer various sizes of data.
5887  * Some of the data will be large items, some small.
5888  *
5889  * Another thread is created that goes into a spin, sending out
5890  * IPIs to the other CPUs to also write into the ring buffer.
5891  * this is to test the nesting ability of the buffer.
5892  *
5893  * Basic stats are recorded and reported. If something in the
5894  * ring buffer should happen that's not expected, a big warning
5895  * is displayed and all ring buffers are disabled.
5896  */
5897 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5898 
5899 struct rb_test_data {
5900 	struct trace_buffer *buffer;
5901 	unsigned long		events;
5902 	unsigned long		bytes_written;
5903 	unsigned long		bytes_alloc;
5904 	unsigned long		bytes_dropped;
5905 	unsigned long		events_nested;
5906 	unsigned long		bytes_written_nested;
5907 	unsigned long		bytes_alloc_nested;
5908 	unsigned long		bytes_dropped_nested;
5909 	int			min_size_nested;
5910 	int			max_size_nested;
5911 	int			max_size;
5912 	int			min_size;
5913 	int			cpu;
5914 	int			cnt;
5915 };
5916 
5917 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5918 
5919 /* 1 meg per cpu */
5920 #define RB_TEST_BUFFER_SIZE	1048576
5921 
5922 static char rb_string[] __initdata =
5923 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5924 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5925 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5926 
5927 static bool rb_test_started __initdata;
5928 
5929 struct rb_item {
5930 	int size;
5931 	char str[];
5932 };
5933 
5934 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5935 {
5936 	struct ring_buffer_event *event;
5937 	struct rb_item *item;
5938 	bool started;
5939 	int event_len;
5940 	int size;
5941 	int len;
5942 	int cnt;
5943 
5944 	/* Have nested writes different that what is written */
5945 	cnt = data->cnt + (nested ? 27 : 0);
5946 
5947 	/* Multiply cnt by ~e, to make some unique increment */
5948 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5949 
5950 	len = size + sizeof(struct rb_item);
5951 
5952 	started = rb_test_started;
5953 	/* read rb_test_started before checking buffer enabled */
5954 	smp_rmb();
5955 
5956 	event = ring_buffer_lock_reserve(data->buffer, len);
5957 	if (!event) {
5958 		/* Ignore dropped events before test starts. */
5959 		if (started) {
5960 			if (nested)
5961 				data->bytes_dropped += len;
5962 			else
5963 				data->bytes_dropped_nested += len;
5964 		}
5965 		return len;
5966 	}
5967 
5968 	event_len = ring_buffer_event_length(event);
5969 
5970 	if (RB_WARN_ON(data->buffer, event_len < len))
5971 		goto out;
5972 
5973 	item = ring_buffer_event_data(event);
5974 	item->size = size;
5975 	memcpy(item->str, rb_string, size);
5976 
5977 	if (nested) {
5978 		data->bytes_alloc_nested += event_len;
5979 		data->bytes_written_nested += len;
5980 		data->events_nested++;
5981 		if (!data->min_size_nested || len < data->min_size_nested)
5982 			data->min_size_nested = len;
5983 		if (len > data->max_size_nested)
5984 			data->max_size_nested = len;
5985 	} else {
5986 		data->bytes_alloc += event_len;
5987 		data->bytes_written += len;
5988 		data->events++;
5989 		if (!data->min_size || len < data->min_size)
5990 			data->max_size = len;
5991 		if (len > data->max_size)
5992 			data->max_size = len;
5993 	}
5994 
5995  out:
5996 	ring_buffer_unlock_commit(data->buffer);
5997 
5998 	return 0;
5999 }
6000 
6001 static __init int rb_test(void *arg)
6002 {
6003 	struct rb_test_data *data = arg;
6004 
6005 	while (!kthread_should_stop()) {
6006 		rb_write_something(data, false);
6007 		data->cnt++;
6008 
6009 		set_current_state(TASK_INTERRUPTIBLE);
6010 		/* Now sleep between a min of 100-300us and a max of 1ms */
6011 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6012 	}
6013 
6014 	return 0;
6015 }
6016 
6017 static __init void rb_ipi(void *ignore)
6018 {
6019 	struct rb_test_data *data;
6020 	int cpu = smp_processor_id();
6021 
6022 	data = &rb_data[cpu];
6023 	rb_write_something(data, true);
6024 }
6025 
6026 static __init int rb_hammer_test(void *arg)
6027 {
6028 	while (!kthread_should_stop()) {
6029 
6030 		/* Send an IPI to all cpus to write data! */
6031 		smp_call_function(rb_ipi, NULL, 1);
6032 		/* No sleep, but for non preempt, let others run */
6033 		schedule();
6034 	}
6035 
6036 	return 0;
6037 }
6038 
6039 static __init int test_ringbuffer(void)
6040 {
6041 	struct task_struct *rb_hammer;
6042 	struct trace_buffer *buffer;
6043 	int cpu;
6044 	int ret = 0;
6045 
6046 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6047 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6048 		return 0;
6049 	}
6050 
6051 	pr_info("Running ring buffer tests...\n");
6052 
6053 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6054 	if (WARN_ON(!buffer))
6055 		return 0;
6056 
6057 	/* Disable buffer so that threads can't write to it yet */
6058 	ring_buffer_record_off(buffer);
6059 
6060 	for_each_online_cpu(cpu) {
6061 		rb_data[cpu].buffer = buffer;
6062 		rb_data[cpu].cpu = cpu;
6063 		rb_data[cpu].cnt = cpu;
6064 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6065 						     cpu, "rbtester/%u");
6066 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6067 			pr_cont("FAILED\n");
6068 			ret = PTR_ERR(rb_threads[cpu]);
6069 			goto out_free;
6070 		}
6071 	}
6072 
6073 	/* Now create the rb hammer! */
6074 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6075 	if (WARN_ON(IS_ERR(rb_hammer))) {
6076 		pr_cont("FAILED\n");
6077 		ret = PTR_ERR(rb_hammer);
6078 		goto out_free;
6079 	}
6080 
6081 	ring_buffer_record_on(buffer);
6082 	/*
6083 	 * Show buffer is enabled before setting rb_test_started.
