1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline int rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 /* 358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 359 * this issue out. 360 */ 361 static void free_buffer_page(struct buffer_page *bpage) 362 { 363 free_page((unsigned long)bpage->page); 364 kfree(bpage); 365 } 366 367 /* 368 * We need to fit the time_stamp delta into 27 bits. 369 */ 370 static inline int test_time_stamp(u64 delta) 371 { 372 if (delta & TS_DELTA_TEST) 373 return 1; 374 return 0; 375 } 376 377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 378 379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 381 382 int ring_buffer_print_page_header(struct trace_seq *s) 383 { 384 struct buffer_data_page field; 385 386 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 387 "offset:0;\tsize:%u;\tsigned:%u;\n", 388 (unsigned int)sizeof(field.time_stamp), 389 (unsigned int)is_signed_type(u64)); 390 391 trace_seq_printf(s, "\tfield: local_t commit;\t" 392 "offset:%u;\tsize:%u;\tsigned:%u;\n", 393 (unsigned int)offsetof(typeof(field), commit), 394 (unsigned int)sizeof(field.commit), 395 (unsigned int)is_signed_type(long)); 396 397 trace_seq_printf(s, "\tfield: int overwrite;\t" 398 "offset:%u;\tsize:%u;\tsigned:%u;\n", 399 (unsigned int)offsetof(typeof(field), commit), 400 1, 401 (unsigned int)is_signed_type(long)); 402 403 trace_seq_printf(s, "\tfield: char data;\t" 404 "offset:%u;\tsize:%u;\tsigned:%u;\n", 405 (unsigned int)offsetof(typeof(field), data), 406 (unsigned int)BUF_PAGE_SIZE, 407 (unsigned int)is_signed_type(char)); 408 409 return !trace_seq_has_overflowed(s); 410 } 411 412 struct rb_irq_work { 413 struct irq_work work; 414 wait_queue_head_t waiters; 415 wait_queue_head_t full_waiters; 416 bool waiters_pending; 417 bool full_waiters_pending; 418 bool wakeup_full; 419 }; 420 421 /* 422 * Structure to hold event state and handle nested events. 423 */ 424 struct rb_event_info { 425 u64 ts; 426 u64 delta; 427 u64 before; 428 u64 after; 429 unsigned long length; 430 struct buffer_page *tail_page; 431 int add_timestamp; 432 }; 433 434 /* 435 * Used for the add_timestamp 436 * NONE 437 * EXTEND - wants a time extend 438 * ABSOLUTE - the buffer requests all events to have absolute time stamps 439 * FORCE - force a full time stamp. 440 */ 441 enum { 442 RB_ADD_STAMP_NONE = 0, 443 RB_ADD_STAMP_EXTEND = BIT(1), 444 RB_ADD_STAMP_ABSOLUTE = BIT(2), 445 RB_ADD_STAMP_FORCE = BIT(3) 446 }; 447 /* 448 * Used for which event context the event is in. 449 * TRANSITION = 0 450 * NMI = 1 451 * IRQ = 2 452 * SOFTIRQ = 3 453 * NORMAL = 4 454 * 455 * See trace_recursive_lock() comment below for more details. 456 */ 457 enum { 458 RB_CTX_TRANSITION, 459 RB_CTX_NMI, 460 RB_CTX_IRQ, 461 RB_CTX_SOFTIRQ, 462 RB_CTX_NORMAL, 463 RB_CTX_MAX 464 }; 465 466 #if BITS_PER_LONG == 32 467 #define RB_TIME_32 468 #endif 469 470 /* To test on 64 bit machines */ 471 //#define RB_TIME_32 472 473 #ifdef RB_TIME_32 474 475 struct rb_time_struct { 476 local_t cnt; 477 local_t top; 478 local_t bottom; 479 local_t msb; 480 }; 481 #else 482 #include <asm/local64.h> 483 struct rb_time_struct { 484 local64_t time; 485 }; 486 #endif 487 typedef struct rb_time_struct rb_time_t; 488 489 #define MAX_NEST 5 490 491 /* 492 * head_page == tail_page && head == tail then buffer is empty. 493 */ 494 struct ring_buffer_per_cpu { 495 int cpu; 496 atomic_t record_disabled; 497 atomic_t resize_disabled; 498 struct trace_buffer *buffer; 499 raw_spinlock_t reader_lock; /* serialize readers */ 500 arch_spinlock_t lock; 501 struct lock_class_key lock_key; 502 struct buffer_data_page *free_page; 503 unsigned long nr_pages; 504 unsigned int current_context; 505 struct list_head *pages; 506 struct buffer_page *head_page; /* read from head */ 507 struct buffer_page *tail_page; /* write to tail */ 508 struct buffer_page *commit_page; /* committed pages */ 509 struct buffer_page *reader_page; 510 unsigned long lost_events; 511 unsigned long last_overrun; 512 unsigned long nest; 513 local_t entries_bytes; 514 local_t entries; 515 local_t overrun; 516 local_t commit_overrun; 517 local_t dropped_events; 518 local_t committing; 519 local_t commits; 520 local_t pages_touched; 521 local_t pages_read; 522 long last_pages_touch; 523 size_t shortest_full; 524 unsigned long read; 525 unsigned long read_bytes; 526 rb_time_t write_stamp; 527 rb_time_t before_stamp; 528 u64 event_stamp[MAX_NEST]; 529 u64 read_stamp; 530 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 531 long nr_pages_to_update; 532 struct list_head new_pages; /* new pages to add */ 533 struct work_struct update_pages_work; 534 struct completion update_done; 535 536 struct rb_irq_work irq_work; 537 }; 538 539 struct trace_buffer { 540 unsigned flags; 541 int cpus; 542 atomic_t record_disabled; 543 cpumask_var_t cpumask; 544 545 struct lock_class_key *reader_lock_key; 546 547 struct mutex mutex; 548 549 struct ring_buffer_per_cpu **buffers; 550 551 struct hlist_node node; 552 u64 (*clock)(void); 553 554 struct rb_irq_work irq_work; 555 bool time_stamp_abs; 556 }; 557 558 struct ring_buffer_iter { 559 struct ring_buffer_per_cpu *cpu_buffer; 560 unsigned long head; 561 unsigned long next_event; 562 struct buffer_page *head_page; 563 struct buffer_page *cache_reader_page; 564 unsigned long cache_read; 565 u64 read_stamp; 566 u64 page_stamp; 567 struct ring_buffer_event *event; 568 int missed_events; 569 }; 570 571 #ifdef RB_TIME_32 572 573 /* 574 * On 32 bit machines, local64_t is very expensive. As the ring 575 * buffer doesn't need all the features of a true 64 bit atomic, 576 * on 32 bit, it uses these functions (64 still uses local64_t). 577 * 578 * For the ring buffer, 64 bit required operations for the time is 579 * the following: 580 * 581 * - Reads may fail if it interrupted a modification of the time stamp. 582 * It will succeed if it did not interrupt another write even if 583 * the read itself is interrupted by a write. 584 * It returns whether it was successful or not. 585 * 586 * - Writes always succeed and will overwrite other writes and writes 587 * that were done by events interrupting the current write. 588 * 589 * - A write followed by a read of the same time stamp will always succeed, 590 * but may not contain the same value. 591 * 592 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 593 * Other than that, it acts like a normal cmpxchg. 594 * 595 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 596 * (bottom being the least significant 30 bits of the 60 bit time stamp). 597 * 598 * The two most significant bits of each half holds a 2 bit counter (0-3). 599 * Each update will increment this counter by one. 600 * When reading the top and bottom, if the two counter bits match then the 601 * top and bottom together make a valid 60 bit number. 602 */ 603 #define RB_TIME_SHIFT 30 604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 605 #define RB_TIME_MSB_SHIFT 60 606 607 static inline int rb_time_cnt(unsigned long val) 608 { 609 return (val >> RB_TIME_SHIFT) & 3; 610 } 611 612 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 613 { 614 u64 val; 615 616 val = top & RB_TIME_VAL_MASK; 617 val <<= RB_TIME_SHIFT; 618 val |= bottom & RB_TIME_VAL_MASK; 619 620 return val; 621 } 622 623 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 624 { 625 unsigned long top, bottom, msb; 626 unsigned long c; 627 628 /* 629 * If the read is interrupted by a write, then the cnt will 630 * be different. Loop until both top and bottom have been read 631 * without interruption. 632 */ 633 do { 634 c = local_read(&t->cnt); 635 top = local_read(&t->top); 636 bottom = local_read(&t->bottom); 637 msb = local_read(&t->msb); 638 } while (c != local_read(&t->cnt)); 639 640 *cnt = rb_time_cnt(top); 641 642 /* If top and bottom counts don't match, this interrupted a write */ 643 if (*cnt != rb_time_cnt(bottom)) 644 return false; 645 646 /* The shift to msb will lose its cnt bits */ 647 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 648 return true; 649 } 650 651 static bool rb_time_read(rb_time_t *t, u64 *ret) 652 { 653 unsigned long cnt; 654 655 return __rb_time_read(t, ret, &cnt); 656 } 657 658 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 659 { 660 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 661 } 662 663 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 664 unsigned long *msb) 665 { 666 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 667 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 668 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 669 } 670 671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 672 { 673 val = rb_time_val_cnt(val, cnt); 674 local_set(t, val); 675 } 676 677 static void rb_time_set(rb_time_t *t, u64 val) 678 { 679 unsigned long cnt, top, bottom, msb; 680 681 rb_time_split(val, &top, &bottom, &msb); 682 683 /* Writes always succeed with a valid number even if it gets interrupted. */ 684 do { 685 cnt = local_inc_return(&t->cnt); 686 rb_time_val_set(&t->top, top, cnt); 687 rb_time_val_set(&t->bottom, bottom, cnt); 688 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 689 } while (cnt != local_read(&t->cnt)); 690 } 691 692 static inline bool 693 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 694 { 695 unsigned long ret; 696 697 ret = local_cmpxchg(l, expect, set); 698 return ret == expect; 699 } 700 701 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 702 { 703 unsigned long cnt, top, bottom, msb; 704 unsigned long cnt2, top2, bottom2, msb2; 705 u64 val; 706 707 /* The cmpxchg always fails if it interrupted an update */ 708 if (!__rb_time_read(t, &val, &cnt2)) 709 return false; 710 711 if (val != expect) 712 return false; 713 714 cnt = local_read(&t->cnt); 715 if ((cnt & 3) != cnt2) 716 return false; 717 718 cnt2 = cnt + 1; 719 720 rb_time_split(val, &top, &bottom, &msb); 721 top = rb_time_val_cnt(top, cnt); 722 bottom = rb_time_val_cnt(bottom, cnt); 723 724 rb_time_split(set, &top2, &bottom2, &msb2); 725 top2 = rb_time_val_cnt(top2, cnt2); 726 bottom2 = rb_time_val_cnt(bottom2, cnt2); 727 728 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 729 return false; 730 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2)) 731 return false; 732 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 733 return false; 734 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 735 return false; 736 return true; 737 } 738 739 #else /* 64 bits */ 740 741 /* local64_t always succeeds */ 742 743 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 744 { 745 *ret = local64_read(&t->time); 746 return true; 747 } 748 static void rb_time_set(rb_time_t *t, u64 val) 749 { 750 local64_set(&t->time, val); 751 } 752 753 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 754 { 755 u64 val; 756 val = local64_cmpxchg(&t->time, expect, set); 757 return val == expect; 758 } 759 #endif 760 761 /* 762 * Enable this to make sure that the event passed to 763 * ring_buffer_event_time_stamp() is not committed and also 764 * is on the buffer that it passed in. 765 */ 766 //#define RB_VERIFY_EVENT 767 #ifdef RB_VERIFY_EVENT 768 static struct list_head *rb_list_head(struct list_head *list); 769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 770 void *event) 771 { 772 struct buffer_page *page = cpu_buffer->commit_page; 773 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 774 struct list_head *next; 775 long commit, write; 776 unsigned long addr = (unsigned long)event; 777 bool done = false; 778 int stop = 0; 779 780 /* Make sure the event exists and is not committed yet */ 781 do { 782 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 783 done = true; 784 commit = local_read(&page->page->commit); 785 write = local_read(&page->write); 786 if (addr >= (unsigned long)&page->page->data[commit] && 787 addr < (unsigned long)&page->page->data[write]) 788 return; 789 790 next = rb_list_head(page->list.next); 791 page = list_entry(next, struct buffer_page, list); 792 } while (!done); 793 WARN_ON_ONCE(1); 794 } 795 #else 796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 797 void *event) 798 { 799 } 800 #endif 801 802 /* 803 * The absolute time stamp drops the 5 MSBs and some clocks may 804 * require them. The rb_fix_abs_ts() will take a previous full 805 * time stamp, and add the 5 MSB of that time stamp on to the 806 * saved absolute time stamp. Then they are compared in case of 807 * the unlikely event that the latest time stamp incremented 808 * the 5 MSB. 809 */ 810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 811 { 812 if (save_ts & TS_MSB) { 813 abs |= save_ts & TS_MSB; 814 /* Check for overflow */ 815 if (unlikely(abs < save_ts)) 816 abs += 1ULL << 59; 817 } 818 return abs; 819 } 820 821 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 822 823 /** 824 * ring_buffer_event_time_stamp - return the event's current time stamp 825 * @buffer: The buffer that the event is on 826 * @event: the event to get the time stamp of 827 * 828 * Note, this must be called after @event is reserved, and before it is 829 * committed to the ring buffer. And must be called from the same 830 * context where the event was reserved (normal, softirq, irq, etc). 831 * 832 * Returns the time stamp associated with the current event. 833 * If the event has an extended time stamp, then that is used as 834 * the time stamp to return. 835 * In the highly unlikely case that the event was nested more than 836 * the max nesting, then the write_stamp of the buffer is returned, 837 * otherwise current time is returned, but that really neither of 838 * the last two cases should ever happen. 839 */ 840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 841 struct ring_buffer_event *event) 842 { 843 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 844 unsigned int nest; 845 u64 ts; 846 847 /* If the event includes an absolute time, then just use that */ 848 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 849 ts = rb_event_time_stamp(event); 850 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 851 } 852 853 nest = local_read(&cpu_buffer->committing); 854 verify_event(cpu_buffer, event); 855 if (WARN_ON_ONCE(!nest)) 856 goto fail; 857 858 /* Read the current saved nesting level time stamp */ 859 if (likely(--nest < MAX_NEST)) 860 return cpu_buffer->event_stamp[nest]; 861 862 /* Shouldn't happen, warn if it does */ 863 WARN_ONCE(1, "nest (%d) greater than max", nest); 864 865 fail: 866 /* Can only fail on 32 bit */ 867 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 868 /* Screw it, just read the current time */ 869 ts = rb_time_stamp(cpu_buffer->buffer); 870 871 return ts; 872 } 873 874 /** 875 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 876 * @buffer: The ring_buffer to get the number of pages from 877 * @cpu: The cpu of the ring_buffer to get the number of pages from 878 * 879 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 880 */ 881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 882 { 883 return buffer->buffers[cpu]->nr_pages; 884 } 885 886 /** 887 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 888 * @buffer: The ring_buffer to get the number of pages from 889 * @cpu: The cpu of the ring_buffer to get the number of pages from 890 * 891 * Returns the number of pages that have content in the ring buffer. 892 */ 893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 894 { 895 size_t read; 896 size_t cnt; 897 898 read = local_read(&buffer->buffers[cpu]->pages_read); 899 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 900 /* The reader can read an empty page, but not more than that */ 901 if (cnt < read) { 902 WARN_ON_ONCE(read > cnt + 1); 903 return 0; 904 } 905 906 return cnt - read; 907 } 908 909 /* 910 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 911 * 912 * Schedules a delayed work to wake up any task that is blocked on the 913 * ring buffer waiters queue. 914 */ 915 static void rb_wake_up_waiters(struct irq_work *work) 916 { 917 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 918 919 wake_up_all(&rbwork->waiters); 920 if (rbwork->wakeup_full) { 921 rbwork->wakeup_full = false; 922 wake_up_all(&rbwork->full_waiters); 923 } 924 } 925 926 /** 927 * ring_buffer_wait - wait for input to the ring buffer 928 * @buffer: buffer to wait on 929 * @cpu: the cpu buffer to wait on 930 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 931 * 932 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 933 * as data is added to any of the @buffer's cpu buffers. Otherwise 934 * it will wait for data to be added to a specific cpu buffer. 935 */ 936 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 937 { 938 struct ring_buffer_per_cpu *cpu_buffer; 939 DEFINE_WAIT(wait); 940 struct rb_irq_work *work; 941 int ret = 0; 942 943 /* 944 * Depending on what the caller is waiting for, either any 945 * data in any cpu buffer, or a specific buffer, put the 946 * caller on the appropriate wait queue. 947 */ 948 if (cpu == RING_BUFFER_ALL_CPUS) { 949 work = &buffer->irq_work; 950 /* Full only makes sense on per cpu reads */ 951 full = 0; 952 } else { 953 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 954 return -ENODEV; 955 cpu_buffer = buffer->buffers[cpu]; 956 work = &cpu_buffer->irq_work; 957 } 958 959 960 while (true) { 961 if (full) 962 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 963 else 964 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 965 966 /* 967 * The events can happen in critical sections where 968 * checking a work queue can cause deadlocks. 969 * After adding a task to the queue, this flag is set 970 * only to notify events to try to wake up the queue 971 * using irq_work. 972 * 973 * We don't clear it even if the buffer is no longer 974 * empty. The flag only causes the next event to run 975 * irq_work to do the work queue wake up. The worse 976 * that can happen if we race with !trace_empty() is that 977 * an event will cause an irq_work to try to wake up 978 * an empty queue. 979 * 980 * There's no reason to protect this flag either, as 981 * the work queue and irq_work logic will do the necessary 982 * synchronization for the wake ups. The only thing 983 * that is necessary is that the wake up happens after 984 * a task has been queued. It's OK for spurious wake ups. 985 */ 986 if (full) 987 work->full_waiters_pending = true; 988 else 989 work->waiters_pending = true; 990 991 if (signal_pending(current)) { 992 ret = -EINTR; 993 break; 994 } 995 996 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 997 break; 998 999 if (cpu != RING_BUFFER_ALL_CPUS && 1000 !ring_buffer_empty_cpu(buffer, cpu)) { 1001 unsigned long flags; 1002 bool pagebusy; 1003 size_t nr_pages; 1004 size_t dirty; 1005 1006 if (!full) 1007 break; 1008 1009 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1010 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 1011 nr_pages = cpu_buffer->nr_pages; 1012 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 1013 if (!cpu_buffer->shortest_full || 1014 cpu_buffer->shortest_full < full) 1015 cpu_buffer->shortest_full = full; 1016 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1017 if (!pagebusy && 1018 (!nr_pages || (dirty * 100) > full * nr_pages)) 1019 break; 1020 } 1021 1022 schedule(); 1023 } 1024 1025 if (full) 1026 finish_wait(&work->full_waiters, &wait); 1027 else 1028 finish_wait(&work->waiters, &wait); 1029 1030 return ret; 1031 } 1032 1033 /** 1034 * ring_buffer_poll_wait - poll on buffer input 1035 * @buffer: buffer to wait on 1036 * @cpu: the cpu buffer to wait on 1037 * @filp: the file descriptor 1038 * @poll_table: The poll descriptor 1039 * 1040 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1041 * as data is added to any of the @buffer's cpu buffers. Otherwise 1042 * it will wait for data to be added to a specific cpu buffer. 1043 * 1044 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1045 * zero otherwise. 1046 */ 1047 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1048 struct file *filp, poll_table *poll_table) 1049 { 1050 struct ring_buffer_per_cpu *cpu_buffer; 1051 struct rb_irq_work *work; 1052 1053 if (cpu == RING_BUFFER_ALL_CPUS) 1054 work = &buffer->irq_work; 1055 else { 1056 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1057 return -EINVAL; 1058 1059 cpu_buffer = buffer->buffers[cpu]; 1060 work = &cpu_buffer->irq_work; 1061 } 1062 1063 poll_wait(filp, &work->waiters, poll_table); 1064 work->waiters_pending = true; 1065 /* 1066 * There's a tight race between setting the waiters_pending and 1067 * checking if the ring buffer is empty. Once the waiters_pending bit 1068 * is set, the next event will wake the task up, but we can get stuck 1069 * if there's only a single event in. 1070 * 1071 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1072 * but adding a memory barrier to all events will cause too much of a 1073 * performance hit in the fast path. We only need a memory barrier when 1074 * the buffer goes from empty to having content. But as this race is 1075 * extremely small, and it's not a problem if another event comes in, we 1076 * will fix it later. 