6084 	 * Yes there's a small race window where events could be
6085 	 * dropped and the thread wont catch it. But when a ring
6086 	 * buffer gets enabled, there will always be some kind of
6087 	 * delay before other CPUs see it. Thus, we don't care about
6088 	 * those dropped events. We care about events dropped after
6089 	 * the threads see that the buffer is active.
6090 	 */
6091 	smp_wmb();
6092 	rb_test_started = true;
6093 
6094 	set_current_state(TASK_INTERRUPTIBLE);
6095 	/* Just run for 10 seconds */;
6096 	schedule_timeout(10 * HZ);
6097 
6098 	kthread_stop(rb_hammer);
6099 
6100  out_free:
6101 	for_each_online_cpu(cpu) {
6102 		if (!rb_threads[cpu])
6103 			break;
6104 		kthread_stop(rb_threads[cpu]);
6105 	}
6106 	if (ret) {
6107 		ring_buffer_free(buffer);
6108 		return ret;
6109 	}
6110 
6111 	/* Report! */
6112 	pr_info("finished\n");
6113 	for_each_online_cpu(cpu) {
6114 		struct ring_buffer_event *event;
6115 		struct rb_test_data *data = &rb_data[cpu];
6116 		struct rb_item *item;
6117 		unsigned long total_events;
6118 		unsigned long total_dropped;
6119 		unsigned long total_written;
6120 		unsigned long total_alloc;
6121 		unsigned long total_read = 0;
6122 		unsigned long total_size = 0;
6123 		unsigned long total_len = 0;
6124 		unsigned long total_lost = 0;
6125 		unsigned long lost;
6126 		int big_event_size;
6127 		int small_event_size;
6128 
6129 		ret = -1;
6130 
6131 		total_events = data->events + data->events_nested;
6132 		total_written = data->bytes_written + data->bytes_written_nested;
6133 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6134 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6135 
6136 		big_event_size = data->max_size + data->max_size_nested;
6137 		small_event_size = data->min_size + data->min_size_nested;
6138 
6139 		pr_info("CPU %d:\n", cpu);
6140 		pr_info("              events:    %ld\n", total_events);
6141 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6142 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6143 		pr_info("       written bytes:    %ld\n", total_written);
6144 		pr_info("       biggest event:    %d\n", big_event_size);
6145 		pr_info("      smallest event:    %d\n", small_event_size);
6146 
6147 		if (RB_WARN_ON(buffer, total_dropped))
6148 			break;
6149 
6150 		ret = 0;
6151 
6152 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6153 			total_lost += lost;
6154 			item = ring_buffer_event_data(event);
6155 			total_len += ring_buffer_event_length(event);
6156 			total_size += item->size + sizeof(struct rb_item);
6157 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6158 				pr_info("FAILED!\n");
6159 				pr_info("buffer had: %.*s\n", item->size, item->str);
6160 				pr_info("expected:   %.*s\n", item->size, rb_string);
6161 				RB_WARN_ON(buffer, 1);
6162 				ret = -1;
6163 				break;
6164 			}
6165 			total_read++;
6166 		}
6167 		if (ret)
6168 			break;
6169 
6170 		ret = -1;
6171 
6172 		pr_info("         read events:   %ld\n", total_read);
6173 		pr_info("         lost events:   %ld\n", total_lost);
6174 		pr_info("        total events:   %ld\n", total_lost + total_read);
6175 		pr_info("  recorded len bytes:   %ld\n", total_len);
6176 		pr_info(" recorded size bytes:   %ld\n", total_size);
6177 		if (total_lost) {
6178 			pr_info(" With dropped events, record len and size may not match\n"
6179 				" alloced and written from above\n");
6180 		} else {
6181 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6182 				       total_size != total_written))
6183 				break;
6184 		}
6185 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6186 			break;
6187 
6188 		ret = 0;
6189 	}
6190 	if (!ret)
6191 		pr_info("Ring buffer PASSED!\n");
6192 
6193 	ring_buffer_free(buffer);
6194 	return 0;
6195 }
6196 
6197 late_initcall(test_ringbuffer);
6198 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6199