1077 */ 1078 smp_mb(); 1079 1080 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1081 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1082 return EPOLLIN | EPOLLRDNORM; 1083 return 0; 1084 } 1085 1086 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1087 #define RB_WARN_ON(b, cond) \ 1088 ({ \ 1089 int _____ret = unlikely(cond); \ 1090 if (_____ret) { \ 1091 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1092 struct ring_buffer_per_cpu *__b = \ 1093 (void *)b; \ 1094 atomic_inc(&__b->buffer->record_disabled); \ 1095 } else \ 1096 atomic_inc(&b->record_disabled); \ 1097 WARN_ON(1); \ 1098 } \ 1099 _____ret; \ 1100 }) 1101 1102 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1103 #define DEBUG_SHIFT 0 1104 1105 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1106 { 1107 u64 ts; 1108 1109 /* Skip retpolines :-( */ 1110 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1111 ts = trace_clock_local(); 1112 else 1113 ts = buffer->clock(); 1114 1115 /* shift to debug/test normalization and TIME_EXTENTS */ 1116 return ts << DEBUG_SHIFT; 1117 } 1118 1119 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1120 { 1121 u64 time; 1122 1123 preempt_disable_notrace(); 1124 time = rb_time_stamp(buffer); 1125 preempt_enable_notrace(); 1126 1127 return time; 1128 } 1129 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1130 1131 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1132 int cpu, u64 *ts) 1133 { 1134 /* Just stupid testing the normalize function and deltas */ 1135 *ts >>= DEBUG_SHIFT; 1136 } 1137 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1138 1139 /* 1140 * Making the ring buffer lockless makes things tricky. 1141 * Although writes only happen on the CPU that they are on, 1142 * and they only need to worry about interrupts. Reads can 1143 * happen on any CPU. 1144 * 1145 * The reader page is always off the ring buffer, but when the 1146 * reader finishes with a page, it needs to swap its page with 1147 * a new one from the buffer. The reader needs to take from 1148 * the head (writes go to the tail). But if a writer is in overwrite 1149 * mode and wraps, it must push the head page forward. 1150 * 1151 * Here lies the problem. 1152 * 1153 * The reader must be careful to replace only the head page, and 1154 * not another one. As described at the top of the file in the 1155 * ASCII art, the reader sets its old page to point to the next 1156 * page after head. It then sets the page after head to point to 1157 * the old reader page. But if the writer moves the head page 1158 * during this operation, the reader could end up with the tail. 1159 * 1160 * We use cmpxchg to help prevent this race. We also do something 1161 * special with the page before head. We set the LSB to 1. 1162 * 1163 * When the writer must push the page forward, it will clear the 1164 * bit that points to the head page, move the head, and then set 1165 * the bit that points to the new head page. 1166 * 1167 * We also don't want an interrupt coming in and moving the head 1168 * page on another writer. Thus we use the second LSB to catch 1169 * that too. Thus: 1170 * 1171 * head->list->prev->next bit 1 bit 0 1172 * ------- ------- 1173 * Normal page 0 0 1174 * Points to head page 0 1 1175 * New head page 1 0 1176 * 1177 * Note we can not trust the prev pointer of the head page, because: 1178 * 1179 * +----+ +-----+ +-----+ 1180 * | |------>| T |---X--->| N | 1181 * | |<------| | | | 1182 * +----+ +-----+ +-----+ 1183 * ^ ^ | 1184 * | +-----+ | | 1185 * +----------| R |----------+ | 1186 * | |<-----------+ 1187 * +-----+ 1188 * 1189 * Key: ---X--> HEAD flag set in pointer 1190 * T Tail page 1191 * R Reader page 1192 * N Next page 1193 * 1194 * (see __rb_reserve_next() to see where this happens) 1195 * 1196 * What the above shows is that the reader just swapped out 1197 * the reader page with a page in the buffer, but before it 1198 * could make the new header point back to the new page added 1199 * it was preempted by a writer. The writer moved forward onto 1200 * the new page added by the reader and is about to move forward 1201 * again. 1202 * 1203 * You can see, it is legitimate for the previous pointer of 1204 * the head (or any page) not to point back to itself. But only 1205 * temporarily. 1206 */ 1207 1208 #define RB_PAGE_NORMAL 0UL 1209 #define RB_PAGE_HEAD 1UL 1210 #define RB_PAGE_UPDATE 2UL 1211 1212 1213 #define RB_FLAG_MASK 3UL 1214 1215 /* PAGE_MOVED is not part of the mask */ 1216 #define RB_PAGE_MOVED 4UL 1217 1218 /* 1219 * rb_list_head - remove any bit 1220 */ 1221 static struct list_head *rb_list_head(struct list_head *list) 1222 { 1223 unsigned long val = (unsigned long)list; 1224 1225 return (struct list_head *)(val & ~RB_FLAG_MASK); 1226 } 1227 1228 /* 1229 * rb_is_head_page - test if the given page is the head page 1230 * 1231 * Because the reader may move the head_page pointer, we can 1232 * not trust what the head page is (it may be pointing to 1233 * the reader page). But if the next page is a header page, 1234 * its flags will be non zero. 1235 */ 1236 static inline int 1237 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1238 { 1239 unsigned long val; 1240 1241 val = (unsigned long)list->next; 1242 1243 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1244 return RB_PAGE_MOVED; 1245 1246 return val & RB_FLAG_MASK; 1247 } 1248 1249 /* 1250 * rb_is_reader_page 1251 * 1252 * The unique thing about the reader page, is that, if the 1253 * writer is ever on it, the previous pointer never points 1254 * back to the reader page. 1255 */ 1256 static bool rb_is_reader_page(struct buffer_page *page) 1257 { 1258 struct list_head *list = page->list.prev; 1259 1260 return rb_list_head(list->next) != &page->list; 1261 } 1262 1263 /* 1264 * rb_set_list_to_head - set a list_head to be pointing to head. 1265 */ 1266 static void rb_set_list_to_head(struct list_head *list) 1267 { 1268 unsigned long *ptr; 1269 1270 ptr = (unsigned long *)&list->next; 1271 *ptr |= RB_PAGE_HEAD; 1272 *ptr &= ~RB_PAGE_UPDATE; 1273 } 1274 1275 /* 1276 * rb_head_page_activate - sets up head page 1277 */ 1278 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1279 { 1280 struct buffer_page *head; 1281 1282 head = cpu_buffer->head_page; 1283 if (!head) 1284 return; 1285 1286 /* 1287 * Set the previous list pointer to have the HEAD flag. 1288 */ 1289 rb_set_list_to_head(head->list.prev); 1290 } 1291 1292 static void rb_list_head_clear(struct list_head *list) 1293 { 1294 unsigned long *ptr = (unsigned long *)&list->next; 1295 1296 *ptr &= ~RB_FLAG_MASK; 1297 } 1298 1299 /* 1300 * rb_head_page_deactivate - clears head page ptr (for free list) 1301 */ 1302 static void 1303 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1304 { 1305 struct list_head *hd; 1306 1307 /* Go through the whole list and clear any pointers found. */ 1308 rb_list_head_clear(cpu_buffer->pages); 1309 1310 list_for_each(hd, cpu_buffer->pages) 1311 rb_list_head_clear(hd); 1312 } 1313 1314 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1315 struct buffer_page *head, 1316 struct buffer_page *prev, 1317 int old_flag, int new_flag) 1318 { 1319 struct list_head *list; 1320 unsigned long val = (unsigned long)&head->list; 1321 unsigned long ret; 1322 1323 list = &prev->list; 1324 1325 val &= ~RB_FLAG_MASK; 1326 1327 ret = cmpxchg((unsigned long *)&list->next, 1328 val | old_flag, val | new_flag); 1329 1330 /* check if the reader took the page */ 1331 if ((ret & ~RB_FLAG_MASK) != val) 1332 return RB_PAGE_MOVED; 1333 1334 return ret & RB_FLAG_MASK; 1335 } 1336 1337 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1338 struct buffer_page *head, 1339 struct buffer_page *prev, 1340 int old_flag) 1341 { 1342 return rb_head_page_set(cpu_buffer, head, prev, 1343 old_flag, RB_PAGE_UPDATE); 1344 } 1345 1346 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1347 struct buffer_page *head, 1348 struct buffer_page *prev, 1349 int old_flag) 1350 { 1351 return rb_head_page_set(cpu_buffer, head, prev, 1352 old_flag, RB_PAGE_HEAD); 1353 } 1354 1355 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1356 struct buffer_page *head, 1357 struct buffer_page *prev, 1358 int old_flag) 1359 { 1360 return rb_head_page_set(cpu_buffer, head, prev, 1361 old_flag, RB_PAGE_NORMAL); 1362 } 1363 1364 static inline void rb_inc_page(struct buffer_page **bpage) 1365 { 1366 struct list_head *p = rb_list_head((*bpage)->list.next); 1367 1368 *bpage = list_entry(p, struct buffer_page, list); 1369 } 1370 1371 static struct buffer_page * 1372 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1373 { 1374 struct buffer_page *head; 1375 struct buffer_page *page; 1376 struct list_head *list; 1377 int i; 1378 1379 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1380 return NULL; 1381 1382 /* sanity check */ 1383 list = cpu_buffer->pages; 1384 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1385 return NULL; 1386 1387 page = head = cpu_buffer->head_page; 1388 /* 1389 * It is possible that the writer moves the header behind 1390 * where we started, and we miss in one loop. 1391 * A second loop should grab the header, but we'll do 1392 * three loops just because I'm paranoid. 1393 */ 1394 for (i = 0; i < 3; i++) { 1395 do { 1396 if (rb_is_head_page(page, page->list.prev)) { 1397 cpu_buffer->head_page = page; 1398 return page; 1399 } 1400 rb_inc_page(&page); 1401 } while (page != head); 1402 } 1403 1404 RB_WARN_ON(cpu_buffer, 1); 1405 1406 return NULL; 1407 } 1408 1409 static int rb_head_page_replace(struct buffer_page *old, 1410 struct buffer_page *new) 1411 { 1412 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1413 unsigned long val; 1414 unsigned long ret; 1415 1416 val = *ptr & ~RB_FLAG_MASK; 1417 val |= RB_PAGE_HEAD; 1418 1419 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1420 1421 return ret == val; 1422 } 1423 1424 /* 1425 * rb_tail_page_update - move the tail page forward 1426 */ 1427 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1428 struct buffer_page *tail_page, 1429 struct buffer_page *next_page) 1430 { 1431 unsigned long old_entries; 1432 unsigned long old_write; 1433 1434 /* 1435 * The tail page now needs to be moved forward. 1436 * 1437 * We need to reset the tail page, but without messing 1438 * with possible erasing of data brought in by interrupts 1439 * that have moved the tail page and are currently on it. 1440 * 1441 * We add a counter to the write field to denote this. 1442 */ 1443 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1444 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1445 1446 local_inc(&cpu_buffer->pages_touched); 1447 /* 1448 * Just make sure we have seen our old_write and synchronize 1449 * with any interrupts that come in. 1450 */ 1451 barrier(); 1452 1453 /* 1454 * If the tail page is still the same as what we think 1455 * it is, then it is up to us to update the tail 1456 * pointer. 1457 */ 1458 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1459 /* Zero the write counter */ 1460 unsigned long val = old_write & ~RB_WRITE_MASK; 1461 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1462 1463 /* 1464 * This will only succeed if an interrupt did 1465 * not come in and change it. In which case, we 1466 * do not want to modify it. 1467 * 1468 * We add (void) to let the compiler know that we do not care 1469 * about the return value of these functions. We use the 1470 * cmpxchg to only update if an interrupt did not already 1471 * do it for us. If the cmpxchg fails, we don't care. 1472 */ 1473 (void)local_cmpxchg(&next_page->write, old_write, val); 1474 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1475 1476 /* 1477 * No need to worry about races with clearing out the commit. 1478 * it only can increment when a commit takes place. But that 1479 * only happens in the outer most nested commit. 1480 */ 1481 local_set(&next_page->page->commit, 0); 1482 1483 /* Again, either we update tail_page or an interrupt does */ 1484 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1485 } 1486 } 1487 1488 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1489 struct buffer_page *bpage) 1490 { 1491 unsigned long val = (unsigned long)bpage; 1492 1493 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1494 return 1; 1495 1496 return 0; 1497 } 1498 1499 /** 1500 * rb_check_list - make sure a pointer to a list has the last bits zero 1501 */ 1502 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1503 struct list_head *list) 1504 { 1505 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1506 return 1; 1507 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1508 return 1; 1509 return 0; 1510 } 1511 1512 /** 1513 * rb_check_pages - integrity check of buffer pages 1514 * @cpu_buffer: CPU buffer with pages to test 1515 * 1516 * As a safety measure we check to make sure the data pages have not 1517 * been corrupted. 1518 */ 1519 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1520 { 1521 struct list_head *head = cpu_buffer->pages; 1522 struct buffer_page *bpage, *tmp; 1523 1524 /* Reset the head page if it exists */ 1525 if (cpu_buffer->head_page) 1526 rb_set_head_page(cpu_buffer); 1527 1528 rb_head_page_deactivate(cpu_buffer); 1529 1530 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1531 return -1; 1532 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1533 return -1; 1534 1535 if (rb_check_list(cpu_buffer, head)) 1536 return -1; 1537 1538 list_for_each_entry_safe(bpage, tmp, head, list) { 1539 if (RB_WARN_ON(cpu_buffer, 1540 bpage->list.next->prev != &bpage->list)) 1541 return -1; 1542 if (RB_WARN_ON(cpu_buffer, 1543 bpage->list.prev->next != &bpage->list)) 1544 return -1; 1545 if (rb_check_list(cpu_buffer, &bpage->list)) 1546 return -1; 1547 } 1548 1549 rb_head_page_activate(cpu_buffer); 1550 1551 return 0; 1552 } 1553 1554 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1555 long nr_pages, struct list_head *pages) 1556 { 1557 struct buffer_page *bpage, *tmp; 1558 bool user_thread = current->mm != NULL; 1559 gfp_t mflags; 1560 long i; 1561 1562 /* 1563 * Check if the available memory is there first. 1564 * Note, si_mem_available() only gives us a rough estimate of available 1565 * memory. It may not be accurate. But we don't care, we just want 1566 * to prevent doing any allocation when it is obvious that it is 1567 * not going to succeed. 1568 */ 1569 i = si_mem_available(); 1570 if (i < nr_pages) 1571 return -ENOMEM; 1572 1573 /* 1574 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1575 * gracefully without invoking oom-killer and the system is not 1576 * destabilized. 1577 */ 1578 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1579 1580 /* 1581 * If a user thread allocates too much, and si_mem_available() 1582 * reports there's enough memory, even though there is not. 1583 * Make sure the OOM killer kills this thread. This can happen 1584 * even with RETRY_MAYFAIL because another task may be doing 1585 * an allocation after this task has taken all memory. 1586 * This is the task the OOM killer needs to take out during this 1587 * loop, even if it was triggered by an allocation somewhere else. 1588 */ 1589 if (user_thread) 1590 set_current_oom_origin(); 1591 for (i = 0; i < nr_pages; i++) { 1592 struct page *page; 1593 1594 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1595 mflags, cpu_to_node(cpu_buffer->cpu)); 1596 if (!bpage) 1597 goto free_pages; 1598 1599 rb_check_bpage(cpu_buffer, bpage); 1600 1601 list_add(&bpage->list, pages); 1602 1603 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1604 if (!page) 1605 goto free_pages; 1606 bpage->page = page_address(page); 1607 rb_init_page(bpage->page); 1608 1609 if (user_thread && fatal_signal_pending(current)) 1610 goto free_pages; 1611 } 1612 if (user_thread) 1613 clear_current_oom_origin(); 1614 1615 return 0; 1616 1617 free_pages: 1618 list_for_each_entry_safe(bpage, tmp, pages, list) { 1619 list_del_init(&bpage->list); 1620 free_buffer_page(bpage); 1621 } 1622 if (user_thread) 1623 clear_current_oom_origin(); 1624 1625 return -ENOMEM; 1626 } 1627 1628 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1629 unsigned long nr_pages) 1630 { 1631 LIST_HEAD(pages); 1632 1633 WARN_ON(!nr_pages); 1634 1635 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1636 return -ENOMEM; 1637 1638 /* 1639 * The ring buffer page list is a circular list that does not 1640 * start and end with a list head. All page list items point to 1641 * other pages. 1642 */ 1643 cpu_buffer->pages = pages.next; 1644 list_del(&pages); 1645 1646 cpu_buffer->nr_pages = nr_pages; 1647 1648 rb_check_pages(cpu_buffer); 1649 1650 return 0; 1651 } 1652 1653 static struct ring_buffer_per_cpu * 1654 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1655 { 1656 struct ring_buffer_per_cpu *cpu_buffer; 1657 struct buffer_page *bpage; 1658 struct page *page; 1659 int ret; 1660 1661 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1662 GFP_KERNEL, cpu_to_node(cpu)); 1663 if (!cpu_buffer) 1664 return NULL; 1665 1666 cpu_buffer->cpu = cpu; 1667 cpu_buffer->buffer = buffer; 1668 raw_spin_lock_init(&cpu_buffer->reader_lock); 1669 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1670 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1671 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1672 init_completion(&cpu_buffer->update_done); 1673 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1674 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1675 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1676 1677 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1678 GFP_KERNEL, cpu_to_node(cpu)); 1679 if (!bpage) 1680 goto fail_free_buffer; 1681 1682 rb_check_bpage(cpu_buffer, bpage); 1683 1684 cpu_buffer->reader_page = bpage; 1685 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1686 if (!page) 1687 goto fail_free_reader; 1688 bpage->page = page_address(page); 1689 rb_init_page(bpage->page); 1690 1691 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1692 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1693 1694 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1695 if (ret < 0) 1696 goto fail_free_reader; 1697 1698 cpu_buffer->head_page 1699 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1700 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1701 1702 rb_head_page_activate(cpu_buffer); 1703 1704 return cpu_buffer; 1705 1706 fail_free_reader: 1707 free_buffer_page(cpu_buffer->reader_page); 1708 1709 fail_free_buffer: 1710 kfree(cpu_buffer); 1711 return NULL; 1712 } 1713 1714 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1715 { 1716 struct list_head *head = cpu_buffer->pages; 1717 struct buffer_page *bpage, *tmp; 1718 1719 free_buffer_page(cpu_buffer->reader_page); 1720 1721 rb_head_page_deactivate(cpu_buffer); 1722 1723 if (head) { 1724 list_for_each_entry_safe(bpage, tmp, head, list) { 1725 list_del_init(&bpage->list); 1726 free_buffer_page(bpage); 1727 } 1728 bpage = list_entry(head, struct buffer_page, list); 1729 free_buffer_page(bpage); 1730 } 1731 1732 kfree(cpu_buffer); 1733 } 1734 1735 /** 1736 * __ring_buffer_alloc - allocate a new ring_buffer 1737 * @size: the size in bytes per cpu that is needed. 1738 * @flags: attributes to set for the ring buffer. 1739 * @key: ring buffer reader_lock_key. 1740 * 1741 * Currently the only flag that is available is the RB_FL_OVERWRITE 1742 * flag. This flag means that the buffer will overwrite old data 1743 * when the buffer wraps. If this flag is not set, the buffer will 1744 * drop data when the tail hits the head. 1745 */ 1746 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1747 struct lock_class_key *key) 1748 { 1749 struct trace_buffer *buffer; 1750 long nr_pages; 1751 int bsize; 1752 int cpu; 1753 int ret; 1754 1755 /* keep it in its own cache line */ 1756 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1757 GFP_KERNEL); 1758 if (!buffer) 1759 return NULL; 1760 1761 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1762 goto fail_free_buffer; 1763 1764 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1765 buffer->flags = flags; 1766 buffer->clock = trace_clock_local; 1767 buffer->reader_lock_key = key; 1768 1769 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1770 init_waitqueue_head(&buffer->irq_work.waiters); 1771 1772 /* need at least two pages */ 1773 if (nr_pages < 2) 1774 nr_pages = 2; 1775 1776 buffer->cpus = nr_cpu_ids; 1777 1778 bsize = sizeof(void *) * nr_cpu_ids; 1779 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1780 GFP_KERNEL); 1781 if (!buffer->buffers) 1782 goto fail_free_cpumask; 1783 1784 cpu = raw_smp_processor_id(); 1785 cpumask_set_cpu(cpu, buffer->cpumask); 1786 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1787 if (!buffer->buffers[cpu]) 1788 goto fail_free_buffers; 1789 1790 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1791 if (ret < 0) 1792 goto fail_free_buffers; 1793 1794 mutex_init(&buffer->mutex); 1795 1796 return buffer; 1797 1798 fail_free_buffers: 1799 for_each_buffer_cpu(buffer, cpu) { 1800 if (buffer->buffers[cpu]) 1801 rb_free_cpu_buffer(buffer->buffers[cpu]); 1802 } 1803 kfree(buffer->buffers); 1804 1805 fail_free_cpumask: 1806 free_cpumask_var(buffer->cpumask); 1807 1808 fail_free_buffer: 1809 kfree(buffer); 1810 return NULL; 1811 } 1812 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1813 1814 /** 1815 * ring_buffer_free - free a ring buffer. 1816 * @buffer: the buffer to free. 1817 */ 1818 void 1819 ring_buffer_free(struct trace_buffer *buffer) 1820 { 1821 int cpu; 1822 1823 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1824 1825 for_each_buffer_cpu(buffer, cpu) 1826 rb_free_cpu_buffer(buffer->buffers[cpu]); 1827 1828 kfree(buffer->buffers); 1829 free_cpumask_var(buffer->cpumask); 1830 1831 kfree(buffer); 1832 } 1833 EXPORT_SYMBOL_GPL(ring_buffer_free); 1834 1835 void ring_buffer_set_clock(struct trace_buffer *buffer, 1836 u64 (*clock)(void)) 1837 { 1838 buffer->clock = clock; 1839 } 1840 1841 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1842 { 1843 buffer->time_stamp_abs = abs; 1844 } 1845 1846 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1847 { 1848 return buffer->time_stamp_abs; 1849 } 1850 1851 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1852 1853 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1854 { 1855 return local_read(&bpage->entries) & RB_WRITE_MASK; 1856 } 1857 1858 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1859 { 1860 return local_read(&bpage->write) & RB_WRITE_MASK; 1861 } 1862 1863 static int 1864 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1865 { 1866 struct list_head *tail_page, *to_remove, *next_page; 1867 struct buffer_page *to_remove_page, *tmp_iter_page; 1868 struct buffer_page *last_page, *first_page; 1869 unsigned long nr_removed; 1870 unsigned long head_bit; 1871 int page_entries; 1872 1873 head_bit = 0; 1874 1875 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1876 atomic_inc(&cpu_buffer->record_disabled); 1877 /* 1878 * We don't race with the readers since we have acquired the reader 1879 * lock. We also don't race with writers after disabling recording. 1880 * This makes it easy to figure out the first and the last page to be 1881 * removed from the list. We unlink all the pages in between including 1882 * the first and last pages. This is done in a busy loop so that we 1883 * lose the least number of traces. 1884 * The pages are freed after we restart recording and unlock readers. 1885 */ 1886 tail_page = &cpu_buffer->tail_page->list; 1887 1888 /* 1889 * tail page might be on reader page, we remove the next page 1890 * from the ring buffer 1891 */ 1892 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1893 tail_page = rb_list_head(tail_page->next); 1894 to_remove = tail_page; 1895 1896 /* start of pages to remove */ 1897 first_page = list_entry(rb_list_head(to_remove->next), 1898 struct buffer_page, list); 1899 1900 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1901 to_remove = rb_list_head(to_remove)->next; 1902 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1903 } 1904 1905 next_page = rb_list_head(to_remove)->next; 1906 1907 /* 1908 * Now we remove all pages between tail_page and next_page. 1909 * Make sure that we have head_bit value preserved for the 1910 * next page 1911 */ 1912 tail_page->next = (struct list_head *)((unsigned long)next_page | 1913 head_bit); 1914 next_page = rb_list_head(next_page); 1915 next_page->prev = tail_page; 1916 1917 /* make sure pages points to a valid page in the ring buffer */ 1918 cpu_buffer->pages = next_page; 1919 1920 /* update head page */ 1921 if (head_bit) 1922 cpu_buffer->head_page = list_entry(next_page, 1923 struct buffer_page, list); 1924 1925 /* 1926 * change read pointer to make sure any read iterators reset 1927 * themselves 1928 */ 1929 cpu_buffer->read = 0; 1930 1931 /* pages are removed, resume tracing and then free the pages */ 1932 atomic_dec(&cpu_buffer->record_disabled); 1933 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1934 1935 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1936 1937 /* last buffer page to remove */ 1938 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1939 list); 1940 tmp_iter_page = first_page; 1941 1942 do { 1943 cond_resched(); 1944 1945 to_remove_page = tmp_iter_page; 1946 rb_inc_page(&tmp_iter_page); 1947 1948 /* update the counters */ 1949 page_entries = rb_page_entries(to_remove_page); 1950 if (page_entries) { 1951 /* 1952 * If something was added to this page, it was full 1953 * since it is not the tail page. So we deduct the 1954 * bytes consumed in ring buffer from here. 1955 * Increment overrun to account for the lost events. 1956 */ 1957 local_add(page_entries, &cpu_buffer->overrun); 1958 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1959 } 1960 1961 /* 1962 * We have already removed references to this list item, just 1963 * free up the buffer_page and its page 1964 */ 1965 free_buffer_page(to_remove_page); 1966 nr_removed--; 1967 1968 } while (to_remove_page != last_page); 1969 1970 RB_WARN_ON(cpu_buffer, nr_removed); 1971 1972 return nr_removed == 0; 1973 } 1974 1975 static int 1976 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1977 { 1978 struct list_head *pages = &cpu_buffer->new_pages; 1979 int retries, success; 1980 1981 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1982 /* 1983 * We are holding the reader lock, so the reader page won't be swapped 1984 * in the ring buffer. Now we are racing with the writer trying to 1985 * move head page and the tail page. 1986 * We are going to adapt the reader page update process where: 1987 * 1. We first splice the start and end of list of new pages between 1988 * the head page and its previous page. 1989 * 2. We cmpxchg the prev_page->next to point from head page to the 1990 * start of new pages list. 1991 * 3. Finally, we update the head->prev to the end of new list. 1992 * 1993 * We will try this process 10 times, to make sure that we don't keep 1994 * spinning. 1995 */ 1996 retries = 10; 1997 success = 0; 1998 while (retries--) { 1999 struct list_head *head_page, *prev_page, *r; 2000 struct list_head *last_page, *first_page; 2001 struct list_head *head_page_with_bit; 2002 2003 head_page = &rb_set_head_page(cpu_buffer)->list; 2004 if (!head_page) 2005 break; 2006 prev_page = head_page->prev; 2007 2008 first_page = pages->next; 2009 last_page = pages->prev; 2010 2011 head_page_with_bit = (struct list_head *) 2012 ((unsigned long)head_page | RB_PAGE_HEAD); 2013 2014 last_page->next = head_page_with_bit; 2015 first_page->prev = prev_page; 2016 2017 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2018 2019 if (r == head_page_with_bit) { 2020 /* 2021 * yay, we replaced the page pointer to our new list, 2022 * now, we just have to update to head page's prev 2023 * pointer to point to end of list 2024 */ 2025 head_page->prev = last_page; 2026 success = 1; 2027 break; 2028 } 2029 } 2030 2031 if (success) 2032 INIT_LIST_HEAD(pages); 2033 /* 2034 * If we weren't successful in adding in new pages, warn and stop 2035 * tracing 2036 */ 2037 RB_WARN_ON(cpu_buffer, !success); 2038 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2039 2040 /* free pages if they weren't inserted */ 2041 if (!success) { 2042 struct buffer_page *bpage, *tmp; 2043 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2044 list) { 2045 list_del_init(&bpage->list); 2046 free_buffer_page(bpage); 2047 } 2048 } 2049 return success; 2050 } 2051 2052 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2053 { 2054 int success; 2055 2056 if (cpu_buffer->nr_pages_to_update > 0) 2057 success = rb_insert_pages(cpu_buffer); 2058 else 2059 success = rb_remove_pages(cpu_buffer, 2060 -cpu_buffer->nr_pages_to_update); 2061 2062 if (success) 2063 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2064 } 2065 2066 static void update_pages_handler(struct work_struct *work) 2067 { 2068 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2069 struct ring_buffer_per_cpu, update_pages_work); 2070 rb_update_pages(cpu_buffer); 2071 complete(&cpu_buffer->update_done); 2072 } 2073 2074 /** 2075 * ring_buffer_resize - resize the ring buffer 2076 * @buffer: the buffer to resize. 2077 * @size: the new size. 2078 * @cpu_id: the cpu buffer to resize 2079 * 2080 * Minimum size is 2 * BUF_PAGE_SIZE. 2081 * 2082 * Returns 0 on success and < 0 on failure. 2083 */ 2084 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2085 int cpu_id) 2086 { 2087 struct ring_buffer_per_cpu *cpu_buffer; 2088 unsigned long nr_pages; 2089 int cpu, err; 2090 2091 /* 2092 * Always succeed at resizing a non-existent buffer: 2093 */ 2094 if (!buffer) 2095 return 0; 2096 2097 /* Make sure the requested buffer exists */ 2098 if (cpu_id != RING_BUFFER_ALL_CPUS && 2099 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2100 return 0; 2101 2102 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2103 2104 /* we need a minimum of two pages */ 2105 if (nr_pages < 2) 2106 nr_pages = 2; 2107 2108 /* prevent another thread from changing buffer sizes */ 2109 mutex_lock(&buffer->mutex); 2110 2111 2112 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2113 /* 2114 * Don't succeed if resizing is disabled, as a reader might be 2115 * manipulating the ring buffer and is expecting a sane state while 2116 * this is true. 2117 */ 2118 for_each_buffer_cpu(buffer, cpu) { 2119 cpu_buffer = buffer->buffers[cpu]; 2120 if (atomic_read(&cpu_buffer->resize_disabled)) { 2121 err = -EBUSY; 2122 goto out_err_unlock; 2123 } 2124 } 2125 2126 /* calculate the pages to update */ 2127 for_each_buffer_cpu(buffer, cpu) { 2128 cpu_buffer = buffer->buffers[cpu]; 2129 2130 cpu_buffer->nr_pages_to_update = nr_pages - 2131 cpu_buffer->nr_pages; 2132 /* 2133 * nothing more to do for removing pages or no update 2134 */ 2135 if (cpu_buffer->nr_pages_to_update <= 0) 2136 continue; 2137 /* 2138 * to add pages, make sure all new pages can be 2139 * allocated without receiving ENOMEM 2140 */ 2141 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2142 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2143 &cpu_buffer->new_pages)) { 2144 /* not enough memory for new pages */ 2145 err = -ENOMEM; 2146 goto out_err; 2147 } 2148 } 2149 2150 cpus_read_lock(); 2151 /* 2152 * Fire off all the required work handlers 2153 * We can't schedule on offline CPUs, but it's not necessary 2154 * since we can change their buffer sizes without any race. 2155 */ 2156 for_each_buffer_cpu(buffer, cpu) { 2157 cpu_buffer = buffer->buffers[cpu]; 2158 if (!cpu_buffer->nr_pages_to_update) 2159 continue; 2160 2161 /* Can't run something on an offline CPU. */ 2162 if (!cpu_online(cpu)) { 2163 rb_update_pages(cpu_buffer); 2164 cpu_buffer->nr_pages_to_update = 0; 2165 } else { 2166 schedule_work_on(cpu, 2167 &cpu_buffer->update_pages_work); 2168 } 2169 } 2170 2171 /* wait for all the updates to complete */ 2172 for_each_buffer_cpu(buffer, cpu) { 2173 cpu_buffer = buffer->buffers[cpu]; 2174 if (!cpu_buffer->nr_pages_to_update) 2175 continue; 2176 2177 if (cpu_online(cpu)) 2178 wait_for_completion(&cpu_buffer->update_done); 2179 cpu_buffer->nr_pages_to_update = 0; 2180 } 2181 2182 cpus_read_unlock(); 2183 } else { 2184 cpu_buffer = buffer->buffers[cpu_id]; 2185 2186 if (nr_pages == cpu_buffer->nr_pages) 2187 goto out; 2188 2189 /* 2190 * Don't succeed if resizing is disabled, as a reader might be 2191 * manipulating the ring buffer and is expecting a sane state while 2192 * this is true. 2193 */ 2194 if (atomic_read(&cpu_buffer->resize_disabled)) { 2195 err = -EBUSY; 2196 goto out_err_unlock; 2197 } 2198 2199 cpu_buffer->nr_pages_to_update = nr_pages - 2200 cpu_buffer->nr_pages; 2201 2202 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2203 if (cpu_buffer->nr_pages_to_update > 0 && 2204 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2205 &cpu_buffer->new_pages)) { 2206 err = -ENOMEM; 2207 goto out_err; 2208 } 2209 2210 cpus_read_lock(); 2211 2212 /* Can't run something on an offline CPU. */ 2213 if (!cpu_online(cpu_id)) 2214 rb_update_pages(cpu_buffer); 2215 else { 2216 schedule_work_on(cpu_id, 2217 &cpu_buffer->update_pages_work); 2218 wait_for_completion(&cpu_buffer->update_done); 2219 } 2220 2221 cpu_buffer->nr_pages_to_update = 0; 2222 cpus_read_unlock(); 2223 } 2224 2225 out: 2226 /* 2227 * The ring buffer resize can happen with the ring buffer 2228 * enabled, so that the update disturbs the tracing as little 2229 * as possible. But if the buffer is disabled, we do not need 2230 * to worry about that, and we can take the time to verify 2231 * that the buffer is not corrupt. 2232 */ 2233 if (atomic_read(&buffer->record_disabled)) { 2234 atomic_inc(&buffer->record_disabled); 2235 /* 2236 * Even though the buffer was disabled, we must make sure 2237 * that it is truly disabled before calling rb_check_pages. 2238 * There could have been a race between checking 2239 * record_disable and incrementing it. 2240 */ 2241 synchronize_rcu(); 2242 for_each_buffer_cpu(buffer, cpu) { 2243 cpu_buffer = buffer->buffers[cpu]; 2244 rb_check_pages(cpu_buffer); 2245 } 2246 atomic_dec(&buffer->record_disabled); 2247 } 2248 2249 mutex_unlock(&buffer->mutex); 2250 return 0; 2251 2252 out_err: 2253 for_each_buffer_cpu(buffer, cpu) { 2254 struct buffer_page *bpage, *tmp; 2255 2256 cpu_buffer = buffer->buffers[cpu]; 2257 cpu_buffer->nr_pages_to_update = 0; 2258 2259 if (list_empty(&cpu_buffer->new_pages)) 2260 continue; 2261 2262 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2263 list) { 2264 list_del_init(&bpage->list); 2265 free_buffer_page(bpage); 2266 } 2267 } 2268 out_err_unlock: 2269 mutex_unlock(&buffer->mutex); 2270 return err; 2271 } 2272 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2273 2274 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2275 { 2276 mutex_lock(&buffer->mutex); 2277 if (val) 2278 buffer->flags |= RB_FL_OVERWRITE; 2279 else 2280 buffer->flags &= ~RB_FL_OVERWRITE; 2281 mutex_unlock(&buffer->mutex); 2282 } 2283 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2284 2285 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2286 { 2287 return bpage->page->data + index; 2288 } 2289 2290 static __always_inline struct ring_buffer_event * 2291 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2292 { 2293 return __rb_page_index(cpu_buffer->reader_page, 2294 cpu_buffer->reader_page->read); 2295 } 2296 2297 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2298 { 2299 return local_read(&bpage->page->commit); 2300 } 2301 2302 static struct ring_buffer_event * 2303 rb_iter_head_event(struct ring_buffer_iter *iter) 2304 { 2305 struct ring_buffer_event *event; 2306 struct buffer_page *iter_head_page = iter->head_page; 2307 unsigned long commit; 2308 unsigned length; 2309 2310 if (iter->head != iter->next_event) 2311 return iter->event; 2312 2313 /* 2314 * When the writer goes across pages, it issues a cmpxchg which 2315 * is a mb(), which will synchronize with the rmb here. 2316 * (see rb_tail_page_update() and __rb_reserve_next()) 2317 */ 2318 commit = rb_page_commit(iter_head_page); 2319 smp_rmb(); 2320 event = __rb_page_index(iter_head_page, iter->head); 2321 length = rb_event_length(event); 2322 2323 /* 2324 * READ_ONCE() doesn't work on functions and we don't want the 2325 * compiler doing any crazy optimizations with length. 2326 */ 2327 barrier(); 2328 2329 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2330 /* Writer corrupted the read? */ 2331 goto reset; 2332 2333 memcpy(iter->event, event, length); 2334 /* 2335 * If the page stamp is still the same after this rmb() then the 2336 * event was safely copied without the writer entering the page. 2337 */ 2338 smp_rmb(); 2339 2340 /* Make sure the page didn't change since we read this */ 2341 if (iter->page_stamp != iter_head_page->page->time_stamp || 2342 commit > rb_page_commit(iter_head_page)) 2343 goto reset; 2344 2345 iter->next_event = iter->head + length; 2346 return iter->event; 2347 reset: 2348 /* Reset to the beginning */ 2349 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2350 iter->head = 0; 2351 iter->next_event = 0; 2352 iter->missed_events = 1; 2353 return NULL; 2354 } 2355 2356 /* Size is determined by what has been committed */ 2357 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2358 { 2359 return rb_page_commit(bpage); 2360 } 2361 2362 static __always_inline unsigned 2363 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2364 { 2365 return rb_page_commit(cpu_buffer->commit_page); 2366 } 2367 2368 static __always_inline unsigned 2369 rb_event_index(struct ring_buffer_event *event) 2370 { 2371 unsigned long addr = (unsigned long)event; 2372 2373 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2374 } 2375 2376 static void rb_inc_iter(struct ring_buffer_iter *iter) 2377 { 2378 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2379 2380 /* 2381 * The iterator could be on the reader page (it starts there). 2382 * But the head could have moved, since the reader was 2383 * found. Check for this case and assign the iterator 2384 * to the head page instead of next. 2385 */ 2386 if (iter->head_page == cpu_buffer->reader_page) 2387 iter->head_page = rb_set_head_page(cpu_buffer); 2388 else 2389 rb_inc_page(&iter->head_page); 2390 2391 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2392 iter->head = 0; 2393 iter->next_event = 0; 2394 } 2395 2396 /* 2397 * rb_handle_head_page - writer hit the head page 2398 * 2399 * Returns: +1 to retry page 2400 * 0 to continue 2401 * -1 on error 2402 */ 2403 static int 2404 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2405 struct buffer_page *tail_page, 2406 struct buffer_page *next_page) 2407 { 2408 struct buffer_page *new_head; 2409 int entries; 2410 int type; 2411 int ret; 2412 2413 entries = rb_page_entries(next_page); 2414 2415 /* 2416 * The hard part is here. We need to move the head 2417 * forward, and protect against both readers on 2418 * other CPUs and writers coming in via interrupts. 2419 */ 2420 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2421 RB_PAGE_HEAD); 2422 2423 /* 2424 * type can be one of four: 2425 * NORMAL - an interrupt already moved it for us 2426 * HEAD - we are the first to get here. 2427 * UPDATE - we are the interrupt interrupting 2428 * a current move. 2429 * MOVED - a reader on another CPU moved the next 2430 * pointer to its reader page. Give up 2431 * and try again. 2432 */ 2433 2434 switch (type) { 2435 case RB_PAGE_HEAD: 2436 /* 2437 * We changed the head to UPDATE, thus 2438 * it is our responsibility to update 2439 * the counters. 2440 */ 2441 local_add(entries, &cpu_buffer->overrun); 2442 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2443 2444 /* 2445 * The entries will be zeroed out when we move the 2446 * tail page. 2447 */ 2448 2449 /* still more to do */ 2450 break; 2451 2452 case RB_PAGE_UPDATE: 2453 /* 2454 * This is an interrupt that interrupt the 2455 * previous update. Still more to do. 2456 */ 2457 break; 2458 case RB_PAGE_NORMAL: 2459 /* 2460 * An interrupt came in before the update 2461 * and processed this for us. 2462 * Nothing left to do. 2463 */ 2464 return 1; 2465 case RB_PAGE_MOVED: 2466 /* 2467 * The reader is on another CPU and just did 2468 * a swap with our next_page. 2469 * Try again. 2470 */ 2471 return 1; 2472 default: 2473 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2474 return -1; 2475 } 2476 2477 /* 2478 * Now that we are here, the old head pointer is 2479 * set to UPDATE. This will keep the reader from 2480 * swapping the head page with the reader page. 2481 * The reader (on another CPU) will spin till 2482 * we are finished. 2483 * 2484 * We just need to protect against interrupts 2485 * doing the job. We will set the next pointer 2486 * to HEAD. After that, we set the old pointer 2487 * to NORMAL, but only if it was HEAD before. 2488 * otherwise we are an interrupt, and only 2489 * want the outer most commit to reset it. 2490 */ 2491 new_head = next_page; 2492 rb_inc_page(&new_head); 2493 2494 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2495 RB_PAGE_NORMAL); 2496 2497 /* 2498 * Valid returns are: 2499 * HEAD - an interrupt came in and already set it. 2500 * NORMAL - One of two things: 2501 * 1) We really set it. 2502 * 2) A bunch of interrupts came in and moved 2503 * the page forward again. 2504 */ 2505 switch (ret) { 2506 case RB_PAGE_HEAD: 2507 case RB_PAGE_NORMAL: 2508 /* OK */ 2509 break; 2510 default: 2511 RB_WARN_ON(cpu_buffer, 1); 2512 return -1; 2513 } 2514 2515 /* 2516 * It is possible that an interrupt came in, 2517 * set the head up, then more interrupts came in 2518 * and moved it again. When we get back here, 2519 * the page would have been set to NORMAL but we 2520 * just set it back to HEAD. 2521 * 2522 * How do you detect this? Well, if that happened 2523 * the tail page would have moved. 2524 */ 2525 if (ret == RB_PAGE_NORMAL) { 2526 struct buffer_page *buffer_tail_page; 2527 2528 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2529 /* 2530 * If the tail had moved passed next, then we need 2531 * to reset the pointer. 2532 */ 2533 if (buffer_tail_page != tail_page && 2534 buffer_tail_page != next_page) 2535 rb_head_page_set_normal(cpu_buffer, new_head, 2536 next_page, 2537 RB_PAGE_HEAD); 2538 } 2539 2540 /* 2541 * If this was the outer most commit (the one that 2542 * changed the original pointer from HEAD to UPDATE), 2543 * then it is up to us to reset it to NORMAL. 2544 */ 2545 if (type == RB_PAGE_HEAD) { 2546 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2547 tail_page, 2548 RB_PAGE_UPDATE); 2549 if (RB_WARN_ON(cpu_buffer, 2550 ret != RB_PAGE_UPDATE)) 2551 return -1; 2552 } 2553 2554 return 0; 2555 } 2556 2557 static inline void 2558 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2559 unsigned long tail, struct rb_event_info *info) 2560 { 2561 struct buffer_page *tail_page = info->tail_page; 2562 struct ring_buffer_event *event; 2563 unsigned long length = info->length; 2564 2565 /* 2566 * Only the event that crossed the page boundary 2567 * must fill the old tail_page with padding. 2568 */ 2569 if (tail >= BUF_PAGE_SIZE) { 2570 /* 2571 * If the page was filled, then we still need 2572 * to update the real_end. Reset it to zero 2573 * and the reader will ignore it. 2574 */ 2575 if (tail == BUF_PAGE_SIZE) 2576 tail_page->real_end = 0; 2577 2578 local_sub(length, &tail_page->write); 2579 return; 2580 } 2581 2582 event = __rb_page_index(tail_page, tail); 2583 2584 /* account for padding bytes */ 2585 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2586 2587 /* 2588 * Save the original length to the meta data. 2589 * This will be used by the reader to add lost event 2590 * counter. 2591 */ 2592 tail_page->real_end = tail; 2593 2594 /* 2595 * If this event is bigger than the minimum size, then 2596 * we need to be careful that we don't subtract the 2597 * write counter enough to allow another writer to slip 2598 * in on this page. 2599 * We put in a discarded commit instead, to make sure 2600 * that this space is not used again. 2601 * 2602 * If we are less than the minimum size, we don't need to 2603 * worry about it. 2604 */ 2605 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2606 /* No room for any events */ 2607 2608 /* Mark the rest of the page with padding */ 2609 rb_event_set_padding(event); 2610 2611 /* Set the write back to the previous setting */ 2612 local_sub(length, &tail_page->write); 2613 return; 2614 } 2615 2616 /* Put in a discarded event */ 2617 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2618 event->type_len = RINGBUF_TYPE_PADDING; 2619 /* time delta must be non zero */ 2620 event->time_delta = 1; 2621 2622 /* Set write to end of buffer */ 2623 length = (tail + length) - BUF_PAGE_SIZE; 2624 local_sub(length, &tail_page->write); 2625 } 2626 2627 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2628 2629 /* 2630 * This is the slow path, force gcc not to inline it. 2631 */ 2632 static noinline struct ring_buffer_event * 2633 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2634 unsigned long tail, struct rb_event_info *info) 2635 { 2636 struct buffer_page *tail_page = info->tail_page; 2637 struct buffer_page *commit_page = cpu_buffer->commit_page; 2638 struct trace_buffer *buffer = cpu_buffer->buffer; 2639 struct buffer_page *next_page; 2640 int ret; 2641 2642 next_page = tail_page; 2643 2644 rb_inc_page(&next_page); 2645 2646 /* 2647 * If for some reason, we had an interrupt storm that made 2648 * it all the way around the buffer, bail, and warn 2649 * about it. 2650 */ 2651 if (unlikely(next_page == commit_page)) { 2652 local_inc(&cpu_buffer->commit_overrun); 2653 goto out_reset; 2654 } 2655 2656 /* 2657 * This is where the fun begins! 2658 * 2659 * We are fighting against races between a reader that 2660 * could be on another CPU trying to swap its reader 2661 * page with the buffer head. 2662 * 2663 * We are also fighting against interrupts coming in and 2664 * moving the head or tail on us as well. 2665 * 2666 * If the next page is the head page then we have filled 2667 * the buffer, unless the commit page is still on the 2668 * reader page. 2669 */ 2670 if (rb_is_head_page(next_page, &tail_page->list)) { 2671 2672 /* 2673 * If the commit is not on the reader page, then 2674 * move the header page. 2675 */ 2676 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2677 /* 2678 * If we are not in overwrite mode, 2679 * this is easy, just stop here. 2680 */ 2681 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2682 local_inc(&cpu_buffer->dropped_events); 2683 goto out_reset; 2684 } 2685 2686 ret = rb_handle_head_page(cpu_buffer, 2687 tail_page, 2688 next_page); 2689 if (ret < 0) 2690 goto out_reset; 2691 if (ret) 2692 goto out_again; 2693 } else { 2694 /* 2695 * We need to be careful here too. The 2696 * commit page could still be on the reader 2697 * page. We could have a small buffer, and 2698 * have filled up the buffer with events 2699 * from interrupts and such, and wrapped. 2700 * 2701 * Note, if the tail page is also on the 2702 * reader_page, we let it move out. 2703 */ 2704 if (unlikely((cpu_buffer->commit_page != 2705 cpu_buffer->tail_page) && 2706 (cpu_buffer->commit_page == 2707 cpu_buffer->reader_page))) { 2708 local_inc(&cpu_buffer->commit_overrun); 2709 goto out_reset; 2710 } 2711 } 2712 } 2713 2714 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2715 2716 out_again: 2717 2718 rb_reset_tail(cpu_buffer, tail, info); 2719 2720 /* Commit what we have for now. */ 2721 rb_end_commit(cpu_buffer); 2722 /* rb_end_commit() decs committing */ 2723 local_inc(&cpu_buffer->committing); 2724 2725 /* fail and let the caller try again */ 2726 return ERR_PTR(-EAGAIN); 2727 2728 out_reset: 2729 /* reset write */ 2730 rb_reset_tail(cpu_buffer, tail, info); 2731 2732 return NULL; 2733 } 2734 2735 /* Slow path */ 2736 static struct ring_buffer_event * 2737 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2738 { 2739 if (abs) 2740 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2741 else 2742 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2743 2744 /* Not the first event on the page, or not delta? */ 2745 if (abs || rb_event_index(event)) { 2746 event->time_delta = delta & TS_MASK; 2747 event->array[0] = delta >> TS_SHIFT; 2748 } else { 2749 /* nope, just zero it */ 2750 event->time_delta = 0; 2751 event->array[0] = 0; 2752 } 2753 2754 return skip_time_extend(event); 2755 } 2756 2757 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2758 static inline bool sched_clock_stable(void) 2759 { 2760 return true; 2761 } 2762 #endif 2763 2764 static void 2765 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2766 struct rb_event_info *info) 2767 { 2768 u64 write_stamp; 2769 2770 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2771 (unsigned long long)info->delta, 2772 (unsigned long long)info->ts, 2773 (unsigned long long)info->before, 2774 (unsigned long long)info->after, 2775 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2776 sched_clock_stable() ? "" : 2777 "If you just came from a suspend/resume,\n" 2778 "please switch to the trace global clock:\n" 2779 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2780 "or add trace_clock=global to the kernel command line\n"); 2781 } 2782 2783 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2784 struct ring_buffer_event **event, 2785 struct rb_event_info *info, 2786 u64 *delta, 2787 unsigned int *length) 2788 { 2789 bool abs = info->add_timestamp & 2790 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2791 2792 if (unlikely(info->delta > (1ULL << 59))) { 2793 /* 2794 * Some timers can use more than 59 bits, and when a timestamp 2795 * is added to the buffer, it will lose those bits. 2796 */ 2797 if (abs && (info->ts & TS_MSB)) { 2798 info->delta &= ABS_TS_MASK; 2799 2800 /* did the clock go backwards */ 2801 } else if (info->before == info->after && info->before > info->ts) { 2802 /* not interrupted */ 2803 static int once; 2804 2805 /* 2806 * This is possible with a recalibrating of the TSC. 2807 * Do not produce a call stack, but just report it. 2808 */ 2809 if (!once) { 2810 once++; 2811 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2812 info->before, info->ts); 2813 } 2814 } else 2815 rb_check_timestamp(cpu_buffer, info); 2816 if (!abs) 2817 info->delta = 0; 2818 } 2819 *event = rb_add_time_stamp(*event, info->delta, abs); 2820 *length -= RB_LEN_TIME_EXTEND; 2821 *delta = 0; 2822 } 2823 2824 /** 2825 * rb_update_event - update event type and data 2826 * @cpu_buffer: The per cpu buffer of the @event 2827 * @event: the event to update 2828 * @info: The info to update the @event with (contains length and delta) 2829 * 2830 * Update the type and data fields of the @event. The length 2831 * is the actual size that is written to the ring buffer, 2832 * and with this, we can determine what to place into the 2833 * data field. 2834 */ 2835 static void 2836 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2837 struct ring_buffer_event *event, 2838 struct rb_event_info *info) 2839 { 2840 unsigned length = info->length; 2841 u64 delta = info->delta; 2842 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2843 2844 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2845 cpu_buffer->event_stamp[nest] = info->ts; 2846 2847 /* 2848 * If we need to add a timestamp, then we 2849 * add it to the start of the reserved space. 2850 */ 2851 if (unlikely(info->add_timestamp)) 2852 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2853 2854 event->time_delta = delta; 2855 length -= RB_EVNT_HDR_SIZE; 2856 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2857 event->type_len = 0; 2858 event->array[0] = length; 2859 } else 2860 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2861 } 2862 2863 static unsigned rb_calculate_event_length(unsigned length) 2864 { 2865 struct ring_buffer_event event; /* Used only for sizeof array */ 2866 2867 /* zero length can cause confusions */ 2868 if (!length) 2869 length++; 2870 2871 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2872 length += sizeof(event.array[0]); 2873 2874 length += RB_EVNT_HDR_SIZE; 2875 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2876 2877 /* 2878 * In case the time delta is larger than the 27 bits for it 2879 * in the header, we need to add a timestamp. If another 2880 * event comes in when trying to discard this one to increase 2881 * the length, then the timestamp will be added in the allocated 2882 * space of this event. If length is bigger than the size needed 2883 * for the TIME_EXTEND, then padding has to be used. The events 2884 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2885 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2886 * As length is a multiple of 4, we only need to worry if it 2887 * is 12 (RB_LEN_TIME_EXTEND + 4). 2888 */ 2889 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2890 length += RB_ALIGNMENT; 2891 2892 return length; 2893 } 2894 2895 static u64 rb_time_delta(struct ring_buffer_event *event) 2896 { 2897 switch (event->type_len) { 2898 case RINGBUF_TYPE_PADDING: 2899 return 0; 2900 2901 case RINGBUF_TYPE_TIME_EXTEND: 2902 return rb_event_time_stamp(event); 2903 2904 case RINGBUF_TYPE_TIME_STAMP: 2905 return 0; 2906 2907 case RINGBUF_TYPE_DATA: 2908 return event->time_delta; 2909 default: 2910 return 0; 2911 } 2912 } 2913 2914 static inline int 2915 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2916 struct ring_buffer_event *event) 2917 { 2918 unsigned long new_index, old_index; 2919 struct buffer_page *bpage; 2920 unsigned long index; 2921 unsigned long addr; 2922 u64 write_stamp; 2923 u64 delta; 2924 2925 new_index = rb_event_index(event); 2926 old_index = new_index + rb_event_ts_length(event); 2927 addr = (unsigned long)event; 2928 addr &= PAGE_MASK; 2929 2930 bpage = READ_ONCE(cpu_buffer->tail_page); 2931 2932 delta = rb_time_delta(event); 2933 2934 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 2935 return 0; 2936 2937 /* Make sure the write stamp is read before testing the location */ 2938 barrier(); 2939 2940 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2941 unsigned long write_mask = 2942 local_read(&bpage->write) & ~RB_WRITE_MASK; 2943 unsigned long event_length = rb_event_length(event); 2944 2945 /* Something came in, can't discard */ 2946 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 2947 write_stamp, write_stamp - delta)) 2948 return 0; 2949 2950 /* 2951 * It's possible that the event time delta is zero 2952 * (has the same time stamp as the previous event) 2953 * in which case write_stamp and before_stamp could 2954 * be the same. In such a case, force before_stamp 2955 * to be different than write_stamp. It doesn't 2956 * matter what it is, as long as its different. 2957 */ 2958 if (!delta) 2959 rb_time_set(&cpu_buffer->before_stamp, 0); 2960 2961 /* 2962 * If an event were to come in now, it would see that the 2963 * write_stamp and the before_stamp are different, and assume 2964 * that this event just added itself before updating 2965 * the write stamp. The interrupting event will fix the 2966 * write stamp for us, and use the before stamp as its delta. 2967 */ 2968 2969 /* 2970 * This is on the tail page. It is possible that 2971 * a write could come in and move the tail page 2972 * and write to the next page. That is fine 2973 * because we just shorten what is on this page. 2974 */ 2975 old_index += write_mask; 2976 new_index += write_mask; 2977 index = local_cmpxchg(&bpage->write, old_index, new_index); 2978 if (index == old_index) { 2979 /* update counters */ 2980 local_sub(event_length, &cpu_buffer->entries_bytes); 2981 return 1; 2982 } 2983 } 2984 2985 /* could not discard */ 2986 return 0; 2987 } 2988 2989 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2990 { 2991 local_inc(&cpu_buffer->committing); 2992 local_inc(&cpu_buffer->commits); 2993 } 2994 2995 static __always_inline void 2996 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2997 { 2998 unsigned long max_count; 2999 3000 /* 3001 * We only race with interrupts and NMIs on this CPU. 3002 * If we own the commit event, then we can commit 3003 * all others that interrupted us, since the interruptions 3004 * are in stack format (they finish before they come 3005 * back to us). This allows us to do a simple loop to 3006 * assign the commit to the tail. 3007 */ 3008 again: 3009 max_count = cpu_buffer->nr_pages * 100; 3010 3011 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3012 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3013 return; 3014 if (RB_WARN_ON(cpu_buffer, 3015 rb_is_reader_page(cpu_buffer->tail_page))) 3016 return; 3017 local_set(&cpu_buffer->commit_page->page->commit, 3018 rb_page_write(cpu_buffer->commit_page)); 3019 rb_inc_page(&cpu_buffer->commit_page); 3020 /* add barrier to keep gcc from optimizing too much */ 3021 barrier(); 3022 } 3023 while (rb_commit_index(cpu_buffer) != 3024 rb_page_write(cpu_buffer->commit_page)) { 3025 3026 local_set(&cpu_buffer->commit_page->page->commit, 3027 rb_page_write(cpu_buffer->commit_page)); 3028 RB_WARN_ON(cpu_buffer, 3029 local_read(&cpu_buffer->commit_page->page->commit) & 3030 ~RB_WRITE_MASK); 3031 barrier(); 3032 } 3033 3034 /* again, keep gcc from optimizing */ 3035 barrier(); 3036 3037 /* 3038 * If an interrupt came in just after the first while loop 3039 * and pushed the tail page forward, we will be left with 3040 * a dangling commit that will never go forward. 3041 */ 3042 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3043 goto again; 3044 } 3045 3046 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3047 { 3048 unsigned long commits; 3049 3050 if (RB_WARN_ON(cpu_buffer, 3051 !local_read(&cpu_buffer->committing))) 3052 return; 3053 3054 again: 3055 commits = local_read(&cpu_buffer->commits); 3056 /* synchronize with interrupts */ 3057 barrier(); 3058 if (local_read(&cpu_buffer->committing) == 1) 3059 rb_set_commit_to_write(cpu_buffer); 3060 3061 local_dec(&cpu_buffer->committing); 3062 3063 /* synchronize with interrupts */ 3064 barrier(); 3065 3066 /* 3067 * Need to account for interrupts coming in between the 3068 * updating of the commit page and the clearing of the 3069 * committing counter. 3070 */ 3071 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3072 !local_read(&cpu_buffer->committing)) { 3073 local_inc(&cpu_buffer->committing); 3074 goto again; 3075 } 3076 } 3077 3078 static inline void rb_event_discard(struct ring_buffer_event *event) 3079 { 3080 if (extended_time(event)) 3081 event = skip_time_extend(event); 3082 3083 /* array[0] holds the actual length for the discarded event */ 3084 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3085 event->type_len = RINGBUF_TYPE_PADDING; 3086 /* time delta must be non zero */ 3087 if (!event->time_delta) 3088 event->time_delta = 1; 3089 } 3090 3091 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 3092 struct ring_buffer_event *event) 3093 { 3094 local_inc(&cpu_buffer->entries); 3095 rb_end_commit(cpu_buffer); 3096 } 3097 3098 static __always_inline void 3099 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3100 { 3101 size_t nr_pages; 3102 size_t dirty; 3103 size_t full; 3104 3105 if (buffer->irq_work.waiters_pending) { 3106 buffer->irq_work.waiters_pending = false; 3107 /* irq_work_queue() supplies it's own memory barriers */ 3108 irq_work_queue(&buffer->irq_work.work); 3109 } 3110 3111 if (cpu_buffer->irq_work.waiters_pending) { 3112 cpu_buffer->irq_work.waiters_pending = false; 3113 /* irq_work_queue() supplies it's own memory barriers */ 3114 irq_work_queue(&cpu_buffer->irq_work.work); 3115 } 3116 3117 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3118 return; 3119 3120 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3121 return; 3122 3123 if (!cpu_buffer->irq_work.full_waiters_pending) 3124 return; 3125 3126 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3127 3128 full = cpu_buffer->shortest_full; 3129 nr_pages = cpu_buffer->nr_pages; 3130 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 3131 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 3132 return; 3133 3134 cpu_buffer->irq_work.wakeup_full = true; 3135 cpu_buffer->irq_work.full_waiters_pending = false; 3136 /* irq_work_queue() supplies it's own memory barriers */ 3137 irq_work_queue(&cpu_buffer->irq_work.work); 3138 } 3139 3140 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3141 # define do_ring_buffer_record_recursion() \ 3142 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3143 #else 3144 # define do_ring_buffer_record_recursion() do { } while (0) 3145 #endif 3146 3147 /* 3148 * The lock and unlock are done within a preempt disable section. 3149 * The current_context per_cpu variable can only be modified 3150 * by the current task between lock and unlock. But it can 3151 * be modified more than once via an interrupt. To pass this 3152 * information from the lock to the unlock without having to 3153 * access the 'in_interrupt()' functions again (which do show 3154 * a bit of overhead in something as critical as function tracing, 3155 * we use a bitmask trick. 3156 * 3157 * bit 1 = NMI context 3158 * bit 2 = IRQ context 3159 * bit 3 = SoftIRQ context 3160 * bit 4 = normal context. 3161 * 3162 * This works because this is the order of contexts that can 3163 * preempt other contexts. A SoftIRQ never preempts an IRQ 3164 * context. 3165 * 3166 * When the context is determined, the corresponding bit is 3167 * checked and set (if it was set, then a recursion of that context 3168 * happened). 3169 * 3170 * On unlock, we need to clear this bit. To do so, just subtract 3171 * 1 from the current_context and AND it to itself. 3172 * 3173 * (binary) 3174 * 101 - 1 = 100 3175 * 101 & 100 = 100 (clearing bit zero) 3176 * 3177 * 1010 - 1 = 1001 3178 * 1010 & 1001 = 1000 (clearing bit 1) 3179 * 3180 * The least significant bit can be cleared this way, and it 3181 * just so happens that it is the same bit corresponding to 3182 * the current context. 3183 * 3184 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3185 * is set when a recursion is detected at the current context, and if 3186 * the TRANSITION bit is already set, it will fail the recursion. 3187 * This is needed because there's a lag between the changing of 3188 * interrupt context and updating the preempt count. In this case, 3189 * a false positive will be found. To handle this, one extra recursion 3190 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3191 * bit is already set, then it is considered a recursion and the function 3192 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3193 * 3194 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3195 * to be cleared. Even if it wasn't the context that set it. That is, 3196 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3197 * is called before preempt_count() is updated, since the check will 3198 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3199 * NMI then comes in, it will set the NMI bit, but when the NMI code 3200 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3201 * and leave the NMI bit set. But this is fine, because the interrupt 3202 * code that set the TRANSITION bit will then clear the NMI bit when it 3203 * calls trace_recursive_unlock(). If another NMI comes in, it will 3204 * set the TRANSITION bit and continue. 3205 * 3206 * Note: The TRANSITION bit only handles a single transition between context. 3207 */ 3208 3209 static __always_inline int 3210 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3211 { 3212 unsigned int val = cpu_buffer->current_context; 3213 int bit = interrupt_context_level(); 3214 3215 bit = RB_CTX_NORMAL - bit; 3216 3217 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3218 /* 3219 * It is possible that this was called by transitioning 3220 * between interrupt context, and preempt_count() has not 3221 * been updated yet. In this case, use the TRANSITION bit. 3222 */ 3223 bit = RB_CTX_TRANSITION; 3224 if (val & (1 << (bit + cpu_buffer->nest))) { 3225 do_ring_buffer_record_recursion(); 3226 return 1; 3227 } 3228 } 3229 3230 val |= (1 << (bit + cpu_buffer->nest)); 3231 cpu_buffer->current_context = val; 3232 3233 return 0; 3234 } 3235 3236 static __always_inline void 3237 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3238 { 3239 cpu_buffer->current_context &= 3240 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3241 } 3242 3243 /* The recursive locking above uses 5 bits */ 3244 #define NESTED_BITS 5 3245 3246 /** 3247 * ring_buffer_nest_start - Allow to trace while nested 3248 * @buffer: The ring buffer to modify 3249 * 3250 * The ring buffer has a safety mechanism to prevent recursion. 3251 * But there may be a case where a trace needs to be done while 3252 * tracing something else. In this case, calling this function 3253 * will allow this function to nest within a currently active 3254 * ring_buffer_lock_reserve(). 3255 * 3256 * Call this function before calling another ring_buffer_lock_reserve() and 3257 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3258 */ 3259 void ring_buffer_nest_start(struct trace_buffer *buffer) 3260 { 3261 struct ring_buffer_per_cpu *cpu_buffer; 3262 int cpu; 3263 3264 /* Enabled by ring_buffer_nest_end() */ 3265 preempt_disable_notrace(); 3266 cpu = raw_smp_processor_id(); 3267 cpu_buffer = buffer->buffers[cpu]; 3268 /* This is the shift value for the above recursive locking */ 3269 cpu_buffer->nest += NESTED_BITS; 3270 } 3271 3272 /** 3273 * ring_buffer_nest_end - Allow to trace while nested 3274 * @buffer: The ring buffer to modify 3275 * 3276 * Must be called after ring_buffer_nest_start() and after the 3277 * ring_buffer_unlock_commit(). 3278 */ 3279 void ring_buffer_nest_end(struct trace_buffer *buffer) 3280 { 3281 struct ring_buffer_per_cpu *cpu_buffer; 3282 int cpu; 3283 3284 /* disabled by ring_buffer_nest_start() */ 3285 cpu = raw_smp_processor_id(); 3286 cpu_buffer = buffer->buffers[cpu]; 3287 /* This is the shift value for the above recursive locking */ 3288 cpu_buffer->nest -= NESTED_BITS; 3289 preempt_enable_notrace(); 3290 } 3291 3292 /** 3293 * ring_buffer_unlock_commit - commit a reserved 3294 * @buffer: The buffer to commit to 3295 * @event: The event pointer to commit. 3296 * 3297 * This commits the data to the ring buffer, and releases any locks held. 3298 * 3299 * Must be paired with ring_buffer_lock_reserve. 3300 */ 3301 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3302 struct ring_buffer_event *event) 3303 { 3304 struct ring_buffer_per_cpu *cpu_buffer; 3305 int cpu = raw_smp_processor_id(); 3306 3307 cpu_buffer = buffer->buffers[cpu]; 3308 3309 rb_commit(cpu_buffer, event); 3310 3311 rb_wakeups(buffer, cpu_buffer); 3312 3313 trace_recursive_unlock(cpu_buffer); 3314 3315 preempt_enable_notrace(); 3316 3317 return 0; 3318 } 3319 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3320 3321 /* Special value to validate all deltas on a page. */ 3322 #define CHECK_FULL_PAGE 1L 3323 3324 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3325 static void dump_buffer_page(struct buffer_data_page *bpage, 3326 struct rb_event_info *info, 3327 unsigned long tail) 3328 { 3329 struct ring_buffer_event *event; 3330 u64 ts, delta; 3331 int e; 3332 3333 ts = bpage->time_stamp; 3334 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3335 3336 for (e = 0; e < tail; e += rb_event_length(event)) { 3337 3338 event = (struct ring_buffer_event *)(bpage->data + e); 3339 3340 switch (event->type_len) { 3341 3342 case RINGBUF_TYPE_TIME_EXTEND: 3343 delta = rb_event_time_stamp(event); 3344 ts += delta; 3345 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3346 break; 3347 3348 case RINGBUF_TYPE_TIME_STAMP: 3349 delta = rb_event_time_stamp(event); 3350 ts = rb_fix_abs_ts(delta, ts); 3351 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3352 break; 3353 3354 case RINGBUF_TYPE_PADDING: 3355 ts += event->time_delta; 3356 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3357 break; 3358 3359 case RINGBUF_TYPE_DATA: 3360 ts += event->time_delta; 3361 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3362 break; 3363 3364 default: 3365 break; 3366 } 3367 } 3368 } 3369 3370 static DEFINE_PER_CPU(atomic_t, checking); 3371 static atomic_t ts_dump; 3372 3373 /* 3374 * Check if the current event time stamp matches the deltas on 3375 * the buffer page. 3376 */ 3377 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3378 struct rb_event_info *info, 3379 unsigned long tail) 3380 { 3381 struct ring_buffer_event *event; 3382 struct buffer_data_page *bpage; 3383 u64 ts, delta; 3384 bool full = false; 3385 int e; 3386 3387 bpage = info->tail_page->page; 3388 3389 if (tail == CHECK_FULL_PAGE) { 3390 full = true; 3391 tail = local_read(&bpage->commit); 3392 } else if (info->add_timestamp & 3393 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3394 /* Ignore events with absolute time stamps */ 3395 return; 3396 } 3397 3398 /* 3399 * Do not check the first event (skip possible extends too). 3400 * Also do not check if previous events have not been committed. 3401 */ 3402 if (tail <= 8 || tail > local_read(&bpage->commit)) 3403 return; 3404 3405 /* 3406 * If this interrupted another event, 3407 */ 3408 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3409 goto out; 3410 3411 ts = bpage->time_stamp; 3412 3413 for (e = 0; e < tail; e += rb_event_length(event)) { 3414 3415 event = (struct ring_buffer_event *)(bpage->data + e); 3416 3417 switch (event->type_len) { 3418 3419 case RINGBUF_TYPE_TIME_EXTEND: 3420 delta = rb_event_time_stamp(event); 3421 ts += delta; 3422 break; 3423 3424 case RINGBUF_TYPE_TIME_STAMP: 3425 delta = rb_event_time_stamp(event); 3426 ts = rb_fix_abs_ts(delta, ts); 3427 break; 3428 3429 case RINGBUF_TYPE_PADDING: 3430 if (event->time_delta == 1) 3431 break; 3432 fallthrough; 3433 case RINGBUF_TYPE_DATA: 3434 ts += event->time_delta; 3435 break; 3436 3437 default: 3438 RB_WARN_ON(cpu_buffer, 1); 3439 } 3440 } 3441 if ((full && ts > info->ts) || 3442 (!full && ts + info->delta != info->ts)) { 3443 /* If another report is happening, ignore this one */ 3444 if (atomic_inc_return(&ts_dump) != 1) { 3445 atomic_dec(&ts_dump); 3446 goto out; 3447 } 3448 atomic_inc(&cpu_buffer->record_disabled); 3449 /* There's some cases in boot up that this can happen */ 3450 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3451 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3452 cpu_buffer->cpu, 3453 ts + info->delta, info->ts, info->delta, 3454 info->before, info->after, 3455 full ? " (full)" : ""); 3456 dump_buffer_page(bpage, info, tail); 3457 atomic_dec(&ts_dump); 3458 /* Do not re-enable checking */ 3459 return; 3460 } 3461 out: 3462 atomic_dec(this_cpu_ptr(&checking)); 3463 } 3464 #else 3465 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3466 struct rb_event_info *info, 3467 unsigned long tail) 3468 { 3469 } 3470 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3471 3472 static struct ring_buffer_event * 3473 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3474 struct rb_event_info *info) 3475 { 3476 struct ring_buffer_event *event; 3477 struct buffer_page *tail_page; 3478 unsigned long tail, write, w; 3479 bool a_ok; 3480 bool b_ok; 3481 3482 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3483 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3484 3485 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3486 barrier(); 3487 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3488 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3489 barrier(); 3490 info->ts = rb_time_stamp(cpu_buffer->buffer); 3491 3492 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3493 info->delta = info->ts; 3494 } else { 3495 /* 3496 * If interrupting an event time update, we may need an 3497 * absolute timestamp. 3498 * Don't bother if this is the start of a new page (w == 0). 3499 */ 3500 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3501 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3502 info->length += RB_LEN_TIME_EXTEND; 3503 } else { 3504 info->delta = info->ts - info->after; 3505 if (unlikely(test_time_stamp(info->delta))) { 3506 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3507 info->length += RB_LEN_TIME_EXTEND; 3508 } 3509 } 3510 } 3511 3512 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3513 3514 /*C*/ write = local_add_return(info->length, &tail_page->write); 3515 3516 /* set write to only the index of the write */ 3517 write &= RB_WRITE_MASK; 3518 3519 tail = write - info->length; 3520 3521 /* See if we shot pass the end of this buffer page */ 3522 if (unlikely(write > BUF_PAGE_SIZE)) { 3523 /* before and after may now different, fix it up*/ 3524 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3525 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3526 if (a_ok && b_ok && info->before != info->after) 3527 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3528 info->before, info->after); 3529 if (a_ok && b_ok) 3530 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3531 return rb_move_tail(cpu_buffer, tail, info); 3532 } 3533 3534 if (likely(tail == w)) { 3535 u64 save_before; 3536 bool s_ok; 3537 3538 /* Nothing interrupted us between A and C */ 3539 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3540 barrier(); 3541 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3542 RB_WARN_ON(cpu_buffer, !s_ok); 3543 if (likely(!(info->add_timestamp & 3544 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3545 /* This did not interrupt any time update */ 3546 info->delta = info->ts - info->after; 3547 else 3548 /* Just use full timestamp for interrupting event */ 3549 info->delta = info->ts; 3550 barrier(); 3551 check_buffer(cpu_buffer, info, tail); 3552 if (unlikely(info->ts != save_before)) { 3553 /* SLOW PATH - Interrupted between C and E */ 3554 3555 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3556 RB_WARN_ON(cpu_buffer, !a_ok); 3557 3558 /* Write stamp must only go forward */ 3559 if (save_before > info->after) { 3560 /* 3561 * We do not care about the result, only that 3562 * it gets updated atomically. 3563 */ 3564 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3565 info->after, save_before); 3566 } 3567 } 3568 } else { 3569 u64 ts; 3570 /* SLOW PATH - Interrupted between A and C */ 3571 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3572 /* Was interrupted before here, write_stamp must be valid */ 3573 RB_WARN_ON(cpu_buffer, !a_ok); 3574 ts = rb_time_stamp(cpu_buffer->buffer); 3575 barrier(); 3576 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3577 info->after < ts && 3578 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3579 info->after, ts)) { 3580 /* Nothing came after this event between C and E */ 3581 info->delta = ts - info->after; 3582 } else { 3583 /* 3584 * Interrupted between C and E: 3585 * Lost the previous events time stamp. Just set the 3586 * delta to zero, and this will be the same time as 3587 * the event this event interrupted. And the events that 3588 * came after this will still be correct (as they would 3589 * have built their delta on the previous event. 3590 */ 3591 info->delta = 0; 3592 } 3593 info->ts = ts; 3594 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3595 } 3596 3597 /* 3598 * If this is the first commit on the page, then it has the same 3599 * timestamp as the page itself. 3600 */ 3601 if (unlikely(!tail && !(info->add_timestamp & 3602 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3603 info->delta = 0; 3604 3605 /* We reserved something on the buffer */ 3606 3607 event = __rb_page_index(tail_page, tail); 3608 rb_update_event(cpu_buffer, event, info); 3609 3610 local_inc(&tail_page->entries); 3611 3612 /* 3613 * If this is the first commit on the page, then update 3614 * its timestamp. 3615 */ 3616 if (unlikely(!tail)) 3617 tail_page->page->time_stamp = info->ts; 3618 3619 /* account for these added bytes */ 3620 local_add(info->length, &cpu_buffer->entries_bytes); 3621 3622 return event; 3623 } 3624 3625 static __always_inline struct ring_buffer_event * 3626 rb_reserve_next_event(struct trace_buffer *buffer, 3627 struct ring_buffer_per_cpu *cpu_buffer, 3628 unsigned long length) 3629 { 3630 struct ring_buffer_event *event; 3631 struct rb_event_info info; 3632 int nr_loops = 0; 3633 int add_ts_default; 3634 3635 rb_start_commit(cpu_buffer); 3636 /* The commit page can not change after this */ 3637 3638 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3639 /* 3640 * Due to the ability to swap a cpu buffer from a buffer 3641 * it is possible it was swapped before we committed. 3642 * (committing stops a swap). We check for it here and 3643 * if it happened, we have to fail the write. 3644 */ 3645 barrier(); 3646 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3647 local_dec(&cpu_buffer->committing); 3648 local_dec(&cpu_buffer->commits); 3649 return NULL; 3650 } 3651 #endif 3652 3653 info.length = rb_calculate_event_length(length); 3654 3655 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3656 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3657 info.length += RB_LEN_TIME_EXTEND; 3658 } else { 3659 add_ts_default = RB_ADD_STAMP_NONE; 3660 } 3661 3662 again: 3663 info.add_timestamp = add_ts_default; 3664 info.delta = 0; 3665 3666 /* 3667 * We allow for interrupts to reenter here and do a trace. 3668 * If one does, it will cause this original code to loop 3669 * back here. Even with heavy interrupts happening, this 3670 * should only happen a few times in a row. If this happens 3671 * 1000 times in a row, there must be either an interrupt 3672 * storm or we have something buggy. 3673 * Bail! 3674 */ 3675 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3676 goto out_fail; 3677 3678 event = __rb_reserve_next(cpu_buffer, &info); 3679 3680 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3681 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3682 info.length -= RB_LEN_TIME_EXTEND; 3683 goto again; 3684 } 3685 3686 if (likely(event)) 3687 return event; 3688 out_fail: 3689 rb_end_commit(cpu_buffer); 3690 return NULL; 3691 } 3692 3693 /** 3694 * ring_buffer_lock_reserve - reserve a part of the buffer 3695 * @buffer: the ring buffer to reserve from 3696 * @length: the length of the data to reserve (excluding event header) 3697 * 3698 * Returns a reserved event on the ring buffer to copy directly to. 3699 * The user of this interface will need to get the body to write into 3700 * and can use the ring_buffer_event_data() interface. 3701 * 3702 * The length is the length of the data needed, not the event length 3703 * which also includes the event header. 3704 * 3705 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3706 * If NULL is returned, then nothing has been allocated or locked. 3707 */ 3708 struct ring_buffer_event * 3709 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3710 { 3711 struct ring_buffer_per_cpu *cpu_buffer; 3712 struct ring_buffer_event *event; 3713 int cpu; 3714 3715 /* If we are tracing schedule, we don't want to recurse */ 3716 preempt_disable_notrace(); 3717 3718 if (unlikely(atomic_read(&buffer->record_disabled))) 3719 goto out; 3720 3721 cpu = raw_smp_processor_id(); 3722 3723 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3724 goto out; 3725 3726 cpu_buffer = buffer->buffers[cpu]; 3727 3728 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3729 goto out; 3730 3731 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3732 goto out; 3733 3734 if (unlikely(trace_recursive_lock(cpu_buffer))) 3735 goto out; 3736 3737 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3738 if (!event) 3739 goto out_unlock; 3740 3741 return event; 3742 3743 out_unlock: 3744 trace_recursive_unlock(cpu_buffer); 3745 out: 3746 preempt_enable_notrace(); 3747 return NULL; 3748 } 3749 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3750 3751 /* 3752 * Decrement the entries to the page that an event is on. 3753 * The event does not even need to exist, only the pointer 3754 * to the page it is on. This may only be called before the commit 3755 * takes place. 3756 */ 3757 static inline void 3758 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3759 struct ring_buffer_event *event) 3760 { 3761 unsigned long addr = (unsigned long)event; 3762 struct buffer_page *bpage = cpu_buffer->commit_page; 3763 struct buffer_page *start; 3764 3765 addr &= PAGE_MASK; 3766 3767 /* Do the likely case first */ 3768 if (likely(bpage->page == (void *)addr)) { 3769 local_dec(&bpage->entries); 3770 return; 3771 } 3772 3773 /* 3774 * Because the commit page may be on the reader page we 3775 * start with the next page and check the end loop there. 3776 */ 3777 rb_inc_page(&bpage); 3778 start = bpage; 3779 do { 3780 if (bpage->page == (void *)addr) { 3781 local_dec(&bpage->entries); 3782 return; 3783 } 3784 rb_inc_page(&bpage); 3785 } while (bpage != start); 3786 3787 /* commit not part of this buffer?? */ 3788 RB_WARN_ON(cpu_buffer, 1); 3789 } 3790 3791 /** 3792 * ring_buffer_discard_commit - discard an event that has not been committed 3793 * @buffer: the ring buffer 3794 * @event: non committed event to discard 3795 * 3796 * Sometimes an event that is in the ring buffer needs to be ignored. 3797 * This function lets the user discard an event in the ring buffer 3798 * and then that event will not be read later. 3799 * 3800 * This function only works if it is called before the item has been 3801 * committed. It will try to free the event from the ring buffer 3802 * if another event has not been added behind it. 3803 * 3804 * If another event has been added behind it, it will set the event 3805 * up as discarded, and perform the commit. 3806 * 3807 * If this function is called, do not call ring_buffer_unlock_commit on 3808 * the event. 3809 */ 3810 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3811 struct ring_buffer_event *event) 3812 { 3813 struct ring_buffer_per_cpu *cpu_buffer; 3814 int cpu; 3815 3816 /* The event is discarded regardless */ 3817 rb_event_discard(event); 3818 3819 cpu = smp_processor_id(); 3820 cpu_buffer = buffer->buffers[cpu]; 3821 3822 /* 3823 * This must only be called if the event has not been 3824 * committed yet. Thus we can assume that preemption 3825 * is still disabled. 3826 */ 3827 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3828 3829 rb_decrement_entry(cpu_buffer, event); 3830 if (rb_try_to_discard(cpu_buffer, event)) 3831 goto out; 3832 3833 out: 3834 rb_end_commit(cpu_buffer); 3835 3836 trace_recursive_unlock(cpu_buffer); 3837 3838 preempt_enable_notrace(); 3839 3840 } 3841 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3842 3843 /** 3844 * ring_buffer_write - write data to the buffer without reserving 3845 * @buffer: The ring buffer to write to. 3846 * @length: The length of the data being written (excluding the event header) 3847 * @data: The data to write to the buffer. 3848 * 3849 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3850 * one function. If you already have the data to write to the buffer, it 3851 * may be easier to simply call this function. 3852 * 3853 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3854 * and not the length of the event which would hold the header. 3855 */ 3856 int ring_buffer_write(struct trace_buffer *buffer, 3857 unsigned long length, 3858 void *data) 3859 { 3860 struct ring_buffer_per_cpu *cpu_buffer; 3861 struct ring_buffer_event *event; 3862 void *body; 3863 int ret = -EBUSY; 3864 int cpu; 3865 3866 preempt_disable_notrace(); 3867 3868 if (atomic_read(&buffer->record_disabled)) 3869 goto out; 3870 3871 cpu = raw_smp_processor_id(); 3872 3873 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3874 goto out; 3875 3876 cpu_buffer = buffer->buffers[cpu]; 3877 3878 if (atomic_read(&cpu_buffer->record_disabled)) 3879 goto out; 3880 3881 if (length > BUF_MAX_DATA_SIZE) 3882 goto out; 3883 3884 if (unlikely(trace_recursive_lock(cpu_buffer))) 3885 goto out; 3886 3887 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3888 if (!event) 3889 goto out_unlock; 3890 3891 body = rb_event_data(event); 3892 3893 memcpy(body, data, length); 3894 3895 rb_commit(cpu_buffer, event); 3896 3897 rb_wakeups(buffer, cpu_buffer); 3898 3899 ret = 0; 3900 3901 out_unlock: 3902 trace_recursive_unlock(cpu_buffer); 3903 3904 out: 3905 preempt_enable_notrace(); 3906 3907 return ret; 3908 } 3909 EXPORT_SYMBOL_GPL(ring_buffer_write); 3910 3911 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3912 { 3913 struct buffer_page *reader = cpu_buffer->reader_page; 3914 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3915 struct buffer_page *commit = cpu_buffer->commit_page; 3916 3917 /* In case of error, head will be NULL */ 3918 if (unlikely(!head)) 3919 return true; 3920 3921 /* Reader should exhaust content in reader page */ 3922 if (reader->read != rb_page_commit(reader)) 3923 return false; 3924 3925 /* 3926 * If writers are committing on the reader page, knowing all 3927 * committed content has been read, the ring buffer is empty. 3928 */ 3929 if (commit == reader) 3930 return true; 3931 3932 /* 3933 * If writers are committing on a page other than reader page 3934 * and head page, there should always be content to read. 3935 */ 3936 if (commit != head) 3937 return false; 3938 3939 /* 3940 * Writers are committing on the head page, we just need 3941 * to care about there're committed data, and the reader will 3942 * swap reader page with head page when it is to read data. 3943 */ 3944 return rb_page_commit(commit) == 0; 3945 } 3946 3947 /** 3948 * ring_buffer_record_disable - stop all writes into the buffer 3949 * @buffer: The ring buffer to stop writes to. 3950 * 3951 * This prevents all writes to the buffer. Any attempt to write 3952 * to the buffer after this will fail and return NULL. 3953 * 3954 * The caller should call synchronize_rcu() after this. 3955 */ 3956 void ring_buffer_record_disable(struct trace_buffer *buffer) 3957 { 3958 atomic_inc(&buffer->record_disabled); 3959 } 3960 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3961 3962 /** 3963 * ring_buffer_record_enable - enable writes to the buffer 3964 * @buffer: The ring buffer to enable writes 3965 * 3966 * Note, multiple disables will need the same number of enables 3967 * to truly enable the writing (much like preempt_disable). 3968 */ 3969 void ring_buffer_record_enable(struct trace_buffer *buffer) 3970 { 3971 atomic_dec(&buffer->record_disabled); 3972 } 3973 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3974 3975 /** 3976 * ring_buffer_record_off - stop all writes into the buffer 3977 * @buffer: The ring buffer to stop writes to. 3978 * 3979 * This prevents all writes to the buffer. Any attempt to write 3980 * to the buffer after this will fail and return NULL. 3981 * 3982 * This is different than ring_buffer_record_disable() as 3983 * it works like an on/off switch, where as the disable() version 3984 * must be paired with a enable(). 3985 */ 3986 void ring_buffer_record_off(struct trace_buffer *buffer) 3987 { 3988 unsigned int rd; 3989 unsigned int new_rd; 3990 3991 do { 3992 rd = atomic_read(&buffer->record_disabled); 3993 new_rd = rd | RB_BUFFER_OFF; 3994 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3995 } 3996 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3997 3998 /** 3999 * ring_buffer_record_on - restart writes into the buffer 4000 * @buffer: The ring buffer to start writes to. 4001 * 4002 * This enables all writes to the buffer that was disabled by 4003 * ring_buffer_record_off(). 4004 * 4005 * This is different than ring_buffer_record_enable() as 4006 * it works like an on/off switch, where as the enable() version 4007 * must be paired with a disable(). 4008 */ 4009 void ring_buffer_record_on(struct trace_buffer *buffer) 4010 { 4011 unsigned int rd; 4012 unsigned int new_rd; 4013 4014 do { 4015 rd = atomic_read(&buffer->record_disabled); 4016 new_rd = rd & ~RB_BUFFER_OFF; 4017 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 4018 } 4019 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4020 4021 /** 4022 * ring_buffer_record_is_on - return true if the ring buffer can write 4023 * @buffer: The ring buffer to see if write is enabled 4024 * 4025 * Returns true if the ring buffer is in a state that it accepts writes. 4026 */ 4027 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4028 { 4029 return !atomic_read(&buffer->record_disabled); 4030 } 4031 4032 /** 4033 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4034 * @buffer: The ring buffer to see if write is set enabled 4035 * 4036 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4037 * Note that this does NOT mean it is in a writable state. 4038 * 4039 * It may return true when the ring buffer has been disabled by 4040 * ring_buffer_record_disable(), as that is a temporary disabling of 4041 * the ring buffer. 4042 */ 4043 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4044 { 4045 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4046 } 4047 4048 /** 4049 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4050 * @buffer: The ring buffer to stop writes to. 4051 * @cpu: The CPU buffer to stop 4052 * 4053 * This prevents all writes to the buffer. Any attempt to write 4054 * to the buffer after this will fail and return NULL. 4055 * 4056 * The caller should call synchronize_rcu() after this. 4057 */ 4058 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4059 { 4060 struct ring_buffer_per_cpu *cpu_buffer; 4061 4062 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4063 return; 4064 4065 cpu_buffer = buffer->buffers[cpu]; 4066 atomic_inc(&cpu_buffer->record_disabled); 4067 } 4068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4069 4070 /** 4071 * ring_buffer_record_enable_cpu - enable writes to the buffer 4072 * @buffer: The ring buffer to enable writes 4073 * @cpu: The CPU to enable. 4074 * 4075 * Note, multiple disables will need the same number of enables 4076 * to truly enable the writing (much like preempt_disable). 4077 */ 4078 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4079 { 4080 struct ring_buffer_per_cpu *cpu_buffer; 4081 4082 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4083 return; 4084 4085 cpu_buffer = buffer->buffers[cpu]; 4086 atomic_dec(&cpu_buffer->record_disabled); 4087 } 4088 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4089 4090 /* 4091 * The total entries in the ring buffer is the running counter 4092 * of entries entered into the ring buffer, minus the sum of 4093 * the entries read from the ring buffer and the number of 4094 * entries that were overwritten. 4095 */ 4096 static inline unsigned long 4097 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4098 { 4099 return local_read(&cpu_buffer->entries) - 4100 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4101 } 4102 4103 /** 4104 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4105 * @buffer: The ring buffer 4106 * @cpu: The per CPU buffer to read from. 4107 */ 4108 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4109 { 4110 unsigned long flags; 4111 struct ring_buffer_per_cpu *cpu_buffer; 4112 struct buffer_page *bpage; 4113 u64 ret = 0; 4114 4115 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4116 return 0; 4117 4118 cpu_buffer = buffer->buffers[cpu]; 4119 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4120 /* 4121 * if the tail is on reader_page, oldest time stamp is on the reader 4122 * page 4123 */ 4124 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4125 bpage = cpu_buffer->reader_page; 4126 else 4127 bpage = rb_set_head_page(cpu_buffer); 4128 if (bpage) 4129 ret = bpage->page->time_stamp; 4130 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4131 4132 return ret; 4133 } 4134 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4135 4136 /** 4137 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 4138 * @buffer: The ring buffer 4139 * @cpu: The per CPU buffer to read from. 4140 */ 4141 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4142 { 4143 struct ring_buffer_per_cpu *cpu_buffer; 4144 unsigned long ret; 4145 4146 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4147 return 0; 4148 4149 cpu_buffer = buffer->buffers[cpu]; 4150 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4151 4152 return ret; 4153 } 4154 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4155 4156 /** 4157 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4158 * @buffer: The ring buffer 4159 * @cpu: The per CPU buffer to get the entries from. 4160 */ 4161 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4162 { 4163 struct ring_buffer_per_cpu *cpu_buffer; 4164 4165 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4166 return 0; 4167 4168 cpu_buffer = buffer->buffers[cpu]; 4169 4170 return rb_num_of_entries(cpu_buffer); 4171 } 4172 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4173 4174 /** 4175 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4176 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4177 * @buffer: The ring buffer 4178 * @cpu: The per CPU buffer to get the number of overruns from 4179 */ 4180 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4181 { 4182 struct ring_buffer_per_cpu *cpu_buffer; 4183 unsigned long ret; 4184 4185 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4186 return 0; 4187 4188 cpu_buffer = buffer->buffers[cpu]; 4189 ret = local_read(&cpu_buffer->overrun); 4190 4191 return ret; 4192 } 4193 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4194 4195 /** 4196 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4197 * commits failing due to the buffer wrapping around while there are uncommitted 4198 * events, such as during an interrupt storm. 4199 * @buffer: The ring buffer 4200 * @cpu: The per CPU buffer to get the number of overruns from 4201 */ 4202 unsigned long 4203 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4204 { 4205 struct ring_buffer_per_cpu *cpu_buffer; 4206 unsigned long ret; 4207 4208 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4209 return 0; 4210 4211 cpu_buffer = buffer->buffers[cpu]; 4212 ret = local_read(&cpu_buffer->commit_overrun); 4213 4214 return ret; 4215 } 4216 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4217 4218 /** 4219 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4220 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4221 * @buffer: The ring buffer 4222 * @cpu: The per CPU buffer to get the number of overruns from 4223 */ 4224 unsigned long 4225 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4226 { 4227 struct ring_buffer_per_cpu *cpu_buffer; 4228 unsigned long ret; 4229 4230 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4231 return 0; 4232 4233 cpu_buffer = buffer->buffers[cpu]; 4234 ret = local_read(&cpu_buffer->dropped_events); 4235 4236 return ret; 4237 } 4238 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4239 4240 /** 4241 * ring_buffer_read_events_cpu - get the number of events successfully read 4242 * @buffer: The ring buffer 4243 * @cpu: The per CPU buffer to get the number of events read 4244 */ 4245 unsigned long 4246 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4247 { 4248 struct ring_buffer_per_cpu *cpu_buffer; 4249 4250 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4251 return 0; 4252 4253 cpu_buffer = buffer->buffers[cpu]; 4254 return cpu_buffer->read; 4255 } 4256 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4257 4258 /** 4259 * ring_buffer_entries - get the number of entries in a buffer 4260 * @buffer: The ring buffer 4261 * 4262 * Returns the total number of entries in the ring buffer 4263 * (all CPU entries) 4264 */ 4265 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4266 { 4267 struct ring_buffer_per_cpu *cpu_buffer; 4268 unsigned long entries = 0; 4269 int cpu; 4270 4271 /* if you care about this being correct, lock the buffer */ 4272 for_each_buffer_cpu(buffer, cpu) { 4273 cpu_buffer = buffer->buffers[cpu]; 4274 entries += rb_num_of_entries(cpu_buffer); 4275 } 4276 4277 return entries; 4278 } 4279 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4280 4281 /** 4282 * ring_buffer_overruns - get the number of overruns in buffer 4283 * @buffer: The ring buffer 4284 * 4285 * Returns the total number of overruns in the ring buffer 4286 * (all CPU entries) 4287 */ 4288 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4289 { 4290 struct ring_buffer_per_cpu *cpu_buffer; 4291 unsigned long overruns = 0; 4292 int cpu; 4293 4294 /* if you care about this being correct, lock the buffer */ 4295 for_each_buffer_cpu(buffer, cpu) { 4296 cpu_buffer = buffer->buffers[cpu]; 4297 overruns += local_read(&cpu_buffer->overrun); 4298 } 4299 4300 return overruns; 4301 } 4302 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4303 4304 static void rb_iter_reset(struct ring_buffer_iter *iter) 4305 { 4306 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4307 4308 /* Iterator usage is expected to have record disabled */ 4309 iter->head_page = cpu_buffer->reader_page; 4310 iter->head = cpu_buffer->reader_page->read; 4311 iter->next_event = iter->head; 4312 4313 iter->cache_reader_page = iter->head_page; 4314 iter->cache_read = cpu_buffer->read; 4315 4316 if (iter->head) { 4317 iter->read_stamp = cpu_buffer->read_stamp; 4318 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4319 } else { 4320 iter->read_stamp = iter->head_page->page->time_stamp; 4321 iter->page_stamp = iter->read_stamp; 4322 } 4323 } 4324 4325 /** 4326 * ring_buffer_iter_reset - reset an iterator 4327 * @iter: The iterator to reset 4328 * 4329 * Resets the iterator, so that it will start from the beginning 4330 * again. 4331 */ 4332 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4333 { 4334 struct ring_buffer_per_cpu *cpu_buffer; 4335 unsigned long flags; 4336 4337 if (!iter) 4338 return; 4339 4340 cpu_buffer = iter->cpu_buffer; 4341 4342 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4343 rb_iter_reset(iter); 4344 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4345 } 4346 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4347 4348 /** 4349 * ring_buffer_iter_empty - check if an iterator has no more to read 4350 * @iter: The iterator to check 4351 */ 4352 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4353 { 4354 struct ring_buffer_per_cpu *cpu_buffer; 4355 struct buffer_page *reader; 4356 struct buffer_page *head_page; 4357 struct buffer_page *commit_page; 4358 struct buffer_page *curr_commit_page; 4359 unsigned commit; 4360 u64 curr_commit_ts; 4361 u64 commit_ts; 4362 4363 cpu_buffer = iter->cpu_buffer; 4364 reader = cpu_buffer->reader_page; 4365 head_page = cpu_buffer->head_page; 4366 commit_page = cpu_buffer->commit_page; 4367 commit_ts = commit_page->page->time_stamp; 4368 4369 /* 4370 * When the writer goes across pages, it issues a cmpxchg which 4371 * is a mb(), which will synchronize with the rmb here. 4372 * (see rb_tail_page_update()) 4373 */ 4374 smp_rmb(); 4375 commit = rb_page_commit(commit_page); 4376 /* We want to make sure that the commit page doesn't change */ 4377 smp_rmb(); 4378 4379 /* Make sure commit page didn't change */ 4380 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4381 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4382 4383 /* If the commit page changed, then there's more data */ 4384 if (curr_commit_page != commit_page || 4385 curr_commit_ts != commit_ts) 4386 return 0; 4387 4388 /* Still racy, as it may return a false positive, but that's OK */ 4389 return ((iter->head_page == commit_page && iter->head >= commit) || 4390 (iter->head_page == reader && commit_page == head_page && 4391 head_page->read == commit && 4392 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4393 } 4394 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4395 4396 static void 4397 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4398 struct ring_buffer_event *event) 4399 { 4400 u64 delta; 4401 4402 switch (event->type_len) { 4403 case RINGBUF_TYPE_PADDING: 4404 return; 4405 4406 case RINGBUF_TYPE_TIME_EXTEND: 4407 delta = rb_event_time_stamp(event); 4408 cpu_buffer->read_stamp += delta; 4409 return; 4410 4411 case RINGBUF_TYPE_TIME_STAMP: 4412 delta = rb_event_time_stamp(event); 4413 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4414 cpu_buffer->read_stamp = delta; 4415 return; 4416 4417 case RINGBUF_TYPE_DATA: 4418 cpu_buffer->read_stamp += event->time_delta; 4419 return; 4420 4421 default: 4422 RB_WARN_ON(cpu_buffer, 1); 4423 } 4424 return; 4425 } 4426 4427 static void 4428 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4429 struct ring_buffer_event *event) 4430 { 4431 u64 delta; 4432 4433 switch (event->type_len) { 4434 case RINGBUF_TYPE_PADDING: 4435 return; 4436 4437 case RINGBUF_TYPE_TIME_EXTEND: 4438 delta = rb_event_time_stamp(event); 4439 iter->read_stamp += delta; 4440 return; 4441 4442 case RINGBUF_TYPE_TIME_STAMP: 4443 delta = rb_event_time_stamp(event); 4444 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4445 iter->read_stamp = delta; 4446 return; 4447 4448 case RINGBUF_TYPE_DATA: 4449 iter->read_stamp += event->time_delta; 4450 return; 4451 4452 default: 4453 RB_WARN_ON(iter->cpu_buffer, 1); 4454 } 4455 return; 4456 } 4457 4458 static struct buffer_page * 4459 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4460 { 4461 struct buffer_page *reader = NULL; 4462 unsigned long overwrite; 4463 unsigned long flags; 4464 int nr_loops = 0; 4465 int ret; 4466 4467 local_irq_save(flags); 4468 arch_spin_lock(&cpu_buffer->lock); 4469 4470 again: 4471 /* 4472 * This should normally only loop twice. But because the 4473 * start of the reader inserts an empty page, it causes 4474 * a case where we will loop three times. There should be no 4475 * reason to loop four times (that I know of). 4476 */ 4477 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4478 reader = NULL; 4479 goto out; 4480 } 4481 4482 reader = cpu_buffer->reader_page; 4483 4484 /* If there's more to read, return this page */ 4485 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4486 goto out; 4487 4488 /* Never should we have an index greater than the size */ 4489 if (RB_WARN_ON(cpu_buffer, 4490 cpu_buffer->reader_page->read > rb_page_size(reader))) 4491 goto out; 4492 4493 /* check if we caught up to the tail */ 4494 reader = NULL; 4495 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4496 goto out; 4497 4498 /* Don't bother swapping if the ring buffer is empty */ 4499 if (rb_num_of_entries(cpu_buffer) == 0) 4500 goto out; 4501 4502 /* 4503 * Reset the reader page to size zero. 4504 */ 4505 local_set(&cpu_buffer->reader_page->write, 0); 4506 local_set(&cpu_buffer->reader_page->entries, 0); 4507 local_set(&cpu_buffer->reader_page->page->commit, 0); 4508 cpu_buffer->reader_page->real_end = 0; 4509 4510 spin: 4511 /* 4512 * Splice the empty reader page into the list around the head. 4513 */ 4514 reader = rb_set_head_page(cpu_buffer); 4515 if (!reader) 4516 goto out; 4517 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4518 cpu_buffer->reader_page->list.prev = reader->list.prev; 4519 4520 /* 4521 * cpu_buffer->pages just needs to point to the buffer, it 4522 * has no specific buffer page to point to. Lets move it out 4523 * of our way so we don't accidentally swap it. 4524 */ 4525 cpu_buffer->pages = reader->list.prev; 4526 4527 /* The reader page will be pointing to the new head */ 4528 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4529 4530 /* 4531 * We want to make sure we read the overruns after we set up our 4532 * pointers to the next object. The writer side does a 4533 * cmpxchg to cross pages which acts as the mb on the writer 4534 * side. Note, the reader will constantly fail the swap 4535 * while the writer is updating the pointers, so this 4536 * guarantees that the overwrite recorded here is the one we 4537 * want to compare with the last_overrun. 4538 */ 4539 smp_mb(); 4540 overwrite = local_read(&(cpu_buffer->overrun)); 4541 4542 /* 4543 * Here's the tricky part. 4544 * 4545 * We need to move the pointer past the header page. 4546 * But we can only do that if a writer is not currently 4547 * moving it. The page before the header page has the 4548 * flag bit '1' set if it is pointing to the page we want. 4549 * but if the writer is in the process of moving it 4550 * than it will be '2' or already moved '0'. 4551 */ 4552 4553 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4554 4555 /* 4556 * If we did not convert it, then we must try again. 4557 */ 4558 if (!ret) 4559 goto spin; 4560 4561 /* 4562 * Yay! We succeeded in replacing the page. 4563 * 4564 * Now make the new head point back to the reader page. 4565 */ 4566 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4567 rb_inc_page(&cpu_buffer->head_page); 4568 4569 local_inc(&cpu_buffer->pages_read); 4570 4571 /* Finally update the reader page to the new head */ 4572 cpu_buffer->reader_page = reader; 4573 cpu_buffer->reader_page->read = 0; 4574 4575 if (overwrite != cpu_buffer->last_overrun) { 4576 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4577 cpu_buffer->last_overrun = overwrite; 4578 } 4579 4580 goto again; 4581 4582 out: 4583 /* Update the read_stamp on the first event */ 4584 if (reader && reader->read == 0) 4585 cpu_buffer->read_stamp = reader->page->time_stamp; 4586 4587 arch_spin_unlock(&cpu_buffer->lock); 4588 local_irq_restore(flags); 4589 4590 return reader; 4591 } 4592 4593 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4594 { 4595 struct ring_buffer_event *event; 4596 struct buffer_page *reader; 4597 unsigned length; 4598 4599 reader = rb_get_reader_page(cpu_buffer); 4600 4601 /* This function should not be called when buffer is empty */ 4602 if (RB_WARN_ON(cpu_buffer, !reader)) 4603 return; 4604 4605 event = rb_reader_event(cpu_buffer); 4606 4607 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4608 cpu_buffer->read++; 4609 4610 rb_update_read_stamp(cpu_buffer, event); 4611 4612 length = rb_event_length(event); 4613 cpu_buffer->reader_page->read += length; 4614 } 4615 4616 static void rb_advance_iter(struct ring_buffer_iter *iter) 4617 { 4618 struct ring_buffer_per_cpu *cpu_buffer; 4619 4620 cpu_buffer = iter->cpu_buffer; 4621 4622 /* If head == next_event then we need to jump to the next event */ 4623 if (iter->head == iter->next_event) { 4624 /* If the event gets overwritten again, there's nothing to do */ 4625 if (rb_iter_head_event(iter) == NULL) 4626 return; 4627 } 4628 4629 iter->head = iter->next_event; 4630 4631 /* 4632 * Check if we are at the end of the buffer. 4633 */ 4634 if (iter->next_event >= rb_page_size(iter->head_page)) { 4635 /* discarded commits can make the page empty */ 4636 if (iter->head_page == cpu_buffer->commit_page) 4637 return; 4638 rb_inc_iter(iter); 4639 return; 4640 } 4641 4642 rb_update_iter_read_stamp(iter, iter->event); 4643 } 4644 4645 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4646 { 4647 return cpu_buffer->lost_events; 4648 } 4649 4650 static struct ring_buffer_event * 4651 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4652 unsigned long *lost_events) 4653 { 4654 struct ring_buffer_event *event; 4655 struct buffer_page *reader; 4656 int nr_loops = 0; 4657 4658 if (ts) 4659 *ts = 0; 4660 again: 4661 /* 4662 * We repeat when a time extend is encountered. 4663 * Since the time extend is always attached to a data event, 4664 * we should never loop more than once. 4665 * (We never hit the following condition more than twice). 4666 */ 4667 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4668 return NULL; 4669 4670 reader = rb_get_reader_page(cpu_buffer); 4671 if (!reader) 4672 return NULL; 4673 4674 event = rb_reader_event(cpu_buffer); 4675 4676 switch (event->type_len) { 4677 case RINGBUF_TYPE_PADDING: 4678 if (rb_null_event(event)) 4679 RB_WARN_ON(cpu_buffer, 1); 4680 /* 4681 * Because the writer could be discarding every 4682 * event it creates (which would probably be bad) 4683 * if we were to go back to "again" then we may never 4684 * catch up, and will trigger the warn on, or lock 4685 * the box. Return the padding, and we will release 4686 * the current locks, and try again. 4687 */ 4688 return event; 4689 4690 case RINGBUF_TYPE_TIME_EXTEND: 4691 /* Internal data, OK to advance */ 4692 rb_advance_reader(cpu_buffer); 4693 goto again; 4694 4695 case RINGBUF_TYPE_TIME_STAMP: 4696 if (ts) { 4697 *ts = rb_event_time_stamp(event); 4698 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4699 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4700 cpu_buffer->cpu, ts); 4701 } 4702 /* Internal data, OK to advance */ 4703 rb_advance_reader(cpu_buffer); 4704 goto again; 4705 4706 case RINGBUF_TYPE_DATA: 4707 if (ts && !(*ts)) { 4708 *ts = cpu_buffer->read_stamp + event->time_delta; 4709 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4710 cpu_buffer->cpu, ts); 4711 } 4712 if (lost_events) 4713 *lost_events = rb_lost_events(cpu_buffer); 4714 return event; 4715 4716 default: 4717 RB_WARN_ON(cpu_buffer, 1); 4718 } 4719 4720 return NULL; 4721 } 4722 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4723 4724 static struct ring_buffer_event * 4725 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4726 { 4727 struct trace_buffer *buffer; 4728 struct ring_buffer_per_cpu *cpu_buffer; 4729 struct ring_buffer_event *event; 4730 int nr_loops = 0; 4731 4732 if (ts) 4733 *ts = 0; 4734 4735 cpu_buffer = iter->cpu_buffer; 4736 buffer = cpu_buffer->buffer; 4737 4738 /* 4739 * Check if someone performed a consuming read to 4740 * the buffer. A consuming read invalidates the iterator 4741 * and we need to reset the iterator in this case. 4742 */ 4743 if (unlikely(iter->cache_read != cpu_buffer->read || 4744 iter->cache_reader_page != cpu_buffer->reader_page)) 4745 rb_iter_reset(iter); 4746 4747 again: 4748 if (ring_buffer_iter_empty(iter)) 4749 return NULL; 4750 4751 /* 4752 * As the writer can mess with what the iterator is trying 4753 * to read, just give up if we fail to get an event after 4754 * three tries. The iterator is not as reliable when reading 4755 * the ring buffer with an active write as the consumer is. 4756 * Do not warn if the three failures is reached. 4757 */ 4758 if (++nr_loops > 3) 4759 return NULL; 4760 4761 if (rb_per_cpu_empty(cpu_buffer)) 4762 return NULL; 4763 4764 if (iter->head >= rb_page_size(iter->head_page)) { 4765 rb_inc_iter(iter); 4766 goto again; 4767 } 4768 4769 event = rb_iter_head_event(iter); 4770 if (!event) 4771 goto again; 4772 4773 switch (event->type_len) { 4774 case RINGBUF_TYPE_PADDING: 4775 if (rb_null_event(event)) { 4776 rb_inc_iter(iter); 4777 goto again; 4778 } 4779 rb_advance_iter(iter); 4780 return event; 4781 4782 case RINGBUF_TYPE_TIME_EXTEND: 4783 /* Internal data, OK to advance */ 4784 rb_advance_iter(iter); 4785 goto again; 4786 4787 case RINGBUF_TYPE_TIME_STAMP: 4788 if (ts) { 4789 *ts = rb_event_time_stamp(event); 4790 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4791 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4792 cpu_buffer->cpu, ts); 4793 } 4794 /* Internal data, OK to advance */ 4795 rb_advance_iter(iter); 4796 goto again; 4797 4798 case RINGBUF_TYPE_DATA: 4799 if (ts && !(*ts)) { 4800 *ts = iter->read_stamp + event->time_delta; 4801 ring_buffer_normalize_time_stamp(buffer, 4802 cpu_buffer->cpu, ts); 4803 } 4804 return event; 4805 4806 default: 4807 RB_WARN_ON(cpu_buffer, 1); 4808 } 4809 4810 return NULL; 4811 } 4812 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4813 4814 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4815 { 4816 if (likely(!in_nmi())) { 4817 raw_spin_lock(&cpu_buffer->reader_lock); 4818 return true; 4819 } 4820 4821 /* 4822 * If an NMI die dumps out the content of the ring buffer 4823 * trylock must be used to prevent a deadlock if the NMI 4824 * preempted a task that holds the ring buffer locks. If 4825 * we get the lock then all is fine, if not, then continue 4826 * to do the read, but this can corrupt the ring buffer, 4827 * so it must be permanently disabled from future writes. 4828 * Reading from NMI is a oneshot deal. 4829 */ 4830 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4831 return true; 4832 4833 /* Continue without locking, but disable the ring buffer */ 4834 atomic_inc(&cpu_buffer->record_disabled); 4835 return false; 4836 } 4837 4838 static inline void 4839 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4840 { 4841 if (likely(locked)) 4842 raw_spin_unlock(&cpu_buffer->reader_lock); 4843 return; 4844 } 4845 4846 /** 4847 * ring_buffer_peek - peek at the next event to be read 4848 * @buffer: The ring buffer to read 4849 * @cpu: The cpu to peak at 4850 * @ts: The timestamp counter of this event. 4851 * @lost_events: a variable to store if events were lost (may be NULL) 4852 * 4853 * This will return the event that will be read next, but does 4854 * not consume the data. 4855 */ 4856 struct ring_buffer_event * 4857 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4858 unsigned long *lost_events) 4859 { 4860 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4861 struct ring_buffer_event *event; 4862 unsigned long flags; 4863 bool dolock; 4864 4865 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4866 return NULL; 4867 4868 again: 4869 local_irq_save(flags); 4870 dolock = rb_reader_lock(cpu_buffer); 4871 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4872 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4873 rb_advance_reader(cpu_buffer); 4874 rb_reader_unlock(cpu_buffer, dolock); 4875 local_irq_restore(flags); 4876 4877 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4878 goto again; 4879 4880 return event; 4881 } 4882 4883 /** ring_buffer_iter_dropped - report if there are dropped events 4884 * @iter: The ring buffer iterator 4885 * 4886 * Returns true if there was dropped events since the last peek. 4887 */ 4888 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4889 { 4890 bool ret = iter->missed_events != 0; 4891 4892 iter->missed_events = 0; 4893 return ret; 4894 } 4895 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4896 4897 /** 4898 * ring_buffer_iter_peek - peek at the next event to be read 4899 * @iter: The ring buffer iterator 4900 * @ts: The timestamp counter of this event. 4901 * 4902 * This will return the event that will be read next, but does 4903 * not increment the iterator. 4904 */ 4905 struct ring_buffer_event * 4906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4907 { 4908 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4909 struct ring_buffer_event *event; 4910 unsigned long flags; 4911 4912 again: 4913 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4914 event = rb_iter_peek(iter, ts); 4915 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4916 4917 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4918 goto again; 4919 4920 return event; 4921 } 4922 4923 /** 4924 * ring_buffer_consume - return an event and consume it 4925 * @buffer: The ring buffer to get the next event from 4926 * @cpu: the cpu to read the buffer from 4927 * @ts: a variable to store the timestamp (may be NULL) 4928 * @lost_events: a variable to store if events were lost (may be NULL) 4929 * 4930 * Returns the next event in the ring buffer, and that event is consumed. 4931 * Meaning, that sequential reads will keep returning a different event, 4932 * and eventually empty the ring buffer if the producer is slower. 4933 */ 4934 struct ring_buffer_event * 4935 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4936 unsigned long *lost_events) 4937 { 4938 struct ring_buffer_per_cpu *cpu_buffer; 4939 struct ring_buffer_event *event = NULL; 4940 unsigned long flags; 4941 bool dolock; 4942 4943 again: 4944 /* might be called in atomic */ 4945 preempt_disable(); 4946 4947 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4948 goto out; 4949 4950 cpu_buffer = buffer->buffers[cpu]; 4951 local_irq_save(flags); 4952 dolock = rb_reader_lock(cpu_buffer); 4953 4954 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4955 if (event) { 4956 cpu_buffer->lost_events = 0; 4957 rb_advance_reader(cpu_buffer); 4958 } 4959 4960 rb_reader_unlock(cpu_buffer, dolock); 4961 local_irq_restore(flags); 4962 4963 out: 4964 preempt_enable(); 4965 4966 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4967 goto again; 4968 4969 return event; 4970 } 4971 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4972 4973 /** 4974 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4975 * @buffer: The ring buffer to read from 4976 * @cpu: The cpu buffer to iterate over 4977 * @flags: gfp flags to use for memory allocation 4978 * 4979 * This performs the initial preparations necessary to iterate 4980 * through the buffer. Memory is allocated, buffer recording 4981 * is disabled, and the iterator pointer is returned to the caller. 4982 * 4983 * Disabling buffer recording prevents the reading from being 4984 * corrupted. This is not a consuming read, so a producer is not 4985 * expected. 4986 * 4987 * After a sequence of ring_buffer_read_prepare calls, the user is 4988 * expected to make at least one call to ring_buffer_read_prepare_sync. 4989 * Afterwards, ring_buffer_read_start is invoked to get things going 4990 * for real. 4991 * 4992 * This overall must be paired with ring_buffer_read_finish. 4993 */ 4994 struct ring_buffer_iter * 4995 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4996 { 4997 struct ring_buffer_per_cpu *cpu_buffer; 4998 struct ring_buffer_iter *iter; 4999 5000 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5001 return NULL; 5002 5003 iter = kzalloc(sizeof(*iter), flags); 5004 if (!iter) 5005 return NULL; 5006 5007 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 5008 if (!iter->event) { 5009 kfree(iter); 5010 return NULL; 5011 } 5012 5013 cpu_buffer = buffer->buffers[cpu]; 5014 5015 iter->cpu_buffer = cpu_buffer; 5016 5017 atomic_inc(&cpu_buffer->resize_disabled); 5018 5019 return iter; 5020 } 5021 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5022 5023 /** 5024 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5025 * 5026 * All previously invoked ring_buffer_read_prepare calls to prepare 5027 * iterators will be synchronized. Afterwards, read_buffer_read_start 5028 * calls on those iterators are allowed. 5029 */ 5030 void 5031 ring_buffer_read_prepare_sync(void) 5032 { 5033 synchronize_rcu(); 5034 } 5035 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5036 5037 /** 5038 * ring_buffer_read_start - start a non consuming read of the buffer 5039 * @iter: The iterator returned by ring_buffer_read_prepare 5040 * 5041 * This finalizes the startup of an iteration through the buffer. 5042 * The iterator comes from a call to ring_buffer_read_prepare and 5043 * an intervening ring_buffer_read_prepare_sync must have been 5044 * performed. 5045 * 5046 * Must be paired with ring_buffer_read_finish. 5047 */ 5048 void 5049 ring_buffer_read_start(struct ring_buffer_iter *iter) 5050 { 5051 struct ring_buffer_per_cpu *cpu_buffer; 5052 unsigned long flags; 5053 5054 if (!iter) 5055 return; 5056 5057 cpu_buffer = iter->cpu_buffer; 5058 5059 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5060 arch_spin_lock(&cpu_buffer->lock); 5061 rb_iter_reset(iter); 5062 arch_spin_unlock(&cpu_buffer->lock); 5063 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5064 } 5065 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5066 5067 /** 5068 * ring_buffer_read_finish - finish reading the iterator of the buffer 5069 * @iter: The iterator retrieved by ring_buffer_start 5070 * 5071 * This re-enables the recording to the buffer, and frees the 5072 * iterator. 5073 */ 5074 void 5075 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5076 { 5077 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5078 unsigned long flags; 5079 5080 /* 5081 * Ring buffer is disabled from recording, here's a good place 5082 * to check the integrity of the ring buffer. 5083 * Must prevent readers from trying to read, as the check 5084 * clears the HEAD page and readers require it. 5085 */ 5086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5087 rb_check_pages(cpu_buffer); 5088 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5089 5090 atomic_dec(&cpu_buffer->resize_disabled); 5091 kfree(iter->event); 5092 kfree(iter); 5093 } 5094 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5095 5096 /** 5097 * ring_buffer_iter_advance - advance the iterator to the next location 5098 * @iter: The ring buffer iterator 5099 * 5100 * Move the location of the iterator such that the next read will 5101 * be the next location of the iterator. 5102 */ 5103 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5104 { 5105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5106 unsigned long flags; 5107 5108 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5109 5110 rb_advance_iter(iter); 5111 5112 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5113 } 5114 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5115 5116 /** 5117 * ring_buffer_size - return the size of the ring buffer (in bytes) 5118 * @buffer: The ring buffer. 5119 * @cpu: The CPU to get ring buffer size from. 5120 */ 5121 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5122 { 5123 /* 5124 * Earlier, this method returned 5125 * BUF_PAGE_SIZE * buffer->nr_pages 5126 * Since the nr_pages field is now removed, we have converted this to 5127 * return the per cpu buffer value. 5128 */ 5129 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5130 return 0; 5131 5132 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5133 } 5134 EXPORT_SYMBOL_GPL(ring_buffer_size); 5135 5136 static void 5137 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5138 { 5139 rb_head_page_deactivate(cpu_buffer); 5140 5141 cpu_buffer->head_page 5142 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5143 local_set(&cpu_buffer->head_page->write, 0); 5144 local_set(&cpu_buffer->head_page->entries, 0); 5145 local_set(&cpu_buffer->head_page->page->commit, 0); 5146 5147 cpu_buffer->head_page->read = 0; 5148 5149 cpu_buffer->tail_page = cpu_buffer->head_page; 5150 cpu_buffer->commit_page = cpu_buffer->head_page; 5151 5152 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5153 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5154 local_set(&cpu_buffer->reader_page->write, 0); 5155 local_set(&cpu_buffer->reader_page->entries, 0); 5156 local_set(&cpu_buffer->reader_page->page->commit, 0); 5157 cpu_buffer->reader_page->read = 0; 5158 5159 local_set(&cpu_buffer->entries_bytes, 0); 5160 local_set(&cpu_buffer->overrun, 0); 5161 local_set(&cpu_buffer->commit_overrun, 0); 5162 local_set(&cpu_buffer->dropped_events, 0); 5163 local_set(&cpu_buffer->entries, 0); 5164 local_set(&cpu_buffer->committing, 0); 5165 local_set(&cpu_buffer->commits, 0); 5166 local_set(&cpu_buffer->pages_touched, 0); 5167 local_set(&cpu_buffer->pages_read, 0); 5168 cpu_buffer->last_pages_touch = 0; 5169 cpu_buffer->shortest_full = 0; 5170 cpu_buffer->read = 0; 5171 cpu_buffer->read_bytes = 0; 5172 5173 rb_time_set(&cpu_buffer->write_stamp, 0); 5174 rb_time_set(&cpu_buffer->before_stamp, 0); 5175 5176 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5177 5178 cpu_buffer->lost_events = 0; 5179 cpu_buffer->last_overrun = 0; 5180 5181 rb_head_page_activate(cpu_buffer); 5182 } 5183 5184 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5185 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5186 { 5187 unsigned long flags; 5188 5189 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5190 5191 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5192 goto out; 5193 5194 arch_spin_lock(&cpu_buffer->lock); 5195 5196 rb_reset_cpu(cpu_buffer); 5197 5198 arch_spin_unlock(&cpu_buffer->lock); 5199 5200 out: 5201 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5202 } 5203 5204 /** 5205 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5206 * @buffer: The ring buffer to reset a per cpu buffer of 5207 * @cpu: The CPU buffer to be reset 5208 */ 5209 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5210 { 5211 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5212 5213 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5214 return; 5215 5216 /* prevent another thread from changing buffer sizes */ 5217 mutex_lock(&buffer->mutex); 5218 5219 atomic_inc(&cpu_buffer->resize_disabled); 5220 atomic_inc(&cpu_buffer->record_disabled); 5221 5222 /* Make sure all commits have finished */ 5223 synchronize_rcu(); 5224 5225 reset_disabled_cpu_buffer(cpu_buffer); 5226 5227 atomic_dec(&cpu_buffer->record_disabled); 5228 atomic_dec(&cpu_buffer->resize_disabled); 5229 5230 mutex_unlock(&buffer->mutex); 5231 } 5232 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5233 5234 /** 5235 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5236 * @buffer: The ring buffer to reset a per cpu buffer of 5237 * @cpu: The CPU buffer to be reset 5238 */ 5239 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5240 { 5241 struct ring_buffer_per_cpu *cpu_buffer; 5242 int cpu; 5243 5244 /* prevent another thread from changing buffer sizes */ 5245 mutex_lock(&buffer->mutex); 5246 5247 for_each_online_buffer_cpu(buffer, cpu) { 5248 cpu_buffer = buffer->buffers[cpu]; 5249 5250 atomic_inc(&cpu_buffer->resize_disabled); 5251 atomic_inc(&cpu_buffer->record_disabled); 5252 } 5253 5254 /* Make sure all commits have finished */ 5255 synchronize_rcu(); 5256 5257 for_each_online_buffer_cpu(buffer, cpu) { 5258 cpu_buffer = buffer->buffers[cpu]; 5259 5260 reset_disabled_cpu_buffer(cpu_buffer); 5261 5262 atomic_dec(&cpu_buffer->record_disabled); 5263 atomic_dec(&cpu_buffer->resize_disabled); 5264 } 5265 5266 mutex_unlock(&buffer->mutex); 5267 } 5268 5269 /** 5270 * ring_buffer_reset - reset a ring buffer 5271 * @buffer: The ring buffer to reset all cpu buffers 5272 */ 5273 void ring_buffer_reset(struct trace_buffer *buffer) 5274 { 5275 struct ring_buffer_per_cpu *cpu_buffer; 5276 int cpu; 5277 5278 /* prevent another thread from changing buffer sizes */ 5279 mutex_lock(&buffer->mutex); 5280 5281 for_each_buffer_cpu(buffer, cpu) { 5282 cpu_buffer = buffer->buffers[cpu]; 5283 5284 atomic_inc(&cpu_buffer->resize_disabled); 5285 atomic_inc(&cpu_buffer->record_disabled); 5286 } 5287 5288 /* Make sure all commits have finished */ 5289 synchronize_rcu(); 5290 5291 for_each_buffer_cpu(buffer, cpu) { 5292 cpu_buffer = buffer->buffers[cpu]; 5293 5294 reset_disabled_cpu_buffer(cpu_buffer); 5295 5296 atomic_dec(&cpu_buffer->record_disabled); 5297 atomic_dec(&cpu_buffer->resize_disabled); 5298 } 5299 5300 mutex_unlock(&buffer->mutex); 5301 } 5302 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5303 5304 /** 5305 * rind_buffer_empty - is the ring buffer empty? 5306 * @buffer: The ring buffer to test 5307 */ 5308 bool ring_buffer_empty(struct trace_buffer *buffer) 5309 { 5310 struct ring_buffer_per_cpu *cpu_buffer; 5311 unsigned long flags; 5312 bool dolock; 5313 int cpu; 5314 int ret; 5315 5316 /* yes this is racy, but if you don't like the race, lock the buffer */ 5317 for_each_buffer_cpu(buffer, cpu) { 5318 cpu_buffer = buffer->buffers[cpu]; 5319 local_irq_save(flags); 5320 dolock = rb_reader_lock(cpu_buffer); 5321 ret = rb_per_cpu_empty(cpu_buffer); 5322 rb_reader_unlock(cpu_buffer, dolock); 5323 local_irq_restore(flags); 5324 5325 if (!ret) 5326 return false; 5327 } 5328 5329 return true; 5330 } 5331 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5332 5333 /** 5334 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5335 * @buffer: The ring buffer 5336 * @cpu: The CPU buffer to test 5337 */ 5338 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5339 { 5340 struct ring_buffer_per_cpu *cpu_buffer; 5341 unsigned long flags; 5342 bool dolock; 5343 int ret; 5344 5345 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5346 return true; 5347 5348 cpu_buffer = buffer->buffers[cpu]; 5349 local_irq_save(flags); 5350 dolock = rb_reader_lock(cpu_buffer); 5351 ret = rb_per_cpu_empty(cpu_buffer); 5352 rb_reader_unlock(cpu_buffer, dolock); 5353 local_irq_restore(flags); 5354 5355 return ret; 5356 } 5357 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5358 5359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5360 /** 5361 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5362 * @buffer_a: One buffer to swap with 5363 * @buffer_b: The other buffer to swap with 5364 * @cpu: the CPU of the buffers to swap 5365 * 5366 * This function is useful for tracers that want to take a "snapshot" 5367 * of a CPU buffer and has another back up buffer lying around. 5368 * it is expected that the tracer handles the cpu buffer not being 5369 * used at the moment. 5370 */ 5371 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5372 struct trace_buffer *buffer_b, int cpu) 5373 { 5374 struct ring_buffer_per_cpu *cpu_buffer_a; 5375 struct ring_buffer_per_cpu *cpu_buffer_b; 5376 int ret = -EINVAL; 5377 5378 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5379 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5380 goto out; 5381 5382 cpu_buffer_a = buffer_a->buffers[cpu]; 5383 cpu_buffer_b = buffer_b->buffers[cpu]; 5384 5385 /* At least make sure the two buffers are somewhat the same */ 5386 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5387 goto out; 5388 5389 ret = -EAGAIN; 5390 5391 if (atomic_read(&buffer_a->record_disabled)) 5392 goto out; 5393 5394 if (atomic_read(&buffer_b->record_disabled)) 5395 goto out; 5396 5397 if (atomic_read(&cpu_buffer_a->record_disabled)) 5398 goto out; 5399 5400 if (atomic_read(&cpu_buffer_b->record_disabled)) 5401 goto out; 5402 5403 /* 5404 * We can't do a synchronize_rcu here because this 5405 * function can be called in atomic context. 5406 * Normally this will be called from the same CPU as cpu. 5407 * If not it's up to the caller to protect this. 5408 */ 5409 atomic_inc(&cpu_buffer_a->record_disabled); 5410 atomic_inc(&cpu_buffer_b->record_disabled); 5411 5412 ret = -EBUSY; 5413 if (local_read(&cpu_buffer_a->committing)) 5414 goto out_dec; 5415 if (local_read(&cpu_buffer_b->committing)) 5416 goto out_dec; 5417 5418 buffer_a->buffers[cpu] = cpu_buffer_b; 5419 buffer_b->buffers[cpu] = cpu_buffer_a; 5420 5421 cpu_buffer_b->buffer = buffer_a; 5422 cpu_buffer_a->buffer = buffer_b; 5423 5424 ret = 0; 5425 5426 out_dec: 5427 atomic_dec(&cpu_buffer_a->record_disabled); 5428 atomic_dec(&cpu_buffer_b->record_disabled); 5429 out: 5430 return ret; 5431 } 5432 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5433 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5434 5435 /** 5436 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5437 * @buffer: the buffer to allocate for. 5438 * @cpu: the cpu buffer to allocate. 5439 * 5440 * This function is used in conjunction with ring_buffer_read_page. 5441 * When reading a full page from the ring buffer, these functions 5442 * can be used to speed up the process. The calling function should 5443 * allocate a few pages first with this function. Then when it 5444 * needs to get pages from the ring buffer, it passes the result 5445 * of this function into ring_buffer_read_page, which will swap 5446 * the page that was allocated, with the read page of the buffer. 5447 * 5448 * Returns: 5449 * The page allocated, or ERR_PTR 5450 */ 5451 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5452 { 5453 struct ring_buffer_per_cpu *cpu_buffer; 5454 struct buffer_data_page *bpage = NULL; 5455 unsigned long flags; 5456 struct page *page; 5457 5458 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5459 return ERR_PTR(-ENODEV); 5460 5461 cpu_buffer = buffer->buffers[cpu]; 5462 local_irq_save(flags); 5463 arch_spin_lock(&cpu_buffer->lock); 5464 5465 if (cpu_buffer->free_page) { 5466 bpage = cpu_buffer->free_page; 5467 cpu_buffer->free_page = NULL; 5468 } 5469 5470 arch_spin_unlock(&cpu_buffer->lock); 5471 local_irq_restore(flags); 5472 5473 if (bpage) 5474 goto out; 5475 5476 page = alloc_pages_node(cpu_to_node(cpu), 5477 GFP_KERNEL | __GFP_NORETRY, 0); 5478 if (!page) 5479 return ERR_PTR(-ENOMEM); 5480 5481 bpage = page_address(page); 5482 5483 out: 5484 rb_init_page(bpage); 5485 5486 return bpage; 5487 } 5488 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5489 5490 /** 5491 * ring_buffer_free_read_page - free an allocated read page 5492 * @buffer: the buffer the page was allocate for 5493 * @cpu: the cpu buffer the page came from 5494 * @data: the page to free 5495 * 5496 * Free a page allocated from ring_buffer_alloc_read_page. 5497 */ 5498 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5499 { 5500 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5501 struct buffer_data_page *bpage = data; 5502 struct page *page = virt_to_page(bpage); 5503 unsigned long flags; 5504 5505 /* If the page is still in use someplace else, we can't reuse it */ 5506 if (page_ref_count(page) > 1) 5507 goto out; 5508 5509 local_irq_save(flags); 5510 arch_spin_lock(&cpu_buffer->lock); 5511 5512 if (!cpu_buffer->free_page) { 5513 cpu_buffer->free_page = bpage; 5514 bpage = NULL; 5515 } 5516 5517 arch_spin_unlock(&cpu_buffer->lock); 5518 local_irq_restore(flags); 5519 5520 out: 5521 free_page((unsigned long)bpage); 5522 } 5523 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5524 5525 /** 5526 * ring_buffer_read_page - extract a page from the ring buffer 5527 * @buffer: buffer to extract from 5528 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5529 * @len: amount to extract 5530 * @cpu: the cpu of the buffer to extract 5531 * @full: should the extraction only happen when the page is full. 5532 * 5533 * This function will pull out a page from the ring buffer and consume it. 5534 * @data_page must be the address of the variable that was returned 5535 * from ring_buffer_alloc_read_page. This is because the page might be used 5536 * to swap with a page in the ring buffer. 5537 * 5538 * for example: 5539 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5540 * if (IS_ERR(rpage)) 5541 * return PTR_ERR(rpage); 5542 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5543 * if (ret >= 0) 5544 * process_page(rpage, ret); 5545 * 5546 * When @full is set, the function will not return true unless 5547 * the writer is off the reader page. 5548 * 5549 * Note: it is up to the calling functions to handle sleeps and wakeups. 5550 * The ring buffer can be used anywhere in the kernel and can not 5551 * blindly call wake_up. The layer that uses the ring buffer must be 5552 * responsible for that. 5553 * 5554 * Returns: 5555 * >=0 if data has been transferred, returns the offset of consumed data. 5556 * <0 if no data has been transferred. 5557 */ 5558 int ring_buffer_read_page(struct trace_buffer *buffer, 5559 void **data_page, size_t len, int cpu, int full) 5560 { 5561 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5562 struct ring_buffer_event *event; 5563 struct buffer_data_page *bpage; 5564 struct buffer_page *reader; 5565 unsigned long missed_events; 5566 unsigned long flags; 5567 unsigned int commit; 5568 unsigned int read; 5569 u64 save_timestamp; 5570 int ret = -1; 5571 5572 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5573 goto out; 5574 5575 /* 5576 * If len is not big enough to hold the page header, then 5577 * we can not copy anything. 5578 */ 5579 if (len <= BUF_PAGE_HDR_SIZE) 5580 goto out; 5581 5582 len -= BUF_PAGE_HDR_SIZE; 5583 5584 if (!data_page) 5585 goto out; 5586 5587 bpage = *data_page; 5588 if (!bpage) 5589 goto out; 5590 5591 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5592 5593 reader = rb_get_reader_page(cpu_buffer); 5594 if (!reader) 5595 goto out_unlock; 5596 5597 event = rb_reader_event(cpu_buffer); 5598 5599 read = reader->read; 5600 commit = rb_page_commit(reader); 5601 5602 /* Check if any events were dropped */ 5603 missed_events = cpu_buffer->lost_events; 5604 5605 /* 5606 * If this page has been partially read or 5607 * if len is not big enough to read the rest of the page or 5608 * a writer is still on the page, then 5609 * we must copy the data from the page to the buffer. 5610 * Otherwise, we can simply swap the page with the one passed in. 5611 */ 5612 if (read || (len < (commit - read)) || 5613 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5614 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5615 unsigned int rpos = read; 5616 unsigned int pos = 0; 5617 unsigned int size; 5618 5619 if (full) 5620 goto out_unlock; 5621 5622 if (len > (commit - read)) 5623 len = (commit - read); 5624 5625 /* Always keep the time extend and data together */ 5626 size = rb_event_ts_length(event); 5627 5628 if (len < size) 5629 goto out_unlock; 5630 5631 /* save the current timestamp, since the user will need it */ 5632 save_timestamp = cpu_buffer->read_stamp; 5633 5634 /* Need to copy one event at a time */ 5635 do { 5636 /* We need the size of one event, because 5637 * rb_advance_reader only advances by one event, 5638 * whereas rb_event_ts_length may include the size of 5639 * one or two events. 5640 * We have already ensured there's enough space if this 5641 * is a time extend. */ 5642 size = rb_event_length(event); 5643 memcpy(bpage->data + pos, rpage->data + rpos, size); 5644 5645 len -= size; 5646 5647 rb_advance_reader(cpu_buffer); 5648 rpos = reader->read; 5649 pos += size; 5650 5651 if (rpos >= commit) 5652 break; 5653 5654 event = rb_reader_event(cpu_buffer); 5655 /* Always keep the time extend and data together */ 5656 size = rb_event_ts_length(event); 5657 } while (len >= size); 5658 5659 /* update bpage */ 5660 local_set(&bpage->commit, pos); 5661 bpage->time_stamp = save_timestamp; 5662 5663 /* we copied everything to the beginning */ 5664 read = 0; 5665 } else { 5666 /* update the entry counter */ 5667 cpu_buffer->read += rb_page_entries(reader); 5668 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5669 5670 /* swap the pages */ 5671 rb_init_page(bpage); 5672 bpage = reader->page; 5673 reader->page = *data_page; 5674 local_set(&reader->write, 0); 5675 local_set(&reader->entries, 0); 5676 reader->read = 0; 5677 *data_page = bpage; 5678 5679 /* 5680 * Use the real_end for the data size, 5681 * This gives us a chance to store the lost events 5682 * on the page. 5683 */ 5684 if (reader->real_end) 5685 local_set(&bpage->commit, reader->real_end); 5686 } 5687 ret = read; 5688 5689 cpu_buffer->lost_events = 0; 5690 5691 commit = local_read(&bpage->commit); 5692 /* 5693 * Set a flag in the commit field if we lost events 5694 */ 5695 if (missed_events) { 5696 /* If there is room at the end of the page to save the 5697 * missed events, then record it there. 5698 */ 5699 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5700 memcpy(&bpage->data[commit], &missed_events, 5701 sizeof(missed_events)); 5702 local_add(RB_MISSED_STORED, &bpage->commit); 5703 commit += sizeof(missed_events); 5704 } 5705 local_add(RB_MISSED_EVENTS, &bpage->commit); 5706 } 5707 5708 /* 5709 * This page may be off to user land. Zero it out here. 5710 */ 5711 if (commit < BUF_PAGE_SIZE) 5712 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5713 5714 out_unlock: 5715 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5716 5717 out: 5718 return ret; 5719 } 5720 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5721 5722 /* 5723 * We only allocate new buffers, never free them if the CPU goes down. 5724 * If we were to free the buffer, then the user would lose any trace that was in 5725 * the buffer. 5726 */ 5727 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5728 { 5729 struct trace_buffer *buffer; 5730 long nr_pages_same; 5731 int cpu_i; 5732 unsigned long nr_pages; 5733 5734 buffer = container_of(node, struct trace_buffer, node); 5735 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5736 return 0; 5737 5738 nr_pages = 0; 5739 nr_pages_same = 1; 5740 /* check if all cpu sizes are same */ 5741 for_each_buffer_cpu(buffer, cpu_i) { 5742 /* fill in the size from first enabled cpu */ 5743 if (nr_pages == 0) 5744 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5745 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5746 nr_pages_same = 0; 5747 break; 5748 } 5749 } 5750 /* allocate minimum pages, user can later expand it */ 5751 if (!nr_pages_same) 5752 nr_pages = 2; 5753 buffer->buffers[cpu] = 5754 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5755 if (!buffer->buffers[cpu]) { 5756 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5757 cpu); 5758 return -ENOMEM; 5759 } 5760 smp_wmb(); 5761 cpumask_set_cpu(cpu, buffer->cpumask); 5762 return 0; 5763 } 5764 5765 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5766 /* 5767 * This is a basic integrity check of the ring buffer. 5768 * Late in the boot cycle this test will run when configured in. 5769 * It will kick off a thread per CPU that will go into a loop 5770 * writing to the per cpu ring buffer various sizes of data. 5771 * Some of the data will be large items, some small. 5772 * 5773 * Another thread is created that goes into a spin, sending out 5774 * IPIs to the other CPUs to also write into the ring buffer. 5775 * this is to test the nesting ability of the buffer. 5776 * 5777 * Basic stats are recorded and reported. If something in the 5778 * ring buffer should happen that's not expected, a big warning 5779 * is displayed and all ring buffers are disabled. 5780 */ 5781 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5782 5783 struct rb_test_data { 5784 struct trace_buffer *buffer; 5785 unsigned long events; 5786 unsigned long bytes_written; 5787 unsigned long bytes_alloc; 5788 unsigned long bytes_dropped; 5789 unsigned long events_nested; 5790 unsigned long bytes_written_nested; 5791 unsigned long bytes_alloc_nested; 5792 unsigned long bytes_dropped_nested; 5793 int min_size_nested; 5794 int max_size_nested; 5795 int max_size; 5796 int min_size; 5797 int cpu; 5798 int cnt; 5799 }; 5800 5801 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5802 5803 /* 1 meg per cpu */ 5804 #define RB_TEST_BUFFER_SIZE 1048576 5805 5806 static char rb_string[] __initdata = 5807 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5808 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5809 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5810 5811 static bool rb_test_started __initdata; 5812 5813 struct rb_item { 5814 int size; 5815 char str[]; 5816 }; 5817 5818 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5819 { 5820 struct ring_buffer_event *event; 5821 struct rb_item *item; 5822 bool started; 5823 int event_len; 5824 int size; 5825 int len; 5826 int cnt; 5827 5828 /* Have nested writes different that what is written */ 5829 cnt = data->cnt + (nested ? 27 : 0); 5830 5831 /* Multiply cnt by ~e, to make some unique increment */ 5832 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5833 5834 len = size + sizeof(struct rb_item); 5835 5836 started = rb_test_started; 5837 /* read rb_test_started before checking buffer enabled */ 5838 smp_rmb(); 5839 5840 event = ring_buffer_lock_reserve(data->buffer, len); 5841 if (!event) { 5842 /* Ignore dropped events before test starts. */ 5843 if (started) { 5844 if (nested) 5845 data->bytes_dropped += len; 5846 else 5847 data->bytes_dropped_nested += len; 5848 } 5849 return len; 5850 } 5851 5852 event_len = ring_buffer_event_length(event); 5853 5854 if (RB_WARN_ON(data->buffer, event_len < len)) 5855 goto out; 5856 5857 item = ring_buffer_event_data(event); 5858 item->size = size; 5859 memcpy(item->str, rb_string, size); 5860 5861 if (nested) { 5862 data->bytes_alloc_nested += event_len; 5863 data->bytes_written_nested += len; 5864 data->events_nested++; 5865 if (!data->min_size_nested || len < data->min_size_nested) 5866 data->min_size_nested = len; 5867 if (len > data->max_size_nested) 5868 data->max_size_nested = len; 5869 } else { 5870 data->bytes_alloc += event_len; 5871 data->bytes_written += len; 5872 data->events++; 5873 if (!data->min_size || len < data->min_size) 5874 data->max_size = len; 5875 if (len > data->max_size) 5876 data->max_size = len; 5877 } 5878 5879 out: 5880 ring_buffer_unlock_commit(data->buffer, event); 5881 5882 return 0; 5883 } 5884 5885 static __init int rb_test(void *arg) 5886 { 5887 struct rb_test_data *data = arg; 5888 5889 while (!kthread_should_stop()) { 5890 rb_write_something(data, false); 5891 data->cnt++; 5892 5893 set_current_state(TASK_INTERRUPTIBLE); 5894 /* Now sleep between a min of 100-300us and a max of 1ms */ 5895 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5896 } 5897 5898 return 0; 5899 } 5900 5901 static __init void rb_ipi(void *ignore) 5902 { 5903 struct rb_test_data *data; 5904 int cpu = smp_processor_id(); 5905 5906 data = &rb_data[cpu]; 5907 rb_write_something(data, true); 5908 } 5909 5910 static __init int rb_hammer_test(void *arg) 5911 { 5912 while (!kthread_should_stop()) { 5913 5914 /* Send an IPI to all cpus to write data! */ 5915 smp_call_function(rb_ipi, NULL, 1); 5916 /* No sleep, but for non preempt, let others run */ 5917 schedule(); 5918 } 5919 5920 return 0; 5921 } 5922 5923 static __init int test_ringbuffer(void) 5924 { 5925 struct task_struct *rb_hammer; 5926 struct trace_buffer *buffer; 5927 int cpu; 5928 int ret = 0; 5929 5930 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5931 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5932 return 0; 5933 } 5934 5935 pr_info("Running ring buffer tests...\n"); 5936 5937 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5938 if (WARN_ON(!buffer)) 5939 return 0; 5940 5941 /* Disable buffer so that threads can't write to it yet */ 5942 ring_buffer_record_off(buffer); 5943 5944 for_each_online_cpu(cpu) { 5945 rb_data[cpu].buffer = buffer; 5946 rb_data[cpu].cpu = cpu; 5947 rb_data[cpu].cnt = cpu; 5948 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 5949 cpu, "rbtester/%u"); 5950 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5951 pr_cont("FAILED\n"); 5952 ret = PTR_ERR(rb_threads[cpu]); 5953 goto out_free; 5954 } 5955 } 5956 5957 /* Now create the rb hammer! */ 5958 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5959 if (WARN_ON(IS_ERR(rb_hammer))) { 5960 pr_cont("FAILED\n"); 5961 ret = PTR_ERR(rb_hammer); 5962 goto out_free; 5963 } 5964 5965 ring_buffer_record_on(buffer); 5966 /* 5967 * Show buffer is enabled before setting rb_test_started. 5968 * Yes there's a small race window where events could be 5969 * dropped and the thread wont catch it. But when a ring 5970 * buffer gets enabled, there will always be some kind of 5971 * delay before other CPUs see it. Thus, we don't care about 5972 * those dropped events. We care about events dropped after 5973 * the threads see that the buffer is active. 5974 */ 5975 smp_wmb(); 5976 rb_test_started = true; 5977 5978 set_current_state(TASK_INTERRUPTIBLE); 5979 /* Just run for 10 seconds */; 5980 schedule_timeout(10 * HZ); 5981 5982 kthread_stop(rb_hammer); 5983 5984 out_free: 5985 for_each_online_cpu(cpu) { 5986 if (!rb_threads[cpu]) 5987 break; 5988 kthread_stop(rb_threads[cpu]); 5989 } 5990 if (ret) { 5991 ring_buffer_free(buffer); 5992 return ret; 5993 } 5994 5995 /* Report! */ 5996 pr_info("finished\n"); 5997 for_each_online_cpu(cpu) { 5998 struct ring_buffer_event *event; 5999 struct rb_test_data *data = &rb_data[cpu]; 6000 struct rb_item *item; 6001 unsigned long total_events; 6002 unsigned long total_dropped; 6003 unsigned long total_written; 6004 unsigned long total_alloc; 6005 unsigned long total_read = 0; 6006 unsigned long total_size = 0; 6007 unsigned long total_len = 0; 6008 unsigned long total_lost = 0; 6009 unsigned long lost; 6010 int big_event_size; 6011 int small_event_size; 6012 6013 ret = -1; 6014 6015 total_events = data->events + data->events_nested; 6016 total_written = data->bytes_written + data->bytes_written_nested; 6017 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6018 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6019 6020 big_event_size = data->max_size + data->max_size_nested; 6021 small_event_size = data->min_size + data->min_size_nested; 6022 6023 pr_info("CPU %d:\n", cpu); 6024 pr_info(" events: %ld\n", total_events); 6025 pr_info(" dropped bytes: %ld\n", total_dropped); 6026 pr_info(" alloced bytes: %ld\n", total_alloc); 6027 pr_info(" written bytes: %ld\n", total_written); 6028 pr_info(" biggest event: %d\n", big_event_size); 6029 pr_info(" smallest event: %d\n", small_event_size); 6030 6031 if (RB_WARN_ON(buffer, total_dropped)) 6032 break; 6033 6034 ret = 0; 6035 6036 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6037 total_lost += lost; 6038 item = ring_buffer_event_data(event); 6039 total_len += ring_buffer_event_length(event); 6040 total_size += item->size + sizeof(struct rb_item); 6041 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6042 pr_info("FAILED!\n"); 6043 pr_info("buffer had: %.*s\n", item->size, item->str); 6044 pr_info("expected: %.*s\n", item->size, rb_string); 6045 RB_WARN_ON(buffer, 1); 6046 ret = -1; 6047 break; 6048 } 6049 total_read++; 6050 } 6051 if (ret) 6052 break; 6053 6054 ret = -1; 6055 6056 pr_info(" read events: %ld\n", total_read); 6057 pr_info(" lost events: %ld\n", total_lost); 6058 pr_info(" total events: %ld\n", total_lost + total_read); 6059 pr_info(" recorded len bytes: %ld\n", total_len); 6060 pr_info(" recorded size bytes: %ld\n", total_size); 6061 if (total_lost) { 6062 pr_info(" With dropped events, record len and size may not match\n" 6063 " alloced and written from above\n"); 6064 } else { 6065 if (RB_WARN_ON(buffer, total_len != total_alloc || 6066 total_size != total_written)) 6067 break; 6068 } 6069 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6070 break; 6071 6072 ret = 0; 6073 } 6074 if (!ret) 6075 pr_info("Ring buffer PASSED!\n"); 6076 6077 ring_buffer_free(buffer); 6078 return 0; 6079 } 6080 6081 late_initcall(test_ringbuffer); 6082 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6083